
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2018 

Range-Wide Variation in Common Milkweed Traits and its Effect Range-Wide Variation in Common Milkweed Traits and its Effect 

on Larvae of the Monarch Butterfly on Larvae of the Monarch Butterfly 

David De La Mater 
William & Mary - Arts & Sciences, dsdelamater@gmail.com 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons 

Recommended Citation Recommended Citation 
De La Mater, David, "Range-Wide Variation in Common Milkweed Traits and its Effect on Larvae of the 
Monarch Butterfly" (2018). Dissertations, Theses, and Masters Projects. William & Mary. Paper 
1550153884. 
https://doi.org/10.1002/ajb2.1630 

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1550153884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.wm.edu%2Fetd%2F1550153884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=scholarworks.wm.edu%2Fetd%2F1550153884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/ajb2.1630
mailto:scholarworks@wm.edu


 
 
 

Range-Wide Variation in Common Milkweed Traits  

and Its Effect on Larvae of the Monarch Butterfly 
 
 
 
 
 
 
 
 
 
 
 

David S. De La Mater III 
 

Ballston Spa, New York 
 

 
 
 
 
 

Bachelor of Science, State University of New York at Plattsburgh, 2016 
 

 
 
 
 
 

A Thesis presented to the Graduate Faculty of The College of William & Mary in 
Candidacy for the Degree of Master of Science 

 

 
 
 
 
 
 
 
 
 

Department of Biology 
 
 
 
 
 
 
 

College of William & Mary 
August, 2018 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by David S. De La Mater III 2018 

 



 



ABSTRACT 
 

Plants play an important role in structuring ecological communities from the 
bottom up through interactions with herbivores, and environmental variation 
can affect these interactions. We use the interaction between common 
milkweed (Asclepias syriaca) and the monarch butterfly (Danaus plexippus) to 
examine 1) the role of environmental variation in dictating plants traits, and 2) 
how those variations affect herbivores. We quantified intraspecific trait 
variation in 53 natural common milkweed populations, then remeasured these 
traits when population representatives were regrown in a common garden to 
control for environmental variation. We then measured growth, performance, 
and survival of monarch larvae feeding on these same plants. Our findings 
indicate distinct spatial patterns in traits throughout the range of A. syriaca, but 
these patterns dissipate when genets are regrown in a common environment. 
When monarch larvae are raised on these milkweeds, those fed on plants 
from the Northeast gain more weight than those fed on plants from the 
Northcentral and Southcentral regions. These results can better inform 
monarch conservation efforts; current conservation efforts have been focused 
on milkweed restoration in the Midwest, but an increased focus on milkweed 
restoration in the Northeast may be beneficial. Furthermore, we demonstrated 
plasticity in specific plant traits in response to environmental change, which 
could have theoretical implications in light of current and projected changes in 
climate. 
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CHAPTER 1: MILKWEED VARIATION 

 

Introduction 

Heritable intraspecific variation of traits is a fundamental basis of evolution by 

natural selection. Intraspecific variation is often the result of environmental 

heterogeneity, which may or may not produce ecotypes of a species. Ecotypes 

are populations or groups of populations which are made up of individuals that 

occupy different geographic regions or different environments that have 

observably different phenotypes which are maintained when grown in uniform 

conditions, yet are still capable of interbreeding with no loss of fitness or fertility 

in offspring (Turesson 1922a; Turesson 1922b; Stebbins 1950). Alternatively, 

intraspecific variation may be a manifestation of phenotypic plasticity in a 

species, with patterns of phenotypes existing as a reflection of patterns of 

environmental variation (Turesson 1922a; Clausen et al. 1948; Núñez-Farfán & 

Schlichting 2001; Stebbins 1950; Turesson 1922b; Nicotra et al. 2010). In the 

case of true ecotypes, to what extent they are actually discrete units of 

populations and not separate segments of a broader  gradient of phenotypes is 

often not clear due to the common practice of sampling few, far apart locations, 

which may provide an illusion of discrete ecotypic units (Núñez-Farfán & 

Schlichting 2001; Clausen et al. 1948; Stebbins 1950). These gradients of 

phenotypic values may occur directionally along environmental gradients in what 

are called “clines” (Huxley 1938; Huxley 1939). The logistic difficulty of sampling 
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many locations along environmental gradients is likely a major contributing factor 

to this confusion. 

 

In order to determine if populations are an ecotype, one must grow suspected 

ecotypes in uniform conditions in a “common garden experiment” (Clausen et al. 

1948; Núñez-Farfán & Schlichting 2001; Turesson 1922a; Oleksyn et al. 1998). If 

the phenotypic differences observed in natural populations persist in a common 

garden, they are genetically controlled and represent ecotypes. If these 

phenotypic differences do not persist in a common garden, then they are 

determined by the environment and the populations are not ecotypes. Common 

garden experiments were instrumental to the modern evolutionary synthesis of 

the 20th century (Stebbins 1950; Núñez-Farfán & Schlichting 2001; Clausen et al. 

1948), and can be a valuable way to investigate the role that environmental 

variation plays in dictating plant traits.  

 

Further investigation into the role of environmental variation in driving 

intraspecific trait variation is newly important in light of current and projected 

changes in climate: global temperatures will increase, temperature and 

precipitation patterns will change, sea levels will rise, snow melt will occur earlier 

and growing seasons will lengthen (IPCC 2014; Karl et al. 2009). These 

environmental changes will occur heterogeneously across the biosphere creating 

heterogeneous changes in physiology, range, phenology, and productivity of 

plants at the individual and population level resulting in changes in the 
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composition and net productivity at the ecosystem level (Melillo et al. 1993; 

Walther et al. 2002; Root et al. 2003; Thuiller et al. 2005). Phenotypic plasticity is 

a crucial mechanism through which plants can adapt to changing environmental 

conditions, but to what extent plasticity can mitigate effects of environmental 

variation on plants is not clear (Nicotra et al. 2010). It is important for us to 

understand how environmental changes will affect ecosystems so that we can 

respond to and possibly mitigate such environmental effects on ecosystems and 

their services. Because these effects initially act at the individual and population 

level, further investigation into the mechanistic effects of environmental variation 

on the traits of producers will allow us to better understand how environmentally-

driven trait changes will manifest at the population and ecosystem level.  

 

Trait-based studies are advantageous because trait measurements can be used 

to compare both within and between species, as well as between studies (Webb 

et al. 2010). In studies of individuals occupying different environments, 

quantitative trait measurements can be related to quantitative environmental 

variables in order to provide possible explanations for intraspecific variation that 

would otherwise be dismissed as noise in the data (McGill et al. 2006). Because 

trait measurements can be used to compare species and studies, this approach 

provides the potential for broad applicability of conclusions (Webb et al. 2010).  A 

trait-based quantitative approach to examining the effect of environment on plant 

traits also lends itself to a predictive modeling framework, opening up future 

possibilities of using environmental variables to predict vital rates and population 
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dynamics, or to provide general predictions for policymakers (McGill et al. 2006). 

In order to lay the groundwork for such studies, a large-scale trait-based 

sampling effort would first need to be conducted on a species that is widespread 

enough to occur through broad environmental gradients and common enough to 

be easily located and sampled, with traits that are easily measured. Combining a 

large-scale sampling effort with a common garden experiment would elucidate 

the role of genetics and environment in generating range-wide patterns of plant 

traits. 

 

Common milkweed (Asclepias syriaca) is an abundant, clonal, perennial herb, 

native to eastern US and Canada, that can be often found growing in patches in 

the middle of a field or clearing, on the side of roads or highways, or on the edge 

of agricultural fields (Figure 1). Some key traits that we can measure in common 

milkweed are carbon, nitrogen (and carbon-nitrogen ratio, or “C/N”), chlorophyll, 

photochemical reflectance index (“PRI,” a measure of photosynthetic compounds 

other than chlorophyll), cardiac glycosides (“cardenolides,” toxic secondary 

metabolites used as a chemical defense against herbivory), latex (a sticky sap 

that serves as a mechanical defense against herbivory), cellulose, lignin, leaf 

mass per area (“LMA”), normalized difference water index (“NDWI,” a measure of 

how much water a leaf contains), number of leaves, plant height, and growth rate 

(both of leaves and of height). Some of these traits are easily measured in the 

field (height, number of leaves, growth rates, and latex), but most of them are 

traditionally difficult to measure since they are chemical and structural properties 
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of leaves, and thus not easily observed and require destructive sampling. 

However, recent strides have been made in the field of spectroscopy, which have 

provided us with effective tools and methods of quickly and accurately estimating 

foliar chemical and structural properties at a fraction of the time, cost, and labor 

that traditional chemical analyses would take (Couture et al. 2015; John J 

Couture et al. 2013; Foley et al. 1998; Asner & Martin 2008; Serbin et al. 2014).  

