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ABSTRACT

Pest avian wildlife is responsible for substantial economic damage every year in 
the United States. In this study we focused on altering the foraging behavior of 
the European starling (Sturnus vulgaris), a pest bird that is responsible for crop 
losses and also poses significant risk for bird-aircraft strikes. The goal of our 
project was to develop an effective system to limit starlings’ access to a food 
patch. Previous technologies used to deter starlings have generally failed as 
birds quickly habituate to startle regimes. Using non-linear ultrasonic parametric 
arrays, we broadcast a directional sound that overlapped in frequency with 
starling vocalizations and was contained in a specific area creating a “net”. We 
hypothesized that the “sonic net” would disturb acoustic communication for 
starlings, causing them to leave and feed elsewhere. Using wild-caught starlings 
in a large aviary, we deployed the sonic net over one food patch while leaving 
another food patch unaltered and then assessed their presence and feeding for 
three consecutive days. The sonic treatment decreased starlings’ presence at the 
treated food patch, on average by 46%. Additionally, we assessed whether the 
sonic net disrupted the birds’ response to an alarm call. When under the sonic 
net, starlings did not respond to the alarm call, suggesting that the sonic net 
disrupted acoustic communication. The sonic net is a promising new method of 
decreasing foraging activity by pest bird species, which has important 
implications for protecting crops, and deterring birds from airports and other sites 
of socio-economic importance.
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1- INTRODUCTION

Agriculture, manmade structures and the aviation industry suffer losses due to 

destruction and hazard caused by birds (Pimentel et al. 2000). For example, 

conservative estimates suggest that damages and delays following bird strikes 

cost the aviation industry and its insurers $1.2 billion per year (Allan 2006). Such 

economic impacts do not account for loss of life, which can also result from birds 

striking aircraft (Linz et al. 2007). The annual economic costs due to the overall 

damage caused by pest birds has been estimated at $1.9 billion in the US 

(Pimentel et al. 2005).

Numerous technologies have been developed to deter pest birds from 

socio-economically significant areas. Many of these systems use auditory stimuli 

such as species specific alarm calls, predator calls, loud noises and pyrotechnics 

(Bomford and O'Brien 1990). Other methods rely on visual cues to deter the birds 

(Bruggers et al. 1986, Dolbeer et al. 1986, Tobin et al. 1988, McLennan et al. 

1995, Avery et al. 2002, Blackwell et al. 2002, Sodhi 2002, Sherman and Barras

2004). Chemical treatment of food sources, such as agricultural crops, can also 

deter or cause harm to birds (Sayre and Clark 2001). Here, we review each of 

these categories of avian deterrents, organized by sensory modality, and 

comment on their sustainable effectiveness for keeping birds away from socio­

economically important areas.

a- Auditory repellents:
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Auditory repellents produce sonic, ultrasonic or bio-sonic calls that help to 

keep birds away from a specific target area (DeVault et al. 2013). In general, 

birds respond to bio-sonic stimuli (i.e., recorded alarm calls, distress call) by 

fleeing the site, at least in theory (Lima and Dill 1990). Researchers have also 

assumed that birds are unlikely to habituate to these bio-sonic stimuli because of 

their biological relevance (Bomford and O'Brien 1990) and that anti-predatory 

response could be evolutionary conserved (Lima and Dill 1990). Response to 

such alarm calls varies among species (DeVault et al. 2013) and by species 

ecology (Goodale and Kotagama 2008). Importantly, there is evidence of 

habituation to bio-sonic stimuli. For example , European starlings (Sturnus 

vulgaris) stopped responding to an alarm call after approximately seven days in 

the absence of negative reinforcement (Summers 1985). Bio-sonic stimuli are 

thus limited by context, species, species behavior, and ecology (DeVault et al. 

2013).

Ultrasonic repellents have commonly been commercialized as effective

bird repellents (Bomford and O'Brien 1990) that are non-audible to humans and

thus can be used in places where humans are often present and where they will

not be able to hear them. However these stimuli are rarely effective, in part

because of the irrelevance of the stimulus for most birds, which do not hear in the

ultrasonic range (>20 kHz) (DeVault et al. 2013). The use of loud noises such as

those produced by propane exploders or pyrotechnics is very common (Bomford

and O'Brien 1990). The repellency of these systems relies on the underlying fear
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induced by the loud stimulus (DeVault et al. 2013). These extreme startle stimuli 

show effectiveness at a small scale especially if installed before the birds 

establish a feeding habit in the target location (Cummings et al. 1986). The 

effectiveness of propane canons requires that they are constantly moved from 

one location to another to maintain novelty and avoid habituation (Linz et al.

2011). Such an approach is labor intensive and costly and relies on monitoring of 

bird activities, The loud noises are also bothersome to humans at a great 

distance.

b- Visual deterrent

Visual bird deterrents have been used in airport environments and 

agricultural fields. These types of deterrents are designed to invoke a fear 

response. Eye-spot balls have been used in vineyards where their initial 

effectiveness decreased prior to fruit ripening, by which time starlings returned to 

their initial numbers (McLennan et al. 1995). In some cases, reflecting tape is 

used as a visual bird deterrent. In a study where reflecting tape was applied to 

different crops in four different countries, researchers found that this method can 

be effective with certain species at a small scale while other species habituated 

to the reflecting tape treatment within a short period following the application 

(Bruggers et al. 1986). Another study found similar results, where the 

researchers determined that reflecting tape can be effective at deterring certain 

species of birds but installation and maintenance are not cost effective at a large
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scale (Dolbeer et al. 1986). Additionally, reflective tape failed at deterring 

American robins (Turdus migratorius), starlings, and house finches (Carpodacus 

mexicanus) from blueberry fields (Tobin et al. 1988). These three studies 

demonstrated the ineffectiveness of reflecting tape at deterring birds from 

agricultural fields.

In certain airport environments, predators such as border collies (Sodhi 

2002) and trained falcons (Kitowski et al.) are currently used to discourage the 

presence of birds. Although these methods can be effective a deterring certain 

bird species, they require intensive labor and can be costly. Handheld lasers 

have recently been employed (Blackwell et al. 2002) in airport environments. The 

effectiveness of lasers as bird deterrents is still debatable; some research has 

shown that certain bird species had limited response to the stimulus and the 

usefulness of lasers is highly dependent on ambient light conditions (Sherman 

and Barras 2004). Lasers also require airport personnel to constantly move to 

direct the beam at the birds that need to be dispersed thus making this method 

time consuming and inefficient.

c- Chemical deterrents and avicides:

Chemical compounds are also commonly used to deter birds from 

sensitive crops and airport environments (DeVault et al. 2013). Only two 

chemical repellents are currently registered for use in the USA: methyl 

anthranilate (MA) and anthraquinone (AQ). These two chemicals are classified



as primary and secondary repellents respectively (DeVault et al. 2013). The 

mode of action of primary repellents differs from secondary repellents in that 

primary repellents do not require learning to be effective.

