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ABSTRACT 

 

      

The striped bass (Morone saxatilis) is an anadromous fish distributed along the 

eastern coast of North America that currently supports one of the most lucrative and 

important commercial and recreational fisheries in the region. Since the recovery of the 

Atlantic stock after a collapse in the late 1970s, studies have focused on understanding 

the connectivity of major spawning grounds and improving methods of abundance 

estimation. Studies support strong site fidelity of striped bass to major estuaries along the 

Atlantic coast, but there has been disagreement about connectivity within the largest 

spawning ground, the Chesapeake Bay. Additionally, no estimates exist for striped bass 

abundance within the Chesapeake Bay. The objectives of my thesis were to examine the 

fine scale genetic population structure of striped bass within the lower Chesapeake Bay, 

and to test the feasibility of a novel, fishery-independent molecular methodology, close-

kinship mark-recapture analysis (CKMR), to estimate spawning adult abundance within 

the Rappahannock River. Sampling of 1,132 adult striped bass and 389 young-of-year 

(YOY) striped bass was done during the 2016 and 2017 spawning seasons on major 

spawning grounds of the James, Mattaponi, and Rappahannock rivers. Twenty 

microsatellite loci were used to examine both the spatial genetic heterogeneity among the 

river systems and the temporal heterogeneity between sampling years within a river. 

Significant population pairwise FST values were recovered from 18 of the 21 pairwise 

comparisons. However, mean FST values between temporal comparisons were higher than 

those among spatial comparisons, suggesting a lack of biologically meaningful 

population structure among rivers. Additional analyses and a 30-year tagging data set 

also support a rate of connectivity among the major rivers high enough to maintain 

similar allele frequencies. Combined, the data support one genetic stock of striped bass 

within the lower Chesapeake Bay. The same suite of markers was then used to test the 

feasibility of CKMR to estimate adult abundance of striped bass within the 

Rappahannock River system. Using existing sampling programs, 371 spawning adults 

and 389 YOY were collected on the spawning and nursey grounds of the Rappahannock 

River in 2016. These samples yielded 2 parent-offspring pairs, resulting in an abundance 

estimate of 145,081 adult spawning striped bass. Additional analyses indicated that a 

relatively precise estimate (recovery of 50 POPs) would be made if sample sizes totaled 

850 adults and 850 YOY. CKMR can be a feasible option of abundance estimation for 

striped bass. Overall, my study has provided the first estimate of abundance for 

Chesapeake Bay striped bass, and has provided strong support of a single, spawning 

stock of striped bass within the Chesapeake Bay.  
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CHAPTER I 

GENERAL INTRODUCTION
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Introduction 

Striped bass (Morone saxatilis) support one of the largest commercial and 

recreational fisheries of the United States Atlantic coast (ASMFC, 2016). The Atlantic 

stock of striped bass collapsed in the late 1970s due to overfishing and habitat 

degradation (ASMFC, 2013). Today the striped bass stock has rebounded, but there are 

many uncertainties associated with the assessment of the stock. This study examined two 

of these uncertainties: genetic connectivity of striped bass among the major sub-estuaries 

of Chesapeake Bay and the estimation of abundance of adult striped bass within a sub-

estuary. A suite of highly polymorphic molecular markers was used to investigate genetic 

connectivity of striped bass among major Virginia sub-estuaries of the Chesapeake Bay. 

In addition, the applicability of a novel fishery independent method, close-kinship mark-

recapture analysis (CKMR), was evaluated to provide an independent estimate of the size 

of the striped bass spawning stock within a major spawning ground, the Rappahannock 

River. 

Striped bass are an anadromous species that undertake a seasonal migration from coastal 

marine waters, through estuaries, and into fresh water for spawning (Paramore and 

Rulifson, 2001). Anadromy is not displayed by all striped bass, and some individuals 

exhibit resident ‘riverine’ life histories (Secor et al., 2000; Paramore and Rulifson, 2001). 

Differences in life histories are influenced by fish size, sex, year class strength, and 

latitude (Setzler et al., 1980; Dunning et al., 2006; Ng et al., 2007; Callihan et al., 2014).



 
 

4 

 

Striped bass exhibit sexual dimorphism in population dynamics and life histories 

including growth rates, movement patterns, and maturity schedules. Males mature much 

faster than females, reaching 50% maturity by age 1 (ASMFC 2013), and are thought to 

exhibit larger proportions exhibiting resident riverine life histories than females 

(Mansueti 1961; Hassin et al., 2000; Secor and Piccoli, 2004). Historically, females have 

been thought to reach 50% maturity between years 6 and 7 (ASMFC, 2016; Andrews et 

al., 2017). Female striped bass are thought to live longer than males, with >90% of fish 

caught over age 10 identified as female (ASMFC, 2016). The coastal migratory stock is 

comprised of up to 70% females of 2+ years of age (Secor and Piccoli, 2004), and these 

fish mix with the male dominated residential estuarine populations in the mid to upper 

freshwater reaches of major river systems during spawning season, which occurs in 

spring (late March to May) (Kohlenstein 1981; Chapman 1990).  

The peak of striped bass spawning season is generally between April and May. 

Females are batch spawners capable of producing millions of pelagic eggs during 

spawning events (Secor and Houde, 1998). Survival of striped bass larvae is heavily 

affected by environmental conditions, such as freshwater flow and temperature 

(Ulanowicz and Polgar, 1980; Secor and Houde, 1995; Richards and Rago, 1999). The 

freshwater flow affects the location of the salt front and estuarine turbidity maximum 

(ETM), and this, in turn, influences the quantity and quality of food available for larval 

striped bass (North and Houde, 2003). Survival of striped bass larvae is greatest between 

15°C and 19°C and temperatures outside of this range lead to higher rates of mortality 

(Secor and Houde, 1995; Secor, 2006). It is hypothesized that the striped bass life history 

strategy to spawn multiple batches over a long season increases the chances that some 



 
 

5 

 

larvae will be exposed to optimal environmental conditions including temperatures and 

freshwater flows (Secor and Houde, 1995). Within the Chesapeake Bay there are 

numerous areas that serve as spawning grounds for striped bass, and if one area has 

conditions not conducive to larval survival, another area may have conditions favoring 

high recruitment, ensuring the continuance of the population (Secor 2006). 

The Chesapeake Bay is considered one of the most important spawning grounds for 

striped bass (Kernehan 1981; Kohlenstein 1981; Richards and Rago, 1999). While 

contributions of the major spawning areas may vary annually depending on both the 

number of individuals spawning in the area and the impact of environmental variables, 

the Chesapeake Bay stock has been estimated to contribute as much as 84% of the total 

Atlantic stock in some years (Berggren and Lieberman, 1978; Waldman et al., 2012). A 

recent genetic study indicated that Chesapeake Bay striped bass have served as a large 

source of recruits supporting other Atlantic coastal regions (Gautier et al., 2013). 

Additional major spawning areas, in order of contribution to the Atlantic stock, include 

the Hudson River, the Delaware River, and the Roanoke River (Wirgin et al., 1993). 

Results of conventional tagging, acoustic tagging, and genetic studies demonstrate 

spawning site fidelity to the major spawning estuaries (Nichols and Miller, 1967; Ng et 

al., 2007; Gautier et al., 2013). 

Striped bass have supported important commercial and recreational fisheries along 

the eastern US Atlantic coast since the 1600s (Richards and Rago, 1999). Recreational 

fisheries exist across the range of the Atlantic stock (Canada to South Carolina), while 

commercial fisheries operate in Massachusetts, Rhode Island, New York, Delaware, 

Maryland, Virginia, and North Carolina (ASMFC, 2013). In 2015, commercial fishery 
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landings of striped bass totaled 617,698 fish, primarily aged 3-10 years. Over 80% of the 

landings were from Chesapeake Bay, consisting of fish aged 3-8 years (ASMFC, 2016). 

The largest commercial fishery is currently in Maryland with landings of over 350,000 

fish a year (Shepard et al., 2016). Recreational fisheries are larger, with 1.34 million fish 

landed in 2015 from Virginia, Maryland, New Jersey, and Massachusetts targeting fish 

aged 4-10 years (ASMFC 2016).  

In the late 1970s and early 1980s, managers became alarmed by drastically 

decreasing catches of striped bass from commercial and recreational fisheries, as well as 

high rates of estimated fishing mortality for young striped bass (Richards and Deuel, 

1987; Gibson, 1993). The fisheries did not experience an immediate collapse, but a slow 

decline as the successful year classes of older fish sustained the fisheries until 1983 

(Richards and Rago, 1999). At that time, the majority of fish were less than 6 years of age 

(Gibson, 1993). The steady decline of the Atlantic stock biomass and changing 

environmental conditions resulted in a series of years with poor recruitment classes, and 

the spawning biomass was not able to replace itself (Goodyear 1985). As the number of 

older fish declined, there was increased fishing pressure on younger fish.  

Due to the migratory nature of striped bass, independent (non-coordinated) state 

management measures were not effective in preventing overfishing. In several instances, 

measures to preserve and rebuild the spawning stock biomass adopted by one state were 

offset by less restrictive conservation measures in adjoining states (Richards and Rago, 

1999). To ensure that all states participated equally in the management and conservation 

of striped bass, Congress enacted the Emergency Striped Bass Research Study in 1979. 

The measure allowed federal oversight of striped bass by the U.S. Fish and Wildlife 
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Service and the National Marine Fisheries Service (Richards and Deuel, 1987), and it 

provided research funding to federal agencies, state agencies, and academic institutions to 

determine the causes of the decline in the striped bass population with research published 

in annual reports (Shepard et al., 2005). The congressional measure also directed the 

Atlantic States Marine Fisheries Commission (ASMFC) to develop a striped bass 

fisheries management plan (FMP) which was implemented in 1981. Shortly thereafter, in 

1984, Congress approved the Striped Bass Conservation Act (Field 1997; Richards and 

Rago, 1999). This legislation gave the ASMFC power to implement management policies 

across multiple states by allowing the secretaries of Commerce and Interior to place a 

moratorium on striped bass fishing for any state not complying with the FMP. The act 

was amended into the 1990s to provide continued federal oversight and funding to the 

recovery of striped bass stocks (Public Law 98-613). 

The striped bass spawning stock decline during the late 1970s and 1980s in the 

Chesapeake Bay led to a decrease of the Atlantic Stock overall (Richards and Deuel, 

1987). The primary cause of the population decline was a lack of strong recruitment from 

the Chesapeake Bay since 1970 that was combined with total mortality rates of 60-93% 

for males and 45% for females (Richards and Deuel, 1987). In addition, immature striped 

bass were experiencing high rates of fishing mortality from a lack of minimum size 

regulations and overfishing. Comparisons of fishing mortalities between the Hudson 

River, which did not experience a major stock collapse, and the Chesapeake Bay 

indicated that the Hudson River striped bass experienced about half the fishing mortality 

of those in the Chesapeake Bay (Richards and Rago, 1999). In addition to overfishing, 

the striped bass population was affected by degraded water quality (Hall 1989; Finger et 
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al., 1998), habitat impairment (Richards and Rago, 1999), nutritional stress (Setzler-

Hamilton et al., 1981), and overall poor environmental conditions (Hall et al., 1993). 

Prior to the stock crash, the only management measures for striped bass were 

minimum size limits that ranged from 10-14 inches total length (TL) depending on the 

state (ASMFC, 2013). The implementation of the Fisheries Management Plan for striped 

bass by the ASMFC in 1981 resulted in a minimum size limit for all states of 14 inches 

TL within bays and estuaries and 24 inches TL in coastal areas. Additionally, ASMFC 

recommended a fishing closure on spawning grounds during spawning season. ASMFC 

amended the FMP in 1984 and again in1985, to set fishing mortality targets on a state by 

state basis (Richards and Rago, 1999). A third amendment adopted in 1985 included 

measures to protect a strong 1982-year class in the Chesapeake Bay. A minimum size of 

38 inches TL was implemented to ensure that 95% of the females of the 1982-year class 

survived to have an opportunity to spawn. Rather than requiring the large minimum size, 

most states, with the exception of Massachusetts, implemented a moratorium on the 

striped bass fishery (Richards and Rago, 1999; ASMFC 2013). Mandatory monitoring 

surveys in subsequent years indicated that populations were recovering, and an 

amendment to the FMP reopened the fishery in 1990 with a target fishing mortality of 

F=0.25. Dual minimum size limits of 18 inches TL in bays and estuaries and 28 inches 

TL in coastal areas were implemented, as well as fishery restrictions including 

recreational trip limits and commercial fishing seasons (ASMFC 2013).  

