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ABSTRACT 

Anthropogenically-induced climate change has resulted in increases in water 

temperature and the frequency and severity of hypoxic events in coastal areas worldwide. 

Temperature and hypoxia affect fishes’ energetics which can, in turn, be reflected in 

changes in reproductive success and shifts in spatial distributions. In an effort to quantify 

these changes in Atlantic croaker (Micropogonias undulatus) and spot (Leiostomus 

xanthurus) in Chesapeake Bay. I: 

 

(1) estimated standard and maximum metabolic rates and hypoxia tolerances at 

five temperatures (10, 15, 20, 25 and 30°C) using intermittent-flow respirometry,  

(2) examined the effects of hypoxia exposure on metrics of reproductive potential 

and, 

(3) developed an individual-based, dynamic-seascape model of Atlantic croaker 

and spot based on data from the respirometry trials, 

 

The first set of experiments showed that metabolic scope (i.e., the difference 

between standard and maximum metabolic rates, and within which all aerobic metabolic 

processes must operate) increased with increasing temperature in both species between 

10 and 20°C, but plateaued above 25°C in Atlantic croaker and above 20°C in spot. 

Except at 10°C, the metabolic scope of Atlantic croaker was less than that of spot at all 

temperatures. In contrast to previous studies with Atlantic croaker from the Gulf of 

Mexico, the relative expression of hypoxia-inducible factors and metrics of reproduction 

(gonadosomatic index, most-advanced oocyte stage, and proportion of atretic oocytes) 

did not differ between Atlantic croaker captured under normoxic and hypoxic conditions 

in Chesapeake Bay. Simulations of the movements and distribution of Atlantic croaker 

and spot using individual-based models suggested that these species would occupy areas 

with warmer and better-oxygenated water than indicated by trawl survey observations 

from 1988-2014. Additionally, simulations indicated that a greater proportion of Atlantic 

croaker and spot in the Virginia waters of Chesapeake Bay would occupy the lower 

portion of Chesapeake Bay than indicated by capture rates from the trawl survey. My 

research suggests Atlantic croaker and spot are well-adapted to the environmental 

conditions of Chesapeake Bay during summer and are likely not affected by the frequent 

hypoxic episodes occurring in the subestuaries of the lower Chesapeake Bay. The 

apparent larger effect of elevated temperature on the metabolic scope of spot may provide 

them a greater capacity for movement, growth, and reproduction in warmer conditions 

and thus, a competitive advantage over Atlantic croaker as water temperatures continue 

to rise due to anthropogenically-induced climate change. My results indicate that 

intermittent exposure to hypoxic conditions is unlikely to negatively affect the 

reproductive potential of Atlantic croaker. Additional research, however, is necessary to 

better understand how this intermittent hypoxia exposure affects the endocrine pathways 

controlling reproduction. Finally, although climate-change science frequently focuses on 

the effects of rising coastal water temperature, and fisheries science and management on 

the effects on fish distributions, the results of my individual-based models suggest that 

predicting the effects of anthropogenically-induced climate change should not focus on 

temperature alone, as this may not be the most important driver of changes in fish 

distribution. More specifically, other factors such as time-area specific hypoxic events, 
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prey availability, and predator avoidance likely contribute to the spatial distributions of 

these species in Chesapeake Bay.  

 

Benjamin Jon Marcek 

 

School of Marine Science 

College of William & Mary 
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STRUCTURE OF THE DISSERTATION 

 This dissertation is comprised of five chapters – an introduction, three chapters 

reporting my research results, and a fifth chapter of concluding remarks. The three 

chapters on my research results describe: 

1. the results of my laboratory experiments investigating the effect of temperature on 

the metabolic scope and hypoxia tolerance of Atlantic croaker and spot using 

intermittent-flow respirometry (Chapter 2).  

2. the effects of hypoxia exposure on metrics of reproductive potential 

(gonadosomatic index, most-advanced oocyte stage, and proportion of atretic 

oocytes) for Atlantic croaker captured in the Virginia subestuaries of Chesapeake 

Bay (Chapter 3).  

3. development an individual-based, dynamic-seascape model of fish distribution in 

the lower Chesapeake Bay and its subestuaries, the James, York, and 

Rappahannock rivers for 1988-2014 (Chapter 4).  

In Chapter 3 I describe the use of quantitative polymerase chain reaction (qPCR) to 

investigate the hypoxia exposure history of Atlantic croaker through the expression of 

hypoxia-inducible factors and the results of modeling efforts to determine the impact of 

hypoxia exposure on the reproductive potential of Atlantic croaker in Chesapeake Bay. 

Chapter 4 includes data from field-based sampling, and simulation modeling to 

investigate the individual- and population-level effects of temperature and hypoxia on the 

movements and distribution of Atlantic croaker and spot in Chesapeake Bay. These 

include movement submodels within the individual-based model such that simulated 

individuals move to areas where environmental conditions optimize their metabolic 
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scope. I compare the results of these simulations to the observed distributions of Atlantic 

croaker and spot from the VIMS Juvenile Fish Trawl Survey over the same period (1988-

2014). I then discuss the results of these comparisons and suggest improvements to the 

individual-based models. Chapter 5 summarizes of the results of my dissertation and 

suggests future research.
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CHAPTER 1 

 

Introduction
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Stock assessments, which monitor the status and trends of harvested fish 

populations and play a vital role in the management of marine species (NMFS 2001), are 

founded on the principals of population dynamics. In recent years, the identification and 

delineation of essential fish habitat were recognized as critical components of stock 

assessments and ultimately fisheries management plans (Rosenberg et al. 2000; Levin 

and Stunz 2005; Valavanis et al. 2008). Stock assessment methods, however, typically 

ignore spatial variability in vital rates of fish populations or stocks. The ability to 

incorporate spatially-explicit and dynamic information into stock assessments is 

becoming more critical as scientists and managers recognize the need to understand the 

effect of environmental conditions (and especially the effects of anthropogenically-

induced climate change) on the observed distribution and abundance of fishes (NRC 

1999; NMFS 2001). 

Distributions of a particular fish species change in space and time and reflect 

habitat selection decisions (e.g., substrate, temperature, salinity, dissolved oxygen) of 

individuals within the constraints imposed by their physiological abilities and tolerances. 

Habitat selection is thus shaped by the ability of an individual to detect, tolerate, and 

respond to changes in environmental conditions (Kramer et al. 1997; Cardona 2000; 

Fulford et al. 2011; Horodysky et al. 2015; Cooke et al. 2016). Fluctuations in 

environmental conditions may lead to short-term variability in the productivity of a 

population. However, long-term directional changes in estuarine habitat quality, such as 

those predicted under climate-change scenarios, may lead to increases in the extent and 

duration of suboptimal environmental conditions (Hayhoe et al. 2007; Najjar et al. 2010; 

Harding et al. 2015). I therefore contend (as have others; Secor et al. 2009; Tian et al. 
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2009; Kerr et al. 2010) that such changes can affect the productivity, stability, and 

resilience of fish populations.  

In temperate estuaries, environmental conditions are dynamic across a broad 

range of temporal frequencies (e.g., tidal, daily, seasonal, annual) and are known to 

influence the movements and distribution of fishes. In contrast, anthropogenically-

induced, directional changes in water temperature and dissolved oxygen concentrations 

will influence the movements and distribution of fishes in a sustained directional manner 

(Murawski 1993; Eaton and Scheller 1996; Roessig et al. 2004; Craig and Crowder 2005; 

Perry et al., 2005; Sabatés et al., 2006; Brady and Targett, 2013; Buchheister et al., 

2013). Such directional increases in water temperature are already apparent in many 

rivers in the United States, including tributaries of Chesapeake Bay (Kaushal et al. 2010). 

Hypoxic areas in Chesapeake Bay and its tributaries, which were historically restricted to 

the deep channels in summer months (Officer et al. 1984; Hagy et al. 2004), have 

likewise increased in magnitude, spatial extent, and duration due to anthropogenically-

induced, directional climate change (Cooper and Brush 1991; Hagy et al. 2004; Murphy 

et al. 2011). Increases in the severity and extent of hypoxic episodes are likely to have 

detrimental effects on commercially and recreationally important fisheries targeting 

Atlantic croaker (Micropogonias undulatus), a species that commonly inhabits the deeper 

parts of Chesapeake Bay during summer. Other sympatric (and likewise important to 

both commercial and recreational fisheries) species such as spot (Leiostomus xanthurus) 

appear, however, to be better able to cope with hypoxia than Atlantic croaker (Bell and 

Eggleston 2005, Eby et al. 2005), although this conclusion is based solely on field-based 

observations. 



 

 

7 

 

Increased temperature and hypoxic events are known to negatively impact both 

the distribution and abundance of fishes (Breitburg 2002; Craig and Crowder 2005; 

Buchheister et al. 2013). Many studies have investigated the relationship between 

environmental factors and the distribution and abundance of inshore fishes and several 

have proposed mechanistic explanations for these relationships (see Humston et al. 2000; 

2004; Fulford et al. 2011; 2014; 2016; Rose et al. 2013a; 2013b; 2018a; 2018b). Studies 

proposing a mechanism for habitat selection often suggest that selection is based on a 

species’ preference for environmental conditions (e.g., a specific temperature or salinity). 

Another possible explanation for the link between environmental characteristics and fish 

movements and distribution is based on the concept of metabolic scope (i.e., the 

difference between the minimum and maximum aerobic metabolic rates, and within 

which life processes (e.g., movement, gonadal and somatic growth, etc.) must operate 

(Fry 1947; 1971; Claireaux and Lefrançois 2007; Horodysky et al. 2015)). I contend, 

therefore, that it is plausible that fish alter their distribution to maintain an optimal 

metabolic scope, or at least a metabolic scope within set limits. Furthermore, a reduction 

in metabolic scope under sub-optimal environmental conditions is likely to result in 

decreased somatic growth (Pihl et al. 1992; Eby et al. 2005; Powers et al. 2005; Long and 

Seitz 2008; Brandt et al. 2009; Stierhoff et al. 2009) and impaired reproduction (Wu et al. 

2003; Thomas et al. 2006; 2007; Wang et al. 2008; Thomas and Rahman 2009a; 2009b; 

2012; Wu 2009; Tuckey and Fabrizio 2016). The latter effect is particularly significant 

because impaired reproduction reduces the ability of a fish population to sustain a given 

level of fishing mortality or a given population size. For example, simulations in which 

annual mild, intermediate, and severe hypoxic conditions were randomly selected with 



 

 

8 

 

probabilities of 0.18, 0.52, and 0.30, respectively (see Rose et al. 2018a for details), 

predicted a 25% reduction in the Atlantic croaker population in the northern Gulf of 

Mexico during a 100-year period (Rose et al. 2018b). 

To understand the effects of environmental conditions on fish populations, we 

must first understand effects on individuals within the population. In this study, I 

integrated individual- and population-level effects of temperature and hypoxia on 

Chesapeake Bay fishes by: 

(1) investigating the effect of temperature on the metabolic scope and hypoxia 

tolerance of Chesapeake Bay Atlantic croaker and spot,  

(2) incorporating the relationship between temperature and metabolic scope and 

hypoxia tolerance into an individual-based, dynamic-seascape model of fish 

distribution in the Virginia waters of Chesapeake Bay,  

and  

(3) examining the relationship between hypoxia exposure and reproductive 

potential of Atlantic croaker in the Virginia subestuaries of Chesapeake Bay.   
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CHAPTER 2 

 

Metabolic Scope and Hypoxia Tolerance of Atlantic Croaker (Micropogonias undulatus 

Linnaeus, 1766) and Spot (Leiostomus xanthurus Lacepède, 1802), with Insights into the 

Effects of Directional Climate Change
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Abstract 

 The magnitude, extent, and frequency of hypoxic waters have increased in coastal 

and estuarine environments as a result of anthropogenic nutrient inputs and greater 

stratification of the water column due to rising temperatures. Under current climate 

change forecasts, it is likely that temperatures will continue to rise, thus exacerbating 

hypoxic conditions and affecting fishes that reside in these habitats. Increases in 

temperature will lead to an increase in the cost of maintaining homeostasis and may result 

in a decrease in metabolic scope and, therefore, an individual’s ability to undergo aerobic 

processes such as growth, reproduction, and movement. Increasing temperatures can also 

decrease hypoxia tolerance in fishes, which may result in a decrease in the amount of 

available habitat. I used intermittent-flow respirometry to determine the effects of 

temperature on the metabolic scope and hypoxia tolerance of two economically and 

ecologically important species, Atlantic croaker and spot. Metabolic scope increased 

from 10 to 25°C but did not change from 25 to 30°C for Atlantic croaker. Similarly, 

metabolic scope increased from 10 to 20°C but did not change between 20 and 30°C for 

spot. The metabolic scope of Atlantic croaker was lower than that of spot at all 

temperatures examined, except at 10°C. Hypoxia tolerance did not differ by species or 

temperature. Our results indicate that Atlantic croaker and spot are well-adapted to the 

conditions currently experienced in Chesapeake Bay. As directional climate change 

results in warmer waters, however, the greater metabolic scope of spot may result in a 

competitive advantage over Atlantic croaker because it provides spot a greater capacity 

for movement, growth, and reproduction under warmer conditions.  



 

 

16 

 

1. Introduction 

Throughout the world, seasonal hypoxic episodes (herein defined as waters with 

oxygen concentration < 2 mg L-1) occur in coastal and estuarine environments, frequently 

during warmer months (Diaz and Rosenberg, 2008). Hypoxia is often driven by a 

combination of oxygen consumption through the decomposition of organic matter and 

density-driven stratification of the water column which isolates bottom waters from 

exchange with oxygen-rich surface waters (Taft et al., 1980; Bishop et al., 2006; Tyler et 

al., 2009). The extent and severity of these hypoxic events are, however, exacerbated by 

increasing temperatures as well as expanded urbanization and increasing agricultural 

runoff (Diaz and Rosenberg, 2008; Lyman et al., 2010; Rabalais et al., 2010). Such 

degradation in environmental conditions impacts fishes at the individual level through 

changes in both routine and maximum metabolic rates (e.g., Pӧrtner, 2010; 2012; 

Claireaux and Chabot, 2016).  

Increases in the metabolic rates of fishes with increasing water temperature are 

well-documented across taxa and have been used as a means of determining the 

temperature at which a species performs optimally through the concept of aerobic 

metabolic scope (hereafter “metabolic scope”) (e.g., Fry, 1947; 1971; Bozinovic and 

Pörtner, 2015). Metabolic scope is the difference between standard metabolic rate (SMR), 

the minimum metabolic rate necessary for the maintenance of homeostasis, and 

maximum metabolic rate (MMR). Metabolic scope in fishes generally increases to a 

thermal optimum, then decreases rapidly with further increases in temperature (Pörtner 

and Peck, 2010; Clark et al., 2013; McBryan et al., 2013). Rapidly changing 

environmental conditions, and the resultant changes in metabolic scope, therefore have 
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major implications for fishes because metabolic scope represents the state-space within 

which all aerobic activities must occur (Brander, 2015; Marras et al., 2015; McKenzie et 

al., 2016). Like metabolic rates, metabolic scope responds to changes in temperature but 

the relationship is species-specific (e.g., Guderly and Pörtner, 2010; Marras et al., 2015; 

Gunderson et al., 2016). Because metabolic scope governs processes such as feeding, 

movement, and gonadal and somatic growth rates, changes in metabolic scope resulting 

from variations in temperature and oxygen conditions have population-level impacts 

(Pankhurst and Munday, 2011; Peck et al., 2016). Understanding the relationship 

between environmental conditions and metabolic scope is, therefore, critical to 

understanding and predicting population-level processes (such as the ability of a species 

to withstand various levels of fishing mortality) and the development of effective fishery 

management and resource conservation plans and policies (Horodysky et al., 2015; 

Cooke et al., 2016; Townhill et al., 2017). 

Effective fisheries management is especially important in temperate estuaries 

because these areas provide nursery and foraging grounds for many commercially and 

recreationally important species. For instance, Chesapeake Bay is inhabited by more than 

350 species of fish throughout the year (Murdy and Musick, 2013), many of which are 

subject to heavy fishing pressure. The effects of environmental conditions on fish 

metabolism have only been investigated in a handful of these species (Horodysky et al. 

2011; Capossela et al., 2012; Lapointe et al., 2014). This is concerning because 

Chesapeake Bay, like other temperate estuaries, is experiencing increasing water 

temperatures which intensifies stratification, resulting in a reduction in turnover between 

the warm, oxygen-rich surface waters and the cooler bottom waters. This process 



 

 

18 

 

increases the magnitude, duration, and spatial extent of seasonal hypoxic events (Cooper 

and Brush, 1991; Hagy et al., 2004; Kemp et al., 2005; Kaushal et al., 2010). Such 

conditions have been hypothesized to result in a temperature-oxygen squeeze whereby 

fish that would normally use deeper, cooler waters as a thermal refuge during summer are 

forced into suboptimal hypoxic habitats (Coutant, 1985).  

To determine the potential impacts of increases in temperature on the metabolism 

and hypoxia tolerance of estuarine fishes, we used intermittent-flow respirometry to 

investigate differences in the metabolic scope and hypoxia tolerance of Atlantic croaker 

(Micropogonias undulatus Linnaeus, 1766) and spot (Leiostomus xanthurus Lacepède, 

1802) at temperatures commonly experienced in Chesapeake Bay. These two sciaenid 

species are common along the U.S. Atlantic seaboard and use estuaries as nursery and 

foraging grounds from spring to fall, migrating offshore to spawn during fall (Moser and 

Gerry, 1989; Barbieri et al., 1994). In Chesapeake Bay, Atlantic croaker and spot support 

important commercial fisheries accounting for combined annual landings ranging from 

3000 to 8500 metric tons (from 2000 to 2015; https://www.st.nmfs.noaa.gov/commercial-

fisheries/commercial-landings/).   

https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/
https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/
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2. Methods 

All animal capture, handling, and experimental procedures followed approved 

Institutional Animal Care and Use Committee protocols (IACUC-2014-06-13-9557-

mcfabr and IACUC-2015-04-29-10380-mcfabr) and all applicable U.S. regulations. 

 

2.1. Animal Subjects 

Atlantic croaker and spot were captured using either a commercial pound net 

(September 2, 2014 and August 26, 2015) or a 9.14 m otter trawl (August – September, 

2014 and April – September, 2015). All fish were transported to the VIMS Seawater 

Research Laboratory where they were measured for length (total length (TL) for Atlantic 

croaker, fork length (FL) for spot) to the nearest mm (range: 235 – 317 mm TL for 

Atlantic croaker, 194 – 234 mm FL for spot) (Table 1). Fish masses (to the nearest gram) 

were obtained prior to the respirometry trials. Atlantic croaker masses ranged from 137 to 

388 g whereas spot masses ranged from 112 to 195 g (Table 1). Masses were converted 

to kg for the calculation of metabolic rates (see below). Kruskal-Wallis tests were used to 

investigate potential differences in the length and mass of fish subjected to trials at 

different temperatures. 

Prior to transferring fish to holding tanks, elastomer tags, color coded by location 

of capture (the main stem of Chesapeake Bay, or the James, York, or Rappahannock 

rivers) were injected subdermally, posterior to the right eye (FitzGerald et al., 2004). Fish 

were held in two 1800 L recirculating holding tanks for a minimum of two weeks before 

being subjected to respirometry trials. Holding tanks were maintained at 20°C and a 

salinity of 22.2 ± 0.2‰ (i.e., ambient salinity at the mouth of the York River). Fish were 
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fed to satiation three times per week using commercial pellets. Water quality was 

checked twice per week and water changes performed as necessary. 

 

2.2 Respirometry 

Intermittent-flow respirometry (Steffensen, 1989) was used to determine the 

maximum metabolic rate (MMR), standard metabolic rate (SMR), and critical oxygen 

saturation (Scrit) for Atlantic croaker and spot at five temperatures at which Atlantic 

croaker and spot commonly occur in Chesapeake Bay (10, 15, 20, 25, and 30°C). 