Methyl anthranilate is a primary repellent organic compound extracted 

from grapes (Esther et al. 2013) and is often used in human food as a flavoring 

ingredient. Chemicals under this category tend to provoke a reflexive withdrawal 

or escape behavior in birds. This is mainly because methyl anthranilate ( 

hereafter MA) has an unpalatable taste, an unpleasant smell or an irritating effect 

on the eyes (Sayre and Clark 2001). Methyl anthranilate has been investigated 

since the early 1960s (Kare 1961). Early studies looked at MA repellency to 

European starlings, common grackles (Quiscalus quiscula), red-winged 

blackbirds (Agelaius phoeniceus), and brown-headed cowbirds (Molothrus ater) 

in livestock feed lots (Mason et al. 1985). Others studied the potential repellency 

of MA on blackbirds (Icteridae sp.) and cedar waxwings (Bombycilla cedrorum) in 

high values crops (i.e. sweet cherries, blueberries, and grapes) (Curtis et al.

1994, Cummings et al. 1995) and on blackbirds in sunflower fields (Werner et al.

2005). Although some studies showed potential repellency of MA at for certain 

bird species (Stevens and Clark 1998, Engeman et al. 2002) other studies 

showed that MA is ineffective at deterring birds either in captivity or in the field 

(Cummings et al. 1995, Werner et al. 2005).
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Secondary repellents evoke an adverse physiological effect (e.g. 

gastrointestinal illness), which the animal associates with a sensory cue (e.g., 

taste, odor, visual cue) and then learns to avoid. Anthraquinone was identified as 

a potential bird repellent in the early 1940s (Heckmanns and Meisenheimer 

1944). Many studies have since identified this chemical as an effective bird 

repellent. Early studies showed that anthraquinone effectively repels boat-tailed 

grackles and red-winged blackbirds from newly planted rice (Avery et al. 1998a, 

Avery et al. 2000). More recent studies have shown that anthraquinone-based 

repellents are effective at deterring Canada geese (Branta canadensis), red­

winged blackbirds, and ring-necked pheasants (Phasianus colchicus) from corn 

seeds and ripening corn (Werner et al. 2009, Carlson et al. 2013). Other studies 

have shown successful repellency to red-winged blackbirds from drill-planted rice 

(Cummings et al. 2011), ring-necked pheasants, and common grackles from 

sunflower crops (Werner et al. 2011).

Although non-lethal chemical repellents are a socially acceptable 

approach to managing avian depredation of agricultural crops (Linz et al. 2006, 

Werner et al. 2011) chemical toxicants such as anthraquinone, which promote a 

learned response, are often derivatives of synthetic pesticides (Fagerstone and 

Schafer 1998). As a consequence, potent secondary repellents often have 

undesirable consequences, either directly in the form of physiological or 

metabolic side effects or side effects because of their degradation products
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(Dolbeer et al. 1994). Thus, there is a need to vigorously identify chemicals that 

are potent repellents but, safe for animal use, and the environment.

The use of primary repellents has been promoted as filling the need for 

effective, environmentally safe products (Mason and Clark 1992). Primary 

repellents are reflexively rejected because they are acutely irritating. As such, the 

target animal never exposes itself to sufficient dosages that would cause severe 

gastrointestinal illness (Sayre and Clark 2001). Despite these positive attributes, 

primary repellents have not achieved the success of secondary repellents in the 

field. Because primary repellents are frequently more benign in their biological 

effects on the target organisms (Sayre and Clark 2001) and also because they 

can easily biodegrade (Aronov and Clark 1996) or wash away with rain and 

irrigation (Werner et al. 2005) they rapidly lose potency and thus require 

repeated treatments depending on the season and crops treated. Therefore, this 

form of bird deterrence can be expensive to maintain and can result in chemical 

residues on crops and in runoff water (Aronov and Clark 1996). A comprehensive 

economic study of MA and AQ use in different environments is still missing from 

the current literature and would be highly useful in deciding whether these 

chemicals are economically viable alternatives.

Avicides such as DRC-1339 (3-chloro-4-methylaniline hydrochloride) can 

reduce pest bird populations through direct mortality (Homan et al. 2005, Homan 

et al. 2013) but can also affect non-target species (Avery et al. 1998b, Linder et
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al. 2004). The application of DRC-1339 is often not cost effective (Blackwell et al. 

2003, Linz et al. 2012).

Making long-term physical habitat changes to exclude birds is not a 

preferred solution due to the high environmental costs (Blackwell et al. 2009a). 

Direct control, such as trapping and euthanizing large numbers of pest birds to 

protect agricultural and industrial structures, often has little to no impact on the 

overall pest population because these bird populations tend to be very large 

(Homan et al. 2005).Many avian repellents are untested, temporarily effective, or 

cost-prohibitive. These technologies undergo dramatically diminished success 

rates within a few days, or even hours, due to quick habituation (Bomford 1990, 

Bomford and O'Brien 1990, Belant et al. 1998) which makes these devices 

neither effective nor economically sustainable for a long-term application 

(LeMieux 2009).

Although many of the deterrence techniques reviewed above are not 

effective, a combination of them is often used in agricultural fields and in airport 

environments. However, there are currently no published reports on the 

effectiveness of using certain deterrent combination in agriculture and in airports.

The development of more effective methods to reduce the associated 

economic impacts will require an understanding of the evolutionary and 

ecological basis of bird feeding and predatory avoidance behavior. Specifically, 

we studied the European starling (Sturnus vulgaris) as a model pest bird and
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report experiments in which we manipulate the acoustic environment of these 

birds so as to mask acoustic communication and displace flocks of starlings from 

food sources. In agriculture European starlings have been estimated to cause 

$800 million of damage per year (Pimentel et al. 2005). Because these birds 

often roost and feed in large numbers near airports they also pose a substantial 

risk for aircraft (Linz et al. 2007). Therefore, there is societal interest in displacing 

flocks of European starlings. An integrated understanding of birds’ sensory 

ecology and associated behaviors can aid the development of effective and 

sustainable methods of pest bird exclusion (Blackwell et al. 2009a, Blackwell et 

al. 2009b).

European starlings use vocal communication for mating calls, territorial 

defense, and to indicate the quality and location of food or to warn of 

approaching predators (Feare 1984). In other species, if environmental noises 

overlap with the frequency range (i.e. acoustic pitch) of bird communication the 

birds exposed to noise may suffer fitness deficits (Klump 1996, Brumm and 

Slabbekoorn 2005, Barber et al. 2010, Kight and Swaddle 2011, Kight et al.

