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ABSTRACT

The detection and location of issues in a network is a common problem
encompassing a wide variety of research areas. Location-detection problems have
been studied for wireless sensor networks and environmental monitoring,
microprocessor fault detection, public utility contamination, and finding intruders
in buildings. Modeling these systems as a graph, we want to find the smallest
subset of nodes that, when sensors are placed at those locations, can detect and
locate any anomalies that arise. One type of set that solves this problem is the
open locating-dominating set (OLD-set), a set of nodes that forms a unique and
nonempty neighborhood with every node in the graph.

For this work, we begin with a study of OLD-sets in circulant graphs. Circulant
graphs are a group of regular cyclic graphs that are often used in massively
parallel systems. We prove the optimal OLD-set size for two circulant graphs using
two proof techniques: the discharging method and Hall’s Theorem.

Next we introduce the mixed-weight open locating-dominating set (mixed-weight
OLD-set), an extension of the OLD-set. The mixed-weight OLD-set allows nodes
in the graph to have different weights, representing systems that use sensors of
varying strengths. This is a novel approach to the study of location-detection
problems.

We show that the decision problem for the minimum mixed-weight OLD-set, for
any weights up to positive integer d, is NP-complete. We find the size of
mixed-weight OLD-sets in paths and cycles for weights 1 and 2. We consider
mixed-weight OLD-sets in random graphs by providing probabilistic bounds on the
size of the mixed-weight OLD-set and use simulation to reinforce the theoretical
results.

Finally, we build and study an integer linear program to solve for mixed-weight
OLD-sets and use greedy algorithms to generate mixed-weight OLD-set estimates
in random geometric graphs. We also extend our results for mixed-weight
OLD-sets in random graphs to random geometric graphs by estimating the
probabilistic upper bound for the size of the set.
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Chapter 1

Introduction

Location-detection problems are found in a wide variety of areas, from finding faults

in microprocessors to identifying contaminants in ventilation systems to detecting illegal

logging in rain forests. Theoretical studies of these problems typically focus on minimizing

the number of sensors required, or the overall cost of a system of sensors, to detect and

locate anomalies. To determine the minimum number of sensors, a system is modeled as a

graph G = (V,E), where the nodes V represent locations in the network, and the edges E

represent the connections between them. Sensors are placed at particular node locations

that, by design, are able to uniquely detect and locate issues in the system.

Open locating-dominating sets (OLD-sets) extend basic location and detection by

working under the condition that a sensor is unable to detect a problem at its own loca-

tion. Sensor failure could be caused by extreme environmental conditions or by the act

of a nefarious individual. This setup could also be by design, if sensors detect problems

through routed messages. The mixed-weight open locating-dominating set (mixed-weight

OLD-set) expands the problem even further by considering the use of sensors of varying

strengths and, potentially, cost. This novel approach to location-detection problems ex-

tends the reach of theoretical solutions to systems that are not limited to a single type of

sensor.

In this chapter we discuss related work and applications in Section 1.1 and provide

2



definitions needed to study open locating-dominating sets in Section 1.2. In Section 1.3

we provide an outline and overview for the rest of the chapters.

1.1 Related Work and Motivation

Most research on location-detection problems has focused on the closed locating-

dominating set and the problem of identifying codes [11, 16, 46, 56, 58, 69, 78]. The

OLD-set is a more recent problem first defined in 2010 [72]. Minimum OLD-set sizes

have been studied for trees [73], infinite cylinders [74], grid-like graphs [75], and infinite

triangular grids [53]. A dynamic bibliography of results in identifying codes and closed

and open locating-dominating sets can be found in [60].

OLD-sets can determine optimal sensor placement for a variety of problems that can

be modeled as a graph. A system of connected microprocessors can be modeled by an

undirected graph where a processor is represented by a node and a network connection

between two processors is represented by an edge. Fault detection in such networks has

been studied using identifying codes and closed locating-dominating sets [11, 16, 45, 46].

Using OLD-sets we are able to consider the additional problem of a sensor failing to detect

a fault in a processor where it is located. This type of sensor failure could be the result of

a fault causing the sensor to fail, or, by design, when faults are only detected via routing

messages directly between two connected processors.

We model the interior and exterior of a facility as a graph by dividing the physical

space into regions and adding nodes to the graph representing each of these regions. An

edge is added to the graph to represent two regions that would be within communication

range if a sensor was placed on one of those regions. Models of this type have been used

to study intruder detection [72] and survivor location in emergency situations [56, 69, 78].

The OLD-set covers the additional problem of a sensor failing to detect or locate a person

at the sensor’s position, a scenario that occurs when an intruder disengages a sensor or

when a disaster causes the failure of a sensor.
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Wireless sensor networks (WSNs) play an integral part in the monitoring and detection

of changes in the environment and climate. A WSN consists of hundreds of sensors, each

connected to a receiving device that has the capability to transmit, store, or manipulate

data captured by the sensor. The sensors monitor the physical environment and take

measurements on conditions such as temperature, humidity, pressure, and pollutants.

These measurements are sent wirelessly from the receiving devices through the network

to one or many controllers that store and organize the data for algorithmic interpretation.

These networks can be organized in precise patterns or created at random via aircraft

drops [71]. The benefits of using identifying codes in the design of WSNs, including

efficiency and ease of monitoring, are discussed in [58]. WSNs are often constrained by

cost, reliability of sensors, battery power, wireless communications and distance, storage

limitations, and computational power [71].

WSNs are particularly useful in fields where distance and landscape make conventional

networking impossible. Environmental monitoring using wireless sensor networks covers a

range of important research areas including the study of glaciers [63], marine pollution [2],

air pollution [52], animal behavior and welfare [61], the effect of climate change on farming

[33, 22], and the detection of natural disasters [5]. The environment can be modeled

similarly to a facility: divide the area into regions, where each region is represented by a

node, and an edge represents two regions that would be in range of a single sensor.

Location-detection problems have also been studied for contaminant detection and

source location in public utilities and building ventilation systems [6, 7]. These systems

are modeled as a graph by considering the system as a network. Nodes represent potential

sensor locations, and edges represent the pipes connecting those locations. Research in

location-detection can also benefit the detection of criminal behavior in other environ-

ments, such as illegal logging in the rainforest [1]. OLD-sets are of particular interest for

situations in which a perpetrator destroys a sensor at the location of the criminal activity.
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x1

x2

x3

x4

x5

x6

x7

(a) N(x2) = {x1, x3, x4, x5}

x1

x2

x3

x4

x5

x6

x7

(b) N(A) = {x1, x5, x6, x7} for
A = {x2, x3, x4}

Figure 1.1: The neighborhood of a node is all nodes adjacent to the
node, not including the node. The neighborhood of a set is all nodes
adjacent to the nodes in the set, not including the set. The nodes under
consideration are shown in black, and the nodes in the neighborhood
are circled.

1.2 Open Locating-Dominating Sets and Related Problems

In this section we cover basic definitions and provide examples of open locating-

dominating sets and similar sets. We begin with the definitions of a neighbor and a

neighborhood. Consider an undirected graph G = (V,E) where V is the set of nodes and

E is the set of edges. Figure 1.1 shows an example of the neighborhood of a node and the

neighborhood of a set.

1.2.1 Definitions

Definition 1.1 The neighborhood of a node x, N(x), is the set of nodes that are adjacent

to x in the graph, not including x, i.e., x ̸∈ N(x). The neighborhood of the set A ⊆

V , N(A), contains all the nodes adjacent to the set and not in the set, i.e., N(A) =∪
x∈AN(x)−A.

Definition 1.2 The neighbor of a node x or set A is any y such that y ∈ N(x) or N(A).
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x1

x2

x3

x4

x5

x6

x7

(a) S = {x2, x3, x4, x6} is an
OLD-set

x N(x)∩ S

x1 {x2, x4}
x2 {x3, x4}
x3 {x2, x4, x6}
x4 {x2, x3}
x5 {x2, x3, x6}
x6 {x3}
x7 {x3, x4, x6}

(b) N(x) ∩ S is non-empty and
unique for each node in the
graph

Figure 1.2: By comparing each neighborhood intersected with the set
S, we can determine that S is an OLD-set. The nodes in the OLD-set
are shown in black.

Definition 1.3 A set S of nodes in a graph is an open locating-dominating set or OLD-

set, if ∀x ∈ V , N(x) ∩ S ̸= ∅ (N(x) ∩ S is non-empty), and for any two distinct nodes

x ̸= y, N(x) ∩ S ̸= N(y) ∩ S (N(x) ∩ S is unique).

Definition 1.4 The OLD-set neighborhood contains all neighbors of a node x that are

in the OLD-set S, N(x) ∩ S.

A set S is an OLD-set of the graph if ∀x ∈ V , x has at least one neighbor in S (the

dominating property), and if for every pair of nodes in the graph, x ̸= y, there is at least

one node in S that is adjacent to either x or y but not both, in other words, x and y do not

have the same set of neighbors in S (the locating property). The open property is provided

by Definition 1.1 which requires that a node is excluded from its own neighborhood.

Figure 1.2 shows a graph, an OLD-set S, and the set N(x) ∩ S for each node x.

Determining if the set S is dominating can be done by quickly searching through the

adjacencies in the graph, and is easy to see by looking at the graph. However, determining

if the set is locating requires a search through every neighborhood which can be done in
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x1 x2

x3

x4

x5

x6

x7

Figure 1.3: Nodes x1 and x2 share the neighborhood {x3, x7}, thus
there is no OLD-set in the graph. The nodes that share a neighborhood
are shown in black and the nodes in their neighborhood are circled.

polynomial time, but is not as easy to visualize. Using a table to list N(x) ∩ S for each

node x makes the locating property easier to determine, as in Figure 1.2.

Definition 1.5 A set S covers a node x, if S locates and dominates x. Thus N(x)∩S ̸=

∅, and N(x) ∩ S ̸= N(y) ∩ S, for x ̸= y, ∀y ∈ V .

Definition 1.6 If y is in the OLD-set neighborhood of a node x, then y dominates and

locates x.

Definition 1.7 Two nodes share OLD-set neighborhoods if N(x) ∩ S = N(y) ∩ S for

potential OLD-set S, thus if S is an OLD-set any two nodes in the graph must not share

OLD-set neighborhoods.

Two nodes will share OLD-set neighborhoods if they share neighborhoods, i.e., N(x) =

N(y). In Figure 1.3, N(x1) = N(x2), thus for any possible OLD-set S, N(x1) ∩ S =

N(x2) ∩ S. Whether a graph has an OLD-set can be answered quickly by determining if

the set V is an OLD-set. V is an OLD-set if and only if N(x) ∩ V = N(x) is non-empty

and unique for every node x.
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x1

x2

x3

x4

x5

x6

x7

(a) S = {x2, x5, x6, x7} is an
ID-code

x N [x]∩ S

x1 {x2}
x2 {x2, x5}
x3 {x2, x5, x6, x7}
x4 {x2, x7}
x5 {x2, x5, x6}
x6 {x5, x6, x7}
x7 {x6, x7}

(b) N [x] ∩ S is non-empty and
unique for each node in the
graph

Figure 1.4: By comparing the each closed neighborhood intersected
with the set S, we can determine that S is an ID-code. The nodes in
the ID-code are shown in black.

1.2.2 Related Problems

The OLD-set is a variation of an older problem called the Identifying Code, or ID-Code,

and the related Locating-Dominating Set, or LD-Set. An ID-Code is defined similarly

to an OLD-set, but on the closed -neighborhood, N [x], that includes the x in its own

neighborhood, i.e., N [x] is the set including x and all the nodes adjacent to x. We note that

in most literature the closed-neighborhood is typically referred to as the neighborhood,

and the open-neighborhood is usually qualified, however, since the focus of this work is on

OLD-sets, when we refer to the neighborhood we mean the open-neighborhood. A set of

nodes, S is an ID-code if N [x] ∩ S ̸= ∅ for all nodes in the graph, and for any two nodes

x ̸= y, N [x]∩S ̸= N [y]∩S. Thus any node in an ID-Code is able to locate and dominate

itself.

The LD-set is also defined on the closed-neighborhood, but is only concerned with

location and domination on nodes not in the set. The set S is an LD-set if N [x] ∩ S ̸= ∅

for all nodes in the graph, and if N [x]∩S ̸= N [y]∩S for any two nodes x ̸= y and x, y /∈ S.
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x1

x2

x3

x4

x5

x6

x7

(a) S = {x2, x3, x4} is an
LD-set

x N [x]∩ S

x1 {x2, x4}
x5 {x2, x3}
x6 {x3}
x7 {x3, x4}

(b) N [x] ∩ S is non-empty and
unique for each node not in S

Figure 1.5: By comparing each closed neighborhood intersected with
the set S, for nodes not in S, we can determine that S is an LD-set.
The nodes in the LD-set are shown in black.

Figure 1.4 shows a graph, an ID-Code S, and the set N [x] ∩ S for each node x. Figure

1.5 shows the same graph with an LD-set S and the set N [x] ∩ S for each node x /∈ S. A

graph has an ID-code if and only if N [x] is unique for every node in the graph, and, in

that case, the set of nodes V is an ID-code. For every graph, V is trivially an LD-set.

1.2.3 Focus

Location-detection problems, such as OLD-sets, ID-Codes, and LD-sets, are typically

focused on finding the smallest such set in the graph with applications in the design of

wireless sensor networks, fault detection in microprocessors, and contaminant detection

in public utilities. Finding the minimum set allows for full coverage of the network with

the least amount of overhead and cost. Although determining if a given set is an OLD-

set, ID-Code, or LD-set can be done in polynomial time, finding the smallest such set is

NP-complete [17, 18, 72]. The example OLD-set, ID-code, and LD-set shown in figures

1.2, 1.4, and 1.5 show minimum-sized such sets for each particular graph.
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1.3 Outline and Overview

In this chapter we discussed the motivation to study location-detection problems and

provided basic definitions and properties of open locating-dominating sets. We use OLD-

sets in graphs to represent the placement of sensors in a network to locate and detect

anomalies. These networks include microprocessor systems for fault detection, facilities

for intruder discovery and apprehension, wireless sensor networks (WSNs) for environ-

mental condition tracking, and public utilities for contaminant detection. OLD-sets are

dominating sets, so they can detect everywhere in a graph or system, and locating sets,

so they can also pinpoint the exact location of an issue. OLD-sets also have the open

property that a node or sensor cannot detect or locate at its own location. This property

covers situations in which a problem in the system destroys or causes the malfunction

of the sensor at the problem’s location. Sensor networks can also be designed with this

property in mind by only detecting issues from incoming messages and data.

The focus of this thesis is the mixed-weight OLD-set, which uses weighted nodes to

represent sensor strength in a network, but we begin with an exploration of the non-

weighted OLD-set in circulant graphs in Chapter 2. Circulant graphs are cycle-like graphs

used in multiprocessor systems. For these systems we are interested determining the

minimum number of sensors required to detect and locate processor faults. We find optimal

OLD-sets for two sets of circulant graphs by using two proof techniques. The first proof

technique, called the discharging method, has a history in the field of location-detection

[19, 20, 45, 46, 53]. For this method, we place a charge on each node in the OLD-set, and

redistribute the charge throughout the graph. After redistribution, the amount of charge

left in each node indicates a lower bound on the size of the OLD-set. We also introduce

a new method, which we call the matching method, that uses Hall’s Matching Theorem

[41]. For this method, we uniquely pair nodes that are not in the OLD-set with nodes

that are in the OLD-set, also providing a lower bound on the size of the OLD-set. In

both cases, we are able to find OLD-sets with sizes equivalent to the lower bound, thus
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providing optimally-sized OLD-sets.

In Chapter 3 we consider the mixed-weight open locating dominating-set. Mixed-

weight OLD-sets extend the non-weighted OLD-set to include integer weights on nodes

in the graph. These weights translate to the strength of a sensor used at a location in a

system, such as in a WSN. In the theoretical context, the weight indicates the reach of a

node through the graph, and nodes with greater weight become neighbors of other nodes

that are further away. This chapter includes definitions necessary to study mixed-weight

OLD-sets and comments on some of their interesting properties.

Chapter 4 introduces optimization problems related to the mixed-weight OLD-set and

covers its NP-completeness. First, we consider the problem of finding a minimum mixed-

weight OLD-set given a graph and a set of weights, and show that this problem is NP-

complete. We then consider the similar, but slightly more complex problem, of finding the

set of weights that provides the minimum mixed-weight OLD-set for a particular graph.

Both of these problems are important considerations in location-detection as they directly

translate to determining the smallest number and setup of a system of sensors. The last

optimization problem is minimizing the sum of the weights of the nodes in a mixed-weight

OLD-set. For non-weighted OLD-sets, this weight would always be the number of nodes

in the OLD-set. However, if the cost of a sensor is proportional to the strength of the

sensor, then minimizing cost of the system of sensors may become more important than

minimizing the number of sensors.

In Chapter 5 we consider mixed-weight OLD-sets in paths and cycles. Paths and

cycles often have polynomial solutions to problems that in general are NP-complete. Thus

paths and cycles can provide a simpler way to study and use problems that are otherwise

computationally difficult. We find a linear solution to the mixed-weight OLD-set problem,

using weights 1 and 2, in paths and cycles. We also consider paths and cycles with all

weight 2 nodes, as this is the first time weighted and mixed-weight OLD-sets have been

studied.

In Chapter 6 we study bounds on the size of mixed-weight OLD-sets in random graphs
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and use simulation to support the results. Random graphs estimate the distribution of

WSNs that have been randomly dispersed in the field. Probabilistic upper bounds for the

size of identifying codes, a problem similar to OLD-sets, but without the open property,

have previously been studied in random graphs [30]. We extend those results to (mixed-

weight) OLD-sets in random graphs. We show that as the number of nodes increases,

the probability that a random graph has a mixed-weight OLD-set less than the bound

increases.

We introduce an integer linear program (ILP) for mixed-weight OLD-sets and study

its use in random geometric graphs in Chapter 7. ILP solvers use branch and bound to

find solutions to computationally difficult problems. Without limiting time or number

of computations, a solution found through an ILP model is guaranteed to be optimal.

For (mixed-weight) OLD-sets we are interested in minimizing the size of the set in a

graph, thus minimizing the number of sensors needed in a network, reducing initial and

maintenance costs of the system. Finding a minimum-sized mixed-weight OLD-set is

intractable, thus an ILP model can more quickly find a solution on a large graph in most

cases. We also consider the linear programming (LP) relaxation of the integer constraint,

which can potentially provide a very fast estimate of the optimal solution.

We explore several greedy algorithms and compare them to the ILP results in Chapter

8. Although ILP solutions are typically found more quickly than brute force results, quick

solutions are not guaranteed. For very difficult problems, like the mixed-weight OLD-

set, an ILP formulation can still take a considerable amount of time, even if significantly

better than brute force. The time to solve a large ILP problem can often be shortened by

providing an initial feasible solution or “hot start”. We use several greedy algorithms: a

näıve approach, a method inspired by the maximal independent set problem, and a stingy

method to provide the ILP model with an initial feasible, though not necessarily small,

solution. We find that, on average, the stingy method, which places all the nodes into the

mixed-weight OLD-set and removes nodes that are not needed one by one, significantly

outperforms the other greedy methods by providing the smallest initial mixed-weight
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OLD-set.

In Chapter 9 we expand the results in random graphs to estimate mixed-weight OLD-

set bounds in random geometric graphs. Random geometric graphs closely resemble WSNs

that are distributed at random in an environment, so their study is of particular interest.

However, random geometric graphs tend to be theoretically difficult. To simplify the

calculations, we solve for the average probability two nodes are adjacent in a plane. We

estimate upper bounds on the size mixed-weight OLD-sets in random geometric graphs

using the average probability as a substitute in the bound found for random graphs in

Chapter 6.