Respirometry trials were conducted in either a 7.5-L or 4.1-L static respirometry chamber 

to maintain chamber volumes at ~20-50 times the mass of the fish as recommended by 

Forstner (1983) and Svendsen et al. (2016). Temperature, species, and individuals were 

pseudo-randomly selected prior to each trial. 

The metabolic rates of either two Atlantic croaker or two spot at one of the five 

trial temperatures were simultaneously measured (mg O2 kg-1 hr-1) in independent 

respirometry chambers. Chambers were submerged in separate, temperature-controlled 

water baths bubbled with air to maintain normoxic conditions and covered to reduce 

visual stimuli. Oxygen levels in the respirometers were measured using fluorescence 

oxygen sensors (Presens, Regensburg, Germany). Sensors were mounted either in a flow-

through cell inserted in the water circulation tubing or directly in the respirometer. 

Computers recorded oxygen saturation (%) every second using custom-designed software 

in Dasylab 13.0 (National Instruments, www.ni.com) and converted oxygen saturation to 

concentration (mg O2 L
-1) using standard equations (Richards, 1965) within the software 

routines. 

http://www.ni.com/
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Metabolic rate (MO2) was measured using a 10-15 min cycle consisting of a 5 

min flush, a 1-1.5 min equilibration period, and a 4-9.5 min data recording interval. 

Measurement periods varied based on the mass of the fish relative to respirometer 

volume. Following Lapointe et al. (2014), the rate of change of O2 concentration over 

time (Δ[O2] t 
−1) was calculated using a linear regression of recorded oxygen 

concentrations against elapsed time (t) after the conclusion of the data recording interval. 

MO2 was then calculated as: 

(1) 𝑀𝑂2 = (∆[𝑂2]𝑡−1)  × 𝑉 × 𝑊−1 (1) 

where: V is the respirometer volume (L) corrected for fish volume, and W is the weight 

of the fish (kg). MO2 was adjusted to a body weight of 1 kg to account for variations in 

MO2 due to differences in size among fish using a weight exponent of 0.82 (Edwards et 

al., 1972) using the equation: 

(1) 𝑋𝑠 = (1 × 𝑊−0.82) ×  𝑋𝑚 (2) 

where Xs is the standardized MO2 value, W is the weight of the fish (kg), and Xm is the 

measured MO2 value. To account for bacterial respiration during respirometry trials, 

background oxygen consumption was measured at the completion of each experiment, 

and subtracted from respiration values measured when fish were in the respirometer. 

Prior to respirometry trials, fish were transferred to a 260 L holding tank at 20oC. 

The temperature in the holding tank was adjusted to the trial temperature (10, 15, 20, 25, 

or 30°C) during a 3-6 hr period, and fish were allowed to acclimate to the trial 

temperature for ~36 hrs during which they were not fed. Fish were then exercised to 

exhaustion (determined as the point when they no longer avoided handling) and subjected 

to a brief (~1 min) air exposure (Ferguson and Tufts, 1992; Donaldson et al., 2010; Clark 
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et al., 2012; Roche et al., 2013) during which they were weighed (g). Following air 

exposure, fish were introduced to the respirometer and the MMR of each individual was 

determined as the single highest MO2 obtained under normoxic conditions. Fish remained 

in the respirometer overnight to allow recovery from exercise and handling. Because the 

MO2 data were highly variable and included the acclimation period, the SMR was 

calculated using the 15% quantile method recommended by Chabot et al. (2016). 

Metabolic scope was calculated as the difference between MMR and SMR.  

To determine the critical oxygen saturation (Scrit), the oxygen content of the water 

in the outer bath was reduced in a stepwise fashion by bubbling nitrogen into the system. 

Reductions in ambient oxygen continued to levels at which metabolic rate decreased 

simultaneously with decreases in ambient oxygen. Scrit was determined using a piecewise 

regression fitted to the metabolic rate-oxygen saturation data where Scrit was the oxygen 

saturation at which metabolic rate began to decrease below the estimated SMR 

(Schurmann and Steffensen, 1997; Lapointe et al., 2014; Brill et al., 2015). To account 

for differences in the solubility of oxygen at different temperatures and salinities (albeit, 

over a narrow range of salinities), Scrit values were converted to critical oxygen 

concentration (Ccrit, mg O2 L
-1) using an online algorithm 

(baliga.systemsbiology.net/drupal/sites/default/.../DO-percent-to-mg-per-L-

Calculator....). 

At the conclusion of each respirometry trial, fish were euthanized via immersion 

in an ice-water slurry (Blessing et al., 2010). Following euthanasia, the sex of each fish 

was determined and condition was measured using the Distell Fish Fatmeter, which uses 
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microwaves to measure subdermal lipid content (Distell.com), and by calculating 

Fulton’s K (Schloesser and Fabrizio, 2017) using the equation: 

(1) 𝐾 = 100 × (𝑊 × 𝐿−3) (3) 

where W is the fish’s weight in grams and L is its length in centimeters. Finally, the age 

of individual fish was determined from the otoliths following Barbieri et al. (1994). Ages 

were assigned by three readers and agreement between at least two readers was necessary 

to assign an age to an individual. Chang’s coefficient of variation was calculated to 

determine the degree of reader agreement (Chang, 1982).  

 

2.3 Analysis 

 Because multiple, correlated responses were measured during the respirometry 

trials (Table 2), a multivariate approach was used to analyze the data (Tabachnick and 

Fidell, 2007). Additionally, because a combination of fixed effects and a random effect of 

individual fish were included in the model, we used a generalized linear mixed model 

(Littell et al., 2006; Bolker et al., 2008). To identify the most appropriate model for these 

data, we followed the model fitting procedures outlined in Henderson et al. (2014) and 

Marcek et al. (2016). First, potential predictors were investigated graphically prior to 

incorporation in the model and included species, temperature, age, sex, condition, 

chamber (two chambers were used), and location of capture (main stem of Chesapeake 

Bay or the James, York, or Rappahannock rivers). Graphical analysis indicated that the 

metrics of condition (fatmeter readings and Fulton’s K) were correlated and therefore 

only one condition metric could be included in the final models. The graphical analysis 

suggested that temperature and condition were likely the only important predictors of 
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metabolic parameters for both spot and Atlantic croaker, although age appeared to be an 

important predictor of metabolic parameters for Atlantic croaker. 

 Due to small sample sizes of Atlantic croaker greater than age 4, all individuals of 

age 5 and older were pooled into a 5+ group and the potential effects of age were 

investigated using an Analysis of Variance which supported the inclusion of age in the 

model describing the metabolic rates and critical oxygen saturations of Atlantic croaker. 

Because age appeared to be an important predictor for Atlantic croaker but not for spot, 

separate statistical models were used to describe the metabolic responses of each species 

to temperature, condition, and age. 

 Following the identification of appropriate fixed effects, the covariance structure 

of the models was determined using the Akaike’s Information Criterion corrected for 

small sample sizes (AICc). Four covariance structures were investigated prior to fitting 

the models: variance components (vc), compound symmetry (cs), Toeplitz (toep), and 

unstructured (un). For both Atlantic croaker and spot, AICc was minimized using a 

Toeplitz covariance matrix (Atlantic croaker: AICc, vc = 1988.8, AICc, cs = 1965.9, AICc, 

toep = 1779.2, AICc, un = dnc; spot: AICc, vc = 1354.0, AICc, cs = 1341.0, AICc, toep = 1224.9, 

AICc, un = dnc; dnc = did not converge), indicating that a Toeplitz covariance matrix best 

described the random variation in the metabolic rate observations of both species. 

Following these preliminary model-building investigations, the multivariate model 

describing the effect of temperature (Temp), condition (Cond), and age on the 

metabolism and hypoxia tolerance of Atlantic croaker followed the form: 

(1) 𝑆𝑀𝑅𝑖𝑗𝑘, 𝑀𝑀𝑅𝑖𝑗𝑘 , 𝑀𝑆𝑖𝑗𝑘, 𝑆𝑐𝑟𝑖𝑡,   𝑖𝑗𝑘

= 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑇𝑒𝑚𝑝𝑗  + 𝐶𝑜𝑛𝑑 + 𝐴𝑔𝑒𝑘 +  𝜀𝑖𝑗𝑘, 

(4) 
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where the metabolic parameters of individual i were modeled as a function of 

temperature j, condition, and age k. Intercept represents the overall mean response, Temp 

represents the effect of trial temperature, Cond represents the effect of fish condition as 

measured by Fulton’s k, Age represents the effect of fish age, and εijk represents the 

random, unexplained variation in the model. The model describing how temperature and 

condition affected the metabolism and hypoxia tolerance of spot followed the form: 

(1) 𝑆𝑀𝑅𝑖𝑗 , 𝑀𝑀𝑅𝑖𝑗 , 𝑀𝑆𝑖𝑗, 𝑆𝑐𝑟𝑖𝑡,   𝑖𝑗 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑇𝑒𝑚𝑝𝑗  + 𝐶𝑜𝑛𝑑 + 𝜀𝑖𝑗. (5) 

Similar to the model for Atlantic croaker, the metabolic parameters of individual i were 

modeled as a function of temperature j and condition. Intercept represents the overall 

mean response, Temp represents the effect of trial temperature, Cond represents the effect 

of fish condition as measured by Fulton’s k, and εijk represents the random, unexplained 

variation in the model. Analyses were performed using the MIXED procedure in SAS 

version 9.3 (SAS Institute, Cary, NC).  
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3. Results 

3.1 Animal Subjects 

 Mean fish lengths (± standard error) for Atlantic croaker and spot were 274 ± 3 

mm and 209 ± 1 mm, respectively. All individuals were considered adults. Mean fish 

masses (± standard error) were 248 ± 10 g for Atlantic croaker and 147 ± 2 g for spot. 

Length and mass did not differ significantly among individuals exposed to different 

temperature treatments for either Atlantic croaker (length: χ2 = 4.65, P = 0.33; mass: χ2 = 

7.50, P = 0.11) or spot (length: χ2 = 6.03, P = 0.20; mass: χ2 = 8.52, P = 0.07). Atlantic 

croaker ranged in age from 3 to 10 years, whereas spot ages ranged from 1 to 2 years. 

Chang’s coefficient of variation was 4.4%, indicating a high degree of reader agreement 

and is below the 5% threshold recommended by Campana et al. (2001). 

 

3.2 Respirometry 

Multivariate models that included the effects of temperature, condition, and age 

on metabolic rate and hypoxia tolerance explained approximately 53% of the total 

variance in responses (i.e., SMR, MMR, metabolic scope, and Scrit) of Atlantic croaker 

and 52% of the total variance in responses of spot. These models indicate that 

temperature was the only significant predictor of responses measured for Atlantic croaker 

and spot (F = 7.46, P < 0.01 and F = 15.39, P < 0.01, respectively).  

As expected, mean SMRs increased with increasing temperature in both species 

(Figure 1), but were similar between species at all temperatures; except 30oC where the 

mean SMR of spot (mean: 263.4, 95% CI: 223.2-303.6 mg O2 kg-1 hr-1) was greater than 

that of Atlantic croaker (mean: 171.6, 95% CI: 136.1-207.1 mg O2 kg-1 hr-1). Mean 
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MMRs also increased with increasing temperature in both species (Figure 2). In contrast 

to SMR, the mean MMR of spot was greater than that of Atlantic croaker at all 

temperatures except 10°C (spot – mean: 256.9, 95% CI: 216.8-297.0 mg O2 kg-1 hr-1; 

Atlantic croaker – mean: 231.5, 95% CI: 178.7-284.2 mg O2 kg-1 hr-1). Similar to SMR 

and MMR, the mean metabolic scope of Atlantic croaker and spot increased with 

increasing temperature (Figure 3). The mean metabolic scope of spot exceeded that of 

Atlantic croaker at all temperatures except 10°C (spot – mean: 194.2, 95% CI: 154.0-

234.3 mg O2 kg-1 hr-1; Atlantic croaker – mean: 170.8, 95% CI: 118.0-223.6 mg O2 kg-1 

hr-1). Unlike SMR and MMR, however, the mean metabolic scope of both species 

appeared to plateau at higher temperatures (Figure 3). Mean metabolic scope was not 

significantly different between 25 and 30°C for Atlantic croaker, nor between 20, 25, and 

30°C for spot.  

Although mean Scrit appeared to increase with increasing temperature, there were 

no significant changes in mean Scrit with temperature for either species due to the large 

amount of variation (Figure 4). Mean estimates of Scrit ranged from 16.3% at 10°C to 

34.8% at 30°C for Atlantic croaker, and from 19.1% at 10°C to 29.0% at 30°C for spot. 

Estimates of mean Scrit were also similar between species (Figure 4). Mean estimates of 

Ccrit ranged from 1.6 mg O2 L
-1 to 2.3 mg O2 L

-1 for Atlantic croaker and from 1.5 mg O2 

L-1 to 2.0 mg O2 L
-1 for spot. There were no significant differences in mean Ccrit with 

temperature or species (Figure 5). 
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4. Discussion 

 Mean SMR, MMR, and metabolic scope increased with increasing temperature 

for both Atlantic croaker and spot, which is consistent with other marine ectotherms and 

is indicative of the pervasive effect of temperature on the physiology of these organisms 

(e.g., Schulte, 2015; Whitney et al., 2016). The mean SMRs of Atlantic croaker and spot 

were similar at all temperatures tested, except 30°C. At this temperature, the mean SMR 

of spot exceeded that of Atlantic croaker indicating that the minimum metabolic 

requirements of spot to maintain homeostasis are greater than those of Atlantic croaker. 

In contrast, the mean MMR and mean metabolic scope of spot exceeded that of Atlantic 

croaker at all temperatures except 10°C. These findings are consistent with those of 

Horodysky et al. (2011), where at 25°C, the SMR, MMR, and metabolic scope of spot 

were greater than those of Atlantic croaker. The differences in metabolic scope of these 

species, found in both studies, indicate that spot have a greater aerobic state-space within 

which movement, growth, and reproduction can be undertaken. This is demonstrated by 

faster growth in spot, where 84% of cumulative growth occurs in the first year and 99% 

occurs by age 2 (Piner and Jones, 2004), than in Atlantic croaker, where 64% of 

cumulative growth occurs in the first year and  84% occurs by age 2 (Barbieri et al., 

1994). Additionally, spot attain a greater weight-at-length than Atlantic croaker (Barbieri 

et al., 1994; Piner and Jones, 2004). Faster growth rates are likely to confer a competitive 

advantage to spot as suitable habitat space is compressed under changing environmental 

conditions. 

The expectation under the Oxygen and Capacity-Limited Thermal Tolerance 

(OCLTT) hypothesis is that metabolic scope will decrease as temperature increases 
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beyond a species’ thermal optimum (Pörtner, 2010). Interestingly, the metabolic scope of 

Atlantic croaker and spot plateau at warm temperatures, which may indicate a broad 

range of temperature optima for both species (25-30°C for Atlantic croaker; 20-30°C for 

spot) and suggests that they are well-adapted to the temperature conditions they currently 

experience in Chesapeake Bay. Although observations from the Chesapeake Bay 

Program (1986 – 2016; http://www.chesapeakebay.net/data/) and the VIMS Juvenile Fish 

Trawl Survey (1988 – 2014) indicate that bottom temperatures rarely exceed 30°C in 

Chesapeake Bay, Atlantic croaker have been documented in waters up to 31.4°C in South 

Carolina estuaries (Miglarese et al., 1982) and 31.9°C in the Gulf of Mexico (Craig and 

Bosman, 2013). Observations of Atlantic croaker inhabiting waters > 30°C suggest that 

the upper critical temperature for Atlantic croaker is likely greater than 30°C, the 

maximum temperature tested in this study, and may explain why a decrease in metabolic 

scope was not observed. Because spot occupy habitats similar to Atlantic croaker 

throughout the Atlantic Ocean and Gulf of Mexico, it is likely that the upper critical 

temperature of spot is also greater than 30°C. Understanding the thermal limitations of 

Atlantic croaker and spot is important when considering climate change scenarios, as it is 

likely that water temperatures in Chesapeake Bay will continue to increase (Hayhoe et 

al., 2007; Najjar et al., 2010) and, therefore, may approach or exceed the thermal 

tolerance of Atlantic croaker and spot in the future. Increasing water temperatures will 

decrease the amount of habitat available to fishes and may result in decreased abundances 

of Atlantic croaker and spot as temperatures that exceed thermal optima result in 

increased mortality (Clark et al., 2003; Pörtner and Knust, 2007; Eliason et al., 2011) and 

shifts in distribution (Perry et al., 2005). 

http://www.chesapeakebay.net/data/
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Temperature is a major factor driving metabolic rates in fishes and has also been 

associated with increases in Scrit (i.e., decreased hypoxia tolerance) (Schurmann and 

Steffensen, 1997; Capossela et al., 2012; Lapointe et al., 2014; Borowiec et al., 2016). 

The mean Scrit of both Atlantic croaker and spot showed a general increase with 

increasing temperature; there were, however, no detectable differences in mean Scrit for 

either species at any temperature tested due to the large amount of variation of individual 

Scrit values. Our results suggest that neither species is more tolerant of hypoxic conditions 

than the other and support the findings of Eby and Crowder (2002). In contrast, based on 

correlations of distributional and abundance data, Bell and Eggleston (2005) and Pihl et 

al. (1991) concluded that spot are more tolerant of hypoxia than Atlantic croaker. An 

important difference is that our experiments explicitly tested the hypoxia tolerance of 

Atlantic croaker and spot using established respirometry techniques, whereas the 

previous studies inferred hypoxia tolerance of fishes from survey data. Employing survey 

data to make inferences on species-specific hypoxia tolerances may lead to biased 

estimates of hypoxia tolerance because: (1) other abiotic and biotic factors (e.g., salinity, 

substrate, tidal stage, prey availability, presence of predators, conspecific density) can 

influence fish distribution and (2) fish may aggregate in the most suitable habitat 

conditions. 

 Mean Ccrit did not differ with temperature or species and suggests that Atlantic 

croaker and spot are unable to maintain aerobic metabolism at dissolved oxygen 

concentrations below ~2 mg L-1 and therefore would require anaerobic processes to 

survive in hypoxic conditions (as herein defined). It should be noted, however, that while 

Atlantic croaker and spot may be able to survive brief exposures to dissolved oxygen 
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concentrations as low as 2 mg L-1, sublethal effects such as decreases in gonadosomatic 

index, fecundity, and ovarian lipid content (Thomas and Rahman, 2009; Tuckey and 

Fabrizio, 2016) have been associated with exposure to hypoxic conditions and may occur 

at oxygen concentrations higher than the mean Ccrit. Indeed, decreases in consumption 

and growth across many species have been associated with dissolved oxygen 

concentrations as high as 4.5 mg L-1 (Hrycik et al., 2017). Given that sublethal effects of 

hypoxia (e.g., decreases is metabolic scope) occur at dissolved oxygen concentrations 

higher than a species’ critical limit, it is likely that fish will avoid waters that exceed their 

Ccrit value. This avoidance behavior has been inferred for a broad range of fishes in 

Chesapeake Bay (Buchheister et al., 2013) and is likely to intensify as temperatures 

increase. 

 

4.1 Conclusions  

 Our results demonstrate that temperature has pervasive effects on the metabolic 

rates of Atlantic croaker and spot but, at levels currently observed in Chesapeake Bay, 

does not affect hypoxia tolerance. Additionally, in contrast to the findings of studies 

correlating ambient oxygen and fish distribution, our results suggest that Atlantic croaker 

and spot are equally tolerant of hypoxic conditions regardless of temperature. This 

indicates that neither species has a competitive advantage in regards to exploiting 

hypoxic areas. At temperatures common to Chesapeake Bay, however, spot generally 

have a greater metabolic scope and therefore a greater state-space for aerobic activities 

such as growth, reproduction, and movement. If nutrient input to Chesapeake Bay 

continues at the current levels and temperatures continue to increase, it is likely that 
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hypoxic zones will increase in size and severity, limiting the habitat available to Atlantic 

croaker and spot. As habitat availability decreases, the distribution of both spot and 

Atlantic croaker may shift outside of Chesapeake Bay to areas where these conditions are 

more favorable; however, prey availability and predator abundance in these alternate 

habitats may further shape habitat use. Additionally, because they occupy similar niches, 

the decreased availability of suitable habitats in Chesapeake Bay may result in increased 

competition for resources between these species. In this scenario, the greater metabolic 

scope of spot may lead to a competitive advantage and result in a decrease in abundance 

of the Atlantic croaker population in Chesapeake Bay, and eventually coast-wide. To 

better assess the ecological impacts of climate change on Atlantic croaker and spot, 

additional research regarding the effect of other environmental conditions (e.g., salinity, 

acidification, prey availability) and their interactions on the metabolism of these fishes 

will be necessary.   
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Tables 

 

Table 1. Length, weight, and number (n) of Atlantic croaker and spot used at each temperature in the respirometry trials. Results are 

reported as means (standard errors). 