2012), likely because vocalizations are acoustically masked by noise and birds 

cannot hear each other effectively (Klump 1996, Wiley 2006). Importantly, we 

also know that environmental noise that overlaps with avian communication can 

displace some bird populations and restructure ecological communities (Francis 

et al. 2011). Here we build on these observations and employ a noise that is 

designed to overlap with European starling vocal communication and investigate



whether a spatially controlled introduction of this noise, which we term a “sonic 

net”, effectively displaces starlings from a food source and also prevents starlings 

from responding to an alarm call playback.

To create our “sonic nets”, we employed ultrasonic parametric arrays to 

produce a highly directional beam of sound in the 2-10 kHz range at an 

amplitude of approximately 80dB SPL (sound pressure level) at the food sources 

(Dieckman et al. 2013). Conventional loud speakers emit sound in a non- 

directional way (Gan et al. 2012). However ultrasonic parametric arrays transmit 

a highly directional sound beam much like a spotlight (Yoneyama et al. 1983, 

Pompei 1999, Gan et al. 2012). The beam starts out as a mixture of two 

ultrasonic frequencies. A non-linear conversion interaction between the sound 

waves results in an audible sound that is the difference between the two 

ultrasound frequencies and which remains highly directional. By applying our 

sonic net to one food source and not the other in a large aviary over three 

consecutive days we examined whether this type of controlled sound can 

displace flocks and lessen the amount of food eaten. We hypothesized that 

starlings would be deterred from feeding at the food patch affected by the sonic 

net. We also investigated whether our sonic net reduced starlings’ response to 

an alarm call playback. We hypothesized that the 2-10 kHz sound would mask 

perception of the alarm call, leading to a relative lack of increase in vigilance 

behaviors when the alarm call was played.
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2- METHODS

a- Subjects and general housing

Seventy wild-caught adult European starlings, trapped during February 2013 in 

Columbus KS. Ten flocks of seven birds were housed in large outdoor cages (3 

m x 2.5 m x 2 m) with ad libitum access to nutritionally-complete food (Bartlett 

Milling, Statesville, NC), drinking water, and perches. The housing cages were 

visually and acoustically isolated from the experimental aviary. We identified the 

sex of all birds and applied numbered and colored leg bands for easy 

identification.

b- Aviary experiment

Each experimental trial was performed on one flock of six birds at a time (out of 

the seven in a cage, leaving one extra bird in case of injury) from May-July, 2013.
i

Prior to an experimental trial the birds were food deprived for two hours to 

encourage foraging behavior (Devereux et al. 2006, Quinn et al. 2006). 

Experiments took place when there was no rain and less than 16 km/h winds as 

the interaction of rain and wind with the aviary roof created loud artificial noise 

that would hinder experiments.

Each flock was acclimated to the experimental aviary (Fig. 1) 24 hours 

prior to the beginning of a noise treatment sequence (Fig. 2). Each treatment day 

started at 0900 and ended at 1700. The experimental aviary was a long U- 

shaped cage where the birds could access a food patch at both ends, and where
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the food patches were connected by a long area that contained only water. 

Hence, birds had to feed either at patch A or patch B (Fig. 1). In the eight hour 

trials birds had sufficient time to feed at both ends of the aviary and were always 

observed to feed at both ends on their acclimation day (i.e. before sonic net 

exposure). At the beginning of every day, including experimental trial days, we 

placed 500 g of food in a standardized tray at both patch A and B. The tray was 

large enough to catch food spilled by the birds.

On the day following the acclimation day we performed a baseline trial

(day 1) where a flock of birds was not exposed to any additional noise (i.e. the

sonic net) at either patch A or B. We recorded the birds’ presence and foraging

using a four camera closed circuit television (CCTV) system (Lorex Inc, Ontario,

Canada). From these recordings we counted the number of birds at both patch A

and B every five minutes of the eight hour trial and also recorded whether the

birds were feeding. We also measured the mass (g) of food eaten from patches

A and B. On the next day we commenced a series of three noise treatment days

in which one of the food patches (A or B) was affected by the presence of a sonic

net. This sonic net was produced by broadcasting a noise in the 2-10 kHz range

at approximately 80 dB SPL using an MP3 player connected to an Audiospotlight

parametric array speaker (Holosonics, Watertown, MA). High-amplitude broad-

frequency noise may mask important signals that birds might be transmitting

(Swaddle et al. 2006). The high directionality of the noise produced by the

parametric array allowed us to fill side A or B with noise without any noise
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leakage to the opposite side, which was confirmed by sound recordings at 

untreated patches.

For half of the flocks (randomly determined) the sonic net was applied at 

patch A on day 2, patch B on day 3, and patch B again on day 4 (i.e. an ABB 

pattern) (Fig. 2). For the other flocks the sonic net was applied at patch B on day 

2, patch A on day 3, and patch A again on day 4 (i.e. a BAA pattern) (Fig. 2).

This sequencing allowed us to control for side-bias among the groups of 

starlings. A visually similar mock speaker was placed on the quiet side to control. 

For the baseline trial, we used the CCTV system to record the presence and 

foraging behaviors of the birds in each of the noise treatment trials and we also 

measured how much food was eaten at patches A and B.

Analysis 1: Aviary experiment.—We measured the number of birds 

present and the number of birds foraging at either patch by analyzing a frame of 

each video every 5 min of each 8 h trial. A bird was recorded as present if it was 

perched, on the ground, hanging on the side of the aviary, or foraging. The 

percentage of birds on either side was divided by total daily observations on both 

sides of the aviary to get a percentage of bird present or foraging on either side 

(Appendix). A bird was recorded as foraging if it was feeding or sitting in the 

provided food dish. The amount of food consumed in the eight hour trials was 

calculated by subtracting the weight of food remaining in the food dish at the end 

of the trial (after removal of feces) from the initial 500 g provided on each side.
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We tested whether the 2-10 kHz sonic net affected the presence of starlings, the 

feeding behavior of birds, and the amount of food eaten with repeated-measures 

ANOVAs with both the treated side of the aviary and day of the experiment as 

with in-subjects independent variables. We also explored whether the 

effectiveness of the sonic net on birds’ presence and feeding changed over the 

three days of the experiment by examining the interaction of the sonic net 

treatment with day of the experiment (treatment by day interaction).

c- Alarm call experiment

We also performed a captive experiment to test whether starling responses to a 

broadcast conspecific alarm call were lower in the presence of a sonic net. We 

conducted trials to assess birds’ change in vigilance in response to an alarm call 

on eighteen groups of three randomly chosen starlings (no birds were tested 

more than once) from August-October, 2013. The groups of three birds were 

placed in a small cage (0.9 m * 0.75 m * 0.4 m) 24 h prior to the trials to 

acclimate to the experimental cage setting with ad libitum food and water. Birds 

were food deprived on experimental days for 1 h prior to the trials to encourage 

feeding behavior. In the experimental cage, the group was provided with two 

small water dishes and a small food dish with their standard food. We placed 

mealworms in a sand tray below the mesh cage bottom. The mealworms were 

able to burrow in the sand which motivated the birds to probe to locate them and 

thus feed frequently. The parametric array speaker was placed four meters away
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and the same 2-10 kHz noise used in the aviary experiment was broadcast at 80 

dBSPL.

