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ABSTRACT 
 

The Chesapeake Bay region values oysters for the ecosystem services, lucrative fishery, 
and historical significance that the species embodies; however, over the last half century, 
oyster abundances have been reduced to historical lows. Two protozoan parasites, 
Perkinsus marinus and Haplosporidium nelsoni, have been major influences on oyster 
populations, especially in high-salinity regions. Today, the population is recovering; 
catches have increased and oysters have expanded spatially. To investigate the cause of 
the recovery, three measurements were made on slides of oysters from a histological 
archive collected during summer at Wreck Shoal in the James River from 1988–2017: 
oocyte diameter, oocyte density, and gonad area fraction. Gametogenic investment served 
as a proxy for the fitness of oysters; it was hypothesized that an outbreak of P. marinus in 
the 2000s led to a tolerance response that can be detected as an increase in reproduction. 
Oocyte diameter has remained variable yet steady overall, except for a decrease in 2001 
and 2002. Oocyte density and gonad area fraction increased sharply around 2003. Mean 
oocyte densities increased by a factor of 2.05 and gonad area fraction by a factor of 2.04. 
Oocyte density has been maintained at these higher counts in recent years. The increase 
in gonadal area ratio is presently decreasing slowly yet significantly (p=0.00429). The 
cause of the increase is still not well understood, as a variety of environmental variables 
were significant predictors of reproduction as well as the hypothesized cause, P. marinus 
weighted prevalence.  
 
Regardless of the cause, changes in reproductive patterns signify a positive change on the 
part of the oyster. The ability of the wild oyster population to adapt supports management 
strategies that protect old oysters, like sanctuaries and slot fisheries. These strategies 
allow fit oysters to grow to old age and pass on their beneficial traits to future 
generations. In the face of doubts about the efficacy of restoration, conservation emerges 
as a path forward. 
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GENERAL INTRODUCTION 
 

Parasites are relevant to the ecology of virtually all species, both aquatic and 

terrestrial. One study in the Carpinteria Salt Marsh, California, discovered that parasites 

were involved in 78% of the links in the food web (Lafferty et al. 2006). Parasites are 

defined as having a prolonged negative interaction with their host, which distinguishes 

them from predators. They are an abundant and diverse group with a hypothesized 40% 

of known species belonging to this mode of living (Dobson et al. 2008)1. With a lifestyle 

so widespread across taxa, the benefits of parasitism must be significant. Combes (2001) 

listed the main benefits as habitat, mobility, and energy.  

Parasites are successful at the cost of the host populations that they infect. It was 

hypothesized long ago (Hanson 1905) that parasitism could act as a control on host 

populations, similar to other trophic interactions such as predation, but concrete examples 

were few. One of the first well-characterized animal systems was red grouse populations 

in association with a nematode. Anthelmintic treatments reduced the normal population 

“boom-and-bust” cycling observed in untreated grouse populations (Hudson et al. 1998).  

A recent example is the decrease in North American bat populations with the introduction 

of the fungus Pseudogymnoascus destructans that causes white nose syndrome. The 

fungus has led to a precipitous decrease in bat abundance, with abundances in North 

America now matching the abundances of bats in Europe, where the fungus was already6

																																																								
1 Based on the analysis of known species from 25 major animal and protozoan taxa  
2 Weighted prevalence is infection prevalence weighted by intensity. Rare infections are weighted by 0.5, 



	 10 

present (Frick et al. 2015). The authors suggest that disease could play a role in 

determining many macroecological patterns that we have yet to explain.  

Parasites are often well-studied if they affect hosts populations that humans are 

invested in. Obviously, parasitologists focus a great deal of effort on human parasites. 

The oldest written records of parasites discuss intestinal worms and Guinea worm disease 

in Egypt from about 1500 BC (Cox 2002). Research on the Plasmodium species that 

cause malaria has been ongoing since 1880 when scientists first discovered the parasite in 

a patient’s blood (Cox 2002). Scientists initially focused on finding the vector and 

elucidating the lifecycle while researchers today are exploring gene drives to cause 

sterility in the vector, thus decreasing transmission and human illness (Hammond et al. 

2016). Parasites of crop plants, like sugarcane, corn, and wheat, as well as livestock have 

been well-studied through time as well. With the importance of aquaculture as a way to 

feed a growing human population in the future (FAO 2016; Froehlich et al. 2018; Hudson 

2017), more attention has turned towards aquatic parasites.  

Oysters are both cultured and still harvested from wild populations.  The 

importance of eastern oysters, Crassostrea virginica, to estuaries of the North American 

Atlantic and Gulf Coasts is particularly profound. Oysters provide ecosystem services, 

including but not limited to water filtration through feeding, increasing habitat 

complexity through reef building, and dampening erosive wave energy with their three-

dimensional structure (Coen et al. 2007). Many of these ecosystem services provide 

additional economic benefits by also benefiting other commercially and recreationally 

valuable species, such as blue crabs and drum. Oysters have supported essential 

subsistence fisheries from pre-Columbian times and lucrative commercial fisheries along 
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the East and Gulf coasts of North America for centuries, with the Chesapeake Bay fishery 

becoming dominant in the 1800’s as northern oyster stocks were depleted (Kirby 2004). 

Intensive oyster aquaculture in the Virginia region of the Chesapeake Bay alone is today 

worth tens of millions of dollars annually (Hudson 2017). 

One of the greatest threats facing oyster populations around the world is disease. 

For at least the last six decades, there has been at least one major oyster epidemic every 

ten years. Some outbreaks, such Bonamia ostreae in Ostrea chilensis in New Zealand in 

recent years, are the result of novel pathogens emerging in naïve hosts (Lane et al. 2016). 

Other outbreaks are rooted in the emergence of a more virulent variant of a locally 

established pathogen, such as the microvariants of the oyster herpes virus in C. gigas 

(Martenot et al. 2012). In the Chesapeake Bay, there have been both endemic and 

emergent outbreaks. In the 1950s, invasive pathogen Haplosporidium nelsoni emerged 

and devastated oyster populations. Following this outbreak, the native parasite Perkinsus 

marinus intensified and nearly brought C. virginica to commercial irrelevance.  

It is hypothesized that the H. nelsoni, belonging to the phylum Haplosporidia, 

came from Japan in C. gigas imported first to the western U.S. and then to the 

Chesapeake Bay (Burreson et al. 2000). The oysters in the Bay had never been exposed 

to anything like it. It thrives in salinities higher than 15 and is pathogenic in oysters most 

of the year. Oysters in high salinity waters experienced the most intense disease and 

mortality while oysters upstream in lower salinities were rarely affected (Andrews 1962). 

The effect was particularly severe for the oyster seed planting industry, which involved 

selling seed from lower salinity waters to be planted in higher salinity waters for grow-

out.  
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When originally found in the Chesapeake Bay, H. nelsoni was called MSX, 

standing for Multinucleated Sphere Unknown. Although scientists have learned much 

about it, much remains unknown. The lifecycle of H. nelsoni beyond the oyster is a 

mystery. It is not directly transmissible from oyster to oyster and another host has yet to 

be identified, although current candidates include planktonic arthropods. Sporulation is 

also rarely seen in adult oysters and primarily occurs in oysters less than one year in age 

(Barber et al. 1991; Burreson 1994). 