 

 Atlantic Croaker Spot 

Temperature 

(oC)    

Total Length 

(mm) 

Weight  

(g) 

n 

 

Fork Length 

(mm) 

Weight  

(g) 

n 

 

10 281.0 (10.4) 289.9 (25.3) 5 207.7 (2.2) 146.1 (5.7) 9 

15 276.0 (4.9) 250.5 (15.3) 10 207.9 (0.9) 145.3 (2.9) 11 

20 267.4 (5.3) 218.8 (13.4) 5 214.1 (3.1) 156.2 (6.1) 11 

25 264.7 (8.4) 221.2 (28.6) 9 208.6 (2.7) 149.6 (6.5) 10 

30 280.6 (7.2) 268.9 (21.1) 8 205.3 (1.6) 137.1 (2.8) 9 

Overall 273.8 (3.3) 248.4 (10.4) 37 208.9 (1.1) 147.2 (2.4) 50 
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Table 2. Correlations between standard metabolic rate (SMR), maximum metabolic rate 

(MMR), metabolic scope (MS), and critical oxygen saturation (Scrit) data used in the 

multivariate analysis. 

 

Atlantic croaker 

Response SMR MMR MS Scrit 

SMR  0.81 0.53 0.79 

MMR   0.93 0.66 

MS    0.44 

Scrit     

     

Spot 

Response SMR MMR MS Scrit 

SMR  0.85 0.58 0.50 

MMR   0.92 0.39 

MS    0.23 

Scrit     
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Figures 

 
Figure 1. The standard metabolic rate of Atlantic croaker and spot at five temperatures. 

Mean model estimates (±95% confidence intervals) are shown for spot (open squares) 

and Atlantic croaker (filled circles). 
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Figure 2. The maximum metabolic rate of Atlantic croaker and spot at five temperatures. 

Mean model estimates (±95% confidence intervals) are shown for spot (open squares) 

and Atlantic croaker (filled circles). 
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Figure 3. The metabolic scope of Atlantic croaker and spot at five temperatures. Mean 

model estimates (±95% confidence intervals) are shown for spot (open squares) and 

Atlantic croaker (filled circles). 
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Figure 4. The critical oxygen saturation of Atlantic croaker and spot at five temperatures. 

Mean model estimates (±95% confidence intervals) are shown for spot (open squares) 

and Atlantic croaker (filled circles). Lower confidence intervals are truncated at 0%. 
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Figure 5. The critical oxygen concentration of Atlantic croaker and spot at five 

temperatures. Mean model estimates (±95% confidence intervals) are shown for spot 

(open squares) and Atlantic croaker (filled circles). The mean and confidence limits were 

converted to concentration from model estimates of critical oxygen saturation. Lower 

confidence intervals are truncated at 0 mg O2 L
-1.
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CHAPTER 3 

Effects of Hypoxia on the Reproductive Potential of  

Atlantic Croaker in Chesapeake Bay
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Abstract 

Eutrophication, caused by anthropogenic nutrient inputs, has increased the spatial 

extent, frequency, and severity of hypoxic events in coastal and estuarine waters 

throughout the world. In Chesapeake Bay, these specific trends in hypoxia have led to 

concerns about their effects on economically and ecologically important species. One 

such effect at the individual level is the disruption of reproductive development, which if 

widespread, could lead to reductions in population size and alter community dynamics. 

To address a gap in knowledge about the direct effects of hypoxia exposure on the 

reproduction of Chesapeake Bay fishes, this study focused on female Atlantic croaker 

(Micropogonias undulatus) captured in Virginia waters of the Bay during 2016. I 

investigated the utility of using hypoxia-inducible factors (HIFs) to detect hypoxia 

exposure, while examining the effect of hypoxia exposure on these same individuals, as 

measured by three metrics of reproductive potential: the gonadosomatic index, the most-

advanced oocyte stage, and the proportion of atretic oocytes. The relative expression of 

HIFs and the three metrics of reproductive potential did not differ between fish captured 

in normoxic versus hypoxic waters (< 3.5 mg O2 L
-1). My results suggest that, in 2016, 

female Atlantic croaker captured in Virginia waters of Chesapeake Bay were not 

subjected to chronic hypoxia exposure, but were likely exposed to hypoxia only 

intermittently. This is in contrast to the evidence for effects of hypoxia on Atlantic 

croaker reproductive potential in Chesapeake Bay and in the northern Gulf of Mexico 

during years of more widespread hypoxia. I conclude, that the reproductive potential of 

Atlantic croaker residing in Virginia subestuaries of Chesapeake Bay was not affected by 

exposure to hypoxic conditions in 2016. To understand the potential effect of hypoxia on 
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the reproduction of the Atlantic croaker population in Chesapeake Bay however, 

additional sampling in years of chronic, severe hypoxia and in Maryland waters of this 

estuary is required.  
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1. Introduction 

Hypoxia is among the most widespread, deleterious processes occurring in 

aquatic environments [1]. Hypoxia is a naturally-occurring phenomenon driven by high 

nutrient loads and water column stratification, but the duration, frequency, and spatial 

extent of hypoxic events has increased as a result of eutrophication caused by 

anthropogenic activities such as intense agriculture and urbanization [1-4]. Commonly, 

2.0 mg O2 L
-1 is used as the threshold for hypoxia [1] because organisms, especially those 

inhabiting the benthos, experience high mortality rates at dissolved oxygen (DO) 

concentrations below this level [5]. The use of a strict mortality-driven threshold for 

defining hypoxia may not, however, be appropriate because sublethal impacts of 

exposure to low DO conditions may occur and because oxygen requirements and 

tolerances are species- and ontogeny-specific [6, 7]. 

Sublethal effects on marine fishes associated with exposure to low DO conditions 

include alterations in spatial distribution [8-16], changes in metabolic rates [17-21], and 

reductions in growth [7, 22-24], consumption [7, 23 ,24], and reproductive potential [25-

31]. Reproduction in fishes is particularly sensitive to disruption by environmental 

stressors including hypoxia [28, 32, 33]. Impairment of reproductive function resulting 

from exposure to hypoxia has been described for common carp (Cyprinus carpio) [34], 

Gulf killifish (Fundulus grandis) [35, 36], and Atlantic croaker (Micropogonias 

undulatus) [26, 30], where DO concentrations leading to impaired function ranged from 

1.3 mg L-1 [35] to 3.5 mg L-1 [30]. Exposure to hypoxic conditions can impair 

reproductive function through delays in oocyte development, decreases in gonadosomatic 

index (GSI), impaired gametogenesis, decreased oocyte size, decreased sperm motility, 
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reduced fertilization success, reduced hatching rate, decreased fecundity, ovarian 

masculinization, and alterations to processes controlling sex differentiation [26, 29, 30, 

34, 35, 37, 38]. Stressful environmental conditions, including hypoxia, have additionally 

been linked to increased degeneration of oocytes (commonly referred to as atresia) in 

fishes [39-46]. Hypoxic conditions in Chesapeake Bay have worsened in recent decades 

[47-49], although the direct impacts of hypoxia exposure on the reproductive function of 

fish inhabiting this estuary are still largely unknown. 

Disruption or impairment of the reproductive function of individuals can lead to 

population declines and may have long-term impacts on affected populations [32, 33, 50, 

51]. If the effects of hypoxia are ignored, stock assessment models may yield overly 

optimistic estimates of population growth, especially if fecundity is assumed to be stable 

regardless of environmental conditions. Tuckey and Fabrizio [31] demonstrated that 

indirect exposure to hypoxia affects the reproductive potential of Atlantic croaker in 

Chesapeake Bay; verification of the hypoxia-exposure history of individual Atlantic 

croaker is, however, necessary to assess the direct effects of hypoxia exposure on their 

reproductive potential. Biomarkers of exposure to hypoxia, specifically the expression of 

hypoxia-inducible factors (HIFs) in the tissues of fish and other organisms captured in 

hypoxic areas, can be used to assess hypoxia exposure [26, 28, 52-54].  

HIFs are transcription factors involved in the maintenance of oxygen homeostasis 

[55] through the regulation of gene expression and metabolic processes [30, 38, 52, 53, 

56-62]. Increased expression of HIFs has been linked with the disruption of reproductive 

function in field and laboratory studies [26, 29, 30, 34]. Reproductive impairment 

resulted from the chronic exposure of fish to hypoxic conditions [26, 29, 30, 34]. The 
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effect of acute or intermittent exposure to hypoxia on the expression of HIFs and 

reproductive impairment is, however, poorly understood. Because the frequency, extent, 

and severity of hypoxic conditions are system-specific, it is difficult to generalize the 

impacts of exposure to hypoxic conditions on fish reproduction from one system to 

another. In contrast with previously studied systems, hypoxia in Chesapeake Bay is 

typically restricted to deep channels [48, 63] and the adjacent shallower waters are well-

oxygenated. A variety of hypoxic conditions can be observed during summer in the 

subestuaries in the lower portions of Chesapeake Bay. For example, hypoxia does not 

occur in the James River, whereas the York River has mild, periodic hypoxic episodes, 

and the Rappahannock River has severe, seasonal hypoxia [31]. Hypoxia in the 

Rappahannock River has been shown to result in reductions in the reproductive potential 

of Atlantic croaker [31]. Due to the restricted or episodic extent of hypoxia in 

subestuaries of the lower Chesapeake Bay described above, fishes and other mobile 

organisms can avoid exposure to hypoxic conditions simply by moving away from 

hypoxic areas. 

I compared the expression of two hypoxia-inducible factor subunits (HIF-1α and 

HIF-2α) in three tissues (brain, gill, and heart) of fish captured in hypoxic conditions with 

those of fish captured in normoxic conditions specifically to investigate the utility of 

HIFs as biomarkers of hypoxia exposure in Atlantic croaker captured in Chesapeake Bay. 

Additionally, I determined the effects of hypoxia exposure on the reproductive potential 

of Atlantic croaker by comparing metrics of reproductive potential (GSI, most-advanced 

oocyte stage, and proportion of atretic oocytes) of fish captured in hypoxia to those of 

fish captured in normoxia. Atlantic croaker are a common, seasonal resident of 



 

 

52 

 

Chesapeake Bay [64], and do not display a strong avoidance response to hypoxia [9, 65]. 

The utility of HIFs as biomarkers of hypoxia and reproductive impairment as a result of 

hypoxia exposure has also been demonstrated for this species in the northern Gulf of 

Mexico and Pensacola Bay Estuary [25, 26, 28-30, 52, 60]. Based on the results of these 

previous studies, I hypothesize that: 

(1) the relative expression of HIFs will be greater in the tissues of fish captured in 

hypoxic conditions relative to those captured in normoxic conditions, and  

(2) fish captured in hypoxia will display a reduced GSI, oocytes will be in an 

earlier stage of development, and atresia will occur in a larger proportion of 

oocytes relative to fish captured in normoxia.  

Sublethal effects of dissolved oxygen concentrations are observed at levels greater 

than 2 mg L-1 [7, 16, 21, 26, 30], and disruptions to the reproductive processes of Atlantic 

croaker have been linked to exposure to dissolved oxygen concentrations as high as 3.7 

mg L-1 [26, 30]. I, therefore, defined hypoxic conditions as oxygen concentrations ≤ 3.5 

mg L-1.  
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2. Methods 

All capture and handling techniques described in this manuscript were approved 

by the Institutional Animal Care and Use Committee (IACUC-2015-06-30-10455-

mcfabr) at the College of William & Mary and complied with all applicable U.S. 

guidelines. 

 

2.1 Tissue collection 

 Adult, female Atlantic croaker (≥ 240 mm total length, TL; n = 87) were captured 

at 41 stations in the James (n = 12), York (n = 31), and Rappahannock (n = 44) rivers in 

July and August 2016 (Fig 1) using a 9.14 m otter trawl. Forty-one fish were captured in 

hypoxic conditions (DO < 3.5 mg L-1) with 20 of these fish captured at stations where 

DO ≤ 2 mg L-1 and 46 were captured in normoxic conditions. Fish were captured at 

hypoxic and normoxic stations in the York and Rappahannock rivers. Because hypoxia 

does not occur in the James River, the relative expression of HIFs in the tissues of fish 

captured there was, therefore, used as a control against which the relative expression of 

HIFs in the tissues of fish captured in the York and Rappahannock rivers could be 

compared. Following capture, fish were euthanized in an ice-water slurry [66] prior to 

being weighed (g) and measured (mm; total length, TL). The sex of each individual was 

determined by examination of the gonads macroscopically. The brain, gill, and heart 

tissues were extracted and frozen in liquid nitrogen until processing. Total weight, 

somatic weight, and gonad weight were measured to the nearest 0.1 g where total weight 

refers to the mass of whole animal, somatic weight refers to that of the eviscerated 
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animal, and gonad weight was measured using both lobes of the ovary. The 

gonadosomatic index (GSI) was calculated as: 

 

 
𝐺𝑆𝐼 =  

𝐺𝑜𝑛𝑎𝑑 𝑊𝑒𝑖𝑔ℎ𝑡

𝑆𝑜𝑚𝑎𝑡𝑖𝑐 𝑊𝑒𝑖𝑔ℎ𝑡
. 

(1) 

 

The right ovary was preserved on ice and transported to the laboratory, fixed in 10% 

buffered formalin for a minimum of two weeks, then preserved in 70% ethanol until 

histological analysis. Otoliths were removed for aging. 

 

2.2 Tissue-specific expression of hypoxia-inducible factors 

 The expression of HIF-1α and HIF-2α relative to 18S ribosomal RNA (18S 

rRNA), hereafter referred to as “relative expression”, was examined in the brain, gill, and 

heart tissues of fish captured in the Virginia subestuaries of Chesapeake Bay as described 

above. To calculate the relative expression of HIFs, mRNA was extracted from 

approximately 30 mg of homogenized tissue using a RNeasy minikit (Qiagen, Hilden, 

Germany). Total mRNA was quantified for each tissue with a Qubit 2.0 Fluorometer 

(Life Technologies, Carlsbad, CA). Purity of the RNA was assessed using a Nanodrop 

(ND-2000, Thermo Fisher Scientific, Waltham, MA). First-strand cDNA was reverse-

transcribed from mRNA using a Quantitect RT kit, which integrates removal of genomic 

DNA, following the manufacturer’s instructions (Qiagen, Hilden, Germany). 

 Expressions of HIF-1α, HIF-2α, and an internal reference gene (18S rRNA) were 

quantified using a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, 

CA). Gene-specific primers for HIF-1α, HIF-2α, and 18S rRNA, designed and optimized 



 

 

55 

 

by Rahman and Thomas [52], were used for this analysis. Reactions were performed 

using the Fast SYBR Green Master Mix (Applied Biosystems, Foster City, CA) in a 10-

μl reaction mixture which contained 5 μl of master mix, 1 μM of each primer, and 0.84 

ng cDNA. Thermocycling conditions were 95°C for 20 s followed by 40 repetitions of 

95°C for 3 s, 60°C for 30 s, and 75°C for 30 s. Dissociation curve analyses were 

conducted immediately following the amplification cycles at 95°C for 15 s, 60°C for 1 

min, 95°C for 15 s, and 60°C for 15 s. Due to primer-dimer formation in the HIF-2α 

samples, thermocycling conditions were modified for these trials by replacing the 75°C 

step with a step at 80.6°C for 30 s. All other steps were identical. Each reaction was 

performed in triplicate and the mean threshold cycle (Ct) used for subsequent analyses. 

The expression of HIF-1α and HIF-2α mRNA relative to 18S rRNA in each tissue was 

calculated using the comparative Ct method which allows for presentation of the data as 

“fold change” whereby the relative expression of HIFs in “treatment” groups (fish from 

the Rappahannock or York rivers) are assessed relative to the control group (fish from the 

James River) [67]. To determine the validity of using the comparative Ct method [67], a 

dilution series was created and the amplification efficiencies of each tissue-primer 

combination calculated (Table 1).  

 

2.3 Oocyte development 

 Ovaries were sectioned and a portion from the middle of each ovary was used for 

subsequent analysis. Ovary sections were dehydrated, cleared, and infiltrated with 

embedding medium using a Thermo Excelsior ES tissue processor (Thermo Fisher 

Scientific, Waltham, MA). Following infiltration, tissue samples were embedded in 
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molten paraffin and allowed to cool. Tissues were then cut into 5-μm sections and 

mounted on slides for staining. To visualize the oocytes, the sectioned ovaries were 

stained with hematoxylin and eosin (H&E) using a Shandon Varistain Gemini automatic 

stainer (Thermo Fisher Scientific, Waltham, MA).  

Ovary sections were examined for the most-advanced oocyte stage (Table 2; Fig 

2) and the proportion of atretic oocytes. Oocyte staging and terminology followed Grier 

[68] and stages were coded numerically for analysis (Table 2). The percentage of oocytes 

undergoing atresia was estimated as none, 0-5%, or > 5% for each sample. For 

subsequent analysis, these categories were coded numerically as 0, 1, and 2, respectively. 

 

2.4 Analysis 

Ages of individual fish were estimated by three readers using polished sections of 

the sagittal otolith following Barbieri et al. [69]. Agreement between at least two readers 

was necessary to assign an age to an individual. If agreement did not occur between at 

least two readers, all readers reexamined the otolith and assigned a new age. The degree 

of reader agreement was determined using Chang’s coefficient of variation [70, 71].  

 

2.4.1 Relative expression of hypoxia-inducible factors 

 Significant linear correlations were noted between the relative expressions of 

HIF-1α and HIF-2α in several tissue-gene combinations using the comparative Ct method 

(Table 3). Therefore, to address the potential correlations among the relative expressions 

of HIF subunits from individual fish (n = 87), a multivariate approach, implemented in 

the MIXED procedure in SAS 9.3 (SAS Institute, Cary, NC), was used to analyze the 
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relative expressions of HIFs. I examined the utility of HIFs as biomarkers of hypoxia 

exposure in the subestuaries of the lower Chesapeake Bay by modeling the effect of the 

oxygen condition at the location of capture (hypoxic or normoxic) and the subestuary in 

which the fish was captured (James, York, or Rappahannock rivers) on HIF expression. 

Because all levels of oxygen condition did not occur in all subestuaries (hypoxia does not 

occur in the James River), I used a nested design to examine the potential effect of 

hypoxia on the expression of HIFs. The full model therefore sought to explain the 

variation in the relative expressions of HIF-1α (HIF1) and HIF-2α (HIF2) in each tissue 

(brain, b; gill, g; heart, h) for individual i as a function of subestuary j and dissolved 

oxygen condition k nested within subestuary; where subestuary indicates the effect of the 

James, York, or Rappahannock rivers, DO indicates the effect of hypoxic or normoxic 

conditions within each subestuary, and εijkl represents the random unexplained error. A 

random effect of the station l at which fish were captured was also considered in the 

model to account for spatial variation among observations. I investigated compound 

symmetric, variance components, and unstructured variance-covariance matrices to 

describe the correlations and variances among capture locations. Model selection was 

performed using Akaike’s Information Criterion corrected for small sample size (AICc), 

where the model that best describes the data had the lowest AICc score. The full model 

was: 

 𝐻𝐼𝐹1𝑏,𝑖𝑗𝑘𝑙, 𝐻𝐼𝐹2𝑏,𝑖𝑗𝑘𝑙, 𝐻𝐼𝐹1𝑔,𝑖𝑗𝑘𝑙, 𝐻𝐼𝐹2𝑔,𝑖𝑗𝑘𝑙, 𝐻𝐼𝐹1ℎ,𝑖𝑗𝑘𝑙, 𝐻𝐼𝐹2ℎ,𝑖𝑗𝑘𝑙

=  𝑠𝑢𝑏𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗 + 𝐷𝑂𝑘(𝑗) + 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑙 + 𝜀𝑖𝑗𝑘𝑙. 

