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ABSTRACT 

 Freshwater inflow influences numerous physical, chemical, and biological characteristics 
of estuaries. The influx of freshwater to an estuary typically serves as an important source of 
allochthonous material from which primary producers derive their energy and transfer this 
energy to higher trophic levels. Any changes to freshwater flow subsequently impacts nutrient 
delivery and indirectly impacts organisms across multiple trophic levels. Anthropogenic changes 
to coastal land use and climate both act to threaten the integrity of estuarine systems by 
influencing freshwater inflow and dissolved nutrient input. Watershed loading models such as 
the Regional Nutrient Management (ReNuMa) model offer the ability to estimate freshwater 
inputs and dissolved nutrient loads to estuaries under current and future conditions. This tracking 
is important because it allows scientists to better understand how watershed delivery is currently 
impacted by anthropogenic activities and natural environmental variability, which allows for a 
better understanding of how watershed delivery is likely to be affected by anthropogenic changes 
in land use and climate.  
 This research aims to assess how changes in climate and coastal land cover will impact 
streamflow and loads of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) to 
the New River Estuary (NRE), NC. We applied the ReNuMa model to the NRE watershed to 
estimate streamflow, TDN, and TDP loads. We used in situ data to calibrate (2009-2011) and 
validate (2012-2014) modeled streamflow and dissolved nutrient loads within 10 subwatersheds 
located on Marine Corps Base Camp Lejeune (MCBCL), which surrounds the estuary, and one 
subwatershed in the off-base portion of the NRE watershed.  Following model calibration and 
validation, model parameters were scaled up from these subwatersheds to estimate loads from 
the entire NRE watershed. Model results confirm the ability of ReNuMa to capture seasonal 
variability in streamflow, TDN, and TDP for >50% of the subwatersheds. Under current 
conditions, most (71-98%) streamflow and dissolved nutrient loads are sourced from the off-base 
portion of the NRE watershed, while a smaller percentage of loads (2-29%) are sourced from 
MCBCL. Projected changes in climate revealed that changes in precipitation, even when 
compounded with changes in temperature, will have the greatest impact on resulting streamflow, 
TDN, and TDP. Streamflow and dissolved nutrient loads generally increased under anticipated 
climate projections through the year 2100 and such increases were further amplified under 
hypothetical increases in land use, especially agricultural land.  Watershed delivery patterns for 
the NRE may therefore be substantially altered under projected changes in climate and land use.  
The potential impacts of changes in these loads on estuarine physical, chemical, and biological 
processes highlights the necessity for research assessing the impacts of land use and climate 
changes on watershed deli
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INTRODUCTION 

 One of the most important factors controlling physical, chemical, and biological 

characteristics of many estuaries is freshwater inflow.  As fresh water flows into an estuary, it 

carries with it watershed-derived nutrients such as nitrogen and phosphorus, both of which are 

necessary for algal growth which forms the base of the estuarine food web. As a result, any 

perturbations to freshwater inflow have the potential to affect the health of the estuary by altering 

nutrient inputs necessary for algal growth.  Anthropogenic changes in climate and coastal land 

use have influenced freshwater flow regimes and watershed-derived nutrient inputs to many 

aquatic systems (Sklar and Browder 1998, Restrepo and Kjerfve 2000, Alber 2002, Kimmerer 

2002, Knowles 2002, Magillian and Nislow 2005, Kashaigili 2008, Doll and Schmied 2012). 

These changes impact estuarine biogeochemical cycling and affect organisms across all trophic 

levels (Livingston et al. 1997, Murrell et al. 2007, Halliday et al. 2008, Baptista et al. 2010). 

Fortunately, watershed loading models offer a viable way to anticipate how material loads to an 

estuary are likely to respond to changes in climate and coastal land use. Anticipating changes to 

material loads has implications for achieving or maintaining a functioning estuarine ecosystem.  

Freshwater Flow Regimes and Subsequent Nutrient Delivery 

 Freshwater inflow to an estuary varies spatially as well as intra- and interannually. Such 

variations in freshwater inflow are controlled predominately by estuarine vegetation as well as 

geographic, climatic, and topographic attributes of the adjoining watershed (Kennard et al., 

2010). A freshwater flow regime, defined as the “characteristic pattern of a river’s flow quantity, 

timing, and variability”, may be determined by examining freshwater discharge into the estuary 

over the course of many years (Poff et al., 1997).  Across the continental U.S., there exist two 

broad groups of flow regimes, intermittent and perennial, representing freshwater systems that 

typically have no to very low flows or freshwater systems where low to no flow days are rare 
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over the course of a year, respectively (Poff et al., 1989). These natural flow regimes can be 

further subdivided based on flow characteristics such as the magnitude of average yearly flow, 

the frequency and duration of flow events above a specified magnitude, the timing of flow events 

at a particular magnitude (i.e. seasonality), and how quickly flow changes from one magnitude to 

another (i.e. flash foods) (Poff et al., 1989, Poff et al., 1997). Nutrient loads to an estuary are 

likely to follow freshwater inflow regimes assuming that there are no major point sources of 

organic or inorganic material to the system. For example, in the Chesapeake Bay freshwater 

inflow is a reliable proxy of nutrient loading (Boynton and Kemp 2000).  

Anthropogenic Impacts on Freshwater Flow and Nutrient Delivery 

Land Use 

 As human populations have grown, there has been a general shift from predominately 

natural vegetation to areas characterized mostly by agricultural and urbanized land (Foley et al., 

2005). Deforestation may increase watershed runoff since forested areas tend to have higher 

evapotranspiration rates than other vegetated land cover types (Zhang et al., 2001).  Increased 

urban and agricultural land use types may alter freshwater inflow to estuaries by affecting 

processes such as infiltration and evapotranspiration (Gordon et al., 2003, Liu et al., 2008). 

Urbanized areas are typically characterized by high impervious surface area, which may impede 

soil infiltration of precipitation and result in increased runoff from land, daily discharges, and 

flood magnitudes (White and Greer 2006).  

 As freshwater inflow is altered by coastal land use this may also impact sediment and 

nutrient concentrations which tend to display direct relationships with freshwater inflow (Drewry 

et al., 2009). Increased quantities of nutrients and sediments carried from coastal watersheds to 

estuaries have been attributed to coastal land use change in many systems (Howarth et al. 1991, 
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Basnyat et al. 1999, Bowen and Valiela 2001, Weller et al. 2003). Urban and agricultural land 

usually increases nutrient input to an adjoining water body as a result of increased nutrient 

concentrations found in fertilizers, human and animal waste (Schoonover et al., 2005, Huang et 

al., 2013), as well as decreased nutrient retention in soils due to increased impervious surfaces 

(Arnold and Gibbons 1996).  During the initial stages of watershed deforestation, potential 

increases in sediment yield can be attributed to increased soil exposure due to the direct impact 

of raindrops on the soil. When deforested land is converted to agricultural land however, the 

cultivation practices (i.e., tillage or no tillage) within that watershed may act to enhance or hinder 

soil erosion, resulting in increased or decreased sediment yields (Montgomery 2007).  

Climate 

 The impact of land cover change on streamflow and nutrient delivery becomes further 

complicated as humans perturb the climate. Anthropogenic alterations to global air temperatures 

and the hydrologic cycle subsequently impact the quantity, timing, and intensity of freshwater 

flow and associated nutrient and sediment delivery to adjoining estuaries (Alber 2002, Doll and 

Schmied 2012). Global mean surface air temperatures are predicted to increase by 1-4 °C by the 

year 2100 (IPCC, 2007). For portions of the east coast of the U.S. (i.e., the Chesapeake Bay 

region), models predict on average an approximate 5 °C increase in air temperature by 2100 

(Najjar et al. 2010).  Unlike mean temperature which is expected to rise globally, projected 

precipitation patterns for the eastern United States vary depending on region and season (IPCC 

2013). There is a significant amount of uncertainty among climate models regarding the way in 

which precipitation is likely to change for the eastern U.S. (Solomon et al. 2009). A comparative 

study examining precipitation pattern predictions from 22 models revealed that for most of the 

U.S. east coast fewer than 16 of the 22 models agreed on whether precipitation trends would 
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increase or decrease for every 1°C increase in temperature (Solomon et al. 2009).  A more recent 

study examining the effects of climate change on the Chesapeake Bay found similar 

disagreement in model predictions, but on average suggested that precipitation in the Mid-

Atlantic region is expected to increase (Najjar et al. 2010). Such increases are believed to be a 

result of less frequent, but more intense storm events.   

 As global mean temperatures increase, the resulting impact on streamflow will be largely 

influenced by the effect that temperature has on watershed processes such as evaporation, 

transpiration, and snow melt.  There have been several studies conducted to investigate the 

effects of climate on stream runoff in the United States through the use of empirical statistical 

models (Revelle and Waggoner, 1983, Karl and Riebsame 1989). Studies suggesting an inverse 

relationship between air temperature and resulting trends in streamflow revealed the potential 

dominant role that evapotranspiration may have on the watershed water balance (Revelle and 

Waggoner 1983). There have been other studies however that question the relative importance of 

temperature on resulting streamflow within a watershed, suggesting that the role of 

evapotranspiration has been overestimated and that precipitation has a greater impact on 

streamflow (Karl and Riebsame 1989).  Precipitation and resultant freshwater flow tend to 

display a direct relationship (Stogner 2000, Miao and Ni 2009, Yang et al. 2012, Liu et al., 

2013).  The degree to which this relationship is linear or deviates from linearity is dependent on 

characteristics of the watershed such as (1) dominant land cover, which impacts the proportion of 

water that infiltrates soils, (2) the slope of the watershed, which affects how quickly water is 

transported to an adjoining water body, and (3) rates of transpiration and evaporation, which 

impact the amount of water available for transport out of the watershed.  
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 Potential changes in climate may act to exacerbate changes imposed by changing land 

use by 1) increasing nutrient concentrations in leachate that enters into groundwater as a result of 

increased air temperatures (Xin-Quiang et al., 2011) and 2) increasing (decreasing) the quantity 

of fresh water and associated nutrient inputs as a result of increased (decreased) precipitation. 

Given the simultaneous and interactive effects of changes in temperature, precipitation, and land 

use, the resulting effects on freshwater flow and nutrient delivery is typically uncertain.  