Despite the abundant unknowns, the impact of H. nelsoni on the Chesapeake Bay 

has declined over the last two decades without much human interference. Wild oysters in 

high salinity areas that have been exposed to H. nelsoni longest and most consistently 

have shown evidence of resistance (Carnegie and Burreson 2011). Resistance is defined 

as “the ability to avoid infection, eliminate parasites, or decrease parasite loads for a host 

in contact with a given parasite” (Thomas et al. 2009). Fewer H. nelsoni infections have 

been observed as time has passed since H. nelsoni’s introduction. The mechanism of this 

resistance is also an unknown. 

The biology of P. marinus is better characterized than that of H. nelsoni. This is 

likely due to studies of P. marinus dating back to the 1940s (a decade before the first H. 

nelsoni infection was recorded) in addition to the capability of culturing P. marinus in the 

laboratory. P. marinus belongs to the phylum Perkinsozoa, a subunit of the superphylum 

Alveolata that also includes ciliates and dinoflagellates (Reňé et al. 2017). P. marinus  

has a wider salinity range than H. nelsoni, preferring salinities above 10 and, unlike H. 

nelsoni, tolerating lower salinities. P. marinus  reproduces most rapidly at warmer 

temperatures. Unlike H. nelsoni, P. marinus is directly transmissible through the lifecycle 
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illustrated in Figure 1. It is likely that P. marinus is a native parasite to the Chesapeake 

Bay, as it was found in the 1940s when first sought (Mackin et al. 1950). P. marinus  had 

developed what could be interpreted as a relatively stable and benign relationship with 

the oysters, suggesting coevolution. P. marinus caused annual mortality that was 

typically under 30% in wild oysters, which was manageable for the industry (Andrews 

and Hewatt 1957). The mortality was largely observed in older oysters, which had years 

to accumulate P. marinus infections (Paynter and Burreson 1991, Paynter et al. 2010). 

Under these conditions oysters were still able to have a lifespan of >3 years and 

reproduce annually, thus maintaining local populations.  

In the 1980s, oyster disease caused by P. marinus increased dramatically during a 

period of multi-year drought (Burreson and Andrews 1988), with mortality in those years 

exceeding 70% annually and affecting oysters within months of initial exposure 

(Burreson and Ragone Calvo 1996). This disease pressure brought the oyster population 

and harvests in the Chesapeake Bay to its nadir of the 1990s and early 2000s (Figure 2). 

The change to a period of greatly intensified P. marinus parasitism was unexpected at the 

time. Since disease forms at the intersection of the pathogen, the host, and the 

environment, changes in any of these factors can lead to altered patterns of disease in 

oyster populations. Records of this “ intersection” principle have already been described 

in this introduction, including increased disease in drought years and an increase in 

mortality causing a dramatic decrease in oyster populations with the introduction of a 

nonnative pathogen to the Chesapeake Bay system. In recent years, there have again been 

changes in oyster populations. An expansion of wild oyster populations, as interpreted 

through catch data from the Virginia Marine Resource Commission (Figure 2), began in 
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the mid-2000s. If disease is produced by an interaction between pathogen, host, and 

environmental factors, then which of these factors has played a role in the population 

expansion?  

 Interactions with parasites that would lead to increased host populations include a 

substantial decrease in infection, perhaps due to a substantial decrease in parasite 

populations, or a substantial decrease in virulence. With P. marinus arguably the “most 

important pathogen of the eastern oyster” (Burreson and Ragone Calvo 1996), it is the 

top suspect for initiating the increase in host populations. However, prevalence of P. 

marinus remains high (Figure 3a); therefore, there was not a marked decrease in 

infections that could explain an increase in host populations. Weighted prevalence2 has 

also not decreased significantly over time (Figure 3b), indicating no major changes in 

infection intensity. Furthermore, naïve sentinel oysters brought to the York River in the 

spring every year since 1990 are still experiencing high mortality, indicating that the 

pathogens are still capable of causing high mortality and suggesting that there has been 

no decrease in pathogen virulence.  

 Another explanation for the increased oyster abundance is host adaptation. There 

are two pathways for the oyster host to adapt to a parasite: resistance and tolerance 

(Raberg et al. 2007; Roy and Kirchner 1999). Resistance is when a host is capable of 

limiting the parasite load through the prevention of infection, the limiting of parasite 

growth, or the expulsion of the parasite after infection. These routes all include direct 

limitation of the parasite by the host. Tolerance is defined as limiting the physiological 

consequences of infection without limiting the parasite. This means that a tolerant oyster 

																																																								
2 Weighted prevalence is infection prevalence weighted by intensity. Rare infections are weighted by 0.5, 
light by 1, moderate by 3, and heavy by 5 as described in Ray (1954).  
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will perform better with a given parasite load than an oyster that is not tolerant through 

minimizing the impact of the infection, not the infection itself. Both of these pathways 

are possibilities for how oyster populations have recovered despite the continued high 

prevalence of P. marinus.  

 While resistance has been described as the impetus for the declining impact of H. 

nelsoni in the Chesapeake Bay (Carnegie and Burreson 2011), evidence for resistance to 

P. marinus is limited. Returning to Figure 3a, prevalence of P. marinus is still high, 

suggesting that oysters are not preventing or eliminating infection, and the continued high 

weighted prevalence (Figure 3b) suggests that oysters are also not preventing the parasite 

from growing.  

 For this work, the role of oyster tolerance and environmental changes will be 

investigated for their relevance to the oyster population recovery, with the hypothesis that 

the heavy P. marinus outbreak in the early 2000s acted as a selection event that favored 

increased gametogenic investment in oysters. 
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Figure 1. The traditional life cycle of Perkinsus marinus. ES= early schizont, S= schizont, RS= ruptured 
schizont, DC= daughter cells, Z= zoospore, and T= trophozoite. Adapted from Sunila et al. 2001. Not 
drawn to scale.
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Figure 2. Bushels of oysters harvested from public reefs in Virginia over time. Data from the Virginia 
Marine Resource Commission.   
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Figure 3. A) Peak annual prevalence of P. marinus over time averaged across 30 sites in the Chesapeake 
Bay. B) Peak weighted annual prevalence of P. marinus at the same 30 sites over time.  
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CHAPTER ONE: PATTERNS IN REPRODUCTIVE INVESTMENT 
OVER TIME 

	

Introduction 
Heterotrophic organisms such as oysters must eat to provide energy to the 

pathways of maintenance, growth, or reproduction (Alunno-Bruscia et al. 2011). In 

theory, the relative distribution of energy to different pathways is altered in a diseased 

animal as compared to a healthy animal, with more energy diverted to maintenance to 

mount an immune response. Parasites force an energetic cost on the host by consuming 

host metabolic products, including lipids and proteins (Choi et al. 1989). Most parasites 

also disrupt host tissues. This disruption can occur through proliferation within the tissues 

causing sloughing of cells (Carnegie and Burreson 2012) and/or through the secretion of 

enzymes by the parasite. The parasite of interest here, P. marinus, is a good example of 

these effects. Cells of P. marinus produce a lytic substance that disrupts the structure and 

function of epithelial gut cells (Mackin 1951). Especially in the gut epithelium, the tissue 

damage from a parasite can reduce the feeding efficiency of the host and can reduce 

energy intake on top of costing the host energy after assimilation of the food. Parasites 

can also indirectly cost the host energy through the establishment of an immune response. 