(2) 

For all statistical analyses, I used an alpha level of 0.05 to determine significant effects. 
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2.4.2 Metrics of reproductive potential 

 I examined graphically the potential effects of fish length, weight, and age on 

metrics of reproductive potential. No patterns or associations were apparent. Length, 

weight, and age were therefore excluded from subsequent analyses.  

Multinomial logistic ANOVAs were used to analyze the most-advanced oocyte 

stage and the proportion of atretic oocytes (GLIMMIX procedure, SAS 9.3, SAS 

Institute, Cary, NC) because these data were treated as categorical, multilevel responses. 

GSI is a proportion bounded in the interval [0, 1]; GSI data are skewed and violate the 

assumptions of normality and homogeneity of variance necessary for general linear 

models. I therefore used an ANOVA with a beta distribution [72] to analyze GSI 

(GLIMMIX procedure). Similar to the analysis of relative HIF expression, I treated 

oxygen condition as a nested factor within subestuary. Fish were not captured in both 

normoxic and hypoxic conditions during each month of sampling within each subestuary. 

As a result, month of capture was nested within oxygen condition, resulting in a doubly 

nested design. To account for variation in observations due to the location of capture, the 

random effect of station l was considered in models of metrics of reproductive potential. 

The full model considered for each metric of reproductive potential was: 

 𝑌𝑖𝑗𝑘𝑙𝑚 =  𝑠𝑢𝑏𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗 + 𝐷𝑂𝑘(𝑗) + 𝑚𝑜𝑛𝑡ℎ𝑚(𝑘(𝑗)) + 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑙 + 𝜀𝑖𝑗𝑘𝑙𝑚, (3) 

where Y represents the most-advanced oocyte stage, proportion of atretic oocytes, or GSI 

for individual i from subestuary j and month m is nested within dissolved oxygen 

condition k which is nested within subestuary j; subestuary represents the effect of the 

James, York, or Rappahannock rivers, DO represents the effect of oxygen condition 

(normoxic or hypoxic), month represents the effect of the month of capture (July or 
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August), and εijklm represents the random, unexplained error in the model. As a result, the 

εijklms are distributed as a multinomial or beta distribution, depending on the distribution 

of the response. AICc was used to assess the contribution of the random effect of station. 

Results of these analyses are presented as odds ratios which compare the probability of 

the occurrence of an outcome for individuals in one group with the probability of the 

occurrence of that outcome for individuals in a different group (i.e., the likelihood that 

the most-advance oocyte stage was a later stage of development for fish captured in 

August compared with those captured in July). 

 

2.4.3 Intranuclear inclusions 

Histological analysis of sectioned ovaries indicated a high prevalence of 

intranuclear inclusions (Fig 2 B, C, H) in the oocytes of Atlantic croaker. The presence of 

intranuclear inclusions in fish oocytes has been linked to contaminants and can lead to 

oocyte atresia and reductions in reproductive potential [73-75]. I therefore investigated 

the relationships between environmental conditions and the proportion of oocytes 

containing intranuclear inclusions, as well as the relationships between the proportion of 

oocytes containing intranuclear inclusions and metrics of reproductive potential. 

Intranuclear inclusions occurred in all samples examined in this study, but they occurred 

only in the primary growth stages of oocyte development. I therefore excluded samples 

for which the most-advanced oocyte stage was a secondary growth oocyte or a more 

mature stage (i.e., an ovary with a high proportion of secondary growth oocytes has a low 

proportion of intranuclear inclusions) to avoid potential bias. Fifty-nine ovary samples 

were used for this analysis. The proportion of oocytes containing intranuclear inclusions 
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ranged from <10% to >50%. For analysis, the proportion of oocytes with intranuclear 

inclusions were discretized into two categories (0-25% and >25) and coded as 1 (n = 34) 

or 2 (n = 25), respectively.  

I investigated the effects of subestuary, dissolved oxygen condition, and month on 

intranuclear inclusions using a logistic regression to determine if environmental 

conditions impacted the proportion of oocytes that contained intranuclear inclusions in 

the ovaries of Atlantic croaker. The model considered for the proportion of oocytes that 

contained intranuclear inclusions was:  

 𝐼𝑛𝑡𝑟𝑎𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑖𝑗𝑘𝑙𝑚

=  𝑠𝑢𝑏𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗 + 𝐷𝑂𝑘(𝑗) + 𝑚𝑜𝑛𝑡ℎ𝑚(𝑘(𝑗)) + 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑙 + 𝜀𝑖𝑗𝑘𝑙𝑚. 

(4) 

The proportion of oocytes that contained intranuclear inclusions in the ovary of 

individual i was modeled as a function of subestuary j and month m nested within 

dissolved oxygen condition k which is nested within subestuary j. Subestuary represents 

the effect of the James, York, or Rappahannock rivers, DO represents the effect of 

dissolved oxygen condition (normoxic or hypoxic), month represents the effect of the 

month of capture (July or August), and εijklm represents the random, unexplained error in 

the model. AICc was used to assess the importance of the random effect of station. 

I conducted a multinomial logistic ANOVA for the most-advanced oocyte stage 

and the proportion of atretic oocytes, and an ANOVA with a beta distribution for GSI as 

described above to examine the effect of the proportion of oocytes containing 

intranuclear inclusions on metrics of reproductive potential. Because I used only data for 

which the most-advanced oocyte stage was in primary growth stages (PGmn-PGca or 

categories 2-4; n = 59), these models were developed separately from models of metrics 
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of reproductive potential and included intranuclear inclusions as the only predictor. 

Separate models were used for each metric of reproductive potential following: 

 𝑌𝑖𝑚 =  𝑖𝑛𝑡𝑟𝑎𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑠𝑚 +  𝜀𝑖𝑚. (5) 

In this case, Y is the most-advanced oocyte stage, proportion of atretic oocytes, or GSI for 

individual i as a function of the proportion of oocytes containing intranuclear inclusions 

m. Intranuclear inclusions is the effect of an individual having 0-25% or >25% of 

oocytes containing intranuclear inclusions and εim is the random, unexplained error. 

Results from this analysis are presented as odds ratios.  
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3. Results 

The mean ± standard error (se) size of adult Atlantic croaker was 258 ± 1 mm TL 

and 208 ± 4 g total weight. Fish ages ranged from 3 to 7 years. Chang’s CV was 4%, 

indicating a high degree of agreement on fish age among readers [76].  

 

3.1 Relative expression of hypoxia-inducible factors 

 The mean relative expressions of HIF-1α and HIF-2α in the brain, gill, and heart 

tissues were not significantly affected by subestuary (i.e., Rappahannock, York, or James 

rivers, F = 1.18, P = 0.31; Fig 3) or dissolved oxygen condition nested in subestuary (F = 

1.21, P = 0.29; Fig 4). Inclusion of the random effect of station resulted in a lower AICc 

score indicating that differences among stations explained a significant amount of the 

variability in the relative expression of HIFs among fish.  

 

3.2 Metrics of reproductive potential 

3.2.1 Most-advanced oocyte stage 

 The most-advanced oocyte stage was significantly affected by month and 

dissolved oxygen condition nested within subestuary (F = 3.33, P = 0.01). This parameter 

was, however, not different between subestuaries (F = 0.89, P = 0.42). For fish captured 

under normoxic conditions, the mean most-advanced oocyte stage in August was 

significantly greater than that in July (F = 6.35, P = 0.01; Fig 5). In August, the mean 

most-advanced oocyte stage was ~107 times more likely to be in a later stage of 

development, relative to the mean most-advanced oocyte stage in July. This relationship 
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was also observed within each subestuary for fish captured in normoxic conditions (FJA = 

6.35, PJA = 0.01; FRA = 4.37, PRA = 0.04; FYK = 4.85, PYK = 0.03) with odds ratios 

indicating that the mean most-advanced oocyte stage was ~32, 5, and 7 times more likely 

to be in a later stage of development in August relative to July for fish captured in the 

James, Rappahannock, and York rivers, respectively. Under hypoxic conditions in the 

Rappahannock River in August, the mean most-advanced oocyte stage was ~10 times 

more likely to be a later stage of development relative to fish captured in July (F = 7.04, 

P = 0.01; Fig 6). Interestingly, the mean most-advanced oocyte stage differed between 

hypoxic and normoxic conditions only in fish captured in the York River in July (F = 

4.85, P = 0.03; Fig 7); the mean most-advanced oocyte stage was approximately seven 

times more likely to be in a later stage of development in fish captured in normoxic 

conditions, relative to those captured in hypoxic conditions. AICc did not support the 

inclusion of the random effect of station in this model. 

 

3.2.2 Proportion of atretic oocytes 

 The mean proportion of atretic oocytes in the ovaries of Atlantic croaker was 

significantly affected by the subestuary in which fish were captured (F = 3.82, P = 0.03), 

but was not significantly affected by the nesting of month within dissolved oxygen 

condition within subestuary (F = 1.58, P = 0.16). Fish captured in the York River were 

approximately five times more likely than those captured in the Rappahannock River to 

have a higher mean proportion of atretic oocytes in their ovaries, regardless of month or 

dissolved oxygen condition (F = 7.56, P = 0.01; Fig 8). There were no significant 

differences in the mean proportion of atretic oocytes in fish from the James and 
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Rappahannock rivers (F = 0.12, P = 0.73) or the James and York rivers (F = 2.09, P = 

0.15). AICc did not support the inclusion of the random effect of station. 

 

3.2.3 Gonadosomatic index 

 The mean GSI was significantly affected by month nested within dissolved 

oxygen condition nested within subestuary (F = 2.48; P = 0.02). The only significant 

difference in mean GSI for Atlantic croaker was, however, observed in the 

Rappahannock River for fish captured under hypoxic conditions in July and August. 

More specifically, fish captured in August had a mean GSI 1.6 times that of fish captured 

in July (F = 5.18; P = 0.03; Fig 9). AICc did not support the inclusion of the random 

effect of station. 

 

3.2.4 Intranuclear inclusions 

 The mean proportion of primary growth oocytes with intranuclear inclusions was 

not significantly affected by subestuary (F = 0.99, P = 0.38) or by month nested within 

dissolved oxygen condition nested within subestuary (F = 0.87, P = 0.51). Analyses of 

the effect of intranuclear inclusions on metrics of reproductive potential suggest that the 

mean most-advanced oocyte stage and the mean proportion of atretic oocytes were 

significantly affected by the proportion of oocytes containing intranuclear inclusions 

(Fstage = 4.59, Pstage = 0.04; Fatresia = 6.79, Patresia = 0.01; Fig 10). The proportion of 

oocytes containing intranuclear inclusions did not affect the mean GSI (F = 0.43, P = 

0.52). The mean most-advanced oocyte stage with < 25% of oocytes containing 

intranuclear inclusions was approximately three times more likely to be a later stage of 



 

 

65 

 

development than for fish with > 25% of oocytes containing intranuclear inclusions. Fish 

with a lower proportion of oocytes containing intranuclear inclusions (< 25%) were 4.9 

times more likely to have a higher mean proportion of atretic oocytes than individuals 

with a higher proportion of oocytes containing intranuclear inclusions (> 25%).  



 

 

66 

 

4. Discussion 

The mean relative expressions of HIF-1α and HIF-2α were similar in fish 

captured in hypoxic conditions (< 3.5 mg O2 L
-1) and normoxic conditions. I also found 

no evidence of reproductive impairment of fish captured in hypoxic conditions. My 

results therefore differ from those for Atlantic croaker captured in the Pensacola Bay 

estuary [26] and the northern Gulf of Mexico hypoxic zone [30], which showed evidence 

of increased expressions of HIF-1α and HIF-2α as well as impaired reproduction. 

Month of capture had the greatest effect on metrics of reproductive potential, in 

that (as expected) the mean most-advanced oocyte stage observed in the ovaries of fish 

captured in August was a later stage of development than those of fish captured in July. 

This is consistent with Atlantic croaker preparing to spawn in the fall and winter [69]. In 

the Rappahannock River, the mean GSI of fish captured in hypoxic conditions in August 

was also higher than that of fish captured in hypoxic conditions in July. Contrary to my 

expectation, there was no evidence of increased GSI in fish from the James or York 

rivers, nor were mean GSIs in July and August affected by dissolved oxygen condition. 

This is surprising considering Atlantic croaker are likely to devote a substantial amount 

of energy to gonadal development during summer months [77, 78]. The number of days 

between sampling among the subestuaries was, however, inconsistent and affected the 

likelihood of observing significant differences in GSI. Weather-related constraints on 

trawl survey operations resulted in only 16 days between July and August sampling in the 

James River, compared to 20-30 days in the York River, and 28-45 days in the 

Rappahannock River. In the Rappahannock River, normoxic stations were sampled 30 

days apart and hypoxic stations were sampled 28-45 days apart; most fish sampled from 
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hypoxic conditions in August were captured 45 days after those captured in July. The 

longer time between sampling in the Rappahannock River may explain why I observed 

significant differences in mean GSIs for fish captured in hypoxic conditions in the 

Rappahannock River, but not in fish captured under normoxic conditions in the 

Rappahannock, James or York rivers. 

The subestuary of capture did affect the proportion of atretic oocytes. Fish from 

the York River were more likely to have a higher proportion of atretic oocytes than fish 

from the Rappahannock River, although the most-advanced oocyte stage and GSI were 

not affected. My results suggest that the reproductive potential of fish from the York 

River is impaired relative to individuals from the Rappahannock River. These finding, 

however, contrast with previous reports that fish captured in the Rappahannock River 

during hypoxic events had a significantly lower mean ovarian lipid content and mean GSI 

compared to fish captured in the York River [31]. One potential explanation for this 

discrepancy is the timing of sampling. Tuckey and Fabrizio [31] compared metrics of 

reproductive potential of fish captured in May (i.e., prior to the development of hypoxia 

in the York and Rappahannock rivers), to those captured, after hypoxia developed in 

these areas. In contrast, I sampled only during times when hypoxia was likely to be 

present in the York and Rappahannock rivers (July and August). This sampling strategy 

may have affected my ability to detect differences in metrics of reproductive potential 

resulting from exposure to hypoxia. 

In contrast with previous studies of relative HIF expression in the tissues of 

hypoxia-exposed fish [26, 30, 54], I noted relatively high variation in the relative 

expression of HIF-1α and HIF-2α within rivers and oxygen conditions which, when 
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combined with my moderate sample size, may have resulted in my inability to detect 

significant differences in mean relative HIF expression. There was also a general lack of 

evidence of reproductive impairment of fish captured in hypoxic conditions, compared to 

those captured in normoxic conditions. The variation in HIF expression and lack of 

significant reproductive impairment suggest that Atlantic croaker in the lower 

Chesapeake Bay likely do not remain in hypoxic areas long enough to incur the negative 

effects. I would, however, expect to see differences in mean HIF expression between fish 

sampled from the James River (which does not experience hypoxia) relative to the York 

and Rappahannock rivers. This is because, even if fish moved from the York or 

Rappahannock rivers to the James River, it seems unlikely that they could move this 

distance in less than 24 hours, at which point HIF expression is likely to have returned to 

base levels [52, 60]. To verify this conclusion, a real-time tracking study with concurrent 

water-quality sampling would be required.  

Variation in the expression of HIF-1α and HIF-2α could also result from exposure 

to stressors other than hypoxia [79]. The expression of HIF-1α can increase in response to 

contaminants such as copper [80], or to acute or chronic exposure to cold [81-83]. To my 

knowledge, a survey of contaminants that may cause oxidative stress (and therefore 

induce the expression of HIFs) has not been performed in the lower Chesapeake Bay. 

Large temperature differences were observed in the James River in July, where surface 

and bottom waters differed by more than 6°C for 25% of the stations where Atlantic 

croaker were captured. Similarly, there was at least a 6°C difference between surface and 

bottom waters at 5% of stations in the Rappahannock River at which Atlantic croaker 

were captured. This substantial temperature difference between surface and bottom 
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waters in the James and Rappahannock rivers may have caused increases in HIF 

expression of fish moving through the pycnocline in these subestuaries. These results 

imply that the James River may be unsuitable as a control for investigating the effects of 

hypoxia on HIF expression in Atlantic croaker. 

This is the first documentation of the presence of intranuclear inclusions in the 

oocytes of Atlantic croaker. Similar structures have been reported in the primary growth 

stages of oocytes from spotted snakehead (Channa punctata) and walking catfish 

(Clarias batrachus) in response to exposure to ammonium sulfate [73], mercurial 

fungicide [74], and lead nitrate [75]. In these cases, intranuclear inclusions led to atresia. 

I found a significant relationship between the proportion of primary growth oocytes 

containing intranuclear inclusions and the proportion of atretic oocytes in the ovaries of 

Atlantic croaker, suggesting the presence of intranuclear inclusions may lead to oocyte 

atresia [73-75]. Additional research is necessary to determine the relationship between 

intranuclear inclusions and oocyte atresia. If such inclusions do indeed lead to atresia, 

then higher rates of atresia may have been evident after our July-August sampling period, 

reducing the reproductive potential of this Atlantic croaker population.  

 Atlantic croaker are present throughout Chesapeake Bay from May to October 

[64]. Hypoxia is widespread during summer throughout large portions of the mainstem of 

Chesapeake Bay and its subestuaries [49, 84] and occurs during periods of gonadal 

development. Atlantic croaker move to their spawning grounds in the lower Chesapeake 

Bay and coastal shelf waters in August and September. Spawning typically takes place 

from September to December [85-88], although some spawning may occur earlier [77]. 

The timing of my sampling coincided with gonadal development and the majority of 
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oocytes were in primary or secondary growth stages, making it difficult to assess the 

degree to which exposure to hypoxia impacts reproduction. 

To better assess the impact of hypoxia exposure on the reproductive potential of 

the Atlantic croaker population inhabiting Chesapeake Bay during summer, sampling 

should occur throughout Virginia and Maryland waters from May-October. One of the 

difficulties with this approach is that Atlantic croaker become less likely to encounter 

hypoxic conditions as they migrate towards the mouth of Chesapeake Bay as they are less 

likely to encounter hypoxic areas in the fall [63]. The relative expression of HIFs also 

returns to baseline levels within 24 hours of fish returning to normoxic conditions [52, 

60]. This means that the utility of HIFs as biomarkers of hypoxia exposure would be 

reduced, highlighting the need for another method by which hypoxia exposure can be 

assessed, such as stable isotope analysis. Because Mn2+ fluxes from the sediment to the 

water column under hypoxic conditions [89, 90], fish inhabiting these waters incorporate 

more Mn2+ into their otoliths than do fish residing in normoxic waters. Assessment of the 

Mn:Ca ratio near the edge of the otolith could, therefore, be used to determine exposure 

to hypoxic conditions in the days and months prior to capture [91-96]. Such an approach 

could be used in conjunction with the relative expression of HIFs to investigate the 

history of hypoxia exposure for individual fish. Individual exposure histories could also 

be related to metrics of reproductive potential, similar to those I used and those of 

Thomas et al. [26] and Thomas and Rahman [30]. 

Controlled laboratory experiments similar to those conducted by Rahman and 

Thomas [52,60] should also be employed in conjunction with field-based studies because 

our knowledge of the effects of acute or intermittent hypoxia exposure on the expression 
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of hypoxia-inducible factors and metrics of reproduction in fishes is limited. Such 

laboratory experiments could additionally clarify the role of temperature and 

contaminants in the expression of HIFs and the occurrence of intranuclear inclusions. 

