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ABSTRACT

Connectivity at the aquatic-terrestrial ecotone is essential for maintaining 
the delicate balances between biotic and abiotic factors. However, humans 
have been modifying and disrupting this connectivity through activities such 
as land-use changes, shoreline development, and resource extraction for 
centuries. In order to assess how these modifications are affecting 
connectivity, we conducted two studies within the Chesapeake Bay. The 
first study focused on identifying socio-economic and landscape factors that 
affect the rates and distribution of shoreline development along Virginia’s 
coastline while the second study examined how the spatial distribution of 
diamondback terrapins (Malaclemys terrapin) responded to human 
alterations to the aquatic-terrestrial ecotone of the lower Chesapeake Bay. 
For the shoreline development study, we mapped out changes in two forms 
of shoreline development (docks and shoreline armoring) from 2002 to 
2009 within 83 sites placed along Virginia’s coastline. Overall, we 
documented 1093 new docks and 53.75 km of new shoreline armoring 
within our study sites. For a fine-scale spatial assessment of shoreline 
development distribution, we also conducted occupancy surveys for both 
docks and shoreline armoring in 1250 sites using aerial imagery from 2009, 
of which, 25.9% of sites had docks, and 15.1% of sites had shoreline 
armoring. Model results revealed that both rates and distribution were 
positively affected by human development and negatively affected by large 
areas of marsh.
To examine the spatial distribution of diamondback terrapins, we conducted 
repeated occupancy surveys at 165 sites in 2012 and 2013. We modeled 
potential relationships between occupancy and local and spatial factors 
related to human modifications to the terrestrial-aquatic ecotone. Tidal salt- 
marsh was the most important positive predictor of diamondback terrapin 
occurrence, while agriculture, crab pots, armored shoreline, and low urban 
were important negative predictors. We also identified thresholds for the 
major predictive factors which indicated that diamondback terrapins have a 
low sensitivity to anthropogenic alterations.
Overall, our results indicate that humans have extensively developed the 
shoreline and are continuing to do so at high rates, and that those 
modifications are having detectable effects on diamondback terrapin 
distribution over large spatial scales. The ability to predict shoreline 
development growth and how it will affect connectivity throughout the 
Chesapeake Bay provides important information to resource managers 
about restoration and conservation targets
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CHAPTER 1

Examining shoreline development growth of Virginia’s coastline: a socio

economic and landscape level analysis

Abstract

As sea level is rising and is predicted to continue to rise over the next century, the

effects of shoreline development on the marine ecosystems must be understood.

However, in order to do that, we first need to be able to spatially predict where shoreline

development is most likely to occur, and what factors are driving its growth. For this

study, we used aerial imagery to map changes in two forms of shoreline development

(docks and shoreline armoring) from 2002 to 2009 within 83 2.5 km radius sites placed at

random along Virginia’s coastline. Overall, we documented 1093 new docks and 53.75

km of new shoreline armoring within our study sites. Low urban land cover, shoreline

length, and housing density change were all positively correlated with shoreline

development change, while marsh was negatively correlated. When applied at the county

level, the counties closest to the Chesapeake Bay had the highest predicted rates of

development, and predicted rates declined with decreasing longitude. For a fine-scale

spatial assessment of shoreline development distribution, we also conducted

presence/absence surveys for both docks and shoreline armoring in 1250 90-m radius

sites using aerial imagery from 2009. After adjusting for observer bias, 25.9% of sites

had docks, and 15.1% of sites had shoreline armoring. Model results revealed that

housing density and agriculture were stronger predictors of docks than of shoreline
1



armoring, and that low urban land cover was a very strong positive predictor for both 

features. Marsh was also negatively correlated with shoreline development. In Virginia, 

shoreline armoring appears to be more closely associated with urban areas than docks, 

which are more influenced by local factors. As sea levels continue to rise, the need to 

protect shorelines is expected to increase as the amount of marsh (the only negative 

predictor) is expected to decrease. Therefore, it is increasingly important to develop and 

implement management strategies that address both ecosystem health and functioning as 

well as human needs.

Introduction

Humans have a long and complex relationship with coastal areas of the world. 

Historically humans were drawn to coastlines because of the ecosystem services these 

areas provided—especially the provision of raw materials, food, and commercial fish 

harvests. Unfortunately, concentrated human populations along coasts have diminished 

these services through direct and indirect alterations to natural ecosystems. Loss of 

coastal habitats including salt marshes, mangroves, and seagrasses from human activities 

has been linked to declines in fisheries and natural shoreline protection from flooding and 

storm events (e.g., (Worm et al. 2006, Cochard et al. 2008, Koch et al. 2009)).

Currently, about 10% of the world’s populations live in the low-elevation coastal

zone (McGranahan et al. 2007), and societal demands to protect human infrastructure

from environmental pressures, such as wind and tide-driven shoreline erosion or

encroachment of the sea, have led to a global practice of armoring shorelines, primarily

using seawalls, bulkheads (i.e., vertical retaining wall made of concrete, steel, wood or
2



plastic), or riprap revetment structures (i.e., sloped retaining wall made of loose rock, 

crushed concrete, or other material) (Dugan et al. 2011). The extent of coastal armoring 

typically increases with increasing population density and development and in many 

areas covers more than half of the coastline (Dugan et al. 2011). For example, armoring 

and coastal infrastructure dominates coastlines in the Mediterranean (EEA 1999), several 

subwatersheds within Chesapeake Bay, USA (Center for Coastal Resources Management 

2012a), and Sydney Harbor, Australia (Chapman 2003). Besides shoreline armoring, 

another integral component of shoreline development is the construction of piers (also 

referred to as docks) to allow for a variety of recreational or commercial resource uses 

such as fishing or water-access. Overall, in the United States permit requests for private 

docks have increased in the past several decades and coastal residents generally perceive 

it as their right to construct a dock on their property that extends into common waters 

(Kelty and Bliven 2003).

Proliferation of artificial structures to protect shorelines or enhance water-access

has introduced novel habitat to most coastal environments and fragmented natural

habitats. Shoreline development alters estuarine landscapes by disrupting connectivity

and homogenizing habitat at the land-water interface (Peterson and Lowe 2009), which

has been increasingly recognized as an important conservation consideration for coastal

areas (Talley et al. 2006). The documented adverse effects of shoreline development are

numerous, and include preventing access to nesting sites for estuarine turtles

(Roosenburg 1994), altering patterns of accretion and erosion (Ells and Murray 2012), a

loss of diversity and reduction of benthic and nekton community structure and integrity

(Isdell et al. In Review, Bilkovic et al. 2006, Seitz et al. 2006b, Bilkovic and Roggero
3



2008), and the facilitation of invasive species (Silliman and Bertness 2004). Coastal 

development structures have also recently been proposed as a source of coastal jellyfish 

blooms (Duarte et al. 2012). Additionally, studies have shown that maintaining 

connectivity and the abiotic environments will be essential to species survival in the 

future as the climate changes (Talley et al. 2006, Gorman et al. 2009, Schloss et al. 2011). 

As the climate changes and sea levels rise, the rate of shoreline armoring is likely to 

increase (Thompson et al. 2002).

While docks may seem relatively unobtrusive, they can alter near shore habitats 

through a variety of mechanisms. Shading effects of docks have been linked to the 

fragmentation or elimination of submerged aquatic vegetation (SAV) beds including 

Zostera marina and Halodule wrightii (Burdick and Short 1999, Shafer 1999), and vessel 

activity associated with docks can disturb or remove plants (Haslam 1978, Liddle and 

Scorgie 1980, Asplund and Cook 1997) and reduce foraging activity among wading 

shorebirds (McKinney et al. 2010). There is also evidence of reduced fish species 

abundance, diversity, and feeding and growth rates underneath docks (Duffy-Anderson 

and Able 2001, Scheuerell and Schindler 2004, Able and Duffy-Anderson 2006). 

Additionally, increasing dock densities directly resulted in concomitant decrease of 

marshes (Altieri et al. 2012). Dock presence significantly increased abundance and 

species richness of gull and terns (e.g., laughing gull [Leucophaeus atricilla], and 

common tern [Sterna hirundo]), had no effect on facultative marsh birds (e.g., fish crow 

[Corvus ossifragus], boat-tailed grackle [Quiscalus major], and red-winged blackbird 

[(Agelaiusphoeniceus]), but had negative effects on obligate marsh birds (e.g., clapper
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rail [Rallus longirostris] and seaside sparrow [Ammodramus maritimus]) (Banning and 

Bowman 2009).

The Chesapeake Bay exemplifies a coastal system that has been extensively 

modified and is experiencing intensifying pressures as both human occupation and sea 

level rises. From navigation and resource extraction to recreation, humans have been 

interacting with and modifying the coastal areas of the Chesapeake Bay for centuries 

(Brooks 1893). Coastal areas contain a wide range of habitats from the highly productive 

salt marshes (Gedan et al. 2009b) and beaches to the highly modified urban, residential, 

and agricultural land. Much of the Chesapeake Bay tidal shoreline has been modified 

with an estimated 18% armored with engineered structures (bulkhead or riprap 

revetment), 32% of the riparian zone land use converted to residential or commercial 

development, and over 47,000 docks built (Titus et al. 2009).