To start each experiment a group of birds was given five minutes to 

acclimate and then experienced a two treatment sequence (a quiet treatment 

followed by a sonic net or sonic net followed by a quiet treatment). Nine of the 

eighteen experimental flocks experienced a treatment sequence that started with 

a quiet control treatment followed by the sonic net treatment. The remaining nine 

flocks experienced a treatment sequence that began with the sonic net treatment 

and was followed by a quiet control treatment. This alternation in treatments 

allowed us to control for the effects that the order of the treatments could have 

had on the behavioral response of the birds. Each treatment lasted 10 min and at 

the end of the first 5 min of each treatment a 2 s alarm call was played three 

times in quick succession (Fig. 3). The broadcast starling alarm call spectrum 

was within the 3-9 kHz range (Feare 1984) and thus would be masked by the 

overlapping 2-10 kHz range sonic net. The alarm call was broadcast using non- 

directional speakers placed a meter from the experimental cage and was also 

broadcast at 80 dB SPL relative to the center of the birds’ cage.

The 2-10 kHz sonic net could also have altered the birds’ behavior simply 

because it was a loud sound rather than specifically masking the perception of 

the alarm call. We tested fourteen flocks under a white noise broadcast in the 

0.1-2 kHz range at 80 dB SPL using the same treatment sequence. The lower
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frequency range sound was not predicted to mask perception of the alarm call 

but could have caused non-specific alterations of vigilance behavior because of 

the presence of a loud noise. The experimental design was the same as in the 

sonic net trial described above except that we had a smaller sample size. Seven 

of the fourteen experimental flocks experienced a treatment sequence that 

started with a quiet control treatment followed by the sound treatment while the 

remaining seven flocks experienced a treatment sequence that began with the 

sound treatment followed by a quiet control treatment.

Analysis 2: Alarm call experiment.—We analyzed video from each trial for 

vigilance of the individual birds. We analyzed snapshots of the 60 seconds 

preceding and following the alarm call in each treatment for presence of vigilance 

behavior. We classified a bird as vigilant if it had its head above body level or 

perched on the side of the cage (Quinn et al. 2006).

In the two alarm call experiments we explored whether the birds’ vigilance 

response to the playback of an alarm call was influenced by the presence of a 

sonic net (either at 2-10 kHz or at 0.1-2 kHz) by using a repeated measures 

ANOVA with both alarm call (pre-call compared with post-call) and sonic net 

(presence compared with absence) as within-group independent variables and 

percentage of time vigilant as the dependent variable. We further examined the 

relative effects of the alarm call on the vigilance of the birds by using paired t- 

tests of birds in the control (no sonic net) and sonic net situations, comparing

16



their vigilance in the minute preceding and the minute following the playback of 

the alarm call.

In both the aviary and alarm call experiments the assumption of data 

sphericity (i.e., data are correlated) was violated in all repeated-measures 

ANOVAs therefore we interpreted Greenhouse-Geisser adjusted F-ratios. 

Percent data from the aviary experiment were arc-sine transformed to improve 

normality of residuals. All statistical analyses were performed with SPSS 

Statistics Version 20.0 (IBM Corp, Armonk, NY) employing two-tailed tests of 

probability.

3- RESULTS

a- Aviary experiment

Presence of the 2-10 kHz sonic net significantly deterred flocks of starlings from 

treated end of the aviary (Greenhouse-Geisser F1i9 = 10.6, P = 0.010, partial eta- 

squared effect size = 0.540). On average, the proportion of time starlings were 

present was reduced by approximately 46% (Fig. 4). There was no general effect 

of day on the presence of birds at the food patches (Greenhouse-Geisser F ^  g.s 

= 0.300, P = 0.616, partial eta-squared effect size = 0.032), nor was there a 

change in the effectiveness of the sonic net at deterring birds over the three days 

of the experiment (Greenhouse-Geisser Fi.2,h = 2.67, P = 0.128, partial eta- 

squared effect size = 0.229).
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The sonic net also reduced the number of starlings feeding at the affected 

food patches (Greenhouse-Geisser F1i9 = 11.9, P = 0.007, partial eta-squared 

effect size = 0.570). On average, the number of feeding birds was reduced by 

54% (Fig. 4). Consistent with the feeding data, there was less food eaten at the 

food patch affected by the sonic net (Greenhouse-Geisser F1i9 = 8.73, P = 0.016, 

partial eta-squared effect size = 0.492). On average, weight of food eaten was 

reduced by 45% (Fig. 4). Day of the experiment did not influence the overall 

pattern of feeding by the birds (Greenhouse-Geisser Fi.1i9.8 = 1.32, P = 0.283, 

partial eta-squared effect size = 0.128), and the effect of the sonic net on 

deterring feeding did not change notably over the course of the experiment 

(Greenhouse-Geisser Fi.i.io = 4.16, P = 0.065, partial eta-squared effect size = 

0.316). Birds were still deterred on day 3 (f9 = 2.77, P = 0.022). Although there 

was no general effect of day of experiment on the amount of food eaten 

(Greenhouse-Geisser Fu g.g = 2.17, P -  0.172, partial eta-squared effect size = 

0.194) there was an indication that effectiveness of the sonic net at reducing the 

food eaten diminished over the three days of the experiment (Greenhouse- 

Geisser F i .2 , 10.7 = 7.84, P = 0.015, partial eta-squared effect size = 0.466). 

Despite this reduction in effect on the amount of food eaten, there was still 

significantly less food eaten on the sonic net side of the aviary on day three 

compared with the control side (f9 = 2.48, P = 0.035).

b- Alarm call experiment
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Sonic net of 2-10 kHz.—The groups of starlings increased their vigilance 

following alarm call playback (Greenhouse-Geisser Fi,i7 = 40.2, P<  0.00001)

(Fig. 5) and this response was reduced when birds were exposed to the 2-10 kHz 

sonic net (Greenhouse-Geisser Fi,i7 = 32.6, P<  0.00003). Specifically, when the 

sonic net was not applied (i.e. the control condition) the groups of starlings 

responded very strongly to the alarm call with increased vigilance behavior (U7 = 

6.69, P < 0.000005). However, when the birds were exposed to the 2-10 kHz 

sonic net they did not show any vigilance response to the alarm call (fi7 = 0.914, 

P= 0.37).

Sonic net ofO. 1-2 kHz. —As before, the starlings showed increased 

vigilance in response to the alarm call (Greenhouse-Geisser Fi,i3 = 45.9, P < 

0.00002) but unlike the 2-10 kHz treatment, the starlings did not have a reduced 

response when exposed to the 0.1-2 kHz sonic net (Greenhouse-Geisser Fi,i3= 

5.97, P= 0.030). As with the previous communication trials, the groups of 

starlings showed an increase in their vigilance in response to the alarm call when 

there was no sonic net over their cage (fo = 6.01, P < 0.00005). When we 

applied the 0.1-2 kHz sonic net the birds still responded strongly to the alarm call 

playback by increasing their vigilance (fi3 = 3.81, P= 0.002). Hence, the birds 

were able to perceive the alarm call and respond appropriately when exposed to 

the 0.1-2 kHz sonic net.