Asclepias syriaca is also a species of conservation concern due to its role as a 

crucial host plant for larvae of the eastern migrating monarch (Danaus 

plexippus), which has been declining over the past 30 years (Brower et al. 2012; 

Flockhart et al. 2015). This connection to conservation interests has resulted in a 

substantial body of literature. However, much of this literature focuses on 

common milkweed‟s physiology, its loss from the landscape, its secondary 

metabolites, and its interactions with various organisms (Pleasants 2016; 

Pleasants & Oberhauser 2013; Malcolm & Zalucki 1996; Hunter et al. 1996; 

Malcolm 1994; John J. Couture et al. 2013; Couture et al. 2010; Couture et al. 

2015; Vannette et al. 2013; Agrawal 2005; Hartzler 2010; Van Zandt & Agrawal 

2004; Agrawal et al. 2014; Erwin et al. 2014; Malcolm et al. 1989; Bingham & 

Agrawal 2010a; Züst & Agrawal 2016; Wyatt et al. 1993; Woodson et al. 1954). 

Few studies address the issue intraspecific variation in common milkweed; 

whether there is significant variation in common milkweed across its vast range, 

whether variation occurs discretely in response to geographic barriers or 

continuously along environmental gradients, and whether purported variation is 



6 
 

heritable (i.e. genetically controlled ecotypes) or driven by environment. This 

paper attempts to address those concerns. 

 

Much of what is known about intraspecific variation in common milkweed and the 

relative importance of environment in driving it comes from a series of common 

garden experiments conducted by Woods et al. in 2012.  Woods et al. conducted 

a common garden experiment in which they planted seed collected from 22 

populations spanning across the Eastern latitudinal expanse of A. syriaca range 

into three common gardens representing range center and northern and southern 

range edges. They measured traits of plants growing in common gardens and 

discovered significant heritable clines in common milkweed growth and defense 

traits that were well explained by variation in precipitation and latitude. They 

found that latex, root-to-shoot ratio, root buds, and early season height increased 

with latitude while shoot biomass decreased with latitude; in other words, 

northern plants invested more in defense and below-ground biomass. Their 

results indicate that common milkweed shows heritable intraspecific variation in 

growth and defense strategies that may indicate adaptation to differing 

environmental conditions throughout its range. In addition, Woods et al. (2012) 

found that cardenolides exhibited a marginally significant positive relationship 

with latitude, but only in the first year of growth – in the second year of growth, 

this trend was no longer detected. An increase in cardenolide concentration with 

latitude has been reported in previous studies of natural populations, but has only 

weak evidence (Malcolm 1994; Hunter et al. 1996). This pattern is particularly 
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interesting because it runs opposite of what we would expect from theories 

regarding latitudinal patterns in herbivory and defense, and runs opposite of 

genus-wide patterns in Asclepias: species from regions closer to the equator are 

more toxic than their congeners from higher latitudes (Rasmann & Agrawal 

2011b).  

 

In this study, we undertook the largest sampling effort of common milkweed 

natural populations to date: we sampled 53 populations covering the entire native 

range of common milkweed in the US; from Maine to Alabama, from North 

Dakota to Oklahoma (Figure 1). We aimed to uncover patterns of variation in 

plant traits among geographic regions and along environmental gradients. Our 

broad questions at the start of this study were:  

 

1) What are the patterns of trait variation in A. syriaca throughout its entire 

range? Is there significant intraspecific variation in important traits, or are traits 

relatively uniform throughout the range? Does variation occur discretely in 

response to geographic barriers or does variation occur continuously, forming 

trait clines throughout the range?  

 

We predicted more growth and a higher growth rate in the south and we 

expected to find a pattern of increasing defense in the north, aiming to resolve 

the issue of whether cardenolide concentrations do indeed increase along a 

latitudinal gradient (Hunter et al. 1996; Malcolm 1994; Woods et al. 2012). In an 
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attempt to link studies on regional and temporal patterns of monarch population 

dynamics (Stenoien et al. 2015; Flockhart et al. 2015; Inamine et al. 2016) with 

milkweed trait variation and possible novel explanations for patterns in trait 

variation as a result of glacial refugia (Soltis et al. 2006), we predicted that we‟d 

find significant variation in traits between distinct geographic regions bounded by 

the Appalachian Mountains and the Mississippi River. 

 

2) Do ecotypes of common milkweed exist? In other words, is observed 

phenotypic variation controlled genetically or by environmental variables? 

 

We predicted that trait variation would be largely environmentally controlled, but 

that important growth and defense traits (such as C/N, height, cardenolides, and 

latex) would be genetically controlled. 

 

Methods 

Field Collection. Throughout the summer of 2016 (June, July, and August), 53 

populations of common milkweed were sampled, spanning the entire North 

American range of A. syriaca (Figure 1). For each population, two ramets were 

chosen for destructive sampling on opposite sides of the population in order to 

minimize likelihood that they were the same genet. Three more ramets were 

haphazardly chosen at roughly equal intervals between the two destructive 

harvest ramets, for a total of five ramets sampled per population. For each ramet, 

we measured several traits. Observable physical traits consisted of apical height 
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(cm) and number of leaves. We measured latex content by pre-massing filter 

paper inside of microcentrifuge tubes, then cutting one centimeter off of one 

topmost fully expanded leaf and draining the exuded latex onto the filter paper 

until it stopped flowing, and re-massing the filter paper and microcentrifuge tube. 

The difference in mass gave a measurement for latex exudation, which is a 

measure that has been used in other studies, and has been shown to be 

indicative of herbivore resistance (Bingham & Agrawal 2010b; Van Zandt & 

Agrawal 2004; Woods et al. 2012). Foliar traits were estimated by spectroscopy, 

using a portable spectroradiometer (HR-1024i, Spectra Vista Corporation, 

Poughkeepsie, NY, USA), and replicating methods outlined in Couture et al. 

(2013) and Couture et al. (2015). Two leaves, just below the uppermost fully 

expanded leaves, were scanned two times each. From these spectra, we 

calculated foliar nitrogen (N; percent dry mass), carbon (C; percent dry mass), 

lignin (percent dry mass), chlorophyll (g/m2), cellulose (percent dry mass), leaf 

mass per area (LMA; g/m2), normalized difference water index (NDWI; a unitless 

ratio), and cardiac glycoside (cardenolide) concentration (µg/mg). We derived 

C/N ratios from C and N measurements, and we derived growth rates – height 

per growing degree day (height/GDD) and number of leaves per growing degree 

day (leaves/GDD) – by dividing measurements by the total number of growing 

degree days that had occurred at a population location at the time of sampling 

(method of growing degree calculations are explained below). Rootstock was 

collected from the two destructive harvest ramets at opposite ends of the 

population and soil was collected from below the sampled roots for analysis  
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Figure 1: Map of all sample sites (N = 53) and region partitioning. Regions were created partly based 
on geographic barriers purported to be important drivers of variation in other species (Soltis et al. 
2006) and partly based on regions used in studies of monarch population dynamics (Flockhart et al. 
2015; Ries et al. 2015; Stenoien et al. 2015; Inamine et al. 2016). Regions are Northwest (NW; north 
of 41°N and west of the Mississippi River; n = 11), Northcentral (NC; north of 41°N, east of the 
Mississippi River, and west of the Appalachian Mountains; n = 12), Northeast (NE; north of 41°N and 
east of the Appalachian Mountains; n = 6), Southwest (SW; south of 41°N and west of the Mississippi 
River; n = 6), Southcentral (SC; south of 41°N, east of the Mississippi River, and west of the 
Appalachian Mountains; n = 12), and Southeast (SE; south of 41°N and east of the Appalachian 
Mountains; n = 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(described below). Root stock was transported on ice in a cooler and replanted in 

a greenhouse at the College of William & Mary, in Williamsburg, Virginia. We 

measured herbivory on a plant-by-plant basis, but considered it an environmental 

variable, as it is not a trait exhibited by the plant. Herbivory was quantified on 

each leaf by assigning it a score on a scale of 0-6 according to percent of leaf 

tissue removed (0=intact, 1=1-5% removed, 2=6-24% removed, 3=25-50% 

removed, 4=51-75% removed, 5=76-99% removed, 6=only the petiole remains).  
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Environmental Data. Weather and climate data were obtained from the PRISM 

Climate Group (Oregon State University). These data are derived from the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM), 

which provides estimates of weather and climate data for specific geographic 

locations (Daly et al. 2008). This allowed us to use weather and climate 

estimates for the exact geographic location of our milkweed populations, rather 

than rely on data from the nearest weather stations, which were often too far 

away and do not report consistent weather and climate measurements between 

stations. More about this model, and the PRISM Climate Group, can be found at 

their website (http://prism.oregonstate.edu). The data obtained were 2016 

cumulative precipitation (from 15 January – 15 July), 2016 daily minimum 

temperature (from 15 January – 15 July), 2016 daily maximum temperature (from 

15 January – 15 July), 30-year average annual cumulative precipitation (1981 – 

2010), 30-year average daily minimum temperature, 30-year average daily 

maximum temperature, and 30-year average daily mean temperature. From 

these 2016 estimates, we were able to derive estimates of the number of growing 

degree days (GDD) that had occurred at each population at the time of sampling 

(from 15 January until the exact date of sampling). 