Although the adverse effects of shoreline development are well-documented,

efforts to forecast where shoreline development will occur, to our knowledge, have been

'rare. In the one known previous effort, the authors’ primary focus was to assess where

sea level rise would have the worst impact (Titus et al. 2009). Here, we propose to use

proxies of human land use and extent of available land to assess factors influencing

shoreline development. To investigate the effects of human land use on shoreline

development, we used housing density, human population density, mean individual

income, and land cover classes, including low urban, high urban, and agriculture.

Because shoreline development is largely influenced by available shoreline, we also

included emergent wetland, vegetated land cover, and shoreline length, to assess factors

influencing shoreline development. Identifying estuarine and coastal shoreline reaches
5



that will likely be developed can inform conservation/restoration targeting, resource 

management, and local planning decisions.

Using Virginia’s coastline as a representative coastal environment, our objectives 

were to (1) delineate change in shoreline development from 2002 to 2009 based on 

analyses of aerial imagery, (2) identify primary economic, demographic, and/or land use 

factors driving shoreline development changes, and (3) determine areas most susceptible 

to shoreline development in the future. We hypothesized that housing density and/or 

population density will relate positively to shoreline development. We also predicted that 

the extent of emergent wetland relates negatively to shoreline development as wetlands 

are protected and managed in Virginia under the Nontidal Wetlands Act (administered by 

the Department of Environmental Quality) and the Tidal Wetlands Act (administered by 

the Virginia Marine Resources Commission) (Environmental Law Institute 2008). 

Methods and Materials

The coastal areas of Virginia contain a variety of natural and human landscapes 

ranging from natural preserves to urban centers. Population levels within the lower 

Chesapeake Bay range from the sparsely populated Eastern Shore of Virginia (Virginia’s 

portion of the Delmarva Peninsula) with fewer than 50,000 inhabitants (US Census 

Bureau 2012) to the densely populated Norfolk Metropolitan Statistical Area (NMSA) 

located around the mouth of the James River with more than 1.66 million inhabitants 

(Norfolk Department of Development 2012) (Figure 1). Additionally, in the Middle 

Atlantic Coastal Plain ecoregion, which includes the Chesapeake Bay, urban areas 

increased by 2.5% and forest land cover decreased by 3.3% between 1973 and 2000 

(Brown et al. 2005).
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All study sites were either on the Chesapeake Bay, along one of its numerous tidal

tributaries, or on the seaside of Virginia’s Eastern Shore (Figure 1). To assess changes in

shoreline development (docks and shoreline armoring), we first delineated losses and

gains of shoreline development within 2.5-km radius circles centered on the shoreline.

We then identified factors influencing shoreline development using count-based

regression analyses to assess shoreline development change between 2002 and 2009, and

presence/absence data to assess heterogeneity in shoreline development in 2009.

Delineating areas o f  shoreline change

To select study sites, we randomly placed 110 points along the shoreline

(shoreline data obtained from (Center for Coastal Resources Management 2011)) at least

5 km apart using the Generate Random Points tool from Hawth’s Analysis Tools v. 3.27

in ArcMap 9.3.1 (ESRI 2009). Points were buffered by 2.5 km to provide a sufficient

area to detect temporal changes in dock and shoreline armoring distribution. All

overlapping buffers were eliminated to provide a final count of 83 non-overlapping,

Independent areas of shoreline for analysis (Figure 1).

We obtained armored shoreline and dock spatial locations by hand digitizing

2002 and 2009 Virginia Base Map imagery at a 1:2000 scale. Armored shoreline

consisted of bulkhead or riprap revetment structures and docks refer to any structure

extending from the shore to the water, including docks and piers. We selected years 2002

and 2009 to provide the greatest time span with the available aerial imagery. Imagery was

unavailable before 2002 and after 2009 for the entire study area. All of the shoreline

within each buffer was visually scanned for the presence of obviously armored shoreline

and docks in 2002. Any shoreline that was too ambiguous or hidden by trees was not
7



included as armored. The resulting shapefiles of armored shoreline and docks were then 

copied and modified to fit the 2009 imagery by adding any new shoreline or docks and 

deleting any that were lost. We converted shapefiles for armoring and docks to rasters 

where NoData equaled “0” and armoring and docks equaled either “ 1” or “2” for 2002 

and 2009, respectively. The 2002 and 2009 rasters were then summed using Raster 

Calculator for both armoring and docks resulting in the following classifications: 0 = 

NoData, 1 = Present in 2002 but absent in 2009, 2 = Present in 2009 but absent in 2002, 

and 3 = Present in 2002 and 2009. We then used Zonal Statistics to calculate the total 

length of shoreline armoring and number of docks lost, gained, and held constant from 

2002 to 2009 for each study site. All spatial analyses were performed in ArcGIS 10.0 

(ESRI 2011).

Factors explaining shoreline change

We used several landscape and demographic factors, all evaluated within 2.5-km

radii circles centered on study sites, to identify which best explain the heterogeneity in

the change in shoreline armoring and docks between 2002 and 2009. To investigate how

human land use influences shoreline development, we related demographic and economic

factors to shoreline development change, such as housing and population densities, and

mean individual income. We predicted that these factors, either as single or interactive

terms, will relate positively to shoreline development. To assess how available land cover

relates to shoreline development, we included land cover classes such as low urban, high

urban, agriculture, emergent wetland, and vegetated land cover (any vegetated class that

was not marsh or agriculture) in 2001. We also included total shoreline length in our

analyses as more available shoreline could potentially result in increased shoreline
8



development. We predicted that agriculture, low urban and vegetated land covers as well 

as shoreline length relate positively to shoreline development whereas high urban land 

cover, because shorelines have already been developed, and emergent wetlands, because 

State and Federal laws prohibit alteration of wetlands (Votteler and Muir 2002), relate 

negatively to shoreline development.

Housing and population density data were gathered from the 1990-2000 and 2010 

Wildland Urban Interface (WUI) datasets provided publicly (Radeloff et al. 2005). We 

derived mean individual income from the US Census Bureau American FactFinder for all 

census tracts in Virginia. The resulting table was then joined to the US Census Bureau 

TIGER/Line Shapefile of the 2010 census tracts in ArcGIS (ESRI 2011). Including 

housing density as a proxy of human land use seems reasonable as (Brown et al. 2005) 

demonstrated this factor to be important when investigating temporal change of human 

land use in terrestrial ecosystems.

We obtained percent vegetation land cover in 2001, defined as any vegetated land

cover class that was not marsh or agriculture from the WUI data sets [20]. The rest of our

land cover data were obtained from the USGS Chesapeake Bay Program’s Chesapeake

Bay Watershed Land Cover Data Series from 2006. The land cover raster was reclassified

into low urban, high urban, agriculture, and emergent wetland (marsh) land cover based

on the following crosswalk. Low urban land cover included “Developed Open Space”

and “Low Intensity Urban” where impervious surface accounted for 0-49% of the total

land cover and consisted mainly of single-family housing and recreational areas. High

urban land cover included “Medium Intensity Urban” and “High Intensity Urban” where

impervious surface accounted for 50-100% of the total land cover and was typically
9



associated with dense housing and commercial/industrial use. Agriculture consisted of all

“Pasture Hay” and “Cultivated Crop”. Agricultural land extent, particularly cropland, has

been used to analyze temporal changes in human land use for the conterminous U.S.

(Brown et al. 2005). Emergent wetland was kept the same from the original raster.

Shoreline length was included in the analyses to correct for variation in area available for

shoreline development. We calculated shoreline length based on the spatial data set

obtained from (Center for Coastal Resources Management 2011).

In Virginia, local citizen wetlands boards with oversight from the Virginia Marine

Resources Commission manage tidal wetlands through the implementation of the Tidal

Wetlands Act (Va. Code §28.2-1300 et seq.). Under this Act, wetlands boards are given

authority for making shoreline development permitting decisions. Technical guidance

(developed by VIMS) was provided to the boards for each permit application reviewed.

~*The purpose of this guidance was to assist the boards in making permit decisions that

iineet the intent and goals of the Tidal Wetlands Act, including no-net loss of wetlands.

"’This guidance is not mandatory, and the final decision is left up to each individual

county. The policies of the local wetlands boards can greatly vary from county to county.

To address county-level differences in management, we used the percent compliance with

guidance provided by VIMS which was obtained from figure 11 of (Center for Coastal

Resources Management 2012b). The percent compliance for each county was joined to

each site based on its nearest county.

All statistical analyses and modeling were conducted using the R statistical

language v. 2.13.2 (R Development Core Team 2011). We used the same methods to

analyze both dock and shoreline armoring change, and so will be referring to both as
10



features in the remainder of this section. Rather than looking at features gained and lost 

separately, the two were combined to obtain a net change from 2002 to 2009 by 

subtracting features lost from features gained. To allow us to assess multiple count-based 

regression model structures, we transformed the net feature change by adding the most 

negative value from each dataset (3 for docks and 20 for shoreline armoring) to all sites 

so that the lowest amount of change was 0, rather than a negative value for those sites 

that lost more than they gained. To facilitate comparisons among parameter estimates, all 

variables were centered and scaled by standard deviation. All potential predictor variables 

were checked for autocorrelation using a Pearson’s correlation matrix. Any variables with 

a correlation coefficient > 0.7 were considered autocorrelated and only one of any set of 

correlated variables was included in the model.

