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ABSTRACT 
 

The incidence of tick-borne diseases is on the rise in the US and around the world, 
due in part to emerging pathogens. However, the environmental drivers affecting 
these pathogens remain unclear. Most research on the topic in the US has focused 
on Borrelia burgdorferi, which causes Lyme, but it is unknown if the same 
conditions that affect B. burgdorferi also affect other pathogens, which may be 
carried by other ticks or reservoirs. The answer will help determine generalizable 
principles in tick-borne pathogen ecology, if they exist, as well as better manage 
for tick-borne pathogen risk in areas at risk from new and often unfamiliar 
pathogens. One such pathogen in the eastern US is Ehrlichia chaffeensis, which 
is transmitted by the lone star tick (Amblyomma americanum) and is the causative 
agent of monocytic ehrlichiosis, a potentially fatal illness. Here, I examine spatial 
and temporal variation in E. chaffeensis prevalence in southeastern Virginia and 
how this is influenced by the environment.  
 
In Chapter 1, I used four years of data to ask how E. chaffeensis prevalence 
changed between years and how this was affected by seasonal weather patterns. 
Using mixed-effect models, I related E. chaffeensis occurrence to temperature, 
humidity, vapor-pressure deficit, and precipitation up to 21 months prior to 
sampling. Annual prevalence varied significantly from 0.9% - 3.7%, and was 
positively affected by temperatures during the previous winter (i.e. before the 
current cohort of nymphs hatched). I hypothesize this is because winter 
temperature affects reservoir host mortality or natality, which would in turn affect 
the availability of naïve reservoir hosts in the spring. Regardless of mechanism, 
my findings have implications for the future because winters in this region are 
predicted to grow warmer, which could increase E. chaffeensis prevalence. 
 
In Chapter 2, I used five years of field data to ask how landscape context affects 
spatial variation in the prevalence of E. chaffeensis and interannual occupancy 
dynamics of its vector, A. americanum. Under a Bayesian framework, I created a 
metric- and scale-optimized model to relate E. chaffeensis prevalence and A. 
americanum turnover to the availability, quality, and fragmentation of habitat. 
Prevalence was highest and turnover was lowest in areas of low forest cover and 
low edge density, dominated by deciduous trees. Thus, highest disease risk is 
predicted in areas of forested areas that are either isolated or abutted against 
impermeable boundaries, both characteristic of many parks. 
 
Many of my results highlight the complexity of tick-borne disease dynamics and 
the challenges inherent to the subject; some results ran counter to my predictions 
and E. chaffeensis prevalence remains rare, which makes it challenging to model. 
That said, my work also represents important progress in an often-neglected area 
of tick-borne disease ecology. To my knowledge, this is the first study to address 
temporal variation in E. chaffeensis prevalence, and is one of few studies to relate 
E. chaffeensis prevalence to landscape context at a scale relevant to the 
pathogen’s hosts and to disease-risk management.
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Chapter 1 

Broad, multi-year sampling effort highlights complex dynamics of the 

tick-borne pathogen Ehrlichia chaffeensis 

 
1.1 Introduction 

Predicting the distribution of tick-borne pathogens is a vital but difficult challenge 

in disease ecology. Tick-borne disease risk is increasing in the United States and in much 

of the world (Childs and Paddock 2003, Süss 2008, Ebel 2010, Stanek et al. 2012), but 

complex population dynamics of ticks and their hosts (Ostfeld et al. 1995, 1996) make it 

difficult to accurately model pathogen dynamics. Much of the work on this subject regards 

the black-legged tick (Ixodes scapularis, Say) and Borrelia burgdorferi, the causative agent 

of Lyme disease, but other tick-borne pathogens, like Ehrlichia chaffeensis, have received 

less attention. 

Ehrlichia chaffeensis is a pathogenic bacterium of increasing importance in the 

United States and particularly the Southeast. In humans, E. chaffeensis infects mononuclear 

phagocytes and causes a potentially fatal illness (Paddock and Childs 2003). Cases are rare 

relative to Lyme disease, but its incidence has doubled between 2000 and 2012 (Heitman 

et al. 2016). Ehrlichia chaffeensis is maintained in a transmission cycle between the lone 

star tick (Amblyomma americanum) as its only known vector and the white-tailed deer 

(Odocoileus virginianus) as its primary reservoir (Yabsley 2010). There is some evidence 

that other mammals, notably in the families Scuridae and Leporidae, also act as reservoirs 

for E. chaffeensis, but most A. americanum seem to be infected by O. virginianus (Allan 

et al. 2010). The apparent simplicity of this system, relative to Lyme disease, may make it 

easier to model and predict the prevalence of E. chaffeensis (i.e. proportion of ticks 

infected) but, to do so effectively, we must begin to consider all the dimensions over which 
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prevalence varies. 

To date, most studies regarding A. americanum and E. chaffeensis prevalence have 

neglected temporal variation, conducting surveys over only one or two seasons (e.g. 

Harmon et al. 2015, Trout Fryxell et al. 2015, Whitlock et al. 2000). This approach 

overlooks the possibility of pathogen prevalence fluctuating through time, which could 

prove to be important to effectively predicting disease risk. For instance, Steiner et al. 

(1999) observed differences in tick infection rate by E. chaffeensis between the two seasons 

of their study, but were unable to conclude whether it was due to “natural variations” in 

yearly infection rate or to sampling error. This distinction is not trivial, and the question 

remains whether infection prevalence is fluctuating, and which environmental factors are 

involved. In this study, we begin to address these questions by examining four years of 

variation in E. chaffeensis occurrence in eastern Virginia. 

The objective of this paper is, first, to describe temporal heterogeneity in E. 

chaffeensis prevalence and, second, to evaluate potential environmental drivers of that 

variation. We expect E. chaffeensis occurrence to be driven by factors influencing 

population density or habitat use of its primary hosts, A. americanum and O virginianus. 

Admittedly, there are myriad factors and interactions that can determine interannual animal 

population dynamics (for instance, oak masting patterns have been posited to drive 

dynamics within the Lyme system; Ostfeld et al. 1996), but we aimed to use environmental 

variables for which there are broadly continuous datasets to facilitate predictive modeling. 

To this end, we focused on evaluating the effects of weather, data for which are widely 

available and vary on relevant spatial and temporal scales. 

We evaluated the effects of weather by modeling E. chaffeensis occurrence as a 
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function of seasonal weather variables across four years. We define occurrence as the 

detection of E. chaffeensis in analyzed ticks, and use the probability of occurrence as a 

proxy for E. chaffeensis prevalence in the A. americanum population. Specifically, we 

collected ticks and tested for E. chaffeensis occurrence at 130 plots across four years. We 

describe changes in E. chaffeensis prevalence between years and used generalized linear 

mixed-effect models to relate E. chaffeensis occurrence to temperature, humidity, vapor-

pressure deficit, and precipitation while controlling for host density, and compare between 

candidate models using corrected Akaike’s Information Criterion (AICc; Burnham et al. 

2011). 

 

1.2 Methods 

1.2.1. Study Species and Area 

Amblyomma americanum are hard-bodied, three-host ticks with asynchronous life 

stages. Peaks of activity vary between years and regions, but the general pattern is the same 

(Sonenshine and Levy 1971, Kollars et al. 2000): adults emerge first, peaking in the late 

spring, usually a month before nymphs peak in early summer. Larvae emerge in the 

summer and peak in late summer or early fall. This sequence likely helps to perpetuate the 

transmission cycle because adults, by having already fed twice in their lifetime, are the 

most likely to be infected (via transstadial transmission; Mixson et al. 2004, Varela-Stokes 

2007) and, by emerging first, are positioned to pass the infection to naïve hosts. This is 

important because, through an acquired immune response, O. virginianus are able to purge 

E. chaffeensis from their bloodstream over time (Davidson et al. 2001, Yabsley et al. 2003, 

Nair et al. 2014).  
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We used these activity patterns to designate seasons over which to aggregate 

weather data in our analyses (Figure 1.1). We designate ‘spring’ as February through May, 

representing the end of quiescence and a period of increasing activity for both adults and 

nymphs, and ‘summer’ as June through October, in line with the larval activity period. Our 

two winters were defined differently; ‘winter (t)’ was designated as November through 

January, a period when all life stages of A. americanum are dormant, and ‘winter (t-1)’ was 

expanded to include October because of the schedule of O. virginianus’ mating season and 

gestation period (Yarrow 2009). 

This study was conducted on the Virginia and Middle Peninsulas of eastern 

Virginia. Our 130 plots were selected via stratified random sampling of forests on public 

lands and were spatially clustered within 17 distinct sites defined by a combination of 

management and plots’ proximity (Figure A1). Because our intention was to evaluate E. 

chaffeensis prevalence across a range of environmental conditions, we erred for spatial 

rather than temporal replication within seasons. Plots ranged in elevation from 

approximately 2 – 40 m above sea level and were in mixed hardwood-coniferous forest. 

Figure 1.1: This timeline, moving from the beginning of our sampling period through the 
previous fall and winter, shows the seasons and variables considered in our models as they 

concern the nymphs used in our study. Precipitation is a cumulative measure, while 

temperature, humidity, and vapor pressure deficit (VPD) are daily means, except fall/winter t-
1, for which we also include a mean daily minimum temperature and cumulative degree-days 

below 0 °C (i.e. freezing degree-days). 
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The most common tree species were Pinus taeda, Liquidambar styraciflua, Liriodendron 

tulipifera, Ilex ocpaca, Fagus grandifola, Acer spp., and Quercus spp. 

The state of Virginia has among the highest incidence rates of ehrlichiosis in the 

country (Centers for Disease Control and Prevention 2018a), and the Virginia and Middle 

Peninsulas are an ideal region to conduct this study because there is a high density of O. 

virginianus (Virginia Department of Game and Inland Fisheries 2015) and an 

anthropogenically fragmented landscape indicative of high contact between ticks and 

humans (De Keukeleire et al. 2015, Jirinec et al. 2017). 

 

1.2.2. Data Collection 

We collected ticks during the mornings and afternoons of June through July in 

2012, 2013, 2015, and 2016, visiting sites in random order. Due to a gap in funding, we 

did not collect ticks in 2014. We avoided sampling during or immediately following rain 

because, during our pilot season, we observed rainfall to reduce tick activity. We visited 

each plot once per year, where we collected ticks by flagging along two perpendicular 30-

m transects, crossing at the 15-m midpoint (Ginsberg and Ewing 1989). We dragged a 1 

m2 square white-canvas flag along the ground and checked for ticks every 3 m. Ticks were 

identified to species and life stage, placed in 70% ethanol, and frozen on the same day at -

80°C until extraction to prevent DNA degradation. 

Our study focused on E. chaffeensis prevalence in nymphal ticks. This is in part 

because they are considered the most responsible for pathogen transmission to humans 

(Centers for Disease Control and Prevention 2018b), and also because our study period 

most closely aligns with the nymph activity period. Moreover, larvae would not have been 
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infected with E. chaffeensis because they would not have fed previously and E. chaffeensis 

is not transovarially transmitted (Yabsley 2010).  

Due to inclement weather interfering with sampling and PCR runs for which tick 

DNA did not amplify, which sometimes occurred when testing only one or two nymphs, 

we did not have four years of data for every plot. Of the 130 plots, we had data for 104 in 

2012, 116 in 2013, 127 in 2015, and 106 in 2016. There were 4 years of data for 81 plots, 

3 years for 34 plots, 2 years for 11 plots, and only 1 year for 4 plots. 

As part of an on-going study of biodiversity, we surveyed for O. virginianus scat 

(pellets) at these same sites every year from 2010 – 2016, allowing us to associate E. 

chaffeensis occurrence in a given year with deer use the previous year (when the collected 

ticks would have fed). We walked two 60-m transects (centered on the same point as the 

tick transects) and recorded number of pellets and perpendicular distance from transects. 

We estimated deer pellet-group density (groups ha-1; group ≥ 1 pellet) in Program 

DISTANCE (Thomas et al. 2010), fitting detection functions on the basis of Chi-square 

goodness-of-fit tests and assessing fit of covariates on the basis of AIC (Burnham et al. 