 

Percent sand, silt, and clay was determined from soil sampled from beneath 

collected root stock, using a simple soil textural analysis method, as described by 

Kettler et al. (2001). Percent soil dry weight that is carbon, hydrogen, and 

nitrogen was determined using an organic elemental analyzer (2400 series 
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elemental analyzer, PerkinElmer). Percent soil dry weight that is phosphorous 

was determined using an ashing and acid hydrolysis method as described by 

Chambers and Fourqurean (1991). 

 

Greenhouse Common Garden. Plants were regrown from rootstock in a common 

greenhouse environment at the College of William & Mary. Rootstock was 

planted in 6 gallon (23 liter), 14 inch (36 cm) pots, using Fafard 52 Mix, a 

perennial crop soil (Sun Gro Horticulture, Agawam, MA, USA). Scotts slow-

release fertilizer (Scotts-Sierra Horticultural Products Company, Marysville, Ohio, 

USA) was added per manufacturer guidelines. A constant day/night cycle (18 

light / 6 dark) was maintained throughout the seasons through the use of grow 

lights. Humidity was maintained at 75% and temperature was maintained at 

approximately 25° C. Insecticidal soap was used regularly for the first 8 months 

to prevent spider mite, thrip, and aphid infestation (Woodstream Corporation, 

Lititz, PA, USA). Plants were watered liberally as needed.  

At 6 months (December 2016) and again at 12 months (June 2017), all traits 

were remeasured. Immediately after the 6-month measurement, plants were cut 

back to rootstock and allowed to resprout. 

 

Data Analysis. All analyses were done in R (version 3.4.3). Our 53 populations 

were divided into six regions (Figure 1). These regions were used to test our a 

priori hypothesis about how we expected discrete ecotypes of common milkweed 

to emerge. This method of region partitioning represents our attempt at 
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synthesizing plant glacial refugia theory (Soltis et al. 2006) with studies on 

monarch population dynamics in an attempt to link milkweed trait variation into 

the discussion of monarch population dynamics. Studies on monarch population 

dynamics often divide regions based on an East-West Appalachian divide and a 

North-South divide near 40°N latitude; these regions marking distinct stages of 

the annual monarch migration (Flockhart et al. 2015; Stenoien et al. 2015; Ries 

et al. 2015; Inamine et al. 2016; Nail et al. 2015). We used principal component 

(PC) analyses to reduce dimensionality in our data, as many environmental 

variables were found to be correlated with one another, as were many plant 

traits. ANOVAs were conducted between geographic regions  for each 

environmental variable and on the first two environmental PC axes. Simple linear 

regressions were used to look for spatial correlation of environmental variables 

with latitude and longitude, which revealed that latitude and longitude were good 

proxy measurements of most environmental variables (Figure S2; Table S1). 

ANOVAs were used to look for discrete patterns of trait variation between 

regions. In order to look for continuous patterns of trait variation across the 

landscape, general linear mixed models (GLMMs) were used with individual plant 

traits as response variables, latitude and longitude as fixed effects, and 

population as a random effect. 

 

Plant measurements were compared among populations at three timepoints 

(field measurements, 6 months in a common garden, and 12 months in a 

common garden). When comparing field measurements to common garden 
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Figure 2: The first principal component axis is 
driven by temperature variables, and 
differentiates the northern and southern 
regions (A). The second principal component 
axis is driven by soil and precipitation variables, 
and differentiates the Northwest region from all 
other regions (B). 

measurements, we should note that we incurred a dramatic loss in sample size 

(and therefore a loss in statistical power) between field and common garden 

measurements due to the logistics of transplanting root stock to our common 

garden (from an n of 265 to an n of 63). We compared our full field measurement 

dataset to an artificially limited dataset and determined that the same patterns 

exist in our limited dataset that we observed in our full dataset, with similar r2 

values but with slightly less significance. The limited dataset shows the same 

patterns as our full dataset, but less clearly. While field measurements of the 

limited dataset demonstrate a less pronounced difference between field 

measurements and common garden 

measurements, overall trends are 

maintained. A more detailed 

description of this issue, and further 

justification for using our full dataset, 

can be found in the supplement. 

 

Results 

Range-wide environmental variation. 

53.8 percent of the variation among 

sites in the 15 environmental 

variables we measured was 

described by the first two axes of the  

principal component (PC) analysis. 
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The first PC axis was well representative of temperature, with the most important 

variables being (in order of decreasing importance): 2016 average daily mean 

temperature, cumulative 2016 growing degree days at time of sampling, and 30-

year average daily mean temperature. The second PC axis was well 

representative of soil structure and precipitation, with the most important 

variables being (in order of decreasing importance): soil percent clay, soil 

hydrogen (percent dry mass), 30-year average cumulative precipitation, soil 

nitrogen (percent dry mass), 2016 cumulative precipitation, and soil percent 

sand. 

 

ANOVA analyses indicated significant variation between regions in all but 3 of 

the environmental variables that we had measured: soil hydrogen (percent dry 

mass), soil carbon (percent dry mass), and soil nitrogen (percent dry mass). 

ANOVA analyses on the scores of the first two PC axes indicated significant 

differences in these axes among two or more regions: PC1 (temperature axis) 

differed between North and South (Figure 2A, F5,46 =13.69, P < 0.001) while PC2 

(soil / precipitation axis) was different only in the Northwest (Figure 2B). Discrete 

analyses of individual environmental variables can be found in Supplemental 

Table 1. A biplot of PC1 and PC2 shows distinct separation of regions in trait 

space (Figure S1). 

 

Latitude and longitude were good representatives of continuous environmental 

variation across the landscape. Similar to our analysis of discrete variation, 
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simple linear regression analyses indicated that latitude and longitude explained 

continuous variation in all environmental variables except for soil hydrogen, soil 

carbon, and soil nitrogen (Table S2; Figure S2); these were the same variables 

that were unexplained in our discrete analysis (Table S1). PC1 (temperature 

axis) was found to be negatively correlated with latitude (r2 = 0.74, P < 0.001, ß1 

= -0.55), indicating higher within-year and 30-year average temperatures in the 

South and lower within-year and 30-year average temperatures in the North. PC2 

(soil / precipitation axis) was found to be positively correlated with latitude (r2 = 

0.14, P < 0.01, ß1 = 0.22) and negatively correlated with longitude (r2 = 0.25, P < 

0.001, ß1 = -0.10), indicating that the Northwest has lower within-year and 30-

year average precipitation, and soil that contains a lower percent sand and 

higher percent clay while containing more nitrogen and hydrogen. 

 

Biogeographic variation in plant traits. 56.4 percent of the variation among sites 

in the 15 plant traits we measured was described by the first two axes of the 

principal component (PC) analysis. The first PC axis was driven mostly by (in 

order of decreasing importance): C/N, height/GDD, nitrogen, LMA, leaves/GDD, 

and PRI (the “nitrogen axis”), while the second PC axis was driven mostly by (in 

order of decreasing importance): chlorophyll, carbon, cellulose, lignin, and 

cardenolides (the “carbon axis”). Along the carbon axis, cardenolides and foliar 

cellulose and carbon were in opposite directions, indicating a trade-off between 

defensive secondary metabolites and structural foliar compounds (Figure S3).  
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ANOVA analyses on each individual plant trait indicated significant variation 

between two or more regions for only five of fifteen measured traits (Table S3): 

cellulose, LMA, NDWI, leaves/GDD, and height/GDD. Post-hoc analyses 

indicated that of these five traits, all except cellulose showed significant variation 

between the Southwest and Northcentral regions; cellulose differed significantly 

between the Northwest and Northcentral regions. ANOVA analyses on principal 

component scores of the first two PC axes indicated that no significant variation 

existed in principal component scores between regions (Table S3). A biplot of 

PC1 and PC2 showed significant overlapping in trait space of all regions (Figure 

S3).  

 

Although we found little support for discrete variation among regions, latitude and 

longitude explained the continuous plant trait variation we observed across the 

landscape. General linear mixed models (GLMMs) indicated that biogeographic 

variation in plant traits was often well explained by latitude or longitude, with 

variation in all but 4 plant traits (the exceptions being chlorophyll, PRI, latex, and 

lignin) explained by either latitude or longitude (Table 1). PC1 (the nitrogen axis) 

was found to be negatively correlated with longitude (r2 = 0.055, P = 0.045, ß1 = -

0.0578) while PC2 (the carbon axis) was found to be positively correlated with 

latitude (r2 = 0.204, P < 0.001, ß1 = 0.259). As longitude increases (moving from 

west to east), nitrogen increases, PC1 (nitrogen axis) scores decrease, cellulose 

decreases, and C/N ratios decrease (Table 1; Figure 3). As latitude increases 

(moving from south to north), cardenolides, leaves/GDD, height/GDD, and PC2 



18 
 

(carbon axis) scores increase, while carbon, LMA, NDWI, number of leaves, and 

apical height decrease (Table 1; Figure 3).  