To select the best model structure, we used Vuong’s non-nested hypothesis test 

(Vuong 1989) to compare a negative-binomial, Poisson, zero-inflated negative-binomial, 

and zero-inflated Poisson distribution for the model. Once the appropriate model 

structure had been determined, a univariate model was run for each variable, and then 

compared to the null model. All variables that decreased the deviance and resulted in an 

AIC score lower than the null model were included in a global model. All possible 

combinations of the variables were analyzed, and the top models with a cumulative AIC 

weight of 0.95 were selected for model averaging to generate the final model (Burnham 

and Anderson 2002).

We spatially applied the final model at the county level for dock and shoreline

armoring change. The county level was chosen as the most appropriate level for

communicating the findings of this study to local governments. County-level predictions
11



were made using the Raster Calculator in ArcGIS 10.0 (ESRI 2011) by spatially applying 

model averaged slope values to the variables at the 2.5-km extent. The output (predicted 

amount of shoreline development within 2.5-km of each cell) was then restricted to the 

shoreline (10-m resolution), and divided by the total number of cells of shoreline within 

2.5-km to obtain a proportion developed within 2.5-km. Zonal Statistics (using the 

counties as zones) then provided the county-level proportion developed. Total shoreline 

development change from 2002-2009 was then estimated by multiplying the county-level 

proportion developed by total shoreline in the county. Average yearly rate of change was 

calculated by dividing the total change by 8 years.

Factors explaining shoreline development based on presence/absence data

To address the inherent ambiguity in delineating shoreline features from aerial 

imagery, we also conducted a presence/absence survey. A total of 1250 points were 

randomly placed along the shoreline and buffered by 90m. Within each buffer, the 

shoreline was scanned for the presence/absence (P/A) of docks and shoreline armoring. 

Four people independently completed the P/A surveys. To account for the uncertainty in 

our classifications, only those sites where all four observers agreed on the P/A 

classification were used in the analysis. A total of 1088 (87.0% agreement) sites for 

docks and 1033 sites (82.6% agreement) for shoreline armoring were classified 

consistently across observers. Of those, 188 (17.2%) and 183 (17.7%) sites from docks 

and shoreline armoring, respectively, were retained for model evaluation.

Site-specific variables were extracted from ArcGIS 10.0 (ESRI 2011) using the

same methods as above. However, since the sites for this method were surveyed within

90m rather than 2.5km, multiple scales (extents of analysis) for each variable were used
12



in the analysis. Housing density change, and proportion of agriculture, marsh, low urban, 

and vegetation in 2001 were extracted within buffers centered on sampling locations 

ranging in radii from 90 -  990 m in 90 m increments. We decided to include concentric- 

buffer analyses in our study as factors beyond the sampling extent (90-m radius) may 

influence P/A of docks and shoreline armoring and a buffer of 1 km was thought to be 

sufficiently large to capture local heterogeneity in predictor variables.

The data for each feature were analyzed using a generalized linear model with a 

logit-link (Hosmer Jr and Lemeshow 2004). As we used the count-based regression 

modeling approach, we centered and scaled each predictor variable by standard deviation 

and evaluated autocorrelations among predictor variables. We then evaluated each 

variable at each scale using univariate models, where the best scale for each variable was 

selected based on the lowest AIC score. The best scale for each variable was then 

compared to the null model, and those with a lower AIC score were included in a global 

model. All possible combinations of the variables were analyzed, and the top models with 

a cumulative AIC weight of 0.95 were selected for final model averaging (Burnham and 

Anderson 2002). The final models were then spatially applied using the raster calculator 

function in ArcGIS 10.0 (ESRI 2011).

The final models were then used to predict the probability of occurrence for the 

test sites from the dock and shoreline armoring data. To assess the predictive ability of 

the model, a generalized linear model using a logit-link was used to compare observed 

(P/A dock or shoreline armoring) to predicted values (probability of dock or shoreline 

armoring from final averaged models). If a spatial model is highly predictive, observed

values should relate significantly positive to expected values.
13



Results

Delineating areas o f  shoreline change

Between 2002 and 2009, 1093 docks and 53.75 km of shoreline armoring were

added within our study sites (n = 83) in the Chesapeake Bay. Shoreline development loss

was only found in a few areas. Percent shoreline development loss was higher for docks

(2.33%, 151 lost/6485 present in both years) than for shoreline armoring (0.49%, 1.21 km

lost/247.28 km present in both years).

Factors explaining shoreline change

We identified two pairs of autocorrelated variables. Housing density change was

correlated with population density change (r = 0.828, p < 0.001), and % low urban was

correlated with % high urban (r = 0.878, p < 0.001). Housing density change was selected

over population density change because residences were thought to more intuitively

explain the change in shoreline features. This is in line with (Brown et al. 2005) who

argued that population density is underestimating rural development as the U.S.

population census is tied to location of residence and not where people recreate. This is

important as shoreline development is associated, in part, with vacation homes whose use

is not captured with population density estimates but with housing density. Percent low

urban was selected over percent high urban because high urban areas (such as cities and

industrial areas) are more likely saturated with developed shoreline features than low

urban (such as residential and recreational areas).

The negative-binomial model structure provided the best fit for both the dock data

and the shoreline armoring data, based on the Vuong non-nested hypothesis statistic

(Table 1). Using a negative-binomial model structure for dock data set with shoreline
14



length as a covariate, only the models including housing change from 2000-2010, % 

marsh, and % low urban performed better than the null model (Table 2). Competing, all 

possible combinations of those variables yielded 16 models. Using a 0.95 cumulative sum 

of AIC weights cutoff, the top 4 models were selected (Table 3) and accounted for 

>99.99% of the total weight. The final model derived from model-averaged estimates is 

shown in the following equation

D ocks £,(2-47+0.13x, +0.59*2 +0.02jc3 -0.74jc4)

where Docks = the predicted change in number of docks from 2002-2009, xx = housing

change, x2= shoreline length, x3 = % low urban, and x4=%  marsh. Rates of new dock

construction by county were estimated to range from 0.08-38.30 docks • yr'1. Highest 

rates of dock construction were predicted for counties near open waters of the 

Chesapeake Bay, particularly the Eastern Shore of Virginia and the middle and upper 

peninsulas (Figure 2).

..Using the negative-binomial structure for the shoreline armoring data with 

shoreline length as a covariate, only the models including housing change from 2000- 

2010, % marsh, and low urban performed better than the null model (Table 2). Using a 

0.95 cumulative sum of AIC weights cutoff, the top 4 models were selected (Table 3) and 

accounted for 100% of the total weight. The final model derived from model-averaged 

estimates was

Shorel ineHardening= e (427+a 15x' +a39*2 ~a2>  +aooo8x« - ° '57 }

15



where Shoreline Armoring = the predicted change in the number of cells of shoreline 

armoring from 2002 to 2009, xx = housing change, x2= shoreline length, jc3 = shoreline 

length2, x4 = low urban, x5=%  marsh. Rates of shoreline armoring by county were

estimated to range from 0.02-8.04 km • yr'1. Like the docks, highest rates of shoreline 

armoring were predicted in counties near the open waters of the Chesapeake Bay, 

especially the Eastern Shore of Virginia and the middle and upper peninsulas (Figure 2). 

Factors explaining shoreline change based on presence/absence data

Local land use, housing density, and marsh (90-270m) were important factors 

explaining the presence/absence (P/A) of both docks and shoreline armoring. The 

proportion of vegetated land in 2001 at a moderate scale (810m) was also important for 

predicting dock P/A but not shoreline armoring P/A (Table 4), while housing density was 

important for predicting shoreline armoring P/A at an intermediate scale (450 m). Using a 

0.95 cumulative sum of AIC weights cutoff, the top 2 dock models and top 4 shoreline 

armoring models were selected from the all possible combinations (Table 5) and 

accounted for >99.9% of the total weight for docks, and >99.9% for shoreline armoring. 

The model-averaged final model for the probability of occurrence of docks (p(Dock)) was

p(Dock) —  ^  ^  ^ - ( - 1 .52+0.003x,+l.95jc2+ 3 .79x 3- 4 .38x 4+0.95x5)  j

where xx = housing density90 m, x2 = proportion of agriculture gQ , x3 = proportion of low 

urban x4 = proportion of marsh270m, and x5= proportion vegetated in 2001810m, and 

for the probability of occurrence of shoreline armoring (p(Armoring)) was
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p(Hardening)
1

1 + e k-1.50+0.0004x,+0.41x2+4.10x3-6.69x4

where x, = housing density9Q , x2 = proportion of agriculture 80 , x3 = proportion of low

urban]g0 , and x4 = proportion of marsh270 . The models were then applied to the

evaluation data set. Using the logistic regression to assess the predictability of the 

models, the predicted values for the docks were found to be significantly positively 

related to the observed values (ppred = 6.55, SE = 1.01, z-value = 6.49, p<0.001) and 

reduced the deviance from 229.00 for the null model to 159.20. The predicted values for 

the shoreline armoring were found to be significantly positively related to the observed 

values (|3pred = 9.14, SE = 1.65, z-value = 5.538, p<0.001) and reduced the deviance from 

172.71 for the null model to 114.22. When spatially applied, the models show a predicted 

probability of occurrence of a dock or shoreline armoring for each segment of shoreline 

(Figure 5). Shoreline development probability of occurrence was heterogeneously 

distributed throughout the study area. Overall, docks were far more widespread than 

armoring, though nearly all of the southern shoreline of the Potomac River was predicted 

to have a high probability of occurrence for both docks and armoring.