Freshwater Flow and Nutrient Delivery impacts on Estuarine Ecology    

 Freshwater inflow affects estuarine material fluxes and physical conditions that may 

impact estuarine organisms across all trophic levels especially those that rely on the input of 

organic matter supplied from fluvial sources to derive their energy and sustain their biomass 

(Chanton and Lewis 2002). Increased freshwater flow increases the supply of nutrients to an 

estuary. Excessive nutrient input into an adjoining waterbody may stimulate excess primary 

production when nutrients are the most limiting resource, and induce eutrophic conditions which 

have become increasingly evident in much of the world’s coastal waters (Cloern 2001, Selman et 

al. 2008). Eutrophication, defined here as an increased rate of supply of organic matter to an 

ecosystem  (Nixon 1995), may result in further degradation of coastal water quality through (1) 

anoxia or hypoxia (Rabalais et al. 2001, Diaz and Rosenberg 2008), which can result in fish kills 

(Thronson and Quigg 2008), (2) the introduction of harmful algal species (Anderson et al., 

2002), which can poison shellfish (Shumway 1990), and (3) the degradation of benthic 

vegetation as a result of light limitation (Short and Burdick 1996, Orth et al. 2006). 

 The physical conditions affected most by freshwater inflow are flushing time, 

stratification, and salinity. There is often an inverse relationship between freshwater inflow and 

flushing time (Alber and Sheldon 1999, Ensign et al., 2004).  In systems characterized by long 
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flushing or residence times, increased freshwater flow may increase nutrient and sediment 

delivery to the system, but these materials may not be flushed out quickly, resulting in a further 

downstream shift or expansion of turbidity and chlorophyll-a maxima (Moon and Dunstan 1990).  

Alternatively, increased freshwater inflow may quickly flush systems of sediments and nutrients 

so that there is not a significant increase in the organic matter content of the system (Boyer et al. 

1993). The relationship between freshwater inflow and stratification is often positively correlated 

(Kemp et al., 2005). Consequently, if freshwater inflow to an estuary increases, increased 

stratification could trap watershed-derived nutrients and phytoplankton in a more stable, 

illuminated surface layer, enhancing primary productivity.  Alternatively, increased stratification 

limits vertical mixing between surface and bottom waters which may restrict nutrient and oxygen 

exchange between the two layers, resulting in reduced nutrient re-supply to surface waters and 

anoxia or hypoxia in bottom waters. The relationship between changes in streamflow and salinity 

varies depending on watershed characteristics and morphological properties of the estuarine 

basin. Alterations to salinity gradients may impact resident organisms of an estuary as 

demonstrated by altered fish assemblages in the Mondego estuary of Portugal (Baptista et al. 

2010).  

Watershed Loading Models 

 Models are “conceptual or mathematical simplifications (or abstractions) of a real 

system” (Brush and Harris 2016). Watershed models simplify the watershed processes 

controlling the magnitude and timing of runoff that eventually enters a nearby stream. Such 

models incorporate loads from point sources as well as estimates from non-point sources which 

are mostly driven by land cover type and local precipitation patterns. Loading models are useful 

for many reasons. Perhaps their most pertinent use is their ability to identify nutrient sources, the 
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relative contributions of these sources to total loads, and the overall magnitude of the load to a 

system. This tracking is important because it allows scientists to estimate current loads under 

current conditions which readily translate into how loading is likely to change under varying 

anthropogenic land use or climate change scenarios. This information has implications for 

management of estuarine systems and can be incorporated into development of Total Maximum 

Daily Loads (TMDL) (EPA, 1999).   

Objectives  

Intensified anthropogenic climatic variations (Dore 2005, Alexander et al. 2006), significant 

increases to coastal populations (Neumann et al. 2015), and changes to land use continue to 

impact freshwater flow and nutrient delivery to adjoining estuaries. The impact that such changes 

in watershed delivery are likely to have on estuarine physical, chemical, and biological 

components highlight the necessity for research assessing the impacts of land use and climate 

change on watershed material loading. As a result, the objective of this research project was to 

model streamflow, total dissolved nitrogen (TDN), and total dissolved phosphorus loads (TDP) 

to the New River Estuary (NRE) in Onslow County, NC, using the Regional Nutrient 

Management (ReNuMa) model. ReNuMa was calibrated and validated against measured data 

from 11 gauged subwatersheds within the larger NRE watershed. Following successful 

calibration and validation of ReNuMa to the 11 gauged subwatersheds, ReNuMa was used to 

predict the impacts of climate and land use change on streamflow, TDN, TDP loads to the entire 

NRE system. Specific objectives and hypotheses were as follows:  

Objective 1: The first objective of this research was to update a prior calibration of ReNuMa in 

11 subwatersheds within the NRE watershed with data that extended from 2009 to 2011(Brush, 

2013). Once calibration of ReNuMa model parameters was complete, validation of ReNuMa 
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output was conducted using in situ streamflow and dissolved nutrient loads that extended from 

2012 to 2015 for five subwatersheds on MCBCL and the Gum Branch subwatershed located at 

the head of the NRE watershed (Fig. 1). ReNuMa model parameters were then scaled up to areas 

that extend beyond the subwatershed boundaries to estimate total inputs to the NRE.  

Hypotheses:  

1. Updating the calibration with 2009-2011 data will improve slope and r2 values between 

measured streamflow and nutrient loads from the 11 subwatersheds in the NRE and ReNuMa 

model estimates.  

2. ReNuMa model estimates for streamflow and dissolved nutrient loads will capture most of 

the variability in the measurements.  

o Since ReNuMa was created for relatively large watersheds (~103 km2) with mixed 

land cover types, comparisons between data and ReNuMa modeled output for the 

Gum Branch station will display a relatively high coefficient of determination and a 

slope that is not statistically different from 1. The 10 subwatersheds that are on 

MCBCL are two orders of magnitude smaller than the size of watersheds that 

ReNuMa is designed for and are less diverse in land cover types. As a result, 

ReNuMa will capture much less of the variability in measured streamflow when 

compared to the larger Gum Branch station.  

Objective 2: The second objective was to run a series of different but likely temperature, 

precipitation, and land use “What if?” scenarios to determine how freshwater flow and dissolved 

nutrient loads are likely to change under anticipated changes in land use and climate for the NRE 

watershed.   

Hypotheses:  
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1. Under increased agricultural and urbanized land use projections for the NRE, inputs of fresh 

water and dissolved nutrients are expected to increase.  

2. Under increased precipitation projections for the NRE, inputs of fresh water and dissolved 

nutrients are expected to increase, while the opposite will be true under decreased 

precipitation projections. 

3. Under increased temperature projections for the NRE, streamflow is expected to decrease as 

a result of increased evaporation across different land cover types. Increased temperatures 

may increase leaching of nutrients into water as it passes through the watershed, but 

decreased streamflow will result in an overall decrease in dissolved nutrient loads.  

4. Under simultaneous decreased precipitation and increased temperature for the NRE, 

streamflow is expected to decrease. Nutrient loads are expected to be influenced more by 

precipitation than temperature. As a result, any potential increases in dissolved nutrient loads 

as a result of increased temperature will be negated by potential decreased dissolved nutrient 

loads resulting from decreased precipitation and streamflow.    

5. Under simultaneous increased precipitation and increased temperatures for the NRE, 

streamflow trends are uncertain and will be dependent on rates of evapotranspiration, but are 

still expected to increase. Dissolved nutrient loads are expected to increase as well.  
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METHODS 

Site Description   

The New River Estuary (NRE) is a relatively small (~ 64 km2), shallow (average depth ~ 

1.8 m), semi-lagoonal estuary in Onslow County, NC (Brush 2013) (Fig. 1). The mouth of the 

NRE is characterized by a series of barrier islands which restrict flow between the estuary and 

Atlantic Ocean. Such flow restriction is responsible for the microtidal nature of the NRE and is 

partially responsible for the relatively long freshwater flushing time which averages 

approximately 70 days (Ensign et al. 2004, Brush 2013, Pearl et al. 2013).  

 The adjacent NRE watershed is approximately 1,436 km2 and is characterized by a 

mixture of land use types including forested (41.5%), wetland (28.3%), open water (0.4%), 

agricultural (14.5%), and developed areas (14.3%); these distributions have not changed 

substantially between 2006 and 2011.  Agricultural areas are confined mostly to the upper region 

of the watershed and include both row crops and confined animal feeding operations primarily 

for hogs (Brush, 2013). The lower watershed is a relatively low-relief, predominately developed 

region as most of it lies on Marine Corps Base Camp Lejeune (MCBCL), although some forested 

and wetland areas exist on the base. Most of the population in the lower watershed is connected 

to sewer lines while the population on septic systems is predominately in the upper watershed.   

 Nutrient inputs to the NRE originate from several major sources including direct 

atmospheric deposition, groundwater, riverine discharge, and a wastewater treatment plant that 

discharges sewage effluent into the middle of the estuary from MCBCL (Brush 2013). Previous 

studies examining the influence of climatic variations on physical, chemical, and biological 

components of the NRE revealed that changes in riverine discharge strongly influence flushing 

time, water column irradiance through increases in total suspended solids and chromophoric 
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dissolved organic matter (CDOM), and nutrient inputs into the estuary (Peierls et al. 2012, Brush 

2013, Anderson et al. 2014).  

 The dominant forms of inorganic nutrients entering the NRE during increased freshwater 

flow are nitrate and phosphate (Peierls et al. 2012, Hall et al. 2013). Inorganic nutrient 

concentrations tend to be highest at the head of the estuary since most allochthonous nitrogen 

and phosphorus are sourced from the upland, off-base portion of the NRE watershed (Brush 

2013). These nutrient additions typically stimulate phytoplankton blooms in the upper estuary, 

which are particularly sensitive to discharge-induced variations in flushing time (Peierls et al. 

2012). As freshwater flows down the axis of the NRE, inorganic nutrient concentrations are 

controlled less by input from the watershed and more so by the recycling of organic matter 

(Anderson et al., 2014). During periods of low freshwater flow, inorganic nutrient concentrations 

both at the head and along the axis of the NRE tend to be low. This contrasts with periods of 

relatively high freshwater flow, which pushes inorganic nutrients further downstream and 

increases inorganic nutrient concentrations along the entire NRE axis (Peierls et al. 2012).  