During an immune response, an oyster produces an abundance of hemocytes that must 

migrate to the site of infection. These hemocytes then phagocytose and degrade the non-

self material. The process of phagocytosis requires the input of energy in the form of 
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glycolysis, reducing the oyster’s overall glycogen stores (Cheng 1996). In P. marinus 

infections, phagocytosis leads to increased parasitic load as opposed to a decrease, since 

P. marinus cells replicate within and are transported by hemocytes (Alvarez et al. 1992). 

So, this expenditure of energy to phagocytose the parasite cells creates the need to 

expend further energy once the infected hemocyte bursts, creating a cycle of increasing 

energy expenditure.   

 Many laboratory and field experiments support the notion that diseased animals 

have less energy for pathways beyond maintenance than healthy animals, with evidence 

that oyster growth and reproduction stall during infection (Andrews 1961; Dittman et al. 

2001; Kennedy et al. 1995; Mackin 1962; Menzel and Hopkins 1955; Newell et al. 1994; 

Paynter and Burreson 1991). The growth and reproduction pathways of an oyster are 

therefore interesting proxies for quantifying changes in energy budgeting under disease 

pressure, with applications in tolerance studies. 

 Reproduction is arguably a more applicable and interesting parameter than growth 

for investigating disease tolerance. Reproduction directly affects host population sizes 

and host fitness. The number of eggs that a female produces will increase her chances of 

successfully passing on her genes, with the added complication of egg size. Egg size is 

often an indicator of how well-provisioned an egg is, and therefore how well it will 

survive (Jaeckel 1995; Bayne 1978). On the contrary, an egg that has more energy than 

an oyster embryo needs to get it to its feeding phase is wasteful; there is an ideal egg size 

for oysters that maximizes survival while minimizing the female’s investment. Together, 

oyster fecundity and size of eggs can indicate both fitness and a female’s investment, 

since C. virginica do not brood or engage in other care of offspring. Size and fecundity 
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are related in C. virginica (Cox and Mann 1992; Dame 1976), so an oyster that is 

growing more will have measurably higher reproductive investment as well.  Lastly, 

measuring the growth of an individual requires more than one measurement. This 

necessitates holding animals to take multiple measurements over time, as each animal 

will start at a different size. Oysters in temperate regions have an indifferent or inactive 

stage after spawning and resorption, which removes some (but not all) of the variability3 

(Eble & Scro 1996).  Snapshots of peak gametogenesis can be taken via histology and 

archived for decades, giving some insight on the energy availability and possible 

tolerance adaptation of oysters.. Therefore, histological archives containing slides of 

oysters at peak reproduction can be used as window into the past to measure the adaptive 

response of a host as it was occurring, year-by-year. 

 In this study, the histological archive at the Shellfish Pathology Laboratory at the 

Virginia Institute of Marine Science was used to quantify reproduction annually and 

examine increases in reproductive production in mature female oysters as a proxy for a 

tolerance response.  

Materials & Methods  
Reproduction was quantified in terms of oocyte density, oocyte size, and gonadal 

area ratio for the years 1988-2017. These years represent regular monitoring following 

the intensification of P. marinus in the mid-1980s (Burreson and Ragone Calvo 1996). 

Histological slides of female oysters from Wreck Shoal in the James River collected 

between June and August were reviewed for maturity, and those determined to be mature 

																																																								
3 The histological snapshots yield “standing stock” measurements without factoring in rates of production, 
resorption, spawning, or any other process that alters the number of mature eggs in an oyster at any given 
time. 
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were retained for analysis. For each reproductive variable, regression analyses or an 

ANOVA performed in R were used to assess change over time. 

Before reproductive analyses could occur, preliminary validations of the methods 

were made. Due to the nature of archived material, comparability of samples over 

decades had to be demonstrated, especially because the frequency of sampling changed 

throughout the time period. Samples were taken monthly from 1988-2001; for years with 

monthly data, mature females sampled in June, July, and August were included in the 

analyses. From 2001-2016, oysters were only sampled in July. To allay concern that peak 

oyster reproductive maturity was not being captured in the July samples, oysters were 

collected every month from May through September at Horsehead Rock (HH) and Wreck 

Shoal (WS) in the James River during the summer of 2017. The proportion of mature 

females was then recorded for each month for the 2017 samples as well as the archived 

samples from 1988 and 1989 (WS and HH, respectively). A polynomial curve was then 

fitted to the data in R, with the curve of best fit selected by the Akaike Information 

Criterion (AIC), and peak reproductive maturity was calculated based on the polynomial 

equation for each site and each year. 

Study Site. Wreck Shoal was chosen for retrospective analysis because of the 

site’s regular monitoring and moderate salinity. There are four oyster reefs, all in the 

James River, that have been monitored regularly for the time period of interest: 

Deepwater Shoal, Point of Shoal, Horsehead Rock, and Wreck Shoal. Wreck Shoal is 

closest to the mouth of the James River, and therefore has the highest salinity of all four 

sites. The salinity of Wreck Shoal made it the only suitable site because P. marinus is a 

high-salinity parasite; the disease pressure at the upriver sites was likely to be 
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inconsistent according to precipitation patterns within the James watershed. The salinity 

recorded at Wreck Shoal during summer oyster sampling ranged from about 8 to 19. This 

is sufficient for P. marinus, while oysters upriver may have experienced lower salinities 

that may have provided a temporal refuge from disease. Since the purpose of this study is 

to elucidate host adaptation to P. marinus, Wreck Shoal was chosen to minimize these 

inconsistencies. 

 Density of Oocytes. Using the program CellSens (Entry 1.13, Build 13479) and 

an Olympus BX51 microscope with an attached Olympus DP73 color camera, images 

were taken of a field of view using the 10x objective with a 10x ocular magnification. 

Mature oocytes were then counted in this field of view. In order to be included in the 

count, the oocyte must have a clear nucleus and not be attached to the wall of the follicle 

as well as being completely within the field of view. Although the field of view was 1.1 

mm by 838 µm, oocyte densities are reported as the count per field of view rather than a 

discrete area, as it is a more intuitive metric. 

In performing oocyte density counts, one field of view was chosen based on 

visual assessment of uniform density through the field of view, to represent each 

individual. To validate that one field of view would be representative, 50 individuals 

were subsampled with one individual from each of the 30 years in the time series and an 

additional 20 individuals randomly selected from all individuals. The oocytes in three 

fields of view were counted, each one in the gonadal tissue of a randomly selected section 

of the slide. For slides from 2004-2017, the slide was divided into 8 tracts as shown in 

Figure 4. For slides from 1988-2003, the slide was divided into 4 tracts due to their small 

size as shown in Figure 5. Random selection of tract was performed by random number 
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generation in Microsoft Excel. The subsampled oocyte densities were then compared to 

the original means through a T-test to determine if their mean was significantly different 

from the mean for that year using the original method.  