Discussion

Shoreline development growth greatly outpaced loss for both docks and shoreline 

armoring within our study area. This net growth is in line with our expectations on the 

basis of an ever increasing human population in this region (Theobald 2010). The slight 

difference between the higher amount of loss for docks than shoreline armoring is likely 

primarily due to higher susceptibility of docks to storm damage, and to a lesser degree,
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our inability to assess the state (dilapidated vs. good condition) of shoreline armoring 

from the aerial imagery. The similarities between dock and shoreline armoring growth 

and distribution illustrated in this study demonstrate a continued and persistent effort to 

develop the shoreline and to reduce the dangers of stochastic events to private property.

Dock and shoreline armoring change were positively correlated with housing

density change, shoreline length, and low urban development, while negatively correlated

with percent marsh. This indicates that areas most likely to see new shoreline armoring

are new residential areas (increased housing density and low urban) near small creeks

(greater shoreline length) with little marsh. Shoreline armoring, specifically, had a

quadratic relationship with shoreline length, which was likely due to the areas of greatest

shoreline length occurring in areas with extensive marsh. Since marshes are a form of

shoreline protection and are protected by law, there should be less armoring in those

areas. In both shoreline development change models, shoreline length was the strongest

predictor of new development, followed by the change in housing density and % low

urban. It stands to reason that the more shoreline in an area, the more shoreline

development there can be (with the exception of large, embayed marshes). The positive

relationship with housing density change and low urban provides an interesting

management consideration. According to (Radeloff et al. 2010), growth near

conservation areas outpaced the national average. As housing development and low urban

land cover continues to expand (Theobald 2001), protected areas like marshes and

wetlands will likely continue to see shoreline development related habitat degradation

(Bilkovic and Roggero 2008) at their fringes. The effects of shoreline development have

been observed at relatively low levels of disturbance and have been shown to affect the
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near-shore ecosystem from the local invertebrate community to the distribution of a wide 

ranging aquatic vertebrate (Isdell et al. In Review, Silliman and Bertness 2004, Bilkovic 

et al. 2006, Seitz et al. 2006b).

In addition to the explanatory variables, the variables that did not perform better 

than the null model also provide some valuable information. Mean income, vegetation in 

2001, agriculture, and low urban change did not sufficiently help to explain the change in 

shoreline development. For mean income, this indicates that shoreline development 

occurs regardless of what income bracket the property owner is in. Waterfront property 

owners range from the lower-income crabbers and fishermen who may use their own 

docks for business, to the extremely wealthy that may only use their shoreline structures 

for recreation. Since vegetation in 2001 was not important, we can infer that new 

development wasn’t exclusively occurring in previously undeveloped areas. If we equate 

agricultural with rural areas, then we can see that shoreline development was not 

occurring in rural or urban areas, but rather somewhere in between the two. Finally, since 

low urban change wasn’t important, it also indicates that shoreline development wasn’t 

occurring solely in areas of new development. By examining all of the variables together, 

it shows that most new shoreline development is occurring in mixed-use areas.

The top 5 counties with the most predicted change in docks are (in descending

order): Northumberland, Accomack, Northampton, Lancaster, and Gloucester.

Northumberland and Accomack counties changed positions from the dock predictions to

the armoring predictions. All of these counties are relatively rural with a large amount of

tidal shoreline. In contrast, other counties with substantial amounts of shoreline in the

Norfolk MSA have much lower predicted levels. This is likely due to the shorelines in
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many urbanized areas already being close to saturation of shoreline development. 

However, many areas with large amounts of marsh buffering the upland from waves and 

storm surge are likely to face a greater threat as climate change continues to cause sea- 

level rise (Titus et al. 2009). As sea-level rises and marshes flood, the quadratic 

relationship seen in the shoreline armoring model with shoreline length will likely 

disappear. Without the marsh and its added shoreline, areas that were previously unlikely 

to be armored will become prime candidates for new development. Counties likely to be 

affected by this are Accomack, Northampton, Matthews, Gloucester (which already have 

high rates of development) and, Poquoson, James City County, Newport News City, Isle 

of Wight, Suffolk City, and Virginia Beach City (which currently have relatively low 

rates of development). Additionally, as discussed by (Titus et al. 2009), there is a 

feedback loop between sea-level rise and shoreline armoring. As sea-level rises, more 

shoreline will be armored. The more shoreline that is armored, the greater the impact on 

un-armored shoreline, thereby creating a greater need for more protection.

Although county-level compliance was not important in the models, county-level 

management decisions could also play an important role in determining the rates of 

development. We were surprised to see that the rates of development derived from our 

models didn’t correspond with the number of linear feet of shoreline development 

approved in each county from 2009-2011 (Center for Coastal Resources Management 

2012b). This could be due to a disparity in the amount of development approved, and the 

amount of development realized. Either less development is actually built than is 

approved, more development is built than approved, or some combination of the two.
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The P/A approach allowed us to conduct a fine-scale analysis of factors affecting 

the distribution of shoreline development. All of the variables, except for the proportion 

vegetated in 2001 (docks) and housing density (shoreline armoring only), were important 

at local scales. This indicates that the distribution of shoreline development is primarily 

based on factors within a local proximity to a given segment of shoreline, rather than 

within the neighborhood or beyond. Housing density was important at different scales for 

docks (90 m) and shoreline armoring (450 m). This could be due to the differences in 

purpose for the two features. Docks are used for water access and recreation whereas 

armoring provides stabilization and erosion control. Armoring may have a stronger 

association with urban areas as many of the coastal cities shorelines are nearly saturated 

with shoreline armoring. This could be due to the higher property values associated with 

urban areas and therefore a higher potential cost of not protecting the shoreline. Only in 

the dock model did the proportion vegetated in 2001 play a role at a larger scale (810 m).

The primary result of the P/A approach is the ability to spatially predict where 

along the shoreline of the CB that shoreline development is likely to occur. Dock, 

occurrence is far more prevalent than shoreline armoring, which is consistent with our 

rate of change observations. While both models had nearly all of the same explanatory 

variables, the relative strengths of each variable differed between them. Housing 

density9Qm and proportion of agriculture gQ , in particular, were much stronger positive

predictors of dock occurrence than of armoring. One possible explanation for the 

difference is that docks are viewed as critical to provide water access whereas erosion 

control is only required for properties with eroding banks. The positive correlation
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between shoreline development and housing density, agriculture, and low urban indicates 

that development occurs along a gradient of mixed use areas. Since low urban is a 

stronger positive predictor of occurrence than agriculture in both docks and shoreline 

armoring, as areas become more developed, there is a greater chance of development. 

Agriculture is most likely a positive predictor because it is frequently converted to 

housing development in the eastern United States (Maizel et al. 1998, Brown et al. 2005).

Shoreline development interrupts connectivity at the terrestrial-aquatic interface 

(Talley et al. 2006) and has the potential to alter community composition and distribution 

at relatively large scales (Isdell et al. In Review, Bilkovic et al. 2006). While the model 

variables and strength of the effects may be unique to the Chesapeake Bay, the strategies 

used in this study could provide a framework for other coastal areas throughout the 

world. The ability to predict both change and occurrence of shoreline development will 

be critical to effect management in a future with elevated sea levels and storm surge risk. 

Continued coastal development and sea-level rise will almost guarantee further 

widespread development throughout the CB (Titus et al. 2009), which will only 

exacerbate many of the problems already prevalent in the region. However, we 

understand the need to protect personal property and to utilize the Bay for personal 

enjoyment and its resources. Adger et al. (Adger et al. 2005) stress the importance of 

social-ecological resilience in coastal systems, and suggests that rather than attempting to 

control the environment, communities focus on adaptability and sustainability of social 

and ecological systems. Therefore, we recommend moving away from individual 

property decisions to comprehensive geomorphic-based community planned shoreline
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protection that truly minimizes cumulative impacts and encourages the use of shore 

protection techniques that preserve and create wetlands.
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Figure Captions:

Figure 1. Virginia’s Chesapeake Bay and shoreline development study locations.

Map of the study area showing the shoreline development change study sites (circles) 

and their locations along the Virginia coastline. Each of the four major rivers is 

labeled in blue.

Figure 2. Annual rate of change for Virginia’s coastal counties. The predicted annual 

rate of change from 2002-2009 for each county is shown for both docks (left) and 

shoreline armoring (right). Dock change is shown as number of docks per year, and 

shoreline armoring is shown as kilometers per year. The numbers in each county 

correspond to the county names listed in S I.

Figure 3. Predicted probability of occurrence of shoreline development.

Representative areas of high (top) and low (bottom) probability of occurrence of both 

docks (left) and shoreline armoring (right) are shown for comparison.

32



o

0 3
O

° o o
O q  O Potomac

°  o ĉ oo
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Table Headings:

Table 1. Shoreline development change univariate results. The univariate models that 

performed better than the null model adjusted for length (Nulli) based on AIC scores 

were selected for a global model.

Table 2. Shoreline development change top models. The top models with a cumulative 

sum >0.95 were selected for model averaging. Standard errors for each variable are 

shown in parentheses.

Table 3. Shoreline development probability of occurrence univariate results. The best 

scale for each variable was selected based on the lowest AIC value. If the best scale 

for a variable performed better than the null model, the variables were included in the 

global model.

Table 4 -  Shoreline development probability of occurrence top models. The top models 

for the Presence/Absence data for both docks and shoreline armoring. These models 

were then averaged to provide a final model. Standard errors for each variable are 

shown in parentheses.