As a result of management efforts that reduced fishing mortality on striped bass 

and favorable environmental conditions that facilitated good recruitment, the striped bass 

spawning biomass within the Chesapeake Bay was restored to management thresholds by 
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1995 (Field 1997). An amendment to the striped bass FMP in 1995 eased some of the 

existing strict fishery regulations, but still allowed for the stock to continue to rebuild. 

Coastal states were also provided greater freedom to adjust regulations to fit their needs 

as long as ASMFC goals were being met (Richards and Rago, 1999). The population size 

of striped bass peaked in 1997 at 249 million fish, and the stock remained close to this 

size until 2005 when abundance began to decline (ASMFC 2013). Additional 

amendments to the striped bass FMP have since been adopted, the largest of which 

includes management triggers to protect female spawning biomass. Due to declines in the 

female SSB, management action was triggered in 2014 that resulted in 2015 harvest 

quotas being cut 25% for coastal states and 20.5% for Chesapeake Bay states (ASMFC 

2015). 

The 2016 striped bass assessment update indicated that the Atlantic stock of 

striped bass is not overfished nor experiencing overfishing; however, the stock is not 

considered fully rebuilt as the female spawning stock biomass (SSB) is estimated at 

58,853 metric tons, just above the biomass threshold of 57,626 metric tons and well 

below the biomass target of 72,032 metric tons (ASMFC 2016). A lack of strong 

recruitment since 2012 has led to a further reduction in abundance of striped bass on the 

Atlantic Coast. Projections of the 2016 Atlantic Striped Bass Stock Assessment Update 

indicate that there is ~39% probability that female SSB will drop below the management 

biomass threshold over the next three years. Some studies have attributed this recent 

decline to an increase in the prevalence of Mycobacteriosis, a bacterial disease in striped 

bass shown to have large impacts on reproductive output and natural mortality (Gautier et 

al., 2008; Gervasi 2015; Hoenig et al., 2017), while others have attributed the decline to a 
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reduction in the availability of prey species (ASMFC 2013). Declines in the Atlantic 

stock often result from declines in Chesapeake Bay (Richard and Deuel, 1987). In 2015, 

estimates of the SSB within Virginia rivers for both males and females were both ~40% 

below the average SSB for the years 1987 to 2015, with survival estimates the lowest 

seen in recent years (Hoenig et al., 2016).  

The recent declining trend in abundance of striped bass within the Chesapeake 

Bay has highlighted the need for an understating of the contributions of each subestuary 

to the Chesapeake Bay striped bass population. While connectivity and abundance of the 

Atlantic coastal stock is relatively well known, there has been little focus within 

Chesapeake Bay. The Chesapeake Bay is differentiated from other major striped bass 

spawning grounds because it is a large, complex estuary composed of several major 

subestuary river systems (Marshall and Alden, 1990; Boynton et al., 1995) while all other 

areas largely consist of one large river system with much smaller supporting tributaries 

(Chittenden 1971; Carmichael et al; 1998). Each of the subestuaries within Chesapeake 

Bay has the potential to host separate spawning populations of striped bass. Knowledge 

regarding the stock structure of striped bass within subestuaries of Chesapeake Bay, and 

estimates of the number of breeding individuals on each spawning ground can help 

fishery managers to address regionally the recent decline of striped bass spawning stock 

biomass.  

Researchers have studied striped bass population structure within Chesapeake 

Bay since the early 20th century. Investigations of morphological characteristics (Lewis 

1957; Lund 1957; Raney 1957; Murawski 1958) and tagging studies (Massmann and 

Pacheco, 1961; Nichols and Miller, 1967) supported the hypothesis of distinct stocks of 
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striped bass within Chesapeake Bay subestuaries. Modern molecular studies that 

examined genetic population structure using allozymes (Grove et al., 1976; Sidell et al., 

1980), mitochondrial DNA (Chapman 1987, 1990; Wirgin et al., 1989, 1993), and 

nuclear DNA microsatellite loci (Laughlin and Turner, 1996; Diaz et al., 1997; Brown et 

al., 2005; Gauthier et al., 2013) have reached conflicting conclusions concerning the 

existence of separate striped bass stocks on the different subestuary spawning grounds 

within Chesapeake Bay. Additionally, there is little information regarding the abundance 

and spawning stock size of striped bass within subestuaries of Chesapeake Bay.  

The research recommendations highlighted in the 2013 Striped Bass Benchmark 

Assessment included an in-depth analysis of stock composition and the need for the 

development of an independent estimate of abundance. The objective of this study was to 

address these two recommendations. Using a suite of highly polymorphic molecular 

markers, the second chapter of this thesis evaluated genetic connectivity of striped bass to 

determine if genetically distinct spawning populations exist within the Chesapeake Bay 

to provide an in-depth description of the stock composition. Using the same molecular 

markers, the third chapter of this thesis assessed the applicability of a novel fishery 

independent method, close-kinship mark-recapture analysis (CKMR), to estimate of the 

size of the striped bass spawning stock for striped bass within a well-known spawning 

river, the Rappahannock River.
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Introduction  

Striped bass are distributed along the Atlantic coast of North America from 

Canada to northern Florida and support important recreational and commercial fisheries 

throughout their range (Kirkley et al., 2000). The species exhibits multiple life history 

strategies including riverine residential populations in the southern portion of the range 

and coastal, more migratory populations in the northern portion of the range (Boreman 

and Lewis, 1987; Greene et al., 2009; Wingate et al., 2011). Striped bass spawning occurs 

in the freshwater reaches of major river and estuary systems (Paramore and Rulifson, 

2001), and both tagging and genetic studies have indicated significant spatial population 

structuring among the major spawning grounds of the Atlantic stock which include the 

Hudson River, Delaware Bay, Chesapeake Bay, and the Roanoke River (Wirgin et al., 

1993; Gautier et al., 2013). Of these systems, the Chesapeake Bay is considered the 

largest and most productive spawning ground (Kohlenstein 1981), contributing upwards 

of 90% of the stock composition in some years (Waldman et al., 2012).  

Striped bass are managed as a single stock but results from tagging and molecular 

genetic studies suggest the presence of distinct spawning populations in major estuary 

systems along the Atlantic Coast (Merriman, 1941; Kohlenstein 1981; Fabrizio, 1987; 

Dorazio et al., 1994; Lindley et al., 2011). Conventional tagging studies (Mansueti,
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1961; Nichols and Miller; 1967; McLaren et al., 1981) and acoustic tagging studies (Ng 

et al., 2007; Gahagen et al., 2015; Callihan et al., 2015) have demonstrated that striped 

bass exhibit a high rate of spawning site fidelity during the spawning season to major 

spawning grounds. Genetic analyses of striped bass of both mitochondrial DNA 

(mtDNA) and nuclear DNA markers have reported significant genetic heterogeneity 

among striped bass from the major Atlantic coast spawning grounds (Wirgin et al., 1993; 

Gautier et al., 2013).  

 While genetic and tagging studies of striped bass indicate that there is spawning 

site fidelity to the major spawning grounds, spawning site fidelity to river systems, or 

subestuaries, within the major spawning grounds may also exist. For the Chesapeake 

Bay, the largest and most diverse estuary that striped bass inhabit (Marshall and Alden, 

1990; Boynton et al., 1995), tagging studies have demonstrated high spawning site 

fidelity to specific subestuaries within the Chesapeake Bay. Studies in which fish were 

tagged on riverine spawning grounds during the spawning season and ultimately 

recaptured on spawning grounds during the spawning season in subsequent years 

reported a fidelity to the spawning ground on which they were tagged in excess of 70% 

(Vladykov and Wallace, 1938; Massmann and Pacheco, 1961; Nichols and Miller, 1967). 

Based on the results, these authors hypothesized that separate spawning populations of 

striped bass exist in each river system, and their hypothesis receives support from 

subsequent tagging studies (Wingate et al., 2011).  

In contrast to conventional tagging, results of genetic studies of striped bass 

population structure within Chesapeake Bay have been conflicting (Wirgin et al., 1987, 

1990; Chapman 1990; Laughlin and Turner, 1996; Brown et al., 2005). Early allozyme 
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studies found little electrophoretic variation and no significant heterogeneity among 

striped bass populations sampled during one year within the upper- and mid-Chesapeake 

Bay (Grove et al., 1976; Sidell et al., 1980). Restriction fragment length polymorphism 

analyses of striped bass mtDNA found significant heterogeneity among collection 

locations within Chesapeake Bay (Chapman et al., 1987; Wirgin et al., 1993). The studies 

sampled spawning adults, with Wirgin et al. (1993) sampling spawning males and 

Chapman (1990) sampling spawning adults as well as immature fish collected in prior 

years. Genetic studies analyzing nuclear DNA loci from Chesapeake Bay striped bass 

have reported conflicting results. Laughlin and Turner (1996) reported no significant 

genetic differentiation among samples of young-of-year (YOY) striped bass collected 

during one year from the major subestuaries of the lower Chesapeake Bay. Similarly, 

Brown et al. (2005) found no significant heterogeneity among pooled samples of YOY 

striped bass collected from both Virginia and Maryland subestuaries of Chesapeake Bay 

during two, non-consecutive years. In contrast to Laughlin and Tuner (1996) and Brown 

et al. (2005), Gautier et al. (2013) reported weak, but statistically significant genetic 

population structuring among collections of YOY striped bass taken from different 

sampling periods throughout the entire Chesapeake Bay.  

The inferences of genetic studies for striped bass population structure within 

Chesapeake Bay have varied depending on the types of molecular markers analyzed and 

the sampling framework employed. Resolution of genetic differences for Chesapeake 

Bay striped bass may be facilitated by using a biologically informed sampling design that 

includes individuals collected on the spawning grounds during spawning season (or early 

life history stages that could not have moved far from the spawning grounds), temporal 
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replicates to assess interannual variation, and large sample sizes of both individuals and 

molecular markers (Hedgecock, 1991; Ruzzante 1998; Kalinowski 2005). The objective 

of this study was to closely examine the population genetic structure of striped bass 

within the lower Chesapeake Bay using a biologically informed sample design that 

incorporated large numbers of adult striped bass captured on spawning grounds during 

two consecutive spawning seasons in the James River, the Rappahannock River, and the 

York River, screened with a panel of 20 highly variable microsatellite loci.  Specifically, 

I was testing the null hypothesis that my collections were drawn from a single genetic 

population, and that significant population structure would be signaled by higher levels of 

variation between collections from different rivers in the same year than the variation 

between collections taken from the same river in consecutive years.  
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Materials and Methods 

Sample Collection 

Caudal fin clips were taken from adult striped bass captured on the spawning 

grounds of the James, Mattaponi, and Rappahannock rivers during the spawning season 

(March to May) in 2016 and 2017 (Figure 1). Striped bass were sampled from three 

commercial pound nets on the Rappahannock River (river miles 46, 47, 55), with samples 

collected twice a week at all sampling sites from 4 April to 26 May 2016 and 10 April to 

27 April 2017. Fish from the James River (river miles 43-62) and Mattaponi River (river 

miles 30-42) were sampled using multiple-meshed anchored gill nets (3 in-10 in) and a 

drift gill net (4.5”-8”). The gill nets were fished from 30 min to 60 min, with shorter 

deployments at higher water temperatures. Only fish with a total length equal to or 

greater than 458 mm were sampled to ensure that all fish were mature (Mansueti, 1961). 

Fish were released alive after being tagged. For each individual, fork length and total 

length were measured, and a sample of scales taken for aging. Sex was determined in the 

field by expressing reproductive products. Fin clips were stored in 95% ethanol. 

Young-of-year striped bass were sampled from the Rappahannock River (rivers 

miles 28 to 75) from June to September 2016 using a 100 ft long, 4ft deep, 0.25 in mesh 

beach seine net and had fork lengths of 22 mm to 73 mm, well below 118mm reported 

mean size for YOY striped bass prior to their first winter (Hurst and Connover, 2003). 

Genetic samples were taken as fin clips or white muscle tissue and stored in 95% ethanol.  
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Molecular Marker Selection 

Candidate nuclear loci were selected from the more than 500 potential striped 

bass microsatellite markers available in the literature (Couch et al., 2006; Rexroad et al., 

2006; Fountain et al., 2009; Gauthier et al., 2013). Microsatellite loci were selected based 

on allelic diversity, chromosome location (linkage map from Liu et al., 2011), estimated 

heterozygosity, and repeat length. Each candidate microsatellite locus was amplified over 

a thermal gradient to verify optimum annealing temperatures and subsequently assembled 

into multiplexes using Multiplex Manager (Holleley and Geerts, 2009). Each multiplex 

was evaluated on a temperature gradient to determine an optimal annealing temperature 

for the combination of loci. The final selection was of 20 microsatellite loci comprised of 

four multiplex panels consisting of five loci each (Supplementary Table 1).  