2011). Included covariates were: days since rain, days since above average rain (regional 

average within field season), Julian date, observer, and year. Our final deer-pellet 

DISTANCE model was a half-normal cosine (χ2 = 20.5, df = 17, P = 0.25) with Julian date 

and year as covariates. In our statistical analyses of E. chaffeensis occurrence, we consider 

three deer metrics: plot-level density, plot-level presence or absence, and mean site-level 

density (i.e. the mean of density estimates from all plots within a site). 

We downloaded daily weather data from PRISM (Parameter-elevation 

Relationships on Independent Slopes Model; Daly et al., 2001, Oregon State University 
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2018). These data are produced at 4-km resolution, but we downloaded them at the point 

level on the basis of distance-weighted interpolation within an 8-km radius. We 

downloaded precipitation, temperature, and dew point values and back calculated mean 

vapor-pressure deficit and relative humidity from dew point and temperature values 

(Alduchov and Eskridge 1996). In our analyses, we included cumulative rainfall and 

average temperature, vapor-pressure deficit, and relative humidity because these variables 

describe water availability, which influences tick survival and distribution (Semtner et al. 

1971, Koch 1984, Springer et al. 2015) and because temperature and precipitation have the 

potential to influence mammal populations via resource availability (Carroll and Brown 

1977, McGinnes and Downing 1977) or fecundity (Coulson et al. 2000, Patterson and 

Power 2002). For the deer-breeding season (winter, t-1), we also included average daily-

minimum temperatures and cumulative freezing-degree-days as alternative measures of 

metabolic demand (Fig. 1). Because of ticks’ ability to avoid extreme weather events in 

microclimatic refugia, tick population dynamics are driven more by averages than by 

extremes (Ogden and Lindsay 2016) and, similarly, deer population dynamics also seem 

to be attune to cumulative effects (Post and Stenseth 1998). Therefore, we used sums and 

averages rather than individual minima or maxima. 

 

1.2.3. Molecular Analyses 

Nymphal tick and E. chaffeensis bacterial DNA was extracted using a DNeasy 

Blood and Tissue Kit (QIAGEN, Valencia, CA). Ethanol-fixed nymphal ticks from each 

plot were placed in screw-cap tubes with 1 mm glass beads for bead-beating in an Omni 

Bead Ruptor Homogenizer (Omni International, Kennesaw, GA), and DNA was extracted 
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following the manufacturer’s protocol. The DNA was eluted in 100 μL buffer and stored 

at 4 °C short-term, and -80 °C long-term. Ticks were aggregated at the plot level (following 

previous studies, e.g. Whitlock et al. 2000, Mixson et al. 2004, Wright et al. 2014), and 

analyzed in groups of up to 20 ticks. When greater than 20 ticks were collected during a 

plot-visit (8% of observations, N = 452), a random subsample of 20 ticks were analyzed. 

Across all years, we used endpoint polymerase chain reaction and gel electrophoresis to 

determine presence of E. chaffeensis, and validated results of this analysis with real-time 

polymerase chain reaction for 2013 samples. 

Presence of tick and E. chaffeensis DNA in extracts was confirmed using a PCR 

targeting species-specific regions of the 16s rRNA gene. For ticks, we used primers 16S+1: 

5'CTGCTCAATGATTTTTTAAATTGCTGT-3' and 16S-1: 5'-

GTCTGAACTCAGATCAAGT-3' targeting a 454-bp amplicon (Macaluso et al. 2003, 

Nadolny et al. 2011) and for E. chaffeensis we used primers HE1: 5'- CAATTGCTTA 

TAACCTTTTGGTTATAAAT-3' and HE3: 5'-

TATAGGTACCGTCATTATCTTCCCTAT-3', targeting a 389-bp amplicon (Anderson et 

al. 1992, Stromdahl et al. 2000). The total PCR reaction volume was 20 μL consisting of 5 

μL extracted DNA and 15 μL reaction mix, including 10 μL EconoTaq PLUS GREEN 2x 

Master Mix (#30033, Lucigen, Middleton, WI), 0.8 μL each forward and reverse primers 

(10μM) and 3.4 μL H2O. PCRs were performed in a 2720 Thermal Cycler (Life 

Technologies, Grand Island, NY). The cycle parameters for the tick-specific PCR consisted 

of an initial step at 95°C for 4 min, 35 cycles of 95°C, 50°C, 68°C for 1 min each, followed 

by a final 10 min step at 68°C. The presence of E. chaffeensis was tested using cycle 

conditions of 3 cycles of 94°C for 60 s, 55°C for 120 s, 72°C for 90 s, 28 cycles of 94°C 
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for 30 s, 55°C for 35 s, 72°C for 40 s followed by 72°C for 7 min. 

All PCR products were separated on a 1% agarose gel using either GelRed Nucleic 

Acid Stain (10 μL/100 mL) (RGB-4103, Phenix Research Products, Candler, NC) or 

ethydium bromide (5 μL/100 mL) (Thermo Fisher Scientific, Waltham, MA). Each gel 

included a negative (no DNA) control to test for contamination.  

PCR products were spot checked for accuracy by sequencing to confirm species. 

Samples were purified and prepared for sequencing using a PCR/Gel Extract Mini Prep Kit 

(#IB47020, IBI Scientific, Peosta, IA). Sequencing was conducted by Lidia Epp at the 

College of William & Mary Molecular Core Facility. 

 

1.2.4. Data Analysis 

We conducted mixed-effect regression analyses in R (R Core Team 2017), using 

the lme4 package (Bates et al. 2015) to model E. chaffeensis occurrence at the plot level 

via logistic regression. Models were conditional on the presence of ticks (i.e. removing 

plot-visits where no ticks were found) and controlled for the abundance of ticks (i.e. 

including loge-transformed tick abundance as a covariate in all models). Candidate 

covariates were: mean and minimum daily temperature, mean vapor-pressure deficit and 

humidity, cumulative precipitation and freezing degree-days, aggregated for five seasons 

(Fig. 1), three measures of deer use during the previous summer (presence/absence and 

estimated plot- and site-level pellet-group density), and survey date, which we included in 

case there is within season variation in E. chaffeensis prevalence. We began by including 

nested site and plot random-intercepts, but these were removed if they did not explain any 

variation in the null model. 
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To select between models, we held random-effect structure constant and screened 

variables individually on the basis of AICc (Zuur et al. 2009, Burnham et al. 2011). We 

then considered multiple-regression models combining variables performing better than 

the null and within cumulative AICc weight of 0.95. We opted for this bottom-up approach 

to model selection because, due to the exploratory nature of our analysis, we wanted to 

reduce the total number of models compared. Especially because it was unknown which, 

if any, variables were important, we felt that a top-down approach using a global model 

would produce a large candidate set, which would increase the risk of spurious, overfit 

results (Anderson 2008). We also screened covariates for collinearity using Pearson’s 

correlation and did not include pairs for which |r| ≥ 0.70 (Mela and Kopalle 2002). 

We estimated and report regression and prevalence estimates as follows. For 

regression estimates, we calculated 95% confidence intervals using likelihood profiles. For 

prevalence, we used a Microsoft Excel add-in (Biggerstaff 2009) to calculate bias-

corrected maximum likelihood estimates with skew-corrected 95% confidence intervals. 

We used this program for both annual point estimates and to test for the differences 

between years. We considered differences significant if the confidence interval for the 

difference in prevalence between two years did not include 0. When reporting summary 

statistics of field observations, we simply report the mean (± SD) unless otherwise noted. 

Because the focus of this research was to evaluate variation in E. chaffeensis 

prevalence at broad spatial extents, requiring spatial over temporal replication, we did not 

include analyses of tick abundance in this paper. Our preliminary analyses revealed small 

effect sizes that were inconsistent between life stages. While this could represent real lack 

of effect or consistency, we find it just as likely that our data are not robust enough for 
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modeling because we did not replicate plot-level samples within years (Dobson 2013).  

 

1.3 Results 

Ehrlichia chaffeensis prevalence was variable, with significant differences between 

years 2012 and 2013, and between 2013 and 2015 (Figure 1.2). On the basis of 2472 

nymphs, estimated prevalence was 0.89% in 2012 (n = 591), 3.7% in 2013 (n = 700), 0.93% 

in 2015 (n = 550), and 2.2% in 2016 (n = 631). Across years, the number of plots testing 

positive for E. chaffeensis were 5 of 104 (4.8%), 23 of 116 (19.8%), 5 of 127 (3.9%), and 

12 of 106 (11.3%), in 2012, 2013, 2015, and 2016, respectively. Prevalence also varied 

spatially; no plot was positive every year it was surveyed and, of the 39 plots that did test 

positive, only 5 were positive more than once (Figure S1). Aggregating at the site level 

also shows high turnover. While 88% of sites (n = 17) tested positive at least once, 35% 

tested positive only once, 24% twice, 24% three times, and only one site tested positive 

across all four years. It is also worth noting that the only two sites to never test positive 

were the two northern most sites, on the Middle Peninsula. Although these plots also had 

among the lowest tick abundances, they had collectively more ticks than five other sites 

that all tested positive. 

Interannual variation in tick abundance and deer pellet-group density was much 

less dramatic than E. chaffeensis prevalence, although within-year variation of deer pellet-

group density was very high. Mean nymph abundance per plot was 8.5 (± 20.9) in 2012, 

10.7 (± 25.3) in 2013, 6.5 (± 18.5) in 2015, and 8.0 (± 13.4) in 2016, with nymphs being 

found on 75% of plot-visits. Mean adult abundance per plot was 0.50 (±1.2) in 2012, 0.70 
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(±1.8) in 2013, 0.52 (±0.91) in 2015, and 0.36 (±1.0) in 2016, with adults found on 29% of 

plot visits. Across years, site-level means ranged from 0.17 (±0.41) to 95.5 (±132.23) 

nymphs per plot and 0.0 (±0) to 3.0 (±4.64) adults per plot. Because we did not analyze all 

ticks found in large clusters (i.e. >20 ticks), the mean number of nymphs analyzed each 

year were slightly different, being 8.0 (±6.4), 7.4 (±6.3), 5.7 (±5.5), and 8.4 (±6.8) nymphs 

per plot in 2012, 2013, 2015, and 2016, respectively. Mean plot-level deer pellet-group 

density was 86 groups ha-1 (±150.5) in 2011, 89 groups ha-1 (±128.6) in 2012, 99 groups 

ha-1 (±193.5) in 2014, and 82 groups ha-1 (±157.1) in 2015. Across years, site-level means 

ranged from 0.0 – 382 groups ha-1. 

 

1.3.1. Ehrlichia chaffeensis occurrence models 

Occurrence of E. chaffeensis was best explained by previous-winter (i.e. t-1) 

Figure 1.2: Estimated prevalence of Ehrlichia chaffeensis in Amblyomma americanum 

nymphs, aggregated across all plots, during the four years of our study. Error bars represent 

skew-corrected 95% confidence intervals (Biggerstaff 2009). 
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temperature, with warmer winters corresponding to higher probability of occurrence. 

While other models performed better than the null, the variables representing winter 

temperature held >99% of the weight of evidence. Of these, average winter temperature 

and freezing degree-days held 97% cumulative AICc weight, and so only these were 

considered in a multiple-regression model, which was then added to the candidate model 

set (Tables 1.1, A1). 

In the final candidate model set, the top model included both mean temperature and 

freezing degree-days during the previous winter (October – January, t-1), holding 56% 

AICc weight. Given the variation in temperature within our dataset, this model predicted 

mean temperature to cause E. chaffeensis occurrence probabilities of 0.033 – 0.14, and 

freezing-degree-days to cause a range of 0.0057 – 0.12. The simple-regression models of 

these two variables fell not far behind, with mean temperature ∆AICc = 1.64 (AICc weight 

= 0.25) and freezing degree-days ∆AICc = 2.28 (AICc weight = 0.18). In each case, the 

magnitude and precision of slope estimates increased relative to the multiple-regression 

model, likely due to moderate collinearity between mean temperature and freezing degree-

days (Pearson’s r = -0.47). Mean daily minimum temperature was the fourth model, but 

performance dropped considerably relative to the others (∆AICc = 7.93, AICc weight = 

0.01). Each of these variables were far more important than tick abundance alone (∆AICc 

= 15.27, AICc weight < 0.01). Date, deer presence/absence, and plot-level deer density 

were unimportant explanatory variables, with ∆AICc values of 14.30, 14.17 and 14.56, 

respectively, and having performed only slightly better than the tick-only model (difference 

in AICc ≤ 1.1, Table S1). Site-level deer density performed worse than the tick-only model 

(∆AICc = 16.94, difference from ticks-only model = -1.67). 
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Random-effect estimates in the E. chaffeensis model showed negligible variation 

to be attributable to the site-level aggregation. Therefore, our analyses included only plot-

level random-effects. In the top four models, plot-intercept standard deviation estimates 

ranged from 0.49 – 0.60 (95% CI: 0.0 - 1.4). 