36



Table 1
Docks Armoring

Model AIC AIC < Null AIC AIC < Null

Nullo 616.4237 FALSE 904.4629 FALSE

Null, 615 .0427 FALSE 899.7268 FALSE

Income 616.9324 FALSE 901.0970 FALSE

Housing Change 609.5250 TRUE 894.1209 TRUE

% Vegetation '01 616 .4760 FALSE 901.6637 FALSE

% Agriculture 616.4777 FALSE 900.3535 FALSE

% Low Urban 607.9591 TRUE 897.9379 TRUE

% Marsh 582.0539 TRUE 881.0582 TRUE

Low  Urban Change 616.8959 FALSE 901.7266 FALSE
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Table 3

Docks Armoring

Variable Best Scale AIC AIC > Null Best Scale AIC AIC > Null

Null 1016.40 704.81

Housing Density 90 m 936.92 TRUE 450 m 648.24 TRUE

Agriculture 180 m 986.91 TRUE 180 m 699.92 TRUE

Low Urban 180m 894.33 TRUE 180 m 587.26 TRUE

Marsh 270 m 793.53 TRUE 270 m 566.92 TRUE

Vegetation '01 810m 991.15 TRUE 90 m 705.58 FALSE
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C H A P T E R  2

Assessment of Landscape-Seascape Connectivity in a Developed Estuary

A b s t r a c t

Connectivity at the terrestrial-aquatic ecotone is critical for ecosystem health and

functioning. Humans have a long history of modifying this ecotone around the world

through activities such as land use changes, shoreline development, and resource

extraction. In order to assess the effects of human alterations along terrestrial-aquatic

ecotone, we studied the distribution of a small, emydid turtle, the diamondback terrapin

(Malaclemys terrapin) in the lower Chesapeake Bay, USA. We conducted repeated

occupancy surveys at 165 sites from late spring to mid-summer in 2012 and 2013. We

used an occupancy modeling approach to evaluate potential relationships between the

occurrence data and local and spatial factors related to human modifications to the

terrestrial-aquatic ecotone. Diamondback terrapin distribution was affected by features

from the home-range scale (> 750 m) down to the local scale (270 m). Total area of tidal

salt-marsh was the most important positive predictor of diamondback terrapin

occurrence, while agriculture land area, the abundance of crab pots, the proportion of

armored shoreline, and rural development were all negatively correlated. Thresholds for

the major predictive factors indicated that diamondback terrapins require a minimum of

17.6 ha of marsh at the 750-m scale, and no more than 17% armored shoreline at the 1 -

km scale, 15.4 ha of agriculture at the 500-m scale, or 33% low density urban land use at

the 270-m scale. Our study builds upon an increasing body of evidence that estuarine
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function is influenced both by terrestrial human land use as well as by human 

modifications to the aquatic ecosystem. Due to similarities between diamondback 

terrapin responses and other important species in the Chesapeake Bay, we suggest that 

the thresholds identified in this study be used to develop management approaches 

throughout the region.
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In t r o d u c t io n

The spatial interaction of ecological processes is critical to ecosystem function 

and must be considered to provide accurate assessments of ecosystem health (Jules and 

Shahani 2003, Wiens 2006). While the majority of research has focused on the 

connectivity of ecological processes within separate terrestrial or aquatic systems, the 

connectiv ity of the terrestrial-aquatic interface is poorly understood (Talley et al. 2006). 

Terrestrial-aquatic connectivity includes physical (Ells and Murray 2012), 

biogeochemical (Carpenter et al. 1999), and biological interactions (Nakano et al. 1999, 

Nakano and Murakami 2001, Cristol et al. 2008). Because ecological processes at the 

terrestrial-aquatic ecotone are often dependent upon the processes and characteristics of 

the bordering aquatic and terrestrial systems, any disturbance in either system has the 

potential to disrupt connectivity. Fragmentation due to anthropogenic activities is the 

major source of disruption to connectivity (Rizkalla and Swihart 2006). Nowhere, 

perhaps, is this more evident than throughout the largest estuary in the United States, the 

Chesapeake Bay (CB). For centuries, humans have modified both terrestrial and aquatic 

systems within this region by extracting resources for sustenance, defense, and 

socioeconomic gain (Brooks 1893, Bradley 2011). Today, the connectivity of ecological 

process within CB is severely disrupted.

Estuaries are among the most productive ecosystems on the planet (Lieth 1972),

and the CB is no exception (Kemp et al. 2005). In addition to numerous and critical

ecosystem services (Barbier et al. 2010), the CB is home to a wide diversity of species,

many of which are commercially important (Boesch and Turner 1984). Currently, few

studies have examined the connectivity of terrestrial and aquatic systems along the
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terrestrial-aquatic ecotone within the CB. Therefore, to increase our understanding of the 

interaction between terrestrial and aquatic ecosystems and how human stressors influence 

ecological processes along this ecotone, we investigated the spatial distribution of the 

diamondback terrapin (Malaclemys terrapin) throughout the lower CB. We chose the 

diamondback terrapin because the uniquely estuarine reptile feeds, matures, and mates in 

brackish waters, but like all other reptiles, it must lay its eggs on dry land (Brennessel 

2006). Species habitat requirements tie terrapins to both terrestrial and aquatic 

ecosystems. Human activities can disrupt the connection between these ecosystems by 

altering the shoreline and near-shore areas. Shoreline modification, such as shoreline 

armoring, is prolific throughout much of the CB (Isdell et al. In Review), and will prevent 

terrapins from crossing onto land to nest (Roosenburg 1994, Butler et al. 2006). Near

shore terrestrial development increases the abundance of synanthropic terrapin nest 

predators, such as raccoons (Procyon lotor) and crows (Corvus spp) (Hart and Lee 2006, 

Ernst and Lovich 2009). Terrapins also face the threat of drowning in crab-pots that have 

been placed within their aquatic home ranges (Roosenburg et al. 1997, Rook et al. 2010). 

Ultimately, diamondback terrapins rely on tidal salt marshes for both food and refuge 

(Brennessel 2006), and transport nutrients to and from the marine environment.

Therefore, factors that negatively affect terrapin occupancy would also represent breaks 

in estuarine connectivity.

Our objectives for this study were to use occupancy modeling to (1) determine the

distribution of diamondback terrapins throughout the lower CB, (2) assess which habitat

and human variables affected their distribution, (3) examine possible linkages between

terrapin distribution and ecosystem functioning, and (4) identify management targets for
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restoration and conservation in Virginia. We hypothesized that diamondback terrapins 

would be found in proximity to their primary habitat (tidal salt-marsh) and would be 

negatively affected by human stressors such as crabbing, shoreline armoring, and near 

shore development.

M ETH O D S

Study area

The Chesapeake Bay (CB) is the largest estuary in the United States and is located 

between the eastern and western shores of Maryland and Virginia. Virginia’s portion of 

CB consists of approximately 15,000 km of shoreline (NOAA National Geophysical Data 

Center 2013) exposed to a wide variety of land uses ranging from federally managed 

wildlife refuges to agriculture, residential, commercial, and industrial. An estimated 18% 

of the shoreline has been armored in some way to prevent erosion, 32% of the riparian 

zone land use has been converted to residential or commercial development, and 

approximately 47,000 docks have been constructed (Titus et al. 2009, CCRM 2011). 

Commercial crabbing in the near shore waters is extensive throughout CB, with over 

385,000 pots permitted in 2013. However, it is unlikely that all of those pots w ill be 

fished. Annually, approximately 20% of pots are lost (Havens et al. 2008), meaning that a 

conservative estimate of 50,000 derelict crab pots can be added to the CB each year. 

Synanthropic predators (predators that are symbionts of human land use (Johnston 2001)) 

such as raccoons and crows are the major nest predators for diamondback terrapins in 

Virginia’s CB (Ruzicka 2007) as well as in Maryland (Roosenburg 1990). Statewide 

diamondback terrapin population estimates are currently unavailable in Virginia.

Survey Point Selection 
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We sampled diamondback terrapin occupancy across gradients of variables 

known to influence occupancy either positively (marsh (Roosenburg 1990)) or negatively 

(shoreline armoring [Roosenburg 1990] and crabbing pressure [Rook et al. 2010]). Each 

variable was obtained from spatial data sets provided by the Center for Coastal Resources 

Management (CCRM) at the Virginia Institute of Marine Science (CCRM 2011) and 

reclassified into three levels (none, low, and high) based on an equal areas approach in 

ArcGIS 10.0 (ESR1 2011). We then combined the three variables and three classifications 

(none, low, and high) into a spatial 3x3x3 matrix of habitat and disturbance gradients. All 

variables were assessed within a 270-m neighborhood using the Neighborhood Statistics 

tool in ArcGIS. We selected 270 m to provide a fine-scaie, sub-homerange (Spivey 1998) 

assessment of diamondback terrapin habitat requirements.