4- DISCUSSION
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Our results indicate that the sonic net is effective at deterring starlings from food 

patches in an outdoor aviary over a three-day period. Our ability to displace 

starlings in cages over an extended period suggests that this technique may also 

be effective in the field. Starlings were continuously exposed to the sonic net for 

8 hours a day for three consecutive days—a length of time sufficient for 

substantial learning and accommodation if the birds were able to adjust to the 

sonic net. We did not observe evidence that birds were less deterred on day 3 

compared with day 1 of exposure to the sonic net. However, there was some 

indication that their food consumption recovered somewhat, but was still lower 

than in the reference treatment without the sonic net. This latter response in 

feeding but not occupancy may be an artifact of the birds having no predators in 

the aviary and birds learning that they could feed at a slightly faster rate without 

truly compromising their already altered predation risk.

The maintenance of the effect of the sonic net, we hypothesize, is

because vocal communication is masked across such a broad range of auditory

frequencies that there is little the starlings can do to avoid such masking. Some

animals are capable of adjusting their vocalization to help avoid masking by

background noise by increasing the amplitude (Brumm and Todt 2002, Brumm

2004) or frequency (Slabbekoorn and Peet 2003) of elements of their

vocalizations. In these cases the amplitude and frequency shifts were much

smaller than would be required to mitigate the masking effect of our sonic net. In

communication systems, both the sender and receiver can adapt to noise
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masking, but for important sounds the weight falls on the receiver (Barber et al.

2010) where vocal adjustment can come at a cost to both energy balance and 

information transfer (Barber et al. 2010). Future studies need to investigate the 

potential change in frequency and amplitude in the starling vocalizations and 

hence, will enable us to comment directly on whether the birds attempted to 

adjust their songs and calls in efforts to avoid acoustic masking.

The alarm call experiments support our general conclusions. The starlings 

did not respond to an alarm call when experiencing a sonic net that we 

hypothesized would mask the alarm call (i.e., the frequency range of 2-10 kHz). 

The absence of a response in this case can be due to the starlings not being able 

to perceive the alarm call when under the sonic net. However, they did respond 

when the sonic net was designed to not mask the alarm call (i.e., the frequency 

range of 0.1-2 kHz) and thus were able to perceive and respond to the alarm call. 

Therefore, we conclude that the sonic net that we applied in the aviary trials (2- 

10 kHz) likely masked auditory communication for starlings, which we 

hypothesize, led to an increase in perceived predation risk of the affected area 

and, hence, decreased occupancy and feeding efficiency by the birds.

We are not the first to indicate that a bird species can be largely excluded 

from an area dominated by noise. The relatively low frequency environmental 

noise produced by natural gas drilling platforms restructures entire bird 

communities by driving off certain species and favoring others (Francis et al.
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2011). However, to the best of our knowledge, we are the first to use a spatially 

controlled noise that is designed to mask acoustic communication to deter a pest 

avian species over a period of three days. Many of the current technologies used 

to deter pest birds lose their effectiveness very quickly (Bomford and O'Brien 

1990) but our solution maintains its effectiveness in displacing starlings despite 

several days of consecutive intense exposure in captivity. Further, as our 

experiments indicate that the 2-10 kHz sonic net masks communication of 

perceived danger, and likely increases perceived predation risk we predict that 

the effectiveness of this sonic net will be greater in field conditions compared with 

our aviary trials. In the aviary, birds were not exposed to real predation threats 

whereas birds’ inability to detect predators reliably will carry greater costs in 

nature.

Our sonic nets may be particularly effective at excluding starlings because

starlings form large flocks (Morrison and Caccamise 1990, Caccamise 1991)

where foraging success and the probability of food discovery can be increased

by vocal communication within the flock (Clark and Mangel 1984, Giraldeau

1984). Sharing information about foraging success benefits the birds in that it

reduces the searching time and leads to an increase in individual foraging rates

(Caraco 1981, Clark and Mangel 1984, Templeton and Giraldeau 1995). Birds

that are unable to communicate tend to forage less efficiently as they are unable

to share information about predators and thus have to spend more time vigilant

instead of foraging. This hypothesis is supported by the results from our alarm
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call experiments. Additionally, we hypothesize that perceived predation risk is 

increased when birds are less able to rely on audible messages that relay 

information about predatory threats, such as alarm calls or sounds emitted 

directly by predator species themselves (Klump and Shalter 1984, Gyger et al. 

1986, Smith 1986).

At a time when anthropogenic noise pollution affects wildlife populations 

(Brumm and Slabbekoorn 2005, Barber et al. 2010), the results from this study 

can also help us better understand how and why bird communities are affected 

by chronic noise. We predict that with increasing frequency (pitch) of noise 

pollution we will see greater disturbance of behaviors mediated by vocal 

communication, such as foraging and anti-predatory behaviors. Decreased 

foraging and increased perceived predation risk, in such situations, will likely 

results in lower individual and population fitness. The sonic net likely induces a 

change in the birds’ perception of risk as it prevents them from relying on 

auditory cues to detect predators. Free-living birds that cannot forage efficiently 

and are subject to a reduced ability to detect predators will likely suffer an overall 

loss of fitness (Klump 1996, Kight and Swaddle 2011, Kight et al. 2012) that 

could be compensated for by moving to acoustically more suitable environments.

Here we propose a novel system for excluding European starlings from 

habitats that have high potential for human-wildlife conflict such as airports, 

agricultural fields, and other socio-economically important areas. Our method
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capitalizes on the critical importance of vocal communication. We used highly 

directional speakers to produce a contained net of sound that masks auditory 

communication and renders the treated area acoustically unsuitable without 

causing noise pollution in the surrounding area. In controlled aviary conditions we 

reduced the presence of starlings by 46%, on average, but we predict the 

magnitude of this effect may be larger in the field when birds face real predation 

threats. We are in the process of commencing field tests to gauge the 

effectiveness of our sonic nets at excluding pest birds in less controlled 

situations. At this stage we have yet to investigate the effects of the sonic net on 

non-target species but this will be incorporated as part of the study design in our 

ongoing field tests. It may be possible that some species are more sensitive to 

masking in particular frequency ranges, which may help us in designing sonic 

nets that exclude particular species from socio-economically important areas.