A discontinuous piecewise regression over time was applied to the oocyte density 

measurements in R. A piecewise regression was chosen based on the hypothesis that 

there had been an increase in gametogenesis. The piecewise regression would allow a 

change in slope over the course of the time series, with discontinuity allowing the two 

pieces of the regression to not meet at the breakpoint. The year 2003 was used as the 

breakpoint based on an iterative search code that isolated the breakpoint with the lowest 

residual error. The code compared the years preceding 2003 and those following 2003 

and suggested that they were more similar within those categories than between the 

categories. The results of the iterative search were supported by hypothesized disease 

interactions in 2003. The fit of the piecewise regression was compared to the fit of a 

standard regression using AIC.  

 Gonadal Area Ratio. A Nikon D200 camera with an AF Micro-Nikkor 60mm 

f/2.8D lens was used to record an image of the entire slide because such an image could 

not be taken even at the lowest magnification by the Olympus microscope and camera 

combination. The slides were placed on a bright, white screen to enhance the quality of 

the image. Images were then imported into the CellSens program. The gonadal tissue was 

outlined using the “closed polygon” tool, followed by the visceral mass, with the areas 

recorded. The ratio was then calculated by dividing the area of the gonadal tissue polygon 

by the visceral mass polygon. Although a gondosomatic index is a more standard metric, 

it cannot be calculated from histological slides (Anderson and Gutreuter 1983). 
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Therefore, instead of using gonadal mass/total mass, gonadal area/total visceral area was 

calculated.  

 For years 1988 through 2003, the slides in the archive contained four separate 

individuals, with each individual represented by a quarter of a standard histological 

section (cut through the center of the gill filaments and at a right angle to that line, as 

seen in Figure 6a). Occasionally, the section was not a true quarter and was missing an 

additional part of the body wall. These irregular sections were excluded from areal 

analysis. To allow comparison of the older slides to the slides of whole sections made 

from 2004 through 2017, the whole sections were quartered. To do this, the “ellipse” tool 

in CellSens was used to encompass the body of the slide (Figure 6b). Using the 

“perpendicular line” tool, a line was drawn from the center point of the ellipse through 

the center of the gills to mimic the cutting of the older slides, with a second line at a right 

angle to this (Figure 6c). All area measurements were then taken within this quarter of the 

entire slide to allow comparison between old and new slides. 

The area ratios were analyzed via a discontinuous piecewise regression over time 

in R for the same reasons as stated above. The year 2003 was used as the breakpoint 

based on hypothesized disease interactions. 

Size of Oocytes. To evaluate the size of oocytes, the diameter was measured for 

five oocytes in each mature female. These oocytes were selected based on maturity, with 

a clear nucleus and no attachment to the follicle wall as criteria for selection. Using the 

40x objective with a 10x ocular magnification, an image was taken with the same camera 

and image processing program as used for density counts. The “arbitrary line” tool in 

CellSens was used to record two cross-sectional measurements. One cross-section was 
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measured through the center of the nucleus at the longest distance from end to end while 

the second was measured at the shortest distance. The non-spherical, irregular shape of 

the eggs within the follicles made two measurements necessary to calculate a single, 

representative average diameter for each oocyte.  

 To evaluate how oocyte diameter changed with the increased parasitism, the 

measurements from the high disease years 2000-2003 were compared to all other years 

using orthogonal contrasts in an ANOVA statement. Based on preliminary data 

visualization, a piecewise regression did not seem appropriate. The hypothesis tested was 

that oocyte diameter decreased in the early 2000s due to heavy disease rather than testing 

if there was an increase over time. 

Results 
 Validation of Methods. A polynomial of the second degree was fit to the Wreck 

Shoal 2017 maturity data with a multiple R2 of 0.949. The peak of the polynomial 

equation was calculated to be 7.3. corresponding to approximately July 10th. The 1988 

maturity polynomial had a multiple R2 of 0.806 and a peak at 7.6, corresponding to July 

18th. The Horsehead models had multiple R2 values of 0.946 for the 2017 data and 0.984 

for 1989. The peak of the 2017 polynomial was 8.13 while the 1989 peak was 7.14. The 

peaks correspond to August 4th and July 4th, respectively. The data and functions are 

plotted in Figure 7 for both sites and years. Polynomials applied and their AIC values can 

be viewed in Table 1. 

 Density of Oocytes. Mean oocyte density has increased over time at Wreck Shoal 

since 1988 with a sharp increase from a mean density of 103 in 2002 to 211.3 in 2003 

(Figure 8). The piecewise regression model with a discontinuous break at 2003 was 

significant (F=58.62, p<2.2e-16) while explaining little of the variation in density 
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(R2=0.2601). The first function, from the year 1988 to 2003, has a slightly negative 

though not significant (p=0.0705) slope of -0.7214. The second function from 2003 

onwards has a slightly positive and not significant slope of 1.7782 (p=0.0732). At 2003, 

the first function predicts 153 oocytes per field of view while the second predicts 233 

oocytes per field of view (Figure 9). The piecewise regression had a lower AIC than the 

standard regression model (5808 and 5846, respectively).  

 Of the 50 subsampled individuals, only 6% had p-values that suggested the mean 

of the three random subsampled densities were significantly different from the original 

count for the individual. None of the subsampled individuals showed a significant p-

value when compared to the mean for the year the individuals were sampled from.  

 Gonadal Area Ratio. Mean gonadal area ratio has increased over time (Figure 11). 

Similar to density, a shift from 0.1098in 2002 to 0.2241 in 2003 was observed. The 

piecewise regression model with a discontinuous break in 2003 was again significant 

(F=45.38, p<2.2e-16) while describing less than one-third of the variation (R2=0.276). 

The first segment has a slope of 0.0053 (p=0.00437) with a predicted gonadal area ratio 

of 0.1626 at the 2003 breakpoint. The slope of the second segment is -0.0044 

(p=0.00429) with a value of 0.2918 at the breakpoint (Figure 12). Once again, the 

piecewise regression had a lower AIC (-2152) than the standard regression (-2097).  

Size of Oocytes. The diameter of oocytes was variable over time (Figure 10). The 

ANOVA showed a significant impact of year on oocyte size (F=6.511,p<2.2e-16). 

Orthogonal contrasts revealed that the mean oocyte sizes for the years 2001 and 2002 

were significantly different from all other years (F=23.893, p=1.27e-6 and 
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F=41.470,p=2.24e-10, respectively). The other contrasts (2000 and 2003) were not 

significant to an alpha of 0.05. 

Discussion 
 A tolerance adaptation is defined as a lessening of the impact on host fitness of a 

certain intensity of infection (Roy and Kirchner 2000; Schafer 1971). While infection 

intensity was fairly constant, positive changes were observed in the reproductive effort of 

oysters over the three decades from 1988-2017.The changes may represent an 

improvement in host fitness for a given infection level. The period of greatest change 

encompassed the early 2000’s for all three reproductive parameters. The piecewise 

regressions of oocyte density and gonadal area ratio showed a discontinuous break in 

reproductive investment in 2003 while oocyte diameter showed the greatest change in 

2001 and 2002. The timing of the heavy P. marinus outbreak, with a weighted prevalence 

close to 3 in 2000, 2001, and 2002, lines up with these changes in gametogenesis. 