Shoreline armoring was included as percent of available shoreline within a 270-m

neighborhood that was armored with bulkhead (i.e., vertical retaining wall made of

concrete, steel, wood, or plastic), rip-rap revetment (i.e., sloped retaining wall made of

loose rock, crushed concrete, or other material), and/or seawall (all were lumped together

as “armored”). The area-wide percentages were then reclassified at 0% armored (none;

cell value = 100), 1-32% armored (low; cell value = 200). and > 33% armored (high; cell

value = 300). Marsh was included using a two-stage method. First, marsh was coded as

present or absent within a 270-m neighborhood. Then, any of the cells that had marsh

were separated into cells with marsh but no beach present within 2 km, and cells with

marsh and beach present within 2-km. Using these classes, the variable was reclassified

as absent = 10, present = 20, and present with beach = 30. Finally, crabbing pressure was

included using the number of derelict pots within 270-m as a proxy for historic crabbing
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pressure in an area. The equal area approach provided cutoffs at 0 pots (none = 1), 1-2 

pots (low = 2), and >2 pots (high = 3).

We then summed the three spatial data sets to produce a sampling raster with 27 

possible habitat types ranging from 111 (no armoring, no marsh, and no crabbing 

pressure) to 333 (high armoring, marsh with beach, and high crabbing pressure). This 

sampling raster was then converted to a shape file and clipped to a 1-km radius buffer 

placed around each water access point. Access points were selected from a combination 

of public and private boat ramps, docks, and beaches. Access points ranged from the 

south-side of the Rappahannock River to Virginia Beach to the Virginia-Maryland border 

on the bayside of the Eastern Shore of Virginia. Within the 1-km radius buffers around 

each access location, up to 300 random survey points were placed within each of the 27 

habitat types using the Geospatial Modeling Environment's “genrandpoint” function 

(Beyer 2012). We randomly placed an equal number of survey points (at least 270 m 

apart to ensure independence among survey points) in each of the 27 habitat types to 

equalize sampling effort along habitat-disturbance gradients. If site visits revealed that a 

random point was inaccessible, an alternate corresponding survey point was then 

selected. We selected a different subset of survey points in 2012 and 2013 to increase 

sample size.

Survey Design

Each survey point was visited three times over the course of the field season.

Surveys were conducted in early May and went through the end of July (2012) and

beginning of August (2013); we had to extend the field season in 2013 because of above

normal rainfall during May and June. Field work was conducted every day that weather
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and logistics permitted. Each survey point was accessed by either kayak or canoe. We 

used a GPS to navigate to each survey point, at which, the boat was anchored 50m ±5m 

from the shoreline. Environmental and survey specific variables were then recorded prior 

to the start of each survey. Environmental variables were measured with a portable 

weather station (Kestrel 2000 Wind Meter) and included air temperature (°C), wind speed 

(m/s), and Beaufort index. We also noted glare (“yes’" or “no”), cloud cover (0, 25, 50,

75, or 100%), precipitation (“yes” or “no”), wave height (in), date and start time of the 

survey. From the start of the survey, the water between the boat and the shoreline was 

continuously scanned for any diamondback terrapin heads. We used an 8x monocular 

laser-rangefinder (Zeiss Victory PRF) to identify objects and to estimate distance 

between observer and object. All terrapin sightings were recorded, along with the size 

(small or large), color (black or gray), distance, and time of sighting. Our survey period 

was 15 minutes with the expectation that any submerged turtle would most likely surface 

prior to the end of the survey. At the end of each survey, the distance to each active crab 

pot buoy within range-finder range was also recorded.

Spatial Variables

We selected different landscape and seascape features for their perceived potential 

impact on diamondback terrapin distribution. All landscape features were derived from 

the Southeast Gap Analysis Project (SEGAP) dataset

(http://www.basic.ncsu.edu/segap/datazip/state/va/ lc_segap_va.zip). First, since 

diamondback terrapins are known prey of synanthropic predators, we predicted that 

development would have a negative effect on diamondback terrapin distribution. We
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reclassified all areas in the SEGAP dataset classified as “developed open space” and “low 

intensity developed” as low urban.

Because terrapins have also been observed nesting in agricultural fields 

(Roosenburg 1994, Feinberg and Burke 2003), agriculture was also included as a 

landscape feature. We reclassified “row crop” or “pasture/hay” land cover types in 

SEGAP as agriculture. We combined these two land cover types as row crops and 

hayfields may alternate at different points in time. We hypothesized that as the amount of 

suitable nesting beach in an area declined due to human development, terrapins may turn 

to agricultural fields as an alternate nesting substrate. Additionally, clearing land for 

agriculture opens up former forest edge that otherwise would not be suitable for nesting. 

Therefore, we predicted that agriculture may have a positive effect on diamondback 

terrapin distribution.

The Atlantic coast subspecies of diamondback terrapins have all been shown to 

rely on tidal marshes for both food and shelter (Roosenburg et al. 1999, Brennessel 2006, 

Butler et al. 2006). We extracted the tidal marsh land cover from the SEGAP dataset as 

the primary habitat variable for diamondback terrapins. Any areas in the SEGAP 

classified as “emergent wetland” were reclassified as marsh. We hypothesized that 

terrapin occupancy would be positively related to the amount of tidal marsh in an area.

Shoreline armoring was also included as a spatial variable because it prevents

terrapins from successfully moving from the water to land above the tide line

(Roosenburg 1990, Winters 2013). Additionally, shoreline armoring has been shown to

alter community composition and structure, and to reduce the associated biodiversity in

the areas surrounding it (Seitz et al. 2006a, Bilkovic and Roggero 2008). The spatial data
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for shoreline armoring was obtained from the CCRM Shoreline Inventory (CCRM 

2012a). All sections classified as “rip-rap,” “bulkead,” or “seawall” were reclassified as 

armored, and converted from a polyline shape file to a raster of 30-m resolution. We used 

Focal Statistics and Raster Calculator in ArcGIS 10.0 (ESRI 2011) to calculate the 

proportion of armored cells for the total shoreline length in a given area. Additionally, to 

account for the heterogeneous distribution of armored shoreline within an area, the 

distance from each survey point along the shoreline to the nearest section of armoring 

was generated with the Cost Distance and Cost Path tools in ArcGIS 10.0.

We included derelict crab pots lost or abandoned by fishermen in our analyses 

because crab pots, both active and derelict, are a major threat to diamondback terrapins. 

Numerous studies have shown that whether baited or unbaited, terrapins enter the pots 

and if left unchecked for too long, drown, sometimes in massive numbers (Grosse et al. 

2011, Morris et al. 2011). A Marine Debris Location and Removal Program conducted in 

Virginia for the past 4 years (2008-2012) has recovered more than 30,000 derelict pots 

using side-scan sonar (Bilkovic et al. in review). The location of each pot was recorded 

with a GPS and entered into a database. We used this dataset as both a way to assess the 

potential impact of derelict crab pots on terrapin distribution as well as a proxy for 

crabbing pressure prior to the beginning of our current study. We converted the point 

shapefile to a binary raster of 30-m resolution where any cell containing a pot received a 

“ 1” and any cell without received a “0.”

Once all variables were selected, we used focal statistics to calculate intensity for 

each feature within scales ranging from 270-m to 2-km with intervals of ~250-m. Each
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feature and scale were then extracted to the survey points using Geospatial Modeling 

Environment's “isectpntrst" tool (Beyer 2012).

Local Variables

We assessed active crabbing pressure by counting crab pot buoys within 250-m at 

each survey point during each of three annual surveys. We determined the distance to 

each pot using an 8x monocular laser rangefinder (Zeiss Victory PRF). Because crabbing 

pressure varies throughout the season, we decided to use the mean number of pots per 

site, divided by the standard error + 1 (adding 1 to the SE prevented dividing by 0 in 

some cases). This provided a more comprehensive assessment of seasonal crabbing 

pressure as it weighted sites that were consistently crabbed with chronically high 

crabbing pressure higher than sites with sporadic crabbing pressure.

Model Development

We first evaluated all occupancy and detection probability variables in a 

univariate single-season occupancy model framework (MacKenzie et al. 2002) using 

package ‘ unmarked'? (Fiske et al. 2013) in R (R Development Core Team 2011). Any 

variable that received a lower Akaike’s Information Criterion (AIC) value than the null 

model was selected for inclusion in a global model. For the occupancy variables, each 

scale was also run as a univariate to determine the “best" scale for that variable, which 

was selected as the scale with the lowest AIC value. If the AIC value for the best scale of 

a variable was lower than the null model, then that variable was included in the global 

model.

We checked all selected variables, including spatial scale, for autocorrelation

using Pearson's correlation matrix. If two or more variables received a correlation
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coefficient greater than 0.7, then only one was included in the global model based on the 

a priori hypothesized greater potential effect of the variable.

We then placed all statistically independent variables in a global model, and all 

possible combinations were run (Doherty et al. 2012). We centered and scaled all of the 

variables using study area-wide means and standard deviations to enhance our ability to 

make direct comparisons of relative variable strength. Although we did account for 

detection probability through the inclusion of survey-specific covariates, the focus of this 

project was not to identify factors affecting our ability to detect diamondback terrapins. 

Therefore, we only report results pertaining to the occupancy portion of the model. A 

model selection table was generated using the “MuMIn" package (Barton 2013) in R, and 

all models whose AIC weights totaled to 0.95 of the cumulative weight were selected for 

model averaging (Burnham and Anderson 2002). The model averaged beta values were 

then used in a final model to generate predicted probability of occurrence for each survey 

point. We then used the predicted vs. observed values to generate a sensitivity/specificity 

curve in package “ROCR” (Sing et al. 2013) in R. To assess model fit, the package was 

also used to compute the area under the curve and to derive the cutoff value, the predicted 

probability of occurrence at which the model equally predicts false positives and false 

negatives (Metz 1978). Although Lobo et al. 2008 questioned the use of the area under 

the ROC curve (AUC) to accurately assess model fit, a high AUC in combination with 

model evaluation using an independent data set, is expected to add confidence to the 

predictive capabilities of a model.