 

Traits in a common environment. When plants were resprouted from rootstock in 

a greenhouse and grown in a common environment for 12 months, 14 out of 15 

traits changed over time (Table S4; Figure S4). Carbon, nitrogen, C/N, and 

height/GDD shifted values between measures taken in the field and measures 

taken at 6 months in a common garden, but remained the same between 6  

Figure 3: C/N decreases as longitude increase (A), cardenolides increase as latitude 
increases (B), PC1 scores decrease as longitude increases (C), and PC2 scores increase as 
latitude increases (D). Gray shading around regression lines represents a 95% 
confidence interval. 
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months and 12 months. PRI and lignin did not change between field 

measurements and 6-month common garden measurements, but did change 

between 6 months and 12 months. Chlorophyll, cardenolides, cellulose, LMA, 

and leaves per GDD changed between field measurements and 6-month 

common garden measurements as well as between 6 months and 12 months. 

Latex did not change at all. 

 

When we compare field measurements with common garden measurements, we 

can see that over time, relative importance of traits in PC axes shifted, and trait 

relationships with latitude and longitude were lost. Between field measurements 

and 6 months in a common garden, the nitrogen axis no longer appears and is 

replaced by the carbon axis as the first PC axis. The new second PC axis was 

driven mostly by (in order of decreasing importance):  height, LMA, and leaves 

(Figure S5). At 12 months in a common garden, the nitrogen axis reappears as 

the first PC, and the carbon axis shifts back to the second PC (Figure S5). While 

chlorophyll had always been an important trait in the carbon axis at all three 

timepoints, it becomes newly important in the nitrogen axis when it reemerges as 

the first PC at 12 months in a common garden – chlorophyll in fact is shown to be 

important for both PC1 and PC2 at 12 months in a common garden. A more in 

depth explanation can be found in the supplement, describing how the relative 

importance of specific traits in PC axes shifted over time in a common garden. 
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When plant traits were measured after 6 months in a common garden, GLMM 

results indicate that latitude and longitude accurately explained variation in only 4 

plant traits across the landscape (PRI, LMA, height, and height/GDD; Table 1). 

Both PRI and LMA were significantly correlated with longitude, while height and 

height/GDD were correlated with both latitude and longitude. PC1 was 

significantly correlated with longitude. After a total of 12 months in a common 

garden, GLMM results indicate that only one trait showed a spatial pattern: 

chlorophyll was significantly correlated with longitude (Table 1). Out of the 11 

traits that showed spatial patterns in field measurements, none remained after 12 

months in a common garden, but one trait (chlorophyll) exhibited a newly 

significant pattern (Table 1). Patterns that were present in field measurements in 

carbon, C/N, nitrogen, cardenolides, cellulose, LMA, NDWI, leaves, and 

leaves/GDD did not persist after 6 months in a common garden. Patterns that 

were present in field measurements in height and height/GDD persisted after 6 

months in a common garden, but not after 12 months in a common garden. PRI, 

LMA, height, and height/GDD all showed significant relationships with longitude 

after 6 months in a common garden despite no such patterns being shown in 

field measurements – however, none of those patterns persisted after 12 months 

in a common garden. Chlorophyll was not shown to have any spatial patterns in 

either field measurements or at 6 months in a common garden, but was a 

significant relationship with longitude was observed after 12 months in a common 

garden. PC1 retained its relationship with longitude after 6 months in a common 
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garden but did not after 12 months in a common garden. PC2 showed no spatial 

patterns after 6 months in a common garden.  

 

Role of environment vs. genetics in traits. When trait measurements in a 

common garden (at 6 months and at 12 months) were regressed against field 

measurements, we expected that linear models of traits that are driven by 

environmental variation would have slopes close to zero and have large P 

values. In other words, if a trait is environmentally controlled, its field values 

would have no correspondence to its common garden values (Figure 4A) 

(Oleksyn et al. 1998). When 6 month common garden measurements and 12 

Figure 4: Comparing trait values of individuals as measured in the field and at 12 months 
in a common garden may indicate if a trait is more heavily controlled by environment or 
genetics (A). C/N (B) and Height/GDD (C) show evidence of environmental control of 
those traits, while Cellulose (D) shows evidence of genetic control. 
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month common garden measurements were compared against field 

measurements, all but 2 traits showed no relationship with field measurements, 

indicating that nearly all of the traits that we measured are environmentally 

controlled. Latex in field measurements was found to be weakly predictive of 6 

month common garden measurements, while cellulose in field measurements 

was found to be strongly predictive of 12 month common garden measurements 

(Table S4; Figure 4). 

 

Discussion  

Our results indicate that common milkweed exhibits many biogeographic patterns 

of trait variation, and that these patterns manifest as continuous gradients across 

the landscape that are well approximated by latitude and longitude. When grown 

in a common garden for 12 months, plant traits changed significantly and lost 

their relationships with latitude and longitude (as well as any patterns of between-

region variation). Most traits showed no relationship between field measurements 

and common garden measurements, indicating that most traits are 

environmentally controlled. Latex and chlorophyll were the exceptions, and may 

be genetically controlled. 

 

Because plant trait variation across the range is best described as occurring 

continuously along latitudinal and longitudinal axes, we can reject our initial 

hypothesis that trait variation in A. syriaca exists discretely between regions as a 

result of glacial refugia (genetic analyses may be able to shed more light on this). 
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Because latitude and longitude are here being used as proxies for environmental 

variation across the landscape, these observed patterns in plant trait variation 

indicate that 1) environmental variables occur in directional patterns that are well 

described by latitude and longitude, and 2) plant traits are, for the most part, 

influenced by these environmental variables, which creates similar directional 

patterns in plant traits along these same latitudinal and longitudinal gradients. 

There are distinct directional environmental gradients throughout the range of 

common milkweed, and these underlying environmental gradients drive plant trait 

gradients along these same latitudinal and longitudinal axes, producing clines in 

plant trait values through the range of common milkweed. While environmental 

variables likely drive plant traits and not vice-versa, it should be noted that there 

are some environmental variables that are likely influenced by plant traits – 

namely herbivory (included here as a biotic environmental variable, as it is not a 

plant trait) and soil composition. Much of the variation in plant traits in natural 

populations was well described by two axes in trait space: the “nitrogen axis” and 

the “carbon axis.” The nitrogen axis was found to be negatively correlated with 

longitude (decrease closer to the East coast) and primarily driven by the plant 

traits C/N, height/GDD, nitrogen, LMA, leaves/GDD, and PRI. The carbon axis 

was found to be positively correlated with latitude (increase in the North) and 

primarily driven by chlorophyll, carbon, cellulose, lignin, and cardenolides. 

Because C/N was found to be on the nitrogen axis and orthogonal to the carbon 

axis, this indicates that C/N is driven primarily by variation in nitrogen and not by 

variation in carbon. C/N is an important plant trait for herbivores (a higher C/N 
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equating to a higher quality food source for herbivores), and knowing that it is 

controlled by nitrogen is a valuable insight when considering potential 

ramifications of fertilizer runoff / nutrient loading, especially near agricultural 

areas, which are areas that common milkweed tends to grow. Cardenolides and 

foliar cellulose and carbon varied in opposite directions in trait space, indicating a 

trade-off between defensive secondary metabolites and structural foliar 

compounds (Figure S3). Cardenolides and cellulose are carbon-rich compounds, 

and investment of elemental carbon in one may result in a reduced investment in 

the other. Why foliar carbon (which is derived from % dry mass of leaf material 

that is carbon) would increase with cellulose but not with cardenolides is unclear. 

 

Nitrogen was higher in the East and lower in the West. Nitrogen was found to be 

positively correlated with PRI and negatively correlated with C/N. Carbon was 

lower in the North and increased in the South. Cardenolides were positively 

correlated with latitude (increased defense in the North). This latitudinal trend in 

cardenolide concentrations in common milkweed is something that had been 

reported in the literature but had not been fully resolved; previous studies of 

natural populations had weak evidence (Malcolm 1994; Hunter et al. 1996), while 

a common garden study using seeds from natural populations to grow new 

genets in a common garden found the pattern in the first year but not the second 

year (Woods et al. 2012). However, it has been found that the genus Asclepias 

shows an opposite pattern; species from regions closer to the equator are more 

toxic than their congeners from higher latitudes (Rasmann & Agrawal 2011b). 
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With our study featuring the most complete coverage of the species range, and 

including the most samples of natural populations, it seems reasonable to 

conclude that this pattern is indeed real, at least in natural populations. This 

would indicate that natural populations of A. syriaca show a pattern of toxicity 

that is opposite of their genus. Our best guess to explain this phenomenon is that 

repeated herbivory pressure from migrating monarchs moving north through the 

range of common milkweed every year creates stronger herbivory pressure in the 

north due to the exponential nature of monarch population growth as they move 

north. This pattern of increased herbivory in the north is opposite of the typical 

patterns of greater herbivory at the equator, which may have resulted in common 

milkweed, which is a main host plant of monarch larvae and one which overlaps 

significantly with the monarch breeding range, developing increased resistance in 

the north in response to increased herbivory pressure year after year. 

