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ABSTRACT

Despite the vast success of the Standard Model of particle physics, it is no secret that is

also has its shortcomings, thus providing incentive to look beyond the Standard Model

for solutions. In this thesis we focus in particular on a model of horizontal flavor

symmetry, unification via a universal Landau pole, emergent gravity, and dark matter.

First we explain the observed hierarchies in the elementary fermion mass spectrum via a

model based on the double tetrahedral group, the smallest discrete subgroup of SU(2),

while relaxing previous assumptions of supersymmetry. A sequential symmetry breaking

process results in a hierarchy in the Yukawa couplings. Just as the Standard Model

raises questions on the origin of the fermion mass spectrum, it similarly raises questions

on the origins of its gauge couplings. We have to look beyond the Standard Model for

the possibility of a unified description of the electromagnetic, weak and strong forces. As

an alternative to conventional unification, we assume the existence of a universal Landau

pole in which the gauge couplings blow up at a common scale in the ultraviolet. We

consider extensions of the minimal scenario, to see if there are cases that might be

probed at a future hadron collider. Next we focus on gravity, the fourth fundamental

force that has yet to be embedded in the Standard Model. We consider a model where

gravity is an emergent phenomenon in which the graviton appears as a bound state of

scalars. We show how this approach can accommodate an arbitrary metric. Lastly we

turn to the issue of dark matter, a hypothetical form of matter believed to account for a

large portion of the universe but with no place in the Standard Model. We specifically

focus on fermionic dark matter that is charged under the simplest non-Abelian dark

gauge group. Exotic, vector-like leptons that also transform under the dark gauge group

group can mix with standard model leptons and serve as a portal between the dark and

visible sectors. We present a framework based on symmetries that allows the mixing

between the dark and visible sectors to be non-negligible, while simultaneously

suppressing unwanted flavor-changing processes. By extending the particle content and

symmetries of the Standard Model, we can solve its various issues. In this thesis we seek

to explain the observed hierarchies in the fermion mass spectrum, provide a unified

description of the three gauge couplings, generalize a model of emergent gravity, and

create a model that gives rise to dark matter via a vector-like fermion portal.
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BEYOND THE STANDARD MODEL: FLAVOR SYMMETRY, NONPERTURBATIVE

UNIFICATION, QUANTUM GRAVITY, AND DARK MATTER



CHAPTER 1

Introduction

The Standard Model (SM) of particle physics describes how the elementary particles

interact in the presence of electromagnetic, weak and strong forces. Although it has very

successfully provided experimental predictions and lived up to experimental results, it

leaves some phenomena unexplained and does not provide a unified description of all four

fundamental interactions. Thus we have to look beyond the Standard Model for answers.

Here we touch on some of the Standard Model’s shortcomings and the models we have

developed to explain phenomena that have yet to be resolved.

The SM particle content contains three generations of fermions whose representations

in the SU(3)c ⇥ SU(2)L ⇥ U(1)Y gauge group are given by

QL (3, 2)1/6, uR (3, 1)2/3, dR (3, 1)�1/3, LL (1, 2)�1/2, eR (1, 1)�1, (1.1)

where we have suppressed generation indices. The up-type quarks, down-type quarks and

2
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charged leptons have the same quantum numbers but di↵erent masses [1]:

mu = 2.2 MeV, mc = 1.275 GeV, mt = 173 GeV;

md = 4.7 MeV, ms = 95 MeV, mb = 4.18 GeV;

me = 0.511 MeV, mµ = 106 MeV, m⌧ = 1.777 GeV.

(1.2)

Furthermore, the quark mass ratios renormalized at the grand unified scale are given

approximately by

md :: ms :: mb = �
4 :: �2 :: 1, while mu :: mc :: mt = �

8 :: �4 :: 1, (1.3)

where � ⇡ 0.22 is the Cabibbo angle [2]. This observation poses a number of questions;

for instance, why are there three generations of quarks and leptons (as opposed to some

other number)? And what is the origin of the charged fermion masses and the hierarchies

in the spectrum? Evidently the down-type quark masses are similar in magnitude to the

charged lepton masses, while the up-type quark masses are much more hierarchical; the

third generation up-type quark is much larger in mass than the third generation particles

of the other families. The Standard Model’s inability to explain these observations is the

flavor problem of particle physics.

The fermion masses arise from the Yukawa interactions,

LY = �Y
d

ij
QLi

� dRj � Y
u

ij
QLi

e� uRj � Y
e

ij
LLi � eRj + h.c., (1.4)

where � is the Higgs field, the scalar field responsible for breaking the SU(2)L ⇥ U(1)Y

symmetry, e� = i�2�
⇤, i, j are generation indices and Y

u,d,` are complex 3 ⇥ 3 matrices.

When � acquires a vacuum expectation value (vev), h�i =
�
0, v/

p
2
�
, the charged fermions

gain masses. For the quark sector we identify unitary matrices VqL and VqR that diagonalize
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the mass matrices such that

M
diag
q

= VqLMqV
†
qR
, q = u, d, Mq =

v
p
2
Yq. (1.5)

The quark mass eigenstates q
(0) are subsequently given by q

(0)
Li

= (VqL)ij qLj and q
(0)
Ri

=

(VqR)ij qRj. In the basis in which the masses are diagonal, the charged current weak

interactions are not,

L
q

W± = �
g
p
2
uLi

(0)
�
µ
W

+
µ
(VuLV

†
dL
)ijd

(0)
Lj

+ h.c, (1.6)

where g is the SU(2)W gauge coupling. Hence the charged weak gauge bosons W± couple

to the mass eigenstates of di↵erent generations, and this is the only instance of interactions

that change quark flavor in the Standard Model. The discrepancy between the flavor and

mass bases is represented by VCKM, the 3⇥3 unitary Cabibbo-Kobayashi-Maskawa (CKM)

matrix [1]:

VCKM ⌘ VuLV
†
dL

=

0

BBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCCCA
⇡

0

BBBB@

1 0.2 0.004

0.2 1 0.04

0.008 0.04 1

1

CCCCA
, (1.7)

where the second matrix in the Eq. (1.7) only displays approximate magnitudes. The

CKM matrix is nearly diagonal, parameterized by three mixing angles (the largest one

being the Cabibbo angle), and the phase responsible for all CP -violating phenomena in

flavor-changing processes. The CKMmatrix elements have been well measured, as they are

fundamental parameters of the Standard Model. But what is the origin of the hierarchies

in the CKM matrix? This is another question posed by the flavor problem of the standard

model.
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It is a possibility that the observed hierarchy of fermion masses and mixing angles

originates from the spontaneous breaking of a new horizontal flavor symmetry, GF . Ideally

only the Yukawa couplings for the third generation are allowed by the horizontal symmetry,

thereby accounting for the large, order-one top quark Yukawa coupling. The horizontal

symmetry is sequentially broken at energy scales µi through a series of nested subroups

Hi, such that

GF

µ1
�! H1

µ2
�! H2

µ3
�! . . . for µ1 > µ2 > µ3. (1.8)

Here µi ⌘ h�ii /MF , where �i is the flavon field whose vev breaksHi�1 to Hi, andMF is the

ultraviolet cuto↵ of GF [3]. The hierarchical structure of the Yukawa couplings is achieved

on account of the di↵ering energy scales that are associated with the various stages of

symmetry breaking h�ii. Of course, a model with a horizontal symmetry is successful if it

yields Yukawa textures that are phenomenologically viable.

The literature contains many studies in which a horizontal symmetry is introduced to

obtain the hierarchical structure of the fermion masses. Models have been proposed with

Abelian [5, 6] and non-Abelian [7, 8, 9, 10, 11] continuous and discrete symmetries. One

type of particularly successful model considered in the literature assumes the continuous,

global symmetry GF = U(2) [12, 13, 14].These models involve fields in 1, 2 and 3 dimen-

sional representations (reps), with quarks and leptons embedded into 2 � 1 dimensional

reps. This allows for an order-one top quark Yukawa coupling, as the third generation fields

are treated di↵erently. A set of flavons (the symmetry-breaking fields) appears in all three

of these representations. The U(2) group contains the multiplication rule 2 ⌦ 2 = 3 � 1,

which results in a symmetric and antisymmetric decomposition of the Yukawa matrices
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for first and second generation fields so that the Yukawa sector takes the form:

YU,D,E ⇠

0

B@
Sab + Aab �a

�a 1

1

CA . (1.9)

Here �a, Sab and Aab are a set of flavon fields, where � is a U(2) doublet, S is a symmetric

U(2) triplet and A is an antisymmetric U(2) singlet. The U(2) symmetry is broken to

a U(1) subgroup that rotates all first generation fields by a phase. This forbids Yukawa

couplings involving first generation fields. The residual U(1) symmetry is broken at a lower

scale to nothing; this sequential symmetry breaking produces a hierarchy in the Yukawa

couplings.

Although a horizontal U(2) symmetry explains the observed hierarchy of fermion

masses, it is not the most minimal symmetry. In Refs. [3, 4], Aranda, Carone and Lebed

consider the smallest discrete flavor group that predicts the same form of the Yukawa

textures. This is accomplished by assuming the symmetry GF = T
0
⇥Z3 and the breaking

pattern

T
0
⇥ Z3

✏
�! Z

D

3
✏
0

�! nothing. (1.10)

Here Z3 is a discrete Abelian subgroup of U(1) and T
0 is the double tetrahedral group,

the smallest discrete subgroup of SU(2) with 1, 2 and 3 dimensional reps and the multi-

plication rule 2⌦ 2 = 3� 1. T 0 contains 24 elements: 12 elements that correspond to the

12 proper rotations that take a regular tetrahedron into coincidence with itself, while the

remaining 12 elements result from a rotation by 2⇡ of the first set, which produces a factor

of �1 in the even-dimensional reps. The T
0
⇥ Z3 flavor group contains the diagonal ZD

3

subgroup, which is responsible for rotating all first-generation matter fields by a phase.

When the T
0
⇥ Z3 symmetry is broken to Z

D

3 , it is assumed that the doublet and triplet
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flavons � and S acquire the vevs

h�i

MF

⇠

0

B@
0

✏

1

CA ,
hSi

MF

⇠

0

B@
0 0

0 ✏

1

CA . (1.11)

Yukawa couplings involving first generation fields are generated after the ZD

3 symmetry is

broken at a lower scale by the flavon A:

hAi

MF

⇠

0

B@
0 ✏

0

�✏
0 0

1

CA , (1.12)

where ✏0 < ✏. The sequential symmetry breaking in Eq. (1.10) yields the following Yukawa

textures for the up quarks, down quarks and leptons:

YU =

0

BBBB@

0 u1✏
0
⇢ 0

�u1✏
0
⇢ u2✏⇢ u3✏

0 u4✏ u5

1

CCCCA
, YD =

0

BBBB@

0 d1✏
0 0

�d1✏
0

d2✏ d3✏

0 d4✏ d5

1

CCCCA
⇠, YE =

0

BBBB@

0 `1✏
0 0

�`1✏
0
`2✏ `3✏

0 `4✏ `5

1

CCCCA
⇠.

(1.13)

Here ui, di and `i are undetermined O(1) operator coe�cients that can be determined by

a global fit. Alas the T
0
⇥ Z3 flavor symmetry by itself cannot explain the discrepancies

between the hierarchies within YU , YD and YE (see Eq. (1.3)). To accommodate for this we

include the additional suppression factors ⇢ and ⇠, which arise via additional symmetries.

In the original supersymmetric T
0
⇥ Z3 models in Refs. [3, 4], the most elegant origin

for these suppression factors were obtained by working in the context of an SU(5) grand

unification.

Previous studies by Aranda, Carone and Lebed have utilized the double tetrahe-
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dral group to build flavor models that provide a successful description of charged fermion

masses and the CKM mixing elements. However these theories were constructed nearly

two decades ago, back when it was assumed that weak-scale supersymmetry was the likely

solution to the hierarchy problem. However the LHC has yet to produce any results that

would confirm the existence of supersymmetry, thereby reducing confidence in supersym-

metry as a key ingredient in tackling issues raised by the standard model. Instead we

ask the question, how well do the T
0 flavor models in Refs. [3, 4] work if there is no

supersymmetry below the Planck scale?

In our study discussed in Chapter 2, we numerically evolve the Yukawa matrices

in Eq. (2.13) using the one-loop, nonsupersymmetric renormalization groups equations

(RGEs). The RGEs are run down from the from the flavor scale, MF , to the weak scale,

mZ (the mass of the Z boson). The flavor scale is varied from the TeV scale to the Planck

scale, MP l, and the Yukawa matrices are diagonalized at the weak scale. We perform

global fits to the charged fermion masses and the CKM angles. Our results indicate that

T
0 models without supersymmetry provide viable phenomenological results for a wide range

of MF , with a preference for values closer to the TeV scale than the Planck scale. However

the feasibility of MF ⇠ MP l is consistent with the possibility that there is no new physics

between the weak and gravitational scales. The lowest MF are further constrained by

flavor-changing-neutral-current (FCNC) processes that receive contributions from physical

components of the flavon fields, thus providing indirect probes of the model.

In building flavor models, we aim to explain the origin of the Yukawa couplings. Sim-

ilarly we may also attempt to explain the origins of the Standard Model’s gauge couplings,

↵1, ↵2 and ↵3, which characterize the strength of the electromagnetic, weak and strong

forces. The coupling constants are dependent on the energy scale, µ, at which one observes
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them, and the running of the couplings is encoded in the renormalization group equations:

dgi

dt
=

gi

16⇡2

"
big

2
i
+

1

16⇡2

 
X

j=1

bijg
2
i
g
2
j
�

X

j=U,D,E

aijg
2
i
tr[YjY

†
j
]

!#
, (1.14)

where t = lnµ is the log of the renormalization scale, ↵i = g
2
i
/4⇡, bi and bij are the

beta function coe�cients and aij are the coe�cients for the Yukawa matrices Yi (though

in practice only the top quark Yukawa coupling needs to be taken into account since it

is significantly larger than the other Yukawa couplings). The evolution of the Standard

Model RGE’s from the weak scale to the Planck scale is given in Fig. 1.1.

α1-1

α2-1

α3-1

1 104 108 1012 1016

0

10

20

30

40

50

60

μ (GeV)

α-
1

FIG. 1.1: Running of the Standard Model gauge couplings from the weak scale to the Planck
scale.

Fig. 1.1 is suggestive of unification, and with additional physics beyond the Standard

Model it is possible that the gauge couplings meet at a high scale. In this case hypercharge

would be unified with the strong and weak forces, which would explain why fundamental

particles carry electric charges that appear to be exact multiples of 1/3 of the elementary

charge, as opposed to other arbitrary numbers. Charge quantization can be addressed

through the introduction of a grand unified theory (GUT) in which the SM gauge group is

embedded in a larger underlying gauge group (such as SU(5)) with a single gauge coupling

constant [15]. Quarks and leptons are placed together in irreducible representations of the
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underlying group and are related by its symmetries. For instance if we embed the SM

in SU(5), the fermions fit neatly into its anomaly-free chiral 5 � 10 representation. The

underlying group is then broken to SU(3)⇥SU(2)⇥U(1) at some high scale, typically in

the 1014 � 1016 GeV range [16]. Above this scale all fermions and their interactions would

appear very much alike, and thus the electromagnetic, weak and strong forces would all

come together (up to normalization factors) at the GUT scale.

Although a tantalizing idea, grand unified theories have their shortcomings as well.

Many GUT models explicitly break the baryon number symmetry, allowing protons to

decay, in contradiction with current experimental evidence [17]. In supersymmetric GUT

models, an extreme fine-tuning of parameters is required to produce a large mass splitting

in Higgs multiplets, called the “doublet-triplet splitting problem” [18], to keep the SM

Higgs doublet much lighter than the GUT scale. However, there is an alternative frame-

work in which the gauge couplings assume a common value at a high energy scale without

calling for conventional grand unification. Instead we assume the existence of a universal

Landau pole in which the gauge couplings blow up at a common scale ⇤ in the ultraviolet:

↵
�1
1 (⇤) = ↵

�1
2 (⇤) = ↵

�1
3 (⇤) = 0. (1.15)

A universal Landau pole may arise in models with composite gauge bosons. For instance,

the QED Lagrangian with radiative corrections contains the terms

L � �
1

4
Z(µ)F µ⌫

Fµ⌫ + g0A
µ
 �µ . (1.16)

If the photon were composite, we would expect the photon’s wave-function renormalization

factor to vanish at the compositeness scale, i.e., Z(⇤comp) = 0, indicating that the photon

has become nondynamical. Redefining the fields and couplings so that the gauge field’s
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kinetic term retains its canonical form,

L � �
1

4
F

µ⌫
Fµ⌫ +

g0p
Z(µ)

A
µ
 �µ , (1.17)

the gauge coupling is given by g(µ) = g0/

p
Z(µ), which blows up as the wave-function

renormalization factor goes to zero at the compositeness scale. This gives plausibility to

the boundary condition in Eq. (1.15).

For a universal Landau pole to be achieved all the gauge couplings must be asymp-

totically non-free, but since this is not the case for the SU(3) coupling in the minimal

supersymmetric standard model (MSSM), additional matter is necessary. The simplest

implementation of this idea is presented in Ref. [18], in which the MSSM is augmented

by an additional vector-like generation of matter fields at the TeV scale. In Chapter 3 of

this thesis we revisit this minimal scenario and find extensions that produce more viable

phenomenological results.

There are two scales to consider: the scale of the new vector-like matter, mV , and

the susy-breaking scale, msusy. In the previous literature the two scales were set equal to

one another [18], although we allow them to vary independently in our study. For a given

choice of mV and msusy, we fix the blow-up scale ⇤ by the requirement that the correct

value of the fine structure constant at the weak scale is reproduced. We then compute the

weak scale values of ↵�1
3 and the Weinberg angle sin2

✓W up to theoretical uncertainties.

A viable solution is obtained if a value of mV and msusy can be found in which both

sin2
✓W (mZ) and ↵

�1
3 (mZ) are consistent with the data.

At the Landau pole in Eq. (1.15) the gauge couplings are in the non-perturbative

regime, where the RGEs cannot be trusted. Instead we impose the boundary condition

↵1(⇤) = ↵2(⇤) = ↵3(⇤) = 10, values that are barely perturbative. This still e↵ectively

results in a Landau pole since for ↵(⇤) = 10 and ↵(⇤actual) = 1, there is negligible
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di↵erence between ⇤ and ⇤actual, as the couplings rapidly increase as the renormalization

scale is increased. To determine the theoretical uncertainty we vary ↵i independently

between 1 and 100 at the blow-up scale and find that the low-energy coupling constants

are nearly independent of the precise choice of boundary conditions, as long as the couplings

are large at ⇤. This insensitivity is due to the existence of an infrared fixed point in the

RGE for the ratios of the gauge couplings [19].

As the minimal scenario described above was studied more than two decades ago,

we reproduce it with up-to-date experimental data, but find that it requires values of

either mV or msusy that are in some tension with current LHC bounds. Thus we consider

extensions of the minimal scenario, particularly by including a small number of additional

complete SU(5) multiplets of vector-like matter, as this is known to preserve successful

unification. This leads to solutions for mV that are beyond the reach of the LHC, but

potentially within reach of a 100 TeV future hadron collider for some choices of msusy. We

consider the possibility that the new matter fields transform under an additional gauge

group that is constrained by the same ultraviolet boundary condition. In that case the

heavy fields could fall in irreducible representations of the new gauge group, explaining

the multiplicity of new particles required to achieve the Landau pole. We explore the

consequences of the heavy matter sector being vector-like or chiral under the new gauge

group.

We have discussed scenarios in which the three gauge couplings unify, but there is

a fourth fundamental force to consider: gravity. The electromagnetic, weak and strong

forces are successfully described in a quantum mechanical framework, while our current

understanding of gravity is based on Einstein’s general theory of relativity, which is derived

within the framework of classical physics. To unify gravity with the other forces we would

first need to find a consistent quantum mechanical description.

Quantizing gravity necessitates the existence of a force-carrying particle akin to the
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photon of the electromagnetic interaction; this can be accomplished with the introduction

of the spin-two massless graviton. But when applying standard protocols of quantum field

theory to the graviton, the resulting theory is not renormalizable and consequently the

predictivity of the theory is lost. In a renormalizeable theory there exists a finite number

of relevant parameters, capable of being measured via experiment, which encodes all the

physics of the theory at a particular energy scale. For instance in quantum electrodynamics

these parameters are the mass and charge of the electron. Then the number of divergences

are finite and may be absorbed into the renormalization of these parameters. In the case

of gravity the number of divergences is not finite [20]. The Einstein-Hilbert term is given

by

SEH =
1

16⇡GN

Z
d
D
xR

p
�g =

1

22

Z
d
D
xR

p
�g (1.18)

where GN is Newton’s gravitational constant,  is related to the d-dimensional Planck

length, g = det(|gµ⌫ |) is the determinant of the metric tensor andR is the Ricci (curvature)

scalar of general relativity. To expand the gravitational action around flat space we write

gµ⌫ = ⌘µ⌫ + hµ⌫ , where ⌘µ⌫ is the flat-space metric and hµ⌫ is a perturbation about it.

Then an expansion in the action results in an infinite series of the form

SEH ⇠
1

2

1X

n=0

Z
d
D
x(@h)2(h)n, (1.19)

where 2 has units of [L]D�2 and so is not dimensionless for D > 2 [20]. Each term in the

expansion receives divergent loop contributions involving lower order terms, requiring an

ever-increasing number of counterterms to cancel the divergences. Accordingly we would

need to specify an infinite set of parameters before the theory is fixed, wherein the process

of renormalization fails.

Besides nonrenormalizeability, quantum gravity also faces the problem of time. Quan-
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tum mechanics takes the flow of time to be universal and absolute, as it acts as an inde-

pendent background through which states evolve. The Hamiltonian operator is responsible

for generating infinitesimal translations of quantum states through time. In contrast gen-

eral relativity assumes that time is a dynamical variable. But this would require the

Hamiltonian to vanish, producing an absence of dynamics of quantum states.