Chapter 10 provides an overview of contributions and a description of future work. Our

major contributions include the introduction of mixed-weight open locating-dominating

sets with a study of their complexity and properties and the development of an integer

linear program, greedy algorithms, and linear-time solutions in paths and cycles for mixed-

weight OLD-sets. In the future we plan to consider non-integer weights to represent

actual distances on nodes and edges, explore the maximum number of weight 1 nodes a

path or cycle can have at the minimum mixed-weight OLD-set size, consider improving our

greedy algorithms for other types of graphs, and expand the idea of mixed-weight nodes in

identifying codes. We will also consider constructing networks so that the (mixed-weight)

OLD-set is minimized. A symbol table can be found in Appendix A.
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Chapter 2

Open Locating-Dominating Sets in

Circulant Graphs

In this chapter we consider OLD-sets in circulant graphs. Circulant graphs are regular,

cyclic graphs that have symmetric adjacencies, making them attractive for both design

and study. Circulant graphs have been used for multiprocessor network design and other

massively parallel systems [21, 59, 80]. Several topologies have been studied for fault

location in other multiprocessor systems including trees, hypercubes, and meshes [11, 46].

A few results have been found for closed locating-dominating sets and identifying codes

in circulant graphs [32, 62].

Proof techniques in location-detection problems have been dominated by the discharg-

ing method [51, 53, 54] and other similar methods. The discharging method was first used

and made famous in the proof of the Four-Color Theorem [4]. It has recently been used to

provide lower bounds on the size of an identifying code in infinite grids [19, 20]. Similarly,

we use the discharging method to find the lower bound on the OLD-set size in circulant

graphs of the form Cn(1, 2) and provide an OLD-set construction at that same size, thus

providing the optimal OLD-set density.

Hall’s Matching Theorem [41] gives the conditions necessary and sufficient to find a

matching or pairing in a bipartite graph. We use Halls’s theorem to show there is a
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matching from nodes not in the OLD-set to nodes in the OLD-set for circulant graphs

of the form Cn(1, 3) by constructing a bipartite graph between the two sets. From this

matching we get a lower bound on the OLD-set size in these graphs, and we also provide

an OLD-set construction at that size to achieve the optimal OLD-set density.

In Section 2.1 we cover definitions needed for circulant graphs and the proofs in this

chapter. In Section 2.2 we use the discharging method to show the optimal OLD-set

size for Cn(1, 2), and in Section 2.3 we use Hall’s Theorem to show the optimal OLD-set

size for Cn(1, 3). We conclude our study of OLD-sets in circulant graphs in section 2.4.

The majority of the work presented in this chapter has been submitted to Discussiones

Mathematicae Graph Theory.

2.1 Circulant Graphs and Definitions

Definition 2.1 A circulant graph Cn(1, t) is a degree four, undirected graph containing

n nodes labeled {0, 1, . . . n− 1} where each node x is adjacent to nodes x± 1 (mod n) and

x± t (mod n).

In Figure 2.1 we see circulant graphs C10(1, 2) and C16(1, 3) with nodes drawn in the

typical circular way. For graphs with n ≫ t, edges are contained locally, so we can draw

segments of the graph linearly to get a better view of this locality, as seen in Figure 2.2.

Definition 2.2 The OLD-set density is the proportion of nodes in an OLD-set S to total

nodes in the graph, |S|/n.

Definition 2.3 The optimal OLD-set density is the achievable minimum OLD-set density

in a graph, i.e., for optimal OLD-set density δ, every OLD-set has density at least δ, and

there exists an OLD-set with density δ.

By construction the upper bound on the minimum OLD-set density for Cn(1, 2) is

2/5, as seen in Figure 2.3a, and for Cn(1, 3) is 1/2, as seen in Figures 2.3b and 2.3c. If

15



0 1

2

3

4

56

7

8

9

(a) C10(1, 2) circulant graph
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(b) C16(1, 3) circulant graph

Figure 2.1: Examples of circulant graphs drawn in the typical circular
way to show global behavior.

· · · · · ·

n− 3 n− 1 1 3

n− 2 0 2 4

(a) Cn(1, 2) drawn linearly

· · · · · ·

n− 3 n− 1 1 3

n− 2 0 2 4

(b) Cn(1, 3) drawn linearly

Figure 2.2: Examples of circulant graphs drawn in a linear way to show
local behavior.

{x1, x2, x3, x4} is the OLD-set shown in Figure 2.3a, then the set {xj +10i|1 ≤ j ≤ 4, 0 ≤

i < k} is an OLD-set in C10k(1, 2) of density 2/5. If we consider each OLD-set in Figures

2.3b and 2.3c as {x1, x2, x3, x4, x5, x6, x7, x8}, then the set {xj +16i|1 ≤ j ≤ 8, 0 ≤ i < k}

is an OLD-set in C16k(1, 3) of density 1/2.

Definition 2.4 A cluster is a connected component in the graph induced by an OLD-set

S. An m-cluster is a cluster of order m. All neighbors of a cluster are not in the OLD-set.

We note that for m-clusters, m ≥ 2 because a 1-cluster is a single node with all of

its neighbors not in the OLD-set, and thus the node in the cluster would not be covered

by the OLD-set. Examples of OLD-set clusters can be seen in Figure 2.3. Throughout

this Chapter we use black nodes to denote nodes known to be in the OLD-set, and circled

nodes to denote nodes known not to be in the OLD-set.
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(a) C10(1, 2) 4-cluster
OLD-set
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(b) C16(1, 3) 8-cluster
OLD-set

x1 x2

x3

x4

x5

x6

x7

x8

(c) C16(1, 3) 6- and
2-cluster OLD-set

Figure 2.3: Examples of OLD-sets and m-clusters in circulant graphs.
OLD-set nodes and their cluster connections are shown in black.

2.2 The Discharging Method

We prove the optimal OLD-set density in Cn(1, 2) is δ = 2/5 using the discharging

method. The discharging method is a proof technique that gives a particular set of nodes

in a graph, S, a charge of 1, and every other node in the graph no charge. If a set of

rules can be developed to redistribute the charge so that every node in the graph has a

charge of at least f < 1 after redistribution, then the size of S is at least f · n. Using

the discharging method we show that the the number of nodes in the OLD-set is at least

2n/5.

Lemma 2.1 Any node in Cn(1, 2) that is not in the OLD-set S is the neighbor of at most

two clusters.

Proof: Consider node x ∈ Cn(1, 2) that is not in the OLD-set S. In order for x to

be a neighbor of three clusters, three neighbors of x must be in different clusters. The

neighborhood of x is N(x) = {x − 2, x − 1, x + 1, x + 2}. Note that x − 2 and x − 1 are

neighbors, x− 1 and x+ 1 are neighbors, and x+ 1 and x+ 2 are neighbors in Cn(1, 2).

Thus no three neighbors of x can be in S and form three different clusters, by Definition

2.4. Thus x is the neighbor of at most two clusters. �
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Lemma 2.2 Any m-cluster of an OLD-set S in Cn(1, 2) has at most m+3 neighbors not

in S.

Proof: We first note that for any m-cluster in Cn(1, 2) we can order the nodes of the

cluster {x1, x2, . . . xm} such that ∀i, xi + 1 (mod n) = xi+1 or xi + 2 (mod n) = xi+1,

and thus any xi is adjacent to xi+1. If for any y in the cluster, such that y = xi for some

i < m, both y+1 and y+2 are in the cluster, then the ordering would include xi+1 = y+1

and xi+2 = y + 2. If only one of y + j for j = 1 or 2 is in the cluster, xi+1 = y + j.

Consider the m-cluster {x1, x2, . . . xm} ordered in the way described above. Node x1

has at least 2 neighbors not in the cluster, x1 − 2 and x1 − 1, and xm also has at least 2

neighbors not in the cluster, xm + 1 and xm + 2 (mod n). If xi + 2 = xi+1 then xi + 1

is a neighbor of the m-cluster. There are at most m − 1 possibilities for xi + 1 to be a

neighbor of the cluster, thus with the 2 neighbors on either end of the cluster, the cluster

has at most m+ 3 neighbors. �

Theorem 2.3 The optimal OLD-set density in Cn(1, 2) is δ = 2/5.

Proof: We note that by construction the upper bound for the minimum OLD-set size is

2/5. To show the lower bound is 2/5 we use the discharging method as follows. Let S be

an OLD-set on Cn(1, 2) for n > 2. Assign a charge of 1 to nodes in the OLD-set S and a

charge of 0 to all other nodes. Our goal is to redistribute the charges so each node has at

least 2/5 charge. Redistribution Rule:

• If x ̸∈ S is adjacent to k clusters in S, then x gets 1
k ·

2
5 charge from each of the

clusters.

By this rule, each node not in S will have a charge of at least 2/5. For the proof we

consider all the possible m-clusters in S. If each possible m-cluster in S is left with 2m/5

charge after redistribution, then all nodes in S will maintain 2/5 charge. We note that an

m-cluster can give at most 3m/5 charge to its neighbors to maintain at least 2m/5 charge.

Case 1: 2-clusters in S.
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y1 − 2 y1 x1 y3 y3 + 2

y2 x2 y4

(a) 2-Cluster with x1 + 1 (mod n) = x2

y2 − 2 y2 y3 y4 y4 + 2

y1 − 2 y1 x1 x2 y5 y5 + 2

(b) 2-Cluster with x1 + 2 (mod n) = x2

Figure 2.4: Possible 2-clusters {x1, x2} of OLD-set S in Cn(1, 2).

Case 1a: 2-cluster {x1, x2} with x1 + 1 (mod n) = x2, as in Figure 2.4a. In this

case, there are 4 neighbors of the cluster {y1, y2, y3, y4}. Nodes y2 and y3 share OLD-set

neighbors in the cluster {x1, x2}, y1 and x2 share {x1}, and y4 and x1 share {x2}, so at least

one node on each side of the cluster must be in the OLD-set. An OLD-set configuration

that requires the cluster to give the most charge to its neighbors is the inclusion of y1 − 2

and y3 + 2. Nodes y1, y3, and y4 are each a neighbor of another cluster, and each receive

1/5 charge from the other cluster. Thus y2 receives 2/5 charge from this cluster, and y1,

y3, and y4 each receive 1/5 charge from the cluster leaving the 2-cluster with at least 2 ·2/5

charge.

Case 1b: 2-cluster {x1, x2} with x1 + 2 (mod n) = x2, as in Figure 2.4b. In this case,

there are 5 neighbors of the cluster {y1, y2, y3, y4, y5}. Nodes y2 and x2 share an OLD-set

neighborhood, so y2 − 2 must be in the OLD-set. This leaves y1 and y2 with the same

OLD-set neighborhood, so y1 − 2 must be in the OLD-set. Nodes x1, y4, and y5 follow

similarly on the other side requiring y4+2 and y5+2 to also be in the OLD-set. Therefore

y1, y2, y4 and y5 each receive 1/5 charge from other clusters. Thus the cluster {x1, x2}

gives 2/5 charge to y3 and 1/5 charge to its remaining 4 neighbors, leaving the cluster

with at least 2 · 2/5 charge.

Case 2: 3-clusters in S. For any 3-cluster {x1, x2, x3} with x1 adjacent to x2 and x2
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x2

x1 x3

Figure 2.5: Possible 3-cluster of OLD-set S in Cn(1, 2).

y2 y3 y4 y5 y6

y1 − 2 y1 x1 x2 x3 x4 y7 y7 + 2

(a) 4-cluster

y2 y3 y4 y5 y6 y7

y1 − 2 y1 x1 x2 x3 x4 x5 y8 y8 + 2

(b) 5-cluster

Figure 2.6: Possible 4-cluster and 5-cluster of OLD-set S in Cn(1, 2).

adjacent to x3, if the 3-cluster does not form a triangle, i.e., x1 is not adjacent to x3, then

x1 and x3 share OLD-set neighborhood, {x2}. Thus there is only one possible 3-cluster

shape in S as shown in Figure 2.5. This cluster has 4 neighbors and a total charge of 3.

The 4 neighbors need at most a charge of 8/5 which would leave the cluster with at least

3 · 2/5 charge.

Case 3: m-clusters in S with m = 4, 5. For m = 4, 5, a cluster begins with m charge

and can give 3m/5 charge to its neighbors. Each neighbor needs 2/5 charge, so with

3m/5 charge available, a cluster can provide total charge for up to ⌊3m/2⌋ neighbors.

The only m-clusters, m = 4, 5, with more than ⌊3m/2⌋ = 6, 7, respectively, neighbors

are shown in Figure 2.6. Both of these clusters are of the form {x1, x2, . . . xm} where

xi + 2 (mod n) = xi+1 for i < m and have m + 3 neighbors, {y1, y2, . . . ym+3}. In these

clusters, y1 and y2 share the same OLD-set neighborhood {x1}, so y1 − 2 must be in the

OLD-set. Similarly, ym+2 and ym+3 share {xm}, and ym+3 + 2 must be in the OLD-set.

Therefore other clusters give 1/5 to y1 and ym+3. And these clusters give 1/5 charge to
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y1 and ym+3 and 2/5 charge to the remaining m+ 1 neighbors, leaving the clusters with

charge m− 2 · (1/5)− (m+ 1) · 2/5 ≥ m · 2/5 charge.

Case 4: m-clusters in S with m ≥ 6. The cluster begins with charge m and has at

most m+3 neighbors. Thus to cover all of its neighbors, a cluster would give out at most

2(m+ 3)/5 = (2m+ 6)/5 ≤ 3m/5 charge leaving the cluster with at least m · 2/5 charge.

Thus for any m-cluster in S, the cluster maintains at least 2m/5 charge after discharg-

ing, leaving each node in the cluster with at least charge 2/5. Therefore an OLD-set on

Cn(1, 2) needs at least 2n/5 nodes, and by construction we know that an OLD-set needs

at most 2n/5 nodes, as seen in Figure 2.3a. Thus the optimal OLD-set density in Cn(1, 2)

is δ = 2/5. �

2.3 The Matching Method

We prove the optimal OLD-set density for Cn(1, 3) is δ = 1/2 using Hall’s Theorem.

Hall’s Theorem states that bipartite graphs with nodes partitioned into sets R and S

have a matching of size |R| if and only if for every subset A ⊆ R, |A| ≤ |N(A)|. We use

Hall’s Theorem to show there is a matching from nodes not in an OLD-set to nodes in the

OLD-set for Cn(1, 3). If such a matching exists, then the number of nodes in the OLD-set

is at least n/2.

For the rest of this section we will consider x and y nodes such that x = 2i and

y = 2i + 1 for 0 ≤ i ≤ n/2, so that x and y may be neighbors of each other, but x and

y do not share neighbors. We say that two nodes have different parity if their label is a

different parity, so all nodes x and y have different parity. We note that for any node x

in Cn(1, 3), x does not have the same parity as its neighbors, x± 1, x± 3. In particular,

two nodes of different parity do not share neighbors.

Lemma 2.4 If |x1− x2| ≥ 8, i.e., x1 and x2 have three or more nodes of the same parity

between them, then they do not share neighbors.
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x1 x2 x3 x3 + 2 x3 + 4 x3 + 6 x3 + 8

y1 y2 y3 y4

Figure 2.7: Three consecutive nodes of the same parity in Cn(1, 3)
that are not in the OLD-set are followed by four consecutive nodes in
the OLD-set.

Proof: If |x1 − x2| ≥ 8 and x1 < x2, then the largest neighbor of x1 is x1 + 3 and the

smallest neighbor of x2 is x2 − 3. However, x1 + 3 ≤ x2 − 5, therefore x1 and x2 do not

share neighbors. �

Lemma 2.5 If A = {x1, x2, . . . xk} such that xi = xi−1 + 2, then |N(A)| = |A| + 3.

Subsequently, if |A| = k ≥ 4, there is a set B = {y1, y2, . . . yk−3} of size k − 3 such that

yi = yi−1 + 2 and N(B) = A.

Proof: If A = {x1, x2, . . . xk} such that xi = xi−1 + 2, then N(A) = {x1 − 3, x1 − 1, x1 +

1, . . . , x1+2k−1, x1+2k+1} = {yn−3, yn−2, yn−1, y1, . . . yk} and |N(A)| = |A|+3. We note

that yi = yi−1+2, the set B = {y1, y2 . . . yk−3} has neighbors N(B) = {x1, x2, . . . xk} = A,

and |B| = k − 3. �

Lemma 2.6 If nodes x1, x2, and x3, such that x3 = x2 + 2 and x2 = x1 + 2, are not in

an OLD-set, then x3 + i for i = 2, 4, 6, 8 must be in the OLD-set. It follows that the four

preceding nodes of the same parity must also be in the OLD-set.

Proof: As seen in Figure 2.7 neighbor y1 only has one possible node in the OLD-set, so

x3 + 2 must be in the OLD-set. Nodes y1 and y2 cannot share OLD-set neighborhood

{x3 + 2}, so x3 + 4 must be in the OLD-set. Nodes y2 and y3 cannot share OLD-set

neighborhood {x3 + 2, x3 + 4}, so x3 + 6 must be in the OLD-set. Finally, nodes y3 and

y4 cannot share OLD-set neighborhood {x3 + 2, x3 + 4, x3 + 6}, so x3 + 8 must be in the

OLD-set. The proof follows similarly for the four preceding nodes of the same parity. �
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.8: Consecutive nodes of the same parity in Cn(1, 3) with size
k = 3, 4, 5, 6, 7, 8 are boxed with one possible minimum OLD-set solution
among their neighbors shown in black.

Lemma 2.7 If A = {x1, x2, . . . xk} such that xi = xi−1+2 for i < k, and S is an OLD-set

on Cn(1, 3), then |N(A) ∩ S| ≥ ⌊k2⌋+ 1.

Proof:

For k = 1, the node must be dominated by S, so one neighbor must be in S. For k = 2,

one node in S cannot locate two nodes, so 2 neighbors must be in S. Figure 2.8 shows

examples of minimum OLD-sets neighborhoods for k = 3, 4, . . . 8 which are 2 neighbors in

S for k = 3, 3 neighbors for k = 4, 4 neighbors for k = 5, 6, 7 and 5 neighbors for k = 8.

Assume for all 8 ≤ ℓ < k that ℓ nodes xi = xi−1+2 for i < ℓ have ⌊ ℓ2⌋+1 neighbors in

the OLD-set. Consider k nodes A = {x1, x2, . . . xk} and by induction {x3, . . . xk} contains
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⌊k−1
2 ⌋+ 1 = ⌊k2⌋ neighbors in S. Nodes x1 and x2 introduce two new neighbors to N(A),

namely {x1 − 3, x1 − 1}. We may assume that neither of the neighbors is in S.

Case 1: Neighbor x1 + 1 is in the OLD-set.

Suppose x1+1 is in the OLD-set as seen in Figure 2.9a. Nodes x1 and x2 cannot share

OLD-set neighborhood {x1 + 1}, so x2 + 3 must be in the OLD-set. Nodes x2 and x3

cannot share OLD-set neighborhood {x1 + 1, x2 + 3}, so x3 + 3 must be in the OLD-set.

And nodes x4 and x5 cannot share OLD-set neighborhood {x2 + 3, x3 + 3}, so x5 + 3

must be in the OLD-set. The OLD-set nodes {x1 + 1, x2 + 2, x3 + 3, x5 + 3} cover nodes

{x1, x2, . . . x7}. Consider the set {x9, x10, . . . xk} which is size k − 8 and does not have

neighbors in the set of OLD-set nodes {x1 + 1, x2 + 2, x3 + 3, x5 + 3}. This set of k − 8

nodes needs at least ⌊k−8
2 ⌋ + 1 of its neighbors in the OLD-set. Thus the set of k nodes

need at least 4 + ⌊k−8
2 ⌋+ 1 = ⌊k2⌋+ 1 neighbors in the OLD-set.

Case 2: Neighbor x1 + 3 is in the OLD-set.