Extraction and Amplification 

Total genomic DNA was extracted from each fin clip using Machary Nagel 

NucleoSpin® DNA tissue kits. Extractions were performed in 96-well plates following 

the manufacturer’s protocol on the Tecan Freedom EVO® 75 liquid handling system. 

DNA quantity and quality was assessed using both a NanoDrop spectrophotometer and 

Qubit fluorometric quantitation. Microsatellite multiplexes were amplified using the 

polymerase chain reaction (PCR) with locus-specific fluorescent labels in 10 ul reactions. 

Following amplification, 2 ul of product was combined with 8 ul of formamide and 0.2 ul 

500 LIZ Gene Scan Size standard (Applied Biosystems), and denatured for 10 minutes at 

95°C before sequencing on a 36 cm 3130xl Capillary Genetic Analyzer (Applied 

Biosystems, Inc.). The chromatic peaks representing each microsatellite locus were 

scored using GeneMarker v2.6.0 (SoftGenetics, LLC). After scoring, evidence of scoring 
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errors and the presence of null alleles were evaluated using MicroChecker 2.2.3 (Van 

Oosterhout et al., 2004). Accuracy of allele calling was verified by scoring all 

electropherograms from the initial year of data twice to ensure consistency in allele calls. 

To ensure reliability in amplification and allele calling, 5% of all samples were re-

analyzed (PCR amplification through allele scoring).  

Descriptive Statistics 

Observed heterozygosity (Ho) and expected heterozygosity (He) were calculated 

using GenePop v4.0 (10,000 iterations; Rousset 2008), and the conformation of genotypic 

distributions to expectations of Hardy Weinberg Equilibrium was evaluated using 

probability tests (10,000 iterations; Guo and Thompson, 1992) with significance values 

adjusted using the sequential Bonferroni correction for multiple comparisons (Rice, 

1990). PopGenReport (Gruber and Adamack, 2014) was used within the statistical 

language R (R Core Team, 2017) to calculate allele frequencies, number of alleles per 

locus, mean allelic richness (following El Mousadik and Petit, 1996), genetic distances, 

private alleles (alleles observed in only one population; Kalinowski 2004), and FIT, FST, 

and FIS values for each locus. Effective population size was estimated using NeEstimator 

v2.01 (Do et al., 2014) using the linkage disequilibrium method by jackknifing over loci 

with random mating and a Pcrit value of 0.02.  

Previous studies have reported that male striped bass tend to be more resident 

than females (Mansueti, 1961), and genetic results suggest an asymmetrical homing of 

adults (Chapman et al., 1987; Wirgin et al., 1993; Laughlin and Turner, 1996; Brown et 

al., 2005). To compare sex-specific connectivity in this study, all analyses were also 

performed on datasets consisting of only adult males and of only adult females.  
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Population Structure 

Arlequin v 3.5.1.2 (Excoffier and Lischer, 2010) was used to calculate population 

pairwise FST values and significance was assessed based on 10,000 permutations of the 

data and a critical value based on a modified false discovery rate (Narum 2006) was used 

that corrected for multiple comparisons. A hierarchical analysis of molecular variance 

(AMOVA) was performed in Arlequin to examine spatial differences (between rivers), 

temporal differences (between years), and sex differences over 1,000 permutations of the 

data. A Mantel Test (Smouse et al., 1986) was used to assess isolation by distance, by 

using the coordinates of central sampling locality for each river. STRUCTURE v2.3.4 

(Pritchard et al., 2000, Falush et al., 2003; Falush et al., 2007) was used to recover any 

potential population subdivision and genotypic clusters using the R package 

ParallelStructure run on CIPRES (Miller et al., 2010), a high-performance computing 

cluster. The simulations utilized the loci prior option (Hubisz et al., 2009), consisted of 

five iterations of K of 1-7 with a 1,000,000 MCMC after the burn-in of 100,000, and 

utilized an admixture ancestry model. A principal component analysis was preformed to 

examine the relationships between collections in multivariate space using custom R code. 
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Results 

Population Genetic Statistics  

A total of 2,197 adult and young of year (YOY) striped bass were sampled during 

2016 and 2017 from the Rappahannock, James, and Mattaponi rivers. The samples 

comprised seven collections: six adult striped bass collections consisting of individuals 

caught on the spawning grounds during the spawning season of each of the three rivers in 

2016 and 2017, and a single collection of YOY striped bass caught in the Rappahannock 

River during 2016. All 2,197 individuals were genotyped for 20 microsatellite markers; 

however, 676 individuals were removed from the dataset because 10% or more of the loci 

could not be used due to problems with amplification or sizing of alleles (Table 1). The 

greatest numbers of samples were removed from the Rappahannock 2016 collection 

(50%) due to inconsistent amplifications and trouble getting correct allele size calls 

across all loci. The fraction of individuals removed from the other collections ranged 

from 12% (Mattaponi 2016) to 30% (YOY Rappahannock). In an attempt to include 

samples with inconsistent amplifications and troubleshoot the amplification problem, 

subsets of individuals from each river were re-isolated and amplified using different 

protocols. No methodology yielded consistent amplifications for the problematic 

samples. Additionally, the 5% of the samples that were redone to assess error included 

individuals with inconsistent amplifications and consistent amplifications to confirm the 

protocol. Of these, samples from individuals with the original inconsistent amplifications 

remained inconsistent, and the samples from individuals with consistent amplifications 

remained consistent. Prior to removing loci from the analysis, the samples with 

inconsistent amplification were removed to ensure that no bias was introduced. The 1,521 

samples used in these analyses included 1,132 adults collected in 2016 and 472 from 
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2017. Males (840, overall; 487 in 2016, 354 in 2017) were much more abundant in adult 

collections than females (overall 202 overall; 173 in 2016, 119 in 2017). The YOY 

collection consisted of 389 individuals.  

Tests for conformation of genotypic distributions to Hardy-Weinberg equilibrium 

expectations indicated three loci, 1322, 1437, and 1491, had significant deviations in two 

or more collections after correction for multiple comparisons. Additionally, reanalysis of 

5% of all samples (PCR amplification through scoring) indicated these three loci did not 

have consistent amplification and had issues assessing allele sizes; they were removed 

from further analyses. Reanalysis of the 17 remaining loci demonstrated an error rate of 

less than 1% due to peak shifts of 1 to 3 repeat motifs. MicroChecker indicated that the 

genotypic distributions of one locus, 1559, showed evidence of the presence of a null 

allele in five of seven collections; however, due to the low impact of null alleles on FST 

estimates (Carlsson 2008), and no other foreseen issues, the marker was included in 

subsequent analyses. In total, 17 loci were used for the analyses. 

Pairwise tests for linkage disequilibrium between the 17 loci revealed significant 

disequilibrium between 65 of 952 pairwise comparisons after correction for multiple 

comparisons, indicating a non-random association of the alleles at some loci (Bartley et 

al., 1992). Of these, 43 were pairwise comparisons of loci of adult Rappahannock River 

collections from 2016 and 2017. No pairwise comparisons between loci demonstrated 

significant disequilibrium in more than one collection, indicating independent assortment 

of loci indicating that loci were not physically linked. These results are consistent with a 

linkage map produced by Li (2009) that indicated that loci are on different chromosomes. 

No loci were excluded due to linkage disequilibrium.  
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Levels of genetic variation were comparable among collections, regardless of 

collection year or river (Table 2). The total number of alleles for all loci for each 

collection ranged from 248 (James 2017) to 278 (YOY Rappahannock). The number of 

private alleles varied across collections, with the largest collection YOY Rappahannock 

having 10 private alleles, and all other adult collections having 0-5 private alleles. No 

private allele occurred in more than two individuals in a collection. Values of mean 

allelic richness pooled across all loci for all collections were similar, ranging from 13.931 

(Mattaponi 2016) to 14.605 (Mattaponi 2017). The average number of alleles per locus 

for pooled collections was 18, and the total number of alleles per locus ranged from 6 

(1271) to 30 (1556) (Table 3). The mean observed heterozygosity across all loci for the 

pooled collections was 0.834 and ranged from 0.518 (S1271) to 0.926 (S1273). Observed 

heterozygosities were similar among collections pooled across loci and ranged from 

0.827 (James 2016) to 0.883 (Rappahannock 2017). For rivers pooled over years, 

observed heterozygosities were 0.862 in the Rappahannock, 0.848 in the James, and 

0.841 in the Mattaponi. For years pooled over rivers, the observed heterozygosities were 

0.835 in 2016 and 0.865 in 2017. Inbreeding coefficients (FIS) for each collection ranged 

from -0.064 to 0.031, with a mean of 0.002. 

Levels of variation between male and female striped bass pooled across loci and 

pooled across collections were comparable (Table 4). Male striped bass had a similar 

number of alleles for pooled loci ranging from 237 (James 2017) to 257 (Rappahannock 

2016). Female striped bass had slightly lower numbers of alleles relative to males across 

collections for all loci combined from 200 (James 2016 & Mattaponi 2017) to 233 

(Rappahannock 2016); the slightly lower values could be the result of the smaller number 
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of females sampled compared to male fish (850 compared to 292). Mean allelic richness 

for males was similar among rivers, ranging from 13.835 (Mattaponi 2017) to 13.277 

(Rappahannock 2017). Female mean allelic richness was slightly lower than males, 

ranging from 11.046 (James 2017) to 10.539 (James 2016). The average number of 

alleles per locus across all male collections was 17.29, with the total number of alleles 

ranging from 26 (1591) to 6 (1271). The average number of alleles per locus across all 

female populations was 16.11, with the total number of alleles ranging from 26 (1556) to 

6 (1271). Mean inbreeding coefficients (FIS) for male collections was -0.010, while the 

mean FIS for females was 0.01. Mean observed heterozygosity for males across all loci 

was 0.853 and ranged from 0.518 (S1271) to 0.936 (S1556), and for females mean 

observed heterozygosity across all loci was 0.840. For both male and female fish, 

observed heterozygosities were similar when pooled across both years and among rivers. 

Genetic Structure 

The global FST among the seven collections was 0.003 (P<0.05) and single locus 

FST values ranged from 0.001 (1598) to 0.014 (1602) (Table 3). Locus 1602 produced the 

highest individual locus FST value (0.0135).  Removal of this locus from subsequent 

analyses did not result in changes of significance of the results. Pairwise multi-locus FST 

values were calculated between all collections among rivers in each year. The two lowest 

values were between the juvenile Rappahannock and the sampled parents in 

Rappahannock 2016 (-0.0002) and between juvenile Rappahannock and Mattaponi 2016 

(-0.0005). The highest FST value was 0.007 between James 2016 and James 2017. Out of 

21 pairwise comparisons, 18 were significant (P<0.05) after corrections for multiple 

comparisons. The three non-significant comparisons (P>0.05) were between collections 
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from different rivers in different years (Table 6). For all three rivers, the FST values 

between years for the same river were comparable to values among rivers in the same 

year. For the same river between years, all FST values were statistically significant 

(P<0.05) and ranged from 0.00725 for the James, 0.00293 for the Mattaponi, and 0.00498 

for the Rappahannock. When adults were pooled together across years from each of the 

three rivers (Table 5), the Mattaponi River was not significantly different from the 

Rappahannock River (FST=0.0003, P>0.05), but was significantly different from the 

James River (FST=0.002, P<0.05). The Rappahannock had a significant pairwise 

comparison between the James River (FST=0.003, P<0.05). 

When males and females were analyzed separately, population pairwise FST 

values among males and females were also low across river collections and temporal 

replicates. Population pairwise FST  comparisons among male collections had 14 out 15 

pairwise comparisons significant after corrections for multiple comparisons (Table 7), 

with values ranging from 0.002 between the Mattaponi and James rivers in 2016 to 0.006 

between the James and Rappahannock rivers in 2017. Population pairwise FST  

comparisons of female collections had with 3 out 15 comparisons being significant after 

corrections for multiple comparisons (Table 8) with values ranging from 0.001 between 

the James and Rappahannock rivers in 2016 to 0.006 between the Mattaponi and 

Rappahannock rivers in 2017. 

A variety of AMOVA analyses found no significant population genetic variation 

between sample years pooled over river collections (2016 vs. 2017) or in sampling 

location (between rivers pooled over years). AMOVA analysis indicated that temporal 

differences between 2016 and 2017 pooled across rivers accounted for 0.27% of the 
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overall genetic variation for all river collections with a small, but significant FCT (0.003, 

P<0.05). AMOVA analysis for spatial differences among rivers pooled over years was 

non-significant (FCT=-0.001, P > 0.05), and genetic variation among rivers accounted for 

0.04% of the total variation. For both AMOVA analyses, the largest partitioning of 

genetic variance was found within samples (99.6%). Tests for isolation by distance 

indicated no significant relationship between three geographic distance points (one for 

each river) and pairwise FST values (P>0.05, R2= 0.035). 