 

1.3.2. Weather 

Aggregating across all years (2011-2016) and plots, temperature and vapor-pressure deficit 

displayed clear seasonal trends, while precipitation and relative humidity were relatively 

stable (Figure A2). Temperature rose after January (mean = 3.7 ˚C) and through July (mean 

Model β0 β i 
Lower 

95% CI 

Upper 

95% CI 
∆AICc 

AICc 

weight 

Mean winter temp (t-1) + 

FDD (t-1) 
-2.6 

0.45 

-0.50 

0.026 

-1.09 

1.45 

0.009 
0.0 0.56 

Mean winter temp (t-1) -2.5 0.71 0.35 1.12 1.64 0.25 

Winter FDD (t-1) -2.51 -0.85 -1.40 -0.39 2.28 0.18 

Min winter temp (t-1) -2.41 0.54 0.19 0.93 7.93 0.01 

…       

Deer presence/absence -1.91 -0.60 -1.28 0.06 14.17 <0.01 

Survey date -2.26 -0.28 -0.62 0.04 14.30 <0.01 

Deer-pellet density -2.23 -0.32 -0.82 0.05 14.56 <0.01 

…       

Ticks only -2.23 0.51 0.13 0.92 15.27 <0.01 

…       

Null -1.92 - -2.50 -1.58 20.30 <0.01 

Table 1.1: Abridged summary of the E. chaffeensis model set. All models are conditioned on 

tick presence and include tick abundance (except the null). Candidate variables were mean and 

minimum temperature, freezing degree-days (FDD), cumulative precipitation, mean vapor 
pressure deficit, mean relative humidity, estimated deer-pellet density, and deer-pellet 

presence/absence. Regression parameters are derived via logistic-regression of centered and 

scaled data. Confidence intervals represent the profiled likelihood CI’s for the slope (β), except 
the null, for which they represent the intercept’s CI. Ellipses (…) mark where models were 

omitted. For the complete model set, see Supp. Table S1. 
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= 27.0 ˚C) before declining again through January. Vapor-pressure deficit followed the 

same trend, correlating strongly with temperature (Pearson’s r = 0.94). Precipitation tended 

to be higher in the summer (June – October) than in other months, but there was much 

variation between plots and years. Relative humidity tended to peak in September and was 

lowest January – April, but here, too, there was much variation between plots and years. 

Freezing degree-days measured during October – January, accumulated most heavily in 

January, and none were recorded in October (Figure A3a). The number of freezing degree 

days also varied between years (coefficient of variation = 82%), with the most being 

recorded in 2014, and the fewest in 2012 (Figure A3b). Further summary of weather during 

the seasons defined in our models can be found in Table A2. 

 

1.4 Discussion 

We found that E. chaffeensis prevalence can vary significantly between years, 

suggesting that robust investigation of prevalence and distribution of this pathogen needs 

to span both space and time, and that effective modeling of disease risk must begin to 

account for temporal dynamics. Just as importantly, we also found the spatial distribution 

of E. chaffeensis to be inconsistent between years, with only 5 of our 130 plots testing 

positive multiple years. Even when plots are aggregated at the site level, E. chaffeensis 

occurrence was inconsistent between years, an observation corroborated by the fact that 

negligible variation was attributed to the site-level random-intercept. That said, it is 

noteworthy that E. chaffeensis was never detected in either site on the Middle Peninsula. 

Together, these results suggest high turnover in the regional spatiotemporal distribution of 

E. chaffeensis, which has implications in our ability to make inferences based on spatially 
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or temporally limited datasets. Moving forward, it will be critical to build spatially 

replicated, longitudinal studies to effectively account for these dynamics when trying to 

understand E. chaffeensis prevalence or predict disease risk. 

In the present study, we attempted to explain variation in E. chaffeensis occurrence 

by evaluating the effects of seasonal weather. Of those included, our analysis identified 

winter temperature as the only plausible weather variable corresponding with E. 

chaffeensis occurrence. This effect is seen at a one-year time lag, prior to the hatching of 

the sampled cohort of ticks. While this could be driven by increased over-winter mortality 

of adult ticks, which would decrease the infection rate of naïve hosts in the spring and thus 

suppress the transmission cycle, there remains little to no evidence of cold winters reducing 

tick populations. In particular, the supercooling ability of A. americanum (and other ticks; 

Burks et al. 1996) and the lack of deep freezes in our study region make us consider this 

unlikely. Instead, we find it more likely the effect of winter temperature is mediated 

through the ticks’ vertebrate hosts. While strict deduction of mechanisms is beyond the 

scope of this study, this trend is consistent with aspects of E. chaffeensis ecology. Below, 

we discuss these to posit biological mechanisms warranting further investigation. 

Our models showed cold winters during the previous year (t-1) to be associated 

with lower E. chaffeensis prevalence in the current year. Most simply, this could be due to 

increased overwinter mortality causing decreased availability of competent reservoir hosts. 

Overwinter survival of Leporids can be positively associated with temperature (Rödel et 

al. 2004), and it seems likely Sciurds are affected similarly. Winter temperatures could also 

act on O. virginianus, though perhaps not as directly. Cold winter have been shown to 

decrease ungulate natality (Coulson et al. 2000), delay birthing and increase fawn mortality 
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(Parker et al. 2009), and to interact with density dependence to decrease overwinter 

survival (Sæther 1997). On the Virginia peninsula, where deer are chronically 

overpopulated, we hypothesize that low winter temperatures during the mating and early 

gestational period could decrease the abundance of juvenile (fawn and yearling) deer in the 

spring, by reducing natality and increasing mortality. All of this is important because young 

deer appear to be play an important role in the disease transmission cycle. While all age-

classes of O. virginianus are equally likely to be seropositive for E. chaffeensis antibodies, 

suggesting they are exposed at equal rates, younger deer are far more likely to carry the 

bacteria in their bloodstream (Yabsley et al. 2003). This suggests a tick is more likely to 

become infected after feeding on a fawn or a yearling than an adult O. virginianus. For this 

reason, we hypothesize a decrease in juvenile deer availability in the spring will decrease 

the proportion of blood meals taken by lone star larvae from rickettsemic deer during the 

summer and thus lead to decreased proportion of infected nymphs the following spring. 

Conversely, warmer winters could cause an increase in E. chaffeensis transmission and 

subsequent prevalence. It is plausible, then, that cold winters could affect E. chaffeensis 

prevalence through all of its known vertebrate hosts, and future studies should explicitly 

relate E. chaffeensis prevalence to population dynamics of reservoir hosts, including not 

just O. virginianus, but Sciurids and Leporids. 

It is worth noting that two of our predictions were not met: neither tick nor deer 

abundance were strong predictors of E. chaffeensis occurrence. Tick abundance alone did 

improve model performance relative to the null (decrease in AICc = 5.03), but the strength 

of this model is diminutive compared to those including winter temperature (∆AICc = 

15.27). Models of deer abundance performed worse, having no bearing on E. chaffeensis 
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occurrence. Given the body of evidence for deer as important hosts for both A. americanum 

and E. chaffeensis (Paddock and Childs 2003, Yabsley 2010), we expected areas of high 

deer use to have higher E. chaffeensis occurrence. This could be because deer may not be 

as solely responsible for maintaining the E. chaffeensis transmission cycle as traditionally 

thought, and/or because of unequal contribution of deer from different age classes to E. 

chaffeensis transmission. The former hypothesis is simpler, and corroborates previous 

studies that have suggested other animals are equal if not more competent reservoirs for E. 

chaffeensis (Allan et al. 2010, Harmon et al. 2015), but we feel the latter is also plausible 

and consistent with deer ecology, and we have no way of directly testing either hypothesis 

with our data. 

 

Conclusion 

Further substantiation of our results will provide two opportunities. First is the 

production of dynamic E. chaffeensis risk models. Any landscape analyses of E. chaffeensis 

occurrence given a single year of data would be confounded by inter-annual variation in 

weather (unless those variations are homogenous across the landscape) and would be 

generally unable account for temporal fluctuations in E. chaffeensis prevalence. Hence, our 

study provides purpose and direction for explicit spatiotemporal modeling of disease risk. 

The second regards climate change. The effect of climate change on emergence and 

prevalence of zoonotic disease is a growing concern (Patz et al. 1996), and our study 

provides a basis for how climate change could affect E. chaffeensis prevalence in the 

Chesapeake Lowlands of Virginia. By the end of the 21st century, days below freezing are 

projected to decrease across the southeast (Kunkel et al. 2013), which, according to our 
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results, could increase occurrence of E. chaffeensis. With further substantiation of the 

association between E. chaffeensis prevalence and variation in seasonal weather patterns, 

we can begin to make meaningful predictions of climate change’s future contribution to 

disease risk. 

In all, our study reveals high interannual variation in E. chaffeensis prevalence, 

including high spatiotemporal turnover of pathogen occurrence within our study region. 

This variation can be explained in part by previous winter temperature, which we 

hypothesize to act by reducing reservoir host abundance and thus bacterial availability 

during the larval questing period. However, a robust understanding of the apparently rapid 

spatiotemporal dynamics of E. chaffeensis will require continued broad-scale, longitudinal 

investigation that considers both spatial (i.e.  landscape composition and configuration) 

and temporal (e.g. weather) factors. 
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Chapter 2 

Habitat availability, quality, and fragmentation drive prevalence of the 

tick-borne pathogen Ehrlichia chaffeensis and occupancy dynamics of 

its vector, Amblyomma americanum 

 
2.1 Introduction 

Across the globe, tick-borne diseases are becoming increasingly common. In part, 

this is due to increasing prevalence of familiar pathogens, like Borrelia burgdorferi (Stanek 

et al. 2012), but also due to the emergence of new pathogens, often unfamiliar to the public. 

One such pathogen is Ehrlichia chaffeensis. While still rare relative to B. burgdorferi, the 

prevalence of E. chaffeensis has increased greatly in the 25 years since its discovery, more 

than doubling in incidence since 2000 (Anderson et al. 1993, Heitman et al. 2016). An 

obligate intracellular bacterium, E. chaffeensis is transmitted by the lone star tick 

(Amblyomma americanum) as its primary vector and carried by the white-tailed deer 

(Odocoileus virginianus) as its primary reservoir (Yabsley 2010). The bacterium is 

distributed widely across the United States, but prevalence varies within and between states 

(Yabsley et al. 2003), and even within counties (Wright et al. 2014). Much previous work 

that explicitly investigates the distribution of E. chaffeensis has focused on a broad, 

continental scale (e.g. Wimberly et al. 2008, Liu et al. 2017), whereas local studies are 

typically only qualitative. However, to effectively mitigate disease risk through 

management or education, it is critical to understand environmental factors driving local 

variation in the spatial distribution of E. chaffeensis. 

As an obligately intracellular pathogen, the distribution of E. chaffeensis is directly 

conditioned on that of its vertebrate and invertebrate hosts, requiring a community of 

competent vectors and reservoirs. In turn, the distribution of the invertebrate vector, A. 

americanum, is itself conditioned on that of its vertebrate hosts, which includes a broader 
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set of species than the set of reservoirs for E. chaffeensis (Bishopp and Trembely 1945, 

Allan et al. 2010). Environmental factors can thus affect E. chaffeensis directly, by altering 

the distribution (and thus availability) of reservoirs, or indirectly, by affecting tick 

population dynamics and the availability of vectors. 

One potentially important driver of host species’ distributions is landscape context. 