If x1 + 3 is in the OLD-set, then the three neighbors of x1 are not in the OLD-set,

and so the next four nodes of the same parity, including x1 + 3, must be in the OLD-set

as shown in Figure 2.9b. The first seven nodes of the k total nodes are covered by these

four OLD-set neighbors. The remaining k − 7 nodes do not currently share any OLD-set

neighbors with the first seven nodes, but will require ⌊k−7
2 ⌋+ 1 neighbors in the OLD-set

to cover them. Thus the set of k nodes need at least 4 + ⌊k−7
2 ⌋+ 1 ≥ ⌊k/2⌋+ 1 neighbors

in the OLD-set. �

Theorem 2.8 The optimal OLD-set density in Cn(1, 3) is δ = 1/2.

Proof: We note that by construction the upper bound for the minimum OLD-set size

is 1/2. To show the lower bound is 1/2, we show there is a matching from nodes not in

the OLD-set to nodes in the OLD-set for Cn(1, 3). We build an auxiliary bipartite graph

from Cn(1, 3), B = (R,S), where R = V − S, with edges E(B) = {(u, v)|u ∈ R, v ∈

S, (u, v) ∈ E(Cn(1, 3))} ∪ {(x, x + 5)|x − 4, x − 2, x ̸∈ S, x + 5 ∈ S}. We only need to

consider A ⊆ R such that the nodes in A share neighbors. If A has sets of nodes that do
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· · ·
· · ·x1 x2 x3 x4 x5 x6 x7 x8 x9 xk

x1 + 1 x2 + 3 x3 + 3 x5 + 3

(a) x1 + 1 is in the OLD-set.

· · ·
· · ·x1 x2 x3 x4 x5 x6 x7 x8 xk

x1 + 3 x2 + 3 x3 + 3 x4 + 3

(b) x1 + 3 is in the OLD-set.

Figure 2.9: Two cases for covering the first four nodes from a set of k
consecutive nodes of the same parity.

y1 y2 y3 y4

x1 x2 x3 x4 x5 x6 x7

Figure 2.10: The set A = {x1, x2, x3} is three consecutive nodes of the
same parity in Cn(1, 3).

not share neighbors, A can be separated into sets of nodes with disjoint neighbor sets, and

the size of the neighbors of A in the OLD-set will be the sum of the size of the neighbors

in the OLD-set of the individual sets.

Case 1: |A| = 1. The bipartite graph contains A in one partition, N(A) ∩ S in the

other, and all edges between those sets that occur in the graph. For |A| = 1, the node in

A must be covered by at least 1 node in the OLD-set, thus |N(A) ∩ S| ≥ |A|.

Case 2: |A| = 2. The bipartite graph contains A in one partition, N(A) ∩ S in the

other, and all edges between those sets that occur in the graph. For |A| = 2, each node

must be covered by 1 node, but they cannot be covered by the same node or they would

not be distinguishable by the OLD-set. Thus they must be covered by at least 2 nodes

and |N(A) ∩ S| ≥ |A|.

Case 3: |A| ≥ 3.

Case 3a: A is {x1, x2, x3} with xi = xi−1 + 2. The bipartite graph contains A in one
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partition, (N(A) ∩ S) ∪ {x3 + 5} in the other, all edges between those sets that occur in

the graph, and edge (x3, x3 + 5) if x3 + 5 ∈ S. By Lemma 2.7 we know that the three

nodes can be covered by two OLD-set nodes. However, because A only contains nodes

not in the OLD-set, by Lemma 2.6 the next four nodes of the same parity, {x4, x5, x6, x7}

must be in the OLD-set, as shown in Figure 2.10. Thus x3+5 will not be in N(A)∩S for

any A. If A only has 2 neighbors in the OLD-set in Cn(1, 3), it is also the case that x3+5

must be in the OLD-set in order to cover x4 = x3+2, otherwise x3 and x4 share OLD-set

neighborhoods. For any subset A = {x1, x2, x3} with xi = xi−1 + 2, if x3 + 5 ∈ S, the

bipartite graph includes an edge from x3 to x3+5, also shown in Figure 2.10. If x3+5 ̸∈ S,

a third neighbor of A must be in S. Thus |N(A) ∩ S| ≥ |A|.

Case 3b: A = {x1, x2, . . . x|A|} such that xi+2j (mod n) = xi+1 for j > 0 and at least

one j > 1. We note that if a subset of A has two nodes xi and xi+1 that do not share

neighbors, A can be split into at least two different sets with disjoint neighbors. Then

the size of the OLD-set neighborhood A would be the sum of the size of the OLD-set

neighbors of the individual sets. Because of this consideration, j < 4 by Lemma 2.4. And

by Lemma 2.6, A will not contain three nodes as in Case 3a as these nodes would not

share neighbors with any other node not in the OLD-set.

Let S′ be the set of OLD-set nodes {x′1, x′2, . . . x′j} such that A∪S′ is the set of all nodes

{x1 + 2i|0 ≤ i ≤ x|A|−x1

2 }. We note that |A ∪ S′| = k ≥ 4 and A ∪ S′ is a neighborhood

to k − 3 consecutive nodes of the same parity by Lemma 2.5. Thus at least ⌊k−3
2 ⌋ + 1

nodes of A ∪ S′ must be in the OLD-set, and |A| ≤ k − (⌊k−3
2 ⌋ + 1). We note that

because each xi in A shares at least one neighbor with xi+1, N(S′) ⊂ N(A) and thus

N(A) = N(A ∪ S′). At least ⌊k2⌋ + 1 neighbors of A ∪ S′ must be in the OLD-set, and

thus at least ⌊k2⌋+ 1 neighbors of A must be in the OLD-set. For k, even or odd, we find

that |A| ≤ k − (⌊k−3
2 ⌋+ 1) = ⌊k2⌋+ 1 = |N(A ∪ S′) ∩ S| = |N(A) ∩ S|.

Thus we have created a bipartite graph from R to S such that for all A ⊆ R, |N(A)∩

S| ≥ |A|. By Hall’s Theorem there is a matching from R to S of size |R|, and therefore an

OLD-set on Cn(1, 3) needs at least n/2 nodes. By construction we know that an OLD-set
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needs at most n/2 nodes. Thus the optimal OLD-set density in Cn(1, 3) is δ = 1/2. �

2.4 Discussion

We derived the optimal minimum OLD-set density for Cn(1, 2) and Cn(1, 3) using two

proof techniques, the discharging method and the matching method, which is based on

Hall’s Theorem. Previously the discharging method has been used in graph coloring and

identifying code problems. We showed that it is a valid method to find lower-bounds

on the size of OLD-sets in circulant graphs. To the best of our knowledge this is the

first time Hall’s Theorem has been used to prove a result for open locating-dominating

sets. Recently, a result using matching theory in a different context was published in [28].

This further illustrates that matching is a valuable proof technique in addressing location-

detection problems. These methods have the potential to find OLD-set size bounds in

other circulant graphs and topologies used in microprocessor systems. Finding these

bounds will help determine best practices for fault detection and design in networked

microprocessors.
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Chapter 3

Mixed-Weight Open

Locating-Dominating Sets

The mixed-weight open locating-dominating set (mixed-weight OLD-set) models a sys-

tem in which sensors of different strengths, and potentially different costs, are strategically

placed throughout the system. The mixed-weight OLD-set extends the open locating-

dominating set by allowing multiple integer weights to be given to nodes. An increase in

the weight expands the reach of the node by an equivalent number of edges in the graph.

For instance, a weight 1 node can reach its neighbors, a weight 2 node can reach its neigh-

bors and its neighbors’ neighbors, and so on. Wireless sensor networks often use multiple

types of sensors, such as in systems that monitor natural habitats [61]. Mixed-weight

OLD-sets can aid in the development and cost management of these networks.

Mixed-weight OLD-sets are related to the weighted d-identifying code and d-locating-

dominating set, where all nodes receive the same weight d. Weighted identifying codes and

locating-dominating sets have been studied for paths and cycles [8, 15, 25, 26, 39, 44, 70],

hypercubes [45, 46, 47, 51, 68], and grids [50, 66, 76]. The mixed-weight OLD-set is also

similar to an OLD-set on a directed graph: increased weight can be represented by arcs

to other nodes. Identifying codes have also been studied for directed graphs in [57]. We

note that, to our knowledge, there is no literature for weighted OLD-sets or OLD-sets in
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directed graphs. The weighted OLD-set is a special case of the mixed-weight OLD-set,

therefore this is the first time weighted or mixed-weight OLD-sets have been studied.

In Section 3.1 we introduce and provide definitions for the mixed-weight OLD-set, and

in Section 3.2 we discuss mixed-weight identifying codes, a related problem. We conclude

the chapter in Section 3.3. The majority of the work presented in this chapter has been

published in [34] c⃝ 2017 IEEE.

3.1 Definitions and Properties

We begin with the basic definition of distance between nodes in a graph, and build to

the definition of a mixed-weight OLD-set.

Definition 3.1 The geodesic distance or distance between two nodes x and y, d(x, y), is

the length of the shortest path between node x and node y, where each edge is considered

to be length 1 if the graph is unweighted.

Definition 3.2 The weight function, w(x) ≥ 1 ∀x ∈ V , defines the distance marker given

to each node in the graph.

Definition 3.3 For a particular node x, w(x) is the weight of the node. For a set of

nodes A ⊂ V , the weight of the set w(A) is the sum of all the weights of nodes in that set,∑
x∈Aw(x).

Definition 3.4 The open outgoing-ball, B−(x) is the set of all nodes within a distance

of w(x) from x but not including x, i.e., B−(x) = {y ∈ V |0 < d(x, y) ≤ w(x)}.

Definition 3.5 The open incoming-ball, B+(x) is the set of all nodes that contain x in

their open outgoing-ball, i.e., B+(x) = {y ∈ V |0 < d(x, y) ≤ w(y)}.

Definition 3.6 The mixed-weight open locating-dominating set, mixed-weight OLD-set,

or MW-OLD-set of a graph G is a set of nodes S ⊆ V such that B+(x) ∩ S is nonempty

and unique for every x ∈ V .
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x2 x3

x4

x5x6

x7

x1

(a) Visualization of x1 in the open
incoming-balls of other nodes,
w(x1) = 2. c⃝ 2017 IEEE

x2 x3

x4

x5x6

x7

x1

(b) Visualization of x1 in the open
outgoing-balls of other nodes,
w(x1) = 2.

Figure 3.1: When using the open incoming-ball definition, a node with
weight greater than 1 becomes the neighbor of other nodes. When using
the open outgoing-ball definition, other nodes become the neighbor of
a node with weight greater than 1. The effect of the weighted node,
w(x1) = 2, is indicated by dashed arcs.

The case in which w(x) = 1 for all x ∈ V defines the non-weighted OLD-set. For the

mixed-weight OLD-set, we say a node y is a neighbor of node x if y ∈ B+(x). In this case

neighbors are not symmetric. We similarly say a set S covers a node x if the set locates

and dominates x given the neighbors in B+(x). We note that the weight of a node x not

in OLD-set S does not affect S or the size of S, both theoretically and in the application

of sensor monitoring.

Definition 3.7 The total weight of the OLD-set S, w(S), is the sum of all the weights

of all nodes in the OLD-set.

The mixed-weight OLD-set can also be defined on the open outgoing-ball, B−(x).

These two definitions have similar properties but different applications. For the mixed-

weight OLD-set defined on the open outgoing-ball, we say a node y is a neighbor of

node x if y ∈ B−(x). Figure 3.1 gives a visual comparison of weighted nodes based on

the incoming-ball and outgoing-ball definitions, where neighbors defined by weights are

represented by arcs from nodes that are neighbors.
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In Figure 3.1a, using the open incoming-ball definition, a node with weight greater than

1 becomes the neighbor of other nodes. In a WSN, a weighted node under this definition

would represent a sensor that has a stronger antenna and can therefore receive data from

transmitters that are further away. Similarly, this could represent stronger video monitors

that are able to clearly capture visual data at longer distances. Thus a weighted node

represents a sensor that is able to detect problems in the system at further distances.

In Figure 3.1b, using the open outgoing-ball definition, other nodes become the neigh-

bor of a node with weight greater than 1. In this case, a sensor represented by a weighted

node would have stronger transmitting ability, with the ability to transmit data further

through the system. For the remainder of this work we will consider the mixed-weight

OLD-set on the open incoming-ball.

We will now discuss necessary conditions for the existence of mixed-weight OLD-sets.

For graph G = (V,E) and weight function w(x), a mixed-weight OLD-set S ⊆ V exists if

and only if ∀x, y ∈ V , x ̸= y, B+(x) ̸= B+(y) , i.e., if the open incoming-ball is unique for

all nodes in the graph. If a mixed-weight OLD-set exists, then S = V is a mixed-weight

OLD-set. For every connected graph with |V | > 1, there exists a weight function such

that the graph contains a mixed-weight OLD-set.

Definition 3.8 The eccentricity of x is the greatest distance between x and any other

node in the graph, i.e., ε(x) = max{d(x, y)|y ∈ V, y ̸= x}.

The weight function w(x) = ε(x) creates the equivalent of a complete graph, and

therefore the set S = V is always an OLD-set for this weight function. Thus it is possible

for a mixed-weight OLD-set to exist even if a non-weighted OLD-set does not exist. For

instance, if two nodes, x and y, share the same open incoming-ball, and x is given weight

w so that it can be in the open incoming-ball of y, then a mixed-weight OLD-set exists

for any weight function where w(x) ≥ w.

Example 3.1 Figure 3.2 shows an example of a mixed-weight OLD-set in a graph that

does not contain an OLD-set. In Figure 3.2a, nodes x1 and x3 share open incoming-ball
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x1

x2

x3

x4

x5

x6

x7

(a)

x B+(x)

x1 {x2, x4}
x2 {x1, x3, x4, x5}
x3 {x2, x4}
x4 {x1, x2, x3, x7}
x5 {x2, x6}
x6 {x5, x7}
x7 {x4, x6}

(b)

x1

x2

x3

x4

x5

x6

x7

(c)

x B+(x)

x1 {x2, x3, x4}
x2 {x1, x3, x4, x5}
x3 {x2, x4}
x4 {x1, x2, x3, x7}
x5 {x2, x3, x6}
x6 {x5, x7}
x7 {x3, x4, x6}

(d)

Figure 3.2: Mixed-Weight OLD-set Example: (a) The graph does
not have an OLD-set when w(x) = 1 ∀x. (b) Nodes x1 and x3
share open incoming-ball {x2, x4}. (c) The effect of the weighted node,
w(x3) = 2, is indicated by dashed arcs, and one mixed-weight OLD-set,
{x3, x4, x5, x6}, is shown with nodes in black. c⃝ 2017 IEEE (d) When
w(x3) = 2, the open incoming-ball is unique for each node, allowing for
a mixed-weight OLD-set. c⃝ 2017 IEEE

{x2, x4} when w(x) = 1 ∀x ∈ V . If node x3 is given weight 2, as in Figure 3.2c, then every

open incoming-ball becomes unique, allowing for a mixed-weight OLD-set. One minimum

sized mixed-weight OLD-set is {x3, x4, x5, x6}.
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3.2 A Similar Problem: Identifying Codes

An identifying code (ID-code) is a set of nodes, S ⊆ V , such that every node in the

graph has a unique and non-empty set of neighbors in the S, where a node x is considered

a neighbor of itself.

Definition 3.9 The closed incoming-ball, B+[x], is the set of all nodes within a distance

of w(x) from x, i.e., B+[x] = {y ∈ V |d(x, y) ≤ w(x)}.

Definition 3.10 The mixed-weight identifying code or mixed-weight ID-code is a set of

nodes S ⊆ V such that the closed incoming-ball is non-empty and unique for every x ∈ V .

Definition 3.11 Two nodes, x and y, in a graph are twins if they are adjacent and have

the same closed incoming-ball. We say a graph is twin-free if it contains no twins.

For given graph G = (V,E) and weight function w(x), a mixed-weight ID-code S ⊆ V

exists if and only if ∀x, y ∈ V and x ̸= y, B+[x] ̸= B+[y] , i.e., if the closed incoming-ball

is unique for all nodes in the graph. A mixed-weight ID-code exists on a graph G = (V,E)

if and only if G is twin-free. Thus, if a non-weighted ID-code does not exist , then no

mixed-weight ID-code exists. The existence of an OLD-set does not imply the existence

of an ID-code, and vice versa.

3.3 Discussion

The mixed-weight OLD-set addresses a unique problem in wireless sensor networks

and other monitoring systems. Previously no model has been provided for systems that

use sensors of varying strengths. For mixed-weight OLD-sets, we model the strength of a

sensor in a network as a weighted node in a graph. This weight is representative of the

of the distance a sensor can monitor in the field. In this chapter we provided definitions

and demonstrated properties of mixed-weight OLD-sets. We also introduced the related
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problem of mixed-weight identifying codes. This novel approach to location-detection

problems provides a way to represent a broader range of sensor networks.
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Chapter 4

Problems and NP-Completeness

In this chapter we introduce three optimization problems based on the mixed-weight

OLD-set. These problems are finding the minimum size of an mixed-weight OLD-set for a

graph and weight function, finding the weight function that produces the minimum mixed-

weight OLD-set for a graph, and finding the minimum total weight of the mixed-weight

OLD-set in a graph. We show that the decision problem for determining the minimum

size of the mixed-weight OLD-set is NP-complete for all weight functions with weights

≤ d, for any positive integer d. The non-weighted OLD-set decision problem was shown

to be NP-complete in [72], and the weighted ID-code and LD-set decision problems, where

all nodes receive the same weight d, were shown to be NP-complete in [13].

In Section 4.1 we show that finding the minimum mixed-weight OLD-set for a graph

and weight function is NP-complete. We discuss finding the minimum mixed-weight OLD-

set for a graph by considering every possible weight function in Section 4.2. In Section

4.3 we introduce the problem of finding the minimum total weight, which is related to the

problem of reducing the total cost of a sensor network. We conclude in Section 4.4. The

work presented in this chapter has been published in [34] c⃝ 2017 IEEE.
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Figure 4.1: A cycle with nodes {0, 1, . . . , 9} and weight function w(x) =
2 for x ∈ {0, 5} and w(x) = 1 otherwise, has a minimum mixed-weight
OLD-set of size 6, shown in black.

4.1 Minimum Size of Mixed-weight OLD-set

Consider a graph G = (V,E) and a weight function w(x). We want to determine the

smallest set S that is a mixed-weight OLD-set. Alternatively, we can ask the question,

for graph G = (V,E), weight function w(x), and positive integer k ≤ |V |, is there a

mixed-weight OLD-set S where |S| ≤ k?

Example 4.1 Consider a cycle of size 10 with nodes labeled {0, 1, 2, . . . 9} and weight

function w(x) = 2 for x ∈ {0, 5} and w(x) = 1 otherwise, as seen in Figure 4.1. The

minimum size of the OLD-set is 6 and one satisfying OLD-set is S = {0, 1, 2, 5, 6, 7}.

The decision problem for finding the minimum mixed-weight OLD-set in a graph is as

follows.

NAME: Mixed-weight open locating-dominating set (MW-OLD).

INSTANCE: A connected graph G = (V,E), weight function w(x) ≤ d, ∀x, where d is

a positive integer, and k ≤ |V | is a positive integer.
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Figure 4.2: Subgraph ∆ for the MW-OLD decision problem. c⃝ 2017
IEEE

QUESTION: Is there a mixed-weight OLD-set S ⊆ V of size at most k?.

We prove that this decision problem is NP-complete, requiring the following lemmas.

Lemma 4.1 Let P = {p1, p2, p3}, Q = {q1, q2, q3}, and ∆ be a subgraph of a graph

G = V,E with node set V∆ = P ∪ Q ∪ {r} and edge set E∆ = {(qi, pi), (qi, qj), (qi, r)|1 ≤

i, j ≤ 3, i ̸= j}, as show in Figure 4.2, and suppose that r is the only node in V∆ that is

adjacent to another node in G. If all nodes in V −(P∪Q) are not in the open incoming-ball

of the nodes in P , then Q must be in any OLD-set of G.

Proof: The nodes in P are endpoints, therefore Q must be in the OLD-set of G so that

the OLD-set is open-dominating. �

Lemma 4.2 Let P , Q, and ∆ be as defined in Lemma 4.1. If r is the only node in

V − (P ∪ Q) that is in the open incoming-ball of the nodes in P , then Q must be in the

minimum OLD-set of G.