String theory has commonly been called upon to resolve some of these issues. It

introduces a new length scale, related to the string tension, at which particles are no longer

pointlike. Oscillations of the string manifest themselves as new symmetries (particularly

supersymmetry) that reduce the infinite parameters to a finite set. However as it was

pointed out above there is an increasing loss of confidence in supersymmetry, as the LHC

has yet to produce any results that confirm its existence. Furthermore, string theory

introduces a huge number of ground state vacua, perhaps ⇠ 10500 [21], so there is a

price to pay in making quantum gravity finite. Thus we focus on another possibility: the

emergence of gravity as the e↵ective description of a massless composite spin-two state.

The possibility of emergent long-range interactions in quantum field theory is not

limited to gravity. In Ref. [22], Bjorken argued that a four-fermion interaction of the form

Lint = GF ( �
µ
 )( �µ ) gives rise to a massless spin-one composite state with interactions

akin to the photon in electrodynamics. During the development of the theory of the strong

sector, it was briefly considered that quantum chromodynamics emerged as consequence

of color confinement imposed via a constraint of vanishing color current, rather than the

other way around [24, 25]. Since the Standard Model provided a successful description

of the electroweak and strong interactions, the existence of emergent gauge interactions

was no longer necessary to explain existing phenomena. However the Standard Model has

yet to successfully incorporate general relativity, and so the paradigm of emergent gravity

remains compelling. Much of the activity in this area has been inspired by Ref. [26],

in which Sakharov pointed out that the dynamics of spacetime emerge in a generally
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covariant quantum field theory which contains a covariant regulator to resolve infinites in

perturbation theory. The regularized e↵ective action for the spacetime metric contains the

Einstein-Hilbert term, even if no such term is present at tree level.

In Ref. [27], Carone, Erlich and Vaman were motivated by the observation that gauge

interactions can emerge from a constraint of vanishing current and studied the possibility

that by analogy gravitational interactions emerge via a constraint of vanishing energy-

momentum tensor. They created a scalar field theory with a vanishing energy-momentum

tensor that has a perturbative low-energy description, and demonstrated that the scatter-

ing of scalar particles includes a massless spin-two pole, corresponding to the exchange of

a massless composite graviton that couples to matter as in Einstein gravity. Dimensional

regularization is used as a placeholder for a generally covariant, physical regulator, and

the gravitational coupling is determined by this regularization. The problem of time is

addressed by allowing for certain scalar fields to play the role of the physical clock and

rulers by a gauge-fixing condition analogous to the static-gauge condition in string theory.

In Chapter 4 we generalize this model of emergent gravity; the theory in the previous

study assumed a flat-space metric, while we study the consequences of a model with a

general field-space metric for the scalar fields that play the role of clock and rulers. A field

redefinition cannot take a curved-space metric to a flat-space one, so the theory with a

general field-space metric is genuinely inequivalent to the flat-space version in the previous

study. The static-gauge configuration satisfies the classical equations of motion, with all

other fields sitting at the minimum of the potential and with the emergent spacetime

metric equal to the field-space metric. Thus there is a natural perturbative expansion

about this classical background. We write the curved-space metric as an expansion about

the Minkowski metric, Gµ⌫ = ⌘µ⌫+ eHµ⌫ , where eHµ⌫ determines the background spacetime,

and we show that scattering of o↵ this background spacetime is as in general relativity.

Although the quantization of gravity remains an open question, classical general rela-
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tivity continues to be an excellent description of the universe at macroscopic scales provided

that one additional ingredient is assumed: dark matter, a hypothetical form of matter that

does not directly interact with observable electromagnetic radiation but believed to ac-

count for approximately 85% of the total matter in the universe [28]. Yet this mystery

has no place in the Standard Model, despite a variety of astrophysical phenomena im-

plying its existence. The primary evidence for dark matter arises from galactic rotation

curves, which illustrate how the orbital velocity of visible stars and gas in a galaxy varies

with their distance from the galaxy’s center. From Kepler’s Second Law, it is expected

that the rotational velocities of stars in spiral galaxies would decrease with distance from

the galactic center; however the rotational velocities have been observed to remain flat

with increasing distance. This inconsistency suggests that each galaxy is surrounded by

significant amounts of non-luminous matter (dark matter).

The primary candidate for dark matter is some new sort of elementary particle that has

yet to be discovered; candidates include weakly-interacting massive particles (WIMPs), ax-

ions (hypothetical particles postulated to resolve the strong charge-parity problem in quan-

tum chromodynamics), sterile neutrinos (heavy neutrinos without electroweak quantum

numbers that are motivated to explain the observed neutrino masses), and in supersym-

metric models, the LSP (lightest supersymmetric partner). There are many experiments

aimed at detecting dark matter, divided into two classes: direct detection experiments

(including LUX [29], XENON [30], CDMS [31]), which observe the e↵ects of dark matter

collisions with atomic nuclei within a detector, and indirect detection experiments (includ-

ing PAMELA [32] and IceCube [33]), which search for the products from the annihilation

or decay of dark matter particles in the galaxy, including excessive bursts of gamma rays,

positrons or antiprotons.

All dark matter models have to annihilate a su�cient amount of dark matter so that

the correct relic density is obtained. Dark matter “freezes out” when its interactions prob-
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ability per unit time falls below the expansion rate of the universe [34]. The literature

contains many diverse dark matter models which reproduce the desired relic density, al-

though they all usually contain three components: the visible sector that at a minimum

includes all the standard model fields, the dark sector which consists of a collection of

fields that communicate very weakly with the visible sector, and the messenger or portal

sector which enables a coupling between the previous two sectors. Dark matter models

have been proposed with Abelian and non-Abelian symmetries; see Refs. [35, 36, 37, 38, 39]

for examples of the former and Refs. [40, 41, 42, 43, 44, 45, 46] for the latter. There are

a wide variety of proposed portals between the dark and visible sectors, including kinetic

mixing portals, Higgs portals, and vector-like fermion portals.

In Chapter 5 we consider fermionic dark matter that is charged under the simplest

non-Abelian dark gauge group, and focus on the case where the vector-like fermion portal

is dominant. Such a portal consists of vector-like fermions that are charged under the dark

gauge group but contain the quantum numbers of some standard model particle (in our

case, the right-handed electron), so that communication between the dark and visible sec-

tors can occur via mass mixing. In our model, the dark gauge boson couples to a vector-like

state that mixes with standard model leptons after the dark and visible gauge symmetries

of the theory are spontaneously broken. However, lepton-flavor-violating processes emerge

when the vector-like lepton mixes with all three standard model flavors. Consequently,

there are bounds on vector-like heavy leptons that exceed 100 TeV [47]. But to obtain a

su�cient dark matter annihilation cross section to a standard model lepton, the mixing

angle cannot be too small, which implies that the vector-like leptons cannot be arbitrar-

ily heavy. To work around the stringent lower bounds on heavy vector-like leptons that

arise from lepton-flavor-violating processes, we identify a mechanism, based on discrete

symmetries, that we call “flavor sequestering.” This allows for mixing between the vector-

like leptons and a single standard model lepton flavor exclusively (the remaining standard
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model lepton flavors may only mix with each other). Thus lepton flavor violation is sup-

pressed, providing for vector-like fermion portal sectors that are lighter. Then the mixing

angle between the vector-like lepton and the chosen lepton flavor can be large enough so

that an adequate scattering cross section is obtained from dark matter annihilation to a

lepton-anti-lepton pair. The vector-like fermion portal we present is renormalizeable and

completely specified; we explicitly investigate the flavor structure dictating the mixing be-

tween the exotic and standard model fields and the resulting phenomenology. Specifically,

we look for regions of parameter space that successfully reproduce the dark matter relic

density and satisfy current direct detection bounds.

To recap: this thesis addresses a variety of issues that are not resolved by the Stan-

dard Model. In Chapter 2, we explain the observed hierarchies in the elementary fermion

mass spectrum via a model based on the double tetrahedral group, a subgroup of SU(2),

without relying on supersymmetry. In Chapter 3, we consider an alternative to conven-

tional unification in which the electromagnetic, weak and strong couplings blow up at a

common Landau pole and consider extensions of the minimal scenario, to see if there are

cases that might be probed at a future 100 TeV collider. In Chapter 4, we turn to the

issue of quantum gravity, generalizing a composite graviton model to the case of curved

spacetime backgrounds. In Chapter 5, we consider a model with fermionic dark matter

that communicates with the Standard Model via a vector-like fermion portal. We present

a framework based on symmetries that allows the mixing between the dark and visible

sectors to be non-negligible, while simultaneously suppressing unwanted flavor-changing

processes. Lastly we summarize our conclusions in Chapter 6.



CHAPTER 2

Flavor from the double tetrahedral

group without supersymmetry 1

In this chapter we consider a class of previous flavor models, relaxing the assumption

of supersymmetry and allowing the flavor scale to float anywhere between the weak and

Planck scales. We perform global fits to the charged fermion masses and CKM angles,

and consider the dependence of the results on the unknown mass scale of the flavor sector.

We find that the typical Yukawa textures in these models provide a good description of

the data over a wide range of flavor scales, with a preference for those that approach

the lower bounds allowed by flavor-changing-neutral-current constraints. Nevertheless,

the possibility that the flavor scale and Planck scale are identified remains viable. We

present models that demonstrate how the assumed textures can arise most simply in a

non-supersymmetric framework.

1Work previously published in C. D. Carone, S. Chaurasia and S. Vasquez, “Flavor from the double
tetrahedral group without supersymmetry,” Phys. Rev. D 95, no. 1, 015025 (2017) [arXiv:1611.00784
[hep-ph]].
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2.1 Introduction

There is a vast literature on models that attempt to explain the observed hierarchy

of fermion masses by means of horizontal symmetries. In this chapter, we revisit one such

model, proposed by Aranda, Carone and Lebed, based on the double tetrahedral group

T
0 [3, 4]. Prior to this work, it had been shown that supersymmetric grand unified theories

with U(2) flavor symmetry predict simple forms for the Yukawa matrices, ones that provide

a successful description of charged fermion masses and the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix [12, 14]. The authors of Ref. [3, 4] posed a simple question: What

is the smallest discrete flavor group that predicts the same form for the Yukawa textures?

The answer to this question was determined by the specific group theoretic properties of

U(2) that were utilized in the most successful U(2) models [14]:

1. U(2) models involved fields in 1, 2 and 3 dimensional representations (reps). Matter

fields of the three generations were embedded into 2�1 dimensional reps; the fact that

the third generation fields were treated di↵erently allowed the model to accommodate

an order one (i.e., a flavor-group-invariant) top quark Yukawa coupling. The flavor-

symmetry-breaking fields, called flavons, appeared in all three of these representations.

2. In each Yukawa matrix, the two-by-two block associated with the first two genera-

tions decomposed into an antisymmetric and symmetric part. These followed from

the couplings of the 1 and 3-dimensional flavon fields, respectively, due to the group

multiplication rule

2⌦ 2 = 3� 1 . (2.1)

3. The U(2) symmetry was broken to a U(1) subgroup that rotated all first generation

fields by a phase. This U(1) symmetry was subsequently broken at a lower energy scale

than that of the original U(2) symmetry. Since Yukawa couplings emerge as a ratio of
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a symmetry-breaking scale to a cut o↵, the sequential breaking of the flavor symmetry

explains why the Yukawa couplings associated with first generation were smaller than

those of the heavier generations.

The group T
0 is special in that it is the smallest discrete group that has 1, 2 and 3-

dimensional representations, as well as the multiplication rule 2 ⌦ 2 = 3 � 1. We will

briefly review the representations and multiplication rules for T
0 symmetry in Sec. 2.2.

Following Ref [3, 4], the appropriate symmetry breaking sequence is achieved if the flavor

group includes an Abelian factor, so that GF = T
0
⇥Z3. Then the breaking pattern of the

U(2) model

U(2)
✏

�! U(1)
✏
0

�! nothing, (2.2)

is mimicked by

T
0
⇥ Z3

✏
�! Z

D

3
✏
0

�! nothing. (2.3)

Here we have indicated the scale of each symmetry breaking via the dimensionless pa-

rameters ✏ and ✏0, which represent the ratio of a symmetry-breaking vacuum expectation

value (vev) to the cut o↵ of the e↵ective theory. We refer to the cut o↵ as the flavor scale,

MF , henceforth. A useful way to understand the connection between Eq. (2.2) and (2.3)

is to consider the SU(2)⇥U(1) subgroup of U(2); The T 0 factor is a subgroup of the SU(2)

factor while Z3 is a subgroup of the U(1). The Z3 factor remaining after the first step in

the symmetry-breaking chain in Eq. (2.3) also transforms all first generation fields by a

phase and will be specified later. The T
0
⇥ Z3 model defined in this way reproduces the

successful Yukawa textures of the U(2) models, but with a much smaller symmetry group.

For other productive applications of T 0 symmetry in flavor model building, we refer the

reader to Ref. [48].

The T
0 models of Refs. [3, 4] were constructed more than 16 years ago, when it was
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widely assumed that weak-scale supersymmetry was the likely solution to the gauge hier-

archy problem. The numerical study of the Yukawa textures in these references assumed

supersymmetric renormalization group equations to relate the predictions of the theory

at the flavor scale MF to those at observable energies. Superpartners were taken to have

masses just above the electroweak scale, while MF was identified with the scale of super-

symmetric grand unification, ⇠ 2 ⇥ 1016 GeV. The latter choice was motivated by the

most elegant T 0 models, which were formulated in the context of an SU(5) grand unified

theory. Some of the essential features of the Yukawa textures followed from the combined

restrictions of the flavor and grand unified symmetries.

At the present moment, however, the status of weak-scale supersymmetry as a nec-

essary ingredient in model building is far less certain. The latest data from the LHC has

found no evidence for supersymmetry. Of course, this may simply mean that the scale of

the superpartner masses is slightly higher than what one might prefer from the perspective

of naturalness; this interpretation would have little e↵ect on the results of Refs. [3, 4]. On

the other hand, the LHC may be hinting that there is no necessary connection between the

weak scale and the scale of supersymmetry breaking. In this case, one might entertain the

possibility that the supersymmetry breaking scale is associated with the only higher phys-

ical mass scale whose existence is well established: the Planck scale. For example, it has

been suggested in Ref. [49] that the shallowness of the Higgs potential may be explained

by Planck-scale supersymmetry breaking, assuming that supersymmetry is still relevant

for a quantum gravitational completion. This latter assumption itself has been challenged

in Ref. [50], where it has been noted that there are consistent string theories that are fun-

damentally non-supersymmetric and whose low-energy limit could include the standard

model. Whether supersymmetry is broken at the Planck scale, or not present at any scale,

one might attempt to address the hierarchy between the weak scale and Planck scale, for

example, by anthropic selection, or by Higgs field relaxation [51], or by mechanisms not yet
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known. Alternatively, one might pursue the idea that quantum gravitational physics does

not contribute to scalar field quadratic divergences in the way that one expects naively

from e↵ective field theory arguments [52]. In this chapter, we remain completely agnostic

on the issue of naturalness. We instead investigate a question that can be addressed in a

more definitive and quantitative way: how well do the T 0 flavor models in Refs. [3, 4] work

if there is no supersymmetry below the Planck scale?

We begin our study by assuming a standard form for the Yukawa textures expected

in models with T
0
⇥ Z3 symmetry and perform a global fit to the charged fermion masses

and CKM elements assuming that the predictions at the flavor scale MF are related to

those at the weak scale via non-supersymmetric renormalization group equations1. In the

absence of supersymmetry, we no longer have gauge coupling unification and therefore do

not consider grand unified embeddings. The flavor scale is taken as a free parameter that

may vary anywhere from the TeV scale to the Planck scale. By study of the goodness of

these fits, we consider whether there is any preference for a higher or lower flavor scale

within the specified range. If one were to find acceptable results for values of MF near the

Planck scale, one might conclude that the model is consistent with a minimal scenario in

which there are no other energy scales of physical relevance other than the weak and the

Planck scale. On the other hand, if one were to find acceptable results for MF closer to

the lower bounds from flavor-changing-neutral-current processes, then one might obtain

interesting predictions for observable indirect e↵ects of heavy particles associated with the

flavor sector.

The chapter is organized as follows. In the next section, we briefly review the flavor

models of interest and present a parameterization of the Yukawa matrix textures that

1Note that we do not consider neutrino physics in the present work due to the additional model
dependence a↵ecting that sector of the theory. For example, the structure of the theory is di↵erent
depending on whether neutrino masses are Dirac or Majorana, whether the Majorana masses arise via
a seesaw mechanism or via coupling to electroweak triplet Higgs fields, and whether additional neutral
fermions are present with which the neutrinos can mix. We reserve such a study for future work.
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typically arise in these models at the flavor scale MF . In Sec. 2.3, we study the predictions

that follow from these textures by a non-supersymmetric renormalization group analysis,

including global fits to the current data on charged fermion masses and CKM elements.

In Sec. 2.4, we point out the largest indirect e↵ects of heavy flavor-sector particles on

flavor-changing-neutral current processes in the case where MF is low. In Sec. 3.4, we

address model building issues: supersymmetric models have two Higgs doublets (in order

to cancel anomalies) and have a superpotential that is constrained by holomorphicity;

these requirements are absent in the non-supersymmetric case. Hence, in this section we

show how the textures assumed in Sec. 2.3 may arise in non-supersymmetric T
0 models.

In the final section, we summarize our conclusions.

2.2 Typical Yukawa textures from T-prime symmetry

The group T
0 is discussed at length in Ref. [4]. Here we summarize only the most basic

properties relevant to the present discussion: The group has 24 elements. This includes 12

elements that correspond to the 12 proper rotations that take a regular tetrahedron into

coincidence with itself, with choices of Euler angles that are less than 2⇡. The remaining

12 elements are the first set times an element called R that corresponds to a 2⇡ rotation.

As we indicated earlier, T 0 has 1, 2 and 3-dimensional representations, that we specify

more precisely below. For odd-dimensional representations, R acts trivially and the action

of the group T
0 is not distinguishable from that of the tetrahedral group T . For the even-

dimensional representations, however, R acts non-trivially; this reflects the fact that T 0 is

a subgroup of SU(2) and that spinors flip sign under a rotation by 2⇡.

The complete list of T 0 representations is as follows: there is a trivial singlet, 10, two

non-trivial singlets, 1±, three doublets, 20 and 2±, and one one triplet, 3. The di↵erent

singlet and doublet representations are distinguished by how they transform under a Z3
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subgroup, generated by the group element called g9 in Ref. [4]. This is indicated by the

triality superscript; when we multiply representations, trialities add under addition modulo

three. Keeping this in mind, the rules for multiplying representations are then specified

by

1⌦R = R⌦ 1 for any rep R,

2⌦ 2 = 3� 1,

2⌦ 3 = 3⌦ 2 = 20
� 2+

� 2�
,

3⌦ 3 = 3� 3� 10
� 1+

� 1�
.

(2.4)

As we indicated in the Introduction, the models of interest are based on the flavor

group GF = T
0
⇥Z3, which includes a Z3 subgroup that rotates all first-generation matter

fields by a phase. We now identify that subgroup. In the models of Ref. [4], the first two

generations are assigned to the 20 representation2, in which the element g9 is given by

g9(2
0) =

0

B@
⌘
2 0

0 ⌘

1

CA , (2.5)

where ⌘ ⌘ e
2⇡i/3. However, the matter fields may also transform under the Z3 factor

that commutes with T
0. We represent charge assignments under this Z3 by an additional

triality index 0, + and �, corresponding to the phase rotations 1, ⌘ and ⌘2. The diagonal

subgroup of the Z3 subgroup generated by g9 and the Z3 factor that commutes with T
0 is

the intermediate symmetry that we desire; we call this subgroup Z
D

3 . If we assign the first

2This choice is motivated by the cancelation of discrete gauge anomalies. See Ref. [4] for details.
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two generations to the rep 20�, then the action of ZD

3 is through powers of the product

g9(2
0) · ⌘2 =

0

B@
⌘ 0

0 1

1

CA , (2.6)

which provides the desired first generation phase rotation.

Assigning the three generations of matter fields to the T
0
⇥ Z3 reps 20�

� 100 yields

the following transformation properties of the Yukawa matrices:

YU,D,E ⇠

0

B@
[3�

� 10�] [20+]

[20+] [100]

1

CA . (2.7)

The models of interest include a set of flavon fields, Aab, �ab and Sab, which transform as

10�, 20+ and 3�, respectively. When the T
0
⇥ Z3 symmetry is broken to Z

D

3 , the doublet

and triplet flavons acquire the VEVs

h�i

MF

⇠

0

B@
0

✏

1

CA ,
hSi

MF

⇠

0

B@
0 0

0 ✏

1

CA , (2.8)

where we use ⇠ when we omit possible order one factors. This is the most general pattern

of non-vanishing entries that is consistent with the unbroken Z
D

3 symmetry defined by

Eq. (2.6). Yukawa couplings involving first-generation fields are generated only after the

Z
D

3 symmetry is broken at a lower scale; in analogy to the U(2) models of Ref. [12, 14], it

is assumed that this is accomplished solely through the vev of the flavon Aab,

hAi

MF

⇠

0

B@
0 ✏

0

�✏
0 0

1

CA , (2.9)
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where ✏0 < ✏. This sequential breaking T
0
⇥Z3

✏
�! Z

D

3
✏
0

�! nothing yields a Yukawa texture

for the up quarks, down quarks and leptons of the form

YU,D,E ⇠

0

BBBB@

0 ✏
0 0

�✏
0
✏ ✏

0 ✏ 1

1

CCCCA
, (2.10)

where we’ve suppressed O(1) operator coe�cients.