While fine-scale factors like microclimate can constrain tick distributions to particular 

habitat types (Semtner et al. 1971), tick distributions within acceptable habitats depend on 

that of their vertebrate hosts. For instance, the abundance and distribution of the black-

legged tick (Ixodes scapularis) has been shown to be dependent on the density and 

movement patterns of O. virginianus (Rand et al. 2003, Kilpatrick et al. 2014). In turn, the 

distribution of O. virginianus in part is driven by landscape context, particularly patterns 

of fragmentation and land-use (Lovely et al. 2013). In fact, through their effect on the 

vertebrate community (including deer, but especially rodents), forest patch size and 

fragmentation can indirectly drive spatial patterns of both I. scapularis density and B. 

burgdorferi prevalence (Allan et al. 2003, Brownstein et al. 2005). While B. burgdorferi 

and E. chaffeensis are carried by different vectors and reservoirs, there are enough 

similarities to expect similar landscape effects on E. chaffeensis. Odocoileus virginianus 

are not only important host for A. americanum (Kollars et al. 2000), they are the primary 

reservoir of E. chaffeensis (Allan et al. 2010, Yabsley 2010). In a fragmented landscape 

that favors O. virginianus, one should expect an increase in the proportion of blood-meals 

taken from deer by A. americanum and should therefore see increased transmission and 

infection rates. This effect could be compounded if an increase in deer also positively 

affects A. americanum, effecting either higher densities of ticks across space or greater 
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persistence of ticks across time. The latter would be especially important because 

availability of E. chaffeensis from O. virginianus’ bloodstream appears to decrease over 

time, especially as the deer ages (Davidson et al. 2001, Yabsley et al. 2003), and so 

continual re-infection of reservoir hosts should be necessary to perpetuate the transmission 

cycle. Thus, landscape factors that support dense and persistent host populations would be 

associated with higher pathogen prevalence. 

Fragmentation has been previously shown to predict E. chaffeensis distribution 

(Manangan et al. 2007), but evidence in the literature is equivocal. Other work suggests 

this effect is geographically dependent, being more important in the western than in the 

eastern US, where E. chaffeensis distribution is instead constrained by climate (Wimberly 

et al. 2008). At the local scale, where climate is relatively homogenous, it remains unclear 

if fragmentation remains a helpful indicator of E. chaffeensis prevalence. Quantification of 

this relationship, if it exists, will be an important step to predicting pathogen prevalence, 

and thus disease risk, across landscapes. 

The distribution of E. chaffeensis may also be driven by other landscape factors that 

affect its vertebrate hosts. For instance, habitat type could drive pathogen prevalence 

through its effect on host space-use. In our study area, coniferous stands usually lack the 

herbaceous undergrowth seen throughout much of the deciduous-dominated forest (one 

exception being Vaccinium, which sometimes grow densely in coniferous stands), as well 

as acorns, an important resource for forest mammals (Ostfeld et al. 1996). Together, these 

deficiencies may encourage less frequent use of conifer stands by A. americanum’s 

vertebrate hosts. Another possibility is the availability of water. If an animal’s use of area 

within its home range is dictated by the availability of resources, it follows that there may 
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be more frequent use of habitat in areas nearer to water. Together, these factors could 

influence pathogen prevalence by affecting the availability of vertebrate hosts across the 

landscape. 

Here, we ask how landscape context affects the prevalence of E. chaffeensis and 

the spatiotemporal dynamics of its tick host, A. americanum, in southeastern Virginia. 

Using five years of field data, we treat ticks at each of 130 plots as metapopulations to 

estimate local colonization and extinction rates in the context of a multi-season occupancy 

model, and we model the prevalence of E. chaffeensis within the A. americanum population 

as the probability that a single tick is infected. We made the following hypotheses: 

1. Ehrlichia chaffeensis prevalence and A. americanum occupancy dynamics are both 

driven by host density, which is in turn driven by an interaction between habitat 

availability and fragmentation such that highly forested but fragmented areas will 

have the highest host densities and thus favor persistent tick occupancy (i.e. high 

colonization, low extinction) and high pathogen prevalence.  

2. Ehrlichia chaffeensis prevalence and tick occupancy are also driven by host space-

use, which is in turn driven by resource availability, or habitat quality. In our case, 

these are measured as the proportion of evergreen-dominant forest in the 

surrounding area and distance to water. Given that forests in our study area are 

rarely, if ever, dominated by broadleaf evergreens (personal observation), 

evergreen cover acts as a direct proxy for conifer stands, which we expect to affect 

E. chaffeensis and A. americanum through habitat preferences of their vertebrate 

hosts. We expected tick occupancy and E. chaffeensis prevalence to be highest in 

deciduous-dominated forests near water. 
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2.2. Methods 

2.2.1 Data collection 

Ticks were collected as described in Chapter 1, except for an increase in sampling 

effort during 2017. To get better representation of more fully urbanized areas, we added 

eight new plots toward the southern end of the Virginia Peninsula in the Hampton and 

Newport News areas. These sites were either wooded lots embedded in suburban areas or 

wooded areas on larger properties (namely schools). Additionally, because of the rarity of 

E. chaffeensis, we increased per-plot sampling effort by repeating each transect along a 

parallel ca. 2-m offset, yielding four 30-m transects instead of the two surveyed in previous 

years. During analysis, ticks from each transect were pooled separately, rather than 

together, so each plot provided up to four tick pools for molecular analyses. We analyzed 

all ticks collected in 2017, subdividing transects into separate pools of ≤ 20. Pathogen 

detection was performed as described in Chapter 1, via PCR. 

We held the same nested site-plot structure as in Chapter 1, except for an 

aggregation of two small, adjacent sites. These sites had two and three plots and, while 

they were managed by different government agencies for different purposes, we felt they 

were similar enough to justify this change. Combining these into a site with seven plots 

allowed for more robust estimates of random effects. The eight new urban plots were 

considered a new site. 

We also collected additional field data in 2017, beyond what was collected in 

previous years. At each plot, at the beginning and end of a survey, we measured ambient 

temperature and humidity to act as covariates for tick detection probability. In a 
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preliminary occupancy analysis of 2017 data, temperature had a positive effect on detection 

but humidity had no effect. To include temperature for previous years’ surveys, in which 

we had not measured temperature, we used model estimates: we used the 2017 

measurements to parameterize a quadratic linear model that predicted on-the-ground 

temperature as a function of mean daily temperature (taken from interpolated PRISM 

values; see Chapter 1 and Oregon State University 2018) and time of day (r2 = 0.67), and 

applied used this to predict unobserved values. 

 

2.2.2 Landcover classification 

We created a landcover classification map from Landsat 8 scenes (spatial resolution 

= 30 m) in ENVI (Environmental for Visualizing Images; Harris Geospatial, Boulder, CO). 

We considered producing annual classifications but, within 3 km of our plots, interannual 

change in forest cover was negligible. Instead, we created a single classification in the 

middle of our study period and used subsequent years to improve misclassifications. The 

initial classification was made using ISODATA classification on a composite of a summer 

scene (day 227, 2014), a winter scene (day 37, 2015), and an NDVI (normalized-difference 

vegetation index) layer derived from the summer scene. Spectral classes were assigned to 

water, marsh, deciduous or evergreen forest, herbaceous (agriculture, lawn, and meadow), 

bare soil (typically fallow field but also recent clear cut), or impervious surface (buildings 

and pavement). We refined this with cluster busting and by using data from subsequent 

years to correct misclassifications between fallow agricultural fields and impervious 

surface. 

Final accuracy was assessed using 420 remote ground-truth points. We used 
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stratified random sampling to generate ground truth points (quasi-proportional to class 

coverage) in ENVI and checked for the true land cover at each point using satellite imagery 

in Google Earth. We achieved an overall accuracy of 92%, with no individual class below 

70% (Table B2). 

As a final modification after accuracy assessment, we used a TIGER (Topologically 

Integrated Geographic Encoding and Referencing) roads layer (U.S. Census Bureau 2011) 

to burn in roads that were too narrow to be captured in the original classification (at 30-m 

resolution, only large highways were consistently captured). Quantitatively, this creates an 

overrepresentation of impervious surface cover by area (most roads are not 30 m wide), 

but improves accuracy of forest edge length and fragmentation, which is more important 

to our analyses. 

 

2.2.3 Landscape metrics 

To test our hypotheses, we derived landscape metrics from the land cover 

classification described in section 2.2.2 and from state-provided stream delineation and 

LIDAR-derived elevation data (Virginia GIS Clearinghouse 2011) in ArcMap 10.1 (ESRI, 

Badlands, CA), FRAGSTATS (Mcgarigal et al. 2012) and the Geospatial Modeling 

Environment (Beyer 2014). We included two potential metrics each for habitat availability 

and fragmentation, and also included a spatial metric that might affect tick detection 

probability. In all, our included metrics were 1) proportion forest cover, a measure of 

habitat availability; 2) proportion urban cover, a more inclusive, inverse measure of habitat 

availability; 3) forest edge density, a basic measure of forest fragmentation; 4) proximity, 

a patch level metric of isolation and fragmentation that describes the area of adjacent 
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patches within the focal window, penalized by distance; 5) proportion of surrounding forest 

that is evergreen, which is a measure of habitat type or quality that could affect vertebrate 

host use; 6) distance to water, which may influence animal movement and space use; and 

7) average slope within the 15-m radius circle of the plot, which could affect difficulty of 

flagging and substrate depth and composition and in turn affect tick detection and 

availability. We also considered contagion, another common fragmentation metric which 

measures both dispersion and interspersion of land cover types, but this was almost 

perfectly correlated with forest cover (via an exponential relationship; r2 = 0.96) and so 

was excluded. For a summary of relevant landscape-metric distributions, see Appendix B3. 

Because the scale at which an organism is affected by and responds to its 

environment differs between the organism and environmental variable in question, we used 

an optimization method to determine the best extent at which to include each variable in 

each model (holding resolution constant). Landscape metrics were extracted at three 

extents according to a series of home-range size estimates of O. virginianus. The smallest 

extent, a 25-ha circular window, represents a compromise between mean core area 

(Holzenbein and Marchington 1992, Campbell et al. 2004) and the mean home range size 

of suburban deer, which have been shown to be much smaller than in adjacent agricultural 

habitats (Cornicelli et al. 1996). The mid-size extent, 100-ha, represents the mean home 

range size estimated in the Appalachian mountains of Virginia and West Virginia 

(Holzenbein and Marchington 1992, Campbell et al. 2004), and also represents an 

approximate average home range estimate encountered in the literature. The largest extent, 

350-ha, represents the higher end of O. virginianus home range estimates (Hasapes and 

Comer 2016). These extents, particularly the larger two, also approximate home-range 
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estimates of raccoons (Procyon lotor; Glueck et al. 1988, Beasley et al. 2007, Rosatte et 

al. 2010), another of A. americanum’s wide ranging hosts (Kollars et al. 2000).  

We did not expect all these metrics to fit well into simple linear models because 

fragmentation metrics, like edge density, can take on similar values in areas that are very 

different ecologically. For instance, a lightly fragmented forest will have low edge density 

because there are few fragment edges but, alternatively, an almost entirely urbanized area 

will also have low edge density because there remain few forest edges. Similarly, a large 

forest patch can still have low proximity values if there are no other patches near it. To 

account for this, we tested interactions between habitat availability and fragmentation with 

the prediction that fragmentation would become important when habitat availability takes 

on higher values. 

 

2.2.4 Statistical analysis 

Statistical models were implemented in a hierarchical Bayesian framework in 

JAGS 4.3.0 (Plummer 2017), using the R2jags package to interface with R 3.4.3 (Su and 

Yajima 2015, R Core Team 2017). Both the prevalence and occupancy analyses consisted 

of extent- and variable-selection followed by inference directly from a global model with 

the selected covariates. Each of these analyses used standardized (i.e. Z-transformed) 

values. Unless specified otherwise, we report parameter estimates as means with 95% 

highest density intervals (HDIs) in the form mean [HDI], and we calculated any derived 

value (e.g. year-specific prevalence) from individual posterior draws before summary. 