Proof: First, we note that if Q is in the OLD-set, then all of the nodes in ∆ are covered.

WLOG, suppose that q1 is not in the OLD-set. Then p3 must be in the OLD-set, so that

p2 and q3 are covered, p2 must be in the OLD-set so that p3 and q2 are covered, and r

must be in the OLD-set so that p1 is covered. Thus in the minimum OLD-set of G, Q

must be in the OLD-set. �
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Figure 4.3: Literal Component Gi for the MW-OLD decision problem.
c⃝ 2017 IEEE
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Figure 4.4: Clause Component Hj for the MW-OLD decision problem.
c⃝ 2017 IEEE

Lemma 4.3 Let P , Q, and ∆ be as defined in Lemma 4.1. If x ̸= r is the only node in

V − (P ∪ Q) that is in the open incoming-ball of the nodes in P , then Q must be in the

minimum OLD-set of G.

Proof: First, we note that if Q is in the OLD-set, then all of the nodes in ∆ are covered.

WLOG, suppose that q1 is not in the OLD-set. Then r must be in the OLD-set, so that

p2, p3, q2, and q3 are covered, and x must be in the OLD-set so that p1 is covered. Thus

in the minimum OLD-set of G, Q must be in the OLD-set. �

We now prove the decision problem for finding the minimum mixed-weight OLD-set
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in a graph with weight function w(x) ≤ d, ∀x ∈ V , where d is a positive integer, is

NP-complete.

Theorem 4.4 MW-OLD is NP-complete.

Proof: First we show that MW-OLD is in NP. Given a subset S ⊆ V , constructing

B+(x)∩S for each x ∈ V can be done in polynomial time on |V | since finding the shortest

path and the intersection are both polynomial time. Then, determining that B+(x) ∩ S

is unique and nonempty for x ∈ V can also be done in polynomial time on |V |.

Next, we polynomially reduce 3-SAT to MW-OLD, inspired by the proof of OLD

in [72]. Given an instance of 3-SAT with literals U = {u1, u2 . . . uN} and clauses C =

{c1, c2 . . . cM} we construct a literal component Gi, 1 ≤ i ≤ N , for each literal as seen in

Figure 4.3, and a clause component Hj , 1 ≤ j ≤ M , for each clause as shown in Figure

4.4. Let ∆ be a subgraph as shown in Figure 4.2.

Let di = i (mod d), and let ri,0, r
′
i,0 = ui and ri,0, r′i,0 = ui. In the literal component

Gi, there is a set of di ∆ subgraphs between vi and ui, with vi adjacent to ri,di , and ri,k

adjacent to ri,k+1 for 0 ≤ k < di. There is another set of di ∆ subgraphs between vi and

ui with adjacency defined similarly for ri,k for 0 ≤ k < di. There are two more sets of di

∆ subgraphs, where r′i,k is adjacent to r′i,k+1, and r′i,k is adjacent to r′i,k+1, 0 ≤ k < di.

Node vi is also adjacent to the subgraph containing xi and wi, and nodes ui and ui are

each a part of their own ∆ subgraph.

In the clause component Hj , node cj is adjacent to subgraph containing bj and aj . For

clause Cj , 1 ≤ j ≤M , with literals uj,1, uj,2, uj,3, connect node cj to rj,ℓ where rj,ℓ is r
′
i,di

if uj,ℓ = ui or rj,ℓ is r
′
i,di

if uj,ℓ = ui, for 1 ≤ ℓ ≤ 3.

We also construct weight function w(x) = di + 1, i.e. 1 ≤ w(x) ≤ d, if x is a

node representing the literal ui or its complement ui, and w(x) = 1 otherwise. Given

this graph and weight function, we have constructed a graph G = (V,E) with |V | =

7M + 21N + 28
∑N

i=1 di and |E| = 10M + 27N + 40
∑N

i=1 di, and this can be done in

polynomial time. We also set k = 3M + 10N + 3
∑N

i=1 di.
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If S ⊆ V is a mixed-weight OLD-set on G, then S must contain every node adjacent to

a node of degree 1, to satisfy the dominating property of the OLD-set. By construction, if

a literal or its complement is in the OLD-set, then, by Lemmas 4.1, 4.2, and 4.3, for nodes

in G that form a ∆ subgraph it is best to include the nodes equivalent to q1, q2, and q3,

as shown in Figure 4.2, in the OLD-set. Thus a minimum construction of S must contain

all the black nodes shown in Figures 4.3 and 4.4 for a total of 3M + 9N + 3
∑N

i=1 di. To

satisfy the locating property of the OLD-set, we must have B+(wi) ̸= B+(vi), so at least

one of ui, ui, ri,di , and ri,di must be in S. Similarly, B+(aj) ̸= B+(cj), so at least one of

uj,1, uj,2, uj,3, rj,1, rj,2, rj,3 must be in S. Thus given k = 3M + 10N + 3
∑N

i=1 di, it is

clear that C is satisfiable if and only if |S| = k. �

Corollary 4.5 The decision problem for finding the minimum mixed-weight OLD-set in

a graph with weight function with d possible weights, including weight 1, i.e. w(x) ∈

{w1, w2, . . . wd}, ∀x ∈ V , where wh is a positive integer for 1 ≤ h ≤ d and ∃h where

wh = 1, is NP-complete.

Proof: Define di = wi′ − 1, where i′ = i (mod d)+ 1, so di ∈ {w1− 1, w2− 1, . . . , wd− 1}.

Define the literal components Gi, the clause components Hj , and the weight function

w(x) as above, so w(x) ∈ {w1, w2, . . . wd} if x is a node representing the literal ui or its

complement ui, and w(x) = 1 otherwise. The rest of the proof follow similarly to the

proof in Theorem 4.4. �

4.2 Minimizing the Size of a Mixed-weight OLD-set

To minimize the size of a mixed-weight OLD-set, we are given a graph G = (V,E), and

we want to determine a weight function w(x) that gives a minimum sized mixed-weight

OLD-set. Alternatively, we can ask the question, for graph G = (V,E) and positive

integers j, k ≤ |V |, is there a weight function w(x) with max(w(x)) = j, ∀x ∈ V , that

allows for a mixed-weight OLD-set S such that |S| ≤ k?
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Figure 4.5: A minimizing weight function for a cycle with nodes
{0, 1, . . . , 14} is w(x) = 2 for x ∈ {3, 5, 7, 9, 11} and w(x) = 1 other-
wise which produces a mixed-weight OLD-set of size 7, shown in black.

Example 4.2 Consider a cycle of size 15 with nodes labeled {0, 1, 2, . . . 14}. One mini-

mizing weight function for max(w(x)) = 2, ∀x ∈ V , is w(x) = 2 for x ∈ {3, 5, 7, 9, 11} and

w(x) = 1 otherwise, as seen in Figure 4.5. The minimum OLD-set size is 7, for example,

S = {1, 3, 5, 7, 9, 11, 13}. The minimum OLD-set when w(x) = 2 for all nodes is also size

7, and the minimum OLD-set with w(x) = 1 ∀x is 10. Thus in this particular graph,

a mixed-weight OLD-set provides a smaller sized OLD-set than using all weight 1 nodes,

and provides the same minimum sized OLD-set when using all weight 2 nodes.

A particular application of this problem is in the design of WSNs. If we want to make

the network as small as possible in order to reduce administrative cost, then a multitude

of potential weight functions should be considered. Given that Theorem 4.4 shows that

with a single weight function the problem is NP-complete, solving the problem with all

potential weight functions will also be NP-complete.

We note that increasing the weight of nodes does not necessarily reduce the size of

the mixed-weight OLD-set. For instance, increasing the weight to the eccentricity of each

node, w(x) = ε(x) ∀x, which creates the equivalent of a complete graph, would result in a

smallest mixed-weight OLD-set of size |V | − 1. A complete graph requires |V | − 1 nodes
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in an OLD-set because every subset with fewer than |V | − 1 nodes is in the neighborhood

of at least two nodes.

4.3 Minimizing the Total Weight of a Mixed-weight OLD-

set

To minimize the total weight of a mixed-weight OLD-set, we are given a graph G =

(V,E), and we want to determine weight function w(x) that gives a minimum total weight

of all the nodes in the mixed-weight OLD-set. Alternatively, we can ask the question,

for graph G = (V,E) and k ≤ |V |2, is there a weight function w(x) that allows for a

mixed-weight OLD-set S such that w(S) ≤ k?

It is possible to reduce w(S) by increasing the weight of particular nodes in the graph,

but this is not possible for all graphs. An example of reducing the total weight is seen in

Figure 4.6. If all nodes are weight 1, each xi must be in the OLD-set so that the yi and zi

do not share OLD-set neighborhoods, resulting in w(S) = 24. However, if w(v) = 2, then

the xi do not need to be in the OLD-set if v is in the OLD-set, resulting in w(S) = 23. In

both scenarios the OLD-set described is minimally sized.

This problem is also applicable to WSNs. The total cost of the network could be

reduced by replacing several cheaper, weaker sensors with a single stronger sensor. This

could be extended by considering that the actual cost of a sensor is not necessarily propor-

tional to its strength. In that case a cost function based on the weight could be introduced

to the problem, with the goal of reducing the total cost of the system.

The following proposition gives bound on the total weight of an mixed-weight OLD-set

in a path.

Proposition 4.6 A path with n nodes does not have a mixed-weight OLD-set with total

weight w(S) < ⌈(2/3)n⌉.
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x1 x2 x3

v

Figure 4.6: If node v is given weight 2, the weight 1 nodes x1, x2, and
x3 no longer need to be in the mixed-weight OLD-set. With v in the
mixed-weight OLD-set, the total weight is reduced by 1. Other nodes
that need to be in the mixed-weight OLD-set are shown in black.

Proof: From [72] we know that in a path with unweighted nodes, for every six con-

secutive nodes in the path, at least four of those nodes must be in the OLD-set re-

sulting in |S| = w(S) ≥ ⌈(2/3)n⌉. If there exists a weight function w(x) ≤ 2 such

that w(S) < ⌈(2/3)n⌉, then at least one set of six consecutive nodes in the path X =

{xi, xi+1, xi+2, xi+3, xi+4, xi+5} must have w(X ∩ S) = 3. It cannot be the case that

|X ∩ S| = 3 weight 1 nodes. If X ∩ S contains one weight 2 node and one weight 1 node,

then there are only 3 unique and nonempty subsets of X ∩ S. Thus there are not enough

unique, non-empty subsets to locate and dominate all six nodes in X. This result follows

similarly for w(x) ≤ d for d > 2. �
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4.4 Discussion

In this chapter we introduced optimization problems related to the mixed-weight open

locating-dominating set. Similar to other location-detection problems, we showed that

finding the minimum mixed-weight OLD-set is NP-complete for all weight functions with

weights up to positive integer d. We also introduced the problem of finding the minimum

total weight of nodes in the mixed-weight OLD-set, which is related to reducing the total

cost of a sensor network. Determining the smallest number of sensors and reducing the

overall cost of system of sensors is an important problem in fields that use networks of

sensors, such as wireless sensor networks. This is the first time optimization problems

have been considered for systems that have sensors with different strengths and costs.
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Chapter 5

Mixed-Weight OLD-sets in Paths

and Cycles

Given the simplicity of paths and cycles, they often fall into a special subset of an NP-

complete problem that can be solved in polynomial time. For example, minimum-sized

identifying codes [12] and minimum-sized open locating-dominating sets [72] in paths can

both be found in linear time. Identifying codes and locating-dominating sets have also

been studied in cycles [8, 49]. Extensive work has been done for the weighted d-identifying

code and d-locating-dominating set, where all nodes receive the same weight d, in paths

and cycles [8, 15, 25, 26, 39, 44, 70]. We will study the mixed-weight OLD-set in paths and

cycles with a focus on weights 1 and 2. This will be the first time paths and cycles have

been studied in weighted or mixed-weight OLD-sets. We cover mixed-weight OLD-sets

with weights 1 and 2 in paths in Section 5.1, and in cycles in Section 5.2. We conclude in

Section 5.3.

5.1 Mixed-Weight OLD-sets in Paths

Consider a path Pn with n nodes, labeled {0, 1, 2, . . . , n − 1}, and its corresponding

weight function w(x) ≥ 1. We consider the mixed-weight OLD-set problem for weights
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x1 x2 x3 x4 x5 x6 x7 x8

· · · · · ·

Figure 5.1: In this portion of a path or cycle, w(x4) = 2, and nodes
x3, x4, x6, x7 are in the mixed-weight OLD-set and form a weakly con-
nected 4-cluster. Nodes x2, x5, x8 are not in the mixed-weight OLD-set
but are neighbors of the cluster.

x1 x2 x3

· · · · · ·

Figure 5.2: A potential 3-cluster in a mixed-weight OLD-set on a path
when considering weights 1 and 2.

1 and 2. Let OLD(Pn, w) be the size of the smallest mixed-weight OLD-set on Pn with

weight function w(x) ≤ 2. We show thatOLD(Pn, w) ≥ 2n
5 . We then find the minimimum-

sized mixed-weight OLD-sets in paths with all weight 2 nodes and paths with weight 1

and 2 nodes.

5.1.1 Lower Bound for Paths with Weight 1 and 2 Nodes

We find a lower bound on the mixed-weight OLD-set in cycles Cn to be 2n
5 . We note

that this bound cannot be reached in paths.

For mixed-weight OLD-sets, we define an m-cluster as a weakly connected component

of order m in the graph induced by an OLD-set S, where node x with w(x) = 2 is

considered to have arcs from x to x − 2 and x + 2, as seen in Figure 5.1. We define a

neighbor of a cluster as a node that has at least one node in its open incoming-ball that

is in the cluster. All neighbors of a cluster cannot be in the OLD-set.

Theorem 5.1 OLD(Pn, w) ≥ 2n
5 where w(x) ≤ 2 ∀x.

Proof: This proof follows similarly to the proof of Theorem 2.3 using the definition of

an m-cluster and open incoming-ball for mixed-weight OLD-sets. However, with weights

1 and 2, there is one 3-cluster with more than ⌊3m/2⌋ = 4 neighbors, {x1, x2, x3} with
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n ≥ 8 |S| S = {10i+ 1,10i+ 3,10i+ 5,10i+ 7|0 ≤ i < ℓ}∪
10ℓ, 10ℓ+ 1 4ℓ+ 1 {10ℓ− 1}

10ℓ+ 2, 10ℓ+ 3 4ℓ+ 2 {10ℓ− 1, 10ℓ+ 1}
10ℓ+ 4, 10ℓ+ 5 4ℓ+ 3 {10ℓ− 1, 10ℓ+ 1, 10ℓ+ 3}
10ℓ+ 6, 10ℓ+ 7 4ℓ+ 4 {10ℓ− 1, 10ℓ+ 1, 10ℓ+ 4, 10ℓ+ 5}
10ℓ+ 8, 10ℓ+ 9 4ℓ+ 4 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 7}

Table 5.1: One set of satisfying minimum mixed-weight OLD-sets S
for paths with n = 10ℓ + j ≥ 8 nodes. All nodes are weight 2, and all
paths have the same initial 4(ℓ− 1) OLD-set nodes.

xi = xi−1+2 and at least one of x1 or x3 having a weight of 2. WLOG, suppose w(x1) = 2.

If w(x2) = 1, then x1 will not have any nodes in its mixed-weight neighborhood. If

w(x2) = w(x3) = 2, then x1 and x3 will share mixed-weight neighborhood {x2}. If

w(x2) = 2 and w(x3) = 1, then the neighbors of the cluster are x1 − 2, x1 − 1, x1 + 1,

x2 + 1, and x3 + 1, as seen in Figure 5.2. In order for nodes x1 and x3 to not share

mixed-weight neighborhood {x2}, x2 + 3 must be in the OLD-set with w(x3 + 2) = 2. In

this case, x3 + 1 will be the neighbor of two clusters. Thus x3 + 1 will receive at most 1
5

charge from the cluster and the remaining four neighbors will receive at most 2
5 charge,

leaving the cluster with at least 6
5 charge. �

5.1.2 Paths with All Weight 2 Nodes

For the minimum sized mixed-weight OLD-sets in paths, we begin with all weight 2

nodes. Let OLD(Pn, w2) be the size of the smallest mixed-weight OLD-set on Pn with

weight function w(x) = 2. We say a graph is minimally covered by a minimum-sized

mixed-weight OLD-set.

Table 5.1 shows one set of satisfying minimum mixed-weight OLD-sets, where all

nodes are weight 2, for paths with n ≥ 8 nodes. We note that {1, 2, 4, 5} is a similar sized

minimum mixed-weight OLD-set for n = 6, 7.
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Theorem 5.2 OLD(Pn, w2) > 2n
5 for n ≥ 6, where w(x) = 2, ∀x. Specifically, for n =

10ℓ+ j nodes, |S| = 4ℓ+ j′ where j′ = ⌊j/2⌋+1 for 0 ≤ j ≤ 7, and j′ = ⌊j/2⌋ for j = 8, 9.

Proof: Each of the sets in Table 5.1 can be easily verified as mixed-weight OLD-sets.

For 8 ≤ n ≤ 15, the minimum mixed-weight OLD-set sizes can be verified as a minimum

by exhaustive search. We note that {1, 2, 4, 5} is a similar sized minimum mixed-weight

OLD-set for n = 6, 7. We now show that the sizes given are minimum by induction, and

assume the sizes given in Table 5.1 are minimum for all paths up to some k ≥ 15.

For k + 1 = 10ℓ + j nodes, with nodes labeled 0, 1, . . . , k, consider the first k − 9 =

10(ℓ − 1) + j and the last 10 nodes. The first k − 9 nodes can be minimally covered by

4(ℓ− 1) + j′ nodes where j′ = ⌊j/2⌋+ 1 for 0 ≤ j ≤ 7, and j′ = ⌊j/2⌋ for j = 8, 9.

Of the 4(ℓ− 1)+ j′ nodes, the last node in the mixed-weight OLD set must be k− 10,

k − 11, or k − 12. If k − 10 is the last node, then the 4(ℓ− 1) + j′ nodes can cover up to

node k − 8, leaving at least 8 nodes in the path to be covered. If k − 11 is the last node,

then the 4(ℓ − 1) + j′ nodes can cover up to node k − 9, leaving at least 9 nodes in the

path to be covered. If k− 12 is the last node, then the 4(ℓ− 1)+ j′ nodes can cover up to

node k − 10, leaving 10 nodes in the path to be covered. Thus at least 4 nodes from the

last 10 nodes in the path must be in the OLD-set to cover at least 8 nodes. Therefore the

mixed-weight OLD-set on the entire path at least 4ℓ + j′ nodes where j′ = ⌊j/2⌋ + 1 for

0 ≤ j ≤ 7, and j′ = ⌊j/2⌋ for j = 8, 9. �

5.1.3 Paths with Weight 1 and 2 Nodes

We find a minimum-sized mixed-weight OLD-set in Pn over all possible weight func-

tions w(x) ≤ 2, and discuss the number of nodes in the minimum mixed-weight OLD-set

that can be weight 1. Table 5.2 shows one set of satisfying minimum mixed-weight OLD-

sets, where nodes are weight 1 and 2, for paths with n ≥ 8 nodes. We note that {1, 2, 4, 5}

with w(4) = 2 is a similar sized minimum mixed-weight OLD-set for n = 6, 7.
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n ≥ 8 |S| S = {10i+ 3,10i+ 5,10i+ 7|0 ≤ i < ℓ}∪
10ℓ 4ℓ+ 1 {1, 10ℓ− 2} ∪ {10i+ 9|0 ≤ i < ℓ− 1}

10ℓ+ 1 4ℓ+ 1 {1} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 2 4ℓ+ 2 {1, 10ℓ} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 3 4ℓ+ 2 {1, 10ℓ+ 1} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 4 4ℓ+ 3 {1, 10ℓ+ 1, 10ℓ+ 2} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 5 4ℓ+ 3 {1, 10ℓ+ 1, 10ℓ+ 3} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 6 4ℓ+ 4 {1, 10ℓ+ 1, 10ℓ+ 4, 10ℓ+ 5} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 7 4ℓ+ 4 {1, 10ℓ+ 3, 10ℓ+ 4, 10ℓ+ 5} ∪ {10i+ 9|0 ≤ i < ℓ}
10ℓ+ 8 4ℓ+ 4 {10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 6} ∪ {10i+ 1|0 ≤ i ≤ ℓ}
10ℓ+ 9 4ℓ+ 4 {10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 7} ∪ {10i+ 1|0 ≤ i ≤ ℓ}

Table 5.2: One set of satisfying minimum mixed-weight OLD-sets S
for paths with n = 10ℓ+ j ≥ 8 nodes that are weight 1 or 2. All paths
have the same 3(ℓ − 1) internal OLD-set nodes. Underlined nodes can
be weight 1.