The slopes for both segments of the oocyte density regression are not significantly 

different from zero, suggesting that oocyte density remained stable from 1988-2002 and 

from 2004-20174. Therefore, the sudden increase in reproduction noted in 2003 has been 

maintained to the present. This observation supports the hypothesis that a selection event 

caused a long-term change in oyster energy budgeting and fitness. If attributed to the 

intense P. marinus outbreak and heavy mortality from 2000-2002, it would mean that an 

acute disease event changed the reproductive investment lasting to the present, and 

possibly beyond. A long-term change in an oyster population due to disease is not 

unprecedented. Similar selection events to the one proposed here have occurred in the 

Delaware Bay in response to H. nelsoni (Ford and Bushek 2012). In the 1950s and again 
																																																								
4	Since 2003 is where the breakpoint occurs, assumptions cannot be made about density in that year.	
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in the 1980s, severe MSX disease outbreaks caused heavy mortality and ultimately a 

decrease in prevalence. The decrease in prevalence suggested that surviving Delaware 

Bay oysters were more resistant to H. nelsoni, while the surviving oysters in this study 

are hypothesized to be more tolerant of P. marinus.  

The pattern for gonadal area ratio is slightly different than the oocyte density 

regression. The slope of the first segment of the gonadal area ratio regression is 

marginally positive (0.005) but significantly different from zero. The slope of the latter 

segment is marginally negative (-0.004) but significantly different from zero. According 

to the regression model, the ratio of gonad to visceral tissue was increasing slowly but 

significantly from 1988-2002 with a marked increase in 2003. Since 2003, the gonadal 

area ratio has been slowly but significantly decreasing. Unlike oocyte density, which 

appears to be at a stable, higher mean from 2003 to 2017, gonadal area ratio has been 

decreasing since 2003. It is possible that the mean gonadal area ratio could either 

decrease back to pre-2003 levels or stabilize at higher investment, but only continued 

monitoring over time will tell.  

While both segmented regression models fit the data, little variation was 

explained in either dependent variable. This suggests that year alone cannot explain all of 

the variation in oocyte density or gonadal area ratio, which would be expected. The 

question of what predictors are significant is addressed in Chapter 2. 

The oocyte diameter trends were different than those already described. The 

change in oocyte diameter was acute, with the years 2001 and 2002 differing from all 

other years and 2000 and 2003 not being significantly different. Therefore, the change in 

oocyte diameter occurred before the shifts in density and gonadal area ratio and during 
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the disease outbreak. Oocyte diameter may be a short-term, more immediate response 

than the other two parameters with diameter increasing again once disease pressure has 

decreased. It is of interest to note that Kennedy et al. (1995) found that oocyte diameter 

did not vary with P. marinus infection intensity; however, their measurements were based 

on oocytes that were released by the female, unlike the pre-spawned oocytes investigated 

here. Kennedy et al. (1995) also used a small number of individuals for their size 

analyses (34 oysters over two years). It is possible that the oysters in the Maryland study 

were below the disease threshold at which oocyte size is affected.  

In terms of a potential tolerance response, oocyte density and gonadal area ratio 

increases represent an increase in oyster fitness. The change in oocyte size is too transient 

to label a tolerance adaptation. Conceivably, the physiological damage avoided by 

tolerance could allow higher egg production. Higher egg production could benefit the 

overall oyster population, as more eggs could translate to more larvae, spat, juveniles and 

adults. Such a response supports management strategies that provide oysters time and 

space to adapt. These strategies include sanctuaries from harvest and market size limits. 

Sanctuaries allow selective pressures to act upon the oyster population, producing 

adaptation to locally important stressors. Size restrictions on harvest, including slot 

fisheries that include a lower limit and an upper limit on harvest size, allow oysters to 

attain an older age. Older oysters have survived for longer, and are more likely to have 

valuable adaptive traits that allowed them to reach old age. In addition, larger oysters are 

more fecund, which means that an older, larger oyster is both better adapted to the local 

environment and better able to spread its adaptive genes than younger oysters.  
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This study adds to the limited research on tolerance in marine disease systems. 

Tolerance is commonly discussed in plant pathogen literature, dating back to 1894 with 

the observation of “rust-enduring” wheat (Cobb 1894). Oysters were a logical 

progression from crop plants, since they are also farmed with economic consequences to 

disease. In other animal systems in which tolerance has been measured, reproduction is 

usually not used as the proxy for host fitness. Body weight has been used for sheep and 

mice, extent of anemia for mice, and survival in fruit flies (Råberg et al. 2007; Hayward 

et al. 2014; Louie et al. 2016). Apart from these parameters not being measurable over 

time from the oyster archive, overall oyster populations available for harvest and to 

provide ecosystem services are the main interest. Therefore, similar to crop plants, it 

makes sense to investigate reproduction, like the production of grain by wheat plants, 

with oysters.  

Method of sampling density and timing of reproduction are not likely to have 

influenced the trends reported in this study. The subsampling showed no extreme 

discrepancies between consciously picking a field of view to count and random 

assignment. According to the polynomials fitted to the reproductive maturity data, July 

still captures peak reproduction. The peak in Wreck Shoal oysters shifted from 8.1, which 

would be early August, to 7.3, which is early to mid-July. This shift echoes the findings 

of Roger Mann and colleagues (Mann et al. 2014). Through long-term monitoring, they 

detected a shift in recruitment to earlier summer months and hypothesized that the 

increase in disease intensity selected for oysters that reproduced earlier before disease 

pressure peaked. At Horsehead Rock, peak gametogenesis appears to have moved later in 

the summer, from 7.1 to 8.1, or from early July to early August. This is contrary to what 
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has been observed in recruitment timing patterns. It is possible that the timing of peak 

ripeness in females has not changed significantly, but perhaps fertilization and survival of 

larvae to recruitment are higher earlier in the summer. Since only two years were 

analyzed for peak reproduction at only two sites, and the polynomials fitted to just five 

data points per year and site, more work remains to be done to elucidate whether there 

has been a shift in the timing of reproduction that matches the shift in recruitment.  
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Table 1. Polynomials of degrees one through three tested for best fit to reproductive timing data. Site, year, 
degree of polynomial, and AIC value given. Bold text indicates the model chosen, with accompanying R2 
value. 
 