Detailed model diagrams, likelihood statements, and JAGS code can be found in Appendix 

C. 
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Pathogen prevalence 

We used data from all five years to estimate environmental effects on E. chaffeensis 

prevalence. While ticks were analyzed in pools, we modeled prevalence as the probability 

of a single tick being infected with E. chaffeensis according to the formula 1 – (1 – ρ)n, 

where ρ is the infection probability and n is the number of ticks in the pool. In turn, ρ is 

modeled as logit(ρ) = β0 + βX, where β0 is a nested site/plot random intercept in which site-

level means vary around the grand mean and plot-level means vary around their respective 

site mean. Because we visited new plots in 2017, we only estimated a single, universal 

plot-level variance parameter. Additionally, to account for differences in prevalence 

between years, we included year as a factor. We set vague and uninformed normal priors 

on all beta-coefficients (μ = 0, σ2 = 5; Hooten and Hobbs 2015), and a vague but informed 

prior on the intercept (μ = logit-1(0.018), σ2 = 5), where the mean of the prior distribution 

was the minimum prevalence of infection from our entire dataset. The variance parameters 

associated with the random intercepts were given uniform prior distributions over the 

interval [0,10]. 

Variable- and extent- selection was performed by adapting the Bayesian Latent 

Indicator Scale Selection (BLISS) method described by Stuber et al. (2017). Briefly, the 

BLISS method uses a model in which the scale of each covariate is allowed to vary 

according to a categorically-distributed indicator variable. The posterior distribution of the 

indicator variable is used to make direct inference about the best extent at which to measure 

each covariate. We adapted this method to simultaneously select between extent and 

covariate combinations. There were two groups of covariates that we expected to interact: 

habitat availability (proportion forest or urban cover) and fragmentation (edge density or 
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proximity). Holding extent constant within each combination, there were 2 x 2 x 3 = 12 

potential interactions (i.e. β1X111 + β2X211 + β3X111X211, β1X112 + β2X212 + β3X112X212, …, 

β1X123 + β2X223 + β3X123X223). For these variables, rather than selecting extents for each 

variable individually, we used an indicator variable to choose one of the 12 possible extent-

specific interactions. Within the same model, we used the original BLISS method as 

described above to select the extent at which to measure proportion evergreen forest. To 

ensure these selections were conditioned on other potential effects, we also included 

distance to water, the only variable not being extent-optimized. The variable- and scale-

selection model was run on four independent chains (initializing indicator values for each 

of four covariate combinations at the 100-ha scale, with random draws for proportion 

evergreen forest) for 120,000 iterations, thinned by 15 to reduce autocorrelation, after a 

12,000-iteration burn-in period, for a total of 32,000 samples from the posterior. 

Final inference was made from the global model, which included an interaction 

between habitat availability and fragmentation, forest type, and distance to water. With the 

best scale and covariate combination selected, the global model was run on three 

independent chains for 100,000 iterations, thinned by 10, after a 10,000-iteration burn-in, 

for a total of 30,000 samples from the posterior. Beta-coefficients were initialized with 

random values from normal distributions (μ=0, σ2=0.5), while mean prevalence and 

variance parameters were given distinct, overdistributed values. 

 

Tick occupancy dynamics 

Tick occupancy dynamics between 2012 and 2017 were modeled using a multi-

season occupancy model in which estimates of local colonization and extinction rate were 
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adjusted to account for imperfect detection (sensu MacKenzie et al. 2003). Each year was 

treated as a primary survey, in which detection and occupancy state were estimated from 

repeated secondary surveys, and changes in occupancy probability between years were 

used to infer rates of local turnover (i.e. colonization and extinction). We treated each 15-

m segment of a transect as a secondary, yielding four presence/absence observations per 

primary. To maintain consistent sampling effort between years, we only used observations 

from the first two of four transects surveyed at each plot in 2017. We also only used the 

101 plots that were surveyed in all five years, for a total of 101 plots x 5 years x 4 

observations plot-1 year-1 = 2020 observations.  

Occupancy dynamics and detection were modeled as functions of the environment 

via logistic regression. Colonization and extinction were estimated at the plot-level in the 

form logit(θ) = β0 + βX, while detection was estimated for each plot but was also allowed 

to vary between years using the form logit(p) = β0 + βX + ς, where ς is a normally 

distributed random variable with mean 0 that allows p to vary between plots and years 

beyond what is described by X. In each, β0 is a site-level random-intercept that is normally 

distributed around the grand mean. Because no surveys were conducted in 2014, the 

occupancy state of this year was modeled as an unobserved latent state. 

Candidate variables were the same as in the prevalence model but with additional 

variables considered for detection probability. Colonization and extinction were modeled 

as functions of habitat availability and fragmentation, evergreen cover, and distance to 

water, while detection probability was modeled as a function of temperature and terrain 

slope. Variable- and extent-selection was conducted using the adapted BLISS method as 

described above for the prevalence model, run on three independent chains for 240,000 
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iterations, thinned by 20, after a 10,000-iteration burn-in, for 36,000 samples from the 

posterior. These chains were initialized using random values for each categorical variable. 

The final model was run on three chains for 100,000 iterations, thinned by 10, after a 

10,000-iteration burn-in for a total of 30,000 samples from the posterior. For each of these 

chains, intercepts and beta-coefficients were initialized with values from standard-normal 

distributions, and variance parameters were initialized with random values from their 

priors. 

 

2.3 Results 

Considering all years, A. americanum were found on every plot, but tick abundance 

and occupancy, and E. chaffeensis prevalence, varied across both space and time. Adjusted 

for sampling effort, naïve A. americanum occupancy ranged from 0.69 to 0.8 and average 

number of ticks per plot ranged from 3.88 (±7.01) to 10.7 (±25.3). Of the original 16 sites 

that were sampled all years, 14 sites tested positive for E. chaffeensis at least once, 11 of 

these more than once, while the two sites on the Middle Peninsula never tested positive 

(for location of sites see Fig. A1). In 2017, none of the new urban plots tested positive. 

Within the sites that tested positive, E. chaffeensis occurrences were typically spread across 

different plots. Of 39 plots that tested positive, only six tested positive more than once and, 

of these, five tested positive two of five years and one tested positive three of five years. 

In 2017, despite increased sampling effort and additional plots, E. chaffeensis was 

detected less frequently than any other year. A total of 1001 ticks were analyzed in 2017 

(up from 550 – 631 in previous years), but only two plots tested positive. One of these plots 

had tested positive in a previous year and one had not. In each case, multiple pools were 
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analyzed, but only one pool tested positive, showing within-plot variability in infection. 

 

2.3.1 Prevalence Model 

Variable and scale selection 

Between the two sets of variables, different scales were selected and with different 

distributions of evidence. Habitat availability and fragmentation was selected as proportion 

forest cover and edge length at the 350-ha extent with 31% support (of 12 possibilities; 

Figure B1). The same combination, but at the 100-ha extent, came in second with 26% 

support, and the third best was further behind with 13%. Proportion of evergreen forest 

was selected at the 100-ha extent with 72% support (of three possibilities; Figure B2). 

 

Global model 

In the global model, estimated mean prevalence was 0.44% [0.13%, 0.80%] (or -

5.51 [-6.42, -4.72] on the log-odds scale) but varied between years and plots. Annual 

prevalence ranged from 0.08% - 2.0%, although with much uncertainty in each point 

estimate (Figure B3), and site- and plot-level standard deviations were 0.41 [0.00, 1.0] and 

0.85 [0.04, 1.5] respectively (Figure B4). There was evidence for a negative effect of 

proportion forest cover (-0.84 [-1.5, -0.25]) and edge length (-0.81 [-1.5, -0.17]), but no 

evidence for an interaction between them (-0.36 [-0.86, 0.14]). There was also evidence for 

a negative effect of evergreen forest (-0.71 [-1.47, -0.003]), but not for distance to water 

(0.21 [-0.24, 0.67]) (Figure 2.1). 
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2.3.2 Occupancy Model 

Variable and scale selection 

For local extinction rate, habitat availability and fragmentation were selected as 

proportion forest cover and edge density at the 25-ha extent with 61% support (out of 12 

possibilities; Figure B5), and proportion evergreen forest at the 350-ha extent with 62% 

support (of three probabilities; Figure B6). For local colonization, selections were less 

 

absolute. Habitat availability and fragmentation were selected as proportion forest cover 

and proximity at the 350-ha extent with 24% support (Figure B5), and proportion evergreen 

cover at the 350-ha extent with only 39% support (Figure B6). 

 

Global model 

The global model showed very little turnover in the tick population. Across sites, 

Figure 2.1: Posterior probability densities for the coefficients (on the logit scale) of 

environmental covariates in the prevalence model. Dots represent the posterior mean and bars 

represent the 95% HDI. 
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colonization was very high, at 0.86 [0.47, 1.0] (or 2.6 [-0.60, 5.7] on the log-odds scale), 

and extinction was very low, at 0.006 [0.0, 0.018] (or -5.7 [-8.0, -3.6] on the log-odds scale; 

Figure B7). Neither of these parameter estimates varied strongly between sites; the mode 

of σγ was 0.39 [0.0, 6.2] and the mode of σε was 0.36 [0.0, 2.5] (Figure B8). 

There was evidence for landscape effects on extinction, but not colonization (Figure 

2.2). For extinction, there was no evidence for a mean effect of forest cover (-0.04 [-1.2, 

1.1]) and there was only weak evidence for a mean effect of edge density (1.0 [-0.06, 2.2]), 

but there was evidence for an interaction between them (-1.5, [-2.5, -0.52]). There was also 

evidence for an effect of evergreen forest on extinction (2.4 [0.95, 4.0]) and distance to 

water (-1.2 [-2.4, -0.24]). There was no evidence for any effect of these variables on 

Figure 2.2: Posterior probability densities for the coefficients (on the logit-scale) of 

environmental covariates on extinction (ε), colonization (γ), and detection (p) in the A. 

americanum occupancy model. Dots represent posterior means and bars represent 95% HDIs. 
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colonization; their posteriors were all very broad and included 0 well within their HDIs. 

Detection probability did vary, but was not affected by either temperature nor slope 

(Figures 2.2 and B8). Mean detection probability was 0.40 [0.13, 0.70] (or -0.44 [-1.8, 

0.90] on the log-odds scale), with a site-level standard deviation (σp) of 0.84 [0.48, 1.3] 

and observation-level standard deviation (ςp) of 1.0 [0.79, 1.3]. The mode of P* (the 

probability that a tick was observed at least once on a plot, given ticks were present) was 

0.97, but with a very left-skewed, leptokurtic distribution, reflective of detection’s broad 

posterior probability. Both beta-coefficient posteriors were narrowly distributed around 0. 

 

2.4 Discussion 

We tested two hypotheses regarding landscape drivers of E. chaffeensis prevalence 

and lone star tick occupancy, expecting parallel processes between the two systems. This 

was not the case. There was one parallel scenario: areas with low forest cover and low 

fragmentation were predicted to have the lowest turnover and the highest prevalence. 

However, while it makes sense that prevalence should be negatively related with turnover 

because a persistent vector population would enable perpetuation of the transmission cycle, 

this does not hold true across all combinations of forest cover and edge length. Our models 

predicted areas of high forest cover and fragmentation to have low turnover, in line with 

our expectations, but also to have the lowest prevalence, the opposite of our expectation! 

The interaction effect in the occupancy model predicted inconsistencies between 

occupancy and prevalence dynamics (Figure 2.3). While highest prevalence and lowest 

turnover were both associated with small, intact forests, lowest prevalence was predicted 

in large, fragmented forests, which were also areas of low turnover. Similarly, highest 
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turnover was predicted in areas of small, fragmented forests, which was an area moderate 

prevalence. These inconsistencies suggest a decoupling of prevalence and occupancy 

dynamics such that some components should be considered separately. 

Habitat availability and fragmentation were not associated with prevalence as we 

expected. We found a negative effect of fragmentation (as edge density) – in direct 

opposition of our hypothesis. However, while edge density did not interact with forest 

cover as we expected, previous studies have also shown forest cover in the surrounding 

landscape to be negatively associated with tick-borne pathogen prevalence (Ostfeld et al. 

2018). Our expectations were based on the positive relationship between deer density and 

availability of edge habitat, which has been documented along suburban to rural gradients 

(Gaughan and DeStefano 2005), within undeveloped forests (Saïd and Servanty 2005), and 

even within agricultural areas of Virginia (Lovely et al. 2013), but it seems as though this 

relationship does not drive upstream patterns of pathogen prevalence in our study area. One 

Figure 2.3: Predicted E. chaffeensis prevalence (ρ) and A. americanum (ε) extinction as a 
function of forest cover and edge density. Values were predicted with the mean coefficient 

values from their respective global models. The interaction term was included for extinction 

but not prevalence. Note that the graphs are viewed from different angles such that the axes run 
in different directions. 