Theorem 5.3 OLD(Pn, w) > 2n
5 for n ≥ 6, where w(x) ≤ 2 ∀x. Specifically, for n =

10ℓ+ j nodes, |S| = 4ℓ+ j′ where j′ = ⌊j/2⌋+1 for 0 ≤ j ≤ 7, and j′ = ⌊j/2⌋ for j = 8, 9.

Proof: Each of the sets in Table 5.2 can be easily verified as mixed-weight OLD-sets.

For 8 ≤ n ≤ 15, the mixed-weight OLD-sets can be verified as a minimum by exhaustive

search. We note that the minimum mixed-weight OLD-set for n = 6, 7 is size 4. For

example {1, 2, 4, 5} with w(4) = 2 is a mixed-weight OLD-set for n = 6, 7.

The remainder of the proof follows similarly to the proof of Theorem 5.2, allowing for

the last node in the mixed-weight OLD-set for the first k− 9 nodes to be weight 1 or 2. �

Maximizing the number of weight 1 nodes in the mixed-weight OLD-set is of interest

for a system in which we would want to minimize the number of sensors, such as in a

WSN, and well as the number of strong, and potentially costly, sensors. Although Table

5.2 shows an example of minimum-sized mixed-weight OLD-sets for every path, it does not

necessarily show the minimum-sized mixed-weight OLD-set with the maximum number of

weight 1 nodes. For instance, when n = 10ℓ+ 6 such that ℓ > 1, you can choose integers

ℓ1, ℓ2 > 0 such that ℓ1 + ℓ2 = ℓ. We know the path with n = 10ℓ + 6 can be minimally
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covered by 4ℓ+ 4 nodes, and our example shows three weight 1 nodes. However, the first

10ℓ1 + 3 nodes can be minimally covered by 4ℓ1 + 2 nodes with two weight 1 nodes, and

the last 10ℓ2 + 3 nodes can be minimally covered by 4ℓ2 + 2 nodes with two weight 1

nodes. Thus the path with n = 10ℓ + 6, with ℓ > 1, nodes can be minimally covered by

4ℓ1 + 2 + 4ℓ2 + 2 = 4ℓ+ 4 nodes with four weight 1 nodes in the mixed-weight OLD-set.

Example 5.1 Consider a path Pn with n = 36 nodes. The minimum OLD-set size is

16, and the example set in Table 5.2 shows three weight 1 nodes. However, the first 13

nodes can be minimally covered by 6 nodes with two weight 1 nodes, and the last 23 nodes

can be covered by 10 nodes with two weight 1 nodes. Thus we can find a minimally sized

mixed-weight OLD-set with four weight 1 nodes in a path of length 36.

5.2 Mixed-Weight OLD-sets in Cycles

Consider a cycle Cn with n nodes, labeled {0, 1, 2, . . . , n − 1}, and its corresponding

weight function w(x) ≥ 1. We consider the mixed-weight OLD-set problem for possible

weights 1 and 2. Let OLD(Cn, w) be the size of the smallest mixed-weight OLD-set on Cn

with weight function w(x) ≤ 2. We show that OLD(Cn, w) ≥ 2n
5 , and find minimimum-

sized mixed-weight OLD-sets in cycles with all weight 2 nodes and cycles with weight 1

and 2 nodes.

5.2.1 Lower Bound for Cycles with Weight 1 and 2 Nodes

Similar to paths, we find a lower bound on the mixed-weight OLD-set in cycles Cn to

be 2n
5 . We note that this bound can be reached in cycles with n = 10ℓ.

Theorem 5.4 OLD(Cn, w) ≥ 2n
5 where w(x) ≤ 2 ∀x.

Proof: This proof follows similarly to the proof of Theorem 5.1. �
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n ≥ 8 |S| S = {10i+ 1,10i+ 3,10i+ 5,10i+ 7|0 ≤ i < ℓ}∪
10ℓ 4ℓ ∅

10ℓ+ 1 4ℓ+ 1 {10ℓ− 2}
10ℓ+ 2 4ℓ+ 1 {10ℓ− 1}

10ℓ+ 3, 10ℓ+ 4 4ℓ+ 2 {10ℓ+ 1, 10ℓ+ 2}
10ℓ+ 5 4ℓ+ 3 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 4}
10ℓ+ 6 4ℓ+ 3 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 5}

10ℓ+ j, j = 7, 8, 9 4ℓ+ 4 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 6}

Table 5.3: One set of satisfying minimum mixed-weight OLD-sets S
for cycles with n = 10ℓ + j ≥ 8 nodes. All nodes are weight 2, and all
cycles have the same initial 4(ℓ− 1) OLD-set nodes.

5.2.2 Cycles with All Weight 2 Nodes

For the minimum sized mixed-weight OLD-sets in cycles, we begin with all weight 2

nodes. Recall that a graph is minimally covered by a minimum-sized mixed-weight OLD-

set. We note that a cycle with all weight 2 nodes is equivalent to the circulant graph

Cn(1, 2).

Table 5.3 shows one set of satisfying minimum mixed-weight OLD-sets, where all

nodes are weight 2, for cycles with n ≥ 8 nodes. We note that {1, 2, 4, 5} is a similar sized

minimum mixed-weight OLD-set for n = 7. When all nodes are weight 2, a cycle of size

6 does not have an OLD-set.

Theorem 5.5 OLD(Cn, w2) > 2n
5 for n ≥ 7, where w(x) = 2, ∀x. Specifically, for

n = 10ℓ+ j nodes, |S| = 4ℓ+ j′ where j′ = ⌊(j + 1)/2⌋ for 0 ≤ j ≤ 8, and j′ = ⌊j/2⌋ for

j = 9.

Proof: Each of the sets in Table 5.3 can be easily verified as mixed-weight OLD-sets.

For 8 ≤ n ≤ 16, the mixed-weight OLD-sets can be verified as a minimum by exhaustive

search. We note that {1, 2, 4, 5} is a similar sized minimum mixed-weight OLD-set for

n = 7. We now show that the sizes given are minimum by induction, and assume the sizes

given in Table 5.3 are minimum for all cycles up to some k ≥ 16.
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For k + 1 = 10ℓ + j nodes, with nodes labeled 0, 1, . . . , k, consider the first k − 10 =

10(ℓ−1)+j−1 nodes as a path segment, with 11 nodes remaining in the cycle. Considering

the nodes as a path segment, we can use Theorem 5.2 to find the minimum number

of mixed-weight OLD-set nodes needed to cover the nodes in the segment. If j = 0,

then the first k − 10 = 10(ℓ − 1) − 1 = 10(ℓ − 2) + 9 can be minimally covered by

4(ℓ − 2) + 4 = 4(ℓ − 1) nodes. If 1 ≤ j ≤ 8, then the k − 10 = 10(ℓ − 1) + j − 1

nodes can be minimally covered by 4(ℓ − 1) + ⌊(j − 1)/2⌋ + 1 = 4(ℓ − 1) + ⌊(j + 1)/2⌋

nodes. If j = 9, then the k − 10 = 10(ℓ − 1) + j − 1 nodes can be minimally covered by

4(ℓ−1)+⌊(j−1)/2⌋ = 4(ℓ−1)+⌊j/2⌋ nodes. Thus the first k−10 = 10(ℓ−1)+j−1 nodes,

can be minimally covered by 4(ℓ− 1)+ j′ nodes, where j′ = ⌊(j+1)/2⌋ for 0 ≤ j ≤ 8, and

j′ = ⌊j/2⌋ for j = 9.

The first node in the mixed-weight OLD-set from the k − 10 = 10(ℓ − 1) + j − 1

nodes is either node 0, 1, or 2. The last node in the mixed-weight OLD-set from the

k − 10 = 10(ℓ− 1) + j − 1 nodes is either node k − 11, k − 12, or k − 13.

If 0 is the first node and k− 13 is the last node, then the mixed-weight OLD-set from

the k − 10 nodes can cover up to k − 6 nodes, leaving at least 7 nodes in the path to be

covered. If 0 is the first node and k − 2 is the last node, then the mixed-weight OLD-set

from the k− 10 nodes can cover up to k− 7 nodes, leaving at least 8 nodes in the path to

be covered, etc.

Thus, from Theorem 5.2 at least 4 nodes from the last 11 nodes must be in the mixed-

weight OLD-set to cover a path segment of at least 7 nodes. Therefore there are at least

4(ℓ− 1) + j′ + 4 = 4ℓ+ j′ nodes, where j′ = ⌊(j + 1)/2⌋ for 0 ≤ j ≤ 8, and j′ = ⌊j/2⌋ for

j = 9, in the mixed-weight OLD-set. �

5.2.3 Cycles with Weight 1 and 2 Nodes

We find a minimum mixed-weight OLD-set in Cn, S, over all possible weight functions

w(x) ≤ 2. We also find the minimum number of nodes in S, M , that must be weight 2.

Table 5.4 shows one set of satisfying minimum mixed-weight OLD-sets, where nodes are
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n ≥ 8 |S| S = {10i+ 1,10i+ 3,10i+ 5,10i+ 7|0 ≤ i < ℓ}∪
10ℓ 4ℓ ∅

10ℓ+ 1 4ℓ+ 1 {10ℓ− 1}
10ℓ+ 2 4ℓ+ 1 {10ℓ− 1}
10ℓ+ 3 4ℓ+ 2 {10ℓ, 10ℓ+ 1}
10ℓ+ 4 4ℓ+ 2 {10ℓ+ 1, 10ℓ+ 2}
10ℓ+ 5 4ℓ+ 3 {10ℓ1, 10ℓ+ 2, 10ℓ+ 3}
10ℓ+ 6 4ℓ+ 3 {10ℓ1, 10ℓ+ 2, 10ℓ+ 3}
10ℓ+ 7 4ℓ+ 4 {10ℓ1, 10ℓ+ 2, 10ℓ+ 3, 10ℓ+ 6}
10ℓ+ 8 4ℓ+ 4 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 6}
10ℓ+ 9 4ℓ+ 4 {10ℓ+ 1, 10ℓ+ 3, 10ℓ+ 5, 10ℓ+ 6}

Table 5.4: One set of satisfying minimum mixed-weight OLD-sets S
for cycles with n = 10ℓ+ j ≥ 8 nodes that are weight 1 or 2. All cycles
have the same initial 4(ℓ− 1) OLD-set nodes. Underlined nodes can be
weight 1.

weight 1 and 2, for cycles with n ≥ 8 nodes. We note that {1, 2, 4, 5} with w(4) = 2 is a

similar sized minimum mixed-weight OLD-set for n = 6, 7.

Theorem 5.6 OLD(Pn, w) > 2n
5 for n ≥ 6, where w(x) ≤ 2 ∀x. Specifically, for n =

10ℓ+ j nodes, |S| = 4ℓ+ j′ where j′ = ⌊(j+1)/2⌋ for 0 ≤ j ≤ 8, and j′ = ⌊j/2⌋ for j = 9.

Proof: Each of the mixed-weight OLD-sets in Table 5.4 can be easily verified. For

8 ≤ n ≤ 15, the mixed-weight OLD-sets can be verified as a minimum by exhaustive

search. We note that the minimum mixed-weight OLD-set for n = 6, 7 is size 4. For

example {1, 2, 4, 5} with w(4) = 2 is a mixed-weight OLD-set for n = 6, 7.

The remainder of the proof follows similarly to the proof of Theorem 5.5, allowing for

the first and last nodes in the mixed-weight OLD-set for the first k−10 nodes to be weight

1 or 2. �
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5.3 Discussion

Paths and cycles provide interesting insight into the way location-detection sets behave

in the simplest of cases. Often, these graphs provide special case polynomial solutions to

NP-complete problems. In this chapter we were able to show a general lower bound of

2n
5 for paths and cycles of length n with nodes of weights 1 and 2. We also found the

optimal mixed-weight OLD-set for every path and cycle, and provided a linear solution

at the optimal size. These results could help estimate mixed-weight OLD-sets in larger

graphs that have sections that behave like paths and cycles
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Chapter 6

Mixed-Weight OLD-Sets in

Random Graphs

The structure of wireless sensor networks (WSNs) is often unknown until deployment

making random graphs an important area of study. Random graphs G(n, p) are graphs

with n nodes where every edge exists with probability p and does not exist with probability

1−p. When generating such a graph, the probability of obtaining a particular graph with

m edges is pm(1− p)(
n
2
)−m, which is the probability that m particular edges exist and the

remaining edges do not exist [10]. Figure 6.1 shows random graphs with 10 nodes.

Random graphs have been studied in areas where the structure of the graph is unknown

such as neural networks, social connections, the World Wide Web [9] and WSNs [24]. For

many WSNs, sensors are dispersed from aircraft and then connect to each other after

distribution [3], thus the structure of the network is unknown until after deployment.

We study the mixed-weight OLD-set problem in random graphs with particular focus on

bounds on the size of the mixed-weight OLD-set.

Identifying codes were studied in random graphs in [30]. We expand those results to

include (mixed-weight) open locating-dominating sets and provide simulation results to

show the accuracy of the theoretical bounds. To our knowledge, this is the first time

OLD-sets have been studied in random graphs.
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(a) p = 0.0 (b) p = 0.25 (c) p = 0.5

Figure 6.1: Random Graphs G(n, p) with n = 10 and p = 0.0, p = 0.25,
and p = 0.5.

In Section 6.1 we show that almost every random graph has a mixed-weight OLD-

set and provide a probabilistic bound for the size of the set. In Section 6.2 we provide

simulation results to support our probabilistic bounds. We conclude our study of mixed-

weight OLD-sets in random graphs in Section 6.3. The work presented in this chapter has

been published in [34] c⃝ 2017 IEEE.

6.1 Mixed-Weight OLD-set Bounds in Random Graphs

We study the relationship between the probability of an edge existing in a random

graph and the existence of a mixed-weight OLD-set in the following lemma. We also

determine a bound on the size of a mixed-weight OLD-set in a random graph for weights 1

and 2, for weights a and b, where a and b are positive integers, and for weights 1, 2, . . . , k in

the subsequent theorems. For random graphs, almost every graph in G(n, p) has property

X if, as n goes to infinity, the probability that G(n, p) has property X goes to 1.

Lemma 6.1 Almost every graph in G(n, p) has a mixed-weight OLD-set S with at most

|S| ≤ (2+ε) logn
log 1/q nodes, where q is the probability that a node is either in or not in both

open incoming-balls of two other nodes. Values p, 1 − p, and ε are ω(1/ log n), i.e., the

values are asymptotically greater than 1/ log n.

56



Proof: We note that this proof follows directly from the proof of identifying codes in

G(n, p) in [30]. Let p′ be the probability that any two nodes x ̸= y are not in the open

incoming-ball of each other. Consider a subset of nodes in a graph of G(n, p), S, with

cardinality |S| = c, where c is the minimum mixed-weight OLD-set size. Let Ax,y(S) be

the event that {B+(x) ∩ S = B+(y) ∩ S}, i.e., Ax,y(S) is the event that two nodes share

an open incoming-ball in S and thus S is not a mixed-weight OLD-set.

The probability that S is not a locating set is

Pr

(∪
x,y

Ax,y(S)

)
≤
∑
x̸=y

Pr(Ax,y(S))

For nodes x ̸= y, if x, y ∈ S then Pr(Ax,y(S)) = p′qc−2, the probability that x and

y are not neighbors and are adjacent to the same set of nodes in the set S. If, WLOG,

x ∈ S and y ̸∈ S, then Pr(Ax,y(S)) = p′qc−1 by the same reasoning. If x, y ̸∈ S, then

Pr(Ax,y(S)) = qc, the probability that the two nodes are adjacent to the same set of nodes

in S. There are
(
c
2

)
possible choices for x, y ∈ S, c(n − c) possible choices for x ∈ S and

y ̸∈ S, and
(
n−c
2

)
possible choices for x, y ̸∈ S. Thus

Pr

(∪
x,y

Ax,y(S)

)
≤
(
c

2

)
p′qc−2 + c(n− c)p′qc−1 +

(
n− c

2

)
qc (6.1)

≤ c2p′qc−2 + c(n− c)p′qc−1 + (n− c)2qc

= (n− c)2qc
[
1 +

cp′

(n− c)q
+

c2p′

(n− c)2q2

]
(6.2)

If c = n, then as n tends to ∞, equation (6.1) tends to 0, thus almost every graph in

G(n, p) has a mixed-weight OLD-set. As n tends to ∞, the bracketed portion of equation

(6.2) tends to 1, thus we consider (n− c)2qc from equation (6.2). Let c = (2+ε) logn
log 1/q .
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(n− c)2qc = e2 log (n−c)+c log q

= e2 log (n−c)−(2+ε) logn

=
(n− c)2

n2+ε

≤ n−ε

Since ε = ω(1/ log n), as n tends to ∞, the probability that S is not a mixed-weight

OLD-set tends to 0. �

Theorem 6.2 Almost every graph in G(n, p) has a mixed-weight OLD-set S with weights

1 and 2 with |S| ≤ (2+ε) logn
log 1/q for

q = (p+ ϱ(1− p)p2)2 + (1− p)2(1− p2ϱ)2,

where ϱ is the probability that a node is weight 2. Values p, 1− p, and ε are ω(1/ log n),

i.e., the values are asymptotically greater than 1/ log n.

Proof: Let q be the probability that a node z is either in or not in both open incoming-

balls of two other nodes x ̸= y. If z is in the open incoming-ball of a node x, then either

z is adjacent to x, with a probability of p, or z is weight 2, not adjacent to x, and there

exists a path of length 2 between z and x, with probability ϱ(1 − p)p2. If z is not in the

open incoming-ball of a node x, then z is not adjacent to x, with probability 1−p, and if z

is weight 2, then there is no path of length 2 between z and x, with probability 1− p2. So

the probability that z is in the open incoming-ball of x is p+ϱ(1−p)p2, and the probability

that z is not in the open incoming-ball of x is (1−p)((1−ϱ)+ϱ(1−p2)) = (1−p)(1−p2ϱ).

�

Theorem 6.3 Almost every graph in G(n, p) has a mixed-weight OLD-set S with weights
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a and b with |S| ≤ (2+ε) logn
log 1/q for

q =

 ∑
i∈{a,b}

ϱi

i∑
j=1

pj(1− pj−1)

2

+

 ∑
i∈{a,b}

ϱi

i∏
j=1

(1− pj)

2

,

where ϱa, ϱb > 0 is the probability that a node is weight a, b, and ϱa + ϱb = 1. Values p,

1− p, and ε are ω(1/ log n), i.e., the values are asymptotically greater than 1/ log n.