24



APPENDIX

Flock
Number Day

Reference 
% birds

Treatment 
% birds

Reference 
% feeding

Treatment 
% feeding

Reference 
% eaten

Treatment 
% eaten

1 1 85.9 10.2 75 2.1 88.7 13.7
1 2 14.1 50.3 25 36.8 11.3 36.2
1 3 14.1 3.9 25 0 11.3 5.5
2 1 79.5 66 80.6 69.9 82.6 75.3
2 2 20.5 9.96 19.4 6.52 17.4 17.6
2 3 20.5 23.6 19.4 26.4 17.4 30
3 1 63.3 2.78 68.6 2.15 70.7 4.18
3 2 36.7 14.9 31.4 11.8 29.3 16.2
3 3 36.7 5.52 31.4 5.35 29.3 7.9
4 1 78.5 7.2 70.7 6.8 78 7.2
4 2 21.5 16.4 29.3 11.9 22 11
4 3 21.5 17.8 29.3 21.8 22 12.2
5 1 91.6 4.5 98.5 1.8 92.7 9
5 2 8.4 3.7 1.5 0 7.3 6.5
5 3 8.4 12.2 1.5 6.1 7.3 9.4
6 1 70.4 0.8 87.8 0 74.2 1.5
6 2 29.6 3.5 12.2 0 25.8 4.2
6 3 29.6 1.6 12.2 1.4 25.8 2.5
7 1 43.2 34.7 45.7 19.2 49.2 22.4
7 2 56.8 73.7 54.3 76.8 50.8 77.4
7 3 56.8 76.9 54.3 80 50.8 79
8 1 9.9 0 12.3 0 15.8 2.19
8 2 90.1 6.03 87.7 0 84.2 8.09
8 3 90.1 14.1 87.7 10.6 84.2 23
9 1 9.11 '5.92 29.1 15.2 51.3 18.3
9 2 90.9 58.8 70.9 19.2 48.7 27.5
9 3 90.9 69.1 70:9 26.7 48.7 32.2
10 1 76.6 64.8 80 46.9 68.4 50.8
10 2 23.4 20.6 20 35.4 31.6 37.3
10 3 23.4 65.2 20 71.7 31.6 76.8

25



LITERATURE CITED

Allan, J. 2006. A heuristic risk assessment technique for birdstrike management at 

airports. Risk Analysis 26:723-729.

Aronov, E. V., and L. Clark. 1996. Degradation studies of the non-lethal bird repellent, 

methyl anthranilate. Pesticide Science 47:355-362.

Avery, M. L., J. S. Humphrey, T. M. Primus, D. G. Decker, and A. P. McGrane. 1998a.

Anthraquinone protects rice seed from birds. Crop Protection 17:225-230.

Avery, M. L., J. S. Humphrey, E. A. Tillman, K. O. Phares, and J. E. Hatcher. 2002.

Dispersing vulture roosts on communication towers. Journal of Raptor Research 

36:45-50.

Avery, M. L., M. J. Kenyon, G. M. Linz, D. L. Bergman, D. G. Decker, and J. S.

Humphrey. 1998b. Potential risk to ring-necked pheasants from application of 

toxic bait for blackbird control in South Dakota. Journal of Wildlife Management 

62:388-394.

Avery, M. L., E. A. Tillman, J. S. Humphrey, J. L. Cummings, D. L. York, and J. E.

Davis. 2000. Evaluation of overspraying as an alternative to seed treatment for 

application of Flight Control (R) bird repellent to newly planted rice. Crop 

Protection 19:225-230.

Barber, J. R., K. R. Crooks, and K. M. Fristrup. 2010. The costs of chronic noise

exposure for terrestrial organisms. Trends in Ecology & Evolution 25:180-189.

26



Belant, J. L., P. P. Woronecki, R. A. Dolbeer, and T. W. Seamans. 1998. Ineffectiveness 

of five commercial deterrents for nesting starlings. Wildlife Society Bulletin 

26:264-268.

Blackwell, B. F., G. E. Bernhardt, and R. A. Dolbeer. 2002. Lasers as nonlethal avian 

repellents. Journal of Wildlife Management 66:250-258.

Blackwell, B. F., T. L. DeVault, E. Fernandez-Juricic, and R. A. Dolbeer. 2009a. Wildlife 

collisions with aircraft: A missing component of land-use planning for airports. 

Landscape and Urban Planning 93:1-9.

Blackwell, B. F., E. Fernandez-Juricic, T. W. Seamans, and T. Dolan. 2009b. Avian

visual system configuration and behavioural response to object approach. Animal 

Behaviour 77:673-684.

Blackwell, B. F., E. Huszar, G. M. Linz, and R. A. Dolbeer. 2003. Lethal control of red­

winged blackbirds to manage damage to sunflower: An economic evaluation. 

Journal of Wildlife Management 67:818-828.

Bomford, M. 1990. Ineffectiveness of a Sonic Device for Deterring Starlings. Wildlife 

Society Bulletin 18:151-156.

Bomford, M., and P. H. O'Brien. 1990. Sonic Deterrents in Animal Damage Control: A 

Review of Device Tests and Effectiveness. Wildlife Society Bulletin 18:pp. 411- 

422.

Bruggers, R. L., J. E. Brooks, R. A. Dolbeer, P. P. Woronecki, R. K. Pandit, T. Tarimo, 

and M. Hoque. 1986. Responses of Pest Birds to Reflecting Tape in Agriculture. 

Wildlife Society Bulletin 14:161-170.

27



Brumm, H. 2004. The impact of environmental noise on song amplitude in a territorial 

bird. Journal of Animal Ecology 73:434-440.

Brumm, H., and H. Slabbekoom. 2005. Acoustic communication in noise. Pages 151-209 

in P. J. B. Slater, C. T. Snowdon, H. J. Brockmann, T. J. Roper, andM. Naguib, 

editors. Advances in the Study of Behavior, Vol 35.

Brumm, H., and D. Todt. 2002. Noise-dependent song amplitude regulation in a 

territorial songbird. Animal Behaviour 63:891-897.

Caccamise, D. F. 1991. European Starling Fidelity to Diurnal Activity Centers - Role of 

Foraging Substrate Quality. Wilson Bulletin 103:13-24.

Caraco, T. 1981. Risk-Sensitivity and Foraging Groups. Ecology 62:527-531.

Carlson, J. C., S. K. Tupper, S. J. Werner, S. E. Pettit, M. M. Santer, and G. M. Linz.

2013. Laboratory efficacy of an anthraquinone-based repellent for reducing bird 

damage to ripening com. Applied Animal Behaviour Science 145:26-31.

Clark, C. W., and M. Mangel. 1984. Foraging and Flocking Strategies - Information in an 

Uncertain Environment. American Naturalist 123:626-641.

Cummings, J. L., M. L. Avery, P. A. Pochop, J. E. Davis, D. G. Decker, H. W. Krupa, 

and J. W. Johnson. 1995. Evaluation of a methyl anthranilate formulation for 

reducing bird damage to blueberries. Crop Protection 14:257-259.