 



38 
 

potential explanation for this defiance of expectation is that chronic overpopulation of deer 

on the Virginia Peninsula (Virginia Department of Game and Inland Fisheries 2015) could 

wash out the effect we might expect from the edge-density relationship. That is, the 

populations in this area may be too large for differences in density to have the expected 

effect. While we are unable to definitively address the mechanisms at play, below we offer 

discussion of potential explanations. 

Rather than density, landscape context may affect E. chaffeensis prevalence in SE 

Virginia through its effects on deer movement and/or group size. Regarding movement, it 

may be that small, isolated forests (i.e. low forest cover and edge) act as reliable core 

habitat in which successive generations of ticks feed on the same animals, whereas a 

heavily forested and fragmented area sees more mixing. This first notion was also posited 

by Estrada-Peña et al. (2010), who suggested that increased tick-host contact rates in small 

forest fragments leads to an amplified transmission cycle, and is supported by Gaff and 

Schaefer (2010), in whose simulation study isolated patches maintained E. chaffeensis 

endemicity better than well-connected patches because of a diluting effect of migration. 

This also supports the second notion, that increased mixing decreases prevalence. That 

landscape context affects mixing has been shown empirically by Skuldt et al. (2008), who 

showed an association between forest edge and dispersal rates of juvenile white-tailed deer, 

and Robinson et al. (2012), who found deer in more highly forested and fragmented areas 

to be more genetically homogenous. Alternatively (or additionally), prevalence may be 

affected by deer group size, which increases with resource availability (Habib et al. 2011) 

and could drive something resembling an encounter-dilution effect (sensu Mooring and 

Hart 1992). While counter-intuitive, there is evidence that increasing group size can 
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decrease parasite load just as it can decrease an individual’s predation risk (Rubenstein and 

Hohmann 1989, Côté and Gross 1993). Given the low transmission efficiency of E. 

chaffeensis, most ticks in any group are unlikely to be infected even if all fed from an 

infected host (Nair et al. 2014). Thus, in a larger group of deer, there may be more 

opportunities for encounters between uninfected reservoir-vector pairs. 

Thus far, we have discussed areas of low forest and low edge as small, isolated 

forest patches, imagining a forest patch surrounded by matrix. But, this is not necessarily 

how low-forest/low-edge plots are situated; a plot in a large forest can have low cover 

because it is at the edge (e.g. Figure 2.4). However, this does not need to invalidate our 

above suppositions. An impermeable boundary, like a river (Figure 2.4), could have similar 

effects to isolation by reducing dispersal of resident animals. The resulting effect on 

migration can have the same effect on pathogen prevalence as isolation (Gaff and Schaefer 

2010). This does introduce additional complications, though, because other landscape 

features, like interstate highways, could have the same effect but would not be detected 

using our landscape metrics. 

Truly elucidating mechanisms and validating our above hypotheses will require 

empirical evidence. Further landscape analyses of E. chaffeensis prevalence are important, 

but studies connecting E. chaffeensis prevalence to behavior of its hosts may be more 

critical. In particular, future analyses should include movement models that account for 

boundaries and matrix permeability. 
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Occupancy dynamics were, in some ways, more in line with our expectations, 

suggesting they are likely driven more by host density and habitat use than behavior and 

social dynamics. In parallel to prevalence, tick turnover was lowest in isolated, contiguous 

forest patches, which could be a result of the importance of these forest patches as core 

habitat for vertebrate hosts. However, in contrast to prevalence, tick turnover is also low in 

highly forested and fragmented areas. This could be because it does not matter to ticks, as 

it might for pathogen transmission, that there is a larger and potentially transient pool of 

hosts. Highest turnover is predicted in lightly forested but highly fragmented areas, which 

likely see low density and/or inconsistent use by A. americanum’s vertebrate hosts (e.g. 

deer, raccoons, turkeys; Kollars et al. 2000), particularly as resting areas, which would 

explain less consistent A. americanum occupancy. 

Figure 2.4: Example landscape configurations representing highest (a) and lowest (b) predicted 

change in E. chaffeensis prevalence due to forest cover and edge density. The black area 

represents forest. The left panel shows a plot bordered by a river and one of its tributaries. 

While not truly isolated, the water would create an impermeable boundary affecting animal 
dispersal and movement. On the right is an area with high forest cover, but with high edge 

density due to fragmentation. 
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Prevalence and occupancy were both negatively affected by proportion of 

evergreen forest cover. This is in line with our hypothesis that these parameters are driven 

by host habitat preference, or space-use, and our prediction that resource poor areas like 

coniferous dominated forests will have higher tick turnover and lower pathogen 

prevalence. However, our other prediction regarding space-use, concerning water 

availability, was not met. 

Proximity to water was associated with tick turnover but not prevalence and, like 

some effects of forest cover and fragmentation, the effect was the opposite of our 

expectation. We anticipated animals would spend more time near water, thereby decreasing 

tick turnover and increasing pathogen prevalence. Instead, turnover decreased with 

distance from water. It might be that distance to water was an inadvertent proxy for the 

presence of wetlands or the frequency of inundation, which may negatively affect tick 

survival or hatching success rather than host use. While we are unaware of studies 

explicitly studying tick survival in wetlands, there is some work to suggest tick 

reproductive success decreases after extended submersion in water (Sá-Hungaro et al. 

2014) and that A. americanum abundance is lower along wetland edge (Stein et al. 2008). 

Moreover, Manangan et al. (2007) did find that E. chaffeensis occurrence decreased with 

increasing wetland cover, which would be consistent with increased temporal turnover in 

the tick population.  

Detection probability did vary across space and time, but not as a function of either 

included covariate. We had expected detection to increase with temperature because of 

increased activity levels, but there was no evidence for this effect in the model. Other work 

has shown A. americanum questing activity to be explained by saturation deficit within the 
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litter layer, such that the ticks are most active when the litter is dry and saturation deficit is 

high, and by the difference between ambient and litter temperature, such that ticks are more 

active when this difference is the greatest (Schulze and Jordan 2003). While both these 

measures are related to temperature, these authors found temperature alone to be an 

ineffective predictor of tick activity. We also found no effect of terrain slope, which we 

thought would affect the difficulty and thus efficacy of flagging, and litter depth, both of 

which we thought would decrease detection or availability. However, these effects may 

only come into play in cases of extreme slope, which only occurs in a few plots, and thus 

these effects, if they exist, may not be relevant to our dataset. There was, though, variation 

in detection, evidenced by the random-effects σp and ςp. The first of these, σp, represents 

the site-level variation and suggests broad-scale patterns in detection. This is notable 

because there was not comparable site-level variation in tick turnover or pathogen 

prevalence. The second random-effect, ςp, allows detection to vary between plots within 

sites, and between years by changes not described by included covariates. The partitioning 

of variance between both of these parameters suggests there is fine-scale spatial variation 

and/or temporal variation in addition to the broader spatial patterns tick detection 

probability. Given the scale of our sites, which are typically large enough to include 

unmeasured environmental variation, this is likely because of differences in tick abundance 

and, thus, availability. 

Despite the evidence for landscape effects provided in this study, it must be 

considered that both prevalence and rates of turnover are very low and so the absolute 

effect sizes of the environmental covariates are necessarily very small. Mean prevalence 

and extinction (through which effects on turnover were expressed) were both less than 1%, 
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and so even a large relative change (e.g. from 1% to 2%) would require a large sample size 

to detect. So, given the relatively low number of observations of both E. chaffeensis 

occurrence and A. americanum extinction, our results are likely very sensitive to each 

occurrence or extinction event. This means our models’ predictive power is likely low and, 

instead of providing robust spatial disease risk estimates, our study should be taken as a 

foundation for further analysis. 

Despite the limitations of our study, our results are congruent with previous studies. 

In particular, previous work has shown densities of I. scapularis and prevalence of B. 

burgdorferi, the vectors and causative agent of Lyme disease, to be higher in smaller forest 

patches (Allan et al. 2003, Brownstein et al. 2005) or on plots with lower forest cover in 

the surrounding area (Ostfeld et al. 2018). 

While results regarding fragmentation and E. chaffeensis have been inconsistent, 

this is one of few studies to the topic, especially at this scale or in this manner. Work has 

been done at broad, continental scales (e.g. Wimberly et al. 2008, Liu et al. 2017) and more 

local scales (e.g. Trout Fryxell et al. 2015), but fewer at this intermediate, inter-county 

scale (but see Manangan et al. 2007). Moreover, this is the first study of which we are 

aware to use occupancy modeling to describe interannual turnover in the tick population. 

Because of the inherent spatiotemporal nature of the pathogen transmission cycle, it is 

important to consider the temporal dynamics of actors in the system. We demonstrate this 

here through parallels between tick occupancy and pathogen prevalence. 

 

Conclusion 

Our results suggest that, while pathogen prevalence and tick turnover are partly 
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decoupled, areas with the highest prevalence and lowest turnover are those with relatively 

isolated but contiguous forest patches (i.e. low forest cover and low edge density). Lowest 

prevalence, on the other hand, is predicted in highly forested but fragmented areas. This 

means that forests managed for timber may not be impacted, but areas like suburban parks 

may be at higher risk for disease. This is similar to Lyme disease, in which fragmentation 

due to suburban encroachment has been implicated in increasing both pathogen prevalence 

(Brownstein et al. 2005) and disease incidence (Tran and Waller 2013). While prevalence 

of E. chaffeensis remains relatively low, and so remains difficult to robustly model, it is 

important to consider that this pathogen is becoming more common (Heitman et al. 2016) 

and so it is important to understand all we can about where it is found and why. Moreover, 

it is still unknown whether the progress made in Lyme disease ecology is generalizable to 

pathogens carried by different hosts. Here, we provide evidence that, like Lyme, landscape 

context is important to the spatial distribution of E. chaffeensis, reinforcing the need to 

consider landscape management in public-health outreach campaigns and to consider 

human disease risk when designing regimes of landscape management. 



A Supplementary material: Chapter 1

A.1 Figures

Figure A1: Location of 130 study plots (dots) and 17 study sites (polygons) on the Virginia
Peninsula (n = 15) and Middle Peninsula (n = 2). Sites were defined by both proximity
and management, such that adjacent sites are differentiated by management. Small dots
represent plots that have never tested positive for Erlichia chaffeensis, larger dots represent
plots that have tested positive once, and stars represent plots that have tested positive more
than once. Note that polygons are meant to denote which plots belong in each site, not to
delineate the actual site boundaries.
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Figure A2: (a–d below) Weather variables aggregated across all plots and years (2011
2016). Asterisks designate means and whiskers designate either the minimum and maxi-
mum, or 1.5 × box length, whichever is closer to the median.

(a) Mean temperature.

(b) Mean vapor pressure deficit.
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(c) Mean relative humidity.

(d) Cumulative precipitation.
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(a) Freezing-degree days by summarized by month, across all years.

(b) Freezing-degree days summarized by year, across all months (i.e. October–January).

Figure A3: Cumulative freezing degree days summarized by month (a) and by year (b).
Asterisks designate means and whiskers designate either the minimum and maximum, or
1.5 × box length, whichever is closer to the median.
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A.2 Tables

Table A1: Ehrlichia chaffeensis occurrence models as ranked by ∆AICC.

Model AICC

Mean T + FDD; winter (t-1) 0.00
Mean T; winter (t-1) 1.64
FDD; winter (t-1) 2.28
Minimum T; winter (t-1) 7.93
Precipitation; spring (t) 14.15
Deer presence/absence 14.17
Survey Date 14.30
Deer pellet-group density 14.56
Temperature; spring (t-1) 14.90
Ticks only 15.27
Humidity; winter (t) 15.98
Temperature; spring (t) 16.06
Temperature; winter (t) 16.64
Vapor pressure deficit; winter (t) 16.65
Precipitation; spring (t-1) 16.77
Precipitation; summer (t-1) 16.88
Vapor pressure deficit; spring (t) 17.03
Humidity; spring (t) 17.16
Precipitation; winter (t) 17.26
Null 20.30
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Table A2: Seasonal weather variables for temperature (T), relative humidity (H), vapor
pressure deficit (VPD), precipitation (P), and freezing-degree-days (FDD), summarized
across plots and years. Coefficients of variation (CV) only given for those variables measured
on ratio scales.