 

As latitude increases, cardenolides and growth rate (leaves/GDD and 

height/GDD) were found to increase while carbon and total growth (height and 

number of leaves) were found to decrease, which indicates that northern plants 

are smaller and grow more efficiently, but are also more toxic. As longitude 

increases, C/N and cellulose decrease while nitrogen decreases. While foliar 

carbon content was not found to significantly vary directionally with longitude, it 

should be noted that cellulose is a structural compound that contains a high 

amount of carbon, and that foliar carbon content was found to be highly 

correlated with foliar cellulose content (r2 = 0.62, P < 0.001, ß1 = 0.35). 
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Carbon/nitrogen ratios (C/N) are often used as a measure of food quality for 

herbivores; a lower C/N indicates higher quality food (Rasmann et al. 2009). C/N 

is the inverse of nitrogen, and thus was negatively correlated with longitude (r2 = 

0.101, P < 0.01, ß1 = -0.106). This would indicate that plants in the east may 

represent a higher quality food source for herbivores than plants in the west. 

Taken together, these results indicate that plants in the Northeast may be of a 

higher quality food source, and are better defended (i.e. more toxic), than plants 

in the Southwest. This observation supports existing theory that the more 

valuable the plant tissue, the better defended it will be (Rasmann et al. 2009; 

Bingham & Agrawal 2010b; Coley et al. 1985; Coley 1983). 

 

Over the span of one year, plant traits changed and these biogeographic patterns 

with latitude and longitude were lost. We showed that common milkweed is 

capable of relatively rapid adjustment of phenotype inside a single generation – 

nearly all traits demonstrate the potential for plasticity (except for latex). This 

suggests that given novel environmental conditions, common milkweed will 

rapidly change in response, which may provide context for how environmental 

changes brought on by climate change or other anthropogenic disturbances (e.g. 

nutrient loading, land cover / land use change, etc.) might affect this species and 

how they may plastically adjust their phenotype, which is an important insight for 

conservation efforts (Nicotra et al. 2010).  
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At 6 months in a common garden, only the relationship between latitude and 

plant height remained. At 12 months in the greenhouse, no biogeographic trends 

that were observed in the field could be detected, but chlorophyll was 

significantly correlated with longitude. This indicated that the patterns of plant 

trait variation in natural populations, along latitudinal and longitudinal gradients, 

are driven by environmental variation along those axes. Plant traits in common 

milkweed appear to be mostly dictated by environment; variation observed 

among natural populations is a reflection of the variation between the 

environments they occupy. When this underlying environmental variation is 

removed, plants adapt and no longer exhibit the variation in trait values that they 

had in their natural environment. Plant traits no longer track latitude and 

longitude because the link of environmental variation is no longer there.  Why 

chlorophyll becomes significantly correlated with longitude after 12 months in a 

common garden is unclear, though it could be merely a statistical anomaly. When 

we compared plant traits of individuals at 6 months and at 12 months in a 

common garden to their values when measured in the field, only cellulose at 

latex showed significant correlation between field and common garden values, 

indicating that these traits may be more genetically controlled than 

environmentally controlled. 

 

The largest sampling effort of natural populations to date, this study can be used 

as a frame of reference moving forward in studies dealing with common 

milkweed traits, and may provide some needed unifying context to studies that 
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are carried out in different parts of the range. Additionally, we have confirmed the 

existence of a latitudinal pattern of common milkweed toxicity that runs opposite 

of the genus-wide pattern of increased toxicity towards the equator, which is 

something that has previously been unresolved in the literature. These patterns 

of trait variation are likely primarily driven by environmental variation, but 

cellulose and latex may be traits that are primarily genetically controlled. Finally, 

our results may provide valuable information for current efforts to conserve the 

monarch butterfly through milkweed conservation and restoration projects; 

milkweed from the Northeast appears to be of a higher nutritional quality (low 

C/N) and better defended (higher cardenolide concentrations). If monarchs are 

fed on common milkweed from the Northeast, they may benefit from the 

increased nutritional quality as well as the added protection of higher 

cardenolides (which monarchs use to defend themselves against predation). If 

this is the case, placing added emphasis on milkweed conservation in the 

Northeast may be a valuable use of limited resources.  A next step in this 

research is to be able to link variation at the producer level to the next trophic 

level. We determined that in common milkweed, there exist biogeographic 

patterns of traits, and that these traits are capable of plastically adapting to novel 

environments, but do those patterns of trait variation affect herbivores? Do 

changes in trait values at the plant level manifest at the next trophic level to 

influence growth, performance, or survival? These questions could be asked 

within the monarch-milkweed model interaction in order to answer these 

fundamental questions while providing context for a declining species.  
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CHAPTER 2: MONARCH RESPONSE 

 

Introduction 

The monarch butterfly (Danaus plexippus) is well known for its annual multi-

generational migration between Mexico, The U.S., and Canada. The monarch‟s 

80% decline over the past 30 years has created widespread public concern for its 

conservation (Flockhart et al. 2015; Brower et al. 2012). This concern has 

prompted extensive research on monarch demography, life history strategies, 

migration patterns, and its interactions with its most important host plant, 

common milkweed (Asclepias syriaca) (Malcolm et al. 1989; Inamine et al. 2016; 

Pleasants 2016). However, there has been insufficient research into how 

intraspecific variation in common milkweed affects monarch larvae. In 2012, 

Woods et al. conducted a common garden experiment in which they planted 

seed collected from 22 populations across the range and showed that both the 

latitude and precipitation (30-year averages) of the seed collection sites were 

negatively correlated with monarch performance (measured by total wet mass), 

though the relationship with latitude was reported as only marginally significant 

(0.1 > P > 0.05). In 2015, Couture et al. used seed collected from 5 populations 

in Wisconsin and Michigan – 3 northern populations and 2 southern populations 

– to assess the effects of elevated temperature and water stress (both 

independently and interactively) on milkweed and the cascading effects of those 

treatments on monarch larvae through their food. They found that larvae grew 

larger when fed plants that were exposed to increased elevated temperatures, 
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plants that were exposed to water stress, plants that were exposed to both 

treatments (compared to larvae fed control plants), and plants from southern 

populations (as opposed to northern populations). They also found evidence that 

monarch growth is positively impacted by increases in plant foliar nitrogen 

content, while monarch growth is negatively impacted by increases in plant water 

content and carbon-nitrogen ratio (C/N). Taken together, these two studies 

indicate that there may be clines in the quality of common milkweed as a food 

source for monarch larvae, but more work is needed to fully resolve this issue.  

 

Section 1 detailed our findings regarding intraspecific variation in common 

milkweed and the role that environment plays in driving that variation. A large 

amount of variation exists in common milkweed traits throughout its range. Most 

of these traits, however, were found to be environmentally controlled, with at 

least two traits (latex and cellulose) that may be genetically controlled. Given the 

results of our common garden experiment, it is unlikely that ecotypes of common 

milkweed exist, either as discrete groups of populations or as a continuous 

gradient of heritable phenotypic differences. This section explores what impacts, 

if any, intraspecific variation in common milkweed has on the growth, 

performance, and survival of monarch larvae. We wanted to know: 1) Is monarch 

growth, performance, or survival affected by variation in specific milkweed traits? 

If that is the case, then how do those differences manifest or play out? 2) Despite 

our inability to detect ecotypes of common milkweed, does the origin of a 

milkweed plant affect the growth, performance, or survival of monarch larvae in 
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such a way that it would indicate distinct ecotypes in common milkweed? In other 

words, could ecotypic differentiation be so subtle that we were unable to detect it 

with our study design but still significant enough to be experienced by monarch 

larvae? 3) Given insights from 1 & 2, are there parts of the common milkweed 

native range with the “best” milkweed, in terms of food source for monarch 

larvae? Our results from Section 1 indicate that milkweed from the Northeast 

may have a higher nutritional quality (lower C/N) and greater toxicity (higher 

cardenolide concentrations). 