Site and Year Degree of Polynomial AIC Value R2 Value 
Wreck Shoal 2017 1 -4.924265 
 2 -17.76562 0.9492 
 3 -16.07236 
Wreck Shoal 1988 1 -12.69364 
 2 -18.65341 
 3 -25.35248 0.9659 
Horsehead Rock 2017 1 -8.156302 
 2 -10.49785 
 3 -18.2258 0.9458 
Horsehead Rock 1989 1 -8.655147 
 2 -18.10208 
 3 -25.4778 0.9845 
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Figure 4. A digitally rendered example of how the tracts were delineated for subsampling in a whole slide. 
In the lab, a coverslip with marker lines was placed on top of the slide during subsampling. 
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Figure 5. A digitally rendered example of how the tracts were delineated for subsampling in a quarter slide. 
In the lab, a coverslip with marker lines was placed on top of the slide during subsampling. 
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Figure 6. Quartering method for whole slides. A) quarter slide from the archive. B) ellipse overlaid on the 
whole slide. C) perpendicular lines added to delineate the quarter. 
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Figure 7.  Proportion of oysters at sexual maturity for each month from May to September. A) compares 
1988 to 2017 at Wreck Shoal while B) compares 1989 to 2017 at Horsehead Rock.  
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Figure 8. Boxplot of the oocyte density measurements over time (n=672). The box represents the first and 
third quartile, with the line within the box representing the median. The dotted lines signify the maximum 
and minimum values with the stars representing outliers. 	 	
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Figure 9. Oocyte density counts per field of view over time at Wreck Shoal. Points represent single 
individuals/observations. Orange lines show the predicted values from the two segments of the piecewise 
regression performed, discontinuous at the 2003 breakpoint. 
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Figure 10. Boxplot of the diameter of oocytes over time (n=724 individuals). The box represents the first 
and third quartile, with the line within the box representing the median. The dotted lines signify the 
maximum and minimum values with the stars representing outliers.  
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Figure 11. Boxplot of the gonad area ratio over time (n=481). The box represents the first and third quartile, 
with the line within the box representing the median. The dotted lines signify the maximum and minimum 
values with the stars representing outliers. 	 	
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Figure 12. Gonadal area ratio over time at Wreck Shoal. Points represent single individuals/observations. 
Orange lines show the predicted values from the two segments of the piecewise regression performed, 
discontinuous at the 2003 breakpoint. 
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CHAPTER TWO: ENVIRONMENTAL INFLUENCES ON 
REPRODUCTIVE PATTERNS 

	

Introduction 
As reproductive strategies go, broadcast spawning seems to be an uncertain 

strategy, albeit one that the oyster’s sedentary lifestyle makes necessary. The first 

challenge is that timing of the release of gametes must align with other individuals. In 

order to be ready at a given time, oysters must start gametogenesis and progress to have 

mature gametes ready for spawning. Once released, sperm and oocytes must find each 

other. Oysters have developed chemical signals that attract sperm to the eggs and proteins 

that aid in recognition of gametes from the same species to tackle this barrier (Evans and 

Sherman 2013). After fertilization and development in the water column, which requires 

sufficient and appropriate food, larvae must find a suitable place to settle. With such a 

complex system, there are many factors that affect the reproductive potential of an oyster. 

Galtsoff (1964) claimed that temperature, salinity, food availability, depth and pollution 

are the most important influences on reproductive output. The first three parameters, 

along with disease, are emphasized here for their possible significance as predictor 

variables of the increase in reproductive investment of oysters observed in the early 

2000s. 
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 Temperature influences many physiological processes. Higher temperatures 

increase the rate of most biological reactions and metabolism/growth generally increases 

as well.  Dame (1972) calculated that the Q10 temperature coefficient, or the change in 

the rate of a reaction when the temperature is raised 10˚	C, was roughly two for the 

growth of oysters during the warmer months. It is conceivable that temperature and an 

increase in the rate of reactions could increase the production of eggs as well, although 

most studies concerning reproduction and temperature have investigated temperature as a 

cue for the timing of gonadal development and spawning, rather than investigating how 

temperature influences total gamete production (Shpigel et al. 1992). Dalila Aldana 

Aranda and colleagues (2014) found that temperature was correlated with gametogenesis 

in oysters spawning in Mexico. Along the middle and south Atlantic coast, oysters begin 

to spawn between 16 and 20˚ (Lorio and Malone 1994). It is possible that warmer 

temperatures solely help oysters achieve peak maturity earlier without actually increasing 

the amount of eggs that are produced, which would be less relevant to this study than the 

alternative.  

 Salinity is similar to temperature in that it has been studied mainly as a cue for the 

initiation of reproduction. However, since salinities lower than 10 may stunt gonadal 

development, salinity could play a role in suboptimal oocyte production (Lorio and 

Malone 1994). An improvement to ideal salinity could then increase reproductive output. 

Food availability has a logical impact on the energy-intensive process of 

gametogenesis. Gonadal index, defined as the gonadal thickness divided by the diameter 

of the adductor muscle, increases with increasing food index, defined as the sum of the 

lipid, protein, and carbohydrate content of the seston, in the spring and summer (Soniat & 
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Ray 1985); however, these seasonal changes may represent effects on timing as well, 

rather than increasing total reproductive output. In the mussel Mytilus edulis, differences 

in maximum reproductive condition and fecundity have been noted between different 

years, which have been attributed to differences in the abundance of food and the timing 

of peak energy availability (Thompson 1979; Newell et al. 1982). The total production of 

gametes in C. virginica may be similarly affected by food availability. 

 Depth and pollution are not considered here as predictors of reproductive change 

observed in oysters. The oysters at Wreck Shoal are dredged routinely by the Shellfish 

Pathology Lab from the same area, and a significant and consistent change in depth of 

sampling is not likely. Furthermore, pollution by “trade wastes” (Galtsoff 1964) does not 

seem a likely cause of reproductive change in the oysters. The most significant reductions 

in pollution, such as the banning of Kepone and the passing of the Clean Water Act, 

occurred in the 1970s, well before any change in reproduction was observed.  

 Fecundity in oysters is related to size. As oysters grow larger, they produce more 

oocytes per gram than younger oysters (Harding et al. 2008, see also Mann et al. 2014), 

however, this ontogenetic change in fecundity is irrelevant to this study because the 

oysters have been collected routinely by the same scientists or people trained by those 

scientists. We can be reasonably assured that a sudden increase in the mean size and/or 

age of oysters collected was not a cause of the shift in reproduction. 

 Therefore, temperature, salinity, food availability, and disease were selected as 

possible predictors of oyster reproduction (specifically oocyte density, gonad area ratio, 

and oocyte size). Each specific reproductive parameter was modeled with these predictors 

to identify which factors contributed significantly to overall gonadal production from 
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1988-2017. The purpose was to determine whether changes in the predictors could help 

explain the change in reproduction observed in the early 2000s, with the hypothesis that 

disease was a driving force.  

Materials & Methods 
Two multiple linear regressions were performed in R to determine the 

significance of temperature, salinity, peak chlorophyll-a (chl-a) concentration and the 

timing of the peak as proxies for food, disease, and any significant interactions as 

predictors of reproductive investment patterns in oysters. Separate models were run for 

gonadal area ratio and oocyte diameter. A negative binomial model was run in R with the 

same predictors for the oocyte density data, as they are counts per unit area. Assumptions 

of the models were tested through residuals plots against fitted values and against time, 

and quantile-quantile plots. 

 The temperature data was obtained from the Virginia Estuarine and Coastal 

Observing System (VECOS) stations 5.1, 5.2, and 5.3 for the years 1987-2017. While 

station 5.2 was closest to the Wreck Shoal collection site, stations upstream and 

downstream were included to increase the sample size and hopefully increase the 

accuracy of the environmental data (see VECOS map, Figure 13). Seasonal temperatures 

were calculated by averaging observations from June, July, and August as summer 

temperatures. The same seasonal averaging process was repeated for salinity.  

 The chl-a concentrations were collected from VECOS stations as well. The 

highest chlorophyll-a concentration from each site for each year were averaged. 

Phytoplankton blooms, including the spring bloom, are notoriously patchy and variable 

through time, so averaging values helped emulate what the oysters experienced that year. 
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The month that the peak was recorded was used as the timing predictor, coded as a factor 

with 4 levels equivalent to February, March, April, and May.  