(a) Spring: February–May; 2011–2016

Statistic T (◦C) H (%) VPD (hPa) P (mm)

Min -1.0 47.0 2.8 22.3
Max 22.8 73.6 3.4 262.2
Range 23.8 26.5 8.0 239.9
Mean 12.6 60.1 6.0 93.6
St. Dev. 6.1 5.2 2.0 39.6
CV - 8.7 33.4 42.3

(b) Summer: June–October; 2011–2016

Statistic T (◦C) H (%) VPD (hPa) P (mm)

Min 14.8 55.5 4.5 22.2
Max 28.5 76.9 15.4 449.6
Range 13.7 21.5 10.9 427.6
Mean 23.4 68.6 9.2 142.1
St. Dev. 3.6 3.1 2.1 69.9
CV - 4.5 22.7 49.2

(c) Winter: Novermber–January; 2012–2016

Statistic T (◦C) H (%) VPD (hPa) P (mm)

Min 0.60 52.6 2.1 10.4
Max 13.6 85.3 5.7 170.3
Range 13.0 32.7 3.6 159.9
Mean 7.8 65.2 3.7 83.2
St. Dev. 3.1 6.1 0.72 38.0
CV - 9.3 19.7 45.6

50



(d) Winter: October–January; 2011–2015

Statistic
Mean T

(◦C)
Min T

(C)
FDD H (%) VPD (hPa) P (mm)

Min 0.60 -5.7 3.6 52.6 2.3 10.4
Max 18.7 13.9 169 75.1 8.1 262.1
Range 18.1 19.6 165.4 22.5 5.8 251.7
Mean 9.5 4.1 27.8 64.7 4.3 89.3
St. Dev. 5.2 5.2 23.0 4.2 1.3 52.5
CV - - 82.7 6.6 30.7 58.9

B Supplementary material: Chapter 2

B.1 Figures

Figure B1: Posterior probability for variable and scale selection for habitat availability
and fragmentation in the prevalence model. Each combination (e.g. 1–3: forest cover ×
edge) was derived from a 25-, 100-, and 350-ha window, respectively.

Figure B2: Posterior probability for the scale at which to include the proportion of ever-
green cover in the prevalence model.
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Figure B3: Posterior probability densities for grand mean and mean annual E. chaffeensis
prevalence (back-transformed to percent-probability scale). Dots represent the posterior
mean and bars represent the highest density interval (HDI).

●

●

Figure B4: Posterior probability densities for the random-intercept standard deviations
of the prevalence model (on the logit-scale).
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Figure B5: Posterior probability densities for variable and scale selection for habitat
availability and fragmentation in the occupancy model. The upper panel regards covariates
of extinction (ε) and the bottom panel colonization (γ). Each combination (e.g. 1–3: forest
cover × edge) was derived from a 25-, 100-, and 350-ha window, respectively.
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Figure B6: Posterior probability densities for the scale at which to include the proportion
of evergreen cover in the occupancy model. The left panel regards covariates of extinction
(ε) and the right colonization (γ).

●

●

●

Figure B7: Posterior probability densities for colonization, extinction, and detection prob-
ability. Dots represent posterior means and bars represent HDIs.
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Figure B8: Posterior probability densities for the random-effects in the prevalence model.
Random-intercept standard deviations are designated by σθ, and ςp designates the additional
variation in detection probability not explained by site or Xp.

B.2 Tables

Table B1: Confusion matrix for final land-use/land-cover classification.

Class Water Wetland Evergreen
Impervious

surface
Deciduous Field Total

User’s
accuracy

Water 30 - - - - - 30 1.0

Wetland 5 14 - - 1 - 20 0.7

Evergreen - - 86 - 6 1 93 0.92

Impervious
surface

1 1 - 45 - 3 50 0.9

Deciduous - 2 1 1 86 4 94 0.91

Field - - - 2 3 128 133 0.96

Total 36 17 87 48 96 136 420 —

Producer’s
accuracy

0.83 0.82 0.99 0.94 0.90 0.94 — 0.93

B.3 Landscape metrics

Landscape metrics all followed skewed distributions. At the 100-ha scale, proportion forest

cover was left-skewed with a range of 0.22 1.0 and a median of 0.78, and edge length is

right-skewed (though less so) with a range of 102 20261 m and a median of 8361. At the

25-ha scale, proportion cover had a range of 0.26 1.0 and a median of 0.83, and edge density
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had a range of 0 5984 m and a median of 1847. Proportion evergreen cover was very right

skewed. At the 100-ha scale, it had a range of 0.01 0.95 and a median of 0.18, and at the

350-ha scale it had a range of 0.05 0.77 with a median of 0.20. Distance to water was also

right-skewed, with a range of 0 1251 m and a median of 183 m.

B.4 Bayesian Models

Following are mathematical descriptions of the Bayesian models used in Chapter 2 together

with visual representations in the form of directed acyclic graphs (DAGs). The models are

shown in the form [θ|y] ∝ [y|θ][θ], in which the joint probabilities of [y|θ] and [θ] have been

decomposed into their constituent elements. The relation between these elements is also

described in the DAG: variables at the end of an arrow are conditioned on those at its start.

Solid arrows describe probabilistic relationships and dotted arrows denote deterministic

ones. Variables without any leading arrows are either described by observed data (and are

connected to dotted arrows) or are given prior probability distributions (and are connected

to solid arrows).

B.4.1 Prevalence model

[ρijt, β0ij ,β, αi, σ
2, µ, σ20|yijkt] ∝

ΠS
i=1Π

P
j=1Π

T
t=1Π

O
k=1

bern(yijkt|1− (1− ρijt)nijkt)×
norm(β0,ij |αi, σ2)×
norm(αi|µ, σ20)× unif(σ|0, 10)×
norm(µ|0, 10)× unif(σ0|0, 10)×
ΠH
h=1norm(βh|0, 10)

Where

logit(ρijt) = β0,ij + βX

Here, ykijt is an observation of pathogen presence or absence in a pool of n ticks from

transect k of plot j in site i during year t, and ρijt is the probability that a single tick is
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infected at plot ij in year t (i.e. tick infection prevalence). The logistic transformation of

ρ is a linear model with nested plot- and site-level random intercepts in which a plot-level

mean, β0,ij , varies around its site-level mean, αi, according to variance σ2, which in turn

varies around the grand mean, µ, according to σ20.

ρ∗ijt

yijktnijkt X

ββ0,ij

αi σ2

µ σ2
0

Figure B9: DAG for the pathogen prevalence model. Here, ρ∗ = 1− (1− ρijt)nijkt , where
ρ is the probability of a single tick at plot ij being infected in year t, and n is the number
of ticks collected on given transect ijk in year t.
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B.4.2 Occupancy model

[Zijt, γij , εij , pijt, βγ , βε, βp,α, σ, ς|yijkt] ∝

ΠT
t=1Π

S
i=1Π

P
j=1Π

O
k=1bern(yijkt|Zijt × pijt)×

bern(Zijt|Zij,t−1(1− εij) + (1− Zij,t−1)γij)×
bern(Zij,t=0|0.8)×
norm(logit(pijt)|βp0,i + βpXp, ς)×
norm(βγ0,i|αγ , σ2γ)× norm(βε0,i|αε, σ2ε )× norm(βp0,i|αp, σ2p)×
norm(αγ |0, 5)× norm(αε|0, 5)× norm(αp|0, 5)×
unif(σγ |0, 10)× unif(σε|0, 10)× unif(σp|0, 10)×
Π
Hγ
h=1norm(βγh|0, 5)×ΠHε

h=1norm(βεh|0, 5)×
Π
Hp
h=1norm(βph|0, 5)× unif(ς2|0, 10)

Where

logit(γij) = βγ0,i + βγXγ ,

logit(εij) = βε0,i + βεXε

Individual observations, k, at plot j of site i in year t are denoted by yijkt. Zijt is the true

occupancy state of site i, plot j in year t, γij is the probability of plot ij being occupied in

year t given it was unoccupied in t − 1, εij is the probability that plot ij is unoccupied in

year t, given it was occupied in t−1, and pijt is detection probability of plot ij in year t. The

intercepts in the linear models, βθ0,i, represent site-level means, which vary around the grand

means, αθ, according to σ2θ . Detection probability was also allowed to vary beyond what is

described by Xp, according to ς2, in order to describe differences changes in detection not

described by the included environmental variables. Hθ denotes the number of covariates

associated with θ.

For 2011, which was unobserved, Zij,t=0 was a Bernoulli-distributed variable with a

probability equal to the adjusted occupancy estimate from a preliminary analysis in Program

PRESENCE. In 2014, which was also unobserved, Z was treated as in any other year but

was not directly informed by any other data. Instead, the probability of occupancy in 2014
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was only conditioned on the occupancy state of 2013 and on estimates γ and ε.

Note that the superscripts on some βs are not exponents but alternative indices to

describe the parameter with which they are associated.

yijktXγ, Xε Xp

Zijt

Zij,t=0

pijt

βp0,i βp, ς
2γij, εij

βγ, βεβγ0,i, β
ε
0,i

αγ, σγ, αε, σε

αp, σ
2
p

Figure B10: Directed acyclic graph of the multi-season occupancy model.

B.5 JAGS code

B.5.1 Global prevalence model

# Likelihood:

for(i in 1: nsite){

for(j in 1: nplot[i]){ # The number of plots in i

for(t in 1: nyear[i,j]){ # Number of years ij was surveyed

for(k in 1:nobs[i,j,t]){ # Number of observations at ijt

y[i,j,k,t] ∼ dbern (1-(1-rho[i,j,t])^n[i,j,k,t])

}

logit(rho[i,j,t]) <- beta0[i,j]

+ inprod(beta[], X[i,j,])

+ inprod(beta.year.raw[], year[i,j,t,])

}

beta0[i,j] ∼ dnorm(alpha[i], sigma ^-2)
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}

alpha[i] ∼ dnorm(mu.raw , sigma0 ^-2)

}

# Priors:

for(z in 1: nbetas ){

beta[z] ∼ dnorm(0, 5^-2)

}

for(t in 1: nyear.max){

beta.year.raw[t] ∼ dnorm(0, 5^-2)

}

mu.raw ∼ dnorm(logit (.018) , 5^-1)

sigma0 ∼ dunif(0, 10)

sigma ∼ dunif (0 ,10)

# Sum -to-zero constraint for mu and beta.year

for(t in 1: nyear.max){

mean.year[t] <- mu.raw + beta.year.raw[t]

}

mu <- mean(mean.year [])

for(t in 1: nyear.max){

beta.year[t] <- mean.year[t] - mu

}

B.5.2 Prevalence model scale- and variable-selection

# Likelihood:

for(i in 1: nsite){

for(j in 1: nplot[i]){ # Number of plots in each site

for(t in 1: nyear[i,j]){ # Number of years ij was surveyed

for(k in 1:nobs[i,j,t]){ # Observations at ijt

y[i,j,k,t] ∼ dbern (1-(1-rho[i,j,t])^n[i,j,k,t])

}

logit(rho[i,j,t]) <-

beta0[i,j] +

inprod(beta.year.raw[], year[i,j,t,]) +

equals(I1 , 1)*(beta [1]*prop.forest[i,j,1] +

beta [2]*edge.forest[i,j,1] +

beta [3]*prop.forest[i,j,1]*edge.forest[i,j,1]) +

equals(I1 , 2)*(beta [1]*prop.forest[i,j,2] +

beta [2]*edge.forest[i,j,2] +

beta [3]*prop.forest[i,j,2]*edge.forest[i,j,2]) +

equals(I1 , 3)*(beta [1]*prop.forest[i,j,3] +

beta [2]*edge.forest[i,j,3] +

beta [3]*prop.forest[i,j,3]*edge.forest[i,j,3]) +

equals(I1 , 4)*(-beta [1]*prop.urban[i,j,1] +
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beta [2]*edge.forest[i,j,1] -

beta [3]*prop.urban[i,j,1]*edge.forest[i,j,1]) +

equals(I1 , 5)*(-beta [1]*prop.urban[i,j,2] +

beta [2]*edge.forest[i,j,2] -

beta [3]*prop.urban[i,j,2]*edge.forest[i,j,2]) +

equals(I1 , 6)*(-beta [1]*prop.urban[i,j,3] +

beta [2]*edge.forest[i,j,3] -

beta [3]*prop.urban[i,j,3]*edge.forest[i,j,3]) +

equals(I1 , 7)*(beta [1]*prop.forest[i,j,1] -

beta [2]*prox.forest[i,j,1] -

beta [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(I1 , 8)*(beta [1]*prop.forest[i,j,2] -

beta [2]*prox.forest[i,j,2] -

beta [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(I1 , 9)*(beta [1]*prop.forest[i,j,3] -

beta [2]*prox.forest[i,j,3] -

beta [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

equals(I1 , 10)*(-beta [1]*prop.urban[i,j,1] -

beta [2]*prox.forest[i,j,1] +

beta [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(I1 , 11)*(-beta [1]*prop.urban[i,j,2] -

beta [2]*prox.forest[i,j,2] +

beta [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(I1 , 12)*(-beta [1]*prop.urban[i,j,3] -

beta [2]*prox.forest[i,j,3] +

beta [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

beta [4]*prop.eg[i,j,I2]