STRUCTURE analyses using proposed genetic clusters (K) of 1 to 7 revealed that 

the most likely K was 1, even with the Evanno correction (Evanno et al., 2005). The 

mean likelihood value was Ln(P)=-113946.46. The STRUCTURE output indicated that 

only one genetic cluster of individuals exists over temporal replicates and river 

collections. A principal component analysis (PCA) for all collections showed no patterns 

of correlation between the geographical groups or temporal replicates (Figure 2). For all 

sample groups combined, the first PC explained 2.51% of total variability in the data set, 

and PC2 explained 2.40% of the data set. The PC1 for males explained 3.11% of 

variability in the data set, and PC2 explained 2.95% variability. For females, PC1 

explained 3.91% of variability in the data set, and PC2 explained 3.82% variability. 

Contemporary effective population sizes were variable, ranging from 194.5 (2017 

Rappahannock) to 1187 (Mattaponi 2017) (Table 9). Both Rappahannock year samples 

had the lowest effective population sizes for each year, and the Mattaponi had the highest 

effective population size for both yearly collections. 
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Discussion 

The objective of this study was to investigate regional genetic connectivity of 

striped bass within the lower Chesapeake Bay using a biologically informative sampling 

protocol with large sample sizes, temporal replicates, and highly polymorphic 

microsatellite markers. A total of 1,521 striped bass samples, comprising 1,132 adults and 

389 YOY and, were collected from the spawning and nursery grounds of the James, 

York, and Rappahannock rivers over two years (2016 and 2017). Samples were analyzed 

at 20 polymorphic microsatellite loci selected based on their availability for striped bass 

and, in some cases, documented utility for resolving population structure in this species 

(Abdul-Muneer, 2014; Putman and Carbone, 2014; Gautier et al., 2013).  

Difficulties were encountered with the analysis of some of the microsatellite loci 

including problems with amplification of all loci in some samples that resulted in 

unreliable sizing of alleles, as well as a few loci that failed to amplify consistently over 

all samples. Several DNA isolations, most notably for individuals in the Rappahannock 

River collections, either failed to amplify any loci or amplified inconsistently for most 

loci. These included some samples that produced high molecular weight DNA 

extractions. Various attempts were made to improve amplification success, including 

adjusting primer binding conditions, re-extracting DNA, and concentrating DNA. 

Microsatellite allele electropherograms exhibited stuttering artifacts for a large proportion 

of loci for some individuals. These artifacts may have resulted from slipped-strand 

mispairing (O’Reilly and Wright, 1995), annealing of truncated products (Hauge and Litt, 

1993), an addition of a 3' nucleotide to the end of some strands (Weber 1989; O’Reilly et 

al 1995), or the generation of extra electrophoresis products on the ABI during 
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sequencing reactions (Fernando et al., 2001). Microsatellite loci with tri- and tetra-

nucleotide repeats were selected to avoid problems with stuttering that can lead to 

incorrect genotyping, but an unknown external factor or factors resulted in poor 

amplification success across most loci for some samples. Those individuals with 

amplification issues that resulted in unreliable scoring for more than 2 loci were removed 

from further analysis. Due to the large sample sizes of most collections, removal of these 

individuals did not significantly reduce the power of subsequent analyses. 

Initial analyses of genotypic data indicated significant deviations from the 

expectations of Hardy-Weinberg equilibrium for three loci in two or more collections. In 

each case the deviations resulted from a lack of heterozygotes. Re-amplification and 

analysis of these three markers revealed one to three repeat motif peak shifts, and many 

samples failed to amplify again. Previous studies have shown that the mobility of some 

microsatellite loci may be sensitive to temperature shifts during electrophoresis (Applied 

Biosystems, 2002; Davison and Chiba, 2003), and temperature control has been an issue 

in the Fisheries Genetics Laboratory space. Microsatellite locus panels were optimized 

during summer months, with the majority of 2016 collection samples run in the 

fall/winter months. The presence of null alleles (which arise from mutations in the primer 

binding sites) and/or allelic dropouts may have also contributed to deviations from 

Hardy-Weinberg equilibrium (Pompanon et al., 2005). Because all three loci had 

significant deviations in multiple collections, they were removed to ensure that 

subsequent analyses, such as calculations of FST, were not biased (Morin et al., 2009). 

The 17 loci selected for analysis revealed considerable variation within all 

collections, levels that were comparable to prior microsatellite-based studies of striped 
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bass population structure. The mean number of alleles per locus was 18, higher than 

values reported by both Brown et al. (2005), with a mean of 10 alleles per locus, and 

Gautier et al. (2013), with an average of 15 alleles per locus. The mean observed 

heterozygosity across all sample collections was 0.851, with a value of 0.833 in 2016 and 

0.869 in 2017. Brown et al. (2005) had a mean observed heterozygosity at ten 

microsatellite loci of 0.505 (range of 0.255 to 0.893) and Gautier et al. (2013) had a mean 

observed heterozygosity of 0.757 (range of 0.610 to 0.910).  

Population Structure 

Previous genetic studies of striped bass within Chesapeake Bay have reached 

differing conclusions regarding the presence of population structure. Some investigations 

have revealed statistically significant genetic heterogeneity, whereas others have not. 

However, in all of the studies, the magnitude of genetic differences between samples was 

very low, leaving the biological significance of the observed results in question. In an 

effort to better understand population structure of striped bass in the lower Chesapeake 

Bay, this study employed a sampling design that incorporated temporal replicates for 

each of the three river systems sampled. The expectation was that variation among 

temporal replicates from the same river system in different years would reflect the 

baseline stochastic “noise” in the system, and that if there was significant population 

structuring, levels of variation between collections from different rivers would be greater 

than the differences between collections taken on the same river in different years. 

A total of 21 pairwise comparisons were made between the collections, 5 of 

which were comparisons of temporal replicates from the same river, and 16 were between 

collections from different rivers. Overall, 18 of the 21 pairwise comparisons resulted in 
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statistically significant FST values, although the magnitude of the significant FST values 

was quite low (0.00124 to 0.00725). Analysis indicated that the significant FST values 

were not driven by a single locus or group of loci. Interestingly, and contrary to 

expectations, the mean FST value for pairwise comparisons of temporal replicates was 

larger (0.005) than the mean FST value for pairwise comparisons of samples from 

different rivers (0.003 for 2016 collections and 0.002 for 2017 collections). Two of the 

non-significant FST values were between collections from different rivers within the same 

year, and the third was a comparison of YOY and adults from the same river in the same 

year. Based on the difference in the magnitude of the FST values between comparisons of 

temporal replicates and collections from different rivers, I conclude that the statistical 

significance of the low magnitude FST values reflects sampling error or biological noise 

rather than true population structuring.  

The results of several other analyses support the null hypothesis of a single 

genetic stock of striped bass within the lower Chesapeake Bay. The genetic clustering 

analysis software STRUCTURE failed to recover multiple clusters on spatial or temporal 

scales, supporting the existence of a single genetic population. Principal component 

analysis also produced a single cluster and did not detect significant genetic heterogeneity 

among collections. AMOVA analyses found no significant partitioning of genetic 

variance among temporal collections. Finally, a Mantel test did not detect a significant 

relationship between geographic distances of FST values, consistent with a lack of spatial 

genetic structure. Together, these analyses provide no support to reject the null 

hypothesis of a lack of a single genetic population of striped bass within the lower 

Chesapeake Bay. 
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In a previous study using analysis of microsatellite loci to evaluate population 

structuring of the striped bass population in the lower Chesapeake Bay, Brown et al. 

(2005) found a nonsignificant global analog to the FST value of -0.007, and the recovery 

of one genetic grouping of YOY striped bass in a STRUCTURE analysis. In contrast, 

Gautier et al. (2013) found a significant global FST of 0.001 between YOY striped bass 

pooled into upper and lower Chesapeake Bay groups over sample years, and the study 

concluded that shallow population genetic structure existed within the Chesapeake Bay. 

The magnitude of the indices of genetic differentiation reported in Brown et al. (2005), 

Gautier et al. (2013), and the current study are very similar, ranging from 0.000 to 

0.0072. The current study, by employing temporal replicates, was able to evaluate the 

biological significance of spatial structure over time, a comparison that supports the 

existence of a single homogenous population of striped bass in the lower Chesapeake 

Bay.  

Striped bass exhibit less genetic population structuring relative to other 

anadromous species along the U.S. the Atlantic coast. A population genetic study of 

alewife and Blueback herring, anadromous fishes with distributions along the U.S. 

Atlantic coast and with spawning grounds in the Chesapeake Bay, showed strong support 

for genetic structuring within the Bay (Ogburn et el., 2017). Population pairwise FST 

values for blueback herring were more than an order of magnitude higher than values 

recovered in this study (0.018 to 0.156) and STRUCTURE analyses indicated multiple 

genetic clusters for both species. American shad populations showed genetic 

differentiation among eastern and western Chesapeake Bay shores, with significant FST 

values ranging from 0.081 to 0.468 (Hasselman et al., 2013). For striped bass, straying 
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during spawning runs may prevent the establishment of differentiated spawning areas on 

an evolutionary time-scale, and the amount of straying can be evaluated using traditional 

tagging studies (Secor, 2000a). 

Evaluation of Connectivity 

The lack of robust genetic spatial structuring among spawning striped bass from 

the major rivers of the lower Chesapeake Bay suggests that there is either some level of 

connectivity between the river systems, or the populations are sufficiently recent that 

there has not been enough time for genetic differences to accrue. Since the Chesapeake 

Bay is a geologically young estuary, having reached the current shoreline position only 

7,000 to 6,000 years ago (Colman and Mixon, 1988), enough generational time may not 

have elapsed for striped bass genetic divergence to occur in the major river systems of 

Chesapeake Bay (Begg and Waldman, 1999). Based on generation time of 9 years 

(Ginzburg et al. 1982), there have been fewer than 800 generations of striped bass since 

the Chesapeake Bay arrived at its current configuration.  

Conventional tagging studies of striped bass have supported the existence of 

separate spawning aggregations in each of the larger Chesapeake Bay rivers, 

documenting high rates of fidelity by adult fish to a particular river (Vladykov and 

Wallace, 1938; Massmann and Pacheco, 1961; Nichols and Miller, 1967; Winegate et al. 

2011). Many of these studies reported more than 90% of adult striped bass returning to 

spawn in the same river in a subsequent year. The other tag returns during the spawning 

season suggested the animals were spawning in other spawning grounds or not spawning 

that year. As low levels of migration may be sufficient to prevent the accumulation of 
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significant genetic differences, I analyzed a 30-year conventional tagging dataset of 

striped bass from the James and Rappahannock rivers to evaluate levels of connectivity.  

From 1987 to present day, the VIMS Striped Bass Tagging Program has tagged 

99,694 adult fish on spawning grounds of the Chesapeake Bay, and at the time of this 

study there have been 23,495 tag returns reported. Filtering the tag return data to include 

only those fish tagged on the Rappahannock and James rivers during the spawning season 

(February to May), at large for at least one year, and subsequently recaptured during the 

spawning season, resulted in a total of 1,118 recaptures between 1988 and 2016 

(Supplementary Table 2). Of these, 90% occurred within Chesapeake Bay waters, and 

10% were collected outside of the Bay (Table 10). For fish tagged in the James River 

during the spawning season and recaptured during a subsequent spawning seasons, 76% 

were recaptured in the James River, 6% on spawning grounds of other rivers within the 

Chesapeake Bay, 5% in the main stem of the Bay, and 13% outside of the Chesapeake 

Bay. For fish tagged initially in the Rappahannock River during the spawning season and 

recaptured during a subsequent spawning season, 74% were recaptured in the 

Rappahannock River during the spawning season, 8% were recaptured on spawning 

grounds of other rivers within Chesapeake Bay, 7% in the main stem of the Bay, and 11% 

outside of the Chesapeake Bay.  

Although these tagging data demonstrate high fidelity of striped bass to specific 

rivers within the lower Chesapeake Bay, but they also show movement of fish between 

the major rivers during the spawning season (straying). At least 6% of striped bass 

recovered during the spawning season were caught on the spawning grounds of a 

different river from the one on which they were originally tagged. As only a handful of 
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migrants per generation (~10) are needed to negate the impacts of genetic drift between 

local populations of striped bass to maintain similar allele frequencies (Lowe and 

Allendorf, 2010), the conventional tagging data support the genetic results of this study. 

For striped bass in the lower Chesapeake Bay, genetic and conventional tagging data 

support the hypothesis that there is sufficient straying of adult fish to spawning grounds 

in different rivers to homogenize a gene pool.  