 

The monarch butterfly (Danaus plexippus) is a Nymphalid butterfly with larvae 

that feed exclusively on plants of the genus Asclepias, or the milkweeds. Larvae 

grow rapidly and undergo 5 instar phases over the span of 2 weeks before 

entering their chrysalis phase. While in the chrysalis for about 2 weeks, the body 

reforms as an adult butterfly. After eclosion, the breeding adult will live for 2-6 

weeks. Adult females will deposit eggs exclusively on milkweed species (Opler et 

al. 1992). There are four main American populations of Danaus plexippus: a non-

migratory Florida population, a non-migratory Mexican population, a Western 

migrating population, and an Eastern migrating population. There are also 

pockets of small populations throughout the Caribbean and South America, and 

even in Australia (Zalucki & Rochester 2004). The Western migrating population 

overwinters on the southwest coast of California, and moves northeast in the 

spring to breed in states west of the Rocky Mountains, and in British Columbia, 

Canada. The largest population, in terms of both size and range, is the Eastern 
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migrating population (Oberhauser et al. 2008; USDA NRCS 2015), and it is 

members of this population that we will focus on further (and which hereafter may 

be referred to simply as “monarchs”). 

 

The entire Eastern migrating population overwinters in a small cluster of 

mountain tops in central Mexico, between the State of Michoacán and the State 

of Mexico (West of Mexico City). The monarchs wait out the winter in a state of 

reproductive diapause (non-breeding) as they cluster on branches of the Oyamel 

fir tree (Abies religiosa), which is the dominant tree on these mountaintops. This 

habitat and this tree are essential for the monarch‟s survival through the winter. 

The high elevation of the mountain range keeps the butterflies cool enough that 

they do not expend much energy on metabolic processes, while being just warm 

enough for them to survive. The tree itself has thermoregulative properties and 

forms microclimates in its stands; it keeps the monarchs cooler than ambient 

temperature during the day (which prevents them from expending too much 

energy on metabolic processes), and warmer than ambient temperature during 

the night (which prevents them from freezing). The needles of the fir trees also 

collect moisture from the air, which the monarchs use as a source of drinking 

water (Oberhauser et al. 2008; USDA NRCS 2015). 

 

In March of every year, the overwintering monarchs break diapause, move north, 

and start reproducing in northern Mexico and southern United States. Adults lay 

their eggs exclusively on milkweed species. There are 4-5 breeding generations 



34 
 

of monarchs that move north and east through their breeding habitat of eastern 

United States and Canada. These breeding adults live for 2-6 weeks while 

feeding on flower nectar. The final generation at the end of the breeding season 

(generation 4 or 5) enters reproductive diapause and migrates south to the 

overwintering site in Mexico. These non-breeding adults can live far longer than 

the breeding adults (up to 8 months if needed), and are the same generation that 

moves north the next spring (Oberhauser et al. 2008; USDA NRCS 2015). 

 

The eastern migrating population of the monarch butterfly has declined by an 

alarming 80% in past three decades, with a projected quasi-extinction probability 

of 11-57% within 20 years (Flockhart et al. 2015; Brower et al. 2012). Some main 

causes of monarch decline are overwintering habitat loss, climate change or 

extreme weather events, loss of nectaring sources along the monarch migration 

routes, and loss of breeding habitat, specifically common milkweed (Asclepias 

syriaca) (Semmens et al. 2016; Inamine et al. 2016; Malcolm et al. 1993; Brower 

et al. 2012; Thogmartin et al. 2017; Pleasants & Oberhauser 2013; Pleasants 

2016).  

 

Since monarchs cluster very densely in such a small and specific habitat, 

conservation of the overwintering site has been of great concern. The Monarch 

Butterfly Biosphere Reservation (MBBR) was established by the Mexican 

president in 1980, and was meant to protect the monarch‟s overwintering habitat 

from destruction or disturbance. Illegal logging activity within, and subsistence 
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farming in buffer areas around the reserve, have contributed to the decline of the 

overwintering habitat over the years. Between 1971 and 1984, there were 1.7% 

annual rates of forest decline, and between 1984 and 1999, there were 2.4% 

rates of annual forest decline in and around the reserve (Brower et al. 2002). 

Between 2012 and 2012 alone, 2057 hectares were illegally logged (Vidal et al. 

2014). The “milkweed limitation hypothesis” attributes monarch decline to 

milkweed decline driven by the use of herbicide-resistant crops and glyphosate 

herbicide, such as “Roundup” (Inamine et al. 2016; Stenoien et al. 2015; 

Pleasants & Oberhauser 2013; Pleasants 2016). Recently, the importance of 

milkweed has been disputed, and survival during migration has been suggested 

as a more important driver of monarch decline (Inamine et al. 2016). Despite 

disagreement over the cause of monarch decline, an estimated 1.6 billion 

additional milkweed stems would be needed to meet monarch conservation goals 

(Pleasants 2016). Already, US Fish and Wildlife and other conservation 

organizations have begun milkweed restoration projects (Lee 2015; Fritsher 

2015; USDA NRCS 2015; Oberhauser et al. 2008); however, we know little about 

how milkweed variation affects monarch growth, performance, and survival, 

which is necessary information needed to support and direct these efforts 

(Woods et al. 2012; Couture et al. 2015). 

 

Methods 

Larvae bioassay. In the summer of 2017, we conducted a monarch feeding trial 

with our plants from across the range of A. syriaca. We performed two rounds of 
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feeding trials with 63 plants and 126 larvae (two replicates of 63 plants, 1 larva 

per plant per replicate, for a total of 126 larvae). This occurred after the plants 

had adapted to a common environment over the period of one year, thus 

eliminating any effects of environmental variation on larval growth, performance, 

and survival. Each plant was randomly assigned to a larva a priori, and larvae 

were fed on leaf tissue from only their assigned plant. This entire trial was 

performed two times, and the average measurement of those two trials was used 

in data analysis. We obtained monarch eggs from our on-site captive breeding 

population. Eggs were placed on a leaf from their assigned plant and closely 

monitored in a growth chamber until they hatched. Larvae were kept separate by 

growing them in individual containers. The growth chamber was kept at optimal 

conditions for rearing monarch larvae (Couture et al. 2015; Hughes et al. 1990; 

Hughes et al. 1993). Upon their hatching, we measured the mass and length of 

first instar larvae. Larvae were provided ad libitum access to water and leaf 

tissue (from their assigned plant) for one week. We recorded the mass of all leaf 

tissue entering and exiting the larvae containers in order to determine how much 

leaf tissue was consumed. After one week, we remeasured the length and mass 

of the larvae. Larval growth was determined by the amount of length gained and 

the amount weight gained. Performance was determined by two measurements 

of efficiency: efficiency of ingestion (which is a ratio of the amount of weight 

gained divided by the amount of plant tissue consumed), and efficiency of 

digestion (which is a ratio of the amount of weight gained divided by the 

difference between the amount of plant tissue consumed and the amount of frass 
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excreted); a higher ratio (for either) indicates a more efficient (or better 

performing) larva (Hughes et al. 1990). Survival was determined by whether or 

not the larvae survived for the entire trial (binary). 

 

Statistical Analyses. All analyses were done in R (version 3.4.3). We used the 

same region divisions that we did to investigate regional variation in milkweed 

traits (Figure 1; Figure 2). ANOVAs were used to look for discrete patterns of 

monarch larvae trait variation when fed plants from different regions. General 

linear mixed models (GLMMs) were used to test for linear relationships between 

monarch measurements and the latitude or longitude of the collection site from 

which the plant they were fed came from. Because it has been suggested that 

patterns in herbivory may occur not on a latitudinal or longitudinal gradient, but 

instead based on absolute distance from plant range center (Alexander et al. 

2007), we also tested for relationships between monarch measurements and 

distance from range center. We used monarch larvae measurements as 

response variables, latitude, longitude, and distance from range center as fixed 

effects, and milkweed population as a random effect, in order to look for 

continuous patterns of monarch larvae measurement variation when fed plants 

from along the aforementioned spatial gradients. Simple linear regressions were 

used to look for linear relationships between monarch larvae measurements and 

specific plant traits. 
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Results 

ANOVA analyses on each individual monarch variable measured indicated 

significant variation between two or more regions for only one measured variable: 

weight gain (Table S6). Post-hoc analyses indicated that weight gain showed 

significant variation between the Northeast region and the Northcentral and 

Southcentral regions (Figure S6). It should be noted, however, that these two 

regions (Northcentral and Southcentral) each have a single extreme value that 

lies within the range of values similar to those for the Northeast region. Results of 

our general linear mixed models (GLMMs) showed no significant trends in 

monarch measurements with latitude, longitude, or distance from range center 

(Table S7). We found that while many monarch variables showed nearly 

statistically significant relationships with distance from range center, no models 

cleared our significance threshold of P < 0.05. Simple linear regressions 

indicated that several milkweed traits had linear relationships with two monarch 

growth variables: increases in plant chlorophyll and nitrogen resulted in increases 

in monarch weight gain, increases in plant NDWI and C/N resulted in decreases 

in monarch weight gain, and increases in plant height resulted in decreases in 

monarch length gain (Figure 5; Table 2; Figure S7). Comparing plant PC axes to 

monarch measurements revealed that only PC1 (the nitrogen axis) influenced a 

single monarch variable: food eaten had a negative relationship with PC1 (r2 = 

0.298, P = 0.001, ß1 = -29.53). Although we expected to find negative linear 

relationships between monarch growth and cardenolide concentrations, we found 

none. However, looking back to our plant carbon and nitrogen PC axes for 12  
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Figure 5: Monarch weight gain increases with milkweed nitrogen (A) and chlorophyll (B), and 
decreases with milkweed NDWI (C) and C/N (D) (n = 45). Gray shading around regression lines 
represents a 95% confidence interval. 