 The upper, off-base portion of the watershed is gauged at a U.S. Geological Survey 

(USGS) station on the New River at Gum Branch, NC (station 02093000, Fig. 1). Discharge at 

Gum Branch over the study period was monitored daily by the USGS, while nutrient 

concentrations were collected on a monthly basis and during selected storms from 2008 to 2015 

(Weyers, 2013, Ensign, 2017). Monthly nutrient loads from Gum Branch were determined by 

first computing loads for each date on which nutrient concentrations were measured and then 

combining flux-flow regressions with daily discharge to compute daily loads. The daily loads 

were then summed to arrive at monthly estimates.  Monthly discharge and nutrient loads from 10 
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gauged subwatersheds on MCBCL were quantified by Piehler et al. (2017a, b) and provided by 

the author.  

ReNuMa Model  

 Watershed models offer the ability to estimate freshwater, nutrient and sediment loads 

into estuaries. The Regional Nutrient Management (ReNuMa) Model estimates surface runoff, 

sediment transport, streamflow, and nutrient fluxes from point sources, groundwater and surface 

runoff (Fig. 2) (Hong and Swaney 2007). ReNuMa is based on two previously developed 

models: the Generalized Watershed Loading Functions (GWLF) model, which estimates nutrient 

and sediment flow through different land covers and subsurface zones of the watershed, and the 

Net Anthropogenic Nitrogen Inputs (NANI) model, which estimates anthropogenic nitrogen 

inputs to the watershed. ReNuMa builds off of the GWLF and NANI models by accounting for 

additional nitrogen transformation processes as it percolates through different land covers and 

exits the watershed. These additional nitrogen transformation processes include in-river and 

sewage denitrification, and percolation of atmospherically-deposited nitrogen through land use 

types accounting for seasonal changes in precipitation (Hong and Swaney 2007). Estimates for 

streamflow, nutrient fluxes, and sediment transport are based on empirical observations and mass 

balance using well established relationships between measurable parameters. For example, 

sediment erosion and transport are calculated using the Universal Soil Loss Equation (USLE), 

which requires a soil curve number obtained from the Soil Conservation Service (Hong and 

Swaney 2007).   

ReNuMa Model Parameters  

 The application of ReNuMa to a study area requires processing of several data sets (Table 

1). Estimates of streamflow and sediment delivery utilize the hydrologic dynamics of the 
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ReNuMa model (Fig. 2). The hydrologic model relies on mass balance of several transport 

parameters (Table 2) as well as empirical data such as daily precipitation and average air 

temperature. The calculations for the transport parameters also rely on land cover and soil 

properties of the NRE. Estimates of watershed nutrients entering the estuary via streamflow 

utilize the nutrient dynamics of the ReNuMa model (Fig. 2). Nutrient input sources for the 

watershed are derived from point sources such as sewage facilities, as well as several non-point 

sources such as atmospheric nitrogen deposition, nutrient concentrations estimated for different 

land covers of the watershed (adjusted for plant uptake and denitrification), groundwater nutrient 

input, and loads from septic systems (Table 3). 

Hydrologic Parameters       

 Climate input data were derived from 25 historical surface observation stations with daily 

measurements of precipitation (mm) and air temperature (max. and min., °C) across eastern NC 

(Wooten et al., 2017). Daily minimum and maximum air temperatures were averaged to obtain 

an estimate of daily mean temperature. A spatial average of these daily measurements spanning 

from 2007 to 2015 were used as daily climate input data for ReNuMa.  

 Dominant land cover types within the 11 subwatersheds and for the entire NRE were 

determined in ArcMap using shapefiles obtained from the National Land Cover Database 

(NLCD) for the years 2006 and 2011 (Fry et al., 2011, Homer et al., 2015). ReNuMa allows for 

estimation of anthropogenic nutrient inputs from several different agricultural class areas.  This 

is useful because one can specify loads from agricultural areas resulting from fertilizer and 

manure application, which is dependent on the type of crop used in the NLCD agricultural land 

classification. As a result, areas classified as ‘Cultivated Crops” by the NLCD were split into 

soybean (39%), corn (33%), cotton (17%), and wheat (11%) based on the percent contribution of 
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each crop at the county level (USDA-NASS 2000-2008).      

 ReNuMa hydrologic transport parameters are outlined in Table 2. The recession 

coefficient which is defined as the rate at which total flow returns to base flow following a 

relatively high precipitation event was calculated using daily discharge data from the 11 

subwatersheds between the years 2008 and 2011.  Nine precipitation events in each 

subwatershed were selected between 2008 and 2011, and the natural log of discharge over the 

time taken to return to base flow was regressed over time, with the slope representing the 

recession coefficient for the specific precipitation event. Recession coefficients determined for 

the nine precipitation events in each subwatershed were averaged. The seepage coefficient 

represents the proportion of water in the shallow saturated zone of the aquifer that makes it to the 

deep aquifer (Fig. 2a). For most watersheds, we adopted a conservative approach for this 

parameter and used a value of zero. There were, however, some watersheds that have values 

greater than zero for this parameter as determined using the autocalibration function of ReNuMa. 

The dimensionless sediment delivery ratio (SDR) is the ratio between the amount of sediment 

entering a watershed and the amount of sediment lost to erosion. This parameter was calculated 

using the Vanoni (1975) equation, 

SDR=0.451(b0.298) 

where b is the size of the watershed area in square kilometers.   

 Default ReNuMa values were used to initialize saturation conditions of the watershed soils and 

antecedent moisture conditions, which were then estimated by the model during a one-year spin-up period 

prior to the calibration. Unsaturated storage water capacity refers to the subsurface water depth that is 

within the root zone of surface plants; the default ReNuMa value of 10 cm was used for this parameter. 

Erosivity coefficients, which are used to calculate erosion for different surfaces, were derived from 

reference tables in Selker et al. (1990) by season. Evapotranspiration cover coefficients estimate the 
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quantity of water loss during evaporation and transpiration in the watershed. This parameter should range 

in value between zero and one and approaches a value of one as plants approach full foliage. This 

parameter was estimated using land cover type data and approximate values for evapotranspiration cover 

coefficients outlined in tables in the GWLF user’s manual (Haith et al. 1992).      

 Both the runoff curve number and Universal Soil Loss Equation (USLE) parameter were derived 

from soil characteristics data obtained from the National Resources Conservation Service (NRCS) Soil 

Survey Geographic (SSURGO) database and processed using ArcMap. Runoff curve numbers estimate 

runoff potential from a watershed and range from 30 to 100, with higher numbers indicating greater 

runoff potential and lower numbers indicting low runoff potential. Values are based on soil group type 

and land cover information. SSURGO classifies soils in four hydrologic soil group types represented by 

the letters A-D, with the characteristics of each soil group type ranging from well drained to poorly 

drained. Runoff curve numbers for each watershed were obtained from NRCS tables in the GWLF user’s 

manual (Haith et al., 1992) as a function of soil group type and land cover.  

 The USLE parameter is the product of four separate parameters based on land cover. The 

four parameter values include K, the soil erodibility factor, LS, a topographic factor, C, a cover 

management factor, and P, a supporting practice factor. K was obtained from SSURGO data. The 

LS factor was calculated by multiplying slope length of each watershed by percent slope. A 20 

foot Digital Elevation Model (DEM) GIS coverage obtained from the USGS National Elevation 

Dataset was used to calculate slope length for each land use type using the ‘Flow Length’ tool in 

ArcMap, while application of the ‘Slope’ tool in ArcMap allowed for calculation of the percent 

slope for each land use type (Hickey 2000). The GWLF user’s manual provided reference tables 

for determining the C and P parameters (Haith et al., 1992). Since the USLE parameter value 

estimates soil loss, values of zero were used for land cover types that were classified as barren, 

wetlands, open water, and developed/urban. 

Nutrient Parameters  
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 ReNuMa nutrient parameters are outlined in Table 3. Nutrient input data were derived 

mainly from reference tables in the GWLF user’s manual (Haith et al., 1992), which provided 

national maps of typical sediment nutrient content within surface soils (top 30 cm) and reference 

tables for dissolved nutrient concentrations in forested and agricultural runoff and groundwater 

discharge, as well as nutrient accumulation rates in urban areas. Point source discharges were 

obtained from the Environmental Protection Agency (E.P.A.) Water Discharge Permits website 

(NPDES, www.epa.gov/npdes).  In order to estimate loads from septic systems, we estimated the 

percentage of the population using septic systems as opposed to the percent connected to public 

sewers.  For watersheds in the lower half of the NRE watershed on MCBCL, we assumed that 

none of the population is on septic. For the upland area of the NRE watershed, we obtained a 

GIS shapefile outlining sewer service area in the watershed in 2004 (NCCGIA 2007) and merged 

that shapefile with population data by census block from the US Census Bureau Topologically 

Integrated Geographic Encoding and Referencing (TIGER) database. We subtracted the number 

of people outlined in the sewer service areas from the total population in the upland area of the 

watershed and assumed the remaining population was using normal septic systems. Annual 

septic nitrogen and phosphorus inputs were calculated assuming 4.8 kg N person-1 y-1 (Valiela et 

al. 1997) and 0.34 kg P person-1 y-1 (Alhajjar et al. 1989), respectively.  

ReNuMa Model Calibration and Validation   

 ReNuMa was visually calibrated to observed monthly discharge and loading of TDN and 

TDP from 2008 to 2011. During calibration, several hydrologic parameters including recession 

and seepage coefficients and unsaturated storage water capacity were adjusted for all 

subwatersheds within reasonable bounds outlined in the ReNuMa user’s manual, occasionally 

making use of ReNuMa’s autocalibration tool (Hong and Swaney 2007). Following calibration, 

http://www.epa.gov/npdes
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ReNuMa model output was validated using monthly discharge and loading data from 2012 to 

2015. In order to quantitatively assess how well model output reflected observed data, several 

statistical metrics were computed including mean and median absolute error, mean and median 

percent error, and root mean squared error. Additionally, linear regressions between observed 

data and model output allowed us to assess if the slope and intercept were significantly (p<0.05) 

different from one and zero, respectively, and if ReNuMa model output captured a significant 

(p<0.05) amount of the variability in the data for the calibration period, validation period, and 

overall time series.       

 Before beginning a statistical assessment of ReNuMa modeled output for streamflow, 

TDN and TDP, three fit classification categories were defined for good, intermediate, and poor 

fits between measured and modeled data. The regression line between ReNuMa modeled and 

measured data for good fits would require a slope not significantly different from 1 (p<0.05) and 

an overall model fit that was significantly different from 0 (p<0.05). Intermediate fits would be 

regression lines that had slopes significantly different from 1, but an overall model fit that was 

significantly different from 0 (p<0.05). Poor fits were defined as regression lines with overall 

model fits that were not significantly different from 0. 