The forms of the Yukawa matrices obtained in Eq. (2.10) are inadequate, given the

known di↵erences between the up-, down- and charged-lepton masses. The top quark

Yukawa coupling is of order one, while the all others are substantially smaller, suggesting

an additional overall suppression factor is desirable in YD and YE. Moreover, the hierarchy

of quark masses is more extreme in the up-quark sector than in the down; for example,

the quark mass ratios renormalized at the supersymmetric grand unified scale are given

approximately by [2]

md :: ms :: mb = �
4 :: �2 :: 1 while mu :: mc :: mt = �

8 :: �4 :: 1, (2.11)

where � ⇡ 0.22 is the Cabibbo angle. This suggest that an additional suppression in the

1-2 block of YU is also desirable. We call these suppression factors ⇢ and ⇠, which modify

the textures of Eq. (2.10) as follows:

YU ⇠

0

BBBB@

0 ✏
0
⇢ 0

�✏
0
⇢ ✏ ⇢ ✏

0 ✏ 1

1

CCCCA
, YD ⇠

0

BBBB@

0 ✏
0 0

�✏
0
✏ ✏

0 ✏ 1

1

CCCCA
⇠, YE ⇠

0

BBBB@

0 ✏
0 0

�✏
0
✏ ✏

0 ✏ 1

1

CCCCA
⇠. (2.12)

Clearly, the smallness of ⇢ and ⇠ does not follow directly from the assumed flavor symmetry
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breaking, but requires additional symmetries and/or dynamics. In the U(2) models of

Refs. [12, 14] and the T
0 models of Refs. [3, 4], ⇠ is assumed to arise from mixing in

the Higgs sector of the theory, while the origin of ⇢ is understood in terms of a grand

unified embedding. Flavon charge assignments under the unified gauge group can cause

Yukawa entries to arise at higher order in 1/MF than they would otherwise. In the non-

supersymmetric T
0 models that we discuss in Sec. 3.4, we will neither have an extended

Higgs sector nor a grand unified embedding; we will, however, show how ⇢ and ⇠ may arise

simply by a small extension of the flavor symmetry.

All other di↵erences between YU , YD and YE can now be accommodated by the choice

of the undetermined O(1) operator coe�cients, identified according to naive dimensional

analysis. We generally require these to be between 1/3 and 3 in magnitude; the precise

range is a matter of taste, but our choice is consistent with the assumptions of Refs. [3, 4].

Variations in the operator coe�cients are then su�cient, for example, to account for

di↵erences between YD and YE that are attributed to group theoretic factors of 3 in grand

unified theories [53]. We parameterize the Yukawa matrices in terms of coe�cients ui, di

and `i as follows:

YU =

0

BBBB@

0 u1✏
0
⇢ 0

�u1✏
0
⇢ u2✏⇢ u3✏

0 u4✏ u5

1

CCCCA
, YD =

0

BBBB@

0 d1✏
0 0

�d1✏
0

d2✏ d3✏

0 d4✏ d5

1

CCCCA
⇠, YE =

0

BBBB@

0 `1✏
0 0

�`1✏
0
`2✏ `3✏

0 `4✏ `5

1

CCCCA
⇠.

(2.13)

These forms will be used to define the Yukawa matrices at the flavor scale MF in the

numerical study presented in the following section.
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2.3 Numerical analysis

We numerically evolve the Yukawa matrices in Eq. (2.13), using the one-loop, non-

supersymmetric renormalization group equations (RGEs). The flavor scale MF is taken to

be variable, while the scale of observable energies is chosen to be the mass of the Z boson,

mZ . We omit all weak-scale threshold corrections. The RGEs are given by [54]

dgi

dt
=

b
SM
i

16⇡2
g
3
i
, (2.14)

dYU

dt
=

1

16⇡2

 
�

X

i

c
SM
i

g
2
i
+

3

2
YUY

†
U
�

3

2
YDY

†
D
+ Y2(S)

!
YU , (2.15)

dYD

dt
=

1

16⇡2

 
�

X

i

c
0SM
i

g
2
i
+

3

2
YDY

†
D
�

3

2
YUY

†
U
+ Y2(S)

!
YD , (2.16)

dYE

dt
=

1

16⇡2

 
�

X

i

c
00SM
i

g
2
i
+

3

2
YEY

†
E
+ Y2(S)

!
YE, (2.17)

where

Y2(S) = Tr[3YUY
†
U
+ 3YDY

†
D
+ YEY

†
E
] . (2.18)

Here, the gi are the gauge couplings, YU , YD and YE are the Yukawa matrices, and t = lnµ

is the log of the renormalization scale. The SU(5) normalization of g1 is assumed. In the

absence of supersymmetry [54],

b
SM
i

=

✓
41

10
, �

19

6
, �7

◆
, (2.19)

and

c
SM
i

=

✓
17

20
,

9

4
, 8

◆
, c

0SM
i

=

✓
1

4
,

9

4
, 8

◆
, c

00SM
i

=

✓
9

4
,

9

4
, 0

◆
. (2.20)
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The MS gauge couplings are chosen to satisfy the boundary conditions

↵
�1
1 (mZ) = 59.01 ,

↵
�1
2 (mZ) = 29.59 ,

↵
�1
3 (mZ) = 8.44 ,

(2.21)

where ↵i = g
2
i
/4⇡. These were computed using the values of ↵EM = e

2
/4⇡ = 127.950 and

sin2
✓̂W = 0.23129 renormalized at mZ [1] as well as

e = gY cos ✓̂W = g2 sin ✓̂W and g1 =
p

5/3 gY , (2.22)

where the latter equation converts the standard model hypercharge gauge coupling to

SU(5) normalization [55]. The QCD coupling is given directly in Ref. [1].

At the flavor scale MF , the Yukawa matrices are given by Eq. (2.13). For a given

numerical choice of symmetry-breaking parameters and operator coe�cients, the Yukawa

matrices are run down to the scale mZ and diagonalized. In addition to the nine fermion

mass eigenvalues, three CKM mixing angles can be compared to experimental data. (In

this work, we do not consider the CKM phase, which is not constrained by the flavor

symmetry.) Equivalently, we take the predictions of the theory to consist of the nine

fermion masses and the magnitudes of the three CKM elements, Vus, Vub and Vcb.

To optimize the choice of parameters and operator coe�cients for a given choice of

flavor scale MF , we follow the approach of Ref. [4] and minimize the function

e�2 =
9X

i=1

✓
m

th

i
�m

exp

i

�m
exp

i

◆2

+

✓
|V

th

us
|� |V

exp

us
|

�V
exp

us

◆2

+

✓
|V

th

ub
|� |V

exp

ub
|

�V
exp

ub

◆2

+

✓
|V

th

cb
|� |V

exp

cb
|

�V
exp

cb

◆2

+
5X

i=1

✓
ln |ui|

ln 3

◆2

+
5X

i=1

✓
ln |di|

ln 3

◆2

+
5X

i=1

✓
ln |`i|

ln 3

◆2

.

(2.23)
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FIG. 2.1: Minimum e�2 values as a function of MF , for two di↵erent model assumptions.

Here, the quantities with the superscript th refer to the predictions of the theory, obtained

as we have described previously. The quantities with the superscript exp refer to the

experimental data, taken from Ref. [1], and written as X ± �X, where the second term

is the experimental uncertainty. Since we’ve omitted two-loop corrections and threshold

e↵ects, we take this uncertainty into account in the same way as Ref. [4]: we inflate

experimental error bars to 1% of the central value if the experimental error is smaller

than this. The terms involving ratios of logarithms in Eq. (2.23) ensure that the operator

coe�cients remain near unity [4].

We have called the function we minimize e�2 to make clear that it di↵ers from the

conventional �2 function one would define in a simple least-squares fit. The latter cannot

be sensibly formulated for the purpose of our analysis. A conventional �2 function only

involves di↵erences between the theoretical predicted values and the experimental measure-

ments. The conventional �2 function that would replace our Eq. (2.23) would thus involve

the sum of 12 terms that are a function of 19 parameters. This means that the numbers

of degrees of freedom is negative and the conventional �2 probability distribution is not
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TABLE 2.1: Fit parameters and observables for MF = 106 GeV with �
2 = 7.021. In this

example, the operator corresponding to u4 is absent from the theory. All masses are given in
GeV. (Note that mt is the MS mass, not the pole mass.)

Best Fit Parameters
✏ = 0.182, ✏0 = 0.005, ⇢ = 0.029, ⇠ = 0.014

u1 = 1.131 d1 = 1.162 `1 = 0.651
u2 = 0.921 d2 = �0.631 `2 = �0.710
u3 = �0.575 d3 = 1.024 `3 = �1.242
u4 = 0 (fixed) d4 = 2.375 `4 = �1.244
u5 = 0.628 d5 = �0.931 `5 = �0.637

Observable Expt. Value [1] Fit Value
mu (2.3± 0.6)⇥ 10�3 1.4⇥ 10�3

mc 1.275± 0.025 1.277
mt 160± 4.5 160.1
md (4.8± 0.4)⇥ 10�3 4.18⇥ 10�3

ms (9.5± 0.5)⇥ 10�2 9.84⇥ 10�2

mb 4.18± 0.03 4.18
me (5.11± 1%)⇥ 10�4 5.11⇥ 10�4

mµ 0.106± 1% 0.106
m⌧ 1.78± 1% 1.78
|Vus| 0.225± 1% 0.226
|Vub| (3.55± 0.15)⇥ 10�3 3.58⇥ 10�3

|Vcb| (4.14± 0.12)⇥ 10�2 4.13⇥ 10�2

defined. This reflects the fact that we could choose parameter values to set a conventional

�
2 function identically to zero (i.e., there would be nothing to fit)3. Doing so, however, is

not adequate since this does not prevent a parameter value from exceeding the limits that

assure a valid e↵ective field theory. For example, a choice of parameters that gives a very

good match to all the experimental central values but includes an operator coe�cient that

3Note that there is one way that one could do a conventional �2 fit, namely, if one arbitrarily fixes a
subset of the model parameters. This approach, however, is not adequate: Imagine if one fixed 14 of the
19 model parameters, and fit the 12 predictions of the theory to the data in terms of the 5 free parameter
values. There are over 11, 000 di↵erent ways of choosing the set of free parameters in this example and
no physical basis for choosing one set over another, nor for determining the precise values to which the
fixed parameters should be set. We therefore follow an approach where all the parameters are allowed to
float. Note that in the one case where do fix a parameter value, i.e., u4 = 0, there is a specific physics
justification that follows from the model building considerations discussed in Sec. 3.4.
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is, for example, 17.3, would be in wild conflict with the assumption that we have a valid

e↵ective field theory description. The e�2 function, on the other hand, includes additional

terms that give weight to the theoretical constraint that the e↵ective theory remain valid

and consistent with naive dimensional analysis. Any alternative way of imposing such a

theoretical constraint, which necessarily involves adding additional terms to the function

that is minimized that are independent of the output predictions of the theory, would not

be a conventional �2 function with the conventional statistical interpretation. Hence, we

opt for a form that is both simple and consistent with what has been used in the past

literature [4]. The quantity e�2 is useful in that it allows us to quantify the comparison

of one of our fits to another. To interpret the meaning of a given value of e�2 in absolute

terms, one then directly inspects the fit output, as we will discuss later. Since the ui, di

and `i are not treated as free parameters, we might expect qualitatively that a good fit

will have a e�2
⇡ 8, corresponding to 12 pieces of experimental data minus 4 unconstrained

parameters (✏, ✏0, ⇢ and ⇠). We will see that this is consistent with our numerical results.

A plot of e�2 as a function of the flavor scale MF is shown in Fig. 2.1. The two curves

in this figure correspond to the cases were the coe�cient u4 is allowed to float, or is fixed

to zero. (In the latter case, the sum over the ui in the second line of Eq. (2.23) omits

i = 4.) These cases are motivated by two variants of the Yukawa textures that may arise

in explicit models, as we show in Sec. 3.4. Over the entire range of MF we find good fits

with e�2
⇡ 8, but with clear and monotonic improvement in e�2 towards smaller values of

MF . In addition, the case where the operator corresponding to u4 is absent from the theory

(i.e., where u4 is fixed to zero), which we will see corresponds to more minimal model-

building assumptions, provides a better description of the data than the case where it is

present. We present two examples of our results in Tables 2.1 and 2.2, for MF = 106 GeV

and 1018 GeV, respectively, both in the case where u4 = 0. The first choice corresponds to

a flavor scale of the same order as the lower bounds from flavor-changing neutral current
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TABLE 2.2: Fit parameters and observables for MF = 1018 GeV with �
2 = 7.762. In this

example, the operator corresponding to u4 is absent from the theory. All masses are given in
GeV. (Note that mt is the MS mass, not the pole mass.)

Best Fit Parameters
✏ = 0.131, ✏0 = 0.004, ⇢ = 0.02, ⇠ = 0.011

u1 = 1.005 d1 = 1.005 `1 = 0.847
u2 = 1.01 d2 = �0.64 `2 = �0.633

u3 = �0.458 d3 = 1.024 `3 = �1.193
u4 = 0 (fixed) d4 = 2.397 `4 = �1.199
u5 = 0.369 d5 = �0.676 `5 = �0.847

Observable Expt. Value [1] Fit Value
mu (2.3± 0.6)⇥ 10�3 1.4⇥ 10�3

mc 1.275± 0.025 1.277
mt 160± 4.5 160.4
md (4.8± 0.4)⇥ 10�3 4.2⇥ 10�3

ms (9.5± 0.5)⇥ 10�2 9.8⇥ 10�2

mb 4.18± 0.03 4.18
me (5.11± 1%)⇥ 10�4 5.11⇥ 10�4

mµ 0.106± 1% 0.106
m⌧ 1.78± 1% 1.78
|Vus| 0.225± 1% 0.226
|Vub| (3.55± 0.15)⇥ 10�3 3.58⇥ 10�3

|Vcb| (4.14± 0.12)⇥ 10�2 4.13⇥ 10�2

processes, as we discuss further in the next section, while the second is of the same order as

the Planck scale. Interestingly, the latter demonstrates that the model is consistent with

the possibility that their are only two important physical scales in nature, the weak and

the Planck scales (with flavor associated with the latter) so that no additional hierarchies

or fine-tuning need to be considered.

Note that Tables 2.1 and 2.2 correspond to the extreme values of e�2 on the lower

curve of Fig. 2.1 and show directly that all the predictions of the theory are within one,

or occasionally two, standard deviations of the experimental data, with model parameters

consistent with naive dimensional analysis. One can then infer that every point on the
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lower curve of Fig. 2.1 provides a reasonably good description of the data in comparison to

these reference points, over the entire range of flavor scales studied, with a slight preference

for lower values. Similar qualitative conclusions can be drawn about the upper curve in

the same figure, though, for the sake of brevity, we omit the corresponding fit tables.

2.4 Direct lower bounds on the flavor scale

Our results in Fig 2.1 indicate that typical T 0 Yukawa textures provide a good de-

scription of charged fermion masses and CKM angles over a wide range of MF , but with a

preference for values closer to the TeV scale than to the Planck scale. The lowest possible

values of MF are separately constrained by flavor-changing-neutral-current (FCNC) pro-

cesses that receive contributions from heavy flavor-sector fields. In this section, we provide

some estimates of the lower bounds on MF following from K
0
� K

0
, D0

� D
0
, B0

� B
0

and B
0
s
�B

0
s
mixing. In addition, we give the branching fractions predicted for the largest

flavor-changing neutral meson decays, which also violate lepton flavor.

The new physics contributions to the FCNC processes of interest come from flavon

exchange, or more precisely, the exchange of the physical fluctuations about the flavon

vevs. We identify these as follows:

� =

0

B@
'1

✏MF + '2

1

CA , Sab =

0

B@
S̃11 S̃12

S̃12 ✏MF + S̃22

1

CA , Aab =

0

B@
0 ✏

0
MF + Ã

�✏
0
MF � Ã 0

1

CA ,

(2.24)

where the 'i, the S̃ij and Ã are complex scalar fields. The couplings to standard model

fermions originate from the same operators that gave us the Yukawa couplings. As an

example, let us consider the origin of �S = 2 operators, where S here refers to strangeness.

We focus on the largest flavor-changing e↵ects, ones that are present even in the absence
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of a rotation from the gauge to mass eigenstate basis. Let  be a three-component column

vector with the elements d, s and b. Then the flavon-quark-anti-quark vertex in the down

sector follows from

L � �
v
p
2
( LYD R + h.c.) , (2.25)

where we have set the standard model Higgs field to its vev v/

p
2, where v = 246 GeV,

and where

YD =

0

B@
Sab/MF + Aab/MF �/MF

�/MF 1

1

CA ⇠ , (2.26)

with the flavons S, A and � given by Eq. (2.24), and ⇠ is the dimensionless suppression

factor defined earlier. (We provide an origin for ⇠ and ⇢ in the next section.) The flavon

couplings involving fermions of the first two generations only are given by

d1
v ⇠

p
2MF

(dLÃ sR � sLÃ dR)� d2
v ⇠

p
2MF

(dLS̃12 sR + sLS̃12 dR) + h.c. . (2.27)

Four-fermion operators are obtained by integrating out the heavy fields. It follows that

the �S = 2 operator that contributes to the K
0
�K

0
mass splitting is

O�S=2 = �

 
d
2
1

m
2
Ã

+
d
2
2

m
2
S̃12

!
v
2
⇠
2

2M2
F

[dLsRdRsL], (2.28)

where the di are the same order one coe�cients defined in Eq. (2.13). As the flavon masses

are not known exactly, we assume that they are of the same order as the symmetry-breaking

scale associated with the given flavon; in the present example,

m
S̃12

⇠ ✏MF and m
Ã
⇠ ✏

0
MF . (2.29)

Moreover, we pick numerical values of ✏, ✏0, ⇢ and ⇠ that are characteristic of the values
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found in our global fits for MF below ⇠ 1000 TeV:

✏ ⇠ 0.1, ⇠ ⇠ 0.03, ⇢ ⇠ 0.02 . (2.30)

Mass Splitting Operator MF Lower Bound

K
0
�K0 �d

2
2

1

m
2
S̃12

v
2
⇠
2

2M2
F

dLsRdRsL 85 TeV

B
0
� B0 �d3d4

1

m2
'1

v
2
⇠
2

2M2
F

dLbRdRbL 22 TeV

B
0
s
� B0

s
�d3d4

1

m2
'2

v
2
⇠
2

2M2
F

bLsRbRsL 14 TeV

D
0
�D0 �u

2
2

1

m
2
S̃12

v
2
⇢
2

2M2
F

uLcRuRcL 14 TeV

TABLE 2.3: Lower bounds on the flavor scale. See the text for definitions of our notation.

We set all order one coe�cients equal to one. With these assumptions, the new physics

contribution to the neutral pseudoscalar meson mass splittings, �m, may be expressed as

a function of the scale MF . In general, given a �F = 2 interaction of the form cO, where

c is the operator coe�cient and F represents either strange (S), charm (C) or bottom (B),

the mass splitting is given by

�m =
c

mP 0

��hP 0
|O|P

0
i
�� , (2.31)

where P
0 (P

0
) is the pseudoscalar meson (anti-meson) in question, and the states are
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relativistically normalized. For an operator of the form

O =
1

4
[h
↵

(1� �
5)`↵][h

�

(1 + �5)`
�] , (2.32)

where h, ` represent the heavy (light) quark flavors and ↵, � are color indices, the matrix

element in Eq. (2.31) is given by [56]

hP
0
|O|P

0
i =

1

2
BP 0

m
4
P 0f

2
P 0

(mh +m`)2
, (2.33)

in the case where P
0 = K

0 or D0. Here, BP 0 is the bag parameter, mP 0 and fP 0 are the

mass and decay constants of the meson and m`, mh are the masses of the quarks that

make up the meson. For P 0 = B
0 or B0

s
, the matrix element is given by [57]

hP
0
|O|P

0
i =

1

2
BP 0f

2
P 0 m

2
P 0

"✓
mP 0

mh +m`

◆2

+
1

6

#
. (2.34)

As computed on the lattice, the bag parameter in Eq. (2.33) is defined by the expression as

shown [56], omitting the additional term proportional to 1/6 that is retained in Eq. (2.34);

in the case where P 0 = K
0 or D0, the e↵ect of this term is negligible. All masses and mass

splittings were obtained from the Review of Particle Properties [1], all decay constants

were obtained from Ref. [58], the bag parameters for �S = 2 and �C = 2 were obtained

from Ref. [56], and the bag parameters for �B = 2 were obtained from Ref. [57]. To

estimate the lower bound on MF , we assume that the experimentally observed mass split-

tings are consistent with the standard model predictions and require that the new physics

contributions not exceed the current 2� experimental uncertainty. Such an approach is

su�cient for an estimate given the theoretical uncertainties involved in determining the

new physics contribution itself. Our results are shown in Table 2.3. As one might expect,

we obtain the tightest bound from the K
0
� K̄0 mass splitting, which requires MF & 85
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TeV.

Decays BF (Ref. [1]) Operator MF Lower Bound BF (MF = 85 TeV)

K
0
L ! µe < 4.7⇥ 10�12

�d2`2
1

m
2
S̃12

v
2
⇠
2

2M2
F

eLµRsRdL 9.8 TeV 1.5⇥ 10�19

B
0
! ⌧e < 2.8⇥ 10�5

�d4`3
1

m2
'1

v
2
⇠
2

2M2
F

eL⌧RdRbL 0.62 TeV 2.3⇥ 10�22

B
0
s ! ⌧µ — �d3`4

1

m2
'2

v
2
⇠
2

2M2
F

sLbRµR⌧L — 3.2⇥ 10�22

TABLE 2.4: Lower bound on MF for the largest flavor-changing decays. The predicted branch-
ing fraction for MF set equal to the K

0-K̄0 mixing bound is also shown.

Flavon exchange between quarks and leptons can also lead to flavor-changing neutral

meson decays. We again focus on operators that are flavor-changing in the absence of a

rotation of the fields from the gauge to mass eigenstate basis. The largest e↵ects are shown

in Table 2.4. The relevant operators are of the form O
ijkn

qde
⌘ (`iej)(dkqn), in the notation

of Ref. [59]; in the same reference, bounds on the operator coe�cients are conveniently

summarized. We translate these into bounds on the scale MF which, as can be seen from

Table 2.4, are much weaker that those coming from the pseudoscalar meson mass splittings.