 The annual average weighted prevalence of P. marinus came from the Shellfish 

Pathology Laboratory’s regular monitoring program (Carnegie and Burreson 2009). 

Weighted prevalence was used to incorporate both intensity and prevalence. 

 Models were run in R with all interactions included preliminarily, with those with 

p-values less than 0.05 dropped for the subsequent, final model. The variance inflation 

factor (VIF) was calculated for each predictor to detect multicollinearity in the models. 

Coefficients were standardized (values of predictors had the mean value subtracted and 

then were divided by the standard deviation) to allow comparisons of magnitude between 

predictors. 

Results 
 Density of Oocytes. All predictors in the model excluding the timing of the spring 

bloom were significant (p<0.05). The significant interactions were between summer 

temperature and chl-a concentration (p=1.99e-07), summer salinity:chl-a concentration 

(p=1.44e-06), summer temperature:summer salinity (p=2.69e-07), and a three-way 

interaction between summer salinity, summer temperature, and chl-a concentration 

(p=6.93e-07). Multicollinearity was present in summer temperature (VIF=302.5), 

summer salinity (VIF=6234.8), chl-a concentration (VIF=205577.5), and all interaction 

terms (Table 2). Multicollinearity was not present in timing of peak chl-a (VIF=1.87) and 

disease (VIF=1.56). Coefficient estimates are given in Table 2.  

 Gonadal Area Ratio. All predictors in the model were significant (p<0.05). The 

significant interactions included in the model were summer temperature:summer salinity 

(p=0.00399), summer temperature:timing (p=7.02e-05), summer salinity:timing 
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(p=3.37e-05), and a three-way interaction between summer temperature, summer salinity, 

and timing (p=2.43e-05). Multicollinearity was again observed in the majority of 

predictors (VIF values can be seen in Table 3). The multiple R2 was 0.197. Coefficient 

estimates are included in Table 3. 

 Size of Oocytes. Multicollinearity was present in all predictors so the data were 

centered to reduce the impact. After centering, six of the variables still had VIFs above 

the threshold of 10 (see Table 3). Temperature, chl-a, and disease were significant 

(p<0.05) as well as the interactions between disease and chl-a, and all constituent two-

way interactions of temperature:ch-a:salinity, temperature:chl-a:timing, and chl-

a:salinity:timing except temperature:salinity. The multiple R2 was 0.214. Coefficient 

estimates are given in Table 4. 

Discussion 
 When considering oyster reproduction as a whole, the temperature and salinity 

during the reproductive season, peak spring bloom chlorophyll-a concentration, the 

timing of the peak of the bloom, and weighted prevalence of P. marinus are all important 

in determining gonadal quantity and quality at peak reproduction. Though timing of peak 

chlorophyll-a levels was not significant in predicting oocyte density, it was significant for 

predicting gonadal area ratio and oocyte diameter. This adds to the current knowledge 

(Thompson et al. 1996) that temperature, salinity, and phytoplankton are important cues 

for the timing of beginning gametogenesis and spawning. They are significant predictors 

of the quality and quantity of oocytes that will be present at peak maturity as well. 

It must be noted that the interaction terms complicate interpretation of model 

results in the current study. A significant interaction between two or three terms means 

that the effect of each term is dependent on the values of the other term(s). Therefore, the 
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coefficients for summer temperature, summer salinity, and chl-a concentration in the 

density model cannot be accurately interpreted in isolation. Similarly, the coefficients for 

summer temperature, summer salinity, and timing of peak chl-a concentrations for the 

area model cannot be interpreted. For the oocyte size model, every predictor was 

involved in a significant interaction term, which severely limits the interpretation of 

individual coefficients. 

 The presence of multicollinearity in the current study results influences 

interpretation. Collinearity was expected from these environmental variables because 

they tend to be linearly related, with patterns changing over space and time (Dormann et 

al. 2013). For example, both temperature and chl-a concentration tend to be low in the 

winter and increase into spring and summer. The model employed herein cannot 

determine how much variance in reproduction is explained by the change in temperature 

versus how much is explained by the change in salinity because both temperature and 

salinity follow the same seasonal pattern. Since the hypothesis examined in this study 

concerned disease, I chose not to address multicollinearity in the models in which the 

disease variable had a VIF of less than ten. Because the multicollinearity remains present, 

the following interpretations will acknowledge that the collinear environmental predictors 

cannot be truly separated, while disease can be interpreted by itself. 

 The density of oocytes at maturity is not affected by timing of peak chl-a levels, 

but is affected positively by the concentration of chl-a during the peak. The importance of 

chl-a concentration emphasizes the potential role that storage of energy in forms such as 

glycogen could have on the production of oocytes. The latest peak chl-a levels in the 

dataset was observed in April, well before reproduction peaks in Wreck Shoal oysters. 
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Therefore, the timing of the peak chl-a may not have mattered because oysters are able to 

store abundant glycogen reserves and utilize it as they start producing gametes 

(Thompson et al. 1996). If peak chl-a occurred in February, the oysters would still be able 

to store the energy from the bloom to use later. The concentration of the peak chl-a still 

mattered because it determines how much energy there is to both store and use. Disease 

weighted prevalence from the previous year had a negative effect on oocyte density with 

a standardized coefficient estimate of -0.118. Although the coefficients for the 

environmental variables cannot be directly interpreted due to interactions and 

multicollinearity, the effect of disease is the same order of magnitude as the coefficient 

estimates for environmental variables as well as interactions. Therefore, disease is a 

significant predictor of oocyte density in a statistical as well as a practical sense; it exerts 

a similar magnitude of effect as the other significant predictors. 

Unlike oocyte density, the gonad area ratio was affected by all predictors, 

including timing of peak chl-a concentrations. This could indicate that storage is not as 

efficient as sending energy directly from consumption into gamete production, or it is 

limited. Perhaps oysters are able to store enough energy from early blooms to reach 

optimal density, but later blooms allow oysters to send energy directly into expanding the 

gonad to be able to accommodate more eggs at the same density (Bayne et al. 1975). 

However, the magnitude of the effect is hard to interpret due to one three-way and two 

two-way interactions. The weighted prevalence of P. marinus again shows a negative 

effect with a standardized coefficient estimate of -0.049, which is within the range of 

magnitude of the environmental variables. An oddity of this model is that chlorophyll-a 

concentration is estimated to have a coefficient estimate of -0.016. This would suggest a 
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very slight, but still significant (p=0.013) negative influence of increasing chlorophyll-a 

on gonadal area fraction. While Rodríguez-Jaramillo and colleagues (2008) found a 

negative correlation between gonad coverage area and chlorophyll-a concentration in 

Crassostrea corteziensis, they hypothesized that the effect was due to high chlorophyll 

during the winter when females were in a resting stage. Since only peak chlorophyll and 

peak reproduction were modeled, this is not an applicable hypothesis to apply to this 

study. Perhaps further work should be done with more consistent chlorophyll sampling to 

address this question. 

The oocyte diameter model is the hardest to interpret, as the independent variable 

of interest (disease) is wrapped up in an interaction, and multicollinearity remained a 

problem, even after centering. Perhaps modeling oocyte size with additional data would 

allow the variables to be teased apart and provide more useful information.  