Model Scaling and Simulation of Climate and Land Use Impacts 

 Once calibration and validation were complete, ReNuMa was used to compute average 

annual loads to the NRE from both the upper, off-base portion of the NRE watershed as well as 

from the on-base portion of the watershed on MCBCL (Fig. 1). Parameter values obtained during 

the calibration of the Gum Branch watershed were used for the off-base portion of the watershed. 

The median of parameter values obtained during the calibration of the 10 on-base subwatersheds 

were used for the MCBCL portion.  
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  Wooten et al. (2017) developed an ensemble of 24 climate projections for potential 

changes in air temperature and precipitation through 2100 for the NRE watershed.  Brush et al. 

(2018) summarized these 24 projections and reported first, second and third quartiles of 

predicted temperature warming by 2100 of 3.8, 4.2, and 5 °C, respectively, with minimum and 

maximum changes of 2.6 and 7.8 °C, respectively. The first, second, and third quartiles of 

percent change in precipitation by 2100 were -5, 10, and 14% relative to current conditions, 

respectively, with minimum and maximum changes of -27% and +31%, respectively. Brush et al. 

(2018) also summarized projections for the 2030s, 2050s, and 2090s. The individual impacts of 

changes in air temperature, precipitation, and land use on modeled streamflow and nutrient loads 

were first tested by running ReNuMa after increasing air temperatures from +1 to +5 °C based 

on the 2100 projections above, changing precipitation from -20% to +20% of current values, 

again based on the projections above, and hypothetically increasing developed and agricultural 

land individually by 10%, 25%, and 50%. To obtain more realistic projections of streamflow and 

nutrient loads under the combined influence of temperature warming and changes in 

precipitation, ReNuMa was then run using all 24 climate projections for the 2030s, 2050s, and 

2090s. Finally, hypothetical increases in developed and agricultural land use were superimposed 

on the median climate projections for the 2030s, 2050s, and 2090s.   
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RESULTS 

Model Calibration & Validation  

Gum Branch Subwatershed 

 Successful application of ReNuMa to the subwatersheds of the NRE was the first of two 

objectives for this research. Across the eleven subwatersheds, ReNuMa model output most 

closely matched the observations for Gum Branch. This subwatershed together with the portion 

of the watershed below the gauge serves as the major source of fresh water and dissolved 

nutrient loads to the NRE owing in large part to its size and location in the most upland portion 

of the NRE watershed, where land use is heavily influenced by agriculture (Brush, 2013, Fig. 1). 

Compared to the MCBCL subwatersheds, ReNuMa model output for Gum Branch during the 

calibration period consistently captured the greatest variability in measured streamflow (70%), 

TDN (64%), and TDP (70%) (Figs. 3-5).  Slightly lower r2 values resulted for the validation 

period (approximately 0.6, 0.6, and 0.5, respectively). Overall model fits for Gum Branch 

streamflow, TDN, and TDP had r2 values greater than 0.5 and equated to good fit classifications 

for streamflow and TDN, and an intermediate fit classification for TDP (Tables 4-6). 

MCBCL Subwatersheds: Overview 

 For the ten MCBCL subwatersheds, ReNuMa model output was quite varied as 

represented by the number of good, intermediate, and poor fits for streamflow, TDN loads, and 

TDP loads (Tables 4-6). Overall, across all MCBCL subwatersheds, ReNuMa did the best at 

modeling streamflow, followed by TDN, and finally, TDP. The results from a statistical 

assessment of fits across all MCBCL subwatersheds are discussed below for each variable.   
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MCBCL Subwatersheds: Streamflow 

 Statistical assessment of measured versus modeled streamflow data revealed that out of 

the ten MCBCL subwatersheds used to calibrate and validate ReNuMa, five of these watersheds 

had good overall model fits (Table 4). These good fits were for two subwatersheds where data 

extended only through the calibration period (Freeman and Gillets) and three subwatersheds 

where data extended the entire research period (Cogdels, French, and Tarawa). For these good 

model fits, ReNuMa captured anywhere from 8 to 53% of the variability in the measured data 

(Table 4).There were three watersheds that received intermediate fit classifications for 

streamflow. The data for two of these watersheds extended the entire research period 

(Courthouse and Traps) while the data for one watershed extended to the end of the calibration 

period (Camp Johnson). ReNuMa captured anywhere from 17 to 58% of the variability in these 

watersheds (Table 4). The two watersheds with poor fits (Airport and Southwest) had data that 

extended to the end of the calibration period. The variability captured by ReNuMa for these two 

watersheds ranged from 7 to 9% (Table 4). Time series plots for good fits typically displayed 

good overlap of measured and modeled data and highlighted the ability of ReNuMa to capture 

most of the monthly and interannual variability in measured loads (Fig. 6). For watersheds that 

were classified with intermediate fits, ReNuMa typically displayed good overlap of measured 

and modeled data over the entire time series, but did not always capture interannual variability, 

especially during the validation period (Fig. 6). For watersheds that were classified with poor 

fits, ReNuMa was not able to capture the variability in the data nor did ReNuMa output overlap 

measured loads well over the length of the time series (Fig. 6). Model output for good, 

intermediate, and poor fits for all MCBCL subwatersheds for streamflow, TDN, and TDP are 

available in the Appendix.  
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MCBCL Subwatersheds: TDN Loads 

 Three of the ten MCBCL subwatersheds had good model fits for TDN load. These good 

fits included two watersheds (Cogdels and French) where data extended the entire research 

period and one watershed (Freeman) where data only extended through the calibration period. 

For these good model fits, ReNuMa captured anywhere from 10 to 53% of the variability in the 

measured data (Table 5). There were five watersheds with intermediate model fits. The data from 

three of these watersheds extended the entire research period (Courthouse, Tarawa, and Traps) 

while two watersheds extended to the end of the calibration period (Camp Johnson and Gillets). 

ReNuMa captured anywhere from 9 to 51% of the variability in these watersheds (Table 5). The 

data from the two watersheds with poor fit classifications (Airport and Southwest) only extended 

to the end of the calibration period. The variability captured by ReNuMa for these two 

watersheds ranged from 6 to 8% (Table 5). 

MCBCL Subwatersheds: TDP Loads 

 Only one MCBCL subwatershed had a good model fit classification for TDP load. This 

good fit was the Freeman watershed where data only extended through the calibration period and 

where ReNuMa captured approximately 63% of the variability in the measured data. There were 

six watersheds with intermediate model fits, five of which had data that extended the entire 

research period (Cogdel, Courthouse, French, Tarawa, and Traps) and one watershed where data 

extended to the end of the calibration period (Camp Johnson). ReNuMa captured anywhere from 

11 to 54% of the variability in these watersheds. There were three watersheds with poor fits all of 

which only extended to the end of calibration period (Airport, Gillet, and Southwest). The 

variability captured by ReNuMa was less than 1% for these subwatersheds.  
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Scaling to the System Level 

 At the system level, ReNuMa estimated that approximately 71% of freshwater inputs to 

the NRE are sourced from the off-base portion of the watershed while approximately 29% are 

derived from MCBCL. ReNuMa estimated that approximately 97% of TDN loads are sourced 

from the off-base portion of the watershed while only 3% are sourced from MCBCL. Similarly 

to TDN, ReNuMa estimated that approximately 98% of TDP loads are sourced from the off-base 

portion of the watershed while only 2% are sourced from MCBCL. These estimates identify the 

off-base portion of the watershed as the dominant source of freshwater and dissolved loads to the 

estuary and are consistent with estimates from other watershed loading models that have been 

applied to NRE watershed (Brush 2013). These previously applied models estimated that the off-

base portion of the watershed contributes anywhere from 61 to 93% and 34 to 95% of TDN and 

TDP loads, respectively (Brush 2013).  

Model Output: Climate and Land Use Scenarios  

Individual Impacts of Climate and Land Use on Loads 

 Increasing air temperature in 1 °C increments up to a maximum of 5 °C for the entire 

NRE watershed resulted in decreased inputs of freshwater, TDN, and TDP (Fig. 7a).  At the 

maximum 5 °C increase, streamflow and loads of TDN and TDP decreased by 9.6, 6.3, and 

8.3%, respectively. Modeled streamflow, TDN loads, and TDP loads were positively correlated 

with changes in precipitation (Fig. 7b). That is, as precipitation increased (or decreased), 

streamflow, TDN, and TDP also increased (or decreased).  A 20% increase in precipitation 

resulted in a 35.0, 24.0, and 52.2% increase in streamflow, TDN, and TDP, respectively, while a 

20% decrease in precipitation caused a 25.6, 16.9, and 35.2% decrease in the same variables. 
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Increasing developed land by 10, 25, and 50% resulted in small (< 1%) increases in streamflow 

and TDN loads and decreases in TDP loads (Fig. 7c). Increasing agricultural area by 10, 25, and 

50% resulted in only small (~1%) increases in streamflow, but much larger increases in TDN and 

TDP loads, with maximum increases of 23.1 and 49.4%, respectively (Fig. 7d).  

Cumulative Impacts of Climate and Land Use on Loads 

 Running the 24 climate projections with simultaneous changes in temperature and 

precipitation resulted in median 6.4, 5.8, and 16.2 % increases in streamflow, TDN, and TDP 

loads by the year 2100, with the variability around these median projections increasing 

substantially through 2100 (Fig. 8). Simultaneously changing temperature and precipitation 

based on medians from all 24 climate projections also resulted in increases to streamflow, TDN, 

and TDP (Fig. 9). Specifically, ReNuMa predicted an approximate 6.0, 5.0, and 15.9% increase 

in streamflow, TDN, and TDP, respectively, by the year 2100 (Fig. 9a). ReNuMa output was 

relatively insensitive to changes in developed land; combining median climate projections for the 

year 2100 with a hypothetical 25% increase in developed land resulted in similar increases of 

6.2, 5.1, and 15.7% in the same variables (Fig. 9b).  Combining climate projections for the year 

2100 with a hypothetical 25% increase in agricultural land resulted in a similar (6.8%) increase 

in streamflow, but much larger increases in loads of TDN (16.2%) and TDP (41.4%) (Fig. 9c).     
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DISCUSSION 

Model Output: Calibration and Validation 

 The ReNuMa model has been applied to several watersheds in the northeastern United 

States and China (Hong and Swaney, 2013, Sha et al., 2013, Li et al., 2014, Sha et al., 2014). 