Proof: Let q be the probability that a node z is either in or not in both open incoming-

balls of two other nodes x ̸= y. If z is in the open incoming-ball of a node x, then if z is

weight i where i = a or i = b, there is a path of length at most i between x and z with

probability
∑i

j=1 p
j(1− pj−1). If z is not in the open incoming-ball of a node x, then if z

is weight i, there is no path of length at most i = a, b between x and z with probability∏i
j=1(1 − pj). So

∑
i∈{a,b} ϱi

∑i
j=1 p

j(1 − pj−1) is the probability that z is in the open

incoming-ball of x, and
∑

i∈{a,b} ϱi
∏i

j=1 p
j(1−pj−1) is the probability that z is not in the

open incoming-ball of x. �

Theorem 6.4 Almost every graph in G(n, p) has a mixed-weight OLD-set S with |S| ≤
(2+ε) logn
log 1/q for

q =

 k∑
i=1

ϱi

i∑
j=1

pj(1− pj−1)

2

+

 k∑
i=1

ϱi

i∏
j=1

(1− pj)

2

,

where ϱi ≥ 0 is the probability that a node is weight i, and
∑k

i=1 ϱi = 1. Values p, 1− p,

and ε are ω(1/ log n), i.e., the values are asymptotically greater than 1/ log n.

Proof: Let q be the probability that a node z is either in or not in both open incoming-

balls of two other nodes x ̸= y. If z is in the open incoming-ball of a node x, then if

z is weight i ≤ k, there is a path of length at most i between x and z with probability∑i
j=1 p

j(1 − pj−1). If z is not in the open incoming-ball of a node x, then if z is weight

i ≤ k, there is no path of length at most i between x and z with probability
∏i

j=1(1− pj).
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Simulation Setup Simulation Results

n Values of p Values of ϱ Connected OLD-set Size Min. Bound <Bound

10 [0.45, 0.55] [0.35, 0.65] 97.5% 70.1% 5.51 8.39 69.2%

15 [0.40, 0.60] [0.35, 0.65] 99.7% 79.5% 6.40 9.85 77.2%

20 [0.35, 0.65] [0.35, 0.65] 99.9% 88.8% 6.86 11.18 86.3%

25 [0.35, 0.65] [0.35, 0.65] 99.9% 93.3% 7.03 11.89 92.1%

Table 6.1: Simulation trends for graphs graphs G(n, p) with probability
of a weight 2 node ϱ. Both p and ϱ were incremented by 0.05 within
their range. ‘Connected’ is the percentage of graphs that were connected
‘OLD-set’ is the percentage of graphs that contained a mixed-weight
OLD-set. ‘Size’ is the average size of the mixed-weight OLD-set. ‘Min.
Bound’ is the average upper bound of the mixed-weight OLD-set size.
‘< Bound’ is the percentage of graphs that had a mixed-weight OLD-set
less than the bound. c⃝ 2017 IEEE

So the probability that z is in the open incoming-ball of x is
∑k

i=1 ϱi
∑i

j=1 p
j(1−pj−1), and

the probability that z is not in the open incoming-ball of x is
∑k

i=1 ϱi
∏i

j=1 p
j(1− pj−1).

�

6.2 Simulation Results for Random Graphs

We generated random graphs and weight functions, with weights 1 and 2, and deter-

mined the actual size of their mixed-weight OLD-sets using an exhaustive search. These

results were compared with bounds given in Section 6.1. Our results show that as n

increases, the probability that a graph contains a mixed-weight OLD-set less than the

smallest possible bound also increases.

Using a Lehmer random number generator, graphs G(n, p) with corresponding weight

functions, w(x) = 2 with probability ϱ and w(x) = 1 otherwise, were generated for each

combination of n ∈ {10, 15, 20, 25}, p ∈ [0.45, 0.55] for n = 10, p ∈ [0.4, 0.6] for n = 15,

p ∈ [0.35, 0.65] for n = 20 and n = 25, ϱ ∈ [0.35, 0.65] . Each p and ϱ were incremented

by 0.05, and both p and 1 − p were ω(1/ log n), i.e., the values are greater than 1/ log n.

10, 000 graphs and corresponding weight functions were generated for each n, p, and ϱ
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(b) n = 15
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(c) n = 20
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(d) n = 25

Figure 6.2: For each n, the percentage of graphs containing a mixed-
weight OLD-set (solid line) and containing a mixed-weight OLD-set less
than the smallest possible bound (dashed line) are graphed by ϱ, the
probability that a node is weight 2. Values were averaged across p. c⃝
2017 IEEE

combination.

Consider the upper bound from Theorem 6.2, (2+ε) logn
log 1/q , on size of the mixed-weight

OLD-set when ε is as small as possible, i.e. ε = 1/ log n, which we’ll call the minimum

bound. In the column titled ‘OLD-set’, Table 6.1 shows that as n increased the probabil-

ity that a graph contained a mixed-weight OLD-set sharply increased, as expected from

Lemma 6.1. Similarly the probability that a graph contains a mixed-weight OLD-set less

than the minimum bound increased, as seen in the column titled ‘< Bound’. These trends

show that the bound given in Theorem 6.2 is tight as n increases, even when ε is as small
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Figure 6.3: For each n, the percentage of graphs containing a mixed-
weight OLD-set (solid line) and containing a mixed-weight OLD-set less
than the smallest possible bound (dashed line) are graphed by p, the
probability that an edge exists. Values were averaged across ϱ.

as possible.

For each n, Figure 6.2 shows the percentage of graphs that had a mixed-weight OLD-

set and the percentage that had a mixed-weight OLD-set less than the minimum bound

given a value of ϱ. Except for n = 10, as ϱ increases, the probability of a graph containing

a mixed-weight OLD-set or a mixed-weight OLD-set less than the bound decreases. One

possible explanation for this pattern is, given that there are fewer possible subsets of

neighbors when n is small, there may be an increased likelihood that weighted nodes

cause other nodes to share open incoming-balls. This explanation is also supported by
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Figure 6.2 as it appears that the effect of ϱ is decreasing as n increases. It is likely n = 10

is too small for a pattern to be consistent.

For comparison, Figure 6.3 shows the percentage of graphs that had a mixed-weight

OLD-set and the percentage that had a mixed-weight OLD-set less than the minimum

bound given a value of p. The value of p has almost no impact on the proportion of

graphs that have a mixed-weight OLD-set and a mixed-weight OLD-set less than the

minimum bound.

Our simulation results were constrained by the size of the graph and the subsequent

time to find the smallest OLD-set. Though WSNs often contain thousands of nodes,

there are many instances of smaller scale networks such as those simulated. Previously,

16 nodes monitored seismic activity on a volcano [79], 32 nodes monitored the habitat of

Great Duck Island [61], and 8 nodes monitored glacial movement [63].

6.3 Discussion

Given that the structure of many WSNs are unknown prior to deployment, studying

location-detection problems in random graphs is of particular interest. We proved that

almost all random graphs have a mixed-weight OLD-set smaller than a probabilistic bound.

We were able to confirm our theoretical results with simulation. These results have the

potential to help determine best practices in WSN design. To our knowledge this is the

first time OLD-sets have been studied in random graphs.
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Chapter 7

An Integer Linear Program for

Mixed-Weight OLD-sets

The mixed-weight OLD-set problem can be modeled as a integer linear program (ILP).

For mixed-weight OLD-sets, the linear objective function in the ILP describes the size of

the mixed-weight OLD-set to be minimized, and the linear constraints model the appro-

priate requirements for a set of nodes to be a mixed-weight OLD-set. Every node in the

graph is either in or not in the mixed-weight OLD-set, so the decision variables in the ILP

are binary (0 or 1).

Since the mixed-weight OLD-set problem is NP-complete, branch and bound is used

to attempt to find optimal solutions to the accompanying ILP [31]. Branch and bound is

an enumeration procedure in which feasible solutions (leading to upper bounds) coupled

with LP relaxations (leading to lower bounds) are used to accelerate the enumeration

process. All commercial linear programming (LP) solvers are bundled with branch and

bound code for generating solutions to the ILPs. For large graphs complete enumeration

of all mixed-weight OLD-sets is impractical.

An ILP formulation for the (unweighted) OLD-set problem can be found in [77]. We

extend the OLD-set ILP formulation in [77] to include mixed-weight OLD-sets. We check

the branch and bound results for correctness and consider the utility of the solution to
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Figure 7.1: Example of a geometric graph G(n, r) on a 1 × 1 plane
with n = 200 nodes and adjacencies determined by distance r = 0.15

the LP-relaxation of the ILP.

We also use the ILP model to find minimum-sized mixed-weight OLD-sets in large

random geometric graphs. Random geometric graphs are of particular interest as they

closely resemble WSNs that are distributed at random in the field. Random geometric

graphs, G(n, r), are created by randomly generating n nodes on a surface and creating

adjacencies between nodes that fall within a given physical distance r. Figure 7.1 shows

a random geometric graph on a plane with 200 nodes.

In Section 7.1 we provide an ILP formulation for the mixed-weight OLD-set, and give

results in Section 7.2. We explore the ILP relaxation of the integer constraint in Section

65



Algorithm 7.1 The Floyd-Warshall Algorithm

1: procedure Floyd-Warshall(E′) ◃ E′ is the adjacency matrix
2: let D be a |V | × |V | matrix
3: for each i ∈ V do ◃ Algorithm set-up
4: for each j ∈ V do
5: if i = j then ◃ Shortest path is 0 when i = j
6: Dij ← 0
7: else if E′

ij = 1 then ◃ Shortest path is 1 when (i, j) is an edge
8: Dij ← 1
9: else ◃ Shortest path is unknown, otherwise

10: Dij ←∞
11: for each i ∈ V do ◃ Algorithm
12: for each j ∈ V do
13: for each k ∈ V do
14: if Dij > Dik +Dkj then ◃ A shorter path is found
15: Dij ← Dik +Dkj

7.3. In Section 7.4 we conclude our discussion of the ILP formulation. The majority of

the work presented in this chapter has been published in [35] c⃝ 2018 IEEE.

The results of this chapter are used throughout the rest of this thesis through the

construction of the ILP model in the modeling language AMPL [29] with solver Gurobi

[40]. In Chapter 8 we compare the greedy algorithm to the ILP results and use the

greedy estimates as hot starts to the ILP model. In Chapter 9 we use the results of the

ILP model to test estimated bounds on the size of mixed-weight OLD-sets in random

geometric graphs. We note that there is no restriction on the weight of a node, however,

for our experiments we use two weights, 1 and 2.

7.1 ILP Formulation

Given a graph, G = (V,E), with |V | = n, and weight function w(x) for x ∈ V , we

want to determine the minimum-sized mixed-weight OLD-set S ⊂ V . To set up the ILP

formulation, label the nodes 1, 2, . . . n and define n variables s1, s2, . . . sn such that si = 1

if and only if node i is in the mixed-weight OLD-set S, and si = 0 otherwise. To minimize

the size of S, we minimize the number of si variables that have the value 1. Similarly, we
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Algorithm 7.2 Generate Matrix A for Constraint (7.2) from Matrix D

1: procedure Generate A(D) ◃ D is the shortest path matrix
2: let A be a |V | × |V | matrix
3: for each i ∈ V do
4: for each j ∈ V do
5: if 0 < Dij ≤ w(j) then ◃ j ∈ B+(i)
6: Aij ← 1
7: else ◃ j ̸∈ B+(i)
8: Aij ← 0

Algorithm 7.3 Generate Matrix C for Constraint (7.3) from Matrix A

1: procedure Generate C(A) ◃ A is the Constraint (7.2) matrix
2: let C be a |V | × |V | × |V | matrix
3: for each i ∈ V do
4: for each j ∈ V do
5: for each k ∈ V do
6: if Aik +Ajk = 1 then ◃ k ∈ B+(i) or k ∈ B+(j), but not both
7: Cijk ← 1
8: else
9: Cijk ← 0

can minimize the sum of the si variables, which gives us the objective function

Minimize
∑
i

si. (7.1)

Recall that the open incoming-ball of a node, B+(x) = {y ∈ V |0 < d(x, y) ≤ w(y)},

where d(x, y) is the geodesic distance or length of the shortest path between x and y, is

the set of nodes that can reach node x, also called the neighbors of x. In order for a

mixed-weight OLD-set S to follow the dominating property, every node in the graph must

have a neighbor in S, i.e., B+(x) ∩ S ̸= ∅ ∀x ∈ V .

Define an n × n matrix A such that Aij = 1 if and only if j ∈ B+(i), and Aij = 0

otherwise. To guarantee that B+(i) ∩ S is non-empty for each node i, there must be at

least one node k such that k ∈ S, i.e., sk = 1, and k ∈ B+(i), i.e., Aik = 1. Thus if

Aiksk = 1, i has a neighbor in the mixed-weight OLD-set. Similarly, if the sum over all

nodes j of Aijsj is at least 1, then si has a neighbor in the mixed-weight OLD-set. If we
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set the constraint

∑
j

Aijsj ≥ 1, ∀i ∈ V, (7.2)

then every node in V must have a neighbor in the mixed-weight OLD-set.

In order for a mixed-weight OLD-set to follow the locating property, any two nodes

in the graph must not have the same set of neighbors in the mixed-weight OLD-set, i.e.,

B+(i) ∩ S ̸= B+(j) ∩ S for any i, j ∈ V , i ̸= j. Define an n × n × n matrix C such that

Cijk = 1 if and only if k ∈ B+(i) or k ∈ B+(j), but not both, and Cijk = 0 otherwise.

To guarantee that B+(i) ∩ S is unique for every node in the graph, for every two nodes i

and j there must be some node k ∈ S, i.e. sk = 1, that is in either B+(i) or B+(j), but

not both, i.e. Cijk = 1, otherwise B+(i) = B+(j). Thus if Cijksk = 1 for some k, then

B+(i) ̸= B+(j). Similarly, if the sum over all nodes k of Cijksk is at least 1, then nodes i

and j do not have the same set of neighbors in the mixed-weight OLD-set. If we set the

constraint

∑
k

Cijksk ≥ 1, ∀i, j ∈ V, (7.3)

then any two nodes in the graph do not share the same set of neighbors in the mixed-weight

OLD-set.

We have shown that the objective function (7.1) minimizes the size of the set, and

the constraints (7.2) and (7.3) guarantee the set is a mixed-weight OLD-set. In order to

use this ILP formulation, we must be able to compute it in reasonable time. Assume we

begin with an adjacency matrix for the graph, E′ where E′
ij = E′

ji = 1 if there is an edge

between nodes i and j, and E′
ij = E′

ji = 0, otherwise. Define the shortest path matrix

D such that Dij is the length of the shortest path between nodes i and j. This matrix

can be computed in O(n3) using the Floyd-Warshall algorithm [27], as seen in Algorithm

7.1. This algorithm finds the shortest path between all nodes in a graph from the original
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Algorithm 7.4 Generate Array of Open Outgoing-Balls B−

1: procedure Generate B−(E′) ◃ E′ is the adjacency matrix
2: let N be a |V | array of empty sets ◃ adjacencies from edges in the graph
3: let B− be a |V | array of empty sets
4: for each i ∈ V do ◃ determine adjacent nodes
5: for each j ∈ V do
6: if E′

ij = 1 then ◃ i is adjacent to j

7: B−
i ← B−

i ∪ {j}
8: Ni← Ni ∪ {j}
9: for each i ∈ V do ◃ determine nodes reached by weight

10: for each ℓ from 2 to w(i) do ◃ consider weights > 1
11: for each j ∈ B−

i do ◃ each node reached at weight < ℓ
12: B−

i ← B−
i ∪N(j)− {i}

Algorithm 7.5 Generate Array of Open Incoming-Balls B+ from B−

1: procedure Generate B+(B−)
2: let B+ be a |V | array of empty sets
3: for each i ∈ V do ◃ determine adjacent nodes
4: for each j ∈ B−

i do
5: B+

j ← B+
j ∪ {i}

adjacency matrix using dynamic programming.

Matrix A can be generated in O(n2) time from D by checking every pair of nodes, as

seen in Algorithm 7.2, Aij = 1, i.e. j ∈ B+(i), if and only if 0 < Dij ≤ w(j). Matrix C

can be generated in O(n3) time from A by checking every set of three nodes, as seen in

Algorithm 7.3, Cijk = 1 if and only if Aik + Ajk = 1, i.e., k ∈ B+(i) or k ∈ B+(j), but

not both. Overall, the calculation of D, A, and C will require O(n3) time.

When weights are small, i.e., w(x)≪ n ∀x ∈ V , A can be generated more quickly from

the open outgoing-ball, B−(x) = {y ∈ V |0 < d(x, y) ≤ w(x)}, and the open incoming

ball, B+. The open outgoing ball B− can be generated by starting with E′, the adjacency

matrix, then looping on the weight of each node to add the neighbors of each neighbor

to B−. The open incoming ball B+ can be generated inversely from B−, and A can be

generated directly from B+, as seen in Algorithms 7.4, 7.5, and 7.6. Generating B− is

O(mn3) where m is the maximum of all the weights in the graph, though processing time
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Algorithm 7.6 Generate Matrix A for Constraint (7.2) from B+

1: procedure Generate A(B+) ◃ B+ an array of open incoming-balls
2: let A be a |V | × |V | matrix
3: for each i ∈ V do
4: for each j ∈ V do
5: if j ∈ B+

i then
6: Aij ← 1
7: else
8: Aij ← 0

may be reduced by small m, |B−| and |N |. Generating B+ is O(n3). However, time is

reduced when these sets and m are small, but further reduced by small |B−| and |B+|.

On the other hand, when generating D, the Floyd-Warshall algorithm is Ω(n3). With

both methods, generating A after initial setup is O(n2), if determining a member of a set

is constant time.

7.2 ILP Results

We generated 500 graphs for each combination of and r, ϱ ∈ {0.25, 0.5, 0.75}, where

ϱ is the probability that a node is weight 2, for each n ∈ {10, 15, 20, 25}, for a total of

4500 graphs at each size. To validate our model, for each graph with a mixed-weight

OLD-set, we solved for the minimum-sized mixed-weight OLD-set by brute force and by

the ILP model in AMPL with Gurobi via branch and bound. Whether a graph contains

a mixed-weight OLD-set can be quickly determined by testing if the set of all nodes is a

mixed-weight OLD-set.

For graphs with a mixed-weight OLD-set, we would expect the ILP model to return a

minimum-sized mixed-weight OLD-set. As expected, the size of the mixed-weight OLD-

set found by the brute force method and by solving the ILP model with Gurobi were

equivalent. Table 7.1 shows the results of our tests including the percentage of graphs that

had mixed-weight OLD-sets and the average size of the minimum mixed-weight OLD-set.

For graphs of size 10, 15, 20, and 25 the percentage of graphs with a mixed-weight OLD-set
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n r, ϱ MW-OLD-set Avg. Min.

10 {0.25, 0.5, 0.75} 56.9% 6.6

15 {0.25, 0.5, 0.75} 64.2% 8.9

20 {0.25, 0.5, 0.75} 70.6% 11.1

25 {0.25, 0.5, 0.75} 76.8% 13.1

Table 7.1: Percentage of graphs with a mixed-weight OLD-set and the
average minimum size of the set in random geometric graphs of size n
with distance r and probability of weight 2 node ϱ. ‘MW-OLD-set’ is
the percentage of graphs that had a mixed-weight OLD-set. ‘Avg. Min.’
is the average minimum mixed-weight OLD-set size.

was 56.9%, 64.2%, 70.%, and 76.8%, and the average size of the minimum mixed-weight

OLD-set was 6.6, 8.9, 11.1, and 13.1, respectively.

7.3 ILP Relaxation

Although ILP solutions are often found quickly, because the problem of finding a

mixed-weight OLD-set is NP-complete, a quick solution is not guaranteed. Relaxation of

the integer constraint converts the problem into a linear programming (LP) model, which

is polynomial-time solvable. We allow 0 ≤ si ≤ 1, and, once a solution has been found,

we say i is in the mixed-weight OLD-set if si is close to 1, and not in the OLD-set if si is

close to 0.

We generated 500 random geometric graphs G(n, r) for each combination of n ∈

{50, 100, 150}, which are similar to the size of several WSNs discussed in [43], and r, ϱ ∈

{0.25, 0.5, 0.75}, where ϱ is the probability that a node is weight 2, for a total of 4500

graphs and mixed-weight functions for each n. Of these graphs, 190 at size n = 50 and 6

at size n = 100 did not contain mixed-weight OLD-sets. All graphs at size n = 150 con-

tained a mixed-weight OLD-set. All results are for graphs with mixed-weight OLD-sets.