Therefore, we also show the predicted branching fractions with MF set equal to our lower

bound from K
0-K0 mixing. It is clear that the predicted branching fractions are far below

the experimental bounds and unlikely to have observable consequences. Note that we

have only considered CP conserving processes and it is generally known that bounds on

CP violation in the neutral kaon system tends to give a better bound on the scale of new

physics by about an order of magnitude compared to the CP-conserving FCNC bounds.
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Given the smallness of these branching fractions, this fact does not change our qualitative

conclusions, so we do not pursue that issue further.

2.5 Nonsupersymmetric models

In the renormalization group analysis of Sec. 2.3, the Yukawa matrices Yi are defined

by

Lm =
v
p
2
 

i

L
Yi 

i

R
+ h.c. , (2.35)

where i = U , D or E and generation indices are suppressed. In order to replicate the

Yukawa textures of the supersymmetric models of Refs. [3, 4], we assign the right-handed

fermions of the three generations to the T
0
⇥ Z3 representations 20�

� 100. Hence, for

example, we would assign the first two generations of the charge-2/3 quarks according to

(uc

L
, c

c

L
) ⇠ (uR, cR) ⇠ 20�, where the superscript “c” refers to charge conjugation; since

 = i 
cT
�
0
�
2, this is equivalent to specifying the transformation properties of the Dirac

adjoints (uL, cL). We then identify the following transformation properties for the various

blocks of the Yi,

YU,D,E ⇠

0

B@
[3�

� 10�] [20+]

[20+] [100]

1

CA , (2.36)

i.e., Eq. (2.13) (or Eq. (4.1) in Ref. [4]), which omits any additional symmetries that

may be needed to explain the suppression factors ⇢ and ⇠. As in the supersymmetric

model, the transformation properties given in Eq. (2.36) determine the allowed flavon

couplings. However, in the supersymmetric case, Eq. (2.36) dictates the form of terms

in the superpotential, which is required to be a holomorphic function of the superfields.

The absence of this constraint in the nonsupersymmetric case could lead, in principle, to

additional flavon couplings that are not present in the supersymmetric theory. However,
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we see that as far as the �, S and A flavons are concerned, this is not the case: each has a

nontrivial Z3 charge, which prevents new flavon couplings at the same order that involve

the complex conjugates of these fields.

In the supersymmetric theories of Refs. [3, 4], the additional suppression factors as-

sociated with the parameters ⇢ and ⇠ required the introduction of additional fields and

symmetries. For example, in the simplest unified T
0
⇥ Z3 model of Refs. [3, 4], SU(5)

charge assignments of the flavon fields are responsible for forbidding the coupling of the

A and S flavons in YU at lowest order in 1/MF . However, these couplings emerge via

higher-order operators that involve a flavor-singlet, SU(5) adjoint field ⌃ ⇠ 24, just as in

earlier models based on U(2) flavor symmetry [14]. The suppression associated with the

parameter ⇠, on the other hand, was assumed to arise via mixing in the Higgs sector, a

reasonable possibility since supersymmetric models require more than one Higgs doublet.

Here we will also achieve the additional suppression factors by means of additional

fields and symmetries. However, the additional symmetry will be much smaller than

the product of supersymmetry and a grand unified gauge group. (The latter, of course,

would not be appropriate for the non-supersymmetric case where the gauge couplings do

not unify.) We will simply assume an additional Z3 factor, so that the flavor group is

G
new

F
= T

0
⇥ (Z3)

2 Defining one of the elements of the new Z3 factor as ! = exp(2 i ⇡/3),

the only standard model fields that transform nontrivially under this symmetry are

H ! !H and tR ! ! tR , (2.37)

where H is the standard model Higgs field and tR is the right-handed top quark. In the

standard model, H couples to YD and YE, while �
2
H

⇤ couples to YU . Hence, when the

new Z3 symmetry is unbroken, the assignments in Eq. (2.37) forbid YD and YE entirely, as

well as the first two columns of YU . How one proceeds with the model building depends
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on the desired relative sizes of ✏, ✏0, ⇢ and ⇠. For example, for some choices of MF , it is

possible to find numerical results that are consistent with the simple possibility ✏ ⇠ ⇢ ⇠ ⇠,

up to order one factors. In this case, we assume the symmetry-breaking pattern

T
0
⇥ (Z3)

2 ✏
�! Z

D

3
✏
0

�! nothing , (2.38)

where the intermediate Z
D

3 factor is exactly the same one as in the original theory, that

transforms all first generation fields by a phase; in this case, the new Z3 symmetry is

broken at the first step in the symmetry-breaking chain. We introduce two new flavon

fields

⇢0 ! !
2
⇢0 and �̃! ! �̃ , (2.39)

where �̃ transforms like � ⇠ 20+ under the original flavor group. With the assumed

symmetry breaking pattern, the ⇢0 field and one component of the �̃ doublet can develop

vevs of order ✏MF . The Z3 charges of these fields now allow us to rebuild our otherwise

forbidden Yukawa matrices as follows:

(i.) For YD and YE, we may generate matrices proportional to the standard form if

we replace H by H ⇢0; it follows that h⇢0i/MF is identified with the suppression factor ⇠,

which we now predict to be of order ✏, up to an order one factor. One might worry that we

could obtain a lower-order contribution from operators that don’t involve ⇢0, but involve

�̃
⇤ instead, which also transforms under the new Z3 factor as �̃⇤

! !
2
�̃
⇤. However, this

does not occur since �̃⇤
⇠ 20� under the original flavor symmetry, which is not one of

the representations that leads to a lowest order coupling. On the other hand, the product

⇢
⇤
0�̃ does couple at the same order as ⇢0 �; however, this additional contribution does

nothing to the form of the resulting Yukawa textures beyond a redefinition of the order

one coe�cients.
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(ii.) For YU , the two-by-two block associated with the flavons A and S can now be

recovered via operators involving ⇢⇤0A and ⇢⇤0S. Hence, the parameter we called ⇢ previously

is now predicted to be of the same order as ⇠. In an analogous way, the 3-1 and 3-2 entries

of YU can couple to the product ⇢⇤0�, but this transforms in the same way as �̃, which may

couple at lower-order. Hence the canonical YU texture with an additional suppression in

only the upper-left two-by-two block is obtained. Note that we could simply omit �̃ from

the theory and ignore the corresponding entries in YU ; this leads to an alternative texture

in which u4 = 0 in Eq. (2.13), neglecting corrections from higher-order operators. This was

the alternative possibility considered in Sec. 2.3. It is worth noting that in the case where

the �̃ is omitted from the theory, there is no longer a necessary connection between the

scale of the additional Z3 breaking and the scale of the T 0 doublet vev, ✏MF . In this case,

we could vary this additional scale independently so that ⇢ and ⇠ are still comparable, but

intermediate in size between ✏ and ✏
0. This construction would be compatible with the

numerical results in Tables 2.1 and 2.2.

In summary, we have provided an existence proof that the textures considered in our

numerical analysis may arise in a relatively simple way in a non-supersymmetric frame-

work.

2.6 Conclusions

In this chapter, we have reconsidered models of flavor based on the non-Abelian

discrete flavor group T
0 that were proposed in Ref. [3, 4]. We have relaxed two assumptions

made in these studies, that the models are supersymmetric and that the scale of the flavor

sector is around the scale of supersymmetric grand unification. Our numerical study

found that T
0 models without supersymmetry provide a viable description of charged

fermion masses and CKM angles for a range of values of the flavor scale MF . We find that
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identification of MF with the reduced Planck scale is a viable possibility, consistent with a

simple picture in which no new physics appears between the weak and gravitational scales.

However, we also find that our fits improve monotonically as MF is lowered toward the

lower bound dictated by the constraints from flavor-changing-neutral-current processes. In

the case where MF is as low as possible, we identified the largest flavor-changing neutral

current e↵ects that result from the exchange of heavy flavor-sector fields; these could

provide indirect probes of the model. We then showed how the form of the Yukawa

textures that we studied, which were the same as, or closely related to, those described in

Ref. [3, 4], can nonetheless arise in a non-supersymmetric framework, where there is only a

single Higgs doublet field and where the interactions do not originate from a superpotential,

a holomorphic function of the fields. The models we described are arguably simpler than

their supersymmetric counterparts; in the non-supersymmetric case, we needed only to

extend the original flavor-group by a Z3 factor to obtain the desired Yukawa textures

shown in Eq. (2.13), while avoiding the well-known complications that come with a grand

unified Higgs sector. Extending the present study to include the neutrino sector is more

model dependent, but would be interesting for future work.



CHAPTER 3

Universal Landau Pole and Physics

below the 100 TeV Scale 1

In this chapter we reconsider the possibility that all standard model gauge couplings

blow up at a common scale in the ultraviolet. The simplest implementation of this idea

assumes supersymmetry and the addition of a single vector-like generation of matter fields

around the TeV scale. We provide an up-to-date numerical study of this scenario and

show that either the scale of the additional matter or the scale of the light superparticle

masses falls below potentially relevant LHC bounds. We then consider minimal extensions

of the extra matter sector that raise its scale above the reach of the LHC, to determine

whether there are cases that might be probed at a 100 TeV collider. We also consider

the possibility that the heavy matter sector involves new gauge groups constrained by

the same ultraviolet boundary condition, which in some cases can provide an explanation

for the multiplicity of heavy states. We comment on the relevance of this framework to

theories with dark and visible sectors.

1Work previously published in C. D. Carone, S. Chaurasia and J. C. Donahue, “Universal Landau pole
and physics below the 100 TeV scale,” Phys. Rev. D 96, no. 3, 035002 (2017), [arXiv:1705.09716 [hep-ph]].
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3.1 Introduction

The idea that the three gauge couplings of the standard model may assume a common

value at a high energy scale has motivated a vast literature on grand unified theories [15].

The particle content of the minimal supersymmetric standard model (MSSM) is consistent

with such a unification, with a perturbative unified gauge coupling obtained around 2 ⇥

1016 GeV. However, it was pointed out long ago [60, 61] that a di↵erent framework also

leads to the correct predictions for the gauge couplings at observable energies, namely one

in which the gauge couplings blow up at a common scale ⇤ in the ultraviolet (UV):

↵
�1
1 (⇤) = ↵

�1
2 (⇤) = ↵

�1
3 (⇤) = 0 . (3.1)

Since the SU(3) coupling is asymptotically free, this boundary condition can only be

obtained via the introduction of extra matter [61, 62, 18, 63]. Supersymmetric models

o↵er the simplest possibility, a single vector-like generation of mass mV [61, 62, 18]. For a

chosen value of mV , one may fix the scale ⇤ by the requirement that the low-energy value

of the fine structure constant ↵EM is reproduced; the values of sin2
✓W and ↵�1

3 are then

predicted at any chosen renormalization scale µ, up to theoretical uncertainties. If a value

of mV can be found in which both sin2
✓W (mZ) and ↵

�1
3 (mZ) are consistent with the data,

then a viable solution is obtained. This approach, followed in Ref. [18], found mV around

the TeV scale, assuming that mV is also the scale of the light superparticle masses (which

we call msusy below).

A numerical renormalization group analysis cannot directly encode the boundary con-

dition in Eq. (3.1) since the gauge couplings are in the non-perturbative regime, where the

renormalization group equations (RGEs) cannot be trusted. In Ref. [18], the boundary

condition studied was ↵1(⇤) = ↵2(⇤) = ↵3(⇤) = 10, values that are barely perturbative.
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Since the couplings are rapidly increasing as the renormalization scale is increased, one

makes the reasonable assumption that the value of ⇤ that satisfies this boundary condition

is very close to the one given by Eq. (3.1). On the other hand, as the renormalization scale

is decreased, the couplings become increasingly perturbative. Of particular importance

is that the results are insensitive to the precise choice of boundary condition as long as

each of the couplings is large [64]. It was shown in Ref. [18], that varying the ↵i(⇤) by an

order of magnitude in either direction has only a small e↵ect on the final results. We will

see this explicitly in our study of the one-vector-like-generation scenario in Sec. 3.2. The

insensitivity of the predicted values of sin2
✓W (mZ) and ↵

�1
3 (mZ) to the choice of boundary

conditions is due to the existence of an infrared fixed point in the renormalization group

equation for the ratios of the gauge couplings [19]. Note that this insensitivity includes

the case where the ↵i(⇤) are taken to be large but not strictly identical at a common high

scale.

The possibility that the gauge couplings may have large values in the UV is interesting

from a variety of perspectives. Large couplings may arise in strongly coupled heterotic

string theories, which often also provide the additional vector-like states necessary to drive

the gauge couplings to large values [19]. On the other hand, a universal Landau pole, as

defined by Eq. (3.1), may arise in models with composite gauge bosons: compositeness

implies the vanishing of the gauge fields’ wave-function renormalization factors at the

compositeness scale, where the gauge fields become non-dynamical [65]. Redefining fields

and couplings so that the gauge fields’ kinetic terms are always kept in canonical form, one

finds that the vanishing wave-function renormalization factors translate into the blow-up

of the gauge couplings at the same scale. Thus, the framework we study may be consistent

with a wider range of possible ultraviolet completions than a conventional grand unified

theory (GUT) with a large unified gauge coupling, though it is not necessary to commit

ourselves to any one of them in order to study the consequences at low energies.



48

An additional motivation relevant to the present work is that the assumption of a

universal Landau pole leads to the expectation of new physics at a calculable energy

scale, mV , that is above the weak scale but potentially within the reach of future collider

experiments1. In Sec. 3.2, we show that the minimal scenario, involving one vector-like

generation of additional matter, requires values of either mV or msusy that are below some

of the current LHC bounds on vector-like quarks or colored superparticles, respectively.

Although experimental bounds come with model-specific assumptions that are usually easy

to evade, we pursue an alternative possibility. We show that there are small extensions of

the new matter sector that successfully reproduce the correct values of the gauge couplings

at mZ while predicting values of mV that are above the reach of the LHC, but below

100 TeV for some choices of msusy. In some cases, mV may be light enough for the vector-

like states to be explored at a 100 TeV hadron collider, which makes study of this sector

more interesting. Aside from the presence of the heavy matter fields, one possibility that

we also discuss in the present work is that these fields may transform under an additional

gauge group factor. The motivation is two-fold: (1) By placing the additional matter fields

into irreducible representations of a new gauge group, we might provide an explanation for

the multiplicity of states needed to achieve the desired UV boundary condition. In the case

where the heavy matter remains vector-like, the new gauge group can be broken at a much

lower scale. The resulting low-energy theory is that of a “dark” sector consisting of the

new gauge and symmetry breaking fields; the heavy matter provides for communication

between the dark and visible sectors, via a “portal” of higher-dimension operators that are

induced when the heavy fields are integrated out. The gauge coupling of the dark gauge

boson is predicted from a boundary condition analogous to Eq. (3.1) and the magnitude

of the portal couplings are set by the value of mV obtained in the RGE analysis. This

1This, of course, assumes that the vector-like matter occurs at a single common scale. This assumption
is relaxed in Ref. [63].
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presents a simpler framework for constraining some of the otherwise free parameters of

a dark sector than, for example, attempting to embed both dark and visible sectors in a

conventional GUT. (2) The heavy matter may be chiral under the new gauge group. The

structure of the new sector is then more analogous to the the electroweak sector of the

MSSM, and the scale mV is associated with one or more massive gauge bosons that may

have observable consequences.

This chapter is organized as follows: In Sec. 3.2, we consider the consequences of a

universal Landau pole in the minimal case where the MSSM is augmented by a single

vector-like generation. The study presented in this section di↵ers from the past literature

not only in our use of up-to-date experimental errors for our input parameters, but also

in that we allow the scales mV and msusy to vary independently. In addition, we consider

an alternative choice for the vector-like matter that contributes the same amount to the

beta functions at one loop, but di↵ers from the one-generation scenario at two loops. In

Sec. 3.3, we consider extensions of these minimal scenarios, in particular, including a small

number of additional complete SU(5) multiplets of vector-like matter. We focus on finding

solutions in which mV is less than 100 TeV, with a special interest in cases where the

vector-like matter is light enough to be detected at a future hadron collider. In Sec. 3.4

we consider model building issues associated with the physics at the scale mV , focusing on

the implication of additional gauge groups. In Sec. 3.5, we summarize our conclusions.

3.2 One vector-like generation

In this section, we consider a minimal scenario studied in the past literature [61, 62,

18], the MSSM augmented by an additional vector-like generation of matter fields. We

denote the scale of the vector-like matter mV and we impose the same boundary conditions

as in Ref. [18], namely ↵1(⇤) = ↵2(⇤) = ↵3(⇤) = 10 as an approximation to Eq. (3.1).
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Taking mV as an input, we determine ⇤ by the condition that the weak scale value of

the fine structure constant ↵EM(mZ) is reproduced. With ⇤ fixed, we are now able to

determine the gauge couplings at any lower scale, as a function of our choice for mV .

Above the scale msusy, we use the two-loop supersymmetric RGEs for the gauge couplings.

Below msusy, we do the same using the two-loop nonsupersymmetric RGEs, aside from

running between the top quark mass and mZ which we treat as a threshold correction

and include at one loop. We assume the presence of the second Higgs doublet required

by supersymmetry above the scale msusy. Expanding on the approach of Ref. [18], we

do not assume that the scales mV and msusy are the same, though the relaxation of that

requirement will only be important in Sec. 3.3.

As indicated in the introduction, the ratios of the gauge couplings are driven towards

infrared fixed point values, so that predictions for sin2 ✓W and ↵
�1
3 at mZ are relatively

insensitive to the choice of boundary conditions at the scale ⇤. For example, allowing the

↵i(⇤) to vary independently between 1 and 100, we find that the their weak-scale values

scatter within roughly 2% for ↵1(mZ) and ↵2(mZ) and 5% for ↵3(mZ). Given the same

variation of boundary conditions, we take the resulting scatter in the values of sin2
✓W (mZ)

and ↵�1
3 (mZ) as a measure of the theoretical uncertainty in our output predictions. We

include these estimates with our numerical results.

The RGEs that we use above the top mass have the form

dgi

dt
=

gi

16⇡2

"
big

2
i
+

1

16⇡2

 
3X

j=1

bijg
2
i
g
2
j
�

X

j=U,D,E

aijg
2
i
Tr[YjY

†
j
]

!#
, (3.2)

where t = lnµ is the log of the renormalization scale, ↵i = g
2
i
/4⇡, and the Yi are Yukawa

matrices. The beta function coe�cients bi and bij can be determined using general formu-

lae [67, 68]. For example, in the case of one vector-like generation with mV = msusy, one
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finds for µ > mV

bi =

0

BBBB@

53

5

5

1

1

CCCCA
and bij =

0

BBBB@

977
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39

5

88

3
13

5
53 40

11

3
15

178

3

1

CCCCA
, (3.3)

while for mt < µ < mV we have the nonsupersymmetric beta functions

b
NS

i
=

0

BBBB@
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10

�
19

6

�7

1

CCCCA
and b

NS

ij
=

0

BBBB@

199

50

27

10

44

5
9

10

35

6
12

11

10

9

2
�26

1

CCCCA
. (3.4)

More general forms for the one- and two-loop beta functions that take into account the

possibility of additional matter are presented in Sec. 3.3. Note that the gauge couplings

for µ > msusy are defined in the dimensional reduction (DR) scheme, which preserves

supersymmetry; the couplings are converted to the modified minimal subtraction scheme

(MS) at the matching scale µ = msusy before they are run to lower energies. The gauge

couplings in the two schemes are related by [69]

4⇡

↵
MS
i

=
4⇡

↵
DR
i

+
1

3
(CA)i , (3.5)

where CA = {0, 2, 3} for i = 1, 2, 3.

The coe�cients for the terms that depend on the Yukawa couplings in Eq. (3.2) are

given by

aij =

0

BBBB@

26
5

14
5

18
5

6 6 2

4 4 0

1

CCCCA
and a

NS

ij
=

0

BBBB@
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1
2

3
2

3
2

3
2

1
2

2 2 0

1

CCCCA
, (3.6)



52

for µ > msusy and µ < msusy, respectively. In practice, we only need to take the top quark

Yukawa coupling yt into account, since it is significantly larger than the other Yukawa

couplings. Since yt a↵ects the running of the gauge couplings only through a two-loop

term, we need only include its running at one-loop. For µ > msusy we have [54]

dyt

dt
=

yt

16⇡2

⇣
�

X
cig

2
i
+ 6y2

t

⌘
, ci =

✓
13

15
, 3,

16

3

◆
, (3.7)

while for µ < msusy [54],

dyt

dt
=

yt

16⇡2

✓
�

X
c
SM
i

g
2
i
+

9

2
y
2
t

◆
, c

SM
i

=

✓
17

20
,
9

4
, 8

◆
. (3.8)

For definiteness, we assume tan � = 2, and compute the weak scale value of yt via yt(mZ) =
p
2mt

v sin �
, using the MS value of the top quark mass, 160+5

�4 GeV [1], and v = 246 GeV. The

value yt(⇤) is computed numerically so that we obtain the desired yt(mZ) value for a given

set of input parameters. While this approach is su�cient to determine the representative

impact of including the top quark Yukawa coupling in our RGE analysis, it turns out to be

overkill: in models where the gauge couplings blow up in the UV, the top quark Yukawa

coupling is rapidly driven to zero in the same limit. Hence, its e↵ect on the values of mV

and ⇤ determined in our numerical analysis turns out to be small, less than the estimates

of theoretical uncertainty that we build into the analysis. Although we include it, ignoring

yt altogether does not a↵ect our results qualitatively and can be a useful approach for

speeding up numerical cross-checks.