These watersheds range in size from ~400 km2 to 70,000 km2 and tend to have forested and 

agricultural land as the dominant two land cover types, often accounting for greater than 70% of 

the watershed (Hong and Swaney, 2013, Sha et al., 2013, Li et al., 2014, Sha et al., 2014). Mean 

annual temperature and precipitation for these watersheds range from 4.3 to 14.9 °C and 715 to 

1700 mm y-1, respectively. Additionally, the reported average elevations for some of these 

watersheds range between ~100 and 1500 m above mean sea level (Li et. 2014, Sha et al., 2014). 

ReNuMa has consistently captured a high percentage of the variance in observed discharge and 

nitrogen loads in these watersheds. Across the northeastern U.S. watersheds coefficients of 

variation for discharge and nitrogen loads were 0.83 and 0.90, respectively (Hong and Swaney 

2013), while values in China were greater than 0.7 over the entire research period (Sha et al., 

2013, Li et al., 2014, Sha et al., 2014).  When compared to the watersheds where ReNuMa has 

been validated, the New River Estuary watershed has comparable characteristics in regards to 

size, land cover type and distribution, and precipitation patterns (Brush, 2013). As a result, it was 

hypothesized that the ReNuMa model would capture a significant portion of the variability in 

measured discharge and nutrient loading for the NRE watershed.  Preliminary calibration of 

ReNuMa in several NRE subwatersheds using data from 2008 to 2011 further reinforced this 

hypothesis (Brush, 2013).  

 ReNuMa was a good predictor of streamflow, TDN load, and TDP load for the Gum 

Branch watershed as well as several MCBCL subwatersheds (Tables 4-6). Since the New River 
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is the dominant source of freshwater and allochthonous nutrients to the NRE, accurate model 

output was most critical for  the watershed whose streamflow and dissolved nutrient loads enter 

into the New River which is Gum Branch . As hypothesized, the Gum Branch watershed 

displayed some of the highest coefficients of variation when examining regression plots of 

measured and modeled data. During the calibration phase, coefficients of variation were 

consistently greater than 0.6, ranged from ~0.4 to 0.6 during the validation period, and were 

consistently greater than 0.5 when examining the entire research period (Fig. 3). Such consistent 

results were expected since the characteristics of the Gum Branch watershed, such as size and 

land cover distribution, are comparable to other watersheds where ReNuMa has been 

successfully applied. Model output for most MCBCL subwatersheds was also classified as either 

good or intermediate, especially for discharge and TDN (Tables 4-6). These positive results were 

for subwatersheds with characteristics – particularly small size and low relief – that differed 

substantially from those where ReNuMa has been previously applied. Given the good to 

intermediate fits for Gum Branch and many of the MCBCL subwatersheds, ReNuMa is a useful 

tool for predicting loads to the NRE system.  

Discrepancies in ReNuMa Model Output 

 Discrepancies between measured data and model output for some of the smaller 

watersheds on MCBCL may be reflective of watershed characteristics not typically associated 

with the systems where ReNuMa has been successfully applied such as watershed size, dominant 

land cover, and topography. The ability of any model to accurately simulate streamflow will be 

limited by how well precipitation patterns are captured within the watershed boundary. The 

precipitation data used in ReNuMa represented a spatial average of rain gauge stations within 

and slightly beyond the NRE watershed boundary. For the larger Gum Branch subwatershed, 
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these spatially averaged precipitation data appear to have reflected average precipitation 

conditions for the watershed as indicated by the good model output for streamflow, which in turn 

resulted in good model output for dissolved nutrients. The smaller subwatersheds on MCBCL, 

however, ranged in size from ~0.2 to 7.5 km2, which may have inhibited good model estimates 

from ReNuMa. At such small spatial scales, catchment modeling requires knowledge of the 

spatial variability in precipitation at the same or smaller scale of the watershed boundary (Faures 

et al., 1995), since precipitation can be quite variable across short distances (Krajewski et al., 

2003). This could have made the smaller subwatersheds on MCBCL more sensitive to the spatial 

precipitation average that was used across all subwatersheds. 

 While controlled predominantly by precipitation, streamflow exiting a watershed is also 

heavily influenced by dominant land cover (Petersen et al., 2017). Use of the SCS curve number 

approach to estimate runoff in ReNuMa assumes high curve number values for urban and 

wetland areas suggesting that most precipitation is directly converted to runoff (Hong and 

Swaney 2007). This assumption may explain in part the inability of ReNuMa to capture the 

variability in streamflow for some of the MCBCL subwatersheds. The dominant land covers for 

many of these subwatersheds are wetland and developed or urban areas, which often accounted 

for greater than 40% of each subwatershed. While the relationship between watershed 

urbanization and runoff is generally positive (Chen et al., 2017), the ability for all precipitation to 

be converted to runoff may be inhibited by vegetated areas interspersed with urbanized areas 

which may sequester a portion of the runoff. Additionally, the assumption that all precipitation is 

converted to runoff in wetland areas may not hold if the wetlands are characterized by hollows 

and hummocks that retain water until these ponded areas connect to the larger channel network 

and contribute to streamflow (Frei et al., 2010).   
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 The relationship between watershed slope and runoff is often positively correlated (El-

Hassanin et al., 1993). Excluding the influence of soil type, precipitation that falls on a steep 

surface has a greater chance of exiting the watershed as runoff because gravity affords it less 

time to be subjected to other watershed processes such as infiltration and transpiration, especially 

during very low precipitation events. All of the subwatersheds on MCBCL are relatively flat, 

which reduces the rate of runoff and increases the time for precipitation to be influenced by 

watershed processes before it can be incorporated into runoff. As a result, the relatively low 

relief of the subwatersheds located on MCBCL may also explain why ReNuMa was not as good 

a predictor of streamflow as in the Gum Branch subwatershed.  

 Regression analyses of coefficients of variation between measured and modeled 

streamflow and MCBCL watershed characteristics identified watershed slope as a primary driver 

of discrepancies between ReNuMa model output and measured data, explaining 65% of the 

variability in r2 values for MCBCL subwatersheds (slope= 0.13, p=0.015) (Figure 10). Neither 

watershed size nor dominant land cover could explain the degree of fit between ReNuMa output 

and observations in the smaller watersheds. The insignificant relationships between r2 and 

MCBCL watershed size and land cover do not negate that these characteristics may be impacting 

ReNuMa model output. Instead these results reinforce the complexity of watershed response to 

climatic forcing and suggest that a combination of these watershed characteristics may have 

caused ReNuMa model output to deviate substantially from measured values.  

 The relationships between modeled streamflow and modeled TDN and TDP loads were 

linear, with modeled streamflow explaining approximately 81% and 92% of the variability in 

modeled TDN and TDP loads, respectively. This indicates that the ability of ReNuMa to 

accurately model dissolved nutrient loads is highly dependent on the accuracy of predicted 
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streamflow. Consequently, watersheds in which model output was classified as good or 

intermediate for streamflow typically had good or intermediate output for dissolved nutrients, 

especially for TDN. Across all the subwatersheds in which ReNuMa was applied, model output 

was typically worse for TDP loads than for streamflow and TDN loads. Since the NRE is a 

nitrogen limited system however, it was more important to accurately model streamflow and 

subsequent TDN loads relative to TDP loads (Pearl et al.,2013). Still, the generally poorer fits for 

phosphorus are likely due to two assumptions ReNuMa makes when calculating dissolved 

phosphorus loads. The first of these assumptions is that all phosphates in normal septic tanks 

adsorb to and are retained in soil and thus do not contribute to TDP in streamflow (Hong and 

Swaney 2007). While there are many studies documenting how effective septic systems can be at 

removing a significant portion of phosphates from effluent before it reaches groundwater 

(Mechtensimer and Toor 2017), there is typically a portion of phosphorus that remains in 

dissolved form that contributes to TDP loads. ReNuMa also assumes that all phosphorus within 

runoff from urban areas will be in particulate form as it is assumed to adsorb to material in these 

areas (Hong and Swaney 2007).  Again, this assumption does not hold true for all developed 

areas, and since developed area constituted 5-83% of the MCBCL subwatersheds, ReNuMa may 

not have accounted for a substantial portion of TDP from those areas. Additionally, model 

estimates for TDP loads do not incorporate phosphorus released from particulates upon entering 

the water column at low salinities (Hartzell and Jordan 2010) and could represent another 

possible reason for model underestimation of TDP loads.  

Model Output: Climate and Land Use Scenarios 
 
Climate Only 
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 Incremental increases in temperature across the NRE watershed resulted in expected 

decreases in streamflow, TDN loads, and TDP loads, with a decrease of 6-10% by the year 2100. 

The inverse relationship between soil moisture and temperature offers one possible explanation 

for this response (Lakshmi et al., 2003). That is, decreased streamflow and nutrient loads 

resulting from increased temperature may be attributed to decreased soil moisture within the 

watershed, which may act to increase the amount of water that can be stored within the 

watershed as opposed to being carried off by runoff. Additionally, increased temperatures act to 

increase evapotranspiration, which may decrease the amount of water and associated nutrients 

lost via runoff. The observed impact of temperature on modeled runoff does not incorporate any 

potential effects that changes in temperature may have on precipitation, and consequently 

ReNuMa results do not agree well with the results of other studies examining the relationship 

between air temperature and runoff. When the relationship between increased air temperatures 

and runoff is examined on a global scale, the relationship between the two is often linear (Probst 

and Tardy 1989, Labet et al., 2004). This linear relationship is suggested to be a result of 

increased evaporation over the oceans coupled to increased continental precipitation or decreased 

continental evaporation, both of which would increase continental runoff (Labat et al., 2004).  

Decreased precipitation across the NRE watershed resulted in anticipated decreases in 

streamflow, TDN loads, and TDP loads, while increased precipitation resulted in anticipated 

increases in these variables. As hypothesized, changes to runoff were much more sensitive to 

changing precipitation than temperature, resulting in a 20-50% increase in runoff with a 20% 

increase in precipitation. This is a result of the direct relationship between the amount of water 

entering a watershed via precipitation and the amount of water available to leave the watershed. 

This relationship is also influenced by the land use distribution within the NRE watershed.  Soils 
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within agricultural and other vegetated areas within the NRE are often classified as having 

moderate-low infiltration rates based on the Natural Resources Conservation Service hydrologic 

soil group classification. As a result, increased precipitation may have increased soil saturation 

and thus increased runoff from these soils. For areas within the NRE watershed that were mostly 

urban, increased precipitation on urban surfaces are much more easily transported to adjoining 

water bodies as there is very little opportunity for infiltration; the relationship between urban 

land use and runoff has been documented in many watersheds (Jennings and Jarnagin 2001). 