We generated solutions to the LP relaxation using AMPL with Gurobi for each graph

that had a mixed-weight OLD-set. For the results of the LP model, we would want to
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LP Integer Results LP Fractional Results LP Bound Results

n si = 0 si = 1 si = 0.5 si < 0.5 si > 0.5 LP Obj. Value Greedy Size

50 16.3 1.5 22.9 23.8 3.3 16.0 27.3

100 39.8 2.3 33.6 59.5 6.9 27.0 46.5

150 65.6 3.0 40.5 98.7 10.9 36.5 63.0

Table 7.2: LP (relaxed ILP) results in random geometric graphs of
size n with r, ϱ ∈ {0.25, 0.5, 0.75}. The number of nodes with decision
variables equal to 0 and 1 (‘si = 0’ and ‘si = 1’), and the number of
nodes with decision variables equal to, less than, and greater than 0.5
(‘si = 0.5’, ‘si < 0.5’ and ‘si > 0.5’). ‘LP Obj. Value’ is the average
objective value from the LP result, and ‘Greedy Size’ is the average size
of the mixed-weight OLD-set generated by greedy search through the
LP result. c⃝ 2018 IEEE

see values close to 1 or close to 0. However, as seen in Figure 7.2, very few values were

greater than 0.5 and a large portion were equal to 0.5. A majority of graphs did not

have a mixed-weight OLD-set when only considering nodes i such that si ≥ 0.5, and the

percentage that had a mixed-weight OLD-set decreased as n increased (51.5%, 28.1%, and

18.1% for n = 50, 100, and 150, respectively).

We were able to estimate small mixed-weight OLD-sets by ordering the nodes by

largest si and selecting nodes in a greedy manner until an OLD-set is formed, thus nodes

with values less than 0.5 would be selected for most graphs. Table 7.2 shows the objective

value returned by the LP relaxation which provides a lower bound for the optimal objective

value of the ILP. The feasible greedy result provides an upper bound.

7.4 Discussion

In this chapter, we introduced an integer linear programming model for mixed-weight

OLD-sets and studied their use in random geometric graphs. Finding optimal mixed-

weight OLD-sets in large graphs by enumerating all possible solutions is not feasible due

to the NP-complete nature of the problem. ILP provides a way to solve for optimal mixed-
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weight OLD-sets in reasonable time in most cases by using branch and bound. Random

geometric graphs are of particular interest due to their similarities to randomly distributed

wireless sensor networks.

This is the first time, to our knowledge, that (mixed-weight) OLD-sets have been

studied in random geometric graphs. Solutions to the Linear Program (LP), resulting

from relaxing the integer constraint in the ILP, were shown to be highly fractional but do

provide a lower bound on the optimal objective value of the ILP. A feasible solution to

the ILP was greedily constructed from the fractional LP solution which provides an upper

bound.
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Chapter 8

Greedy Algorithms for

Mixed-Weight OLD-sets

Greedy algorithms take a simple and intuitive approach to constructing feasible solu-

tions to optimization problems. During each iteration of a greedy algorithm, the option

that appears best or optimal is chosen, and this process continues until a feasible solu-

tion is constructed. Greedy algorithms have been used to solve several problems in graph

theory, such as finding the shortest path between two nodes [23] and finding a minimum

spanning tree [23, 55, 67]. Although greedy algorithms can provide a quick and under-

standable solution, they do not typically provide an optimal solution. Even so, greedy

algorithms can often provide a reasonable, and sometimes even good, estimate of the op-

timal solution. Several NP-complete problems in graph theory have been estimated with

greedy algorithms such as the maximal independent set problem [42] and graph coloring

[48].

In this chapter we introduce several greedy algorithms for mixed-weight OLD-sets and

study their use in random geometric graphs. Our algorithms include a näıve approach,

a method inspired by the maximal independent set problem, and a stingy method. We

compare these greedy algorithms to the greedy solution derived from the relaxed ILP

results from Section 7.3. We also use the greedy results as a hot start, or initial feasible
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Algorithm 8.1 Näıve Greedy Method for finding a mixed-weight OLD-set

1: procedure Naive Greedy(B−, B+) ◃ open outgoing- and incoming-balls
2: Let R be V sorted by chosen method ◃ largest, smallest, alternating, median B−

3: Let S be an empty set ◃ mixed-weight OLD-set
4: while S is not a mixed-weight OLD-set do ◃ use B+ to check
5: v ← next node in R
6: S = S ∪ {v} ◃ add next node to mixed-weight OLD-set
7: end while

solution, to the ILP model. A hot start can often shorten the time needed to solve a large

ILP problem.

We present our greedy algorithms in Section 8.1 and study the mixed-weight OLD-sets

they produce in Section 8.2. We use the mixed-weight OLD-set results as hot starts to the

ILP model in Section 8.3. We conclude our study of greedy algorithms for mixed-weight

OLD-sets in Section 8.4. Most of the work presented in this chapter has been published

in [35] c⃝ 2018 IEEE.

8.1 Greedy Algorithms

We tested two greedy methods and one stingy method, each with four different selection

methods: largest, smallest, alternating the largest and smallest (alternating), and median

open outgoing-ball size, to find initial solutions to the mixed-weight OLD-set problem.

Each of the algorithms begins by sorting the nodes according to the choice option. In par-

ticular if {x1, x2, . . . , xn} is the set of nodes ordered from smallest to largest open outgoing-

ball, and the middle node can be found at m = ⌊n+1
2 ⌋, then the largest choice option is

sorted as {xn, xn−1, . . . x1}, smallest is sorted as {x1, x2, . . . , xn}, alternating is sorted as

{xn, x1, xn−1, x2, . . . , xm}, and, median is sorted as {xm, xm+1, xm−1, xm+2, . . . xn}. The

alternating and median choice methods were considered since, in a (mixed-weight) OLD-

set, a node that reaches a lot of nodes does not help locate in the graph and a node that

does not reach many nodes does not help dominate.

The näıve greedy algorithm and the stingy algorithm choose each node in turn from
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Algorithm 8.2 Independent Set Greedy Method for finding a mixed-weight OLD-set

1: procedure Ind Set Greedy(B−, B+) ◃ open outgoing- and incoming-balls
2: Let R be V sorted by chosen method ◃ largest, smallest, alternating, median B−

3: Let S be an empty set ◃ mixed-weight OLD-set
4: Let T be an empty set ◃ current unavailable nodes
5: Let U be V ◃ current available nodes
6: while S is not a mixed-weight OLD-set do ◃ use B+ to check
7: if |U | = 0 then ◃ no nodes are available
8: U ← T
9: T ← {}

10: v ← next node in R that is in U ◃ next in order that is available
11: S ← S ∪ {v} ◃ add next node to mixed-weight OLD-set
12: U ← U − {v} ◃ node is no longer available
13: for each x ∈ B−(v) do ◃ make nodes in B− unavailable
14: if x ∈ U then
15: U ← U − {x}
16: T ← T ∪ {x}
17: end while

Algorithm 8.3 Stingy Method for finding a mixed-weight OLD-set

1: procedure Naive Greedy(B−, B+) ◃ open outgoing- and incoming-balls
2: Let R be V sorted by chosen method ◃ largest, smallest, alternating, median B−

3: Let S be V ◃ mixed-weight OLD-set
4: for each v ∈ R do
5: if S − {v} is a mixed-weight OLD-set then ◃ use B+ to check
6: S ← S − {v}

the sorted nodes. The independent set algorithm chooses the first node from the sorted

nodes as long as that node is currently available.

The first greedy method is a simple näıve method (Näıve) that chooses the next node

by one of the four choice options forming a set of nodes. The method stops when the set

is a mixed-weight open locating-dominating set, and can be seen in Algorithm 8.1.

The second greedy algorithm was inspired by the Maximal Independent Set problem

(independent set) which attempts to find the maximum set of nodes in the graph that are

not adjacent. Random geometric graphs are generated on a surface, with edges formed

locally, so it is possible that choosing nodes from different areas of the graph may help

estimate mixed-weight OLD-sets. The independent set greedy algorithm chooses the next
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node x by one of the sorting methods and then removes all nodes in the open outgoing-ball

of x from the set of available choices, making them unavailable for selection. The algorithm

continues to choose the first node from the sorted nodes that is available. Once there are

no available choices, the removed nodes are returned to the set of available choices. This

algorithm continues until a mixed-weight open locating-dominating set is formed, similar

to the näıve method, as seen in Algorithm 8.2.

The stingy algorithm begins with all nodes in the graph in the set, which is guaranteed

to be a mixed-weight OLD-set, and one node is removed in turn by one of the four choice

options. If the set is still a mixed-weight OLD-set, the algorithm continues. Otherwise

the node is added back into the set before the algorithm continues. The algorithm finishes

when all nodes have been checked, as seen in Algorithm 8.3.

Determining if a set is a mixed-weight OLD-set in the graph is an O(n3 log (n)) op-

eration if intersecting sets and checking sets for equality requires sorting: for every pair

of nodes, the intersection of the set with both open incoming-balls must be checked for

equality. However, some implementations, such as using a hashed set, may intersect and

check for equality in linear time making the mixed-weight OLD-set check O(n3). Thus

each greedy method is O(n4 log (n)) or O(n4) depending on implementation.

8.2 Greedy Algorithm Results

To test the greedy algorithms, we used the same graphs as those in Section 7.3. As

seen in Figure 8.1, the stingy method is the clear winner for generating the smallest

mixed-weight OLD-set overall, and choosing the nodes by largest open outgoing-ball gave

the best result for this method, followed closely by choosing the median. The näıve and

independent set inspired methods performed similarly to each other, and choosing the

smallest open outgoing-ball gave better results for both of these methods, with the choice

of median performing almost the same as the smallest for the independent set inspired

algorithm. We note that the stingy method performed better than the LP relaxation of the
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n = 50 Näıve Ind. Set Stingy

largest 44.0 44.6 23.4

smallest 41.3 42.2 27.6

alternating 43.9 44.2 25.2

median 41.7 42.2 24.1

n = 100 Näıve Ind. Set Stingy

largest 89.8 90.4 39.4

smallest 83.7 85.8 48.6

alternating 89.8 90.0 44.1

median 86.2 85.8 40.5

n = 150 Näıve Ind. Set Stingy

largest 136.3 136.6 53.5

smallest 126.7 129.7 68.2

alternating 136.0 136.1 61.1

median 131.9 130.0 55.0

Table 8.1: Average mixed-weight OLD-set size generated from each
greedy algorithm by sort method. c⃝ 2018 IEEE

ILP from Figure 7.2 in all cases except when ordered by smallest outgoing-ball. Overall

the stingy method and the LP relaxation of the ILP provide similar quality bounds on

the optimal value to the ILP. It is important to note that the stingy method constructs a

feasible solution to the ILP model while the LP relaxation does not.

Our results also showed that the näıve and independent set methods had similar run-

ning time, and the stingy method was less than 50% slower. Although determining if a

set is a mixed-weight OLD-set is O(n3 log (n)), the processing time is greatly affected by

the size of the set being tested. The stingy method starts with all nodes in the OLD-set,

and removes them one by one, if at all. Thus, on average, the size of the set being tested

will be much larger for the stingy method, resulting in increased processing time. The

stingy method also checks every node in the graph, whereas the other methods stop once

a mixed-weight OLD-set is found. Table 8.2 shows that the näıve and independent set
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n = 50 Näıve Ind. Set Stingy

largest 2.4 2.7 3.4

smallest 2.1 2.3 3.5

alternating 2.5 2.6 3.5

median 2.4 2.5 3.3

n = 100 Näıve Ind. Set Stingy

largest 20.6 20.3 25.2

smallest 17.7 18.8 26.3

alternating 20.0 20.2 26.2

median 18.7 19.3 24.7

n = 150 Näıve Ind. Set Stingy

largest 73.5 73.9 91.6

smallest 64.3 70.1 97.9

alternating 72.7 74.0 96.5

median 69.6 71.3 90.4

Table 8.2: Average time in milliseconds to generate OLD-set from
greedy algorithm by sort method in Java using an Intel R⃝ CoreTM i5-
6500 CPU @3.2GHz with 6MB L3 cache and 16GB DDR3 RAM.

methods also had similar running time. The time to move nodes between sets and test

for existence in a set, for the independent set method, increased processing time by a very

small amount over the näıve method. The stingy method, however, required more time

than the other two methods.

Figure 8.3 shows the average size of the mixed-weight OLD-set generated by the ILP

model, which provides an optimal solution, by the stingy algorithm, and by greedily

choosing from the fractional values found by the LP relaxation of the ILP from Section

7.3. The stingy algorithm provides a good estimate for the size of mixed-weight OLD-set.

The stingy estimate gets worse as the size of the graph increases (also true for the LP

relaxation), but for each graph size tested, the difference from the optimal result for the

stingy method is less than 20%. As was previously noted, the stingy method provides a

feasible mixed-weight OLD-set solution, whereas the LP relaxation does not.
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n Optimal Stingy Relaxed Stingy-Diff Relaxed-Diff

50 21.4 23.4 27.3 9.6% 27.8%

100 34.6 39.4 46.5 13.9% 34.3%

150 45.7 53.5 63.0 17.2% 37.7%

Table 8.3: Average size of the mixed-weight OLD-set returned by the
ILP model (optimal), by the stingy method choosing by largest outgo-
ing ball, and by greedily selecting nodes from the results of the ILP
relaxation. ‘Stingy-Diff’ and ‘Relaxed-Diff’ are the percentage differ-
ences between the stingy method and the greedy relaxed ILP method,
respectively, with the optimal ILP results. c⃝ 2018 IEEE

8.3 Greedy Hot Starts for the ILP Model

We used the stingy algorithm, sorting by largest open outgoing-ball, to generate hot

starts for the graphs in Section 7.3. We tested the ILP formulation with the stingy hot

starts, with no hot start, and with all nodes in the graph as the hot start. If a graph

contains a mixed-weight OLD-set, then the set of all nodes is a mixed-weight OLD-set,

providing a trivial hot start. We found that using a hot start with the ILP model did not

significantly reduce the time to find the minimum mixed-weight OLD-set, and that there

was not a significant time difference between using all nodes in the graph or just those

returned by the stingy method as the hot start. However, finding optimal solutions to

the ILP model was an order of magnitude slower than finding a feasible solution with the

stingy heuristic.

Table 8.4 shows the average ILP solve time for graphs with no hot start, all nodes in

the graph as the hot start, and the stingy-generated hot start, as well as the time to find

the stingy hot start in Java. In each case the average time to find the stingy hot start

was slightly greater than the average time saved by having the stingy hot start. The hot

start with all nodes in the graph also performed similarly to the hot start from the stingy

method.
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n ILP-None ILP-All ILP-Stingy Stingy

50 78.9 78.8 77.6 3.4

100 537.6 518.2 514.4 25.2

150 2254.9 2196.6 2172.1 91.6

Table 8.4: Average solve time, in milliseconds, for the ILP in AMPL
with Gurobi with no hot start (‘ILP-None’), all nodes in the graph as
the hot start (‘ILP-All’), and using the result of the stingy method as
the hot start (‘ILP-Stingy’), and the average time to find the stingy hot
start in Java using an Intel R⃝ CoreTM i5-6500 CPU @3.2GHz with 6MB
L3 cache and 16GB DDR3 RAM.

8.4 Discussion

We introduced three greedy algorithms for the mixed-weight OLD-set: the näıve, the

independent set, and the stingy. We also used several selection methods for the “best”

choice during an iteration of each greedy algorithm: smallest, largest, alternating smallest

and largest, and median size of a node’s open outgoing-ball. For random geometric graphs,

the stingy algorithm outperformed the two other greedy algorithms. The best selection

method for the stingy method was largest open outgoing-ball.

The stingy heuristic was also superior to the greedy estimate of the optimal mixed-

weight OLD-set using the results from the relaxation of the ILP model discussed in Section

7.3. The stingy algorithm performed an order of magnitude quicker than the ILP model,

and provided small estimates within 20% of the optimal solution for large random geo-

metric graphs. These results show that the stingy heuristic has the potential to aid in the

design of wireless sensor networks.
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Chapter 9

Mixed-Weight OLD-sets in

Random Geometric Graphs

Random geometric graphs G(n, r) are graphs on a surface where the set of nodes is

n points chosen at random from the surface, and r is the threshold in which two nodes

are adjacent given their Euclidean distance. Typical random graphs, like those considered

in Chapter 6, often miss key characteristics of the of the networks they are meant to

represent, such as WSNs, as in the field these networks often fall somewhere between

completely random and highly structured [9]. However, random geometric graphs closely

resemble how WSNs are distributed through a physical area. Random geometric graphs

prove to be more theoretically difficult because their construction is limited by physical

boundaries and relies on actual distances, making edge probabilities dependent. Random

geometric graphs have been studied for identifying codes and locating-dominating sets

[65], but have not been studied in (mixed-weight) OLD-sets.

We determine the average probability two nodes are adjacent in a plane, and, with

bounds proved in [34] for random graphs, estimate upper bounds on the size of mixed-

weight OLD-sets in random geometric graphs. We generate minimum-sized mixed-weight

OLD-sets using the ILP model in Section 7.1 and compare these results to the estimated

bounds.
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Figure 9.1: Four cases for the location of a node in a random geometric
graph on a plane. c⃝ 2018 IEEE

In Section 9.1 we find the average probability of an edge in a random geometric graph,

and in Section 9.2 we use the average probability to estimate bounds on the size of a

mixed-weight OLD-set in random geometric graphs. We conclude our study of random

geometric graphs in Section 9.3. The majority of the work presented in this chapter has

been published in [35] c⃝ 2018 IEEE.

9.1 Average Probability of an Edge in Random Geometric

Graphs

Consider a plane of size a×b starting at the origin and a graph G(n, r) where a, b ≥ 2r.

For G(n, r), the nodes, V , are n random points on the plane, u = (x, y), and the edges

are E = {(u, v) | d(u, v) ≤ r}, where d(u, v) is the Euclidean distance. For each node

u in the graph, the probability that another node v is adjacent to u is equivalent to the

probability that v falls within a circle of radius r around u. If a, b≫ 2r, this probability

is πr2

ab in most cases. Define the range of a node u, R(u) to be the area of the circle of

radius r around u that falls within the plane. Thus for any node u, the probability that

v is adjacent to u is R(u)
ab .
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Figure 9.1 shows the four locations that a node can fall in a plane with respect to the

shape of the node’s range. The following lemmas determine the (average) range of a node

given its location in the plane. We then provide a proposition using the average ranges

to find the average probability that two nodes are adjacent in a random geometric graph

generated on the plane.

Lemma 9.1 The range of a node u = (x, y) given that r ≤ x ≤ a− r and r ≤ y ≤ b− r

is R1(u) = πr2.

Proof: When r ≤ x ≤ a− r and r ≤ y ≤ b− r, as in case 1 in Figure 9.1, the node is in

the middle of the plane, and the entire range falls within the plane. �

Lemma 9.2 The average value of the range of u = (x, y) given that x < r or x > a− r,

and r ≤ y ≤ b− r or y < r or y > b− r, and r ≤ x ≤ a− r is R2(u) =
3πr2−2r2

3 .

Proof: When x < r or x > a − r, and r ≤ y ≤ b − r or y < r or y > b − r, and

r ≤ x ≤ a − r, as in case 2 in Figure 9.1, the node is near and overlaps the side of the

plane. WLOG, suppose x < r and r ≤ y ≤ b− r. The angle from the node to the points

of overlap is θ = 2 cos−1
(
x
r

)
, therefore the area of the segment is θ

2ππr
2 − x ·

√
r2 − x2.