For a given choice of mV and msusy, the blow-up scale ⇤ is chosen to yield the correct

value of the fine structure constant at the weak scale,

↵
�1
EM(mZ) =

5

3
↵
�1
1 (mZ) + ↵

�1
2 (mZ), (3.9)
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where the factor of 5/3 comes from the fact that we assume SU(5) normalization [55] of

the U(1) gauge coupling, as in Ref. [18]. While this makes the analysis compatible with

a conventional SU(5) GUT at large coupling, this normalization can also arise directly in

string theory without an SU(5) GUT [66]. Other normalizations of the U(1) factor are

certainly possible, depending on the UV completion. However, we do not consider other

possibilities here and adopt the normalization that has been assumed almost uniformly in

the past literature. For our numerical study, we take the target central value of ↵�1
EM(mZ) =

127.95 [1]. With ⇤ determined in this way, we compute ↵3(mZ)
�1 and the Weinberg angle

sin2
✓W (mZ), which is determined by ↵1(mZ) and ↵2(mZ):

sin2
✓W (mZ) =

3↵1(mZ)

3↵1(mZ) + 5↵2(mZ)
. (3.10)

We compare the output predictions of ↵3(mZ)
�1 and sin2

✓W (mZ), including the theoretical

uncertainty that we discussed earlier, to the experimentally measured values [1]

sin2
✓W = 0.23129± 5⇥ 10�5

, ↵
�1
3 (mZ) = 8.4674± 0.0789 , (3.11)

both given in the MS scheme. A previous study of the one vector-like generation scenario

found viable solutions with mV = msusy ⇡ 1 TeV [18]. Since the time of that work, the ex-

perimental errors in sin2
✓W (mZ) and ↵

�1
3 (mZ) have decreased substantially. Nevertheless,

as indicated in Table 3.1, we find mV = msusy ⇡ 1.2 TeV, assuming ±2 standard deviation

experimental error bands and using our protocol for determining theoretical error bands;

those bands are both displayed in Fig. 3.1. To determine the theoretical error band, we

find the maximum and minimum values of sin2
✓W (mZ) and ↵

�1
3 (mZ) that are obtained by

varying the ↵i independently between 1 and 100 at the blow-up scale. In particular, we find

that sin2
✓W (mZ) is maximum when {↵1(⇤), ↵2(⇤), ↵3(⇤)} = {100, 1, 100} and minimum
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FIG. 3.1: The dependence of sin2 ✓W (mZ) and ↵
�1
3 (mZ) on the mass of the vector-like gen-

eration, mV , including theoretical uncertainties. In this example, the light superparticle mass
scale msusy is identified with mV . The acceptable ranges of mV in each of the plots have
non-vanishing overlap for 1.15 TeV< mV < 1.31 TeV, indicating a viable solution.

when the boundary condition set is {1, 100, 1}; ↵�1
3 (mZ) is maximized and minimized for

the sets {100, 100, 1} and {1, 1, 100}, respectively. We quote the variation in the out-

put predictions as a percentage relative to the value obtained when the ↵i(⇤) = 10, for

i = 1 . . . 3, in Table 3.1. For the values of mV that yield viable predictions for sin2
✓W (mZ)

and ↵�1
3 (mZ), we find that the scale ⇤ is around 8⇥ 1016 GeV.

Model mSUSY (TeV) mV range (TeV) ⇤ range (GeV) ↵
�1
3 (mZ) % error sin2 ✓W (mZ) % error

(5, 2, 0, 0) mV 1.15� 1.31 7.8� 8.7⇥ 1016 +3.7%, �2.1% +1.5%, �1.5%
(3, 2, 4, 0) mV 0.66� 1.16 6.9� 11⇥ 1016 +2.8%, �1.5% +1.4%, �1.2%

TABLE 3.1: Numerical results formV and ⇤ in the one-generation scenario, the (5,2,0,0) model,
and a model whose vector-like sector consists of four 5 + 5 pairs, the (3,2,4,0) model. These
models have the same one-loop beta functions, but di↵er at two-loop. Also shown are the
theoretical error estimates as discussed in the text.

The value of msusy for this solution can be compared to recent bounds on gluinos

from the LHC, which now exceed 2 TeV (for example, see Ref. [70]). These bounds

generally make assumptions about the supersymmetric particle spectrum (for example,

light neutralinos) and one can always play the game of making model-specific adjustments

to evade the assumptions of any given experimental exclusion limit. We will not pursue that
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approach here. We instead consider the possibility that mV and msusy are not identical, so

that msusy can be raised unambiguously above the LHC reach. In this case, however, we

obtain lower values of mV , which in this model would place an entire vector-like generation

below 1 TeV. As a point of comparison, current LHC bounds on a charge-2/3 vector-like

quark that decays 100% of the time to bW is 1.295 TeV at the 95% CL [71]. The same

comment regarding the limitations of experimental exclusion limits applies here as well;

we will be content simply to point out that the one-generation model will become less

plausible as time goes on given the increasing reach of LHC searches for superparticles

and vector-like quarks.2

This result motivates the topic of the next section, extensions of this minimal sector

that include sets of new particles that fill complete SU(5) multiplets. We find that these

lead to larger values of mV . In studies of perturbative gauge coupling unification, it is well

known that adding additional matter in complete SU(5) multiplets preserves successful

unification. In the present framework, we find viable solutions for mV are also obtained

when complete SU(5) multiplets are added. To study the e↵ect on mV and ⇤, we consider

adding the smallest SU(5) representations, with dimensions five and ten, allowing for

multiple copies. We label models by four numbers (ng, nh, n5, n10) which represent the

number of chiral generations, complex Higgs doublets, 5+ 5 pairs and 10+ 10 pairs.3 In

this notation, the one-vector-like-generation scenario that we have discussed in this section

will be called the (5, 2, 0, 0) model henceforth. We note that a model with four 5+ 5 pairs

added to the MSSM, the (3, 2, 4, 0) model, has the same one-loop beta functions as the

(5, 2, 0, 0) model, and could be considered an equally minimal alternative. Results for

the (3, 2, 4, 0) model are also shown in Table 3.1, and are useful for illustrating the e↵ect

2Unless, of course, some of these particles are discovered.
3It is interesting to note that in level-one string theories with Wilson line symmetry breaking, extra

vector-like matter will naturally appear in 5+ 5 and 10+ 10 pairs, since these are representations found
in the 27+ 27 of E6 [19].
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of di↵erent two-loop beta functions. The preferred range of mV in the (3, 2, 4, 0) model

is slightly below that of the (5, 2, 0, 0) model, again pointing to the need for alternative

choices for the new matter sector to avoid potential phenomenological di�culties.

3.3 Next-to-minimal possibilities

In this section, we consider vector-like matter sectors that are consistent with values

of the superparticle masses and mV that are no smaller than 2 TeV. We look at next-

to-minimal scenarios, i.e. ones with a small number of additional 5 + 5 and 10 + 10

pairs, for the reasons discussed at the end of the previous section. We have particular

interest in solutions that may be plausible for exploration at a 100 TeV hadron collider.

To proceed, we use the results for the one- and two-loop beta functions, derived from the

general formulae in Refs. [67] and [68]. In the supersymmetric case, we find
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while in the nonsupersymmetric case,
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As indicated earlier, ng, nh, n5 and n10 represent the number of chiral generations, Higgs

doublets, 5+ 5 and 10+ 10 pairs, respectively. One can check that these formulae reduce

to the expected results for the MSSM, where ng = 3, nh = 2, n5 = n10 = 0 in Eqs. (3.12)

and (3.13), and for the standard model, where ng = 3, nh = 1, n5 = n10 = 0 in Eqs. (3.14)

and (3.15).

Table 3.2 displays results analogous to those presented for the minimal scenario in

Table 3.1, for a variety of heavy matter sectors, withmsusy  mV . The cases considered fall

into pairs that have the same one-loop beta functions; for example, adding one additional

5 + 5 pair to the one-vector-like generation scenario gives us the (5, 2, 1, 0) model, which

has the same bi as a model with five 5 + 5 pairs, namely (3, 2, 5, 0). The same can be

said for the remaining two models, involving six 5+5 and two 10+10 pairs, respectively.

Results are shown for values of msusy ranging from 2 TeV to mV . We see that solutions
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Model mSUSY (TeV) mV range (TeV) ⇤ range (GeV) ↵
�1
3 (mZ) % error sin2 ✓W (mZ) % error

(5, 2, 1, 0) 2 95� 260 4.9� 8.2⇥ 1016 +4.2%, �2.8% +1.5%, �1.4%
mV 13� 28 3.2� 5.9⇥ 1016 +4.0%, �2.7% +1.5%, �1.4%

(3, 2, 5, 0) 2 65� 217 4.9� 9.2⇥ 1016 +3.4%, �2.2% +1.4%, �1.2%
10 17� 32 4.1� 5.8⇥ 1016 +3.3%, �2.2% +1.4%, �1.2%
mV 13� 17 4.0� 4.9⇥ 1016 +3.3%, �2.2% +1.4%, �1.2%

(3, 2, 6, 0) 2 3.8� 13⇥ 103 4.3� 8.6⇥ 1016 +3.7%, �2.7% +1.4%, �1.2%
10 1.2� 2.6⇥ 103 3.6� 5.6⇥ 1016 +3.7%, �2.7% +1.4%, �1.2%
30 522� 794 3.1� 4.0⇥ 1016 +3.6%, �2.7% +1.4%, �1.2%

(3, 2, 0, 2) 2 1.6� 1.8⇥ 104 7.1� 7.6⇥ 1016 +5.6%, �4.1% +1.5%, �1.5%
10 3.0� 5.3⇥ 103 4.4� 6.1⇥ 1016 +5.4%, �3.9% +1.5%, �1.5%
100 277� 961 2.2� 4.5⇥ 1016 +5.1%, �3.8% +1.5%, �1.5%
mV 166� 370 1.9� 3.9⇥ 1016 +5.0%, �3.7% +1.5%, �1.5%

TABLE 3.2: Solutions for mV and ⇤, for a variety of next-to-minimal heavy matter sectors, for
msusy  mV .

for mV decrease as msusy is increased. Holding msusy fixed, heavy matter sectors that

give larger contributions to the one-loop beta functions tend to have larger values of mV .

Larger collections of heavy matter do not provide additional solutions with msusy  mV

and mV < 100 TeV.

Of the cases shown in Table 3.2, the lowest values of the vector-like matter scale,

mV ⇡ 13 TeV, are obtained in the (5, 2, 1, 0) and (3, 2, 5, 0) scenarios, for mV = msusy.

While vector-like quarks with this mass are within the kinematic reach of a 100 TeV hadron

collider, their detectability is a separate question. Assuming that a 100 TeV collider has

a discovery reach that is greater than that of the LHC by a factor of 5 [72], and that the

LHC’s ultimate sensitivity to vector-like quarks is just below 2 TeV [73], one might roughly

expect a discovery reach for vector-like quarks at a 100 TeV hadron collider just below

⇠ 10 TeV. This rough estimate is consistent with the 9 TeV reach projected in Ref. [74]

for fermionic top quark partners, which are also color triplet fermions. These statements

are very rough, and a detailed collider study would be required to determine whether the

13 TeV vector-like quarks in the (5, 2, 1, 0) and (3, 2, 5, 0) models would have observable

consequences at a 100 TeV machine.
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Fortunately, we find that if the superparticle mass scale is raised above the scale mV ,

the reduction in mV continues. For these cases, we take mV to refer to the mass of the

fermionic components of the vector-like states, while msusy represents a common mass for

the superpartners in both the ordinary and the vector-like sectors, in place of our earlier

definition. This spectrum is consistent with allowed choices for the soft-supersymmetry-

breaking parameters of the theory and simplifies the subsequent analysis. With this as-

sumption, we only find the correct predictions for the gauge couplings at the weak scale

in the (3, 2, 0, 2) model. Although a higher msusy indicates that supersymmetry is less

e↵ective at addressing the hierarchy problem, one could still argue that this case has its

merits: (1) supersymmetry still ameliorates the hierarchy problem between msusy and ⇤,

which are the scales with the widest separation in the models that we consider, and (2)

supersymmetry may be expected if string theory is the UV completion, whether or not

supersymmetry has anything to do with solving the hierarchy problem. From a purely phe-

nomenological perspective, taking msusy > mV brings the (3, 2, 0, 2) heavy matter sector

down into the range where it might be directly probed. In Table 3.3, we present numerical

results for that case. As the superparticle mass scale increases from 250 TeV to 1500 TeV,

the minimum allowed values of mV decrease from 71 TeV to 3 TeV. It seems more likely

in this case that the vector-like matter could be within the discovery reach of a 100 TeV

hadron collider, while all the superpartners remain undetectable. It is interesting to note

that it is easiest in the (3, 2, 0, 2) model to incorporate an additional gauge group that acts

on the heavy matter sector, a topic we turn to in the next section.

3.4 Model building issues

The results of the previous section indicate that there are values of mV implied by

Eq. (3.1) that are beyond the reach of the LHC, but may be within the reach of future
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Model mSUSY (TeV) mV range (TeV) ⇤ range (GeV) ↵
�1
3 (mZ) % error sin2 ✓W (mZ) % error

(3, 2, 0, 2) 250 71� 250 1.7� 2.8⇥ 1016 +5.0%, �3.7% +1.5%, �1.5%
500 22� 216 1.5� 3.6⇥ 1016 +4.9%, �3.6% +1.5%, �1.5%
1000 7� 64 1.3� 3.1⇥ 1016 +4.8%, �3.5% +1.5%, �1.5%
1500 3� 31 1.2� 2.8⇥ 1016 +4.7%, �3.5% +1.5%, �1.5%

TABLE 3.3: Solutions for mV and ⇤ for msusy > mV . Here mV refers to the fermionic com-
ponents of the vector-like sector, while msusy represents a common mass for the superparticles
of the ordinary and vector-like sectors. Of the models in Table 3.2, only the (3, 2, 0, 2) case
provides viable solutions.

collider experiments, particularly in the case where the superparticle mass scale exceeds

the scale mV . Aside from the extra matter fields, other physics associated with this sector

might also be experimentally probed. In this section, we consider two motivations for

including an extra gauge group that only a↵ects the heavy fields:4 (1) The heavy fields

may fall in irreducible representations of the new gauge group, explaining the multiplicity

of new particles required to achieve the blow up of the couplings at the scale ⇤, and (2)

the new sector may be chiral under the new gauge groups, rendering it more analogous in

structure to the matter sector of the MSSM. Although there are a large number of ways in

which either possibility might arise, we consider one example here, based on the (3, 2, 0, 2)

model discussed in the previous section.

Regarding the first motivation, we consider the possibility that the duplication of

vector-like 10+ 10 pairs in the (3, 2, 0, 2) model is a result of their embedding into a two-

dimensional representation of an additional gauge group, which is necessarily non-Abelian.

The simplest possibility for the gauge group structure of the model is GSM⇥SU(2)X , where

GSM represents the standard model gauge factors. As before, we indicate the standard

model charge assignments implicitly and compactly by displaying the SU(5) multiplets

that the heavy matter fields would occupy in a conventional unified theory, even though

that is not our assumption. Hence under SU(5)⇥SU(2)X , we now assume that the extra

4In the context of strong unification, extensions of the standard model gauge group have been considered
for other purposes in Ref. [75].



61

matter is given by

 ⇠ (10, 2) and  ⇠ (10, 2) . (3.16)

We also introduce two SU(2)X doublet Higgs fields that will be responsible for sponta-

neously breaking the new gauge group factor

�1 ⇠ (1, 2) and �2 ⇠ (1, 2) . (3.17)

The matter fields in Eq. (3.16) and the new Higgs fields in Eq. (3.17) are separately vector-

like, so that these fields may be made massive at any desired scale; it also follows that

all chiral gauge anomalies are canceled. Note that the multiplicity of SU(2) doublets in

Eqs. (3.16) and (3.17) is even, which implies that the SU(2)X Witten anomaly is absent.

Given these assignments, the one-loop beta function for the new gauge factor is positive,

allowing for straightforward implementation of the UV boundary condition in Eq. (3.1).

One issue that needs to be addressed in a model like this one is the stability of the

extra matter fields. Vector-like 5+ 5 and 10+ 10 pairs have the appropriate electroweak

and color quantum numbers to participate in mass mixing with standard model matter

fields. The amount of such mixing is arbitrary, and only a small amount is necessary

so that the heavy states are rendered unstable, avoiding any cosmological complications.

Assigning the matter fields of the heavy sector to multiplets of a new gauge group can

have unwanted consequences if these states are rendered exactly stable (or extremely long

lived). In the present model, this problem does not arise provided that the new gauge

group is spontaneously broken, since mass mixing is generated via renormalizable couplings

involving  , the �i, and the standard model fields identified with a 10. If embedding in

an additional gauge group is used to account for the multiplicity of states in some of the

other models that we have considered, the model must also provide for the decay of the
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heavy states; the (3, 2, 0, 2) models seem to naturally avoid this problem with smallest

field content and the potentially simplest symmetry-breaking sector, which is one reason

why we focus on this example here.

Note that the numerical results for the (3, 2, 0, 2) model described in Sec. 3.3 must

be adjusted to take into account the presence of the SU(2)X gauge group, whose coupling

blows up at the same scale as the other gauge couplings and a↵ects their renormalization

group running. However, since the e↵ect is only via two-loop terms, we don’t expect a

dramatic change in our qualitative conclusions. To support this statement, we consider

the case where msusy = mV and take into account the e↵ect of the new gauge group by

modifying the supersymmetric RGEs for running between the scales ⇤ and mV . In this

case, the supersymmetric beta functions become

bi =

✓
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Repeating the analysis of Sec. 3.3, we find only a modest adjustment in the ranges for mV

and ⇤, as shown in Table 3.4 below.

Model mSUSY (TeV) mV range (TeV) ⇤ range (GeV) ↵
�1
3 (mZ) % error sin2 ✓W (mZ) % error

(3, 2, 0, 2) mV 198� 497 1.6� 3.6⇥ 1016 +5.6%, �4.1% +1.6%, �1.5%

TABLE 3.4: Results for the (3, 2, 0, 2) scenario with mV = msusy taking into account the e↵ect
of the SU(2)X gauge group.

It is interesting to note that SU(2)X breaking scale is not tied to the value ofmV in this

model, which means it could in principal be much lower. For example, with h�i ⇠ 1 GeV,



63

the resulting low-energy e↵ective theory would be that of a non-Abelian dark sector with a

one- or two-Higgs doublet symmetry-breaking sector. Communication between the visible

and dark sectors would follow from operators generated when the mV -scale physics is

integrated out, suggesting that this sector may have other interesting consequences besides

its e↵ect on gauge coupling running. Whether phenomenologically interesting models of

this type can be constructed remains an open question.

Finally, we note that a di↵erent motivation for an extra gauge factor is to render the

mV -scale physics chiral, so that the structure of the new matter sector is more similar

to the rest of the MSSM. In the previous example, we could simply change the charge

assignment of  to

 1 ⇠ (10, 1) and  2 ⇠ (10, 1) . (3.20)

Now the mass terms for the extra matter are generated via Yukawa couplings involving

 ,  and the �i; the vacuum expectation value h�i is now associated with the scale mV

determined in the RGE analysis. We make one additional modification to the theory,

which is to add an additional pair of Higgs fields

�
0
1 ⇠ (1, 2) and �

0
2 ⇠ (1, 2) . (3.21)

The modification in Eq. (3.20) leads to the vanishing of the one-loop beta function for

SU(2)X , while Eq. (3.21) restores the desired asymptotic non-freedom. Based on our

earlier observations, it is clear that the numerical values for mV and ⇤ in this model will

be qualitatively similar to those of the other (3, 2, 0, 2) models that we have considered,

and we leave further numerical study for the interested reader.
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3.5 Conclusions

In this chapter, we have revisited the possibility that the standard model gauge cou-

plings reach a common Landau pole in the ultraviolet. This provides a predictive frame-

work for relating the values of the gauge couplings at the weak scale, without the necessary

assumption of conventional grand unification. To implement this framework, all the gauge

couplings must be asymptotically non-free, which implies that new matter must be in-

cluded in the theory. We have numerically explored the possibility that this new matter

appears at two scales, a light superpartner mass scale msusy, and the scale where addi-

tional heavier vector-like states appear, mV . We have revisited a scenario considered in

the past in which the minimal supersymmetric standard model is enlarged by a single

vector-like generation and found that either msusy or mV falls below potentially relevant

LHC lower bounds on colored MSSM superparticles or vector-like quarks. Although one

cannot rule out the possibility that these states are present and have evaded detection

for model-specific reasons, we are motivated to consider a safer possibility: we include a

relatively small additional amount of extra heavy matter, which leads to solutions for mV

that are beyond the reach of the LHC, but potentially within the reach of a higher-energy

hadron collider. For example, given a heavy sector consisting in total of five 5 + 5 pairs,

we obtain successful gauge coupling predictions for msusy = mV ⇡ 13 TeV. For a heavy

sector of two 10+10 pairs, we can achieve mV as low as 3 TeV, if we allow higher values of

msusy ⇡ 1500 TeV. (In this case, mV refers to the fermionic components of the vector-like

sector, while msusy represents a common mass for the superparticles of the ordinary and

vector-like sectors.)

We also considered whether the size of the new matter sector could be related to its

embedding into the irreducible representation of an additional non-Abelian gauge group.

We presented the simplest model that was consistent with our numerical solutions, a
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model with two 10+ 10 pairs, in which this duplication is due to their embedding in the

fundamental representation of a new SU(2) gauge group. In the case where the heavy

matter sector is vector-like under the new SU(2), the new gauge group can be broken at

a much lower scale and the e↵ective theory is that of a spontaneously broken non-Abelian

dark sector. In the case where the heavy matter sector is chiral under the new SU(2),

mV is associated with the symmetry breaking scale. In this case, new heavy gauge bosons

would be among the spectrum of particles that might be sought at a future collider with

a suitable reach.



CHAPTER 4

Curved Backgrounds in Emergent

Gravity 1

Field theories that are generally covariant but nongravitational at tree level typically

give rise to an emergent gravitational interaction whose strength depends on a physical

regulator. In this chapter we consider emergent gravity models in which scalar fields

assume the role of clock and rulers, addressing the problem of time in quantum gravity.