The collections of spawning adult and YOY striped bass from the Rappahannock 

River in the same year provide an opportunity to evaluate differential reproductive 

success for striped bass. For many highly fecund species that have a high census 

population size low effective population sizes have been estimated when small but 

statistically significant differences between spawning adults and their progeny are seen 

with reduced genetic variation within progeny relative to adults and increased linkage 

disequilibrium within progeny. These factors have been attributed to the “sweepstakes 

effect” in which a few spawning individuals have extremely high reproductive success 

relative to their conspecifics (Hedgecock 1994; Flowers et al 2002; Hedgecock 2011). It 

has been suggested that older, larger striped bass may have disproportionately high 

reproductive success (Rago and Goodyear, 1987; Secor 2000a, 2000b). A comparison of 

the 2016 adult Rappahannock collection with the 2016 YOY Rappahannock collection, 

did not reveal significant genetic heterogeneity between the collections, or reduced 

variation in the YOY collection. In fact, the YOY had a higher number of alleles than the 

adults and had the lowest linkage disequilibrium observed. Therefore, realizing that 

sample sizes were not huge, no evidence was found to support the existence of a 

sweepstakes effect in the Rappahannock River.  
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Conclusions and Management Implications 

Ecological stocks and evolutionary stocks are both important concepts for the 

management of striped bass, as each type considers the stock on a different time scale. 

Ecological stocks are mainly concerned with the demographics of the stock and the co-

occurrence of individuals over time and space for ecological interactions (Waples and 

Gaggiotti, 2006). In contrast, evolutionary stocks have a genetic basis, and are impacted 

by forces such as genetic drift and natural selection (Carvalho and Hauser, 1994). For 

striped bass, the Atlantic stock was primarily managed as one ecological and 

evolutionary stock until Amendment 6 to the Atlantic Striped Bass Fisheries 

Management Plan in 2003. This amendment delineated the Chesapeake Bay as a distinct 

management area due to the demography of smaller, male fish relative to the Atlantic 

stock. This allowed managers to set separate biological reference points for the 

Chesapeake Bay to allow for a more ecologically managed species. The recognition of a 

Chesapeake Bay stock is supported by genetic data (e.g. Gautier et al. 2013) and 

conventional tagging data (e.g. Nichols and Miller 1967; Wingate et al. 2011). 

While separate evolutionary and ecological stocks have been identified for striped 

bass along the Atlantic coast, there is controversy regarding the stock structure within 

Chesapeake Bay. For the lower Chesapeake Bay, this study observed small, but 

statistically significant genetic heterogeneity among collections of striped bass on 

different spawning grounds, but the heterogeneity between collections from the same 

river in consecutive years was greater than that among river systems in the same year, 

suggesting that differences between rivers were not biologically (evolutionarily) 

meaningful. While the straying of adults may be sufficient to prevent the development of 
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evolutionary stocks, the observed fidelity to spawning areas of 75% or more clearly 

suggests the existence of ecological stocks. Known areas of site fidelity may allow 

fisheries managers to apply area-specific management measures to conserve well-

documented spawning stocks and grounds (Thorrold et al., 2001). Evidence indicates that 

while faithful to the Chesapeake Bay and generally to a river system, striped bass may 

choose different breeding grounds in different years. Straying may occur for a variety of 

reasons including prey availability, water temperature, and river flow, and it has been 

suggested that females may be more likely to stray among rivers compared to males 

(Secor 2000a).  

This study aimed to improve prior attempts to determine if significant temporally 

stable heterogeneity existed among striped bass sampled from major spawning grounds in 

the lower Chesapeake Bay. The results of this study support the presence of a single 

genetic stock of striped bass in the lower Chesapeake Bay using an improved sampling 

design and increased power with large sample sizes and many microsatellite markers. 

Connectivity among striped bass spawning grounds within Chesapeake Bay is high 

enough to overcome genetic forces that create evolutionary stocks. The examination of 

tagging data indicates that a large majority of striped bass are faithful to their spawning 

grounds potentially creating ecological stocks. Further investigation including the 

analysis of additional spawning grounds within the Chesapeake Bay may provide some 

evidence of genetic heterogeneity, but the tagging data show that straying of individuals 

from two major rivers across the entire Chesapeake Bay during spawning season may be 

large enough to prevent the detection of significant heterogeneity.  
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Table 1: Sample sizes of striped bass collections from each river and year, and the 

number of samples that were used in the analyses after removal of problematic 

individuals. The values shown include original samples, overall numbers, males, and 

females. 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The number of alleles, private alleles, mean allelic richness adjusted for sample 

size, and the inbreeding coefficient for each collection of striped bass pooled over all loci. 

 
Alleles 

Private 

Alleles 

Mean Allelic 

Richness 
FIS 

2016     

James 248 1 13.951 0.004 

Mattaponi 250 2 13.931 0.02 

Rappahannock 261 5 13.995 0.031 

Juvenile Rappahannock 278 9 14.334 0.013 

2017     

James 249 0 13.999 -0.024 

Mattaponi 258 2 14.605 0.003 

Rappahannock 257 1 13.997 -0.064 

 

 

 

 

 

Original 

Sample 

Size 

Analyzed 

Sample Size 
Male Female 

2016  
   

James 164 139 105 34 

Mattaponi 171 150 100 50 

Rappahannock 755 371 282 89 

Juvenile Rappahannock 555 389 - - 

2017  
   

James 172 143 80 63 

Mattaponi 138 118 92 26 

Rappahannock 243 211 181 30 



 
 

46 

 

Table 3: Number of alleles, expected and observed heterozygosities, FST, and the 

inbreeding coefficient for each locus pooled over all striped bass collections. 

 

 Number of 

Alleles 

Expected 

Heterozygosity 

Observed 

Heterozygosity 
FST FIS 

S1598 12 0.858 0.883 0.0005 -0.0206 

S1568 19 0.910 0.905 0.0011 0.0066 

S1584 21 0.892 0.902 0.0011 -0.0086 

S1617 22 0.902 0.913 0.0012 -0.0083 

S1628 13 0.867 0.854 0.0014 0.0204 

S1290 9 0.663 0.689 0.0015 -0.0366 

S1587 15 0.846 0.871 0.0015 -0.0286 

S1556 30 0.939 0.912 0.0018 0.0291 

S1559 23 0.909 0.865 0.002 0.0491 

S1271 6 0.499 0.518 0.0021 -0.0094 

S1603 12 0.750 0.720 0.0021 0.0424 

S1591 26 0.912 0.913 0.0032 -0.0023 

S1273 26 0.925 0.926 0.0037 -0.0024 

S1592 26 0.922 0.910 0.004 0.0111 

S1577 16 0.860 0.690 0.0044 -0.0118 

S1638 14 0.819 0.821 0.0044 -0.0034 

S1602 16 0.910 0.891 0.0135 0.0115 

Mean 18 0.846 0.834 0.003 0.002 
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Table 4: Number of alleles, private alleles, and mean allelic richness for each for all 

samples, and by sex, for all striped bass collections. 

Males    

 
Alleles 

Private 

Alleles 

Mean Allelic 

Richness 

2016    

James 240 6 13.458 

Mattaponi 240 5 13.294 

Rappahannock 257 8 13.38 

2017    

James 237 0 13.398 

Mattaponi 249 3 13.835 

Rappahannock 253 5 13.277 

    

Females    

 
Alleles 

Private 

Alleles 

Mean Allelic 

Richness 

2016    

James 200 5 10.539 

Mattaponi 217 5 10.868 

Rappahannock 233 5 10.907 

2017    

James 226 1 11.046 

Mattaponi 200 2 10.861 

Rappahannock 209 3 10.906 
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Table5: Population pairwise FST values for each striped bass collection on the lower diagonal with p-values on the upper diagonal. 

Statistically significant pairs are shown in bold and with a *. 

 

Rappahannock 

2016 

Juvenile 

Rappahannock 

Rappahannock 

2017 

James 

2016 

James 

2017 

Mattaponi 

2016 

Mattaponi 

2017 

Rappahannock 2016 - 0.8447 0.0000 0.0000 0.0000 0.0000 0.1318 

Juvenile Rappahannock -0.0002 - 0.0000 0.0000 0.0000 0.0000 0.5371 

Rappahannock 2017 0.00498* 0.00534* - 0.0000 0.0000 0.0000 0.0000 

James 2016 0.00452* 0.00392* 0.00409* - 0.0000 0.0020 0.0000 

James 2017 0.00235* 0.00186* 0.00263* 0.00725* - 0.0098 0.0000 

Mattaponi 2016 0.00268* 0.0034* 0.00288* 0.00158* 0.00534* - 0.0000 

Mattaponi 2017 0.00029 -0.0005 0.00412* 0.00386* 0.00124* 0.00293* - 

 

 

 

Table 6: Population pairwise FST values between striped bass collections from each river pooled over years on the lower diagonal with 

p-values on the upper diagonal. Statistically significant pairs are shown in bold and with a *. 

 Rappahannock Mattaponi James 

Rappahannock - 0.0684 0.0000 

Mattaponi 0.0002 - 0.0000 

James 0.0030* 0.0020* - 
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Table 7: Population pairwise FST values for male striped bass in each collection on the lower diagonal with p-values on the upper 

diagonal. Statistically significant pairs are shown in bold and with a *. 

 

 

Rappahannock 

2016 

Rappahannock 

2017 

James 

2016 

James 

2017 

Mattaponi 

2016 

Mattaponi 

2017 

Rappahannock 2016 - 0.0000 0.0000 0.0000 0.1855 0.0000 

Rappahannock 2017 0.00496* - 0.0000 0.0000 0.0000 0.0010 

James 2016 0.00247* 0.0081* - 0.0010 0.0156 0.0000 

James 2017 0.00562* 0.00577* 0.0029* - 0.0000 0.0039 

Mattaponi 2016 0.004* 0.00538* 0.00155* 0.0046* - 0.0000 

Mattaponi 2017 0.00307* 0.00184* 0.00543* 0.00284 0.00335* - 

 

 

 

Table 8: Population pairwise FST values for female striped bass in each collection on the lower diagonal with p-values on the upper 

diagonal. Statistically significant pairs are shown in bold and with a *. 

 

Rappahannock 

2016 

Rappahannock 

2017 

James 

2016 

James 

2017 

Mattaponi 

2016 

Mattaponi 

2017 

Rappahannock 2016 - 0.1201 0.1221 0.0000 0.0195 0.0957 

Rappahannock 2017 0.00185 - 0.2471 0.0664 0.0020 0.0283 

James 2016 0.00123 0.00138 - 0.0020 0.0547 0.0713 

James 2017 0.00529* 0.0023 0.00374* - 0.0147 0.0225 

Mattaponi 2016 0.00348 0.00644* 0.00288 0.00384 - 0.1201 

Mattaponi 2017 0.00223 0.00505 0.0029 0.00405 0.0022 - 
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Table 9: Effective population size for each striped bass collection from the adult 

population is shown with 95% confidence intervals. 

 Ne 95% CI 

2016   

James 869.4 574.6-1716.4 

Mattaponi 888.5 608.3-1598.3 

Rappahannock 507.6 451.1-577.4 

2017  
 

James 882.5 593.7-1660.2 

Mattaponi 1186.7 677.7-4301.3 

Rappahannock 194.5 176.3-215.9 

 

 

 

 

Table 10: Recapture locations of striped bass tagged on spawning grounds of the James 

and Rappahannock rivers during the spawning season and subsequently recaptured during 

the spawning season after being at large for at least one year.  

 River of Origin 
 James River Rappahannock River 

Area of Recapture   

Out of Chesapeake Bay 33 82 

In Chesapeake Bay 222 773 

On Spawning Grounds   

James River 194 13 

Rappahannock River 7 645 

Potomac River 3 22 

Other Rivers 6 34 

Non-Spawning Grounds 45 151 

Total 255 865 
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Figure 1: Map showing the sampling locations on the Rappahannock, Mattaponi, and 

James Rivers over the two sampling years. The black dots indicate sampling sites. Within 

the smaller boxes, blue indicates 2016 sampling, red indicates 2017 sampling, and yellow 

indicates both years. Triangles indicate juvenile samplings and pentagons indicate adult 

samplings. Mile markers at each end of sampling are shown with black numbers. 
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Figure 2: PCA of all populations showing principal components 1 and 2. Rappahannock 

2016 is blue, Rappahannock 2017 is brown, Juvenile Rappahannock is orange, James 

2016 is purple, James 2017 is green, Mattaponi 2016 is pink, and Mattaponi 2017 is 

yellow. Eigenvalues are presented in the lower right-hand corner. 
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Introduction 

Striped bass support important recreational and commercial fisheries along the 

Atlantic Coast of North America from Canada to northern Florida (Boreman and Lewis, 

1987; Kirkley et al., 2000; Greene et al., 2009; Wingate et al., 2011). Striped bass are 

anadromous with spawning occurring each spring in the freshwater reaches of major river 

and estuary systems (Paramore and Rulifson, 2001), including the Chesapeake Bay, the 

Hudson River, Delaware Bay, and the Roanoke River. Of these systems, the Chesapeake 

Bay is considered the largest and most productive spawning ground (Kohlenstein 1981), 

contributing upwards of 90% of young-of-the-year (YOY) individuals in some years 

(Waldman et al., 2012). The Chesapeake Bay differs from other major spawning grounds 

because it is a large estuary composed of several major sub-estuary river systems 

(Marshall and Alden, 1990; Boynton et al., 1995), and each of these systems is thought to 

host separate spawning populations of striped bass (Nichols and Miller, 1967; Wirgin et 

al., 1993, Ng et al., 2007).  