Once model fit was deemed acceptable, we spatially applied the model using the

Raster Calculator tool in ArcGIS to create a predictive surface map. All predictions were
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restricted to within 1500 m of the shoreline based on radio telemetry estimates of 

diamondback terrapin movement patterns (Tulipani 2013).

Evaluation o f Model Predictions 

To determine whether the final model effectively predicted occurrence beyond the 

original dataset, we used an independent dataset of presence locations collected by boat 

surveys during summer 2011 (Bilkovic et al. 2012). Surveys were conducted across a 

large portion of Virginia's middle peninsula (Figure 1) where each observed turtle (N = 

174) was georeferenced with a GPS (Garmin GPSmap 60Cx). We overlaid presence 

locations on the predictive surface map generated by the final model and extracted 

predicted occupancy values. We binned the extracted and study area-wide occupancy 

probabilities into 10% increments (0-10%, 11-20%, etc.) and calculated the proportion of 

the study area in each bin. To get the expected number of observations in each bin, 

adjusted for probability of occurrence, we used the following equation:

B i N 2 -'Pi

UBiNVi)

where B, = the proportion of the study area in the ith bin, N=  the sample size of the 

validation dataset (V=174), and = the median value of the predicted probability of 

occurrence for the /th bin.

We ran a linear regression on the 2011 observed versus modeled expected 

occupancy values to assess how well our model predicted the presence locations for the 

independent dataset. A perfect model fit would result in a slope of 1 and an intercept of 0.

Thresholds

Eq. 1
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We identified thresholds for spatial predictor variables above or below which 

terrapins were present using the Dose Response Calculator for ArcGIS (Hanser et al.

2011). Thresholds for spatial variables were identified by comparing the intercept 

between the predicted occupancy curve, evaluated across the range of values for each 

spatial variable in the predictive model, and the predicted occupancy cutoff value derived 

from the sensitivity/specificity analysis (Liu et al. 2005). The intercept point was then 

used to estimate the threshold for each spatial predictor variable. We fit a loess curve to 

the predicted probability of occurrence and its upper and lower 95% confidence intervals.

R e s u l t s  

Survey and Modeling 

Over the two years of the study, we surveyed a total of 165 sites (2012 = 85; 2013 

= 80) with a mean distance between sites of 1011 m (SE = 158.8 m). Diamondback 

terrapins were observed at 55 of the 165 sites (33.3% na'i've occupancy).

Univariate analyses revealed two detection covariates with lower AIC values than 

the null model, and six occupancy covariates with lower AIC values than the null model. 

As the detection portion of the analysis is not the focus of this study, those results will not 

be discussed, but we did account for them in the final model. The occupancy covariates, 

and their best scales, that had lower AIC values than the null model (AIC = 423.13) were 

marsh750 m (AIC = 335.20), agriculture500 m (AIC = 407.00), derelict crab pots500 m (AIC =

419.93), proportion of armored shoreline! (AIC = 377.71), low urban270 (AIC =

415.85), and current crab pots (local counts, not a spatial variable; AIC = 414.41). The 

cost-path distance from the site to shoreline armoring had a higher AIC value than the
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null model (AIC = 424.59). We found no autocorrelations among variables that 

performed better than the null model.

A total of eight variables (including the two detection covariates— start time and 

precipitation) were used in the global model with all possible combinations of those 

variables resulting in 256 models. The top 45 models accounted for 95% of the total AIC 

weight, and were model averaged (Appendix 1) to give the following final occupancy 

model:

1
^_|_e - ( - 3 . 6 7  +  2 . 6 4 X i - 1 . 3  7 X 2 - O . 9 OX3 - O . 8 OX4 - O . 4 8 X 5 +  0 .1  l ^ e )  

where x = proportion of marsh?50 , x, = proportion of agriculture5()0 , = current crab

pot density, x = proportion armored shoreline1 k , x5 = proportion low urban?70 m, and x6 

= derelict crab pot density500 . Proportion of marsh750 had the highest positive effect 

and proportion of agriculture500 had the largest negative effect on diamondback terrapin

occurrence (Table 1). The sensitivity/specificity results indicated that the optimal cutoff 

value was 0.388 and yielded an area under the curve (AUC) of 0.91, indicating a robust 

predictive model. Model-based conditional estimates of occupancy (sites where terrapins 

were observed or predicted probability of occurrence was above the 0.388 cutoff) 

indicated 73 out of 165 sites as occupied (44.2% occupancy).

Spatial application of the model revealed heterogeneity in occupancy across the 

study area. High occupancy areas (those above the 0.388 cutoff) typically occurred within 

expansive marsh embayments. Our model delineated some of the best areas along 

Accomack County's bayside (Figure 2A) and along the western shore near the open
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waters of the CB. All of these areas are well away from urban development in the CB. 

High occupancy areas (areas above the cutoff) accounted for 26.4% of the total predicted 

area.

Evaluation o f Model Predictions 

We found that the model predicted well when evaluated with independent 

diamondback terrapin presence data. Predicted and observed values were positively 

correlated (p < 0.001). Neither the intercept (p0 = 2.59, SE = 2.42) nor the slope (p( =

0.85, SE =: 0.081) varied significantly (a = 0.05) from the expected values of 0 and 1, 

respectively. The adjusted R“ for the model was 0.92.

Thresholds

We ran dose-response calculations for marsh, agriculture, low urban, and 

proportion armored (Fig. 3). For all variables, we used the point where the 95% upper 

confidence limit (UCL) crossed the sensitivity/specificity cutoff as a conservative 

threshold. This results in lower environmental thresholds for positively related variables, 

and higher thresholds for negatively related variables. Marsh showed the clearest positive 

relationship with terrapin occupancy. Areas with < 17.6 ha of marsh at the 750-m scale 

were unlikely to have diamondback terrapins present (Fig. 3a). Based on this threshold, 

-72%  of all shoreline in the study area is unsuitable for diamondback terrapins. 

Additionally, the thresholds for the other variables were > 17% for the % armored 

shoreline at the 1 -km scale, > 15.4 ha of agriculture at the 500-m scale, and > 33% of low 

urban at the 270-m scale (Figures 3b, c, & d, respectively). For areas above these 

negative thresholds, it is statistically unlikely that terrapins would be present.
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D i s c u s s i o n

Our study identified a number of scale-dependent factors that influence the 

distribution of diamondback terrapins. To provide a scale of reference, current estimates 

of terrapin home range sizes are from -50-250 ha (Butler 2002), or approximately 400 m 

-  890 m radii circular home ranges. This indicates that both % armored at the 1-km scale 

and the amount of marsh at the 750-m scale were important factors explaining 

heterogeneity of diamondback terrapin occupancy at or beyond the home range scale.

Just below the home range scale are agricultural land cover and derelict crab pots. Both 

of these affected distribution at the 500-m scale, which provides an intermediate scale for 

terrapin use within a home range. Finally, low urban land cover at the 270-m scale 

affected local distribution— likely determining whether a section of shoreline within the 

terrapin's home range was unsuitable. These results are consistent with other spatial scale 

studies of turtles where habitat variables were most important at the home range level 

(Rasmussen and Litzgus 2010).

Our model identified tidal marsh as the most important predictor of diamondback

terrapin occurrence. Tidal salt marshes are known to be important to Atlantic coast

terrapins for foraging and shelter (Roosenburg 1990, Brennessel 2006, Butler et al. 2006).

Through our threshold analysis, we were also able to identify the minimum amount of

marsh that was required for a terrapin to be present within a 750-m radius circle (176.7

ha) was 17.6 ha (Figure 3a). This threshold effectively rules out narrow fringing marshes

as important terrapin habitat and indicates that terrapins utilize more expansive, embayed

marshes as habitat. Unfortunately, this outcome provides conservationists with a real

management problem. As the climate continues to warm and sea level continues to rise,
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studies have shown that tidal salt marshes along the Atlantic coast will drastically 

decrease in size (Titus et al. 2009). A combination of an increasing slope of the land as 

the water moves inland and shoreline armoring will prevent the inland migration of 

marshes. Further, more homeowners are likely to protect their property with shoreline 

armoring structures, resulting in a positive feedback loop for armoring, and a negative 

feedback loop for marshes unable to accrete soil at a rate to match sea level rise.

thAlthough the % armored at the 1 -km scale was only the 4 most important variable 

predicting diamondback terrapins, its impact is likely to increase in the future given the 

continued development pressure in the Chesapeake Bay (Isdell et al. In Review).