Because the time-course of expression for HIFs may not be conducive to their use as a 

biomarker for intermittent or acute exposure to hypoxic conditions, laboratory 

experiments could also be used to identify other potential biomarkers of hypoxia 

exposure. Protein carbonyl and insulin-like growth factor binding protein have also been 

identified as potential biomarkers of hypoxia exposure [60]. Similar to HIFs, however, 

protein carbonyl and insulin-like growth factor binding protein require chronic exposure 

before expression is elevated and consequently are therefore not likely to be appropriate 

for assessing acute or intermittent hypoxia exposure, highlighting the need for biomarkers 

of hypoxia exposure that become elevated more quickly than those currently known. 

Effective management of Atlantic croaker now and in the future depends on 

understanding the conditions that lead to reductions in reproductive potential as this is 

obviously a critical process for maintaining population size and productivity [97] and is 

sensitive to disruption by environmental conditions [35, 38, 98]. Atlantic croaker support 

valuable commercial and recreational fisheries in coastal areas of the western Atlantic 

Ocean, but the resilience of this species to fishing pressure will be reduced if hypoxia 

exposure results in decreased reproductive potential [31]. The expansion of hypoxic 

regions in Chesapeake Bay is likely to continue [99, 100], leading to increases in the 

proportion of the Atlantic croaker population chronically exposed to suboptimal 

conditions. It is therefore critical to improve our understanding of how acute, 

intermittent, and chronic hypoxia exposure affect Atlantic croaker in Chesapeake Bay.  
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Tables  

 

Table 1. Tissue-specific amplification efficiencies. 

  Brain Gill Heart 

18-S 1.90 1.91 2.03 

HIF-1α 2.00 1.94 2.02 

HIF-2α 1.93 1.83 2.06 

Amplification efficiencies of 18-S, HIF-1α, and HIF-2α in the brain, gill, and heart 

samples from adult, female Atlantic croaker captured in Chesapeake Bay. All 

amplification efficiencies were within the range 1.8-2.2 and considered similar enough to 

permit use of the comparative Ct method [67].  
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Table 2. Oocyte staging scheme used for Atlantic croaker captured in Chesapeake 

Bay. 

Stage Code Number 

Primary Growth, One Nucleolus PGon 1 

Primary Growth, Multiple Nucleoli PGmn 2 

Primary Growth, Perinucleolar PGpn 3 

Primary Growth, Cortical Alveoli PGca 4 

Secondary Growth, Early/Late SGe/SGl 5 

Secondary Growth, Full-Grown SGfg 6 

Oocyte Maturation, Eccentric Germinal Vesicle OMegv 7 

Observed oocyte stages and their codes (following Grier [68]) for Atlantic croaker 

captured in three subestuaries of Chesapeake Bay, the James, York, and Rappahannock 

rivers, between 05 July and 26 August 2016.  
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Table 3. Correlations in the relative expression of HIF-1α and HIF-2α within and 

among tissues. 

  Brain HIF-1 Brain HIF-2 Gill HIF-1 Gill HIF-2 Heart HIF-1 Heart HIF-2 

Brain HIF-1  0.47 0.21 0.09 0.15 0.11 

Brain HIF-2   0.20 0.40 0.07 0.25 

Gill HIF-1    0.71 0.22 0.25 

Gill HIF-2     0.13 0.31 

Heart HIF-1      0.88 

Heart HIF-2       
Correlations of the relative expression of HIF-1α and HIF-2α in the brain, gill, and heart 

of adult, female Atlantic croaker. Significant correlations (P < 0.05) are indicated by gray 

shading.  



 

 

83 

 

Figures 

 
Fig 1. Study area in the lower Chesapeake Bay. The three subestuaries, from north to 

south, are the Rappahannock, York, and James rivers. Stations where Atlantic croaker 

were captured under hypoxic conditions (i.e., oxygen level < 3.5 mg L-1) are indicated 

with filled circles and under normoxic conditions (i.e., oxygen level > 3.5 mg L-1) with 

open squares. The inset shows the location of the study area.  
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Fig 2. Oocyte stages observed for Atlantic croaker captured in the Virginia 

subestuaries of Chesapeake Bay during July and August 2016. Sections of oocytes 

were stained using hematoxylin and eosin (H&E) and terminology followed Grier (2012). 

(A) Primary growth, one nucleolus (PGon); (B) Primary growth, multiple nucleoli 

(PGmn) with intranuclear inclusion (arrow); (C) Primary growth, perinucleolar (PGpn) 

with intranuclear inclusions (arrows); (D) Primary growth, cortical alveolar (PGca); (E) 

Secondary growth, early/Secondary growth, late (SGe/SGl, #) and Secondary growth, full 

grown (SGfg, *); (F) Oocyte maturation, eccentric germinal vesicle (OMegv); (G) an 

atretic oocyte; (H) an ovary section showing greater than 50% of oocytes containing 

intranuclear inclusions (examples are indicated with arrows). 
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Fig 3. The mean (± 95% confidence intervals) fold change of HIF-1α (upper panel) 

and HIF-2α (lower panel) in Atlantic croaker. Fish were captured in the 

Rappahannock (RA) and York rivers (YK, gray bars) relative to fish captured in the 

James River (JA, white bars). Tissues are: brain (left), gill (center), and heart (right).
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Fig 4. The mean (± 95 relative confidence interval) fold change of HIF-1α (upper panel) and HIF-2α (lower 

panel) in Atlantic croaker. Fold change in HIFs is examined for fish were captured under hypoxic (hyp) and 

normoxic (norm) conditions in the Rappahannock (RA) and York rivers (YK, gray bars) relative to normoxic 

conditions in the James River (JA, white bars). Tissues are: brain (left), gill (center), and heart (right). 
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Fig 5. Proportions of each of the most-advanced oocyte stages found in the ovaries of 

Atlantic croaker captured in normoxic conditions in July and August. The top panel 

shows the most-advanced oocyte stage for Atlantic croaker captured in normoxic 

conditions across all subestuaries in July whereas the bottom panel shows the most-

advanced oocyte stage for fish captured in August. Bars represent the proportion of 

ovaries for which each stage was the most-advanced oocyte stage observed from primary 

growth stages (left) to maturation stages (right).  
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Fig 6. Proportions of each of the most-advanced oocyte stages found in the ovaries of 

Atlantic croaker captured in hypoxic conditions in the Rappahannock River. The 

top panel shows the most-advanced oocyte stage for Atlantic croaker captured in July 

whereas the bottom panel shows the most-advanced oocyte stage for fish captured in 

August. Bars represent the proportion of ovaries for which each stage was the most-

advanced oocyte stage observed from primary growth stages (left) to secondary growth 

stages (right).  
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Fig 7. Proportions of each of the most-advanced oocyte stages found in the ovaries of 

Atlantic croaker captured in July in the York River. The top panel shows the most-

advanced oocyte stage for Atlantic croaker captured in hypoxic conditions whereas the 

bottom panel shows the most-advanced oocyte stage for fish captured in normoxic 

conditions. Bars represent the proportion of ovaries for which each stage was the most-

advanced oocyte stage observed from primary growth stages (left) to maturation stages 

(right).  
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Fig 8. Percentage of atretic oocytes occurring in the ovaries of Atlantic croaker. Bars 

show the proportion of observations for which atretic oocytes were 0%, 0-5%, or >5% of 

the total observed oocytes for the James (top), Rappahannock (middle), and York 

(bottom) rivers.  
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Fig 9. The mean (± 95 relative confidence interval) gonadosomatic index (GSI) of 

Atlantic croaker captured in July and August in the Rappahannock River (left 

panels), York River (center panels), and James River (right panels) in normoxia 

(upper panels) and hypoxia (lower panels).  
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Fig 10. Intranuclear inclusions in Atlantic croaker oocytes. The left panels show the 

proportion of Atlantic croaker ovaries for which the most-advanced oocyte stage was 

Primary Growth, multiple nucleoli (PGmn), Primary Growth, perinucleolar (PGpn), or 

Primary Growth, cortical alveolar (PGca) when the proportion of oocytes containing 

intranuclear inclusions was 0-25% (upper panel) or >25% (lower panel). Additionally, 

the right panels show the proportion of Atlantic croaker ovaries for which the proportion 

of atretic oocytes was 0%, 0-5%, or >5% when the proportion of oocytes containing 

intranuclear inclusions was 0-25% or >25%. 
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CHAPTER 4 

Modeling the Distribution of Two Demersal Fishes in a Dynamic Seascape:  

Atlantic Croaker and Spot in Chesapeake Bay
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Abstract 

Anthropogenic activities have led to increases in water temperatures and in the 

frequency and severity of hypoxic conditions in estuarine and coastal systems worldwide. 

These environmental conditions have been linked to population-level effects, such as 

changes in species-specific movements and distributions. Physiology (i.e., the ability to 

maintain internal homeostasis in the face of fluctuating conditions) can be considered the 

transfer function that links environmental conditions to individual behavior and therefore 

to population-level effects, however; few studies have incorporated species-specific 

physiological abilities into population models. I developed individual-based models 

(IBMs) for Atlantic croaker and spot that include physiological constraints to investigate 

the effects of temperature and ambient oxygen levels on the distribution of fishes in 

Chesapeake Bay. I used three movement submodels (random walk, kinesis, and 

restricted-area search) motivated by the effects of temperature and hypoxia on metabolic 

scope. Monthly distributions from the IBM were validated against observations from the 

VIMS Juvenile Fish Trawl Survey (hereafter “trawl survey”) from 1988-2014. Simulated 

fish consistently occupied warmer, better oxygenated waters than fish captured by the 

trawl survey. Simulations indicated that the majority of fish would be distributed in the 

lower portion of Chesapeake Bay and with smaller proportions in the York and 

Rappahannock rivers. These results were not supported by trawl survey observations and 

suggest that temperature may not be the most important driver of Atlantic croaker and 

spot distributions in Chesapeake Bay during summer, although climate-change models 

often focus on potential impacts of temperature change alone. My results suggest that 

other factors, such as prey availability and predator avoidance, may contribute to the 
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spatial distributions of Atlantic croaker and spot in Chesapeake Bay. I contend that to 

better understand the movement of individual fish and population distributions, both 

additional abiotic factors (e.g., water clarity) and biotic factors (e.g., predator and prey 

abundance) need to be considered along with the more commonly used abiotic factors 

(temperature, salinity, and dissolved oxygen). This approach could aid the development 

of movement models capable of predicting the distribution of fish populations under 

future climate scenarios.  
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1. Introduction 

Anthropogenic activities drive directional changes in temperature that have 

resulted in increased water temperatures throughout the world’s oceans (IPCC, 2014). 

Agricultural runoff and increases in non-point source pollution resulting from increased 

urbanization of coastal areas have contributed to eutrophication of estuarine and coastal 

systems, as well as an increase in the number and severity of hypoxic events (Diaz and 

Rosenberg, 2008; Rabalais et al., 2010; Howarth et al., 2011; Breitburg et al., 2018). In 

fishes, elevated temperature and hypoxia exposure negatively impact individuals and 

populations through changes in aerobic metabolic scope (Schurmann and Steffensen, 

1997; Claireaux and Lagardère, 1999; Lapointe et al., 2014), increased disease 

prevalence (Keefer et al., 2008; Karvonen et al., 2010), increased mortality rates 

(Breitburg, 1992; Craig et al., 2001; Pollock et al., 2007), decreased gonadal growth rates 

and reproductive potential (van der Kraak and Pankhurst, 1997; Rahman and Thomas, 

2007; Thomas and Rahman, 2009; Tuckey and Fabrizio, 2016), and decreased somatic 

growth rates (Hrycik et al., 2017). Degradation of environmental conditions due to 

warming and eutrophication have also been linked to changes in the spatial distribution of 

fishes in estuarine and marine ecosystems (Perry et al., 2005; Sabatés et al., 2006; Brady 

and Targett, 2013; Buchheister et al., 2013).  

Spatial shifts of fish populations are generally considered to be driven by 

environmentally-mediated changes in aerobic metabolic scope (Pörtner and Knust, 2007; 

Hare et al., 2012; Deutsch et al., 2015; Kleypas, 2015). Albeit with a few exceptions 

(Cucco et al., 2012; Marras et al., 2015), studies explicitly linking the impacts of 

changing environmental conditions to population-level effects such as changes in spatial 
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distribution are lacking. Because physiology is the transfer function that links 

environmental conditions to fish behavior (Pörtner and Farrell, 2008; Denny and 

Helmuth, 2009; Chown et al., 2010; Horodysky et al., 2015) and, by extension to their 

distribution, effective management of fishes relies on understanding how (and how well) 

the physiological abilities of individual fish allow them to withstand changing 

environmental conditions (Cooke et al. 2016). Because individuals within a population 

may react differently to changes in environmental conditions, population models need to 

incorporate variation in individual responses (Kearney, 2006; Fabry et al., 2008; 

Horodysky et al., 2015; Riebesell and Gattuso, 2015; Cooke et al., 2016; Koenigstein et 

al., 2016; Townhill et al., 2017). 

Individual-based models (IBMs) provide researchers with a tool to simulate 

processes at multiple levels of biological organization, such as the individual, population, 

and community (Huston et al., 1988; Judson, 1994; Grimm, 1999). IBMs allow 

researchers to investigate the potential impacts of biotic and abiotic conditions on growth, 

reproduction, movement, and mortality of individuals and the entire population because 

many individuals are modeled. IBMs have been used to examine effects of sea-level rise 

and changes in temperature, habitat availability, salinity, oxygen concentrations, and prey 

densities on growth, mortality, and movement (Humston et al., 2000; 2004; Goodwin et 

al., 2006; Fulford et al., 2011; 2014; 2016; Rose et al., 2013b; 2018b). IBMs have also 

been used to examine these effects on population growth (Humston et al., 2004; Rose et 

al., 2013b; 2018b; Fulford et al., 2014).  

Spatially-explicit IBMs require movement algorithms to simulate fish movement 

within a dynamic seascape. Movement algorithms are used because few studies have 
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gathered environmental data at high spatial and temporal resolutions simultaneously with 

the movement of individuals (but see Childs et al., 2008; Fabrizio et al., 2013; 2014). 

Movement algorithms are often based on the assumption that fish will move towards 

areas with optimal conditions or sets of conditions, and avoid suboptimal conditions 

(Humston et al., 2000; 2004; Rose et al., 2013a; 2018a; Watkins and Rose, 2013; 2014; 

2017). The first assertion is likely incorrect in that it assumes either that fish know where 

optimal conditions exist and in which direction to move to locate optimal conditions, or 

that they are capable of sensing a gradient in environmental conditions such that they can 

determine if they are moving in a direction towards more favorable conditions or away 

from them. In some cases, optimal conditions can be determined based on the observed 

environmental conditions in which a school of fish is located (Humston et al., 2000); in 

other cases, more mechanistic bioenergetics models have been used to determine 

environmental conditions at which growth is maximized (Humston et al., 2004; Rose et 

al., 2013a; 2013b; 2018a; 2018b). The latter approach assumes the direct effects of the 

environment on the aerobic metabolic scope of fish (first described by Fry, 1947), but 

studies do not necessarily directly employ this concept. 

Aerobic metabolic scope is the difference between the maximum metabolic rate 

and the minimum metabolic rate necessary to maintain homeostasis (standard metabolic 

rate) (Fry, 1947). Metabolic scope represents, therefore, the energetic state space within 

which all aerobic processes (e.g., movement, reproduction, growth) must occur (Fry, 

1971; Claireaux and Lefrançois, 2007). Metabolic scope can be reduced by exposure to 

suboptimal environmental conditions either through limiting the maximum metabolic rate 

(e.g., dissolved oxygen) or increasing the standard metabolic rate (e.g., temperature, 
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salinity) (Fry, 1947; 1971; Neill et al., 1994; Horodysky et al., 2015). Environmental 

conditions can therefore limit processes such as individual growth and reproductive 

potential (which are important to population productivity) through reductions in 

metabolic scope (Claireaux and Lefrançois, 2007). I argue (as have others, Kelsch and 

Neill, 1990; Neill and Bryan, 1991; Neill et al., 1994) that individual fish are likely to 

move away from areas with conditions that reduce metabolic scope, but remain in areas 

where conditions optimize metabolic scope (and therefore their growth and reproductive 

potential). In aggregate, such movements of individuals can affect the spatial distribution 

of the population. I contend, however, that the effects of environmental conditions on the 

metabolic scope of individual fish, and the subsequent impacts on population 

distributions, have not been adequately investigated in an individual-based context.  

The goal of this portion of my dissertation is to develop individual-based, 

dynamic-seascape models for adult Atlantic croaker (Micropogonias undulatus) and spot 

(Leiostomus xanthurus) occupying Chesapeake Bay. The effects of temperature and 

hypoxia on metabolic scope were used to motivate movement of fish such that fish would 

remain in areas with environmental conditions that maximize their metabolic scope. 

Three movement submodels were considered: completely random movement (random 

walk), reactionary but undirected movement (kinesis), and directed movement (restricted-

area search, RAS). The random walk submodel was uncoupled from the physiological 

effects of temperature and hypoxia on Atlantic croaker and spot and thereby provided a 

scenario to evaluate the effectiveness of incorporating physiological constraints into the 

kinesis and RAS submodels. Individuals in the kinesis submodel slowed down and 

generally maintained direction when exposed to environmental conditions that increased 
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metabolic scope, whereas individuals in the RAS submodel used a gradient approach to 

move to areas that maximized metabolic scope. 

Adult Atlantic croaker and spot were chosen for this study because they are 

seasonal residents of Chesapeake Bay. Both species typically inhabit estuarine waters 

from late spring to fall (May – October) when they leave the estuary to spawn in waters 

of the continental shelf (Haven, 1959), although some Atlantic croaker may spawn in the 

lower Chesapeake Bay (Barbieri et al., 1994). Adult Atlantic croaker and spot are absent 

from Chesapeake Bay in winter (December – March) (Murdy and Musick, 2013) and 

return to the estuary from their wintering grounds on the continental shelf between mid-

April and May. In addition to a well-studied life history, the metabolic rates of adult 

Atlantic croaker and spot are well-known (Horodysky et al., 2011; Chapter 2). 

Furthermore, relative abundance and spatial distributions have been monitored monthly 

for these species from 1988 to 2014, which allows for validation of model results for a 

period in which temperatures and the frequency and severity of hypoxic conditions have 

increased in Chesapeake Bay.  

This multi-decadal time series of the distribution of Atlantic croaker and spot, 

together with observations on temperature and dissolved oxygen conditions during the 

time of capture provides a unique opportunity to evaluate the performance of the three 

movement submodels. I assessed the performance of the IBMs by: 

(1) comparing environmental conditions experienced by simulated individuals to 

those in which fish were captured by the VIMS Juvenile Fish Trawl Survey 

and 
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(2) determining the effectiveness of IBMs in reproducing the observed spatial 

distributions of Atlantic croaker and spot in Chesapeake Bay.  

 Based on the results from Chapter 2, I hypothesized that individuals that moved 

according to the RAS submodel would occupy areas with the highest temperatures and 

dissolved oxygen concentrations and would more effectively avoid areas of low dissolved 

oxygen concentrations when compared with individuals in the kinesis and random walk 

submodels. Additionally, because fish movements are likely reactionary to environmental 

conditions in their immediate vicinity, I contend that the kinesis submodel is likely to 

most accurately reflect fish movement. I therefore propose that simulated individuals 

moving according to the kinesis submodel would aggregate in conditions that match 

those in which adult Atlantic croaker and spot are most frequently captured by the trawl 

survey (assuming equal gear vulnerability under all conditions), and that this submodel 

would most accurately reflect the distribution of adult Atlantic croaker and spot in 

Chesapeake Bay.  
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2. Methods 

2.1 Model overview 

The individual-based models followed the spatial distribution of individual adult 

Atlantic croaker and spot on a 162 km x 152 km spatial grid of 1 km2 cells representing 

the lower Chesapeake Bay and its major subestuaries, the James, York, and 

Rappahannock rivers (Figure 1). Each grid cell in the study area had associated 

environmental conditions (temperature and dissolved oxygen concentration) that were 

dynamic at a 24-hr time step (details are given in section 2.4.2). The study period 

extended from May to October, 1988 – 2014. I introduced 10,000 simulated individuals 

into two areas near the mouth of Chesapeake Bay on May 1 of each model year to reflect 

the entry of these fishes into estuarine waters (Figure 1). Two areas were used to broaden 

the initial distribution of individuals in the simulation. 