Recent assessment of the status of the Atlantic striped bass stock indicates that it 

is not overfished nor experiencing overfishing; however, the female spawning stock 

biomass (SSB) is just above the Atlantic States Marine Fisheries Commission (ASMFC) 

biomass threshold of 67,626 metric tons (ASMFC 2016). Since 2012, annual recruitment 

levels of striped bass have been average to low, with no evidence of a strong year class 

during that time. The Atlantic Striped Bass Stock Assessment Update 
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2016 model projections indicate that there is a 39% probability that female SSB will drop 

below the management biomass threshold over the next three years. While several 

hypotheses have been put forward to explain the recent decline of striped bass SSB, no 

single factor or factors have been identified with certainty (ASMFC 2016). Some studies 

indicate that Mycobacteriosis, a bacterial disease in striped bass shown to have large 

impacts on reproductive output and natural mortality, may be a large contributor (Gautier 

et al., 2008; Gervasi 2015; Hoenig et al., 2017). The ASMFC (2013) attributed the 

decline in SSB to a reduction in the availability of prey species in combination with 

Mycobacteriosis.  

The indices of relative abundance and SSB for the Atlantic stock of striped bass 

are derived from fishery independent and fishery dependent catch-per-unit-effort (CPUE) 

data (ASMFC 2013). In addition to a coast wide tagging program, annual spawning stock 

and juvenile index surveys are conducted in the major subestuaries of the Chesapeake 

Bay by both the Maryland Department of Natural Resources and the Virginia Institute of 

Marine Science (ASMFC, 2016). The Maryland Department of Natural Resources striped 

bass spawning stock survey uses a CPUE-based method similar to the Virginia survey to 

determine an index of adult spawning abundance, as well as an index of spawning 

potential and an age-independent measure for female striped bass (Maryland Department 

of Natural Resources, Personal Communication). The Virginia Pound Net Survey targets 

spawning striped bass on the Rappahannock River. This survey calculates an annual 

abundance index (number, sex, and age of fish captured) and a spawning stock biomass 

index (SSBI), defined as the catch-per-unit-effort, or CPUE, (kg/net day) of mature male 

and female fish sampled during the spawning season (Hoenig et al, 2016). Per 
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Amendment 6 of the Striped Bass Fisheries Management Plan (FMP), both states conduct 

juvenile striped bass recruitment surveys to develop annual recruitment indices. Data 

from these surveys are assumed to reflect relative abundance trends of the fishery, and 

supply data to all striped bass assessments and assessment updates (ASMFC 2016). 

 Striped bass are assessed as a single Atlantic coastal stock (Maine to South 

Carolina), and there is little information regarding spawning stock abundance for the 

major spawning grounds that contribute to the stock. The exception to this is the 

Chesapeake Bay, which for some analyses is considered a separate management unit 

within the Atlantic stock (ASMFC 2003; Gautier et al., 2013); however, there are no 

estimates of striped bass abundance for Chesapeake Bay as a whole or its subestuaries. 

Annual recruitment or year class strength is known to vary among the subestuaries of 

Chesapeake Bay (Davis et al., 2016), but lacking good estimates of the number of 

individuals spawning in each subestuary annually, it is not possible to confidently 

determine spawning stock/recruitment relationships within subestuaries.  

The 2013 striped bass benchmark assessment highlighted the need for new, 

fishery independent methodologies to estimate adult striped bass abundance. Recently, 

novel molecular approaches have provided researchers with an alternative method to 

estimate abundance of spawning adults (Bravington et al., 2014a). Close-kinship mark-

recapture analysis (CKMR) is one such genetic approach for abundance estimates that 

has been applied to Minke whales (Skaug 2001), southern bluefin tuna (Bravington et al., 

2014a; Bravington et al., 2016a), and Antarctic blue whales (Bravington et al., 2014b), 

and may be applicable to striped bass.  
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CKMR analyses are similar to traditional mark-recapture studies in which 

individuals are marked with a physical tag (e.g. a spaghetti tag); however, in CKMR 

studies, individuals are marked by a ‘genetic tag’. These genetic tags are identified using 

molecular markers, which must be sufficiently numerous and variable to allow for 

unambiguous individual identification. In essence, spawning adults are ‘marked’ by the 

genotypes of the YOY. Each YOY receives an allele from each parent at each nuclear 

locus, effectively ‘marking’ two adults. The genetic tags of the YOY can be ‘recaptured’ 

(essentially, before the YOY exist) in random samples of spawning adults as genetically 

identified parent-offspring pairs (POPs). If the population of adults is large, then the 

number of POPs will be low, whereas if many POPs are recovered, the population is 

small. The probability that a captured adult is one of the parents for a selected YOY is 

2/Na where Na represents the total number of adults alive when the YOY was spawned. 

Comparing all sampled adults (ma) to a selected YOY, the expected number of POPs is 

ma*2/Na. Comparing all sampled YOY (mj) to all sampled adults (ma), the expected 

number of POPS (𝔼[h]) is mjma*2/Na (Bravington et al., 2014a). Rearranging the formula 

to include the actual number of POPs, or hits (h): 

𝑁�̂� =
2𝑚𝑗𝑚𝑎

ℎ
 

This closely resembles the estimate of abundance using the Lincoln-Peterson 

abundance estimator, a conventional tag-based estimator (Bravington et al., 2016a). 

While the relationship is useful, a more explicit statistical mark-recapture model is 

required to accommodate several life-history characters of striped bass, including age-



 
 

69 
 

dependent sampling probability, and non-equilibrium conditions in the spawning 

population (Bravington et al., 2014a).  

A more explicit statistical model used for a CKMR analysis incorporates a length, 

sex, and age-structured population dynamics model in which demographic parameters are 

estimated from a maximum likelihood model that combines POP likelihood values from 

pairwise comparisons of genotypes from all juveniles and adults, length and age 

compositions of adults, and life history parameters, such as growth and size- or age-

specific fecundity (Bravington et al., 2016b). Assumptions of this model include: 1) 

adults and offspring are independently sampled 2) the von Bertalanffy growth curve 

closely models fish growth, 3) genetic markers are in Hardy-Weinberg and linkage 

equilibria, 4) random mating of adults, and 5) individuals are sampled from a ‘closed 

population’ wherein sampled YOYs are the result of the adults that spawned in the area 

during the year of the YOY’s birth. A pairwise comparison of every sampled juvenile 

genotype to every sampled adult genotype provides an estimate of the number of POPs. 

To qualify as a POP, the putative parent must contain at least one of the YOY’s alleles at 

each locus. Bravington et al. (2016a) recommend a minimum of 50 confidently assigned 

parent-offspring pairs (POPs) to reduce the coefficient of variation and increase precision 

of CKMR estimates.  

The purpose of this study was to evaluate the utility of CKMR to estimate 

abundance of striped bass in a model river system, the Rappahannock River. Specifically, 

the main objective was to determine if a large enough number of POPs could be 

recovered using ongoing sampling programs for spawning adults and YOY to develop 

and implement CKMR to estimate the population size of spawning adults. Based on the 
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number of POPs recovered, a secondary objective was to estimate the sample sizes 

required to obtain 50 POPs, the number recommended by Bravington et al. (2016a) to 

provide precise estimates of abundance for CKMR analyses with a coefficient of 

variation (CV) of 15%. Testing the feasibility of this novel methodology is an important 

first step in the application of a new abundance model, and it has been noted that the 

testing of new methodologies on a smaller scale is an important, but often overlooked 

step (Teijlingen and Hundley, 2001). 
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Materials and Methods 

Sample Collection 

Adult striped bass were sampled on the spawning grounds of the Rappahannock 

River during the spawning season (March to May) in 2016 (Figure 1). Striped bass were 

captured using two commercial pound nets (river miles 46, 47) checked twice a week 

from 4 April to 26 May 2016. Genetic samples were taken in the form of caudal fin clips 

stored in 95% ethanol, and only fish with a total length of 458 mm were clipped to ensure 

that all fish sampled were mature (Mansueti, 1961). Sex was determined by the 

expression of reproductive products and scales were removed for aging. Following 

sampling, fish were released alive. 

From June to September 2016, young-of-year (YOY) striped bass were collected 

from the Rappahannock River (river miles 75 to 37) using a 100 ft long, 4ft deep, 0.25 

inch mesh beach seine net. YOY fish ranged in size from 22 mm to 73 mm, well below 

118mm, the reported mean size of YOY striped bass prior to their first winter (Hurst and 

Connover, 2003). Genetic samples were taken in the form of fin clips or muscle tissue 

and stored in 95% ethanol.  

Marker Selection, DNA Extraction, and Amplification 

Candidate microsatellite loci were selected from more than 500 potential striped 

bass microsatellite markers available in the literature (Couch et al., 2006; Rexroad et al., 

2006; Fountain et al., 2009; Gauthier et al., 2013), based on allelic diversity, chromosome 

location (linkage map from Liu et al., 2011), and estimated heterozygosity. Candidate 

microsatellite loci were evaluated to ensure proper amplification. Optimum annealing 
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temperatures were determined using thermal gradients, and loci were subsequently 

assembled into multiplexes using Multiplex Manager (Holleley and Geerts, 2009). To 

ensure each multiplex amplified consistently, each was run on a temperature gradient to 

ensure an optimal annealing temperature. In total, the 20 microsatellite markers used 

comprised four multiplex panels consisting of five markers each (Supplementary Table 

1).  

Total genomic DNA was extracted using Machary Nagel NucleoSpin® DNA 

tissue kits on the Tecan Freedom EVO® 75 liquid handling system. Microsatellite 

multiplexes were amplified for plates of 92-95 samples at a time, with negative controls 

for each step to check for possible contamination. Polymerase chain reaction (PCR) 

amplifications were performed in 10 ul reactions with locus-specific fluorescent probes. 

In order to visualize the PCR product, 2 ul of product was combined with 8 ul of 

formamide and 0.2 ul 500 LIZ Gene Scan Size standard (Applied Biosystems), denatured 

for 10 minutes at 95°C, and sequenced on a 36 cm 3130xl Capillary Genetic Analyzer 

(Applied Biosystems, Inc.). The output consisted of electropherograms with different 

chromatic peaks representing the alleles at each microsatellite locus. The 

electropherograms were scored using GeneMarker v2.6.0 (SoftGenetics, LLC). To check 

for evidence of scoring errors and null allele presence, scores were evaluated using 

MicroChecker 2.2.3 (Van Oosterhout et al., 2004). To ensure consistency in amplification 

and allele calling, 5% of samples were re-analyzed from PCR reaction to allele scoring. 

To ensure accuracy of allele calling, the entire data set was scored twice. 
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Recovery of POPs 

The conformation of genotypic distributions to expectations of HWE was 

evaluated using probability tests (Guo and Thompson, 1992) within GenePop v4.0 

(Rousset 2008), with significance values corrected using the sequential Bonferroni 

correction for multiple comparisons (Rice, 1990).  

 The presence of POPs among all sampled adults and juveniles was investigated 

using the parentage analysis program COLONY (Jones and Wang, 2010). The software 

allows for the assignment of parents to offspring based on genotypes while accounting 

for allelic dropout and mistyping. The settings for the analyses in COLONY used the full 

likelihood run, a medium run length, a high likelihood precision, and with a 5% error 

rate. The relatively high error rate was allowed to ensure that no false negatives would be 

missed in the analyses. Additionally, inbreeding and polygamy were allowed. All 

potential POPs that COLONY identified were screened by eye within GeneMarker to 

confirm that the pair had at least one allele in common at every locus. 

COLONY was also used to infer sib-ship relations between sampled YOY. 

Effective population size (Ne) was estimated using the full likelihood method within 

COLONY, and the analysis was run with the assumption of random mating (Wang 2009). 