Additionally, increased precipitation on wetland areas will increase the availability for ponded 

waters to connect and contribute to streamflow (Frei et al., 2010).  As noted above, modeled 

TDN and TDP loads were strongly correlated with modeled streamflow. As a result, increasing 

the amount of precipitation entering the watershed should also increase the quantity of dissolved 

constituents exiting the watershed; this explains the increases in dissolved loads predicted by 

ReNuMa.  

Land Use Only 

 The most likely changes to NRE watershed land cover would be conversion of naturally 

vegetated land to agricultural and developed areas representing the typical sequence of land use 

change resulting from human activity (Foley et al., 2005). Increasing agricultural land had a 

more pronounced impact on dissolved nutrient loads than streamflow; modeled streamflow 

increased by less than 2% under increased agricultural land cover while TDN and TDP loads 

increased by 23% and 50%, respectively. The differential responses of streamflow and dissolved 

nutrient loads can be attributed to the application of fertilizer which serves as an additional 

source of dissolved nutrients to streamflow. ReNuMa model results also indicate that agricultural 

land use will have a greater impact on loads of dissolved phosphorus relative to dissolved 
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nitrogen. This is likely due to the fact that dissolved nitrogen has several point and non-point 

sources from the watershed while the dominant source of dissolved phosphorus from the 

watershed is agricultural land.  

Increasing developed land within the NRE watershed impacted streamflow and TDN 

loads as expected; streamflow increased as a result of less infiltration capacity associated with 

developed areas and TDN loads mirrored this output since they are directly related to 

streamflow. The relatively small increases (<1%) in streamflow and TDN reflect the way in 

which developed land was changed in the scenarios. Since developed land constitutes an already 

small percentage of the watershed (14.3%), increasing developed land by 10, 25, and 50% did 

not result in a large overall increase in developed land and as a result would have minimal 

impacts on resulting freshwater flow and dissolved loads. Surprisingly, TDP loads did not 

increase when developed land increased but instead decreased. Such decreases in loads can be 

attributed to the assumption made by ReNuMa about the behavior of phosphorus exiting urban 

areas. That is, most of the dissolved phosphorus exiting urban areas is assumed to bind to 

particles and exit the watershed in particulate form. As a result, while increasing developed land 

would increase loads of total phosphorus, that increase would be represented in particulate form. 

This assumption is not always representative of watershed systems and represents an area where 

ReNuMa model output could be misleading if solely relying on dissolved loads.   

Cumulative Impacts of Climate and Land Use 

 Examining the individual impacts of climate and land use on streamflow and dissolved 

nutrient loads from the NRE watershed allowed for easier interpretation of cumulative impacts. 

When projected changes in temperature and precipitation act on the NRE watershed 

simultaneously, the model predicted a net increase in streamflow and dissolved loads through the 
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year 2100. As anticipated, this net increase represents the dominant impact of precipitation on 

resulting loads over temperature and agrees well with findings that suggest that precipitation as 

opposed to temperature has the greater impact on resulting loads (Karl and Riebsame 1989).  

Superimposing hypothetical increases to developed or agricultural land on top of projected 

changes in climate further amplified increases in modeled streamflow and nutrient loads for 

reasons identified above. This amplification in loads was more pronounced under increased 

agricultural land than developed land and may provide some insight for best management 

practices for the NRE in the face of climate change. Specifically, if both temperature and 

precipitation increase in the NRE as projected, maintaining nutrient loads at levels that do not 

degrade water quality will require continual examination and improvement of agricultural land 

management practices.   

Implications for the NRE Ecology 

 Projected changes in streamflow and nutrient loading from the NRE watershed due to 

changes in climate and land use have the potential to substantially impact NRE ecology. Climatic 

variations impact the ecology of the NRE by first impacting riverine discharge which then 

influences flushing time, water column irradiance, nutrient input, and stratification (Peierls et al., 

2012, Brush, 2013, Anderson et al., 2014). Under climate projections through the year 2100, 

ReNuMa predicts that both freshwater inputs and nutrient loads to the NRE will increase. Such 

increases are likely to decrease flushing time which may cause elevated nutrient concentrations, 

specifically nitrate, to be regularly observed further down estuary as opposed to the current 

location of maximum concentrations at the head of the estuary prior to phytoplankton uptake. 

Similarly, maximum concentrations of sediment and other particulates are also likely to be 

located further down estuary under decreased flushing times which would subsequently decrease 



 

34 
 

water column irradiance in this region. This spatial shift in maximum nitrate and particulate 

matter concentrations should also shift maximum chlorophyll-a concentrations further down 

estuary where algae are not light limited by particulates but still have adequate nutrients for 

growth.  

 Anthropogenically-induced increases and shifts in phytoplankton and particulate matter 

further down estuary may impact organisms of all trophic levels in the NRE. This is because 

such shifts will affect benthic-pelagic coupling in the water column and likely change the trophic 

state of the NRE.  A shift in the maximum concentration of particulate matter combined with 

increased phytoplankton biomass further down estuary will increase light attenuation in the 

middle estuary region. The benthic microalgae filter, which removes approximately 28-64% and 

45-70% of autochthonous nitrogen inputs in the summer and spring, respectively (Anderson et 

al., 2013), would be less effective at removing nutrients from the water column due to light 

limitation, which could potentially cause the middle estuary to be more susceptible to 

eutrophication and hypoxic bottom water . Potential eutrophic and hypoxic conditions in the 

NRE will be further amplified by the inability of benthic organisms found in the NRE such as 

suspension and deposit feeders to aid in the clearing of phytoplankton biomass (Brush, 2013).  

 Projected changes in streamflow and nutrient loads may have variable impacts on the 

ecosystem metabolism of the NRE. Increased stratification resulting from increases to freshwater 

inflow could enhance autotrophy in the NRE as stratification keeps phytoplankton more tightly 

coupled with watershed-derived nutrients at the water column surface.  Increased freshwater 

flow will also increase terrestrial organic matter input to the NRE which will increase respiration 

rates and likely result in increased heterotrophic conditions (Croswell et al., 2017). Since 

enhanced freshwater flow enhances conditions for both increased autotrophic and heterotrophic 
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conditions in the estuary, it is difficult to determine the likely metabolic state for the system, 

especially under projected climate changes for the system. However, it is likely that the NRE 

will remain near metabolic balance over an annual cycle under projected increases in 

precipitation and nutrient loads as was documented for the system during two years with 

contrasting amounts of precipitation (Crosswell et al., 2017).   

Summary 

 The ReNuMa model proved to be a useful tool for estimating streamflow and dissolved 

nutrient loads from the NRE subwatersheds. As anticipated, ReNuMa captured a substantial 

portion of the observed variability in streamflow, TDN, and TDP loads for the largest Gum 

Branch subwatershed. Such model output resulted in good fit classifications for Gum Branch 

which was significant because the Gum Branch watershed serves as the major source of material 

loads to the NRE. While fit classifications for the MCBCL subwatersheds were much more 

varied than for Gum Branch, resulting mainly from variations in watershed slope, and to a lesser 

degree dominant land cover and watershed size, ReNuMa for the most part also displayed 

predominately good to intermediate model fits across these subwatersheds.  The relatively good 

model output across the NRE subwatersheds during the calibration and validation phase 

demonstrates the applicability of ReNuMa in this system.  

 When scaled to the entire system, ReNuMa confirmed that the upland, off-base watershed 

contributes the majority of freshwater inputs and dissolved nutrient loads to the NRE. Projected 

changes in climate were predicted to increase streamflow, TDN, and TDP loads by the year 

2100, with projected changes in precipitation dominating over projected increases in 

temperature.  These increases became further amplified under hypothetical increases in 

developed and especially agricultural land cover.  The implications of these anticipated 
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alterations to streamflow and dissolved loads include potential increases in concentrations and 

changes in spatial distributions of parameters such as nutrient and chlorophyll-a maxima within 

the NRE, which may then affect the trophic state of the estuary.  Coupling the ReNuMa model to 

an existing estuarine simulation model of the NRE (Brush et al., 2018) will enhance our ability to 

determine how the ecology of the estuary is likely to respond to changes in land use and climate.  
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Data type Data Description Data processing 
Weather 25 historical surface observation 

stations with daily measurements of 
precipitation (mm) and air 
temperature (max. and min., °C) 
across eastern NC 

Averaged daily data across stations; 
results provided by R. Boyles and 
A. Wootten, NCSU; min/max 
temperatures averaged 

DEM Digital elevation model Calculated slope length and percent 
slope for each land use type to 
arrive at values for USLE 
parameters.  

Land use/ Soil Type National Land Cover Dataset  (2006 
and 2011) (NLCD)  
  
National Resources Conservation 
Service SSURGO soil data for 
Onslow County 

Aggregated 15 land use types down 
to the 8 land use types required for 
ReNuMa  
  
Extracted K and hydrologic soil 
group data to use for USLE and 
Curve Number parameter values  

Hydrology 10 monitoring stations with daily flow 
(m

3
 s

-1
) from 2009-2015, provided by 

M. Piehler, UNC; 1 USGS gauge 
station with daily flow data from 
2008-2015 

Aggregated daily flow to monthly 
sum for calibration and validation 

Water quality 10 monitoring stations with monthly 
TN (mol), TP (mol)  and sediment 
(kg) loads from 2009-2015, provided 
by M. Piehler, UNC; 1 USGS gauge 
station with concentrations measured 
by S. Ensign, DCERP, and loads 
estimated by M. Brush, VIMS. 