Cummings, J. L., R. W. Byrd, W. R. Eddleman, R. M. Engeman, and S. K. Tupper. 2011. 

Effectiveness of AV-1011 (R) to Reduce Damage to Drill-Planted Rice From 

Blackbirds. Journal of Wildlife Management 75:353-356.

28



Cummings, J. L., C. E. Kmttle, and J. L. Guarino. Evaluating a pop-up scarecrow coupled w ith a 

propane exploder for deducing blackbird damage to ripening sunflower. 1986 1986.

Curtis, P. D., I. A. Merwin, M. P. Pritts, and D. V. Peterson. 1994. Chemical repellents 

and plastic netting for reducing bird damage to sweet cherries, blueberries, and 

grapes. Hortscience 29:1151-1155.

DeVault, T. L., B. F. Blackwell, and J. L. Belant. 2013. Wildlife in Airport Environments 

: Preventing Animal-Aircraft Collisions Through Science-Based Management. 

The Johns Hopkins University Press.

Devereux, C. L., M. J. Whittingham, E. Femandez-Juricic, J. A. Vickery, and J. R. Krebs. 

2006. Predator detection and avoidance by starlings under differing scenarios of 

predation risk. Behavioral Ecology 17:303-309.

Dieckman, E. A., E. Skinner, G. Mahjoub, J. Swaddle, and M. Hinders. 2013. Benign 

exclusion of birds using acoustic parametric arrays. Proceedings of Meetings on 

Acoustics 19, 010063. 2013 2013, Montreal, QC, Canada.

Dolbeer, R. A., M. L. Avery, and M. E. Tobin. 1994. Assessment of Field Hazards to 

Birds from Methiocarb Applications to Fruit Crops. Pesticide Science 40:147- 

161.

Dolbeer, R. A., P. P. Woronecki, and R. L. Bruggers. 1986. Reflecting Tapes Repel

Blackbirds from Millet, Sunflowers, and Sweet Com. Wildlife Society Bulletin 

14:418-425.

29



Engeman, R. M., J. Peterla, and B. Constantin. 2002. Methyl anthranilate aerosol for 

dispersing birds from the flight lines at Homestead Air Reserve Station. 

International Biodeterioration & Biodegradation 49:175-178.

Esther, A., R. Tilcher, and J. Jacob. 2013. Assessing the effects of three potential

chemical repellents to prevent bird damage to com seeds and seedlings. Pest 

Management Science 69:425-430.

Fagerstone, K. A., and E. W. Schafer. 1998. Status of APHIS vertebrate pesticides and 

drugs. Proceedings of the Vertebrate Pest Conference 1998 1998, 18: 319-324.

Feare, C. J. 1984. The starling. Oxford University Press, New York, New York, USA.

Francis, C. D., C. P. Ortega, and A. Cruz. 2011. Noise Pollution Filters Bird 

Communities Based on Vocal Frequency. Plos One 6.

Gan, W. S., J. Yang, and T. Kamakura. 2012. A review of parametric acoustic array in 

air. Applied Acoustics 73:1211-1219.

Giraldeau, L. A. 1984. Group Foraging - the Skill Pool Effect and Frequency-Dependent 

Learning. American Naturalist 124:72-79.

Goodale, E., and S. W. Kotagama. 2008. Response to conspecific and heterospecific 

alarm calls in mixed-species bird flocks of a Sri Lankan rainforest. Behavioral 

Ecology 19:887-894.

Gyger, M., S. J. Karakashian, and P. Marler. 1986. Avian Alarm Calling - Is There an 

Audience Effect. Animal Behaviour 34:1570-1572.

Heckmanns, F., and M. Meisenheimer. 1944. Protection of seeds against birds, in 

United States Patent Office 2,339,335, Washington, D.C.



Homan, H. J., R. Stahl, J. Johnston, and G. M. Linz. 2005. Estimating Drc-1339

Mortality Using Bioenergetics: A Case Study of European Starlings. Wildlife 

Damage Management Conferences—Proceedings. Paper 99., 2005.

Homan, H. J., R. S. Stahl, and G. M. Linz. 2013. Comparison of two models for

estimating mortality from baitings with Compound DRC-1339 Concentrate 

avicide. Crop Protection 45:71-75.

Kare, M. R. 1961. Bird Repellent, in United States Patent Office 2,967,128.

Washington, D.C.

Kight, C. R., M. S. Saha, and J. P. Swaddle. 2012. Anthropogenic noise is associated with 

reductions in the productivity of breeding Eastern Bluebirds (Sialia sialis). 

Ecological Applications 22:1989-1996.

Kight, C. R., and J. P. Swaddle. 2011. How and why environmental noise impacts 

animals: an integrative, mechanistic review. Ecology Letters 14:1052-1061. 

Kitowski, I., G. Grzywaczewski, J. Cwiklak, M. Grzegorzewski, and S. Krop. 2011. 

Falconer activities as a bird dispersal tool at Deblin Airfield (E Poland). 

Transportation Research Part D-Transport and Environment 16:82-86.

Klump, G. M. 1996. Bird communication in the noisy world. Pages 321-338 in D. E.

kroodsma, Miller E. H., editor. Ecology and evolution of acoustic communication 

in birds. Cornell University Press, Ithaca, NY.

Klump, G. M., and M. D. Shalter. 1984. Acoustic Behavior of Birds and Mammals in the 

Predator Context .1. Factors Affecting the Structure of Alarm Signals .2. the

31



Functional-Significance and Evolution of Alarm Signals. Zeitschrift Fur 

Tierpsychologie-Journal of Comparative Ethology 66:189-226.

LeMieux, J. 2009. One Bird Strike And You're Out: Solutions to Prevent Bird Strikes.

Trafford Publishing, Victoria, BC, Canada.

Lima, S. L., and L. M. Dill. 1990. Behavioral decisions made under the risk of predation - 

a review and prospectus. Canadian Journal of Zoology-Revue Canadienne De 

Zoologie 68:619-640.

Linder, G., E. Harrahy, L. Johnson, L. Gamble, K. Johnson, J. Gober, and S. Jones. 2004. 

Sunflower depredation and avicide use: A case study focused on DRC-1339 and 

risks to non-target birds in North Dakota and South Dakota. Pages 202-220 in L. 

Kapustka, H. Galbraith, M. Luxon, andG. Bidding, editors. Landscape Ecology 

and Wildlife Habitat Evaluation: Critical Information for Ecological Risk 

Assessment, Land-Use Management Activities, and Biodiversity Enhancement. 

American Society Testing and Materials, West Conshohocken, PA.

Linz, G. M., H. J. Homan, S. M. Gaukler, L. B. Penry, and W. J. Bleier. 2007. European 

Starlings: A review of an invasive species with far-reaching impacts. Managing 

Vertebrate Invasive Species: Proceedings of an International Symposium, 2007, 

National Wildlife Research Center, Fort Collins, CO, USA.