Estimation of Population Size 

 To provide a rough estimate of population size, a modified version of the Lincoln-

Petersen model was used combining Bravington et al. (2014a) and the Chapman 

modification (Chapman, 1951) to account for a small sample size as follows:  
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𝑁�̂� =
2(𝑚𝑗+1)(𝑚𝑎+1)

(ℎ+1)
 = 2𝑁�̂� 

Here 𝑁𝑎 ̂ is the estimated number of adults, mj is the number of juveniles (or originally 

marked individuals), ma is the number of adults (or size of second sample), and h is the 

number of POPs (or number of marked individuals in the second sample) (Chapman 

1951; Pollock et al., 1990, Bravington et al 2014a). 

 Confidence intervals (95% CI) for the estimates of adult abundance were 

calculated by first determining the unbiased estimate of variance wherein 𝑣𝑎𝑟(2𝑁�̂�) =

4𝑣𝑎𝑟(𝑁�̂�), given by equation 2, and then equation 3 was used to estimate 95% CI where 

z is the standard normal variable (Seber 1970, 1982; Pollock et al., 1990) 

𝑣𝑎𝑟 = 4
(𝑚𝑗+1)(𝑚𝑎+1)(𝑚𝑗−ℎ)(𝑚𝑎−ℎ)

(ℎ+1)2(2+2)
 

𝐶𝐼 = 𝑁𝑎 ± 𝑧 ∗ √𝑣𝑎𝑟 

 The coefficient of variation was calculated using the estimated adult abundance, 

𝑁�̂�, in equation 4 taken from Bravington et al. (2014a).  

𝐶𝑉 =
√𝑣𝑎𝑟

𝑁�̂�
 

If more than 1 but less than 50 POPs are recovered in this study, the number of 

samples expected to result in 50 POPs will be estimated using the CKMR population size 

estimate. Bravington et al (2014a) and Bravington et al (2016b) provide methodology 

that allows for a crude estimation of the number of samples needed for relatively precise 

estimates using the metric of 50 POPs (htarget) and/or a CV of 15%. Formula 5 and 

Formula 6 were both used to estimate the sample sizes needed where 𝑁�̂�the estimated 

(2) 

(1) 

(3) 

(4) 
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adult abundance size is, and c is a variable representing the fraction of the overall sample 

comprised of YOY. For these purposes, it was assumed that the sample size was half 

YOY and half adults. Formula 6 is an analog to formula 5, and the two were compared to 

determine the appropriate sample size. 

 𝑛𝑡𝑎𝑟𝑔𝑒𝑡 ≈ √𝑁�̂�ℎ𝑡𝑎𝑟𝑔𝑒𝑡
𝑐⁄    (5) 

 

10√�̂�𝑎     (6) 
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Results 

Adult and young-of-year (YOY) samples were collected and analyzed from 2016 

from the Rappahannock. All samples were genotyped for 20 microsatellite markers. 

Individuals that were unable to be accurately scored or failed to amplify for 3 or more 

loci were removed from the dataset. A total of 755 adults and 555 YOY were collected 

from spawning and nursery grounds on the Rappahannock River. However, 384 adult and 

166 juvenile samples were removed from the dataset due to problems with amplification. 

The remaining760 samples, comprising 371 adults and 389 YOY, were used for CKMR 

analysis (Table 1). The adult samples consisted of 282 males and 89 females.  

Loci were removed that exhibited consistent amplification issues and deviations 

from Hardy Weinberg Equilibrium. Tests for HWE indicated that the genotypic 

distributions among individuals for three loci, 1322, 1437, and 1491, were significantly 

out of equilibrium in two or more sample groups after Bonferroni correction for multiple 

comparisons. Visual inspection of the multiple electropherograms showed large peak 

shifts at these three loci and they were not included in further analyses. The remaining 

loci showed a less than 1% error rate in amplification due to peak shifts of 1 to 3 repeat 

motifs. MicroChecker indicated that one locus, 1559, showed evidence of a null allele 

presence in sampled groups. To reduce the effect of possible null alleles, a slight increase 

in the error rate was allowed to be 5% in COLONY. Matches identified by COLONY as 

parent-offspring pairs were then checked by eye to confirm a 100% POP match and no 

null allele impacts at 1559. The use of likelihood scores aided in determining if 

mismatches at this marker were due to null alleles, and this would be detected by 

comparing alleles by eye to see if one allele was a homozygote where there should be a 
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heterozygote (Bravington, personal communication). No issues were detected with the 

use of this locus either by eye or by likelihood scores. In total, 17 loci were used for the 

analyses. 

POP Assignment  

 COLONY identified 18 potential POPs from the dataset. After checking the 

genotypes of each POP by eye in GeneMarker, it was found that the dataset contained 2 

true POPs with 100% matches of at least one allele at each locus. One potential POP had 

a mismatch at one locus, but with the likelihood values indicated 70% support and both 

alleles mismatching, it was considered a false positive. For the two recovered POPs, one 

parent was a female 4 years of age with a total length of 498 mm. The other POP parent 

was a male 5 years of age with a total length 512 mm.  

 Analysis of the offspring dataset revealed 14 pairs of potential full siblings, and 

of these, 9 pairs had probability values of >90%. There were 405 pairs of potential half 

siblings recovered in the offspring dataset, of which 121 pairs had a probability >90%. 

COLONY estimated the effective population size of adults at 823, with 95% confidence 

intervals of 718-946. 

Adult Abundance Estimates 

Using the modified Lincoln-Petersen estimator, the estimated adult abundance of 

spawning adult striped bass in the Rappahannock River in 2016 was 145,081 individuals. 

The 95% confidence intervals around this estimate were 51,042 on the lower boundary 

and 239,119 on the upper boundary, with a CV of 0.33. Based on the recovery of 2 POPs 

with a sample of 371 adults and 389 juveniles, a total (adults and juveniles) of 1,703 
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individuals would be required to recover 50 POPs, resulting in an abundance estimate 

with a 15% CV. 
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Discussion 

The primary objective of this work was to test the feasibility of a novel molecular 

abundance model, close-kinship mark-recapture (CKMR), to estimate striped bass 

spawning stock abundance for a major sub-estuary in the Chesapeake Bay, the 

Rappahannock River. Specifically, this study first sought to determine if a relatively 

precise estimate of adult abundance could be made using the number of adult and 

juvenile samples typically available from ongoing surveys. If a sufficiently precise 

estimate could not be made, I wished to determine how many additional samples would 

be needed to achieve a desired level of precision. Genetic screening of 371 spawning 

adults and 389 YOY collected from the Rappahannock River in 2016 resulted in the 

identification of two parent-offspring pairs (POPs) and an estimated adult population size 

of 145,081 individuals. The recovery of 2 POPs was well below the target of 50 POPs 

recommended by Bravington et al. (2014a) for adequate precision. Further calculations 

showed that a minimum sample size of 1,703 individuals comprising equal numbers of 

adults and YOY would be required to produce a sufficiently precise estimate of adult 

abundance. These preliminary results suggest that CKMR analysis is a practical, fishery 

independent method to estimate the population size of adult striped bass.  

 This study represents the first attempt to estimate abundance of spawning striped 

bass within a subestuary of the Chesapeake Bay. Using CKMR, the estimated abundance 

of adult striped bass in the Rappahannock River during the 2016 spawning season was 

145,081 fish (51,042 – 239,119 individuals, 95% CI). The current striped bass assessment 

is for the entire Atlantic stock, and there are no estimates of population sizes within 

estuaries or subestuaries with which to compare the CKRM estimate. The 2016 Striped 
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Bass Stock Assessment Update estimated over 30 million age 4+ fish in the Atlantic 

stock (ASMFC 2016), and Berggren and Lieberman (1978) suggested that 75% of the 

Atlantic stock may be of Chesapeake Bay origin. For the Chesapeake Bay, 90% of all the 

freshwater discharge comes from five major rivers, with the Susquehanna providing 50% 

of the freshwater discharge (Environmental Protection Agency, 2003). The Potomac, 

James, Rappahannock, and York rivers account for the remaining 40%, with the 

Rappahannock River contributing2.2% of the freshwater discharge (Brush, personal 

communication). If one assumes that the number of spawning striped bass within a river 

is proportional to freshwater discharge, it is estimated that 501,332 age 4+ fish in the 

Rappahannock River, or about three times more than that estimated by CKMR in this 

study. 

While the estimated number of adult striped bass in the Rappahannock River 

based on a division of the ASMFC coastwide assessment is much larger than the number 

estimated using CKMR, the numbers might not be as disparate as they seem. The 

majority of female striped bass do not start spawning until age 7 or 8 (Cowan et al., 

1993), and the ASMFC assessment number includes several year classes that may not be 

spawning, and these individuals would not be detected by CKMR. Alternately, one can 

compare the CKMR estimate of 145,081 adults to the 2016 commercial catch from the 

Rappahannock River of 9,554 adults and an exploitation rate of 7% (exploitation rate = 

catch/abundance) (VMRC, data request, May 2018). 

The estimate of striped bass abundance made in this study using CKMR was for 

adults within the Rappahannock River during the 2016 spawning season. Future estimates 

using the CKMR theory should be cautious in combining samples from multiple years. 
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CKMR theory assumes individuals are randomly sampled from a ‘closed population’, and 

that YOYs are the result of the adults that spawned in the area during the year of the 

YOY’s birth. Previous work (see Chapter II) suggests that some adult fish may stray to 

spawn in other rivers in subsequent years. Pooling collections across years to obtain 

larger sample sizes can bias CKMR estimates, as individuals may spawn in different 

rivers in different years, and some spawners may be lost due to natural and fishing 

mortality. These aspects can be addressed in a full implementation of the CKMR model, 

and Bravington et al (2016b) provide recommendations for addressing various population 

scenarios. CKMR provides a methodology to estimate adult spawning abundances on an 

annual basis and over a time series if certain assumptions are considered and sample sizes 

are appropriate.  

For the single year estimate made in this study, 2 POPS were recovered from one 

sampling season. Recovering less than 50 POPs resulted in a relatively imprecise 

estimate, with a CV of 33% well above the target CV of 15%. To provide a relatively 

precise estimate (50 POPs), a total sample size of at least 3,807 individuals comprising an 

equal number of adults and YOY fish would be needed. The second estimate for total 

sample size was 3,809 individuals. Both formulas give approximately the same estimated 

sample size.  Annual collections of 1900 adult and 1900 YOY fish may possibly be 

achieved with the current sampling scheme, but additional sampling will be required in 

some years. It is important to note that the target of 50 POPs and a CV of 15% was 

proposed for southern bluefin tuna and may not be an appropriate target for striped bass. 

However, more samples and research will be needed to determine an appropriate number 

of POPs and CV for striped bass 
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The samples for this study were collected using existing VIMS surveys of adult 

and juvenile striped bass. In the Rappahannock River, the adult tagging survey has 

averaged 362 adult live releases per year over the last 8 years (Sadler et al., 2017), while 

the juvenile seine survey has averaged 804 YOY per year over the last 7 years (Gallagher 

et al., 2017). Both surveys have had annual sample sizes that have ranged from 100 fish 

to over 1,000 fish. In 2016, the adult survey averaged about 13 fish per day from two 

pound nets in the Rappahannock, and the juvenile striped bass survey averaged 10 YOY 

fish per seine haul from a total of 50 hauls. The peak sampling time for adults was mid to 

late April, and YOY peak sampling time was June to early July. Additional sampling 

during these time periods could increase samples for both adults and YOY. For adult 

striped bass, the sampling of four pound nets instead of the two or three pound nets 

historically sampled would provide additional samples needed in the Rappahannock. Gill 

nets are used to sample adult striped bass on other rivers, and this gear type could be used 

to augment pound net samples in the Rappahannock. To sample additional YOY striped 

bass, more sample sites can be added near documented peak sampling areas between 

river mile 44 and river mile 55 (Gallagher et al., 2017). Additionally, more frequent visits 

to peak areas as well as extra tows during June and early July would bolster sample sizes; 

repeating one or two tows per visit to the three highest catch areas during the first or 

second round of sampling would provide the study the samples it needs. A few 

modifications to the sampling schemes in place would provide sufficiently large sample 

sizes of striped bass for future applications of CKMR.  