-- 

Point Sources E.P.A. Water Discharge Permits 
website (EPA-PCS 2009) 

Divided the annual discharges by 
12 to obtain  monthly point source 
discharge rate 

Population Population census of 2010 
Sewer service area shapefile 

Merged to differentiate population 
on sewer versus septic  

Atmospheric N 
deposition 

Wet deposition from the National 
Atmospheric Deposition Program and 
dry deposition from EPA CastNet 

Aggregated dry and wet deposition 
to total nitrogen deposition 

*Data were collected through 2011 for 5 stations and through 2015 for the remaining 6 stations 
 

Table 1. Data sources used to adapt and calibrate the ReNuMa model to the NRE. 
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ReNuMa Hydrologic 
Parameters 

Parameter Definition Units Range* Source 

Recession Coefficient The rate at which streamflow returns 
to base flow after a storm 
f(streamflow)  

d
-1 0.2-0.9 Calculated 

Seepage Coefficient The rate at which groundwater in the 
shallow saturated zone of the aquifer 
seeps into the deep aquifer 

d
-1 0-1 ReNuMa 

autocalibation 

Sediment Delivery Ratio The ratio between the amount of 
sediment entering a watershed and 
the amount of sediment lost to 
erosion 
f(watershed area) 

-- 0.37-0.6 Calculated 

Initial Saturation 
Conditions 

Initial saturation conditions of the 
watershed subsurface 

cm 0 ReNuMa 
Spin-up 

Antecedent Moisture Moisture (rain+snow melt) in the 
aquifer before the simulation period 
begins 

cm 0 ReNuMa 
Spin-up 

Unsaturated Storage Water 
Capacity 

The amount of water the unsaturated 
zone of the aquifer is capable of 
holding 

cm 10 ReNuMa 
default 

Erosivity Coefficients Coefficient used to estimate the 
amount of sediment lost from the 
watershed during rainfall events 

-- 0.16 (Cool 
Season) 

0.28 (Warm 
Season) 

Literature 

Evapotranspiration Cover Coefficient used to estimate the 
quantity of water lost during 
evaporation and transpiration 
f(land use, temperature) 

-- 0.8-1.0 Literature and 
Calculated 

Runoff Curve Number Number used to predict direct runoff 
following a rainfall event 
f(land use and soil type) 

cm 53.5-100 Literature and 
Calculated 

USLE Parameters Parameters used for estimating 
annual soil loss due to erosion 
including: 
K= soil erodibility factor 
LS= topographic factor 
C= cover management factor 
 P= supporting practice factor  

mg•ha
-

1
 y

-1 
0-0.48 Literature and 

Calculated 

Table 2. Hydrologic parameters used in ReNuMa to estimate streamflow and sediment yield.  
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ReNuMa  Nutrient 
Parameters 

Parameter Definition Units Range* Source 

Nitrogen in Sediment The amount of nitrogen 
present in soils of rural land 

covers 
mg kg

-1 1400 Literature 

Phosphorus in 
Sediment 

The amount of phosphorus 
present in soils of rural land 

covers 
mg kg

-1 352 Literature 

Groundwater 
Nitrogen 
Concentration 

The concentration of 
nitrogen in groundwater 

mg l
-1 1.1 Literature 

Groundwater 
Phosphorus 
Concentration 

The concentration of 
phosphorus in groundwater 

mg l
-1 0.013 Literature 

Groundwater 
Denitrification 
Fraction 

The fraction of groundwater 
nitrogen lost during 

denitrification 

-- 0.387 Literature 

Per capita tank N 
effluent 

Per capita daily nitrogen load 
in septic tank effluent 

g d
-1 13.2 Literature 

Per capita tank P 
effluent 

Per capita daily phosphorus 
load in septic tank effluent 

g d
-1 0.93 Literature 

Per capita grow 
season N uptake 

Per capita daily nitrogen 
uptake by plants 

g d
-1 1.6 Literature 

Per capita grow 
season P uptake 

Per capita daily phosphorus 
uptake by plants 

g d
-1 0.4 Literature 

*Represents the range of values determined for the 11 subwatersheds in which ReNuMa was 
applied 

Table 3. Nutrient parameters used in ReNuMa to estimate nitrogen and phosphorus fluxes.  
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Watershed Slope 
(Streamflow)  

Intercept 
(Streamflow) 

r
2
 

(Streamflow) 

p 
(Streamflow) 

Slope Intercept OMF* 

1. Airport 0.19 23.32 0.07 <<0.001 0.015 0.13 
2. Camp Johnson 0.52 -0.08 0.17 0.024 0.97 0.016 
3. Cogdel 0.94 1.27 0.26 0.73 0.19 <<0.001 
4. Courthouse 0.27 4.19 0.24 <<0.001 <<0.001 <<0.001 
5. Freeman 1.23 -1.45 0.45 0.38 0.23 <<0.001 
6. French 0.88 0.95 0.13 0.87 0.22 <<0.001 
7. Gillets 1.14 -1.7 0.49 0.51 0.12 <<0.001 
8. Gum Branch 0.9 -0.12 0.53 0.27 0.79 <<0.001 
9. Southwest 0.16 3.55 0.08 <<0.001 0.016 0.09 
10. Tarawa 0.73 0.41 0.08 0.35 0.61 0.013 
11. Traps 0.63 1.72 0.58 <<0.001 <<0.001 <<0.001 

Table 4. Regression statistics between Measured and Modeled Streamflow for NRE subwatersheds 



 

42 
 

 

  

Watershed Slope 
(TDN)  

Intercept 
(TDN) 

r
2
 

(TDN) 

p 
(TDN) 

Slope Intercept OMF 

1. Airport 0.15 0.04 0.06 <<0.001 0.01 0.18 

2. Camp Johnson 0.40 -6.8e-04 0.19 <<0.001 0.55 0.013 

3. Cogdels 1.12 0.02 0.28 0.56 0.34 <<0.001 

4. Courthouse 0 0.09 0.21 <<0.001 0.0013 <<0.001 

5. Freeman 0.79 -0.02 0.45 0.22 0.33 <<0.001 

6. French 0.73 0.03 0.1 0.29 0.17 0.0043 

7. Gillets 0.59 -0.02 0.46 0.001 0.21 <<0.001 

8. Gum Branch 1.1 -1.65 0.53 0.38 0.50 <<0.001 

9. Southwest 0.1 0.01 0.08 <<0.001 0.026 0.085 

10. Tarawa 0.54 0.002 0.09 0.022 0.57 0.008 

11. Traps 0.36 0.001 0.51 <<0.001 0.017 <<0.001 

Table 5. Regression statistics between Measured and Modeled TDN loads for NRE subwatersheds 
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Watershed Slope 
(TDP)  

Intercept 
(TDP) 

r
2
 

(TDP) 

p 
(TDP) 

Slope Intercept OMF 

1. Airport 0.05 0.002 0.004 <<0.001 <<0.001 0.71 

2. Camp Johnson 0.65 -1.6e-05 0.44 0.01 0.63 <<0.001 

3. Cogdel 1.23 0.0019 0.26 0.32 0.001 <<0.001 

4. Courthouse 1.9e-04 0.24 0.21 <<0.001 <<0.001 <<0.001 

5. Freeman 1.13 -4.1e-04 0.63 0.44 0.24 <<0.001 

6. French 0.44 0.001 0.11 <<0.001 <<0.001 0.003 

7. Gillets -0.0003 0.001 1.7e-06 <<0.001 <<0.001 0.99 

8. Gum Branch 0.48 -0.04 0.54 <<0.001 0.65 <<0.001 

9. Southwest 0.07 2.9e-04 0.06 <<0.001 <<0.001 0.14 

10. Tarawa 0.14 1.02e-04 0.16 <<0.001 <<0.001 0.00017 

11. Traps 1.33 1.01e-04 0.48 0.037 <<0.001 <<0.001 

Table 6. Regression statistics between Measured and Modeled TDP loads for NRE subwatersheds 
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Figure 1. Location and watershed boundary of the NRE in North Carolina, MCBCL, gauging stations, and 
associated subwatersheds used during model calibration and validation. 
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Figure 2a. Schematic of hydrological dynamics of the ReNuMa model (modified from Hong and Swaney 
2007).   
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Figure 2b. Schematic of nutrient dynamics of the ReNuMa model (modified from Hong and Swaney 2007).   
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Figure 3. Measured and modeled streamflow for the Gum Branch 
subwatershed from 2008 to 2015.  Top two regression plots display fits 
(dashed line) during the calibration (top left) and validation (top right) portion 
of the time series while bottom regression plot displays model fit (dashed 
line) over the entire time series. Solid line on regression plots is the 1:1 line. 
Streamflow is expressed as a yield (i.e., normalized to watershed area).  
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Figure 4. Measured and modeled TDN loading for the Gum Branch 
subwatershed from 2008 to 2015. Top two regression plots display fits (dashed 
line) during the calibration (top left) and validation (top right) portion of the 
time series while bottom regression plot displays model fit (dashed line) over 
the entire time series. Solid line on regression plots is the 1:1 line.  
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Figure 5. Measured and modeled TDP loading for the Gum Branch 
subwatershed from 2008 to 2015. Top two regression plots display fits 
(dashed line) during the calibration (top left) and validation (top right) portion 
of the time series while bottom regression plot displays model fit (dashed 
line) over the entire time series. Solid line on regression plots is the 1:1 line.  
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Figure 6. Example time series plots of streamflow for MCBCL 
subwatersheds representing good (Cogdel), intermediate (Courthouse), and 
poor (Airport) fit classifications. Streamflow is expressed as a yield. 
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Figure 7. Fractional change in loads to the NRE under (a) increased temperatures, (b) changes in precipitation, 
(c) increased developed land (D) increased agricultural land. 
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Figure 8. Box plots of modeled percent change in streamflow, TDN load, and TDP load for the NRE watershed 
based on 24 climate projections for the 2030s, 2050s, and 2090s. The solid line within the box denotes the median 
response from the 24 projections, boxes denote the 1st and 3rd quartiles, and error bars denote the minimum and 
maximum responses.   
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Figure 9. Fractional change in loads to the NRE under (a) decadal median climate projections for the NRE, (b) decadal 
median climate projections and a 25% increase in developed land, and (c) decadal median climate projections and a 25% 
increase in agricultural land. Median projected temperature increases for the NRE were 1.2, 2.3, and 4.2 °C for the 2030s, 
2050s, and 2090s, respectively. Median projected precipitation increases for the NRE were 1.7%, 4.3%, and 9.6%, for the 
2030s, 2050s, and 2090s, respectively. 
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Figure 10.Coefficient of variation between measured and modeled streamflow as a function of MCBCL watershed 
characteristics (a) watershed size, (b) percentage of developed and wetland area, and (c) watershed slope obtained from 
Piehler et al. 2017.  
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Watershed Slope 
(Streamflow)  

Intercept 
(Streamflow) 

r
2
 

(Streamflow) 

p 
(Streamflow) 