Linz, G. M., H. J. Homan, A. A. Slowik, and L. B. Penry. 2006. Evaluation of registered 

pesticides as repellents for reducing blackbird (Icteridae) damage to sunflower. 

Crop Protection 25:842-847.

32



Linz, G. M., H. J. Homan, S. J. Werner, H. M. Hagy, and W. J. Bleier. 2011. Assessment 

of Bird-management Strategies to Protect Sunflowers. Bioscience 61:960-970.

Linz, G. M., J. B. Winter, and W. J. Bleier. 2012. Evaluation of elevated bait trays for 

attracting blackbirds (Icteridae) in central North Dakota. Crop Protection 41:30- 

34.

Mason, J. R., and L. Clark. 1992. Nonlethal repellents: the development of cost-effective, 

practical solutions to agricultural and industrial problems. Proceedings of the 

Vertebrate Pest Conference 15: 115-129, 1992 1992.

Mason, J. R., J. F. Glahn, R. A. Dolbeer, and R. F. Reidinger. 1985. Field-Evaluation of 

Dimethyl Anthranilate as a Bird Repellent Livestock Feed Additive. Journal of 

Wildlife Management 49:636-642.

McLennan, J. A., N. P. E. Langham, and R. E. R. Porter. 1995. Deterrent effect of eye- 

spot balls on birds. New Zealand Journal of Crop and Horticultural Science 

23:139-144.

Morrison, D. W., and D. F. Caccamise. 1990. Comparison of Roost Use by 3 Species of 

Communal Roostmates. Condor 92:405-412.

Pimentel, D., L. Lach, R. Zuniga, and D. Morrison. 2000. Environmental and economic 

costs of nonindigenous species in the United States. Bioscience 50:53-65.

Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and 

economic costs associated with alien-invasive species in the United States. 

Ecological Economics 52:273-288.

33



Pompei, F. J. 1999. The use of airborne ultrasonics for generating audible sound beams. 

Journal of the Audio Engineering Society 47:726-731.

Quinn, J. L., M. J. Whittingham, S. J. Butler, and W. Cresswell. 2006. Noise, predation 

risk compensation and vigilance in the chaffinch Fringilla coelebs. Journal of 

Avian Biology 37:601-608.

Sayre, R. W., and L. Clark. 2001. Effect of primary and secondary repellents on

European starlings: An initial assessment. Journal of Wildlife Management 

65:461-469.

Sherman, D. E., and A. E. Barras. 2004. Efficacy of a laser device for hazing Canada 

geese from urban areas of northeast Ohio. Ohio Journal of Science 104:38-42.

Slabbekoom, H., and M. Peet. 2003. Ecology: Birds sing at a higher pitch in urban noise - 

Great tits hit the high notes to ensure that their mating calls are heard above the 

city's din. Nature 424:267-267.

Smith, R. J. F. 1986. Evolution of Alarm Signals - Role of Benefits of Retaining Group 

Members or Territorial Neighbors. American Naturalist 128:604-610.

Sodhi, N. S. 2002. Competition in the air: Birds versus aircraft. Auk 119:587-595.

Stevens, G. R., and L. Clark. 1998. Bird repellents: development of avian-specific tear 

gases for resolution of human-wildlife conflicts. International Biodeterioration & 

Biodegradation 42:153-160.

Summers, R. W. 1985. The effect of scares on the presence of starlings (stumus-vulgaris) 

in cherry orchards. Crop Protection 4:520-528.

34



Swaddle, J. P., L. McBride, and S. Malhotra. 2006. Female zebra finches prefer

unfamiliar males but not when watching noninteractive video. Animal Behaviour 

72:161-167.

Templeton, J. J., and L. A. Giraldeau. 1995. Public Information Cues Affect the 

Scrounging Decisions of Starlings. Animal Behaviour 49:1617-1626.

Tobin, M. E., P. P. Woronecki, R. A. Dolbeer, and R. L. Bruggers. 1988. Reflecting Tape 

Fails to Protect Ripening Blueberries from Bird Damage. Wildlife Society 

Bulletin 16:300-303.

Werner, S. J., J. C. Carlson, S. K. Tupper, M. M. Santer, and G. M. Linz. 2009.

Threshold concentrations of an anthraquinone-based repellent for Canada geese, 

red-winged blackbirds, and ring-necked pheasants. Applied Animal Behaviour 

Science 121:190-196.

Werner, S. J., H. J. Homan, M. L. Avery, G. M. Linz, E. A. Tillman, A. A. Slowik, R. W. 

Byrd, T. M. Primus, and M. J. Goodall. 2005. Evaluation of Bird Shield (TM) as a 

blackbird repellent in ripening rice and sunflower fields. Wildlife Society Bulletin 

33:251-257.

Werner, S. J., G. M. Linz, J. C. Carlson, S. E. Pettit, S. K. Tupper, and M. M. Santer.

2011. Anthraquinone-based bird repellent for sunflower crops. Applied Animal 

Behaviour Science 129:162-169.

Wiley, R. H. 2006. Signal detection and animal communication. Pages 217-247 in 

Advances in the Study of Behavior.

35



Yoneyama, M., J. Fujimoto, Y. Kawamo, and S. Sasabe. 1983. The Audio Spotlight - an 

Application of Non-Linear Interaction of Sound-Waves to a New Type of 

Loudspeaker Design. Journal of the Acoustical Society of America 73:1532-1536.

36



FIGURE LEGENDS

Figure 1. Plan view of the aviary experimental area. Circles (A) and (B) indicate 

food patches. Rectangle (W) indicates water dish.

Figure 2. Schematic of the aviary experiment. (A) and (B) indicate food patches 

(Fig. 1). For half of the flocks the sonic net was applied in a BAA treatment 

sequences whereas the other half of the flocks were subject to an ABB treatment 

sequence. Both sequences were preceded by an aviary acclamation day and a 

reference day with no sonic net treatment.

Figure 3. Schematic of the alarm call experiment timeline. Visual representation 

of a single trial where (Treatment 1) and (Treatment 2) are either “sonic net” or 

“quiet” treatment. Bracketed areas indicate pre- and post-alarm call data 

collection time intervals.

Figure 4. Effects of the sonic net in the aviary experiment. All values are mean ± 

standard error. (A) Reduction in the % birds present under the sonic net when 

compared with the same area under a no sound treatment. (B) Reduction in the 

% birds feeding under the sonic net when compared with the same area under a 

no sound treatment. (C) Reduction in the % amount food eaten under the sonic 

net when compared with the same area under a no sound treatment.

Figure 5. Mean (± standard error) percent time spent vigilant through different 

stages of the alarm call experiment. (A) There was no increase in vigilance to the 

broadcast of an alarm call when under a 2-10 kHz sonic net. (B) There was an 

increase in vigilance in response to the broadcast of an alarm call when under a 

0.1-2 kHz sonic net.
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Figure 4.
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