In addition to increasing sampling efforts, improvements in molecular 

methodologies could result in greater efficiencies to match parents and offspring. 
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Original sample sizes collected for this project approached a fraction of the estimated 

sample sizes with 755 adult samples and 555 YOY samples collected. However, 

problems with the DNA isolations and amplifications occurred and resulted in the loss of 

adult and YOY samples. No specific cause for the isolation and amplification issues was 

determined, despite several attempts to salvage the samples. The use of a robotic 

methodology for DNA isolations may have contributed to the high failure rate, either 

with protocol errors or with contamination. While controls were used to test for 

contamination, there was no way to exclude the possibility of contamination in all DNA 

isolations. The robot was in a shared space with other research, and while every effort 

was made to eliminate cross contamination, the high rate of failure may indicate more 

stringent protocols are needed. For future studies, increased care in sample collection and 

improvements to DNA isolation could result in a higher success rate for collected 

samples. 

Microsatellite loci were used to determine parentage in this analysis, and they 

were also surveyed in the original applications of CKRM analysis to other species. 

Microsatellite markers were selected for this study based on their availability and proven 

utility in previous genetic analyses of striped bass (Brown et al., 2005; Gautier et al., 

2013), and parentage analysis studies (O’Reilly et al., 2002; Castro et al., 2006; 

Bravington et al., 2016a). Stringent quality control measures were implemented in this 

study to ensure consistent and reliable sizing of microsatellite alleles. However, due to 

problems with amplifications, it was necessary to re-amplify and resize several loci to 

ensure accurate allele sizing. As correct allele calling is necessary to provide absolute 

certainty that a pair were a parent and offspring match (Selkoe and Toonen, 2006; 
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Bravington et al, 2014a), and the use of microsatellite alleles has many challenges, the 

application of a newer molecular marker, single nucleotide polymorphisms, may be of 

interest to future studies. 

Single nucleotide polymorphisms, SNPs, are becoming the preferred molecular 

marker for genetic fisheries studies (Anderson and Garza, 2006; Hauser et al., 2011). 

These are bi-allelic markers that are not only abundant in the genome but have been 

shown to have low error rates and high replicability between labs (Anderson and Garza, 

2006). Because SNPs only have two alleles, whereas the microsatellite loci used in this 

study had as many as 30 alleles, a greater number of SNP loci will be needed to provide 

unambiguous individual identification and identify POPs in CKMR analysis. However, 

the reliability and consistency of SNPs outweighs the cost of development, which would 

also be offset with decreasing high-throughput costs (Glover et. al, 2010; Hauser et al., 

2011; Bravington et al., 2016a; Feutry et al., 2017).  

In future studies, the combined use of SNPs and the implementation of a full 

CKMR model may allow for abundance estimates of not only the Rappahannock River, 

but other major Chesapeake Bay tributaries. A full CKMR model is needed over the basic 

Lincoln-Peterson estimation used here because of the non-equilibrium sampling that 

occurs in spawning populations, likelihood estimation adjustments, and the variation in 

sampling probability of different ages (Bravington et al., 2014). For this full operating 

model, an integration of statistical-catch-at-age models is needed to address the unique 

life history parameters for striped bass by way of covariates for age, growth rate, 

residence, selectivity, fecundity, length, and sex identification. For striped bass, the 

incorporation of the life history parameters, including growth curves and fecundity, must 
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be separated by sex because of compelling evidence that supports different growth rates, 

movement patterns, and maturity schedules for male and female striped bass (Mansueti 

1961, Setzler et al., 1980, Secor and Piccoli, 2004; Bravington et al., 2014; Bravington et 

al., 2016a). Additionally, the post-release mortality of striped bass, which can introduce a 

bias into the abundance estimation, can vary depending on gear type, age, and water 

temperature (Dunning et al., 1989; Hopkins and Cech, 1992; Brick and Cech, 2002). The 

full CKMR model has provided reliable estimates of abundance for other marine species, 

including southern bluefin tuna, white sharks (Hillary et al., 2018), and Antarctic blue 

whales (Bravington et al., 2016b). 

The application of CKMR provides a potential fishery independent methodology 

to recover relatively precise abundance estimates of spawning striped bass in the 

Rappahannock River utilizing sample sizes of adults and YOY collected by ongoing 

sampling programs. Though crude, this study was able to provide the first estimate of 

adult abundance for a local, spawning population of striped bass in the Chesapeake Bay. 

With the addition of increased sampling, improved molecular methodologies, and the use 

of SNP markers, CKMR for striped bass may yield relatively precise estimates of adult 

abundance that are specific to spawning grounds within the Chesapeake Bay. The 

development of a full CKMR model is feasible with the incorporation of striped bass-

specific biological parameters. A relatively precise estimate of the number of spawning 

adults present in a subestuary during specific years, combined with the annual juvenile 

index, would allow for managers to determine how recruitment varies over time and 

space, and to better identify those factors that may be directly influencing adult 

abundance and recruitment.  
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Table 1: Sample sizes of adult and young-of-year (YOY) striped bass collected in the 

Rappahannock River in 2016 used in this study from each river and year used in the 

analyses after removal of problematic individuals. Values shown for overall numbers, 

males, and females. 

 

 

 

 

 

 

 

 

Figure 1: Map of sample locations for adult and young-of-year striped bass samples taken 

in the Rappahannock River in 2016. Blue triangles indicate juvenile sampling sites, and 

red pentagons indicate adult sampling sites. River mile is indicated by black numbers.  

 Overall Male Female 

2016    

Adult Rappahannock 371 282 89 

YOY Rappahannock 389 - - 
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Conclusion 

The objectives of this study were to 1) examine the genetic population 

structure of striped bass within the subestuaries of lower Chesapeake Bay, and 2) 

to determine the feasibility of a new methodology, close-kinship mark-recapture 

(CKMR), to estimate the adult abundance within a subestuary. Knowledge of the 

genetic population structure of striped bass and the development of fishery 

independent estimates of adult abundance have been identified as critical 

management needs for this important resource.  

In Chapter II, I was unable to reject the null hypothesis of a single genetic 

population of striped bass in the Virginia portion of the Chesapeake Bay. Prior 

studies of striped bass population structure along the Atlantic coast concluded that 

striped bass within the major estuaries of the Atlantic coast comprised genetically 

distinct spawning populations, but within the Chesapeake Bay conflicting 

conclusions have been drawn regarding the existence of intra-estuary genetic 

structure. My study found low, but significant population pairwise FST values 

between the James, Mattaponi, and Rappahannock rivers; however, the pairwise 

FST values between years (2016 and 2017) for collections from the same river 

were higher than those among rivers in the same year. Additional genetic analyses 

showed no support for significant genetic structuring among subestuaries, 

providing support for genetic connectivity among subestuaries within the lower 

Chesapeake Bay. A long-term striped bass tagging data set was reviewed to 

determine if there is straying of adults among major river systems between 

different years. While the majority of adult striped bass return to the same 
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spawning grounds in subsequent years, the tagging date demonstrate sufficient 

straying to prevent the accumulation of genetic differences between spawning 

grounds. In effect, each subestuary represents an ecological stocks, but not an 

evolutionary stock. 

In Chapter III, the feasibility of a new methodology to estimate spawning 

stock abundance using CKMR was tested within a model river system, the 

Rappahannock River in 2016. This method has been successfully applied to 

estimate adult abundance for a few pelagic species and provides a new fishery 

independent methodology for stock assessment. Using samples of spawning 

adults and young-of-year collected by on-going surveys, this study recovered 2 

parent-offspring pairs (POPs), resulting in an estimate of 148,081 striped bass 

adults in the Rappahannock River. There are no fishery-dependent abundance 

estimates with which to compare this number with, however the total commercial 

catches from the Rappahannock River number less than 10,000 individuals in 

2016. Additional calculations show that with extra sampling, the 50 POPs 

recommended for a relatively precise estimate can be obtained. This study 

represents a preliminary use of the CKMR method and theory. For management 

purposes, a larger number of POPs as well as a full, empirical model that accounts 

for sampling biases, life history parameters, and sex differences among striped 

bass should be employed.  

Improvements on the work done in this study include the expansion of the 

sampling range, the addition of more samples of a longer period of time, and the 

use of a newer molecular marker. Both parts of this study focused on Virginia 
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river systems. The tagging data analyzed in Chapter II indicate that straying is 

occurring among Maryland and Virginia river systems. Expansion of sampling to 

include more rivers can provide a more complete picture of striped bass genetic 

population structure throughout the Bay. Additionally, for both studies, 

incorporating additional years of sampling would allow evaluation of temporal 

stability of samples. For CKMR, a longer time series would allow for an 

investigation into how abundance estimates change between spawning years. Both 

studies complement each other in that understanding where striped bass spawn 

impacts how inferences of adult spawning abundance can be made.  

 For both studies, future genetic analyses incorporating single-nucleotide 

polymorphisms (SNPs) over microsatellite are recommended. Recent studies 

show that the use of SNP markers not only match, but can greatly exceed, the 

power of microsatellite markers to resolve genetic population structure, and the 

cost of SNPs has come down to allow for the high-throughput needed for CKMR 

estimations. The complications encountered in this study may have been avoided 

with the development of SNP markers, which show greater consistency in scoring 

within and among laboratories, but these markers have yet to be developed for 

striped bass.  

Overall, the results from my study will improve the understanding of 

striped bass habitat use for spawning, spawning patterns, and spawning 

abundance within Chesapeake Bay to better address key management concerns. 

Currently, management is primarily focused on the Atlantic stock, with little local 

focus on the stock characteristics within the Chesapeake Bay management area. 
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This is important because the Chesapeake Bay is the largest striped bass spawning 

ground, and, in most years, provides the most recruits to the Atlantic stock. A 

decline in recruitment in the Chesapeake Bay was one of the driving forces 

behind the striped bass stock collapse in the late 1970s and early 1980s. 

Understanding how striped bass recruitment is impacted on a more local, river-by-

river level can provide managers with the ability to allocate management 

resources more efficiently to prevent negative impacts to the striped bass Atlantic 

stock.  
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Appendix I 

Supplementary Table 1: Table of the multiplexes, microsatellite loci, and protocols used for both Ch. II and Ch. III

Multiplex Protocol Locus 
Repeat 

Motif 
Marker Dye Color Source 

1 

Denature: 
 95°C for 5 minutes 

1584 Tetra FAM Blue Rexroad et al 2006 

Annealing: 

 
1556 Tetra VIC Green Rexroad et al 2006 

28 Cycles at 63°C 1568 Tetra NED Black Rexroad et al 2006 

 1271 Tri VIC Green Rexroad et al 2006 

Final Extension at 60°C for 

30 minutes 
1617 Tetra PET Red Rexroad et al 2006 

2 

Denature: 
 95°C for 5 minutes 

1322 Tetra FAM Blue Rexroad et al 2006 

Annealing: 

 
1591 Tri FAM Blue Rexroad et al 2006 

28 Cycles at 63°C 1437 Tri NED Black Rexroad et al 2006 

 1491 Tri PET Red Rexroad et al 2006 

Final Extension at 60°C for 

30 minutes 
1559 Tetra VIC Green Rexroad et al 2006 

3 

Denature: 

 95°C for 5 minutes 
1577 Tetra VIC Green Rexroad et al 2006 

Annealing: 

 
1587 Tetra FAM Blue Rexroad et al 2006 

28 Cycles at 56°C 1592 Tetra FAM Blue Rexroad et al 2006 

 1628 Tetra PET Red Rexroad et al 2006 

Final Extension at 60°C for 
30 minutes 

1273 Tetra PET Red Rexroad et al 2006 

4 

Denature: 

 95°C for 5 minutes 
1602 Tetra NED Black Rexroad et al 2006 

Annealing: 
 

1603 Tetra PET Red Rexroad et al 2006 

28 Cycles at 56°C 1290 Tetra NED Black Rexroad et al 2006 

 1598 Tetra MED Black Rexroad et al 2006 

Final Extension at 60°C for 
30 minutes 

1638 Tetra VIC Green Rexroad et al 2006 
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Supplementary Table 2: Table representing tagging recapture rates. The columns 

represent the river in which fish were originally tagged. The area of recapture on each 

row shows the percentage of fish originally tagged in a river that were recaptured in a 

specific area. The last two rows indicate what percentages of fish from a river were 

recaptured within Chesapeake Bay and outside the Chesapeake Bay. 

 

 River of Origin 

  James River Rappahannock River 

Area of Recapture     

Atlantic VA 0 7 

Choptank 2 2 

DC 0 1 

DE 0 4 

Elk River 0 1 

James 194 13 

MA 17 20 

Main Stem MD 8 38 

Main Stem VA 4 24 

ME 2 0 

NC 2 11 

NJ 6 27 

NY 3 16 

Patapsco 0 1 

Patuxent 0 4 

Piankatank 0 2 

Potomac 3 21 

Rappahannock 7 645 

RI 3 4 

Severn 1 6 

Susquehanna 0 1 

VA Wimico 0 2 

York 3 15 

In Chesapeake Bay 222 776 

Out of Chesapeake Bay 33 89 
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