+ beta [5]*dist.water[i,j]

}

beta0[i,j] ∼ dnorm(alpha[i], sigma ^-2)

}

alpha[i] ∼ dnorm(mu.raw , sigma0 ^-2)

}

# Priors:

prec <- 5^-1 # Precision for parameter estimates:

for(i in 1:5){

beta[i] ∼ dnorm(0, prec)

}

for(t in 1: nyear.max){

beta.year.raw[t] ∼ dnorm(0, prec)

}

I1 ∼ dcat(rep (1 ,12)) # Categorical indicator variables

I2 ∼ dcat(rep (1,3))
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mu.raw ∼ dnorm(logit (.018) , prec)

sigma0 ∼ dunif (0,10)

sigma ∼ dunif (0 ,10)

# Sum -to-zero constraint for mu and beta.year

for(t in 1: nyear.max){

mean.year[t] <- mu.raw + beta.year.raw[t]

}

mu <- mean(mean.year [])

for(t in 1: nyear.max){

beta.year[t] <- mean.year[t] - mu

}

B.5.3 Global occupancy model

# Unobserved years:

## Year 0:

for(i in 1: nsites ){ # Total number of sites

for(j in 1: nplots[i]){ # Number of plots in each site

z[i,j,1] ∼ dbern (0.8) # Prior on year 0

}

}

## 2014

for(i in 1: nsites ){

for(j in 1: nplots[i]){

z[i,j,4] ∼ dbern(z[i,j,3]*(1-eps[i,j])+(1 -z[i,j,3])*gam[i,j])

}

}

# Observed years:

for(i in 1: nsites ){ # Total number of sites

for(j in 1: nplots[i]){ # Number of plots in each site

for(t in yearsObs []){ # Years observed

for(k in 1:nobs){ # Number secondaries (all 4 in this case)

obs[i,j,k,t] ∼ dbern(z[i,j,t]*p[i,j,t])

}

z[i,j,t] ∼ dbern(z[i,j,t-1]*(1-eps[i,j]) +

(1-z[i,j,t-1])*gam[i,j])

logit(p[i,j,t]) <- det.odds[i,j,t]

det.odds[i,j,t] ∼ dnorm(b0.p[i] + inprod(beta.p[], X.p[i,j,t,]),

det.error^-2)

}

logit(eps[i,j]) <- b0.e[i] + inprod(beta.eps[], X.e[i,j,])

logit(gam[i,j]) <- b0.g[i] + inprod(beta.gam[], X.g[i,j,])

}

# Random intercepts:

b0.e[i] ∼ dnorm(alpha.e, sigma.e^-2) # Normal distributions defined
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b0.g[i] ∼ dnorm(alpha.g, sigma.g^-2) # using precision ,

b0.p[i] ∼ dnorm(alpha.p, sigma.p^-2) # the inverse of variance.

}

# Priors & derivations

prec <- 5^-1 # Precision for betas and alphas

for(i in 1: nbeta.e){ # Number of covariates for epsilon

beta.eps[i] ∼ dnorm(0, prec)

}

for(i in 1: nbeta.g){

beta.gam[i] ∼ dnorm(0, prec)

}

for(i in 1: nbeta.p){

beta.p[i] ∼ dnorm(0, prec)

}

alpha.e ∼ dnorm(0, prec)

alpha.g ∼ dnorm(0, prec)

alpha.p ∼ dnorm(0, prec)

sigma.e ∼ dunif (0 ,10)

sigma.g ∼ dunif (0 ,10)

sigma.p ∼ dunif (0 ,10)

det.error ∼ dunif(0, 10)

B.5.4 Occupancy scale- and variable-selection

# Unobserved years:

for(i in 1: nsites ){

for(j in 1: nplots[i]){

z[i,j,1] ∼ dbern (0.8)

}

}

for(i in 1: nsites ){

for(j in 1: nplots[i]){

z[i,j,4] ∼ dbern(z[i,j,3]*(1-eps[i,j])+(1 -z[i,j,3])*gam[i,j])

}

}

# Observed years:

for(i in 1: nsites ){

for(j in 1: nplots[i]){

for(t in yearsObs []){

for(k in 1:nobs){

obs[i,j,k,t] ∼ dbern(z[i,j,t]*p[i,j,t])

}

z[i,j,t] ∼ dbern(z[i,j,t-1]*(1-eps[i,j]) +

(1-z[i,j,t-1])*gam[i,j])

logit(p[i,j,t]) <- det.odds[i,j,t]
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det.odds[i,j,t] ∼ dnorm(b0.p[i] +

inprod(beta.p[], X.p[i,j,t,]),

det.error^-2)

}

logit(eps[i,j]) <-

b0.e[i] +

equals(ie1 , 1)*(beta.eps [1]*prop.forest[i,j,1] +

beta.eps [2]*edge.forest[i,j,1] +

beta.eps [3]*prop.forest[i,j,1]*edge.forest[i,j,1]) +

equals(ie1 , 2)*(beta.eps [1]*prop.forest[i,j,2] +

beta.eps [2]*edge.forest[i,j,2] +

beta.eps [3]*prop.forest[i,j,2]*edge.forest[i,j,2]) +

equals(ie1 , 3)*(beta.eps [1]*prop.forest[i,j,3] +

beta.eps [2]*edge.forest[i,j,3] +

beta.eps [3]*prop.forest[i,j,3]*edge.forest[i,j,3]) +

equals(ie1 , 4)*(-beta.eps [1]*prop.urban[i,j,1] +

beta.eps [2]*edge.forest[i,j,1] -

beta.eps [3]*prop.urban[i,j,1]*edge.forest[i,j,1]) +

equals(ie1 , 5)*(-beta.eps [1]*prop.urban[i,j,2] +

beta.eps [2]*edge.forest[i,j,2] -

beta.eps [3]*prop.urban[i,j,2]*edge.forest[i,j,2]) +

equals(ie1 , 6)*(-beta.eps [1]*prop.urban[i,j,3] +

beta.eps [2]*edge.forest[i,j,3] -

beta.eps [3]*prop.urban[i,j,3]*edge.forest[i,j,3]) +

equals(ie1 , 7)*(beta.eps [1]*prop.forest[i,j,1] -

beta.eps [2]*prox.forest[i,j,1] -

beta.eps [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(ie1 , 8)*(beta.eps [1]*prop.forest[i,j,2] -

beta.eps [2]*prox.forest[i,j,2] -

beta.eps [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(ie1 , 9)*(beta.eps [1]*prop.forest[i,j,3] -

beta.eps [2]*prox.forest[i,j,3] -

beta.eps [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

equals(ie1 , 10)*(-beta.eps [1]*prop.urban[i,j,1] -

beta.eps [2]*prox.forest[i,j,1] +

beta.eps [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(ie1 , 11)*(-beta.eps [1]*prop.urban[i,j,2] -

beta.eps [2]*prox.forest[i,j,2] +

beta.eps [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(ie1 , 12)*(-beta.eps [1]*prop.urban[i,j,3] -

beta.eps [2]*prox.forest[i,j,3] +

beta.eps [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

beta.eps [4]*prop.eg[i,j,ie2] +

beta.eps [5]*dist.water[i,j]

logit(gam[i,j]) <-

b0.g[i] +

equals(ig1 , 1)*(beta.eps [1]*prop.forest[i,j,1] +

beta.eps [2]*edge.forest[i,j,1] +
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beta.eps [3]*prop.forest[i,j,1]*edge.forest[i,j,1]) +

equals(ig1 , 2)*(beta.eps [1]*prop.forest[i,j,2] +

beta.eps [2]*edge.forest[i,j,2] +

beta.eps [3]*prop.forest[i,j,2]*edge.forest[i,j,2]) +

equals(ig1 , 3)*(beta.eps [1]*prop.forest[i,j,3] +

beta.eps [2]*edge.forest[i,j,3] +

beta.eps [3]*prop.forest[i,j,3]*edge.forest[i,j,3]) +

equals(ig1 , 4)*(-beta.eps [1]*prop.urban[i,j,1] +

beta.eps [2]*edge.forest[i,j,1] -

beta.eps [3]*prop.urban[i,j,1]*edge.forest[i,j,1]) +

equals(ig1 , 5)*(-beta.eps [1]*prop.urban[i,j,2] +

beta.eps [2]*edge.forest[i,j,2] -

beta.eps [3]*prop.urban[i,j,2]*edge.forest[i,j,2]) +

equals(ig1 , 6)*(-beta.eps [1]*prop.urban[i,j,3] +

beta.eps [2]*edge.forest[i,j,3] -

beta.eps [3]*prop.urban[i,j,3]*edge.forest[i,j,3]) +

equals(ig1 , 7)*(beta.eps [1]*prop.forest[i,j,1] -

beta.eps [2]*prox.forest[i,j,1] -

beta.eps [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(ig1 , 8)*(beta.eps [1]*prop.forest[i,j,2] -

beta.eps [2]*prox.forest[i,j,2] -

beta.eps [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(ig1 , 9)*(beta.eps [1]*prop.forest[i,j,3] -

beta.eps [2]*prox.forest[i,j,3] -

beta.eps [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

equals(ig1 , 10)*(-beta.eps [1]*prop.urban[i,j,1] -

beta.eps [2]*prox.forest[i,j,1] +

beta.eps [3]*prop.forest[i,j,1]*prox.forest[i,j,1]) +

equals(ig1 , 11)*(-beta.eps [1]*prop.urban[i,j,2] -

beta.eps [2]*prox.forest[i,j,2] +

beta.eps [3]*prop.forest[i,j,2]*prox.forest[i,j,2]) +

equals(ig1 , 12)*(-beta.eps [1]*prop.urban[i,j,3] -

beta.eps [2]*prox.forest[i,j,3] +

beta.eps [3]*prop.forest[i,j,3]*prox.forest[i,j,3]) +

beta.gam [4]*prop.eg[i,j,ig2] +

beta.gam [5]*dist.water[i,j]

}

# Random intercepts:

b0.e[i] ∼ dnorm(alpha.e, sigma.e^-2)

b0.g[i] ∼ dnorm(alpha.g, sigma.g^-2)

b0.p[i] ∼ dnorm(alpha.p, sigma.p^-2)

}

# Priors & derivations

for(i in 1:5){

beta.eps[i] ∼ dnorm(0, 5^-1)

}
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for(i in 1:5){

beta.gam[i] ∼ dnorm(0, 5^-1)

}

for(i in 1:2){

beta.p[i] ∼ dnorm(0, 5^-1)

}

ie1 ∼ dcat(rep (1 ,12))

ie2 ∼ dcat(rep (1 ,3))

ig1 ∼ dcat(rep (1 ,12))

ig2 ∼ dcat(rep (1 ,3))

alpha.e ∼ dnorm(0, 5^-1)

alpha.g ∼ dnorm(0, 5^-1)

alpha.p ∼ dnorm(0, 5^-1)

sigma.e ∼ dunif (0 ,10)

sigma.g ∼ dunif (0 ,10)

sigma.p ∼ dunif (0 ,10)

det.error ∼ dunif (0 ,10)

meanEps <- ilogit(alpha.e)

meanGam <- ilogit(alpha.g)

meanP <- ilogit(alpha.p)
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