Individuals moved on an hourly time step during the simulation period, and the 

position of each individual was determined following its movement within the study area 

at each time step. At the end of the model simulation for each model year, individuals 

were removed from the study area before a new cohort was introduced at the beginning 

of the next model year, thus, each year could be treated as a separate trial. Annual 

variations in the severity of hypoxia may result in the displacement of fish to areas with 

suboptimal environmental conditions, or may expose fish to low dissolved oxygen (DO) 

conditions. The approach also enabled investigation of the effects of the severity of 

hypoxia on: 

(1) the spatial distribution of fishes, 
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(2) the percentage of observations where individuals inhabited areas below their 

hypoxia tolerance, and  

(3) the environmental conditions in which simulated fish were captured. 

Alterations in these factors were likely most apparent for years when hypoxic 

conditions contrasted. I therefore selected two years with the largest volume of hypoxic 

water (km3), 2007 and 2011, and two years with the smallest volume of hypoxic water, 

2008 and 2014 (Scavia et al., 2017). These were designated as “severe” and “mild,” 

respectively, to investigate the effects of the severity of hypoxia on fish distribution. 

Individual movement in the kinesis and RAS submodels in response to DO 

conditions was determined by comparing ambient DO concentrations with estimates of 

the DO concentration below which fish could not maintain homeostasis (meanAtlantic croaker 

= 1.36 mg L-1; meanspot = 1.86 mg L-1). The latter was used as a proxy for hypoxia 

tolerance (Muuszea et al., 1998; Nilsson and Östlund-Nilsson, 2004; Mandic et al., 2009). 

Hypoxia avoidance was elicited in fish if their individual hypoxia tolerance was greater 

than ambient DO concentrations. Additionally, the relationship between metabolic scope 

and temperature was used to motivate fish movement such that fish would move towards 

areas that supported high metabolic scopes (i.e., > 25°C for Atlantic croaker and > 20°C 

for spot). Areas where the temperature maximized metabolic scope and DO 

concentrations were above a fish’s hypoxia tolerance were considered optimal; 

movement submodels were parameterized to increase the time fish spent in these 

conditions (described in section 2.6). Each movement submodel (random walk, kinesis, 

and RAS) was simulated independently for each species, and models were coded in 

Netlogo 5.3.1 (Railsback and Grimm, 2012). 
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2.2 Environmental conditions 

 Monthly water-quality data (bottom temperatures and bottom dissolved oxygen 

concentrations) were provided by the VIMS Juvenile Fish Trawl Survey (hereafter “trawl 

survey”) and long-term monitoring stations from the Virginia Estuarine and Coastal 

Observing System (VECOS, http://web2.vims.edu/vecos/). The trawl survey samples 111 

stations each month using a random-stratified design (Tuckey and Fabrizio, 2017). 

Briefly, the mainstem of Chesapeake Bay is divided into three latitudinal regions which 

are then subdivided into six strata based on location and depth. The James, York, and 

Rappahannock rivers are divided into four longitudinal regions within which four depth 

strata are sampled. Each month, 15 stations are sampled in each of the three bay regions 

and 22 stations are sampled in each river (Tuckey and Fabrizio, 2017). Water-quality 

information was also obtained from VECOS long-term fixed stations (up to 36 stations 

per month) throughout the mainstem of Chesapeake Bay and the James, York, and 

Rappahannock rivers (Figure 2). Combined, the trawl survey and VECOS observations 

covered a 24,624 km2 area between 36.8 and 38.2°N and 77.0 and 75.6°W for May to 

October, 1988 – 2014. 

 

2.3 Construction of a dynamic seascape 

 To create a dynamic environment on spatial and temporal scales that are 

meaningful to fish movement, the observed bottom-water temperatures and DO 

concentrations were spatially interpolated to a 1 km2 grid and temporally interpolated to 

daily time steps. Monthly observations from the trawl survey and VECOS were first 
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projected to local coordinates after which a three-step, inverse-distance weighting 

procedure was implemented as follows: 

(1) The values of environmental parameters were used to preserve “true” local 

data for any grid cell that contained an observation. 

(2) If only one observation occurred within a 1-km radius of the target area, the 

environmental data associated with that observation were used. If, however,  

multiple observations were within the 1-km radius, an inverse-distance 

weighting method (i.e, observations closer to the target cell are weighted more 

heavily than those further away) was used to interpolate environmental 

conditions for that cell. 

(3) Observations from steps 1 and 2 were interpolated to the whole domain by 

using a 5-km search radius to inform the inverse-distance weighting for 

specific locations. If no observations occurred in the 5-km radius, the search 

radius was doubled and the process repeated. 

Following spatial interpolation, monthly data were temporally interpolated to daily time 

steps using linear interpolation. All observations were then converted into a netCDF file 

and used in the IBMs.  

 

2.4 Individual fish characteristics 

 Characteristics of individual fish were assigned at the start of each model year 

based on the results of respirometry trials with adult Atlantic croaker and spot at 10, 15, 

20, 25, and 30°C (Chapter 2). To ensure that the physiological characteristics used in the 

IBMs accurately reflected those of wild-caught fish, I assigned lengths to the simulated 
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fish from the mean and standard deviation of individuals used in the respirometry trials. 

Fish lengths (mean ± standard deviation) were randomly assigned from normal 

distributions of 273 ± 20 mm and 209 ± 9 mm for Atlantic croaker and spot, respectively. 

Critical DO concentrations (Ccrit; mg O2 L
-1), used as a proxy for hypoxia tolerance, were 

also assigned to each individual in the model. Ccrit is the DO concentration below which 

an individual cannot maintain homeostasis. Because the relationship between Ccrit and 

temperature exhibited a significant linear, positive slope, initial Ccrit values were assigned 

based on the mean and standard deviation of Ccrit observed at 10°C during the 

respirometry trials (Chapter 2). Ccrit was normally distributed with a mean and standard 

deviation of 1.4 ± 0.7 mg O2 L
-1 and 1.9 ± 0.4 mg O2 L

-1 for Atlantic croaker and spot, 

respectively. The distribution of Ccrit for Atlantic croaker was truncated at 0.7 mg O2 L
-1 

whereas that of spot was truncated at 1.4 mg O2 L
-1, which corresponds to the lowest 

observed Ccrit for each species (Chapter 2). Critical oxygen concentrations for each fish 

increased with increasing temperature according to: 

 (𝐶𝑐𝑟𝑖𝑡)𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 𝑐𝑟𝑜𝑎𝑘𝑒𝑟,𝑡 =  𝐶𝑐𝑟𝑖𝑡 + ((𝑇𝑒𝑚𝑝𝑡 − 10)  × 0.053) (1) 

and 

 (𝐶𝑐𝑟𝑖𝑡)𝑠𝑝𝑜𝑡,𝑡 =  𝐶𝑐𝑟𝑖𝑡 + ((𝑇𝑒𝑚𝑝𝑡 − 10)  × 0.012). (2) 

In these equations, t indicates the current time step in the simulation, Ccrit is the critical 

oxygen concentration at 10°C, Temp indicates the ambient temperature (°C) experienced 

by an individual, and 0.053 and 0.012 are the increases in Ccrit that occur with each 1°C 

change in temperature for Atlantic croaker and spot, respectively. The hypoxia tolerance 

of individual fish therefore varied with temperature. 
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2.5 Movement submodels 

 For each movement submodel, velocities in the x and y directions [Vx,t and Vy,t] 

were calculated for each hourly time step. I used these velocities to update each 

individual’s location at each time step with the equations: 

 𝑥𝑡 =  𝑥𝑡−1 + 𝑉𝑥,𝑡 (3) 

 𝑦𝑡 =  𝑦𝑡−1 + 𝑉𝑦,𝑡, (4) 

where t represents the current time step. Parameters used in the movement submodels are 

described in Table 1. 

 

2.5.1 Random walk submodel 

 A random walk submodel was used to estimate movements that are not affected 

by environmental conditions (Codling et al., 2008; LaBone et al., 2017). For ease of 

computation, movement of individual fish was parsed into x and y components that when 

combined, result in a single directional vector of movement. The x and y components 

follow Gaussian distributions with means (± standard deviations) of 2.5 ± 1.2 body 

lengths per second (bl s-1) and 2.6 ± 1.3 bl s-1 for Atlantic croaker and spot, respectively. 

Mean swimming speeds in the x and y directions resulted in a movement vector of 3.5 bl 

s-1 for Atlantic croaker and 3.6 bl s-1 for spot, which correspond to experimentally-

derived optimal swimming speeds for these species (Horodysky et al., 2011). The 

velocity (V) and direction (θ) of movement at time t were calculated with the equations: 

 
𝑉𝑡 =  √𝑉𝑥,𝑡

2 +  𝑉𝑦,𝑡
2  

(5) 

and 



 

 

108 

 

 
𝑐𝑜𝑠(𝜃𝑡) =

𝑉𝑥,𝑡

𝑉𝑦,𝑡
. 

(6) 

Swimming speeds were expressed in units of kilometers per hour with the equation: 

 𝑉′
𝑡 = 𝑉𝑡  × (𝐿 × 10−6(

𝑘𝑚

𝑚𝑚
)) × 3600

𝑠

ℎ𝑟
, (7) 

where V’t is the swimming speed in km hr-1 and L is the length of the individual (mm). 

 

2.5.2 Kinesis submodel 

 Kinesis describes the movement of individuals that sense and respond to 

environmental conditions in their immediate vicinity and adjust their movement based on 

these environmental cues (Humston et al., 2000; 2004; Watkins and Rose, 2013). The 

kinesis submodel used herein followed Humston et al. (2000; 2004).  

 Movement of individuals in the kinesis submodel was affected by temperature (T) 

and was decomposed into an inertial component (Vt – 1) and a random velocity (ε). The 

random velocity was generated as described for the random walk submodel (section 

2.5.1). The functions that describe the influence of temperature on the inertial, fk(Vt – 1), 

and random, gk(ε), components of movement are expressed as: 

 𝑓𝑘(𝑉𝑡−1) = 𝑉𝑡−1  ×  𝑓𝑘(𝑇) (8) 

 𝑔𝑘(𝜀) =  𝜀 × 𝑔𝑘(𝑇), (9) 

where the functions fk(T) and gk(T) describe the relationship between metabolic scope and 

temperature for Atlantic croaker and spot. fk(T) and gk(T) in the x and y directions were 

described with logistic equations because metabolic scope was shown to increase with 

increasing temperature following a logistic function (Chapter 2): 

 
𝑓𝑘(𝑇) =  

𝐿1

1 + 𝑒−𝑠 × (𝑇− 𝑇0)
 

(10) 
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𝑔𝑘(𝑇) =  1 −  

𝐿2

1 + 𝑒−𝑠 × (𝑇− 𝑇0)
 

(11) 

where L1, L2, and s are shape parameters that determine the response of individuals to 

temperature, T0 represents the inflection point of the logistic curve, and T represents the 

temperature experienced by an individual. In these equations, k and T0 were estimated by 

fitting a logistic curve to the metabolic scope-temperature relationship for Atlantic 

croaker and spot determined in Chapter 2, whereas L1 and L2 were chosen to control the 

orthokinetic (speed) response such that if L1 < L2, individuals slow down as conditions 

approach optimal (Humston et al., 2004). The klinokinetic (directional) response was 

affected by the contribution of the inertial component such that individuals would 

maintain their direction as conditions approach optimal (see Humston et al., 2000 for a 

detailed explanation). 

 If an individual encountered DO concentrations lower than it could tolerate (< 

Ccrit), a hypoxia avoidance response was simulated by setting T to 1°C in equations 10 

and 11. This resulted in an increase in the weight of the random component of movement 

relative to the inertial component, which motivated movement in a random direction. 

 

2.5.3 Restricted-area search submodel 

 In movement described as a restricted-area search, individuals detect conditions 

within a certain distance of their position and move to their preferred conditions 

(Railsback et al., 1999; Giske et al., 2003; Haas et al., 2004; Watkins and Rose, 2013; 

LaBone et al., 2017). In the RAS submodel, an individual’s swimming speed was 

randomly selected from a Gaussian distribution with a mean of 3.5 or 3.6 and a standard 

deviation of either 1.75 or 1.8 for Atlantic croaker and spot, respectively. Swimming 
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speed was converted from bl s-1 to km hr-1 with equation 7. Swimming speeds were then 

used to determine the effective search radius for that time step. All cells at the estimated 

search radius were considered, and the individual moved preferentially to the cell with 

the highest temperature. This is consistent with the observation that the metabolic scope 

of Atlantic croaker and spot increases with increasing temperature up to 30°C, which was 

the maximum temperature tested during the experiments conducted for Chapter 2.  

Because some fish exploit hypoxic areas to forage (Pihl et al., 1991; 1992) and to 

avoid predation (Ludsin et al., 2009; Hedges and Abrahams, 2015), I wanted to ensure 

that simulated fish would enter areas where dissolved oxygen concentrations were less 

than their Ccrit. When the DO concentration in the grid cell with the highest temperature 

was below Ccrit for an individual, that individual moved to that grid cell with an 

arbitrarily assigned probability of 0.3. 

 I designed a sensitivity analysis post hoc whereby 100 individuals of each species 

moved for 1,000 time steps within a 50 x 50 km area of uniform temperature with a 20 x 

20 km area at its center where the DO concentration in each grid cell was 0 mg L-1, well 

below the lowest Ccrit that could be assigned to an individual to determine the sensitivity 

of the RAS submodel to this arbitrarily assigned probability. Probabilities of moving into 

cells where the DO concentration was below Ccrit ranged from 0 to 1 by 0.1. The number 

of time steps that each individual occupied cells below their Ccrit was recorded and 

converted to a proportion. The mean and 95% confidence intervals were then calculated 

for each probability. The probability of fish entering cells where the DO concentration 

was less than their Ccrit had a positive exponential effect on the proportion of observations 

below Ccrit. The analysis revealed that a probability of 0.3 resulted in a mean of 1.4% and 
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1.2% of observations in cells with DO concentrations below Ccrit for Atlantic croaker and 

spot, respectively. This was substantially lower than the 5.6% and 4.9% of adult Atlantic 

croaker and spot captured by the trawl survey in hypoxic waters from 1988-2014, 

respectively. 

 

2.5.4 Boundary behavior 

 I set boundaries to fish movements at land masses, the Chesapeake Bay-Atlantic 

Ocean interface, and the northern extent of Virginia waters of Chesapeake Bay (Figure 

2). I imposed a boundary at the northern extent of Virginia waters because I did not have 

monthly information on fish abundance in Maryland waters. I chose the Chesapeake Bay-

Atlantic Ocean interface as a boundary because our simulations were focused on times 

when fish inhabited estuarine waters (May – October). Individuals that would have 

moved beyond the land or Atlantic Ocean boundaries stopped immediately adjacent to 

these boundaries. At the next time step, individuals were assigned a new velocity 

following the rules of each movement submodel. Simulated fish that moved beyond the 

northern extent of the study area were removed from the simulation because Atlantic 

croaker and spot are not restricted to Virginia waters, but often move into Maryland 

waters of the Bay. A larger percentage of fish (mean ± 95% CI) were removed from 

simulations where individuals followed the random walk submodel (Atlantic croaker: 

60.1 ± 0.2%; spot: 40.9 ± 0.2%) when compared to the kinesis (Atlantic croaker: 29.0 ± 

0.5%; spot: 3.1 ± 0.2%) and restricted-area search (Atlantic croaker: 0.0 ± 0.0%; spot: 0.0 

± 0.0%) submodels. 
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2.6 Model performance 

Model output included the location of every individual on the first day of each 

month from June to September of each year, the ambient temperatures and DO 

concentrations at occupied locations, and the number of time steps that an individual 

occupied an area where the DO concentration was below that individual’s Ccrit. To 

determine differences in conditions experienced by simulated individuals as a result of 

the behavior imposed by different movement submodels and the severity of hypoxic 

conditions, I investigated the temperature and DO concentration of areas occupied by 

individuals at the time of sampling, as well as the proportion of observations in which 

individuals occupied DO concentrations below their Ccrits. I further divided the study area 

into nine regions: B1, B2, and B3 from the lower to the upper mainstem of Chesapeake 

Bay, and JA1, JA2, YK1, YK2, RA1, and RA2 which indicate the lower and upper 

regions of the James (JA), York (YK) and Rappahannock (RA) rivers (Figure 3) to 

facilitate comparison of the distributions of simulated individuals from each of the 

movement submodels. I then compared the proportion of simulated individuals in each 

region across movement submodels and severity of hypoxic conditions with observations 

from the trawl survey. Model output comparisons were conducted in R version 3.3.3 (R 

core team, 2017) or using the MIXED procedure in SAS version 9.3 (SAS Institute, Cary, 

NC). 

 

2.6.1 Submodel comparisons 

I used generalized linear models to test the hypothesis that mean temperature and 

DO concentration experienced by simulated individuals varied between movement 
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submodels and a repeated measures ANOVA to account for correlations among 

observations from the same individual because multiple observations (monthly from June 

to September) were taken for each individual. Separate models were used for each 

species where: 

 𝐷𝑂𝑖𝑗 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝜀𝑖𝑗 (12) 

or 

 𝑇𝑒𝑚𝑝𝑖𝑗 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝜀𝑖𝑗 . (13) 

In these models, DOij and Tempij represent the mean environmental conditions 

experienced by individual i in submodel j and submodel refers to random walk, kinesis, 

or RAS submodels; εij is the random, unexplained error associated with the model. 

Multiple covariance structures, which included compound symmetry, first-order 

autoregressive, banded Toeplitz, and unstructured, were investigated and the covariance 

structure that best described the correlations and variances was determined with Akaike’s 

Information Criterion (AIC) (Akaike, 1998; Logan, 2010).  

I used a zero-inflated beta regression (Ospina and Ferrari, 2010; 2012) to 

investigate the effect of movement submodel on the proportion of observations below 

Ccrit. This proportion represents the frequency with which individuals occupied areas 

where dissolved oxygen concentrations were below their Ccrit. Proportion data are often 

difficult to analyze because they cannot easily be transformed outside the interval [0,1] 

and are typically skewed, which violates the general linear model assumptions of 

normality and homogeneity of variance (Swearingen et al., 2012). The proportion of 

observations below Ccrit was zero-inflated; between 61% (Atlantic croaker) and 71% 

(spot) of individuals did not occupy areas with DO concentrations below Ccrit throughout 
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the simulation. A zero-inflated beta regression is a mixture model where the discrete 

component (zeros) is modeled with a Bernoulli distribution and the continuous proportion 

data are modeled with the beta distribution (Ospina and Ferrari, 2012). The beta 

distribution is parameterized in terms of a mean (μ) and precision parameter (ϕ), where 0 

< μ < 1 and ϕ > 0 (Ospina and Ferrari, 2010). The mean and precision parameter are 

modeled in conjunction with the probability of a point mass at zero (α) (Ospina and 

Ferrari, 2010; 2012) through link functions in relation to linear or non-linear predictors 

(Ospina and Ferrari, 2010; Ospina and Ferrari 2012 provide a detailed explanation of 

zero-inflated beta regressions). Beta regressions of the proportion of observations below 

Ccrit followed the form: 

 𝑙𝑜𝑔𝑖𝑡(𝛼)𝑖𝑗 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝜀𝑖𝑗 

𝑙𝑜𝑔𝑖𝑡(𝜇)𝑖𝑗 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝜀′𝑖𝑗 

𝑙𝑜𝑔(𝜙)𝑖𝑗 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝜀′′𝑖𝑗. 

 

(14) 

In these models, the responses are the logit of the probability that the proportion of 

observations below Ccrit is 0 (α), the logit of the proportion of observations below Ccrit 

(μ), and the log of the precision parameter (ϕ) for individual i in submodel j. The term 

“submodel” indicates the effect of the random walk, kinesis, or RAS submodel on the 

responses and the εijs represent the random, unexplained errors. Zero-inflated beta 

regressions for Atlantic croaker and spot were implemented in the gamlss package in R 

(Stasinopolous and Rigby, 2007). 