Thus the average value of the range of u is

R2(u) =
1

r(b−2r)

∫ r
0

∫ b−r
r

(
πr2 −

(
θ
2ππr

2 − x ·
√
r2 − x2

))
dy dx

=
1

r

∫ r

0

(
πr2 −

(
θ

2π
πr2 − x ·

√
r2 − x2

))
dx

= πr2 −
(
1

r

∫ r

0

θ

2π
πr2 dx

)
+

r2

3

= πr2 −
(
r

∫ r

0
cos−1

(x
r

)
dx

)
+

r2

3

= πr2 − r2 +
r2

3

= πr2 − 2r2

3
.

�
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Lemma 9.3 The average value of the range of u = (x, y) given that given that x < r and
√
r2 − x2 ≤ y < r, etc., is R3(u) =

(24π−3π2−32)r2

6(4−π) .

Proof: When x < r and
√
r2 − x2 ≤ y < r, etc., as in case 3 in Figure 9.1, the node is

close to and overlaps two sides of the plane. WLOG, suppose x < r and
√
r2 − x2 ≤ y < r.

The sum of the angles that overlap the x- and y− axes is θ = 2 cos−1
(
x
r

)
+ 2 cos−1

(y
r

)
,

therefore the area of the segments is θ
2ππr

2−x ·
√
r2 − x2−y ·

√
r2 − y2. Thus the average

value of the range of u is

R3(u) =
1

r2(1− π/4)

∫ r

0

∫ r

√
r2−x2

(
πr2 −

(
θ

2π
πr2 − x ·

√
r2 − x2 − y ·

√
r2 − y2

))
dy dx

=
1

r2(1− π/4)

∫ r

0

((
πr2 − θx

2π
πr2 + x · z

)
(r − z) +

x3

3
− r2

(
z cos−1

(z
r

)
− x
))

dx

=
(24π − 3π2 − 32)r2

6(4− π)
.

�

Lemma 9.4 The average value of the range of u = (x, y) given that given that x < r and

0 ≤ y <
√
r2 − x2, etc., is R4(u) =

(1+π2)r2

2π .

Proof: When x < r and 0 ≤ y <
√
r2 − x2, etc., the node is in the corner of the plane

and overlaps the corner. WLOG, suppose x < r and y <
√
r2 − x2. The angle of the

portion that overlaps the corner is θ = cos−1
(
x
r

)
+cos−1

(y
r

)
+ π

2 , therefore the area of the

overlap is θ
2ππr

2 − x
2 ·
√
r2 − x2 − y

2 ·
√
r2 − y2 − xy. Thus the average value of the range

of u is

R4(u) =
1

r2(π/4)

∫ r

0

∫ √
r2−x2

0

(
πr2 −

(
θ

2π
πr2 − x

2
·
√
r2 − x2 − y

2
·
√

r2 − y2 − xy

))
dy dx

=
(1 + π2)r2

2π
.

�
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Proposition 9.5 The average probability that there is an edge between any two nodes in

G(n, r), if a, b ≥ 2r, is

ϕ =
πr2

ab
− 4r3

3ab2
− 4r3

3a2b
+

r4

2(ab)2
.

Proof: Figure 9.1 shows the four cases for the location of a node u = (x, y). In cases 2-4,

the range of the node is not the entire circle around it, affecting the probability that it

will be adjacent to another node.

Case 1: The node is in the middle rectangle of the plane, i.e., r ≤ x ≤ a − r and

r ≤ y ≤ b − r, with probability (a − 2r)(b − 2r)/(ab). From Lemma 9.1, the probability

that a node v is adjacent to u given its location, is πr2

ab . Thus u and v are connected and

u is in the middle of the plane with probability

ϕ1 =
(a− 2r)(b− 2r)

ab
· πr

2

ab

=
πr2

ab
− 2πr3

ab2
− 2πr3

a2b
− 4πr4

a2b2

Case 2: The node is closest to one side of the plane, with probability 2r(a+b−4r)/ab,

when x < r or x > a− r, and r ≤ y ≤ b− r or when y < r or y > b− r, and r ≤ x ≤ a− r.

From Lemma 9.2, the average probability that a node v is adjacent to u given its location,

is 3πr2−2r2

3ab . Thus u and v are connected and u is near the side of the plane with average

probability

ϕ2 =
2r(a+ b− 4r)

ab
· 3πr

2 − 2r2

3ab

=
2πr3

ab2
− 4r3

ab2
+

2πr3

a2b
− 4r3

a2b
+

16r4

3a2b2
− 8πr4

a2b2

Case 3: The node is closest to two sides of the plane, i.e., x < r and
√
r2 − x2 ≤ y < r,

etc., with probability 4r2−πr2

ab . From Lemma 9.3, the average probability that a node v is

adjacent to u given its location, is (24π−3π2−32)r2

6ab(4−π) . Thus u and v are connected and u is

near the two sides of the plane with average probability
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ϕ3 =
4r2 − πr2

ab
· (24π − 3π2 − 32)r2

6ab(4− π)

=
4πr4

a2b2
− 16r4

3a2b2
− π2r4

2a2b2

Case 4: The node is closest to a corner, i.e. x < r and 0 ≤ y <
√
r2 − x2, etc., with

probability πr2

ab . From Lemma 9.4, the average probability that a node v is adjacent to u

given its location, is (1+π2)r2

2πab . Thus u and v are connected and u is near the corner of the

plane with average probability

ϕ4 =
πr2

ab
· (1 + π2)r2

2πab

=
π2r4

2a2b2
+

r4

2a2b2

Summing the probabilities we find ϕ = ϕ1 + ϕ2 + ϕ3 + ϕ4 and thus ϕ = πr2

ab −
4r3

3ab2
−

4r3

3a2b
+ r4

2(ab)2
. �

9.2 Estimated Random Geometric Graph Bounds

In Chapter 6, we showed that almost every random graph G(n, p), where n is the

number of nodes in the graph and p is the probability that two nodes are adjacent, has a

(mixed-weight) OLD-set S with |S| ≤ (2+ε) logn
log 1/q for ε > 1/ log (n) . We also showed that

the probability that a node is either in or not in both open incoming-balls of two other

nodes is

q =

 d∑
i=1

ϱi

i∑
j=1

pj(1− pj−1)

2

+

 d∑
i=1

ϱi

i∏
j=1

(1− pj)

2

,

where ϱi is the probability that a node is weight i for 1 ≤ i ≤ d.

Similarly, we can estimate the q for random geometric graphs by using the average

probability that two nodes are adjacent. In this case we find

q =

 d∑
i=1

ϱi

i∑
j=1

ϕj(1− ϕj−1)

2

+

 d∑
i=1

ϱi

i∏
j=1

(1− ϕj)

2

,
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n r OLD-set ILP Size Min. Bound < Bound < 2×Bound

50

0.25

88.7% 18.2 27.1 99.8% 100.0%

100 99.6% 27.5 31.3 90.3% 100.0%

150 100.0% 35.6 33.8 26.9% 100.0%

50

0.50

99.9% 18.3 12.9 0.9% 96.7%

100 100.0% 29.7 14.9 0.0% 60.9%

150 100.0% 38.8 16.1 0.0% 15.7%

Table 9.1: Simulation trends for graphs graphs G(n, r) with the prob-
ability of a weight 2 node ϱ ∈ {0.25, 0.5, 0.75}. Results are averaged
across ϱ. ‘OLD-set’ is the percentage of graphs that contained a mixed-
weight OLD-set. ‘Size’ is the average size of the mixed-weight OLD-set
returned by the ILP. ‘Min. Bound’ is the average estimated minimum
upper bound of the mixed-weight OLD-set size. ‘< Bound’ is the per-
centage of graphs that had a mixed-weight OLD-set with size less than
the minimum bound. ‘< 2× Bound’ is the same for twice the minimum
bound. c⃝ 2018 IEEE

and with the estimated q, we can estimate the upper bound on the size of the mixed-weight

OLD-set. To test these estimated bounds with large random geometric graphs, we used

the ILP model from Chapter 7 to find mixed-weight OLD-sets and compared these results

with the estimated upper bound.

To test the estimated bounds for random geometric graphs, we used the same graphs

as those in Section 7.3 restricted to r ∈ {0.25, 0.5}, so that 2r ≤ a, b, and each value

of ϱ ∈ {0.25, 0.5, 0.75}, for a total of 3000 graphs at each n. For r = 0.25, the average

probability that two nodes are connected is ϕ = 0.157, and for r = 0.5, ϕ = 0.483. The

minimum possible estimated upper bound can be generated when ε = 1/ log (n), which we

call the minimum bound. For each graph, we compared the mixed-weight OLD-set size

generated by the ILP model to the minimum bound and to twice the minimum bound.

As seen in Figure 9.1, as either n or r increase, the likelihood that the ILP result is

less than the minimum bound decreases. As n increases, the random geometric graph will

have more localized groups of almost complete subgraphs, which can increase the required
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size of the mixed-weight OLD-set in order to satisfy the locating property.

For all graphs with a mixed-weight OLD-set with r = 0.25, the ILP model provided

a size that was less than twice the minimum bound. However, when r = 0.5, the ILP

results were less likely to be less than twice the minimum bound. When r = 0.5, all of ϕ

is calculated from edge cases, but when r = 0.25, fewer nodes are likely to fall on a edge

case. Thus the probability of an adjacency at any location is more variable when r = 0.5,

likely causing the bound to be less precise. However, when r = 0.5, most ILP results were

less than quadruple the minimum bound (100.0%, 99.9%, and 99.7% for n = 50, 100, and

150, respectively).

9.3 Discussion

Due to the theoretical difficulty of their construction, estimation is a useful tool in the

study of random geometric graphs. In this chapter we estimated mixed-weight OLD-set

bounds for random geometric graphs using the average probability two nodes are adjacent.

We applied the average probability to the probabilistic bounds we found in Chapter 6

for random graphs. The estimation performed better for random geometric graphs with

smaller size and smaller radius. These results reinforce the difficult nature of working with

random geometric graphs.
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Chapter 10

Conclusion

In this thesis we addressed the problem of finding an optimal placement of networked

sensors with varying strength by proposing the mixed-weight open locating-dominating

set. The mixed-weight OLD-set provides a framework to study a wider range of location-

detection problems than ever before, and mixed-weight OLD-sets are particularly useful

in the study and design of wireless sensor networks. For mixed-weight OLD-sets, sensor

strength is represented in a graph by placing weights on the nodes relative to the sensor

strength. Nodes with a weight of one behave like unweighted nodes where neighbors are

determined by edges. Nodes with higher weights are able to reach further in the graph,

with the reach corresponding to the node’s weight, becoming neighbors of other nodes

in the graph. This simulates the ability of a higher strength sensor to monitor a larger

physical area and receive communications at longer distances. In this chapter we discuss

our contributions in Section 10.1, and in Section 10.2 we examine several areas of future

work.

10.1 Contributions

The mixed-weight OLD-set provides the foundation for the theoretical study of net-

worked sensors of different strengths. Related problems have been studied for systems

with stronger than normal sensors [8, 15, 25, 26, 39, 45, 47, 50, 51, 66, 68, 70, 76], but this
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is the first time strong sensors have been studied in OLD-sets and the first time varied

strength sensors have been considered for any location-detection problems. Our contribu-

tions include a theoretical introduction to mixed-weight OLD-sets and their properties,

results in a variety of graphs, establishing an integer linear program to solve for the sets,

and examining greedy algorithms to estimate the sets in large graphs.

Basic properties of the mixed-weight OLD-set and a proof of the NP-completeness of

its decision problem were provided in Chapter 3 and Chapter 4, respectively. In general

we are interested in minimizing the size of the mixed-weight OLD-set, or, potentially,

the total weight of the mixed-weight OLD-set, in order to reduce the cost of setup and

maintenance of a related sensor network. However, finding the minimum mixed-weight

OLD-set is an intractable problem.

Many intractable problems have polynomial-time solutions in special cases, and this

is true for mixed-weight OLD-sets in paths and cycles where the weights are not preset.

We provided a linear time solution for finding minimum-sized mixed-weight OLD-sets in

paths and cycles with weights ≤ 2 in Chapter 5. Adding weights to nodes in a cycle results

in the graph behaving like a directed subgraph of a circulant graph. We studied the non-

weighted OLD-set in circulant graphs in Chapter 2, providing two proof techniques to

find the lower bound on the size of the OLD-set. Although these results may be limiting

for some applications, solutions in paths and cycles can provide mixed-weight OLD-set

estimates for portions of larger graphs that are shaped like paths and cycles.

We established probabilistic upper bounds for the size of minimum mixed-weight OLD-

sets in random graphs in Chapter 6 and used the results to estimate upper bounds for

minimum mixed-weight OLD-sets in random geometric graphs in Chapter 9. Random

graphs and random geometric graphs simulate the effect of distributing sensors at random

in the field. Random graphs are probability-based, which often corresponds to simpler

solutions in problems such as location-detection, but do not fully resemble randomly dis-

tributed sensor networks. Random geometric graphs are generated on a surface, similar

to the placement of sensor networks in a physical area, and better correlated to randomly
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distributed networks. However, the same properties that make random geometric graphs

closely related to randomly distributed sensors also make them theoretically difficult to

study.

To further explore random geometric graphs and mixed-weight OLD-sets, we developed

an integer linear program (ILP) to find minimum-sized mixed-weight OLD-sets in Chapter

7. For the mixed-weight OLD-sets, the objective function of the ILP ensures that the

mixed-weight OLD-set is minimum-sized, and the constraints of the ILP guarantee that

the set has the properties of a mixed-weight OLD-set. Commercial ILP solvers use branch

and bound to find a solution in significantly reduced time in most cases. We were able

to find minimum mixed-weight OLD-sets using the modeling language AMPL and solver

Gurobi in reasonable time for large geometric graphs in which the size would have been

prohibitive using brute force search methods. Our results also showed that relaxing the

integer constraint, in an effort to estimate small mixed-weight OLD-sets, provided low

quality results, underscoring the difficulty of finding mixed-weight OLD-sets in random

geometric graphs.

We also constructed several greedy algorithms to estimate small mixed-weight OLD-

sets and tested their use in random geometric graphs in Chapter 8. Although greedy

methods are not guaranteed to find optimal solutions for NP-complete problems, they

have the potential to find reasonable estimates very quickly. We considered several greedy

methods with different selection techniques, and found that the stingy algorithm, which

starts with all nodes in the graph and removes unnecessary nodes from the mixed-weight

OLD-set, provided the best estimation and was significantly faster than the ILP model.

10.2 Future Work

Our work with the mixed-weight OLD-set could be extended and expanded in several

ways. Extensions from our current work include the use of edge weights to represent actual

distances in the field, further exploration in paths and cycles, and improved estimation
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algorithms for large random and random geometric graphs. We could broaden our research

by studying mixed-weight identifying codes and constructing networks in such a way that

they produce the smallest possible (mixed-weight) OLD-set. These ideas are discussed in

greater detail below.

Edge and Non-Integer Weights

One limitation of the mixed-weight OLD-set presented here is that the weight placed

on a node represents exactly how many edges a node can reach into the graph. For

applications, a variation of the mixed-weight OLD-set where edges are weighted with real

values, and node weight is representative of a physical distance a sensor can reach, would

be a more representative problem. In a random geometric graphs in particular, creating

neighbor relationships at the point in which edges are created would be more practical.

This setup would allow sensor strength and the ability to reach other locations to rely on

actual distances instead of theoretical ones.

More Paths and Cycles

We considered paths and cycles with all weight 2 and mixed-weight 1 and 2 mixed-

weight OLD-sets, and there are many avenues for further exploration into paths and

cycles. It would be interesting to answer questions such as what is the maximum number

of weight 1 nodes for minimum-sized mixed-weight OLD-sets in paths and cycles? If weight

1 nodes represent weaker, but cheaper, sensors, maximizing their use could be essential to

establishing affordable sensor networks. Similarly, we could ask the question, what is the

minimum total weight of the mixed-weight OLD-set? We could also consider the question

what do mixed-weight OLD-sets look like in paths and cycles that have preset weights, in

general and in structured cases? For example, if every other node or every third is weight

2, the minimum-mixed-weight OLD-set may also have a polynomial-time solution. Finally,

we could explore mixed-weight OLD-sets in paths and cycles with weights larger than 2.
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Improved Estimation Algorithms

Although our greedy algorithms provided good results, they relied on very basic search

methods. We may be able to improve the results further by using more advanced opti-

mization heuristics. One improvement could be Tabu search which uses local searches to

make incremental improvements to a solution. In order to avoid becoming stuck in lo-

cal optimum, Tabu search explores neighboring solutions and uses a memory mechanism

that attempts to keep the search from revisiting the same “tabu” solutions over and over.

Tabu search has been successful in scheduling and space planning, as well as classical

graph problems such as graph coloring and the traveling salesman [36, 37, 38], making it

an attractive option for mixed-weight OLD-sets.

Identifying Codes

We briefly defined mixed-weight identifying codes in Section 3.2. Identifying codes

were introduced before OLD-sets, and, although OLD-sets have better applications in

volatile locations, identifying codes are more practical for situations where losing a sensor

is unexpected. Identifying codes have been studied using stronger sensors of all the same

weight [8, 15, 25, 26, 39, 45, 47, 50, 51, 66, 68, 70, 76], but never for sensors of varying

weights. Thus, expanding into mixed-weight identifying codes would be straightforward

and productive.

Minimum Cardinality (Mixed-Weight) OLD-sets

We studied the minimum OLD-set size for networks that have predetermined connec-

tions, but it is also of interest to construct graphs that contain (mixed-weight) OLD-sets

with minimum possible cardinality given the number of nodes in the graph. Graphs that

contain the minimum possible identifying code have previously been studied [64]. In [14],

graphs that have OLD-sets of size 2, 3, and n were explored without focusing on providing

the minimum possible OLD-set for graphs at a particular size.
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For k-sized OLD-sets in a graph with n nodes, the OLD-set can produce up to

(
k

1

)
+

(
k

2

)
+

(
k

3

)
+ · · ·+

(
k

k

)
=

k∑
i=1

(
k

i

)
= 2k − 1

unique and nonempty subsets. Thus the minimum cardinality of an OLD-set in a graph

with n nodes would be k = ⌈log2(n+1)⌉. Determining which graphs yield (mixed-weight)

OLD-sets of minimum possible cardinality could aid in the design and cost reduction of

structured sensor networks.
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Appendix A

Symbol Table

Graphs

V the set of nodes in a graph

E the set of edges in a graph

Cn(1, t) a circulant graph with n nodes and adjacencies 1 and t

Cn a cycle with n nodes

Pn a path with n nodes

G(n, p) a random graph with n nodes and probability p for an edge

G(n, r) a random geometric graphs with n nodes and adjacencies within distance r

d(x, y) the geodesic distance between two nodes in a graph

d(u, v) the Euclidean distance between two points on a plane

ε(x) the eccentricity of a node

R(u) the range of a node in a random geometric graph

(Mixed-weight) OLD-sets

N(x) the open neighborhood, or neighborhood

N(A) the open neighborhood of a set of nodes, A, in a graph
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N [x] the closed neighborhood

S a (potential) OLD-set

N(x)∩S the (potential) OLD-set neighborhood induces by (potential) OLD-set S

δ the optimal OLD-set density

m the size of a cluster of nodes in an OLD-set

w(x) the weight function for each node in the graph

w(A) the combined weight of a set of nodes, A, in a graph

B−(x) the open outgoing-ball of a node

B+(x) the open incoming-ball of a node

Complexity

∆ a subgraph for the MW-OLD decision problem

Gi the literal component for the MW-OLD decision problem

Hj the clause component for the MW-OLD decision problem

Probability

p the probability of a edge in a random graph

q the probability that a node is either in or not in both open incoming-balls

of two other nodes

p′ the probability that two nodes are not in the open incoming ball of each

other

ϱ the probability of a weight 2 node in a random or random geometric graph

ϕ the average probability of an edge in a random geometric graph
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Integer Linear Programming

si variable that is 1 if node i is in the (mixed-weight) OLD-set, and 0

otherwise

A matrix defining the open incoming-ball of a graph with weighted nodes

C matrix defining the unique nodes in the open incoming-ball of two nodes

D matrix providing the length of shortest path between two nodes

E′ the adjacency matrix of a graph
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