We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe

some of the consequences of those dynamics for the emergent gravitational theory.

1Work previously published in S. Chaurasia, J. Erlich and Y. Zhou, “Curved Backgrounds in Emergent
Gravity,” Class. Quant. Grav. 35, no. 11, 115008 (2018), [arXiv:1710.07262 [hep-th]].
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4.1 Introduction

The possibility that gravitation emerges from other interactions provides a promising

paradigm for addressing the di�cult conceptual questions that confront quantum gravity.

These questions include the problem of time, namely that coordinate invariance implies a

vanishing Hamiltonian and the consequent absence of dynamics of quantum states [76]; the

question of predictivity in a theory with nonrenormalizable interactions such as gravitation;

the question of what observables are physical in a di↵eomorphism-invariant theory; and

questions related to the vacuum, including why the Minkowski spacetime and its signature

should be preferred to other spacetimes in a quantum theory in which spacetime geometries

are integrated over.

The possibility of emergent long-range interactions in quantum field theory has been

recognized for half a century.1 Bjorken argued that four-fermi models with current-current

interactions can give rise to emergent gauge interactions [22], and Eguchi later argued that

the composite gauge field in such theories may render those theories renormalizable despite

the presence of fundamental four-fermi interactions [23]. It did not take long for the idea

of emergent interactions to be extended to gravitation, in a wonderfully short note by

Sakharov [26]. Sakharov pointed out that the regularized e↵ective action for the spacetime

metric generically contains the Einstein-Hilbert term even if no such term is present at

tree level, as long as general covariance is maintained by the regulator in the theory. This

suggests that the dynamics of spacetime might emerge as an artifact of regulator-scale

physics even if there is no such dynamics prior to quantization.2

Perhaps the most compelling argument for emergent gravity is its ubiquity: all that

1In a classical context, Michael Faraday suspected a relationship between electromagnetism and grav-
itation, and in the 1840s searched experimentally for such an identification. He was unsuccessful [77].

2Sakharov had in mind that the spacetime metric was to be treated classically, in which case the
induced gravity is semiclassical, with the vacuum expectation value of the energy-momentum tensor Tµ⌫

being related to the spacetime metric by Einstein’s equations (with cosmological constant, plus regulator-
suppressed corrections).
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is needed is a generally covariant description of the interactions of a field theory and

a covariant regulator that resolves infinities in perturbation theory, both of which are

likely to be required of quantum gravity, in any case. Much work has been done in an

attempt to turn Sakharov’s observation into a compelling description of quantum gravity

[78, 79, 80, 81], but certain di�culties remain. More recently, alternative paradigms that

also appear to lead to emergent gravitational interactions have gained favor, such as the

AdS/CFT correspondence [82], entropic gravity [83], and emergent spacetime via networks

of entangled states [84, 85]. However, the present work concerns the old-fashioned approach

to the subject as motivated by Sakharov’s induced gravity.

The problem of nonrenormalizability of the gravitational interaction persists in emer-

gent gravity, unless the quantum theory is asymptotically safe by virtue of an ultraviolet

fixed point [86]. However, with the presumption of a physical regulator, the lack of predic-

tivity of the theory is augmented by the more fundamental ontological question of what is

to be demanded of the theory at short distances. Regulators in quantum field theory have

the habit of violating some cherished principle or another, such as unitarity or boundedness

of the Hamiltonian from below. In the present work we are agnostic about the physical

regulator and its consequences for the interpretation of the theory at short-distances, and

we require only that the theory provide a definite rule for calculating correlation functions

of appropriate observables at all physical scales. For the purpose of illustration we will use

dimensional regularization, fixing the spacetime dimension D by holding ✏ = D � 4 small

but fixed.

The problem of time demands that physical degrees of freedom playing the roles of

clock and rulers be identified in any generally covariant theory. This allows dynamics to

be interpreted in terms of correlations, or entanglement [87], between physical degrees

of freedom and the clock and rulers. For example, certain scalar fields X
J(xµ) can play

the role of the physical clock and rulers by a gauge-fixing condition analogous to the
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static-gauge condition in string theory, under the presumption that field configurations

dominating the functional integral can be put into that gauge. Here x
µ are the spacetime

parameters integrated over in the action, and the indices J and µ both take values in

{0, ..., D � 1}. The gauge choice is XJ = c x
µ
�
J

µ
for some constant c that will be specified

for convenience later. In the models considered here, this choice for the fieldsXJ satisfy the

classical equations of motion with all other fields sitting at the minimum of the potential,

and there is a natural perturbative expansion about this classical background.

In this chapter we generalize a particular toy model of emergent gravity that was

recently studied in Ref. [27]. The model contains only scalar fields, and D of the fields

play the role of clock and rulers in D dimensions. The model was shown to include a

massless composite graviton in its spectrum which couples at leading order to the energy-

momentum tensor of the physical (non-gauge-fixed) fields as in Einstein gravity. The

model is generally covariant from the outset, has a vanishing energy-momentum tensor

(including the contributions of the clock and ruler fields), and thereby evades the Weinberg-

Witten no-go theorem which prohibits the existence of massless spin-2 particles in a broad

class of Lorentz-invariant theories [88]. Di↵eomorphism invariance is expected to lead to

gravitational self-interactions beyond leading order consistent with general relativity up to

Planck-suppressed corrections, and evidence for this by direct computation was recently

provided in Ref. [89]. Here we generalize the theory to the case in which the clock and

ruler fields have a nontrivial field-space metric, and we demonstrate that, at leading order

in a perturbative expansion, scattering is as in Einstein gravity in a spacetime background

identified with the field-space metric.
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4.2 Emergent Gravity with Curved Backgrounds

The theory that we study includes N scalar fields �a, a 2 {1, . . . , N}, in addition to

the D scalar fields X
J that play the role of clocks and rulers. We assume the potential

depends only on �
a but not the clock and ruler fields. The theory is defined so as to

be di↵eomorphism invariant, and at the classical level the theory is independent of any

geometric structure imposed on the spacetime other than di↵erentiability. In particular,

the action is independent of spacetime metric on the coordinates xµ, and correspondingly

the theory has an identically vanishing energy-momentum tensor. The action for the

theory is,

S =

Z
dD

x

 
D

2 � 1

V (�a)

!D
2 �1

vuut
�����det

 
NX

a=1

@µ�
a @⌫�

a +
D�1X

I,J=0

@µX
I @⌫X

J GIJ(XK)

!�����. (4.1)

Aside from the dependence of the action on a potential V (�a), this theory is in the class

of induced gravity theories based on the Nambu-Goto-like membrane action, as analyzed

recently in Ref. [90].

The theory described by Eq. (4.1) is nonlinear, but it is reminiscent of the Nambu-Goto

action for the string and we can motivate it by introducing an auxiliary spacetime metric

which is fixed by a constraint of vanishing energy-momentum tensor. The Polyakov-like

description of the theory is given by the action,

S =

Z
dD

x

p
|g|

"
1

2
g
µ⌫

 
NX

a=1

@µ�
a
@⌫�

a +
D�1X

I,J=0

@µX
I
@⌫X

J
GIJ(X

K)

!
� V (�a)

#
. (4.2)

The quantum theory is defined by functional integral quantization over the scalar fields

and gµ⌫(x), subject to the constraint Tµ⌫ = 0. The constraint can be thought of as arising

from integrating out the auxiliary-field metric gµ⌫ , although in that case a Jacobian func-
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tional determinant would also arise from the functional integration, which would appear

to modify the theory nonperturbatively. (An analogy to this in the context of a model

of emergent gauge interactions was pointed out in Ref. [91].) Nonetheless, as long as the

action, constraints and regulator are covariant, an emergent gravitational interaction can

be expected as in Sakharov’s induced gravity.

The partition function for the theory is,

Z =

Z

Tµ⌫=0

Dgµ⌫ D�
a
DX

I
e
iS(�a,XI

,gµ⌫), (4.3)

where the symmetric energy-momentum tensor is defined in the usual way,

Tµ⌫(x) =
2p
|g|

�S

�gµ⌫(x)
(4.4)

=
NX

a=1

@µ�
a
@⌫�

a +
D�1X

I,J=0

@µX
I
@⌫X

J
GIJ � gµ⌫L, (4.5)

where the Lagrangian L is defined by the action in Eq. (4.2), S ⌘

Z
dD

x

p
|g|L. Eq. (4.5)

is solved by

gµ⌫ =
D/2� 1

V (�a)

 
NX

a=1

@µ�
a
@⌫�

a +
D�1X

I,J=0

@µX
I
@⌫X

J
GIJ

!
, (4.6)

which together with Eq. (4.2) gives the membrane-like action Eq. (4.1). Note that gµ⌫ of

Eq. (4.6) is auxiliary and does not have dynamics other than that due to its dependence

on the fields �a and X
I . Also note that, despite the similarity of the actions Eq. (4.1) and

Eq. (4.2) to the Nambu-Goto and Polyakov actions of string theory, the factor of D/2� 1

in Eq. (4.6) hints that the case D = 2 is special. In D = 2, a conformal factor rescaling

the metric of Eq. (4.6) factors out of the equations of motion and allows for the transition

from the Polyakov form to the Nambu-Goto form of the string action.

We assume that the potential V (�) has the form V (�) = V0 + �V (�), with the
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minimum of the potential V0 much larger than any other scales in the theory with the

possible exception of a scale associated with the physical regulator. For simplicity we

also assume in our analysis that the field-space metric GIJ(X
K) ⌘ ⌘IJ + eHIJ(X

K), with

Minkowski (mostly-minus) metric ⌘IJ , admits a perturbative expansion in eHIJ and its

derivatives.

The theory described by Eq. (4.1) is invariant under coordinate reparametrizations,

X
I(x) ! X

I(x0(x)) and �
a(x) ! �

a(x0(x)); and under field redefinitions the field-space

metric GIJ transforms like a metric: If XI(x) is replaced with X
0 I(XJ(x)) and GIJ(X) is

replaced with G
0
IJ
(X 0),

@µX
I
@⌫X

J
GIJ(X) ! @µX

0 I
@⌫X

0 J
G

0
IJ
(X 0)

= @µX
K
@⌫X

L
@X

0 I

@XK

@X
0 J

@XL
G

0
IJ
(X 0(X)) (4.7)

= @µX
I
@⌫X

J
GIJ(X),

where the last line follows if

G
0
IJ
(X) =

@X
K

@X 0I
@X

L

@X 0J GKL(X
0(X)). (4.8)

Note that a field redefinition cannot take a curved-space GIJ to a flat-space one, so the the-

ory with generic field-space metric is genuinely inequivalent to the flat-field-space version

of the theory studied previously.

In order to provide physical meaning to the spacetime background in which dynamics

take place, we identify X
I with the corresponding spacetime coordinates (up to a constant

factor), analogous to a static gauge condition in string theory:

X
I =

s
V0

D/2� 1
x
µ
�
I

µ
, I = 0, . . . , D � 1, (4.9)
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Then the field X
0 can be interpreted as an internal clock [87], while the fields X

i
, i =

1, . . . , D � 1 are interpreted as rulers. In this case the Fadeev-Popov determinant is

det

✓
�X

I,↵ (y)

�↵µ (y0)

◆
= det

 s
V0

D

2 � 1

� (yµ + ↵
µ (y))

�↵µ (y0)
�
I

µ

!

= det

 s
V0

D

2 � 1
�
I

µ
�
(D) (y � y

0)

!
,

(4.10)

which is trivial and consequently there are no Fadeev-Popov ghosts resulting from gauge

fixing X
I .

The classical equations of motion for �a and X
I following from the action Eq. (4.2)

are

1
p
�g

@µ

�p
�gg

µ⌫
@⌫�

a
�
= �

@V

@�a
, (4.11)

@µ

�p
�gg

µ⌫
GIJ@⌫X

J
�
=

1

2

p
�gg

µ⌫
@µX

J
@⌫X

K
@

@XI
GJK . (4.12)

If we set �a = �
a

min where �a

min minimizes V such that V (�a

min) = V0, then the equation of

motion for �a is trivially satisfied. Meanwhile, with the gauge-fixed background X
I as in

Eq. (4.9), the spacetime metric at �a = �
a

min is

gµ⌫ =
D

2 � 1

V0

�p
V0�

I

µ

� �p
V0�

J

⌫

�
GIJ

D

2 � 1
= Gµ⌫(x

I), (4.13)

so the spacetime background in which the fields �a propagate is now identified with the

field-space metric for the clock and ruler fields. Furthermore, the equations of motion for

the clock and ruler fields, Eq. (4.12), are also satisfied by the static gauge condition, as is

readily checked using the identity,

1p
|g|

@

p
|g|

@x↵
=

1

2
g
µ⌫
@gµ⌫

@x↵
. (4.14)
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Hence, the static-gauge configuration with fields �a uniform at the minimum of the po-

tential, and with gµ⌫(x) = Gµ⌫(x), solve the equations of motion and provide a classical

background about which the dynamics for the fields �a can now be analyzed.

We now show that the background GIJ modifies the emergent gravitational interaction

by coupling to the matter fields as in Einstein gravity, at linear order in the expansion

about the Minkowski metric. Thus we write the background GIJ as,

Gµ⌫ = g
(B)
µ⌫

= ⌘µ⌫ + eHµ⌫ , (4.15)

where eHµ⌫ determines the background spacetime but is assumed to be small compared to

⌘µ⌫ . Consequently the gauge-fixed action takes the form,

S =

Z
dD

x
V0

D/2� 1

✓
V0

V0 +�V (�a)

◆D/2�1r���det
⇣
⌘µ⌫ + eHµ⌫ + ehµ⌫

⌘���, (4.16)

where

ehµ⌫ ⌘
D/2� 1

V0

 
NX

a=1

@µ�
a
@⌫�

a

!
, (4.17)

and gµ⌫ depends on the field configuration via,

gµ⌫ =
V0

V (�)

⇣
⌘µ⌫ + eHµ⌫ + ehµ⌫

⌘
. (4.18)

In order to analyze the theory perturbatively, we expand Eq. (4.16) in powers of 1/V0

and eH. We take ehµ⌫ and eHµ⌫ to be of the same order. We also assume for simplicity

that N , the number of fields �a, is large, and keep only leading terms in a 1/N expansion.

Expanding the determinant via the identity detM = exp (tr lnM), the action can be
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written as

S =

Z
dD

x
V0

D/2� 1

✓
1 +

�V (�a)

V0

◆1�D/2 
1 +

1

2

⇣
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+ · · ·
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+ · · ·

�
,

(4.19)

where index contractions are done with the Minkowski metric and eh = ⌘µ⌫
ehµ⌫ (likewise

eH = ⌘µ⌫
eHµ⌫). Keeping terms up to first order in eH and 1/V0, and using Eq. (4.17), we

arrive at the action

S =

Z
dD

x

(
V0
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1

2
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+O

✓
eH2

,
1

V
2
0

◆�
.

(4.20)

The first three lines in Eq. (4.20) are equivalent to the action analyzed in Ref. [27] up to

the addition of a �-independent contribution to the action.

The interactions between �a and eHµ⌫ are new, and will shortly be shown to give rise

to scattering o↵ of the background spacetime in accordance with general relativity. For a
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free theory with O(N)-symmetric potential

�V (�a) =
NX

a=1

m
2

2
�
a
�
a
, (4.21)

the first line of Eq. (4.20) contains the free part of the action. The energy-momentum

tensor for free fields �a is

Tµ⌫ =
NX

a=1


@µ�

a
@⌫�

a
� ⌘µ⌫

✓
1

2
@
↵
�
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@↵�
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�

1

2
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2
�
a
�
a

◆�
, (4.22)

and the interacting terms excluding eHµ⌫ can be written,

Leh = �
1

4V0
Tµ⌫T↵�

✓✓
D

2
� 1

◆
⌘
⌫↵
⌘
µ�

�
1

2
⌘
µ⌫
⌘
↵�

◆
. (4.23)

In Ref. [27], it was shown that these interactions give rise to a massless spin-two graviton

state that mediates the gravitational interaction in two-into-two scattering of � bosons.

+ + + · · ·

FIG. 4.1: Leading large-N diagrams that give rise to the emergent gravitational interaction.
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a

a

b

b

Tµ⌫

p1

p2

h
µ⌫

T↵�

p3

p4

(a) The graviton pole that emerges from two-

into-two scattering of � bosons.

a

a

Tµ⌫

p1

p2

eHµ⌫

(b) Scattering of � bosons o↵ of

eHµ⌫ .

FIG. 4.2: Feynman diagrams for our current theory.

The diagrams in Fig. 4.1 are responsible for the emergent gravitational interaction,

which can be equivalently described by exchange of a composite graviton as in Fig. 4.2(a).

Hence, the emergent gravity persists in this model, at least at the perturbative level to

which we are working.

At the same order in perturbation theory, we can interpret the interactions with the

background metric eHµ⌫ as arising from a background source. Notice the contribution from

eHµ⌫ in the last line of Eq. (4.20) takes the form

L eH = �
1

2
eHµ⌫

NX

a=1


@µ�

a
@⌫�

a
� ⌘µ⌫

✓
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↵
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@↵�
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�

1

2
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2
�
a
�
a

◆�
= �

1

2
eHµ⌫

Tµ⌫ , (4.24)

which confirms the agreement of the theory with the linearized coupling of matter to the

background metric in general relativity, and results in the interactions shown in Fig. 4.2(b).

From Eq. (4.24), we can read o↵ the momentum space Feynman rule for interactions

involving eHµ⌫ , with p1 ingoing and p2, q outgoing:

⇣
eH � T

⌘
vertex = �

i

2
Eµ⌫ (p1, p2) eHµ⌫ (q) �D (p1 � p2 � q) (4.25)
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for inwardly (outwardly) directed external momenta p1 (p2), and where

Eµ⌫ (p1, p2) ⌘ (pµ1p
⌫

2 + p
⌫

1p
µ

2) + ⌘
µ⌫
�
�p1 · p2 +m

2
�

(4.26)

is determined by Eq. (4.22), summing over the ways in which the fields can annihilate

(or create) incoming (or outgoing) scalar bosons. The interactions involving eHµ⌫ don’t

contribute to scattering but instead create an instability in Gµ⌫ , rendering Tµ⌫ 6= 0. Hence

there is a background field (call this T
(B)

µ⌫) that appears as a source for eHµ⌫ in the

Einstein-Hilbert action.

We note that interactions at higher-order in 1/V0 can contribute at the same order as

the diagrams that we have considered if they include tadpoles which are also proportional

to V0. However, as in Ref. [27], we can add a counterterm c2 to V0 which cancels tadpoles

from insertions of m2
�
a
�
a in interactions, and we can shift the gauge by a parameter c1

in order to cancel tadpoles from insertions of @µ�
a
@⌫�

a in interactions:

X
I = x

I

s
V0

D/2� 1
� c1,

�V =
1

2
m

2
�
a
�
a
� c2,

(4.27)

There are no other tadpoles in this theory, so all relevant diagrams have been accounted

for at leading order in 1/N and 1/V0. All additional diagrams from couplings of higher

order in 1/V0 are consistently neglected at leading order.

The linearized coupling of the composite field hµ⌫ to matter is given by

LhT = �
1

2
h
µ⌫
Tµ⌫ , (4.28)
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where h
µ⌫ is the composite operator representing the fluctuation about the Minkowski

metric,

h
µ⌫ =

1

V0
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�T

� +O
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1/V 2
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�
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�
,
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� ⌘
1

2
[(D/2� 1) (�µ

�
�
⌫


+ �

µ


�
⌫

�
)� ⌘

µ⌫
⌘�] .

(4.29)

Now that there is a source creating a background in which Tµ⌫ fluctuates, we find that

Lint = �
1

2

⇣
h
µ⌫ + eHµ⌫

⌘
Tµ⌫ (4.30)

at the linearized level.

Thus we have interactions in which the matter fields can scatter o↵ themselves, cor-

responding to the exchange of a massless composite graviton h
µ⌫ , or they can scatter o↵

the background spacetime defined by eHµ⌫ . We can interpret the scattering o↵ of the

background spacetime as due to the existence of a background energy-momentum tensor.

Here we can draw an analogy to electromagnetism. Consider a scenario in which there is a

current creating a background electromagnetic field; then incoming charged particles feel

the e↵ects of the field as they scatter o↵ of one another. But we can recast this scenario

into an equivalent one in which the incoming charged particles scatter o↵ the current which

generates the background electromagnetic field, thereby rendering the source dynamical.
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a

a

b

b

Tµ⌫ + T (B)
µ⌫

p1

p2

h
µ⌫

T↵� + T (B)
↵�

p3

p4

FIG. 4.3: In this redefined theory, the matter field Tµ⌫ can scatter o↵ of itself and the background
field T

(B)
µ⌫ . The scattering of T (B)

µ⌫ o↵ of itself is unphysical, thus should not be considered.

Likewise we can consider a process in which the scalar bosons scatter o↵ of one another

and o↵ of the source that generates eHµ⌫ , so that the graviton couples to the matter and

background source, as shown in Fig. 4.3. As a result the interacting Lagrangian reads

L
0
int

= �
1

2
h
µ⌫
�
Tµ⌫ + T

(B)
µ⌫ (x)

�
. (4.31)

We can extract T (B)
µ⌫ from the linearized equation of motion for eHµ⌫ :

Dµ⌫�
eH�(x) = �T

(B)
µ⌫(x). (4.32)

Here D is the linearized equation of motion operator describing the dynamics of the com-

posite graviton,

Dµ⌫�
eH�(x) =

D � 2

M
2�D

P

⇣
⇤ eHµ⌫ + @

µ
@
⌫ eH � ⌘

µ⌫ ⇤ eH

+ ⌘
µ⌫
@�@

eH�
� ⌘

⌫�
@�@

eHµ
� ⌘

⌫�
@
µ
@
 eH�

⌘
,

(4.33)

where MP characterizes the strength of the interaction. It is the reduced Planck mass

deduced by comparing the scattering amplitude due to the e↵ective 1-graviton exchange
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with general relativity, and was calculated in Ref. [27] to have the value3,

MP = m

"
N� (1�D/2)

6 (4⇡)D/2

#1/(D�2)

. (4.34)

If we instead want to recover the background spacetime from the background energy-

momentum tensor, we need to invert the equation of motion operator, which requires

fixing the coordinate ambiguity. For example, by a field redefinition of the fields XI as in

Eq. (4.8), we can choose the background eHµ⌫ to be in the de Donder gauge, @⌫ eHµ⌫ =
1
2@µ

eH.