Table 2: Results of linear regression analyses of monarch larvae measurements with specific plant 
traits (n = 45). Several milkweed traits had correlative relationships with two monarch growth 
variables: increases in chlorophyll and foliar nitrogen resulted in increases in monarch weight gain, 
increases in NDWI and C/N resulted in decreases in monarch weight gain, and increases in plant 
height resulted in decreases in monarch length gain. Only statistically significant results are shown. 
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month common garden measurements from Section 1 (Figure S5), we know that 

we should expect cardenolides to exhibit a negative relationship with chlorophyll 

content, which we did observe (r2 = 0.453, P < 0.0001, ß1 = -0.077).  

 

While no significant continuous biogeographic trends in larvae measurements 

were detected along latitudinal, longitudinal, or distance from range center 

gradients, some biologically interesting spatial patterns were observed along a 

distance from range center gradient (but did not clear our significance threshold 

of P < 0.05). Specifically, GLMM results revealed that distance from range center 

had a marginally positive influence on monarch weight gained (r2 = 0.0676, P = 

0.0847, ß1 = 0.574), length gained (r2 = 0.0804, P = 0.0631, ß1 = 0.265), and 

efficiency of ingestion (r2 = 0.1183, P = 0.0735, ß1 = 0.005) (Table 2). 

 

Discussion 

Although no biogeographic trends were detected in monarch growth, 

performance, or survival, some marginal patterns in monarch measurements 

were observed along a distance from range center gradient. This should be 

specifically investigated in a larger study; if range center patterns in plant-

herbivore dynamics can be uncovered, it would help to develop our 

understanding of those dynamics and biogeographic theory generally.  

 

Between-region ANOVAs revealed that larvae raised on plants from the 

Northeast gained significantly more weight than those fed on plants from the 
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Northcentral and Southcentral regions. It is important to note that both the 

Northcentral and Southcentral regions each have a single extreme value that lies 

within the range of values similar to those for the Northeast region, so it is not out 

of the realm of possibility that with additional replications of this feeding trial, 

more points would land within that range and that the difference between those 

regions and the Northeast region could become insignificant. When plants were 

fed to larvae, we could detect no continuous biogeographic trends or 

interregional variation in plant trait values except for a longitudinal cline in foliar 

chlorophyll. This indicates that larvae were experiencing some variation in the 

plants that we were unable to detect with our current study design. Again, a 

larger study may provide the statistical power to more clearly determine whether 

this pattern is a genuine representation of natural phenomena.  

 

Simple linear regression analyses on the relationship between monarch 

measurements and plant trait values at time of feeding reveal several linear 

relationships between important milkweed traits and measurements of monarch 

growth. Monarch weight gain was positively impacted by increased chlorophyll 

and nitrogen, and negatively impacted by increased NDWI and C/N, while length 

gain was negatively impacted by plant height (Figure 5; Table S8; Figure S7). 

These results support previous findings by Woods et al. (2012) and Couture et al. 

(2015); while we could not replicate their findings that latitude of collection site 

influenced monarch growth, we did find that plant water content (NDWI) was 

negatively correlated with monarch growth, which supports findings from both 
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studies. Our results also support specific findings in Couture et al. (2015): that 

monarch growth is positively impacted by increased foliar nitrogen while being 

negatively impacted by increased NDWI and C/N.  

 

We showed that monarch growth increased as plant nitrogen increased and C/N 

decreased. In our field measurements of plant traits from Section 1, we learned 

that as longitude increased, nitrogen increased and C/N decreased. Interpreted 

together, these results would indicate that we would expect better monarch 

growth when eating plants from the East. We showed that monarch growth 

increased as plant NDWI and height decreased. In our field measurements of 

plant traits, we found that as latitude increased, both NDWI and height 

decreased. Interpreted together, these results would indicate that we would 

expect better monarch growth when eating plants from the North. If increasing 

latitude and increasing longitude should both result in higher quality food for 

monarchs, one might guess that the Northeast would represent the “best” food 

source for monarch larvae, an assumption which is supported by the results of 

our ANOVA analyses on the effect of plant origin on monarch weight gain (Table 

S6; Figure S6). 

 

Cardenolides and latex are two important defensive measures milkweed employs 

to protect against herbivory. It is not surprising that latex did not have an impact 

on monarch growth, performance, or survival, because we fed monarchs leaf 

clippings, which removed the flow of latex from mechanically inhibiting monarch 
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feeding. The effect of latex on monarch development, and the effect of stopping 

latex flow, has been well studied (Zalucki & Brower 1992; Zalucki et al. 2001; 

Woods et al. 2012). Using leaf clippings was part of a decision we made to be 

able to obtain higher resolution monarch growth and performance data – which is 

information that is missing from the current literature – at the potential expense of 

giving up the ability to observe the effects of latex. In order to collect information 

on the amount of food consumed and the efficiency of ingestion and digestion, 

we needed to be able to measure all plant biomass going into and coming out of 

larvae containers, which would have been impossible if monarchs were fed on 

intact plants. While it is not surprising that latex had no observable effect on 

monarch growth, performance, or survival, it is surprising that cardenolides had 

no effect. While it is generally accepted that increased cardenolide 

concentrations are associated with decreased monarch survival, whether 

cardenolide concentrations (or cardenolide toxicity) and latex are intertwined is 

surprisingly unresolved (Rasmann & Agrawal 2011b; Rasmann et al. 2009; 

Cohen 1983; Vickerman & Boer 2002; Zalucki & Brower 1992; Agrawal 2005; 

Rasmann et al. 2011; Rasmann & Agrawal 2011a; Seiber et al. 1982). While we 

found no relationship between cardenolide concentrations and monarch growth, 

performance, or survival, we did find that an increase in plant chlorophyll 

concentrations was associated with an increase in monarch weight gain. 

Considering that cardenolide concentrations had a strong negative relationship 

with chlorophyll concentrations, it may be that a negative relationship between 

cardenolides and monarch growth existed but that we were unable to detect it. 
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Because we measured plant traits before the feeding trial, when plants were fully 

intact, it is possible that our trait measurements are not fully indicative of what 

larvae were eating. Further bioassays using intact plants, spectroscopy, and 

latex measurements would be needed to resolve this issue. 

 

In terms of specific conservation implications, our results indicate that monarchs 

thrive best on common milkweed from the Northeast, and that plants are capable 

of having differential effects on monarchs even after adapting to a new 

environment for up to one year. Considering current and ongoing milkweed 

conservation efforts in light of these conclusions, it may be beneficial to focus 

more intently on conservation of monarch breeding habitat in the Northeast – a 

region which is often overshadowed by the Midwest when discussing monarch 

conservation and milkweed restoration. This might include endeavors as involved 

as explicit restoration and replanting efforts, or as simple as easing roadside and 

highway median mowing. 

 

Previous studies have shown that milkweed abundance may not be the main 

driver of monarch loss because the bulk of within-year monarch population 

decline does not occur until after the breeding season (Inamine et al. 2016). Our 

conclusions do not refute those findings, but instead provide a caveat: there may 

be latent effects of milkweed quality on monarchs. In other words, perhaps there 

are enough milkweed stems on the landscape to produce a sufficiently large 

population of monarch adults at the end of the breeding season, but those adults 
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may be either more or less robust for the long migration ahead of them 

depending on where they grew up.  