Shoreline armoring has the obvious direct effect of preventing female 

diamondback terrapins from moving from the water onto land to nest (Roosenburg 1994), 

but also has been shown to affect near shore biotic communities. Shoreline armoring 

reduces nekton and benthic diversity (Seitz et al. 2006a, Bilkovic et al. 2006, Bilkovic 

and Roggero 2008), and estuarine habitat quality is reduced where 10-25% of the 

shoreline is developed (Silliman and Bertness 2004, Bilkovic et al. 2006, Bilkovic and 

Roggero 2008). Our threshold of 17% (Figure 3d) falls within the ranges documented by 

these other studies. This, in combination with its importance at the 1-km scale, indicates 

that while shoreline armoring may have a local effect on whether a terrapin can access 

the land in a given location, its primary effect on distribution is likely a result of the 

reduction in habitat quality at a larger spatial scale. As such, we are the first to 

demonstrate a link to system-level effects of shoreline armoring on diamondback 

terrapins.
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We were surprised to see that agriculture was the strongest negative predictor of

diamondback terrapin occurrence, given our hypothesis of a possible positive

relationship. While we knew that synanthropic predators such as crows (American crow

[Corvus brachyrhynchos] and the fish crow [Corvus ossifragus]), raccoons, and red foxes

( Vulpes vulpes) thrive in landscapes dominated by agriculture (Johnston 2001, Graser et

al. 2012), and that terrapins do occasionally nest in these areas (Roosenburg 1994), we

did not predict the effect to be so strongly negative. Although no studies have been

conducted to show a causal link between decreased terrapin occurrence and agriculture,

we suggest the following hypotheses that need further investigation. First, synanthropic

predators may have a greater impact on adult survival than expected. For example, over

the past 40 years, the Bald Eagle (Haliaeetus leucocephalus) populations in the

Chesapeake Bay have grown exponentially (Watts et al. 2008). While Bald Eagles are not

typically thought of as synanthropic predators, they tend to nest in remnant tall trees

along forest-agriculture or forest-rural development ecotones (Courtney Turrin pers.

comm.). Numerous diamondback terrapin shells have been recovered from eagle nests

along the Bay (Chambers unpl. data), indicating that they may provide a significant

source of adult diamondback terrapin mortality. In addition to bald eagles, other

synanthropic predator populations are experiencing a concomitant increase in response to

increasing urbanization (Marzluff et al. 2001). When the adult mortality is combined with

the nest and juvenile mortality from synanthropic predators, the agricultural-related

mortality could be driving the negative correlation with occurrence. Second, agricultural

land cover may be an ecological trap. Numerous studies have documented that terrapins

nest in agricultural land cover (Roosenburg 1994, Feinberg and Burke 2003). Because
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many agricultural fields are plowed in spring—thereby providing open, loose soil near 

the beginning of the nesting season, terrapins may nest in in these areas perceiving 

agricultural fields as suitable nesting habitat. However, as crops begin to grow, roots (a 

common source of nest mortality on beaches (Brennessel 2006)) and agricultural 

activities (pesticides, herbicides, cultivation, etc.) may destroy nests. Agricultural land 

cover is an ecological trap for other species (Northrup et al. 2012, Hiron et al. 2012), and 

some species of turtles are known to avoid agriculture (Bodie and Semlitsch 2000, 

Rizkalla and Swihart 2006). A third hypothesis is that runoff from agricultural land is 

reducing estuarine water quality. We believe that this is unlikely since runoff from these 

systems often results in eutrophication, and ultimately algal blooms (Ingrid et al. 1996). 

Because terrapins feed on animals that rely on algae (bivalves and gastropods), this 

would likely result in an abundance of food (Worm and Lotze 2006) which would be 

beneficial to terrapins.

Low urban land cover may have many of the same effects on diamondback

terrapin distribution as agriculture. Terrapins are likely subjected to higher densities of

synanthropic predators, and also lay their eggs in the sub-optimal habitat found around

houses. Some homeowners who we encountered during this study said that terrapins

came up into their yards and nested in their flowerbeds each year, but they never

observed a successful emergence (Isdell pers. obs.). In addition to similarities to

agriculture, low urban areas are also known to have a higher occurrence of recreational

docks and piers (Isdell et al. In Review). Several studies have demonstrated that there is a

reduced diversity of nekton (Duffy-Anderson and Able 2001, Scheuerell and Schindler

2004, Able and Duffy-Anderson 2006), less submerged aquatic vegetation (Burdick and
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Short 1999, Shafer 1999), and increased boat traffic associated with docks (Haslam 1978, 

Liddle and Scorgie 1980, Asplund and Cook 1997), all of which have the potential to 

negatively affect diamondback terrapins. Many waterfront property owners also deploy 

recreational crab pots from their docks. These pots, like the commercial pots (identical in 

construction), can provide a significant source of mortality to diamondback terrapins 

(Dorcas et al. 2007). In Virginia, state law allows each waterfront property to have 2 

pots/person/household (VA §28.2-262). With more than 47,000 docks along Virginia's 

coastline, recreational pots may be a significant source of mortality terrapin each year. 

Low urban was most important at the 270-m scale, suggesting these effects can be 

observed on a localized scale.

In addition to the landscape features, commercial crab pots were also shown to

have an impact on diamondback terrapin distribution. Numerous studies have

documented that diamondback terrapins drown in crab pots, with some pots containing >

40 carcasses (Roosenburg et al. 1997, Grosse et al. 2011, Morris et al. 2011). Crab pots

not only decrease terrapin populations, but as we show in this study, they also influence

terrapin distribution. Modeled terrapin occupancy is likely the outcome of the cumulative

effects of years of crabbing having extirpated local terrapin populations. One potentially

conflicting result was the positive correlation of derelict crab pots to terrapin occurrence

which had the smallest relative effect of all variables. One possible explanation for this

result comes from the methods used to collect the derelict pot data. Because each record

in the dataset is for a pot that was removed from the water, there may be a slight increase

in habitat quality due to the removal of those potentially deadly traps. The small positive

result could be a statistical anomaly, but because the models that included derelict pots
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did receive a lower AIC score, we have decided to leave the variable in the model and 

report the finding in hopes that others may follow up on the study and attempt a more in- 

depth assessment of how derelict pots affect terrapin distribution.

Using occupancy modeling to identify factors affecting diamondback terrapin 

distribution has allowed us to identify areas where terrapins are involved in aquatic- 

terrestrial connectivity. Through our threshold analyses, we can be reasonably certain that 

these areas overlap tidal salt marsh embayments. The spatial distribution of tidal salt 

marsh embayments is primarily affected by numerous and complex physical and 

biological processes, and to a lesser degree by human activity (Bertness et al. 2002). As 

such, much of the shoreline predicted to have a low probability of diamondback terrapin 

occurrence has likely never been suitable habitat for terrapins. Assessments of 

connectivity in areas outside of potentially suitable diamondback terrapin habitat should 

therefore utilize alternate methods and species. However, our approach and results 

provide useful information about the overall ecosystem health and functioning in tidal 

salt marshes. Tidal salt marshes provide economically and ecologically valuable services 

(Gedan et al. 2009b), including refuge, foraging, and nursery grounds for a plethora 

invertebrates, fishes, reptiles, birds, and mammals—many of which are of special 

commercial or conservation interest (Hines et al. 1987, Tupper and Able 2000, Shriver et 

al. 2004, Gedan et al. 2009a).

Our study builds upon an increasing body of evidence that the function of 

estuarine ecosystems is influenced by human modification of both terrestrial landscapes 

and marine seascapes. From facilitating invasives (Silliman and Bertness 2004) and

synanthropic predators (Marzluff et al. 2001, Silliman and Bertness 2004, Duarte et al.
62



2012) to altering nutrient flows due to runoff (Kemp et al. 2005) and physical barriers 

(Bouchard and Bjorndal 2000), anthropogenic alterations to connectivity in the aquatic- 

terrestrial ecotone in the CB have had major and lasting impacts on the entire ecosystem 

(Kemp et al. 2005). Diamondback terrapins are clearly sensitive to disruptions in 

connectivity along the aquatic-terrestrial ecotone, and our work shows that terrapins 

respond in predictable ways. Because of their relative ease to complete, occupancy 

surveys for diamondback terrapins are a rapid and effective method for assessing the 

overall health and functioning of tidal salt marsh ecosystems within the CB. Other studies 

have shown that aquatic turtles respond to anthropogenic disturbance levels that are 

consistent with responses by several other species (Burke and Gibbons 1995, Semlitsch 

and Bodie 2003. King et al. 2005). Because so many other species rely on the same 

habitats that diamondback terrapins require (Boesch and Turner 1984, Brennessel 2006) 

and respond to similar disturbance levels, we suggest that the thresholds identified in this 

study be used in development of management targets for the entire CB.
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Table 1 -  Model-averaged regression coefficients and standard errors for variables

included in the top models whose cumulative A1C weights summed to 0.95 (N = 45). 

Variables were centered and scaled to make the p-values directly comparable.

Variable p-value Std. Err.
Marsh 2,64 1.05
Agriculture -1.37 0.67
Current Pots -0.90 0.40
% Armored -0.80 0.49
Low Urban -0.48 0.37
Derelict Pots 0.11 0.06
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Figure. 1. The study area was located in the lower Chesapeake Bay. The location of each 

study site (N = 165) is shown with a black point, and each evaluation point is shown 

with a white triangle.

Figure. 2. Predicted probability of occurrence (VF) was spatially applied throughout the 

study area using the final averaged model. Areas of highest W are shown in yellow 

and areas of lowest 'F are shown in blue. A section of shoreline dominated by a high 

probability of occurrence (inset A) is contrasted with a section of shoreline dominated 

by a low probability of occurrence (inset B).

Figure. 3. Dose-response relationships for each important predictor variable is shown as 

the solid black line representing predicted probability of occurrence, the short-dashed 

lines showing the upper and lower confidence intervals, and the dotted line showing 

the point where the upper 95% confidence interval crosses the ROC-derived cutoff 

value shown as the horizontal long-dashed line. The histogram in the background 

indicates the proportion of the study area that falls into each bin class.
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