The linearized Einstein equation in de Donder gauge is,

Dµ⌫�
eH�(x) =

D � 2

M
2�D

P

✓
⇤ eHµ⌫

�
1

2
⌘
µ⌫⇤ eH

◆
. (4.35)

Since this expression is invertible, we can calculate schematically,

eHµ⌫ = �
�
D

�1
�µ⌫�

T
(B)

�. (4.36)

Upon a Fourier transformation to momentum space,

eHµ⌫(q) = �
�
D

�1
�µ⌫�

(q)E(B)
� (p3, p4) , (4.37)

for incoming (outgoing) momenta p3 (p4, q = p3 � p4).

We can compare in more detail the theories defined by Lagrangians Eq. (4.30) and

Eq. (4.31). Seeing that both Lint and L
0
int

contain a factor of h
µ⌫
Tµ⌫ , the scattering

amplitude of scalar particles o↵ one one another remains the same at this order, so we

only need to consider interactions involving the source and the background it creates. The

3We thank Chris Carone and Diana Vaman for correcting a minus sign in this expression from the first
version of Ref. [27].
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scattering amplitude for Fig. 4.2(b) is

MMB = �
i

2
Eµ⌫ (p1, p2) eHµ⌫(q), (4.38)

while the scattering amplitude for Fig. 4.3 is

M
0
MB

= �
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2
Eµ⌫ (p1, p2) (�i)

�
D

�1
�µ⌫↵�

(q)2⇥

✓
�
i

2
E

(B)
↵� (p3, p4)

◆

= �
i

2
Eµ⌫ (p1, p2) 2⇥

✓
1

2
eHµ⌫(q)

◆

= �
i

2
Eµ⌫ (p1, p2) eHµ⌫(q),

(4.39)

Evidently MMB = M
0
MB

; thus we can infer that the amplitude of the matter fields scat-

tering o↵ of the background source is the same as if it was scattering o↵ of the background

metric. Indeed then Lint gives rise to the same physics as L0
int

at the linearized level.

4.3 Discussion and Conclusions

We have analyzed scattering amplitudes in a model of emergent gravity with general

field-space metric for scalar fields that play the role of clock and rulers after gauge-fixing.

The classical equations of motion admit a background solution in which the emergent

spacetime metric is equal to the field-space metric. The quantum theory then admits a

perturbative expansion about this background, so that the theory describes an emergent

quantum gravity about the prescribed spacetime background. In the case that the field-

space metric is nearly flat, we demonstrated that scattering o↵ of the background spacetime

is as in general relativity, as is 2-into-2 scattering through the exchange of a composite

spin-2 graviton.

We note that even if the regulator scale is taken to infinity (for example ✏ ! 0 in
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dimensional regularization), so that the e↵ective MPl ! 1, matter will still scatter o↵ of

the gauge-fixed clock and ruler fields in such a way that the field-space metric plays the

role of the background spacetime.

It was important in our analysis that the dynamics of the clock and ruler fields was

due only to the field-space kinetic term. If the potential had depended on the fields X
I

then the classical backgrounds for the clock and rulers would generally not admit the

static-gauge condition X
I
/ x

µ
�
I

µ
. For example, oscillating configurations of a massive

clock field would be bounded in magnitude and could not be transformed by a coordinate

transformation to an unbounded solution like the static-gauge configuration. The possi-

bility of configurations that do not admit the static gauge condition also raises another

issue. By assuming the static gauge we are only integrating over a subset of field config-

urations. These are configurations close to the classical background, so we suspect that

these solutions dominate perturbative contributions to correlation functions. However, the

contribution of other configurations, which are nonperturbative in the present approach,

deserve further investigation.

Although our analysis has been to leading order in a perturbative expansion, and

we have demonstrated that the theory generates the gravitational interactions of general

relativity at lowest order, di↵eomorphism invariance of the theory is expected to lead

to the expected nonlinear gravitational interactions, as well. Calculation of the leading

graviton self-interactions in this theory (with flat field-space metric) was done in Ref. [89],

and was shown to agree with the predictions of general relativity. We also note that the

field-space metric for the clock and ruler fields determines the global symmetries of the

spacetime background. For example, with a flat field-space metric the theory maintains

a global Lorentz invariance that acts on the clock and ruler fields. The lesson is that in

this approach global spacetime symmetries act on spacetime fields, while di↵eomorphism

invariance acts on the coordinate-dependence of both the spacetime fields and the physical
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fields.

There are several ways to generalize the class of theories described here in order to

incorporate realistic matter and gauge interactions. The approach that we advocate is to

begin with a covariant description of the Standard Model coupled to gravity, include the

clock and ruler fields possibly with a nontrivial field-space metric but otherwise massless

and free, and then demand Tµ⌫ = 0 as was done in the scalar toy model presented here. This

defines a theory that should resemble the Standard Model at long distances compared to

the regulator scale, coupled to emergent gravity by analogy with the discussion presented

here. One remaining challenge is to define a physical regulator that would allow for a

well-defined description of the physics at distances shorter than the regulator scale, or else

provide an explanation for why such short distances are not meaningful.

Finally, we note that because the linearized couplings of the matter fields to both the

composite graviton state and to the background spacetime metric are through the energy-

momentum tensor, an extension of the theory to include scalars with di↵erent masses is

guaranteed to contain universal gravitational couplings.



CHAPTER 5

Dark sector portal with vector-like

leptons and flavor sequestering 1

In this chapter we consider models with fermionic dark matter that transforms under

a non-Abelian dark gauge group. Exotic, vector-like leptons that also transform under

the dark gauge group can mix with standard model leptons after spontaneous symmetry

breaking and serve as a portal between the dark and visible sectors. We show in an

explicit, renormalizable model based on a dark SU(2) gauge group how this can lead to

adequate dark matter annihilation to a standard model lepton flavor so that the correct

relic density is obtained. We identify a discrete symmetry that allows mass mixing between

the vector-like fermions and a single standard model lepton flavor. This flavor sequestering

avoids unwanted lepton-flavor-violating e↵ects, substantially relaxing constraints on the

mass scale of the vector-like states. We discuss aspects of the phenomenology of the model,

including direct detection of the dark matter.

1Work previously published in C. D. Carone, S. Chaurasia and T. V. B. Claringbold, “Dark sector portal
with vectorlike leptons and flavor sequestering,” Phys. Rev. D 99, no. 1, 015009 (2019) [arXiv:1807.05288
[hep-ph]].
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5.1 Introduction

Although the literature on dark matter models is vast and diverse, the organizational

structure of many of these models is similar. The visible sector includes all the fields nor-

mally associated with the minimal standard model; the dark sector consists of a collection

of fields that communicate very weakly with the visible sector; the messenger or portal

sector consists of those fields that allow for a weak coupling between the visible and dark

sectors. In this chapter, we are interested in a possible portal for dark matter models,

specifically ones in which fermionic dark matter is charged under a dark gauge group. Our

model will include vector-like fermions that are also in nontrivial representations of the

dark gauge group but can mix with standard model fermions when the gauge symmetries of

the theory are spontaneously broken. We identify a mechanism, based on symmetries, that

we call “flavor sequestering” which allows this mixing to be non-negligible, while simul-

taneously suppressing unwanted flavor-changing processes. This mechanism is new to the

literature; it can provide for vector-like fermion portal sectors that are lighter and more ac-

cessible experimentally than would otherwise be possible. For the purposes of illustration,

we choose to study a theory with a non-Abelian dark gauge group, where an additional

portal involving kinetic mixing of some dark gauge boson components with hypercharge is

naturally suppressed. In models like the one we propose, where there are vector-like states

charged both under the dark and hypercharge gauge groups, the kinetic mixing parameter

in an Abelian theory would typically run below the Planck scale, leading to low-energy

values that are not necessarily small; this makes a non-Abelian dark sector the natural

setting for formulating our proposal. Scenarios in which multiple portals are relevant (for

example, a vector-like fermion portal, a Higgs-portal, a higher-dimension-operator portal,

etc.) are of course possible and more complicated; in the present work, however, we focus

on the case where the vector-like fermion portal is dominant. Examples of non-Abelian
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dark matter models can be found in Refs. [40, 41, 42, 43, 44, 45, 46], [92, 93, 94] and [95];

we will not focus on models like those in Refs. [92, 93, 94] where a dark gauge boson is

itself the dark matter. Our model is also very di↵erent from the models of Refs. [95] which

involve unbroken non-Abelian dark gauge groups, either chosen to assure composite dark

matter candidates in the cases where there is confinement, or dark radiation in the case

where the dark gauge coupling is too small for confinement to be cosmologically relevant.

In our proposal, mixing between the vector-like and standard model fermions will only be

present when the non-Abelian dark gauge group is spontaneously broken.

Given these assumptions, we would like the vector-like fermion portal in our model

to allow the dark gauge bosons to develop a small coupling to the visible sector, adequate

enough to facilitate the annihilation of the dark matter for a successful thermal freeze-out,

without running afoul of direct detection bounds. This can be arranged if the e↵ective

coupling between the dark and visible sectors does not appear at the same order in the

dark matter annihilation and dark-matter-nucleon elastic scattering cross sections. To

achieve this, we choose the quantum numbers of the vector-like states to allow mixing

only with standard model leptons. The induced coupling of the dark gauge bosons would

allow dark matter annihilation to leptons via tree-level diagrams, while diagrams involving

quarks would be higher-order. One might wonder whether coupling the dark gauge bosons

to standard model leptons directly might be a more economical alternative. However,

proceeding in this way leads to significant model building complications. For example, if

one tries to couple the dark gauge bosons to the standard model leptons directly, then

the dark gauge bosons are potentially no longer “dark,” unless their gauge coupling is

taken to be very small. However, this choice suppresses the coupling of the dark gauge

bosons to both the dark and visible sectors, making it ine↵ective as a channel for dark

matter annihilation. Moreover, such direct couplings lead generically to chiral anomalies,

which must be cancelled by additional states that are charged under both the dark and



88

standard model gauge groups. There is no guarantee that the simplest Higgs field content

of the dark and visible sectors will have the correct quantum numbers to provide Yukawa

couplings for these additional states, so that additional Higgs representations may be

required. Another potential problem is that charging standard model leptons under the

new non-Abelian group may either restrict the form of the standard model lepton Yukawa

matrices in unwanted ways, or forbid them entirely, unless a Higgs field charged under

both the dark and standard model gauge groups is introduced. While the proliferation of

fields implied by these considerations does not rise to the level of a no-go theorem, it does

make the approach described a lot less appealing.

To avoid these complications, we assume that the non-Abelian dark gauge boson

may couple to a vector-like state � that can mix with standard model leptons after the

gauge symmetries of the theory (both dark and visible) are spontaneously broken. We will

refer to the � states as heavy, vector-like leptons. If the dark gauge boson’s coupling to

dark matter is gD, which may be substantial, then the induced coupling to the standard

model lepton in the mass eigenstate basis will be proportional to ✓gD where ✓ is a small

mixing angle. Since the gauge boson couples directly to a vector-like state, anomalies

are cancelled, and a mass term �M��� can be written down at tree-level. A case of

particular phenomenological interest is where the vector-like sector is as light as possible.

In this case, the mixing angle ✓ can be large enough so that the desired dark matter

relic density is obtained entirely via dark matter annihilation to a standard model lepton-

anti-lepton pair. This scenario would not be possible in a similar model without flavor

sequestering, so we focus on this region of parameter space as the proof of principle that

our flavor-sequestering idea can be incorporated in viable models. The range of M� is then

determined by the requirement that the the mixing angle ✓ is large enough to produce the

desired value of the dark matter relic density. In this chapter, we will present an explicit

and renormalizable model that illustrates this proposal. Our focus di↵ers from that of
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Refs. [40, 41, 42, 43, 44, 45, 46], where the origin of higher-dimension operators connecting

the dark and visible sectors was either unspecified, or assumed to arise from a sector whose

flavor structure and phenomenology was not explicitly investigated.

The idea that a dark sector could communicate to the visible sector in any appreciable

way through mixing between between vector-like leptons and their standard model coun-

terparts would seem to conflict with the stringent lower bounds on the mass scale of heavy

vector-like leptons that appear in the literature, which exceed 100 TeV [47]. Such stringent

bounds, however, come from consideration of lepton-flavor-violating processes that emerge

when the vector-like states mix with all three standard model lepton flavors. One expects

such mixing to be present generically, and this would doom the approach that we have

just outlined. In this chapter, we show how a more favorable outcome can be achieved via

discrete symmetries that allow us to suppress the unwanted mass mixing arbitrarily. In

our model, vector-like leptons mix only with a single flavor of the standard model leptons,

which in turn does not mix substantially with the remaining two flavors, thus avoiding

problems with lepton flavor violation. We will show that the discrete symmetry used to

achieve this flavor sequestering does not adversely a↵ect the remaining flavor structure

of the charged leptons or neutrino mass matrices. Phenomenological considerations place

constraints on the mass spectrum of the flavor-sequestered vector-like lepton states that

can be tested in direct collider searches.

This chapter is organized as follows. In the next section, we define the simplest model

that illustrates a portal involving vector-like leptons and flavor sequestering. In Sec. 3, we

show how the flavor structure of the theory can be achieved using a discrete symmetry, so

that exclusive mixing with one standard model lepton generation is obtained and lepton-

flavor- violating e↵ects avoided. In Sec. 4 we demonstrate the viability of our example

model by identifying the region of parameter space in which the correct dark matter relic

density is obtained through annihilation to a standard model lepton-anti-lepton pair. We
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also consider the constraints from dark matter-nucleon elastic scattering, which follows

from the suppressed kinetic mixing that is induced after the non-Abelian gauge group is

spontaneously broken. In the final section, we summarize our conclusions.

5.2 The Model

We consider the simplest non-Abelian dark gauge group, SU(2)D. As stated earlier,

we denote the heavy, vector-like leptons �, and assume the quantum numbers

�L ⇠ �R ⇠ (2,1,1,�1) , (5.1)

where we indicate the representations of SU(2)D⇥ SU(3)C⇥ SU(2)W⇥U(1)Y , in that order.

In other words, these states are SU(2)D doublets, but have the same electroweak charges

as right-handed leptons. We further assume the simplest assignment for the dark matter,

i.e., that it is a doublet under SU(2)D. However, to avoid a Witten anomaly [96] there

must be an even number of SU(2) fermion doublets, so we take

 L ⇠  R ⇠ (2,1,1, 0) . (5.2)

Since the  fields are charged only under SU(2)D, we can construct Dirac or Majorana

mass terms, or both. We will assume Dirac mass terms, for simplicity, though it is easy to

make this the only possibility by imposing additional discrete symmetries. For example, an

unbroken Z3 symmetry can forbid Majorana masses for  , and also serve as the symmetry

which stabilizes the dark matter, which we identify henceforth as the lightest component

of the  doublet.

We assume that the dark gauge symmetry is spontaneously broken by two SU(2)D
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Higgs field representations,

HD ⇠ (2,1,1, 0) and HT ⇠ (3,1,1, 0) . (5.3)

We show at the end of this section that the Higgs potential has local minima consistent

with the pattern of vacuum expectation values (vevs):

hHDi =

0

B@
vD1

vD2

1

CA and hHT i =

0

B@
vT/2 0

0 �vT/2

1

CA . (5.4)

If we decompose HT = H
a

T
(�a

/2), where the �a are Pauli matrices, then the HT vev above

corresponds to hH
3
T
i = vT and hH

a

T
i = 0 for a = 1, 2. In fact, an arbitrary vev for HT

can always be rotated into the H
3
T
direction by an SU(2)D transformation. With this

choice, vevs in both components of HD are expected, and one of those can be made real

by a further SU(2)D phase rotation. The fact that the remaining HD vev in Eq. (5.4) is

assumed real will be shown to be consistent with the minimization of a potential later.

We can now say something more concrete about the mass spectrum of the model.

The relevant Lagrangian terms are L � L + L�e, where

L = �M  L
 R + �s  L

HT  R + h.c. , (5.5)

and

L�e = �M� �L
�R+�

0
s
�
L
HT �R�y1 �L

HD eR�y2 �L
eHD eR�ye LL H eR+ h.c. , (5.6)

where eHD ⌘ i�
2
H

⇤
D
, and the final term is the usual standard model Yukawa coupling for a

single lepton flavor. Eq. (5.6) assumes the existence of a symmetry that leads to exclusive
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mixing between any one standard model, right-handed charged lepton flavor (called eR

above) and the vector-like � fields. We show how this flavor sequestering can be arranged

by a discrete symmetry in Sec. 5.3. The first terms in Eqs. (5.5) and (5.6) provide a

common mass for each component of the given doublet, while the second terms lead to

mass splittings proportional to the vev vT . The third and fourth terms in Eq. (5.6) allow

mixing between the standard model lepton eR and the � fields, since the coupling to the

dark doublet Higgs field HD allows for the formation of an SU(2)D singlet. The final term

leads to an e mass when the standard model Higgs field develops a vacuum expectation

value hHi = (0, v/
p
2), with v = 246 GeV. Defining the column vector ⌥ ⌘ (e, �(1)

, �
(2))T ,

which displays the two components of the � doublet, we may write the mass matrix that

is produced after spontaneous symmetry breaking by

L
�e

mass
= �⌥LM ⌥R + h.c. , (5.7)

where

M =

0

BBBBBB@

hev
p
2

0 0

(y1v1D + y2v2D)
p
2

M� �
�
0
s
vT

2
0

(y1v2D � y2v1D)
p
2

0 M� +
�
0
s
vT

2

1

CCCCCCA
⌘

0

BBBB@

m0 0 0

m1 M1 0

m2 0 M2

1

CCCCA
, (5.8)

where the second form is a convenient parametrization. This matrix can be diagonalized

by a bi-unitary transformation, M = UL M
diag

U
†
R
. While this diagonalization can be done

numerically, there are certain limits that are relevant to us in which simple results can be

obtained. In particular, when M1, M2 >> m1, m2 >> m0, we find that the largest mixing
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angles, which occur in UR, are given by

UR =

0

BBBBBB@

1�
1

2

✓
m

2
1

M
2
1

+
m

2
2

M
2
2

◆
m1/M1 m2/M2

�m1/M1 1�
1

2

m
2
1

M
2
1

�
M1

M2

m1m2

M
2
1 �M

2
2

�m2/M2
M2

M1

m1m2

M
2
1 �M

2
2

1�
1

2

m
2
2

M
2
2

1

CCCCCCA
+ · · · , (5.9)

where the · · · represent terms that are cubic order or higher in mi/Mj. For this case,

we can now find the leading coupling of the dark gauge fields Aa

Dµ
to the mass eigenstate

fields. In the gauge basis, the coupling to ⌥R can be written

L = i⌥R�
µ(@µ � igDA

a

Dµ
T

a)⌥R + · · · , (5.10)

where

T
a =

0

B@
0 0

0 T
a

1

CA , (5.11)

and T
a = �

a
/2, a = 1, . . . , 3, are the generators of SU(2). The zero in the 1-1 element

reflects the fact that the standard model lepton is not charged under the dark gauge

group. In the mass eigenstate basis, the couplings of the ath dark gauge boson are therefore

proportional to U †
R
T

a
UR. In the same approximation as Eq. (5.9), these matrices are given

by
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U
†
R
T

a
UR =

2

66664

0

BBBB@

m1 m2
M1 M2

�
m2
2M2

�
m1
2M1

�
m2
2M2

0 1
2

�
m1
2M1

1
2 0

1

CCCCA
,

0

BBBB@

0 �
im2
2M2

im1
2M1

im2
2M2

0 �
i

2

�
im1
2M1

i

2 0

1

CCCCA
,

0

BBBB@

m
2
1

2M2
1
�

m
2
2

2M2
2

�
m1
2M1

m2
2M2

�
m1
2M1

1
2 0

m2
2M2

0 �
1
2

1

CCCCA

3

77775
,

(5.12)

where we only show results to linear order in mi/Mj, with the exception of the 1-

1 entries, because of their relevance to our subsequent discussion. For example, for the

lightest dark gauge boson, A3
D
, the coupling to e

+
e
� is given by

gD⌥R�
µ
A

3
Dµ

(U †
R
T

3
UR)⌥R =

gD

2

✓
m

2
1

M
2
1

�
m

2
2

M
2
2

◆
eR�

µ
A

3
Dµ

eR + · · · (5.13)

which provides the A
3
D

gauge boson with a decay channel (since we assume its mass is

greater that 2me) and allows for dark matter annihilation to a charged standard model

lepton-anti-lepton pair. For later convenience, we define

✓
2
⌘ gD

✓
m

2
1

M
2
1

�
m

2
2

M
2
2

◆
. (5.14)

We illustrate the qualitative idea in Fig. 5.1 that the dark matter annihilation to a charged

standard model lepton-anti-lepton pair emerges from mixing that a↵ects two of the external

legs.

We note that in the case where m0 is comparable to m1 and m2 we find via numerical

diagonalization that our expression UR in Eq. (5.9) still provides an accurate approxi-

mation. Moreover, we can prove that m0 appears only as a higher-order correction to
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FIG. 5.1: Qualitative picture of dark matter annihilation to a charged lepton-anti-lepton pair,
as discussed in the text. The insertions labelled by ✓ represent mass mixing.