 Ultimately, a great deal of environmental variables influence reproductive 

patterns in oysters and the connections between the variables make it hard to understand 

the system. Disease had a clear negative effect on reproduction when measuring oocyte 

density and gonadal area ratio. In the oocyte diameter model, the effect of disease (as 

well as many environmental variables) were obscured by interactions and collinearity. 

Although the goal of the study was to test the hypothesis that disease was driving the 

changes in reproduction, the hypothesis cannot be definitively supported or rejected 

because the significant influence of many environmental factors in reproduction as well. 

An analysis with more data might be able to focus in on the importance of each predictor 

over the years, but the limits of historical studies include limits on available data. 	
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Table 2. Coefficient estimates, standardized coefficient estimates, standard error, z-values, p-values, and 
VIFs for all variables and interactions modeled to explain the variation in oocyte density. 

	
	
	
	
	
	
	 	

 Estimate Std. 
Estimate Std. Error z-value p-value VIF 

(Intercept) -54.353143 5.32759 11.507551 -4.723 2.32e-06  
Temperature 2.325658 -0.00149 0.434272 5.355 8.54e-08 302.5066 

Salinity 4.059463 0.23963 0.807455 5.027 4.97e-07 6234.849 
Chlorophyll-a 1.880162 -0.07593 0.371690 5.058 4.23e-07 205577.5 

Timing -0.044710 -0.03766 0.032971 -1.356 0.175 1.869770 
Disease -0.234085 -0.11761 0.050440 -4.641 3.47e-06 1.563872 

Temp:Chl-a -0.074170 -0.14727 0.014264 -5.200 1.99e-07 208563.7 
Sal:Chl-a -0.128526 0.22438 0.026668 -4.819 1.44e-06 200212.2 
Temp:Sal -0.156658 0.04476 0.030453 -5.144 2.69e-07 7216.631 

Temp:Sal:Chl-a 0.005080 0.20257 0.001023 4.963 6.93e-07 203777.7 
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Table 3. Coefficient estimates, standardized coefficient estimates, standard error, z-values, p-values, and 
VIFs for all variables and interactions modeled to explain the variation in gonadal area ratio. 

	
	
	
	
	

 Estimate Std. 
Estimate Std. Error z-value p-value VIF 

(Intercept) -10.61 0.20959 4.192 -2.530 0.01184  
Temperature 0.4148 0.02947 0.1581 2.624 0.00905 549.052927 

Salinity 0.825 0.06301 0.	3068 2.876 0.00426 11041.981957  
Chlorophyll-a -0.0006376 -0.01604 0.0002558 -2.493 0.01312 1.259867 

Timing 7.373 -0.00164 1.863 3.957 9.14e-05 65689.707249 
Disease -0.09405 -0.04911 0.01641 -5.730 2.12e-08 2.235635 

Temp:Sal -0.03325 0.03597 0.01147 -2.897 0.00399 13058.404479 
Temp:Timing -0.2859 0.01790 0.07108 -4.022 7.02e-05 59478.202667 

Sal:Timing -0.6068 0.01434 0.1445 -4.200 3.37e-05 54753.681021 
Temp:Sal:Timing 0.02349 0.03090 0.005492 4.277 2.43e-05 50385.409811 
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Table 4. Coefficient estimates, standardized coefficient estimates, standard error, t-values, p-values, and 
VIFs for all centered variables and interactions modeled to explain the variation in oocyte diameter. 

	
	
	
	

	 	

 Estimate Std. 
Estimates Std. Error t-value p-value VIF 

(Intercept) 36.386273 36.38627 0.191977 189.534 < 2e-16                 
Temperature -1.835995  -1.4816 0.347082  -5.290  1.86e-07 6.407205 

Salinity -0.118202  -0.2309 0.190514  -0.620  0.53526 11.312134 
Chlorophyll-a 0.025782    0.6364 0.009674    2.665   0.00796 4.657822 

Timing 0.176113    0.1495 0.368086    0.478   0.63254 7.975487 
Disease 2.873985    1.4255 0.575229    4.996  8.17e-07 6.648445 

Disease:Chl-a 0.186620    2.2849 0.028075    6.647  8.05e-11 5.866701 
Salinity:Temp -0.011946  -0.0188 0.209377  -0.057  0.95452 8.421982 
Salinity:Chl-a -0.028780  -1.3878 0.012141   -2.371  0.01815 14.613666 

Salinity:Timing 0.601564    0.9976 0.196912    3.055   0.00237 13.310504 
Temp:Timing 0.913057    0.6255 0.320584    2.848   0.00458 5.650314 
Temp:Chl-a -0.063502  -1.2650 0.014671   -4.328  1.83e-05 5.823875 

Chl-a:Timing -0.098878  -2.0721 0.020517   -4.819  1.93e-06 8.703007 
Temp:Chl-
a:Salinity 0.107350    4.2593 0.014033    7.650  1.09e-13 19.036245 

Temp:Chl-
a:Timing 0.112568    1.9037 0.024302    4.632  4.66e-06 11.798200 

Salinity:Chl-
a:Timing 0.104046 4.1773 0.018182 5.722 1.84e-08 32.501403 
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Figure 13. Stations LE5.1, LE5.2, and LE5.3 from the Virginia Estuarine and Coastal Observing System 
marked by blue squares. Image from Google Maps.  
	 	

LE5.1 

LE5.2 

LE5.3 
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SUMMARY 
  

The objectives of this study were to 1) quantify the change in reproduction since 

1988 and to 2) determine the cause of the reproductive patterns observed. Using the 

histological archive at VIMS, oocyte counts per field of view (density) were recorded 

from 672 individuals, gonadal area ratios were calculated for 481 individuals, and two 

oocyte diameter measurements were made for five oocytes from 724 individuals. 

Segmented regressions were performed to look at changes over time with an ANOVA 

performed on the diameter data. The environmental variables summer temperature, 

summer salinity, peak recorded chlorophyll-a concentrations, the timing of the peak 

chlorophyll-a concentrations, and Perkinsus marinus weighted prevalence were then used 

to model each of the reproductive parameters. 

 In both oocyte density and gonadal area ratio, there was a sharp increase in 2003. 

The regression for oocyte density showed that the increase was stable, whereas gonad 

area ratios have been declining slightly but significantly since 2003. Oocyte size in the 

years 2001 and 2002 were significantly lower than the sizes for the years 2000 and 2003. 

All environmental variables that were not collinear were significant with the exception of 

timing of peak chl-a for oocyte density. For every model, interactions and 

multicollinearity limited the ability to make interpretations about individual predictors. 

However, disease was not collinear and did not have significant interactions in the 
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density or area ratio models, so it can be stated that disease had a significant, negative 

effect on oocyte density and gonadal area ratio. 

 Despite the cause of the increase in reproductive effort being clouded, the 

increase in reproduction combined with the recent increase in oyster populations Bay-

wide should give us hope for the future of oysters in the area. With the knowledge that 

oysters are able to respond to environmental changes and increase their reproduction 

supports the use of management strategies such as sanctuaries from harvest. These 

sanctuaries allow oysters to develop local adaptation by leaving them exposed to the 

challenges of the area, rather than harvesting them before they experience those selective 

pressures.	
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