 

Some studies predict that climate change will result in conditions that will 

facilitate a northward shift in monarch range, further into Canada (Zalucki & 

Rochester 2004; Batalden et al. 2007), but it is unclear if milkweed (i.e. monarch 

breeding habitat) will be able to make the same northward shift, meaning that it is 

unclear if the potential expansion in monarch range will be realized. If monarch 

ranges do shift northwards, however, there may be an increased reliance on 

milkweed from the North, which may result in more monarchs feeding on 

milkweed from the Northeast as larvae, which could result in increased growth, 

and monarchs that are more robust for their southern migration. Recent findings 

using herbaria records indicate that common milkweed may have historically 

increased in response to anthropogenic disturbance and land-use change (Boyle 

et al., In Prep). Given that within-species variation in common milkweed traits 

affects monarch growth, it is fair to assume that between-species variation in 

Asclepias traits also affects monarch growth. If the proportion of Asclepias 

species has shifted over the years, the quality of food available to monarchs on 

the landscape may have changed as well. In other words, as the composition of 

the Asclepias community throughout the monarch breeding range has shifted, 

monarch growth (and subsequently migration success) may have shifted in 

response. 
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Although our results indicate that monarch larvae perform differentially 

depending on milkweed traits (and possibly milkweed source), we do not know if 

those results carry over into the larvae‟s adult stage. The adult is an important 

stage in terms of monarch population trends, as breeding and migration happen 

in this stage. It may be fair to assume that greater growth in larval form will result 

in larger adults, with more fat reserves and longer wingspans, and therefore 

more successful migrants, but we cannot be sure until those experiments are 

conducted. Further research testing the effects of intraspecific variation in 

milkweed traits (and possibly source) on monarch adult traits would be beneficial. 
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APPENDIX (SUPPLEMENT) 
 

Relative importance of traits in PC axes shifts over time in a common 

garden. In field measurements, 56.4 percent of the variation among sites in the 

15 plant traits we measured was described by the first two axes of the principal 

component (PC) analysis. The first PC axis was driven mostly by (in order of 

decreasing importance): C/N, height per GDD, nitrogen, LMA, leaves per GDD, 

and PRI (the “nitrogen axis”), while the second PC axis was driven mostly by (in 

order of decreasing importance): chlorophyll, carbon, cellulose, lignin, and 

cardenolides (the “carbon axis”). Along the carbon axis, cardenolides and foliar 

cellulose and carbon were in opposite directions, indicating a trade-off between 

defensive secondary metabolites and structural foliar compounds (Figure S3). At 

6 months in a common garden, 43.8 percent of the variation among sites in the 

15 plant traits we measured was described by the first two axes of the principal 

component (PC) analysis. The first PC axis was driven mostly by (in order of 

decreasing importance): lignin, chlorophyll, carbon, cellulose, NDWI, and 

cardenolides while the second PC axis was driven mostly by (in order of 

decreasing importance): LMA, height, and leaves (Figure S5). After 12 months in 

a common garden, 57.2 percent of the variation among sites in the 15 plant traits 

we measured was described by the first two axes of the principal component 

(PC) analysis. The first PC axis was driven mostly by (in order of decreasing 

importance): leaves, PRI, height, chlorophyll, nitrogen, and C:N, while the second 

PC axis was driven mostly by (in order of decreasing importance): carbon, LMA, 

lignin, chlorophyll, cardenolides, and cellulose (Figure S5). 
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Loss of statistical power in common garden measurements. We measured 5 

individuals in the field but only transplanted 2 out of those 5 to a common garden. 

Additionally, some plants did not survive the transplant. This has resulted in a 

dramatic decrease in sample size and therefore a decrease in statistical power, 

as we went from an n of 265 to an n of 63. To determine if this would affect our 

comparisons of field measurements with common garden measurements, we 

limited our dataset to only consider individual plants that were transplanted and 

survived to the final timepoint (12 months in a common garden) and compared 

the spatial patterns and principal component compositions of that limited dataset 

to those of our full dataset. 

 

 In field measurements, in our limited data set, 51.3 percent of the variation 

among sites in the 15 plant traits we measured was described by the first two 

axes of the principal component (PC) analysis (as opposed to 56.4% in the full 

dataset). The first PC axis was driven mostly by (in order of decreasing 

importance): chlorophyll, nitrogen, C/N, PRI, and lignin (the “nitrogen axis”), while 

the second PC axis was driven mostly by (in order of decreasing importance): 

carbon, LMA, cellulose, NDWI, height per GDD, cardenolides, and lignin (the 

“carbon axis”) (Figure S5A). This is relatively unchanged from the full dataset 

(Figure S3). 
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As opposed to 11 traits in our full dataset,  GLMMs on our limited dataset 

indicated that latitude and longitude accurately explain variation in only 6 plant 

traits across the landscape (C/N, cardenolides, cellulose, leaves, leaves/GDD, 

and height/GDD). Variation in PC2 was still accurately explained by latitude, but 

variation in PC1 was no longer explained by longitude. If we compare the full 

dataset and limited dataset r2 and P values for the models that were no longer 

significant, we can see that r2 values are very similar and that while P values do 

not meet our significance threshold of 0.05, they are all still below 0.1 for all 

individual traits (but not for PC1). In other words, these patterns still exist, but we 

are less confident in them.  

 

It is unlikely that these relationships and patterns ceased to exist in our limited 

dataset, but rather that we lacked the statistical power to detect them. In other 

words, the full dataset is a more accurate representation of natural phenomena, 

resulting in more realistic models. While comparisons using the limited dataset 

demonstrate a less pronounced difference between field measurements and 

common garden measurements, the overall trend is maintained: the patterns and 

relationships observed in field measurements shift and dissipate over time in a 

common garden, with the exception of chlorophyll (Table 1). For these reasons, 

we chose to illustrate differences between the full dataset and common garden 

measurements in our main manuscript, as we believe that it is more true to 

natural phenomena and more conveys our central points. 

 



50 
 

Supplemental Tables and Figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S1: Results of ANOVA analyses of environmental variables between geographic regions. Orange 
highlighting denotes statistical significance (P < 0.05). 

Table S2: Results of linear regression analyses of environmental variables with latitude and longitude. 
Latitude and longitude accurately represent variation in all but 3 variables across the landscape. Orange 
highlighting denotes statistical significance (P < 0.05). 
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Figure S1: Biplot of PC1 and PC2 of environmental variables. Each point represents a 
sample location(n = 53). PC1 is driven mostly by variables related to temperature. PC2 is 
driven mostly by variables related to soil structure and precipitation.   

Figure S2: As latitude increases, PC1 scores decrease (A), while PC2 scores increase (B). As 
longitude increases, PC2 scores decrease (C). Gray shading around regression lines represents 
a 95% confidence interval. 
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Figure S3: Biplot of PC1 and PC2 of plant trait values. Each point represents a 
population average (n = 53). PC1 is driven mostly by nitrogen, C/N, growth rate, 
and PRI . PC2 is driven mostly by cellulose, carbon, chlorophyll, lignin, and 
cardenolides.  

Table S3: Results of ANOVA analyses of population averages of plant traits between geographic regions. 
Orange highlighting denotes statistical significance (P < 0.05). 



53 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table S4: Results of ANOVA analyses of plant traits measured on individuals at three timepoints 
(TP0: field measurements; TP1: 6 months common garden; TP2: 12 months common garden). 
Orange highlighting denotes statistical significance (P < 0.05). 

Figure S4: Plant traits (scaled to  values in field measurements) change over time in a common 
garden, measured in the field, at 6 months in a common garden, and at 12 months in a common 
garden. All traits except for latex changed significantly over time. 
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A) D) B) 

Figure S5: Biplot of PC1 and PC2 of trait measurements on individuals in the field (A), after 6 months in a common 
garden (B), and after 12 months in a common garden (C). Each point represents a population average (n = 45). PC1 for 
field measurements (A) is driven mostly by nitrogen, C/N, chlorophyll, lignin, and PRI, while PC2 is driven mostly by 
carbon, LMA, and cellulose. PC1 for 6 month common garden measurements (B) is driven mostly by lignin, chlorophyll, 
carbon, cellulose, NDWI, cardenolides, and PRI, while PC2 is driven mostly by growth rate, LMA, and carbon. PC1 for 12 
month common garden measurements (C) is driven mostly by PRI, leaves, height, and growth rate, while PC2 is driven 
mostly by carbon, chlorophyll, cardenolides, cellulose, lignin, and LMA.  

Table S5: Results of a simple linear regression of trait values of individuals as measured in the field 
against trait values as measured at either 6 months in common garden or 12 months in common garden. 
A large F value and a P value <0.05 indicate that the linear model  has a slope that is statistically different 
from zero, which itself suggests that a trait is “genetically controlled”. Latex at TP1 and cellulose at TP2 
show significance. Orange highlighting denotes statistical significance (P < 0.05). 
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Figure S6: ANOVAs indicate a significant difference (see Table S6) in monarch weight gain when fed 
plants from the Northeast versus plants from the Southcentral or Northcentral regions (n = 45). It 
should be noted, however, that these two regions (Northcentral and Southcentral) each have a 
single extreme value that lies within the range of values similar to those for the Northeast region. 
 

Table S6: Results of ANOVA analyses of monarch measurements when fed milkweed from different 
regions (n = 45). Weight gain showed significant variation between the Northeast region and 
Northcentral and Southeast regions. It should be noted, however, that these two regions (Northcentral 
and Southcentral) each have a single extreme value that lies within the range of values similar to those 
for the Northeast region. Orange highlighting denotes statistical significance (P < 0.05). 
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Table S7: Results of a general linear mixed model on monarch larvae measurements of individuals fed 
common milkweed that had been collected from across the range and kept in a common garden for 12 
months (n = 63). We used monarch larvae measurements as response variables, latitude,  longitude, and 
distance from range center as fixed effects, and population included as a random effect, in order to look 
for continuous patterns of monarch larvae measurement variation when fed plants from along the 
aforementioned spatial gradients. No models produced statistically significant results. 
 

Figure S7: A correlation matrix of plant traits at time of feeding (12 months’ time growing 
in a common garden) and monarch measurements (n = 45). 
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