 

2.6.2 Severity of hypoxic conditions 
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 The effect of the severity of hypoxic conditions on the temperature and DO 

concentration experienced by simulated fish was assessed with generalized linear models 

with repeated measures. Separate models were developed for each species and included 

data from 2008 and 2014 as years of mild hypoxia and 2007 and 2011 as years of severe 

hypoxia. AIC was used to select the appropriate covariance structure (listed above). The 

final models for Atlantic croaker and spot were: 

 𝐷𝑂𝑖𝑗𝑘 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗  ×  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝜀𝑖𝑗𝑘 (15) 

and 

 𝑇𝑒𝑚𝑝𝑖𝑗𝑘 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗  ×  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝜀𝑖𝑗𝑘. (16) 

In these models, DOijk and Tempijk represent mean environmental conditions experienced 

by individual i, in submodel j, and severity of hypoxic conditions k. As in equations 12 

and 13, submodel indicates the effect of the random walk, kinesis, or RAS submodel. 

Additionally, severity represents the effect of the severity of hypoxic conditions (mild or 

severe). The random, unexplained error associated with the model is represented by εijk. 

 To determine the effect of the severity of hypoxic conditions on the proportion of 

observations below Ccrit, I used zero-inflated beta regressions where 2008 and 2014 were 

considered years of mild hypoxia and 2007 and 2011 were considered years of severe 

hypoxia. A zero-inflated beta model was used to analyze these data because 70% 

(Atlantic croaker) and 80% (spot) of individuals did not occupy areas with dissolved 

oxygen concentrations below Ccrit in the simulations. Beta models for each species were 

parameterized as follows: 

 𝑙𝑜𝑔𝑖𝑡(𝛼)𝑖𝑗𝑘 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗  ×  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘

+ 𝜀𝑖𝑗𝑘 

 

(17) 



 

 

116 

 

𝑙𝑜𝑔𝑖𝑡(𝜇)𝑖𝑗𝑘 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 + 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 +  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗  ×  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘

+ 𝜀′𝑖𝑗𝑘 

𝑙𝑜𝑔(𝜙)𝑖𝑗𝑘 =  𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗 +  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘 + 𝑆𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑗  ×  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑘

+ 𝜀′′𝑖𝑗𝑘 

where the logit of the probability that the proportion of observations below Ccrit is 0 (α), 

the logit of the proportion of observations below Ccrit (μ), and the log of the precision 

parameter (ϕ) for individual i, in submodel j, and severity of hypoxia k are modeled in 

response to submodel (random walk, kinesis, or RAS) and the severity of hypoxic 

conditions (mild or severe). Again, εijk represents the random, unexplained error in the 

model.  

 

2.6.3 Validation of individual-based models 

 To validate the IBM output, I compared the mean and 95% confidence intervals 

for temperature and DO concentration at which simulated fish were captured with those 

calculated from trawl survey stations where Atlantic croaker and spot were captured. 

These comparisons were performed across all years and for years of mild and severe 

hypoxic conditions. The mean environmental conditions from IBM outputs and trawl 

survey observations were considered significantly different if the 95% confidence 

intervals did not overlap. 

 To compare the spatial distribution of simulated fish from IBMs to trawl survey 

observations across all years, the proportion of individuals in each region of Chesapeake 

Bay (Figure 3) was calculated for each movement submodel by dividing the number of 

individuals in a given region by the total number of individuals within the model domain 
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in each month. Similarly, the number of fish captured by the trawl survey in each region 

was divided by the total number of individuals captured each month. The spatial 

distribution of simulated fish was also compared to trawl survey observations for years of 

mild and severe hypoxia. In these comparisons, the proportion of individuals in each 

region of Chesapeake Bay was calculated for each movement submodel and trawl survey 

observations by dividing the number of individuals in a given region by the total number 

of individuals for the entire year. The proportion of individuals in each region were 

qualitatively compared between IBM output and survey observations to provide an 

indication of the accuracy with which the IBMs recreated the spatial distributions of 

Atlantic croaker and spot when only the relationship between environmental conditions 

and metabolism was used as motivation for movement or when fish moved randomly in 

the environment.  
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3. Results 

3.1 Movement submodel comparisons 

Mean temperatures and DO concentrations occupied by simulated Atlantic 

croaker and spot, across the entire simulation period, differed significantly among 

movement submodels used in the IBM (temperature: Atlantic croaker; F = 178604, P < 

0.01, spot; F = 228262, P < 0.01; DO: Atlantic croaker; F = 57538.6, P < 0.01, spot; F = 

54710.8, P < 0.01). For both species, fish in the RAS submodel occupied the highest 

mean dissolved oxygen conditions followed by those in the kinesis submodel and fish in 

the random walk submodel occupied the lowest mean dissolved oxygen conditions 

(Figure 4). This pattern was also apparent for mean temperatures occupied by simulated 

Atlantic croaker whereas spot in the RAS submodel occupied the highest mean 

temperatures followed by those in the random walk submodel; spot in the kinesis 

submodel occupied the lowest mean temperatures (Figure 4). These results indicate that, 

as expected, the RAS submodel more efficiently directed fish to areas of optimal 

conditions than either the kinesis or random walk submodels. 

 Fish rarely entered areas where the DO concentration was below their Ccrit (Figure 

5). The mean percentage of observations below Ccrit was significantly lower for Atlantic 

croaker in the kinesis and restricted-area search submodels relative to the random walk 

submodel (kinesis: t = -147.73, P < 0.01; RAS: t = -217.30, P < 0.01); similar results 

were obtained for spot (kinesis: t = -286.63, P < 0.01 ; RAS: t = -144.05, P < 0.01). The 

results of the zero-inflated beta regression for Atlantic croaker indicate that, on average, 

only 3.2% of observations were below Ccrit for the random walk submodel, 1.4% of 

observations were below Ccrit for the kinesis submodel, and 0.8% for the restricted-area 



 

 

119 

 

search submodel (Figure 5). For spot, the mean percentage of observations below Ccrit 

was 2.8% for the random walk submodel, whereas the mean percentage of observations 

below Ccrit were 0.5% and 0.9% for the kinesis and restricted-area search submodels, 

respectively (Figure 5). For Atlantic croaker, these results are as expected; fish in the 

RAS submodel were effective at avoiding DO concentrations below Ccrit. Conversely, the 

results for spot are somewhat unexpected because individuals in the kinesis submodel 

entered areas with DO concentrations below Ccrit less frequently than those in the RAS 

submodel. 

 

3.2 Effects of the severity of hypoxic conditions 

The mean DO concentrations occupied by simulated Atlantic croaker and spot 

were significantly affected by the interaction between movement submodel and the 

severity of hypoxic conditions (Atlantic croaker: F = 143.79, P <0.01; spot: F = 352.30, 

P <0.01). For both species, the random walk submodel resulted in fish occupying mean 

DO concentrations that did not differ between years of mild and severe hypoxia; whereas 

fish in the kinesis submodel occupied areas that had lower mean DO concentrations in 

years of mild hypoxia relative to years of severe hypoxia. Those fish in the RAS 

submodel occupied areas that had lower mean DO concentrations in years of severe 

hypoxia when compared with years of mild hypoxia (Figure 6). 

The interaction between movement submodel and the severity of hypoxic 

conditions significantly impacted the mean temperatures occupied by simulated Atlantic 

croaker and spot (Atlantic croaker: F = 1070.41, P <0.01; spot: F = 1595.21, P <0.01). 

The mean temperatures occupied were lower in years of severe hypoxia for both species 
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in the random walk submodel, and for spot in the kinesis submodel (Figure 6). The mean 

temperatures occupied by Atlantic croaker did not differ between years of mild and 

severe hypoxia for those fish in the kinesis submodel. Atlantic croaker and spot in the 

RAS submodel occupied lower mean temperatures in years of mild hypoxia than in years 

of severe hypoxia (Figure 6). 

The interaction between movement submodel and the severity of hypoxic 

conditions also resulted in significant differences in the mean percentage of observations 

below Ccrit (Figure 7). For all submodels, the mean percentage of observations below Ccrit 

was lower for Atlantic croaker and spot in years of mild hypoxia, than in years of severe 

hypoxia (Figure 7). Additionally, in years of mild hypoxia, the random walk submodel 

resulted in the highest mean percentage of observations below Ccrit for both species 

(Atlantic croaker: 1.8%, spot: 1.5%), followed by kinesis (Atlantic croaker: 0.8%, spot: 

0.2%), and RAS (Atlantic croaker: 0.2%, spot: 0.0%). Interestingly, this pattern did not 

hold in years of severe hypoxia when the RAS submodel resulted in the highest 

proportion of observations below Ccrit (Atlantic croaker: 6.4%, spot: 9.2%), followed by 

random walk (Atlantic croaker: 4.0%, spot: 3.3%), and kinesis (Atlantic croaker: 1.6%, 

spot: 1.4%). 

 

3.3 Validation of individual-based models 

 For both Atlantic croaker and spot, simulated fish in all movement submodels 

occupied areas of higher mean DO concentration than observed in the trawl survey 

(Figure 4). The mean temperature occupied by Atlantic croaker captured in the trawl 

survey was also lower than that of simulated fish in all movement submodels. The mean 
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temperature occupied by spot captured in the trawl survey was, in contrast, higher than 

the mean temperatures occupied by simulated fish in the random walk and kinesis 

submodels, and lower than that of fish in the RAS submodel (Figure 4). 

Atlantic croaker and spot occupied higher mean DO concentrations relative to 

survey observations regardless of the severity of hypoxia in nearly all movement 

submodels (Figure 6; Table 2). The one exception was the random walk submodel for 

spot, for which the mean DO concentration experienced by simulated individuals in years 

of severe hypoxia did not differ from trawl survey observations (Figure 6; Table 2). Mean 

DO concentrations experienced by Atlantic croaker and spot likewise did not differ 

between years of mild and severe hypoxic conditions from trawl survey observations, 

(Figure 6; Table 2). 

The random walk submodel most accurately reflected the temperatures at which 

Atlantic croaker were observed in years of both mild and severe hypoxic conditions when 

compared with trawl survey observations. The output from the kinesis and RAS 

submodels indicated that simulated individuals occupied warmer waters than Atlantic 

croaker captured in the trawl survey (Figure 6). Unlike Atlantic croaker, simulated spot in 

the random walk and kinesis submodels occupied lower temperatures than individuals 

captured in the trawl survey. The temperature output from the RAS submodel was, in 

contrast, most similar to trawl survey observations (Figure 6). The mean temperature 

occupied by fish in the RAS submodel did not differ from that of survey observations 

under mild hypoxia. 

 The proportion of individuals that occupied each region of Chesapeake Bay 

differed markedly between simulated and actual fish for both Atlantic croaker and spot 
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(Figures 8 and 9). The RAS submodel most notably resulted in larger proportions of 

individuals in the lower and middle regions of Chesapeake Bay (areas B1 and B2), and 

smaller proportions of individuals in the York and Rappahannock rivers relative to trawl 

survey observations. In years of severe hypoxia, all movement submodels resulted in an 

increase in the proportion of individuals in regions B1 and B2 relative to years of mild 

hypoxia regardless of species (Figure 10). This is generally consistent with trawl survey 

observations, although larger increases occurred in the IBMs. Decreases in the proportion 

of individuals captured in the Rappahannock River by the trawl survey were also 

apparent in years of severe hypoxia relative to years of mild hypoxia. Similar changes 

were not apparent for simulated fish (Figure 10).  
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4. Discussion 

 My results show that IBMs with ecophysiological constraints failed to effectively 

reproduce the spatial distributions of Atlantic croaker and spot observed in the VIMS 

Juvenile Fish Trawl Survey. IBMs for both species consistently resulted in higher 

proportions of fish in the lower regions of the mainstem of the Chesapeake Bay, and 

lower proportions of fish in the York and Rappahannock rivers, compared with trawl 

survey observations. Differences in species distributions between IBMs and trawl survey 

observations were most apparent for the RAS submodel. This is likely due to the RAS 

algorithm aggregating individuals at local temperature optima. Fish in this movement 

submodel were likely to find these optima quickly and to remain near those areas for 

extended periods. Individuals were, therefore, less likely to occupy areas far from their 

initial location (the lower Chesapeake Bay). Simulated individuals in the random walk 

and kinesis submodels were somewhat more likely to move to areas outside the lower 

Chesapeake Bay, but these submodels still resulted in large discrepancies in the spatial 

distribution of fish when compared with trawl survey observations. One explanation for 

discrepancies in the spatial distribution between simulated fish in the random walk and 

kinesis submodels and those fish captured by the trawl survey is the large percentage of 

fish lost to Maryland waters in the simulations. The individuals lost in these simulations 

were those that moved away from their starting location. They may have, therefore, been 

more likely to enter the subestuaries if they had not been lost. If this had been the case, 

spot in the kinesis submodel might be expected to better reflect the spatial distribution of 

fish captured by the trawl survey, because few were lost to Maryland waters during the 

course of the simulation. The spatial distribution of spot in the kinesis submodel was, 
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however, similar to that of other simulations and differed markedly from trawl survey 

observations. 

Discrepancies in the spatial distribution of individuals from simulations and 

survey observations likely affected the differences in DO concentrations experienced by 

simulated and actual fish. In all submodels, the mean DO concentration in which fish 

were captured by the trawl survey were lower than those occupied by simulated 

individuals. Hypoxia is most severe in July and August in the lower Rappahannock 

River, whereas it is mild and only periodically occurs in the lower York River (Tuckey 

and Fabrizio, 2016). The larger proportion of individuals captured in the York and 

Rappahannock rivers by the trawl survey likely decreased the mean dissolved oxygen 

concentration to which fish were exposed. Simulated fish did not use these areas of the 

model domain as frequently and therefore the mean DO concentration to which simulated 

individuals were exposed was greater than for fish captured by the trawl survey. 

 For simulated fish, the RAS submodel consistently aggregated fish in areas of 

high temperature and normoxia. Mean temperatures and DO concentrations were highest 

for simulated fish in the RAS submodels, regardless of species or the severity of hypoxic 

conditions. This outcome is consistent with the known sensitivity of this type of 

movement submodel to complex environments (Humston et al., 2004; Watkins and Rose, 

2013; 2014; 2017). Individuals in the random walk and kinesis submodels, in contrast, 

occupied areas of similar mean temperatures and mean DO concentrations although these 

conditions tended to be slightly higher in the kinesis submodels compared with the 

random walk. These results are as expected because the RAS submodel uses a gradient 

response to direct the movements of individuals towards preferred conditions, in contrast 
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to the reactionary (kinesis) or lack of response (random walk) to environmental 

conditions used by the other movement submodels (Humston et al., 2004; Watkins and 

Rose, 2013; 2014; 2017).  

Contrary to my expectations, avoidance of specific areas by simulated fish 

depended on the severity of hypoxic conditions. When the proportion of observations 

below Ccrit was analyzed across all years, or when years of mild hypoxia were considered, 

the random walk submodel performed the worst in predicting hypoxia avoidance, 

followed by kinesis, and RAS submodels. When years with severe hypoxic conditions 

were considered, however, the RAS submodel performed the worst in predicting hypoxia 

avoidance, followed by random walk, and kinesis submodels. It is likely that this resulted 

from the aggregation of individuals in the RAS submodel at local temperature optima. 

Simulated individuals in the RAS submodel are directed towards areas of high 

temperature and can also enter areas where DO concentrations are below their Ccrit. It is 

likely, therefore, that simulated individuals became trapped in areas of optimal 

temperature but low dissolved oxygen concentration. This effectively increased the 

percentage of time steps that simulated fish were in conditions below their Ccrit in the 

RAS submodel. It is also possible that the relatively coarse one-hour time steps used in 

these simulations resulted in a large percentage of observations spent below Ccrit, as 

suggested by Rose et al. (2018b). If this occurred, however, increases in the percentage of 

observations below Ccrit in the kinesis submodel would likely occur as well. It is likely 

that the gradient approach used to move individuals towards optimal temperatures, 

coupled with a higher prevalence of DO concentrations below Ccrit, led to this result 

because the fraction of observations below Ccrit only increased in the RAS submodel in 
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years of severe hypoxia. The choice of 0.3 as the probability that individuals in the RAS 

submodel moved to areas where DO concentrations were below Ccrit also impacted how 

frequently fish entered these areas. The sensitivity analysis suggested that the probability 

of fish entering areas where the DO concentration was less than Ccrit used here (0.3), was 

too low for both Atlantic croaker and spot. When used in the simulations, this probability 

also resulted in a lower incidence of Atlantic croaker and spot entering areas where DO 

concentrations were less than Ccrit across all years and years of mild hypoxia. It also 

resulted in a higher incidence of simulated fish entering areas where DO concentrations 

were less than Ccrit in years of severe hypoxia. These results suggest that, either the rate at 

which individuals encountered DO concentrations below Ccrit differed between the 

sensitivity analysis and the simulations, or that factors other than temperature and DO are 

involved in an individual’s decision to enter hypoxic areas. Additional research is 

necessary to determine a more appropriate mechanism to control the entrance of fish into 

areas where DO concentrations are below Ccrit in the RAS submodel in either case. 

Taken together, differences in the environmental conditions occupied by 

simulated and actual fish, and differences in the proportion of individuals occupying 

different regions in the study area, suggested that the effect of temperature on metabolic 

scope was not a major motivator of movement for Atlantic croaker and spot during May-

Oct in Chesapeake Bay. This is in contrast to the findings of Cucco et al. (2012) for 

flathead grey mullet (Mugil cephalus). A coupled empirical-numerical model was used to 

reproduce spatial and temporal variation in the metabolic scope of mullet in a 

Mediterranean shallow-water environment in that study. Model predictions of areas 

supporting higher metabolic scope were also areas where fisheries catches were highest 
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for this species (Cucco et al., 2012). In my study, metabolic scope was also used to 

parameterize the movement submodels. Atlantic croaker and spot have broad temperature 

optima, however:  maximum metabolic scope occurred between 25 and 30°C for Atlantic 

croaker and between 20 and 30°C for spot (Chapter 2). These broad temperature optima, 

combined with relatively warm bottom-water temperatures during their period of 

residency in Chesapeake Bay, likely decrease the importance of the effect of temperature 

on metabolic scope as motivation for movement. That is, the majority of bottom waters in 

Chesapeake Bay were optimal and simulated fish moved less than fish observed by the 

trawl survey. Furthermore, the lack of contrast in temperature between the main stem of 

Chesapeake Bay and its major subestuaries (Table 3) likely affected the number of 

simulated individuals that moved into these subestuaries. 

The effect of temperature on the metabolic scope of fishes has been well-

documented (Claireaux and Lagardère, 1999; Claireaux et al., 2000; Lefrançois and 

Claireaux, 2003; Claireaux and Lefrançois, 2007; Horodysky et al., 2011; Clark et al., 

2013; Lapointe et al., 2014) and evidence suggests that the spatial distributions of fishes 

and other marine ectotherms are affected by temperature (Murawski, 1993; Perry et al., 

2005; Pörtner and Knust, 2007; Nye et al., 2009; Cucco et al., 2012; Deutsch et al., 2015; 

Kleypas et al., 2015). The results of my simulations indicate, however, that temperature is 

not the most important factor motivating the movement of Atlantic croaker and spot in 

Chesapeake Bay during summer. This is likely because of the generally optimal thermal 

conditions throughout the lower Chesapeake Bay and its subestuaries. Temperature 

explained only a small amount of variation in the north-south movement of the center of 

gravity for walleye pollock (Gadus chalcogrammus) in the Bering Sea (Thorson et al., 
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2017), which suggests that other factors are important in driving changes in species 

distributions. For example, in addition to temperature, salinity is known to affect the 

metabolism of fishes through alterations of osmoregulatory pathways (Ern et al., 2014). 

Indeed, Childs et al. (2008) demonstrated that salinity is an important driver of movement 

for the spotted grunter (Pomadasys commersonnii) and proposed that tidal cycle and the 

associated changes in environmental conditions likely drive the distribution of this 

species. They did not, however suggest potential mechanisms for this relationship.  