Slope Intercept OMF* 
1. Airport 0.19 23.32 0.07 <<0.001 0.015 0.13 
2. Camp Johnson 0.52 -0.08 0.17 0.024 0.97 0.016 
3. Cogdel 0.96 0.11 0.27 0.89 0.95 <<0.001 
4. Courthouse 0.27 5.34 0.22 <<0.001 0.0027 0.0043 
5. Freeman 1.23 -1.45 0.45 0.38 0.23 <<0.001 
6. French 1.91 -0.05 0.21 0.15 0.97 0.0035 
7. Gillet 1.14 -1.7 0.49 0.51 0.12 <<0.001 
8. Gum Branch 1.36 -0.78 0.67 0.030 0.27 <<0.001 
9. Southwest 0.16 3.55 0.08 <<0.001 0.016 0.09 
10. Tarawa 0.76 0.76 0.05 0.66 0.60 0.16 
11. Traps 0.61 1.39 0.58 <<0.001 0.039 <<0.001 

Appendix 1. Regression statistics between measured and modeled streamflow for NRE 
subwatersheds during calibration (2009-2011).  
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Watershed Slope 
(Streamflow)  

Intercept 
(Streamflow) 

r
2
 

(Streamflow) 

p 
(Streamflow) 

Slope Intercept OMF* 
1. Airport -- -- -- -- -- -- 
2. Camp Johnson -- -- -- -- -- -- 
3. Cogdel 1.62 -0.28 0.43 0.042 0.81 <<0.001 
4. Courthouse 0.37 1.07 0.35 <<0.001 0.59 <<0.001 
5. Freeman -- -- -- -- -- -- 
6. French 0.69 0.97 0.21 0.14 0.13 0.0021 
7. Gillet -- -- -- -- -- -- 
8. Gum Branch 0.59 0.64 0.57 <<0.001 0.13 <<0.001 
9. Southwest -- -- -- -- -- -- 
10. Tarawa 0.77 -0.09 0.39 0.14 0.83 <<0.001 
11. Traps 0.69 1.83 0.6 0.0011 <<0.001 <<0.001 

Appendix 2. Regression statistics between measured and modeled streamflow for NRE 
subwatersheds during validation (2012-2015). 
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Watershed Slope 
(TDN)  

Intercept 
(TDN) 

r
2
 

(TDN) 

p 
(TDN) 

Slope Intercept OMF* 

1. Airport 0.15 0.04 0.06 <<0.001 0.01 0.18 
2. Camp Johnson 0.40 -6.8e-04 0.19 <<0.001 0.55 0.013 
3. Cogdel 1.15 -0.002 0.29 0.62 0.96 <<0.001 
4. Courthouse 0.09 0.0035 0.22 <<0.001 0.0056 0.0041 
5. Freeman 0.79 -0.02 0.45 0.22 0.33 <<0.001 
6. French 1.61 0.01 0.18 0.28 0.84 0.0065 
7. Gillets 0.59 -0.02 0.46 0.001 0.21 <<0.001 
8. Gum Branch 1.56 -4.33 0.64 0.0088 0.27 <<0.001 
9. Southwest 0.1 0.01 0.08 <<0.001 0.026 0.085 
10. Tarawa 0.0033 0.60 0.07 0.27 0.56 0.11 
11. Traps 0.37 1.0e-03 0.51 <<0.001 0.20 <<0.001 

Appendix 3. Regression statistics between measured and modeled TDN loading for NRE 
subwatersheds during calibration (2009-2011).  
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Watershed Slope 
(TDN)  

Intercept 
(TDN) 

r
2
 

(TDN) 

p 
(TDN) 

Slope Intercept OMF* 
1. Airport -- -- -- -- -- -- 
2. Camp Johnson -- -- -- -- -- -- 
3. Cogdel 1.73 -0.0042 0.43 0.025 0.86 <<0.001 
4. Courthouse 0.11 0.0013 0.23 <<0.001 0.37 <<0.001 
5. Freeman -- -- -- -- -- -- 
6. French 0.46 0.03 0.18 0.001 0.0519 0.0049 
7. Gillet -- -- -- -- -- -- 
8. Gum Branch 0.78 1.79 0.55 0.040 0.45 <<0.001 
9. Southwest -- -- -- -- -- -- 
10. Tarawa 0.53 -6.9e-05 0.42 <<0.001 0.97 <<0.001 
11. Traps 0.34 0.001 0.54 <<0.001 0.011 <<0.001 

Appendix 4. Regression statistics between measured and modeled TDN loading for NRE 
subwatersheds during validation  (2012-2015). 
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Watershed Slope 
(TDP)  

Intercept 
(TDP) 

r
2
 

(TDP) 

p 
(TDP) 

Slope Intercept OMF* 
1. Airport 0.05 0.002 0.004 <<0.001 <<0.001 0.71 
2. Camp Johnson 0.65 -1.6e-05 0.44 0.01 0.63 <<0.001 
3. Cogdel 1.93 -0.00018 0.59 0.0012 0.80 <<0.001 
4. Courthouse 0.2 0 0.11 <<0.001 <<0.001 0.047 
5. Freeman 1.13 -4.1e-04 0.63 0.44 0.24 <<0.001 
6. French 0.32 0.0014 0.09 <<0.001 <<0.001 0.068 
7. Gillet -0.0003 0.001 1.7e-06 <<0.001 <<0.001 0.99 
8. Gum Branch 0.69 -0.11 0.7 <<0.001 0.40 <<0.001 
9. Southwest 0.07 2.9e-04 0.06 <<0.001 <<0.001 0.14 
10. Tarawa 0.16 9.9e-05 0.13 <<0.001 0.0055 0.024 
11. Traps 1.27 8.3e-05 0.52 0.201 0.0064 <<0.001 

Appendix 5. Regression statistics between measured and modeled TDP loading for NRE 
subwatersheds during calibration (2009-2011).  
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Watershed Slope 
(TDP)  

Intercept 
(TDP) 

r
2
 

(TDP) 

p 
(TDP) 

Slope Intercept OMF* 

1. Airport -- -- -- -- -- -- 
2. Camp Johnson -- -- -- -- -- -- 
3. Cogdel 0.41 0.0039 0.03 0.11 <<0.001 0.25 
4. Courthouse 0.28 1.6e-04 0.27 <<0.001 0.0086 <<0.001 
5. Freeman -- -- -- -- -- -- 
6. French 1.01 0.00051 0.21 0.97 0.35 0.0021 
7. Gillet -- -- -- -- -- -- 
8. Gum Branch 0.28 0.13 0.48 <<0.001 0.07 <<0.001 
9. Southwest -- -- -- -- -- -- 
10. Tarawa 0.13 1.02e-04 0.21 <<0.001 <<0.001 0.0024 
11. Traps 1.41 1.15e-04 0.41 0.13 0.0015 <<0.001 

Appendix 6. Regression statistics between measured and modeled TDP loading for NRE 
subwatersheds during validation (2012-2015). 
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Watershed Absolute Error % Error RMSE 
 Mean Median Mean Median  

Airport 38.0 25.9 103.8 -27.3 54.7 
Camp Johnson 6.59 5.34 -48.0 -74.8 8.50 
Cogdel 2.99 2.20 27.2 5.8 4.69 
Courthouse 10.9 7.88 -14.1 -55.8 14.3 
Freeman 2.13 1.11 -47.3 -61.0 4.12 
French 1.80 1.04 58.4 1.1 3.44 
Gillet 2.24 1.36 -81.3 -54.2 3.87 
Gum Branch 1.77 0.938 2.02 -36.0 3.45 
Southwest 6.86 2.59 -10.4 -63.6 12.6 
Tarawa 1.60 0.929 7.21 -49.1 3.50 
Traps 2.30 1.40 1956.9 4.92 3.13 

Appendix 7. ReNuMa model skill assessment for streamflow from 11 NRE subwatersheds, 
showing absolute mean and median error (ABS Error), percent mean and median error (% Error), 
and root mean squared error (RMS Error), using model output over the entire time series. Units of 

ABS and RMS Error are cm month
-1

. 



 

64 
 

 

  

Watershed Absolute Error % Error RMSE 
 Mean Median Mean Median  

Airport 0.072 0.054 -25.8 -42.1 0.10 
Camp Johnson 0.0050 0.0049 -70.6 -84.3 0.0057 
Cogdel 0.068 0.052 91.5 68.6 0.11 
Courthouse 0.026 0.020 80.3 85.1 0.035 
Freeman 0.058 0.033 -64.6 -72.5 0.089 
French 0.051 0.029 120.8 81.1 0.10 
Gillet 0.068 0.052 -74.4 -74.9 0.087 
Gum Branch 8.1 4.6 57.4 43.4 13.9 
Southwest 0.016 0.0047 -47.0 -84.2 0.035 
Tarawa 0.0088 0.0065 95.4 62.0 0.017 
Traps 0.0050 0.0032 1297.1 68.0 0.0071 

Appendix 8. ReNuMa model skill assessment for TDN loads from 11 NRE subwatersheds, 
showing absolute mean and median error (ABS Error), percent mean and median error (% 
Error), and root mean squared error (RMS Error), using model output over the entire time 

series. Units of ABS and RMS Error are kg month
-1
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Watershed Absolute Error % Error RMSE 
 Mean Median Mean Median  

Airport 0.0031 0.0023 35.3 19.9 0.0047 
Camp Johnson 0.00011 0.000091 -43.73 -66.2 0.00015 
Cogdel 0.0029 0.0022 187.7 140.0 0.0038 
Courthouse 0.00030 0.00018 106.9 63.1 0.00043 
Freeman 0.00082 0.00053 -32.5 -34.1 0.0012 
French 0.0013 0.00087 105.5 87.4 0.0019 
Gillet 0.0023 0.00053 -43.5 -50.0 0.0069 
Gum Branch 0.68 0.39 66.4 67.0 1.0006 
Southwest 0.00064 0.00019 -27.3 -64.7 0.0015 
Tarawa 0.00034 0.00020 66.7 64.2 0.00046 
Traps 0.00015 0.00013 4400.3 134.8 0.00019 

Appendix 9. ReNuMa model skill assessment for TDP loads for 11 NRE subwatersheds, 
showing absolute mean and median error (ABS Error), percent mean and median error (% 

Error), and root mean squared error (RMS Error), using model output over the entire time series. 
Units of ABS and RMS Error are kg month

-1
. 
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Appendix 10. Time series plots of measured and modeled streamflow for all 10 MCBCL subwatersheds. 
Streamflow is expressed as a yield.  
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Appendix 11. Time series plots of measured and modeled TDN loading for all 10 MCBCL subwatersheds  
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Appendix 12. Time series plots of measured and modeled TDP loading for all 10 MCBCL subwatersheds. 
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