Environmental gradients may be important drivers of the distribution and 

movement of fish, but predator avoidance and prey availability may also motivate 

movement. The major predators of Atlantic croaker and spot in Chesapeake Bay include 

clearnose skate (Raja eglanteria), smooth and spiny butterfly rays (Gymnura micrura and 

G. altavela, respectively), striped bass (Morone saxatilis), bluefish (Pomatomus 

saltatrix), and summer flounder (Paralichthys dentatus) (VIMS Multispecies Research 

Group, 2017). Summer flounder and bluefish are most abundant in the lower main stem 

of Chesapeake Bay in spring, whereas striped bass are most common in the lower salinity 

subestuaries and upper main stem of Chesapeake Bay (Latour et al., 2008; Bonzek et al., 

2014). Although spatial distribution data in Chesapeake Bay are lacking for the 

elasmobranch species listed here, the relative abundance of elasmobranchs is highest in 

high-salinity areas (Buchheister et al., 2013), suggesting that the abundance of these 

species may be high in the lower regions of Chesapeake Bay. High abundance of 

predators in the lower regions of Chesapeake Bay in spring suggests that predation 

pressure for Atlantic croaker and spot may be high when they first enter Chesapeake Bay 

in the spring. This high predation pressure may result in rapid movement of these species 
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through the main stem of Chesapeake Bay and into subestuaries where predation pressure 

may be lower. Indeed, trawl survey observations indicate that in May a mean of 16% of 

Atlantic croaker are captured in the main stem of Chesapeake Bay, 17% are captured in 

the James River, 37% in the York River, and 30% in the Rappahannock River. Similarly, 

a mean of 12% of spot are captured in the main stem of Chesapeake Bay in May, 

compared with 21% captured in the James River, 35% in the York River, and 32% in the 

Rappahannock River. 

Prey availability may influence the movement of Atlantic croaker and spot in 

subestuaries (in addition to predator avoidance), specifically in the York and 

Rappahannock rivers where many of these fish are captured in summer (mean 

percentage: Atlantic croakerYork, July = 32%, spotYork, July = 26%, Atlantic 

croakerRappahannock, July = 15%, spotRappahannock, July = 16%, Atlantic croakerYork, August = 29%, 

spotYork, August = 30%, Atlantic croakerRappahannock, August = 14%, spotRappahannock, August = 

12%). To our knowledge, an assessment of the spatial variation in the abundance of 

macrobenthic organisms on which Atlantic croaker and spot feed is lacking for 

Chesapeake Bay. Indices of benthic habitat quality in Virginia indicate, however, that 

benthic habitats in the York and Rappahannock rivers have more environmental 

degradation than the Chesapeake Bay and the James River (Diaz et al., 2003). In the York 

River, sediment instability is the major stressor of benthic habitat (Dellapenna et al., 

2001) and maintains macrobenthic communities in early stages of succession (Schaffner 

et al., 2001). In many temperate areas, polychaetes are often the first benthic organisms to 

colonize new habitat (Lu and Wu, 2000) and are, therefore, likely common in the York 

River. Polychaetes are also one of the most common prey organisms found in the diets of 
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Atlantic croaker (Nye et al., 2011; Tuckey and Fabrizio, 2016) and spot (Pihl et al., 1992) 

suggesting that these early successional benthic communities may provide an abundance 

of prey. Unlike the York River, the major stressor of the benthic community in the 

Rappahannock River is severe, seasonal hypoxia (Llansó, 1992). The benthic community 

becomes stressed as DO declines (early to mid-summer), which may result in changes in 

the behavior of benthic organisms, such as decreased burrowing depths and extension of 

siphons further into the water column. These behaviors are likely to increase the 

susceptibility of benthic organisms to predation by Atlantic croaker and spot (Diaz et al., 

1995; Taylor and Eggleston, 2000; Seitz et al., 2003; Long et al., 2008). There is 

substantial evidence that Atlantic croaker congregate at the edges of hypoxic zones in the 

Gulf of Mexico (Craig and Crowder, 2005; Craig, 2012), presumably to forage. Both 

Atlantic croaker and spot are known to exploit hypoxic areas in Chesapeake Bay to feed 

on the stressed benthos (Pihl et al., 1991; 1992; Long and Seitz, 2008). 

My study provides evidence that the distributions of Atlantic croaker and spot 

within Chesapeake Bay and its subestuaries are primarily determined by factors other 

than the effect of temperature on metabolic scope or their respective hypoxia tolerances. 

Such factors include combinations of biotic and abiotic conditions that vary on spatial 

and temporal scales smaller than those I used (e.g., hours, and 100s of meters). To better 

understand how individual fish behave in the wild, and the effect of these behaviors on 

the spatial distribution of populations, we must understand the effect of environmental 

conditions on individuals on spatial (meters) and temporal (seconds, minutes) scales 

relevant to the decision making processes of individual fish. Furthermore, we need to 

understand how the effects of environmental conditions manifest themselves in the 
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behavior of those individuals. Such knowledge could be gained by tracking individual 

fish movements using acoustic telemetry and by simultaneously sampling environmental 

conditions experienced by telemetered fish in near-real time (Szedlmayer and Able, 1993; 

Almeida, 1996; Taverny et al., 2002; Kelly et al., 2007; Childs et al., 2008, Fabrizio et 

al., 2013; 2014). There are several major challenges to this type of work, such as the time 

and cost of monitoring multiple individuals and the environmental conditions they 

experience at high spatial and temporal resolutions, while simultaneously assessing 

predator and prey abundance. It would also be necessary to estimate the vulnerability of 

prey species to capture and to determine if this is proportional to the catchability of prey 

species by various survey techniques. The relative abundance of predators could be 

sampled to determine if the study species avoid areas of high predator abundance. 

Additionally, for benthivores like Atlantic croaker and spot, examining prey abundance 

would require sampling the surface of the benthos to determine sediment type and prey 

density. These sampling efforts may yield important information about prey and predator 

abundance as potential drivers of individual fish movement. A detailed model of fish 

behavior in response to abiotic and biotic conditions could be created with these data 

using linked individual-based and statistical inferential models (Zhang et al., 2017). 

These movement models could provide a more accurate assessment of which 

environmental conditions are most important in determining individual movement and 

therefore the distribution of the population, and could be used to predict the effects of 

changing environmental conditions on the distribution of ecologically and economically 

important species. 
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Tables 

Table 1. Parameters used in the movement submodels for Atlantic croaker and spot. 

Parameter Description Atlantic croaker spot Units 

Ccrit initial critical oxygen concentration of an individual N(1.36, 0.46) N(1.86, 0.16) mg O2 L
-1 

Ccrit, t 

critical oxygen concentration of an individual at 

time t f(Ccrit, Tempt) f(Ccrit, Tempt) mg O2 L
-1 

Vx, t individual velocity in the x direction at time t 

variable by 

simulation 

variable by 

simulation bl s-1 

Vy, t individual velocity in the y direction at time t 

variable by 

simulation 

variable by 

simulation bl s-1 

Vt total velocity of an individual at time t variable variable bl s-1 

Vt-1 total velocity of an individual at time t-1 variable variable bl s-1 

V’t transformed total velocity at time t variable variable km hr-1 

θt direction of travel for an individual at time t variable variable degrees 

ε 

random variate providing the stochastic component 

of velocity in the kinesis submodel N(μ, ψ) N(μ, ψ) bl s-1 

μ mean of ε 

variable by 

simulation 

variable by 

simulation bl s-1 

ψ variance of ε 

variable by 

simulation 

variable by 

simulation bl s-1 

T ambient temperature during time step variable variable °C 

T0 temperature at inflection point of the logistic curves 14.9 10.3 °C 

L1 maximum value in logistic curve f(Vt-1) 0.7 0.7 dimensionless 

L2 maximum value in logistic curve g(ε) 0.9 0.9 dimensionless 

k steepness parameter of the logistic curves 0.1 0.2 dimensionless 
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Table 2. Mean dissolved oxygen concentration occupied by Atlantic croaker and spot in 

the random walk (RW), kinesis, and restricted-area search (RAS) submodels; as well as 

fish captured in the trawl survey in years of mild and severe hypoxia. LCL and UCL 

indicate the lower and upper confidence limits for the 95% confidence interval, 

respectively.  

 

Species 

Movement 

Submodel Severity 

Mean 

DO LCL UCL 

Atlantic croaker RW Mild 5.87 5.86 5.88 

  Severe 5.85 5.84 5.86 

 Kinesis Mild 5.90 5.89 5.91 

  Severe 5.92 5.91 5.93 

 RAS Mild 6.46 6.45 6.47 

  Severe 6.34 6.33 6.34 

 Survey Mild 5.16 5.08 5.23 

  Severe 5.23 5.12 5.34 

spot RW Mild 5.90 5.89 5.91 

  Severe 5.91 5.90 5.92 

 Kinesis Mild 6.03 6.02 6.04 

  Severe 6.11 6.10 6.11 

 RAS Mild 6.41 6.40 6.42 

  Severe 6.26 6.25 6.27 

 Survey Mild 5.60 5.48 5.72 

  Severe 5.80 5.69 5.91 
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Table 3. Mean bottom temperatures in the mainstem of Chesapeake Bay (Bay) and the 

James, York, and Rappahannock rivers for June to September. 

 

Month System Mean Temperature (°C) 

June Bay 20.3 

 James 23.7 

 York 22.8 

 Rappahannock 22.8 

July Bay 24.3 

 James 26.8 

 York 26.5 

 Rappahannock 26.6 

August Bay 25.1 

 James 27.0 

 York 27.3 

 Rappahannock 27.4 

September Bay 24.1 

 James 24.1 

 York 25.7 

 Rappahannock 24.8 
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Figures 

 
Figure 1. The study area for the individual-based models. The outlined areas were 25 km 

x 16 km (solid line) and 10 km x 15 km (dashed line) and represent starting location for 

all individuals in the simulations. Inset shows the location of the study area. 
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Figure 2. The locations of stations for one month of sampling (July 2011) by the VIMS 

Juvenile Fish Trawl survey (filled circles) which uses a random stratified design; and the 

Virginia Estuarine and Coastal Observing System (VECOS; open squares) which uses a 

fixed location sampling design. Dashed lines represent boundaries to simulated fish 

movement at the Chesapeake Bay-Atlantic Ocean interface and the northern extent of 

Virginia waters of Chesapeake Bay. 
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Figure 3. The regions used to compare output from the simulations to observations from 

the VIMS Juvenile Fish Trawl Survey. The mainstem of Chesapeake Bay is separated 

into three regions (B1, B2, and B3) while the James, York, and Rappahannock rivers 

have each been separated into two regions (JA1, JA2, YK1, YK2, RA1, and RA2, 

respectively). 
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Figure 4. The model-estimated mean oxygen concentrations (top panel) and temperatures 

(bottom panel) occupied by simulated Atlantic croaker (black circles) and spot (gray 

squares) in the random walk (RW), kinesis, and restricted-area search (RAS) submodels; 

as well as the mean oxygen concentration at which Atlantic croaker and spot were 

captured in the VIMS Juvenile Fish Trawl Survey. Error bars represent the 95% 

confidence intervals. 
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Figure 5. The model-estimated mean percentage of observations below critical oxygen 

concentration (Ccrit) for simulated Atlantic croaker (black circles) and spot (gray squares) 

in the random walk (RW), kinesis, and restricted-area search (RAS) submodels. Error 

bars represent the 95% confidence intervals.
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Figure 6. The mean model-estimated (±95% confidence intervals) oxygen concentrations (top panels) and temperatures 

(bottom panels) occupied by simulated Atlantic croaker (left panels) and spot (right panels) during years when hypoxia was 

defined as mild (black circles) or severe (gray squares) hypoxia. Mean oxygen concentrations are displayed for the random 

walk (RW), kinesis, and restricted-area search (RAS) submodels as well as the VIMS Juvenile Fish Trawl Survey. 
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Figure 7. The mean model-estimated (±95% confidence intervals) percent of observations 

below critical oxygen concentration (Ccrit) for simulated Atlantic croaker (left panel) and 

spot (right panel) during years of mild (black circles) and severe (gray squares) hypoxia 

in the random walk (RW), kinesis, and restricted-area search (RAS) submodels. Error 

bars represent the 95% confidence intervals. 
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Figure 8. The mean proportion (±95% confidence intervals) of Atlantic croaker found in 

each region of the study area for each month of the simulation. The proportion of 

individuals from the random walk submodel (RW, white), the kinesis submodel (light 

gray), the restricted-area search submodel (RAS, medium gray), and the VIMS Juvenile 

Fish Trawl Survey (dark gray). 
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Figure 9. The mean proportion (±95% confidence intervals) of spot found in each region 

of the study area for each month of the simulation using the random walk submodel (RW, 

white), the kinesis submodel (light gray), the restricted-area search submodel (RAS 

medium gray), and the VIMS Juvenile Fish Trawl Survey (dark gray). 
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Figure 10. The mean proportion (±95% confidence intervals) of Atlantic croaker (top panels) and spot (bottom panels) found 

in each region of the study area in years when hypoxia was defined as mild (left panels) or severe (right panels) for the random 

walk submodel (RW, white), the kinesis submodel (light gray), the restricted-area search submodel (RAS, medium gray), and 

the VIMS Juvenile Fish Trawl Survey (dark gray). 



 

 

154 

 

CHAPTER 5 

 

Summary and Concluding Remarks
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Because hypoxia is one of the most widespread, deleterious processes occurring 

in aquatic environments (Diaz and Rosenberg 2008) and temperature has pervasive 

effects on the physiology of ectothermic organisms (Schulte 2015; Whitney et al. 2016), 

directional changes to these environmental conditions are likely to result in negative 

impacts to fish at the individual and population levels. To determine the effects of 

temperature and hypoxia on individual Atlantic croaker and spot in Chesapeake Bay, I 

examined the relationships between temperature and metabolic scope and hypoxia 

tolerance (Chapter 2) as well as the relationship between hypoxia exposure and 

reproductive potential (Chapter 3). Furthermore, to examine population effects, I 

developed an individual-based model of fish distribution incorporating the effects of 

temperature on metabolic scope and hypoxia tolerance into individual movement 

(Chapter 4). 

The respirometry trials conducted for my research provided the first estimates of 

metabolic scope and hypoxia tolerance for Chesapeake Bay fishes across a broad range of 

temperatures common to this estuary. The results of the respirometry trials were used to 

parameterize movement submodels within an individual-based, dynamic-seascape model 

of fish distribution where the effect of temperature on metabolic scope was used to 

inform the movement of individuals in the model and dissolved oxygen concentrations 

below the critical oxygen concentration elicited an avoidance response. This is the first 

use of an individual-based model with laboratory-derived physiological constraints to 

assess fish distribution. This project is also unique in that long-term observations of the 

distribution of Atlantic croaker and spot as well as the environmental conditions in which 
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they were captured were available from the VIMS Juvenile Fish Trawl Survey to validate 

simulation results.  

The distributions of Atlantic croaker and spot in Chesapeake Bay differed 

substantially between movement submodels and survey observations. A greater 

proportion of simulated fish occupied the lower regions of Chesapeake Bay relative to 

survey observations. This result is interesting because environmental conditions are 

dynamic both spatially and temporally in temperate estuaries and can have a substantial 

impact on the physiology and behavior of an individual. Because population responses 

are made up of the responses of individuals to their environment, the ability of models to 

accurately reflect the distribution of fish is important when considering the effects of 

environmental conditions on the population dynamics of a species. In many individual-

based models of fish population dynamics, bioenergetics models have been used to 

inform the movement of fish (e.g., Humston et al. 2004; Rose et al. 2013; 2018; Politikos 

et al. 2015a; 2015b); however, the accuracy with which these models reflect the actual 

distribution of the population in question is rarely verified (but see Politikos et al. 2015a; 

2015b). The use of spatially-explicit population dynamics models that have not been 

verified with survey data may lead to biased population assessments which may result in 

ineffective or counterproductive management measures (Cooke et al. 2016). Therefore, 

validation of model-predicted fish distributions should be performed whenever possible 

to ensure that environmental conditions experienced by simulated individuals accurately 

reflect those experienced by fish in the population of interest. Without validation of fish 

distributions, results of population dynamics models should be interpreted cautiously. 
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Differences in the spatial distribution of simulated and actual fish also suggest 

that during summer in Chesapeake Bay, metabolic scope and hypoxia tolerance are likely 

not the major drivers of Atlantic croaker and spot distribution. In the movement 

submodels used here, temperature is the only environmental factor with an explicit effect 

on metabolic scope, although critical oxygen concentration is used to elicit an avoidance 

response to low dissolved oxygen conditions. Because exposure to hypoxic conditions 

(Capossela et al. 2012; Lapointe et al. 2014) and changes in salinity (Ern et al. 2014) are 

known to affect the metabolic scope of fish, incorporation of the effects of these 

environmental factors, in combination with the effects of temperature, on metabolic 

scope into the movement submodels may result in more accurate distributions of 

simulated individuals. To determine the combined effects of varying temperatures, 

dissolved oxygen conditions, and salinities on the metabolic scope of individuals, 

additional respirometry trials must be conducted with multiple levels of temperature, 

dissolved oxygen concentration, and salinity in a factorial design.  

If the spatial distributions of fish in the individual-based models were improved 

through the incorporation of the effects of salinity and dissolved oxygen conditions on 

metabolic scope, the individual-based model could be expanded to incorporate the 

population dynamics of Atlantic croaker and spot in Chesapeake Bay, similar to models 

of Atlantic croaker from the Gulf of Mexico (Rose et al. 2018). For instance, based on the 

results of my research, the effects of hypoxia exposure on the reproductive potential of 

Atlantic croaker could be incorporated into an individual-based model to investigate the 
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potential effects of annual variations in environmental conditions on the reproduction of 

Atlantic croaker in the Virginia subestuaries of Chesapeake Bay.  

Oxidative stress associated with exposure to hypoxic conditions (DO 

concentrations < 3.5 mg L-1) did not result in increased relative expression of hypoxia-

inducible factors or reductions in reproductive potential in the Virginia subestuaries of 

Chesapeake Bay. This contrasts with the results of previous studies of Atlantic croaker in 

the Gulf of Mexico (Thomas et al. 2007; Thomas and Rahman 2012). However, these 

differences likely stem from the nature of the hypoxic zones in these areas. The Gulf of 

Mexico hypoxic zone covers a vast portion of the Louisiana continental shelf (exceeding 

22,000 km2 in some years, Rabalais et al. 2002; Turner et al. 2008) whereas hypoxia in 

the Virginia subestuaries of Chesapeake Bay is largely limited to the deep channels 

adjacent to shallower, well-oxygenated waters (Officer et al. 1984; Hagy et al. 2004), 

allowing fish to move between hypoxic and normoxic conditions. To incorporate the 

effects of hypoxia exposure on the reproduction of Atlantic croaker in Chesapeake Bay 

into an individual-based model similar to that developed by Rose et al. (2018) we need to 

better understand the relationship between hypoxia exposure and reproduction in this 

species throughout Chesapeake Bay. Laboratory experiments to investigate the effects of 

intermittent hypoxia exposure on Atlantic croaker reproduction in a controlled setting and 

additional sampling efforts throughout the lower Chesapeake Bay from May to October 

would improve our understanding of the effects of hypoxia exposure on the reproduction 

of Atlantic croaker in this region and could be used to predict the impact of changing 

environmental conditions on this population under different climate-change scenarios. 
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Because I was unable to obtain sufficient samples to investigate the effects of hypoxia 

exposure on the reproductive potential of spot, similar efforts to those described for 

Atlantic croaker should be undertaken to determine if there are species-specific effects 

that may alter the composition of the fish community in Chesapeake Bay as hypoxia 

becomes more prevalent.  

Additionally, compared to the Virginia waters of Chesapeake Bay, hypoxia is 

more widespread and severe during summer in the Maryland waters of this estuary which 

are also inhabited by Atlantic croaker and spot at this time. To better understand the 

population-wide effects of hypoxia on the reproduction of these species and to inform the 

management of these economically and ecologically important species under future 

climate scenarios, additional sampling in this region is necessary.  
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