✓, as defined in Eq. (5.14), the quantity that is most relevant to our phenomenological

discussion later. The argument is as follows: if m1 or m2 were to vanish, then UR must

become the identity. This implies that any corrections to the 1-2, 1-3, 2-1 and 3-1 entries

of UR that are proportional to m0 must come at no lower order than m0m1,2/M
2
1,2. This

potential contribution is nonetheless higher-order than the values shown for these entries

in Eq. (5.9). It is also the case that the 1-1 entry of U †
R
T

3
UR, from which ✓ is extracted,

depends only on these four entries. Hence, the value of ✓, which controls the induced

coupling of A3
D
to the chosen standard model lepton flavor, remains una↵ected at leading

order.

Eq. (5.12) indicates that all states other than the lightest  mass eigenstate have

available decay channels that ultimately lead to standard model particles. Since the free

parameter space of our model is substantial, for definiteness we assume henceforth the

following about the spectrum:

• Due to the triplet vev,  (1) and A
(3)
D

are the lightest states of the dark sector, while

 
(2), A

(1)
D

and A
(2)
D

are substantially heavier. We will consider the case where the

lighter dark sector states are in the O(1)�O(100) GeV range, with the restriction that

m (1)  m
A

(3)
D
, so that the dominant dark matter annihilation channel proceeds through

the vector-like lepton portal (see Sec. 5.4).

• We assume that the vector-like leptons � have masses above MZ/2, so that the Z width
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is una↵ected. Note that more substantial collider bounds apply when vector-like leptons

are either in weak doublets, or are long-lived [1], neither of which applies in the present

case.

With these assumptions, let us first sketch out the decay modes when the standard model

lepton flavor involved is the electron: the coupling matrices U †
R
T

a
UR, for a = 1 and a = 3

allow decays of A1
D
and A

3
D
directly to e

+
e
�; the same is not true for a = 2, but the A

2
D

boson does couple to the two di↵erent  mass eigenstates, which we will call  (1) (the

lighter, dark matter component) and  (2) (the heavier). The eigenstate  (2) can decay to

dark matter  (1) plus e
+
e
� via A

1
D

exchange. Hence A
2
D

can decay to two dark matter

particles and an e
+
e
� pair, whether or not  (1) is on shell. Due to the �A3

D
e couplings in

U
†
R
T

3
UR, both � mass eigenstates can decay to a same-sign e plus an e

+
e
� pair via A

3
D

exchange. Finally, the exotic Higgs fields HD and HT couple to fermion pairs via their

Yukawa couplings. Since we have already established that those fermions couple ultimately

to either e’s or  (1)’s, our claim is established. Note that if the standard model fermion is

either µ or ⌧ , nothing above is changed if MA
3
D
> 2mµ or 2m⌧ ; otherwise, decays to lighter

charged leptons plus neutrinos can still occur with the µ’s or ⌧ ’s o↵ shell.

Since the � and eR have identical electroweak quantum numbers, there is no e↵ect on

the coupling of the Z boson to eR in the mass eigenstate basis. However, � and eL couple

di↵erently to the electroweak gauge bosons, and diagonalization of Eq. (5.8) also involves a

left-handed rotation matrix UL which di↵ers from the identity. Fortunately, the left-handed

mixing angles are much smaller than those in Eq. (5.9) so that this does not present any

phenomenological di�culties. For example, the fractional shift in the standard model

ZeLeL vertex is of O(
m0m1

M
2
1

m0m2

M
2
2

), which is negligible given the spectrum we assume in

Sec. 5.4. We also may take the mostly � mass eigenstates to be heavy enough so that rare

Z decays to � e are kinematically forbidden.
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Finally, let us return to the issue of the spontaneous breaking of the dark gauge

symmetry. In the e↵ective theory well below the electroweak scale, the most general

renormalizable potential involving the dark Higgs fields is given by

V (HD, HT ) = �m
2
D
H

†
D
HD �m

2
T
tr(HTHT ) + �1(H

†
D
HD)

2 + �2

⇥
tr(HTHT )

⇤2

+ �3H
†
D
HTHTHD + µ1H

†
D
HTHD +

⇣
µ2H

†
D
HT

eHD + h.c.
⌘
,

(5.15)

where we have used the fact that H†
T
= HT . We assume the potential does not violate CP,

so that all the couplings are real. Further, we require at least one of (�m
2
D
, �m

2
T
) to be

negative so that the HD and HT fields may develop non-zero vevs. It should be noted that

there are other terms involving the Higgs fields that could be added to the potential, such

as eH†
D
eHD, tr(H

4
T
), eH†

D
HT

eHD, H
†
D
HD tr(HTHT ), but these are not linearly independent of

the terms included in Eq. (5.15) and so have been omitted.

The Higgs doublet assumes the standard real-field parametrization,

HD =
1
p
2

0

B@
�1 + i�2

�3 + i�4

1

CA , (5.16)

while the Higgs triplet can be represented by a 2⇥ 2 matrix of real fields H1, H2 and H3,

HT = H
a
�
a

2
=

1

2

0

B@
H3 H1 � iH2

H1 + iH2 �H3

1

CA . (5.17)

The normalization assures canonical kinetic terms. We proceed to show that there exists

a stable, local minimum of the potential for the pattern of vacuum expectation values

described in Eq. (5.4). One approach to studying the potential is to fix all the parameters

and search for minima, using standard steepest descent algorithms. However the downside

to this approach is that one may then have to repeatedly discard local minima that do
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not provide the pattern of vevs desired for the model. So instead, we will fix the vevs and

work backwards, showing that an extremum exists that is also a local minimum for a fixed

set of parameters.

The extremization of Eq. (5.15) with the fields set to the vevs shown in Eq. (5.4)

provides the following nontrivial, linearly independent constraints:

�m
2
D
vD1 + �1v

3
D1 + �1vD1v

2
D2 + µ2vD2vT +

1

4
vD1vT (�3vT + 2µ1) = 0

1

2

�
�µ2v

2
D1 + µ1vD1vD2 + µ2v

2
D2

�
= 0

�m
2
T
vT +

1

4
�3vT

�
v
2
D1 + v

2
D2

�
+

1

4
µ1(v

2
D1 � v

2
D2) + µ2vD1vD2 + �2v

3
T
= 0.

(5.18)

For the purpose of numerical evaluation we work here in units where µ1 = 1. For fixed

choices of the vevs and the couplings �1,2,3, we may then determine mD, mT and µ2. To

determine whether the extremum is a minimum, maximum or saddle point, we need to

examine the eigenvalues of the mass squared matrix (the second derivative matrix with

all fields set to their vevs and with the solutions for mD, mT and µ2 corresponding to the

extremum). Since SU(2)D is spontaneously broken to nothing, we expect three Goldstone

bosons, one for each broken SU(2) generator, according to Goldstone’s theorem. Thus we

would expect three of the eigenvalues to be zero, corresponding to the massless degrees

of freedom that are “eaten” by the dark gauge bosons. The remaining eigenvalues must

be positive for the extremum to be a local minimum. For example, let us set vT = vD1 =

vD2/2 = �1,2,3 = µ1 (here we require vD1 6= vD2 for a solution to exist). Then we find

m
2
D
= 53/12, m2

T
= 1/6 and µ2 = �2/3. The corresponding mass squared eigenvalues are

{0, 0, 0, 3.75, 3.75, 4, 10}, in units of µ2
1, thus confirming that we are at a local minimum

of the potential. This provides an existence proof that local minima exist in which the

pattern of vevs shown in Eq. (5.4) is obtained. It is not di�cult to find similar solutions

for other choices of vD1, vD2 and vT .
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The SU(2)D breaking vevs a↵ect the �-e mass spectrum via Eq. (5.8); the triplet vev

also splits the  mass eigenstates

m
 (1) = M �

1

2
�svT , m

 (2) = M +
1

2
�svT (5.19)

for  L,R =
�
 

(1)
,  

(2)
�T
L,R

. The gauge field spectrum is obtained from the kinetic terms

for HD and HT ,

Lkin(HD, HT ) = (DµHD)
†(Dµ

HD) + tr
⇥
(DµHT )

†(Dµ
HT )

⇤
, (5.20)

where DµHD = @µHD � igDA
a

Dµ

�
a

2 HD and DµHT = @µHT � igD
�
a

2 A
a

Dµ
HT + igDA

a

Dµ
HT

�
a

2 .

Following symmetry breaking the gauge bosons develop masses

m
2
A

1
D
= m

2
A

2
D
=

g
2
D

4
(v2

D1 + v
2
D2

+ 4 v2
T
), m

2
A

3
D
=

g
2
D

4
(v2

D1 + v
2
D2
). (5.21)

In splitting the  and AD multiplet masses, the triplet vev leads to a simple low-energy

e↵ective theory consisting of the dark matter  (1) (we assume �s > 0) and the mediator

A
3
D
, which has small induced couplings to a right-handed standard model lepton flavor.

This e↵ective theory is relevant below the masses of the heavy vector-like leptons,  (2)

and the A
1,2
D

bosons, which we will associate with a common scale, for simplicity. In

addition, we will see that the triplet vev leads to induced couplings of the dark matter to

quarks via kinetic mixing, which will lead to avenues for direct detection. We discuss the

phenomenology of this scenario in Sec. 5.4.
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5.3 Flavor sequestering

In this section, we show that it is possible to allow for non-negligible mixing be-

tween one flavor of the standard model leptons and the heavier, vector-like leptons, while

suppressing the mixing with the other standard-model flavors, so that bounds on lepton-

flavor-violating processes become irrelevant. In the discussion below, we refer to that one

flavor as the electron e, though the approach described applies equally well if the chosen

flavor were µ or ⌧ . Let us consider the structure of the standard model Yukawa matrices

first, and then introduce couplings to the vector-like states.

We represent the three generation of standard model lepton doublets by LiL and

the right-handed charged leptons by EiR, for i = 1, . . . , 3, We imagine that the Yukawa

couplings are determined by a flavor symmetry of the form ZN ⇥ GF . Our interest is in

the e↵ect of the ZN factor, while we do not commit to any specific GF . We aim to show

that the restrictions that follow from the ZN symmetry are su�cient to suppress the flavor

mixing e↵ects that we would like to avoid, while remaining compatible with a variety of

possible flavor models that may determine the remaining, detailed structure of the Yukawa

matrices.

We represent an element of ZN by !j, for j = 1, . . . N , where !N
⌘ 1. We assign

the following transformation properties to the L and E fields, representing them here as

column vectors:

LL ! ⌦LL and ER ! ⌦ER , (5.22)

where

⌦ =

0

BBBB@

1 0 0

0 !
�n 0

0 0 !
n

1

CCCCA
. (5.23)

Note that !�n
⌘ !

N�n. Assuming that the standard model Higgs doublet is una↵ected
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by the ZN symmetry, the transformation properties of the charged-lepton Yukawa matrix

entries that lead to invariant couplings are summarized by

YE ⇠

0

BBBB@

1 !
n

!
�n

!
�n 1 !

�2n

!
n

!
2n 1

1

CCCCA
, (5.24)

where the transformation property of, for example, the 1-2 entry is understood to be

Y
12
E

! !
n
Y

12
E
, and so on. We will choose N = 2n so that the entire two-by-two block on

the lower right is unconstrained by the ZN symmetry, the least restrictive possibility that

meets our needs1. The amount by which the electron mass eigenstate is a↵ected by the

second and third generation fields, however, is entirely controlled by the size of n, once

ZN breaking fields are introduced, as we discuss later.

A symmetry a↵ecting the left-handed charged leptons also a↵ects the left-handed

neutrinos, so we must verify that neutrino phenomenology is not adversely a↵ected. For

example, if we had imposed a Z2 symmetry, with n = 1, and required it to remain exactly

unbroken, we can also completely eliminate mixing between the first generation charged

leptons and those of the second and third generations. However, if we then introduce three

generations of right-handed neutrinos Ni, for i = 1, . . . , 3, one can show that there are no

Z2 charge assignments for the N fields that leads to the correct neutrino mass squared

di↵erences and mixing angles, assuming the light mass eigenstates follow from the see-saw

mechanism. However, more favorable results may be obtained when the ZN symmetry is

spontaneously broken. Here, we assume the same transformation for all three right-handed

1This choice is also compatible with GF having a non-Abelian component in which two flavors of
standard model leptons transform as a doublet. However, it is su�cient (and simplest) for present purposes
to imagine that GF has only Abelian factors.



102

neutrino fields:

NR ! !
p
NR , (5.25)

where p is an integer. Defining the Dirac neutrino mass via L � LL
eHYLRNR + h.c., the

transformation properties of the Yukawa coupling is given by

YLR ⇠

0

BBBB@

!
�p

!
�p

!
�p

!
�n�p

!
�n�p

!
�n�p

!
n�p

!
n�p

!
n�p

1

CCCCA
. (5.26)

For the choice n = 2 p, or equivalently N = 2n = 4 p, we may use the fact that !�n�p
⌘ !

p

and !n�p
⌘ !

p to write

YLR ⇠

0

BBBB@

!
�p

!
�p

!
�p

!
p

!
p

!
p

!
p

!
p

!
p

1

CCCCA
. (5.27)

The significance of this form is clear if we assume that there is a flavon field ⇢ with the

ZN transformation property

⇢! ! ⇢ , (5.28)

and a vacuum expectation value such that h⇢i/M ⌘ ✏ is a small parameter. Here M is the

flavor scale, which is the ultraviolet cut o↵ of the e↵ective theory. Then all the entries of

YLR are non-vanishing, and proportional to either (⇢/M)p or to (⇢⇤/M)p. Hence, we may

write

YLR = ✏
p eYLR , (5.29)

where eYLR is a three-by-three matrix that is thus far arbitrary. Following a similar argu-

ment, we define the right-handed neutrino Majorana mass matrix by the Lagrangian term
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N c
RMRRNR, and see immediately that

MRR ! !
�2p

MRR . (5.30)

Again, this is consistent with the transformation property of (⇢⇤/M)2p, so we may write

MRR = ✏
2pfMRR , (5.31)

where fMRR is a three-by-three Majorana mass matrix that is also arbitrary thus far. With

eYLR and fMRR arbitrary, it is possible to obtain any desired neutrino phenomenology,

which demonstrates that the ZN symmetry does not lead to unwanted phenomenological

restrictions. Theories that predict the detailed structure of eYLR and fMRR by the breaking

of an additional symmetry GF are compatible with this framework. Note that the overall

powers of ✏ in Eqs. (5.29) and (5.31) scale out of the see-saw formula which determines

the Majorana mass matrix for the three light neutrino mass eigenstates

MLL = MLR M
�1
RR

M
T

LR
, (5.32)

where MLR = (v/
p
2)YLR. The e↵ect of the ZN symmetry on the form of the charged

lepton Yukawa matrix is to impose the form

YE ⇠

0

BBBB@

y11 ✏
n
ỹ12 ✏

n
ỹ13

✏
n
ỹ21 y22 y23

✏
n
ỹ31 y32 y33

1

CCCCA
. (5.33)

For ✏ su�ciently small, or n su�ciently large, or both, we can make YE as close to block

diagonal as we like.
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Now we include the vector-like state � with the same electroweak quantum numbers

as a right-handed electron, but charged also under a dark gauge group. Yukawa couplings

involving �
L
eR and a dark Higgs field are una↵ected by the ZN symmetry, while those

involving �
L
µR or �

L
⌧R transform by !±n. These potential sources of unwanted mixing

that may emerge after the dark gauge symmetry is spontaneously broken are therefore

highly suppressed by the same factors of ✏n that appear in the unwanted entries in YE.

We conclude that it is possible to make the �, e, µ, ⌧ mass matrix as block diagonal as

desired, by suitable choice of ✏n, such that � mixes substantially only with e, or any one

desired lepton flavor, by a similar construction2.

The question of which lepton flavor is selected to mix with the heavier, vector-like

states impacts the phenomenology of the dark gauge bosons. For example, if the mixing

only involves the ⌧ lepton, then bounds on the Aa

D
from searches for s-channel resonances

in low-energy e
+
e
� collisions, or from indirect processes like the electron or muon g � 2

would be irrelevant. The phenomenology in the case where the mixing involves either

a first or second generation lepton would lead to more meaningful constraints, but one

that would depend on other assumptions about the spectrum, for example if A3
D

decays

visibly or invisibly, which depends on the dark matter mass. In the following section, we

will assume the least constrained possibility, that the �’s mix with the ⌧ . This has the

appealing aesthetic feature that the flavor symmetry distinguishes the third generation

from the other two, an idea that has appeared in many other contexts in the literature on

the flavor structure of the standard model, see for example Refs. [3, 4].

2We also note that this result is not linked in any fundamental way to our initial choice to study a
non-Abelian dark gauge group. The present approach would be equally e↵ective if the � mass mixing
terms were generated after the spontaneous breaking of a dark Abelian gauge symmetry. However, as
noted earlier, Abelian theories would generically have kinetic mixing with hypercharge at tree-level and
one-loop running of the mixing parameter below the Planck scale induced by the presence of the vector-like
lepton states. The flavor sequestering mechanism could be applied in Abelian dark sector models provided
that an additional mechanism is specified that adequately suppresses these kinetic mixing e↵ects.
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5.4 Phenomenology

To confirm the viability of our flavor-sequestered model, we wish to show that it can

achieve the correct dark matter relic density. We will not do a complete study of the

model’s parameter space, but focus on a region that is unique to the flavor-sequestered

scenario, namely where the vector-like states are light enough so that su�cient dark matter

annihilation is achieved to standard model lepton-anti-lepton pairs, even in the absence

of other annihilation channels. We then comment on direct detection via the suppressed

kinetic mixing e↵ects that emerge when the gauge symmetries are broken.

5.4.1 Relic Density

The scattering amplitude for s-channel dark matter annihilation into standard model

particles depicted in Fig. 5.1, with e replaced by ⌧ , is given by

M( (1)
 (1) ! ⌧

+
⌧
�) =

ig
2
D
✓
2

4
�
q2 �m

2
A

3
D
+ imA

3
D
�D
� v(p0)�µu(p) u(k)�µv(k

0) (5.34)

where p (p0) is the momentum of the incoming dark matter fermion (anti-fermion), k (k0)

is the the momentum of the outgoing ⌧� (⌧+) and q = p + p
0 is the momentum flowing

through the A3
D
propagator. As discussed in Sec. 5.2, the lightest gauge boson A

3
D
couples

to the vector-like states �(1) and �(2), which then mix with a standard model lepton flavor

(chosen here as ⌧) after spontaneous symmetry breaking. This results in a factor of ✓2,

defined in Eq. (5.14), in the scattering amplitude.

Our numerical results for dark matter annihilation depend on assumptions about the

dark particle mass spectrum and couplings. We assume the picture described earlier,

where the lightest states consist of  (1) and A
3
D
, and decays of A3

D
to any of the heavier

exotic states are not kinematically allowed. For the mass range studied in this section,
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A
3
D

can decay to ⌧+⌧�, and possibly also  (1)
 (1), depending on the dark matter mass.

Consequently, the total decay width of the dark gauge boson appearing in the propagator

is given by

�D = �
�
A

3
D
! ⌧

+
⌧
��+⇥

⇣
mA

3
D
� 2m (1)

⌘
�
⇣
A

3
D
!  

(1)
 (1)

⌘
(5.35)

where ⇥ is a step function, i.e., ⇥(x) = 1 if x � 0 and ⇥(x) = 0 if x < 0, and

�
�
A

3
D
! ⌧

+
⌧
�� = 1

48⇡
g
2
D
mA

3
D
✓
4

 
1 +

2m2
⌧

m
2
A

3
D

! 
1�

4m2
⌧

m
2
A

3
D

!1/2

, (5.36)

�
⇣
A

3
D
!  

(1)
 (1)

⌘
=

1

48⇡
g
2
D
mA

3
D

 
1 +

2m2
 (1)

m
2
A

3
D

! 
1�

4m2
 (1)

m
2
A

3
D

!1/2

. (5.37)

Since the mean dark matter velocity is typically around 220 km/s [1], we work in the non-

relativistic limit where E (1) ⇡ m (1) . We then find the thermally averaged annihilation

cross section times velocity

h�Avi =
g
4
D
✓
4

32⇡

2m2
 (1) +m

2
⌧

(4m2
 (1) �m

2
A

3
D
)2 +m

2
A

3
D
�2
D

 
1�

m
2
⌧

m
2
 (1)

!1/2

. (5.38)

Using this we calculate the freeze-out temperature TF and the dark matter relic density

by standard methods [34]. Dark matter freeze out occurs when the interaction probability

per unit time �
 (1) , equals the expansion rate of the universe, H, i.e.,

� (1)

H

����
T=TF

=
n
 
(1)

EQ
h�Avi

H

�����
T=TF

' 1. (5.39)
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Here n
 
(1)

EQ
is the equilibrium number density of the dark matter particle, given by

n
 
(1)

EQ
= 2

✓
m
 (1)T

2⇡

◆3/2

e
�m

 (1)/T
. (5.40)

Freeze-out occurs during the radiation-dominated epoch in which case

H = 1.66 g1/2⇤ T
2
/Mpl, (5.41)

where Mpl = 1.22 ⇥ 1019 GeV is the Planck mass and g⇤(T ) the number of relativistic

degrees of freedom at temperature T ,

g⇤(T ) =
X

i=bosons

gi

✓
Ti

T

◆4

+
7

8

X

i=fermions

gi

✓
Ti

T

◆4

. (5.42)

Finally the dark matter relic density is given by

⌦Dh
2 =

2 · (1.07⇥ 109 GeV�1) xFp
g⇤(TF )MP l h�Avi

. (5.43)

We define xF ⌘ m
 (1)/TF where TF is obtained by solving Eq. (5.39). The factor of

2 is included because we are accounting for the density of dark matter particles and

antiparticles. We require Eq. (5.43) to reproduce the WMAP result 0.1186 ± 0.0020 [1]

within two standard deviations.

To display our results, we fix mA
3
D
and ✓ and find the regions of the gD-m (1) plane in

which the desired dark matter relic density is obtained. We assume that the mixing angle

remains small (✓ < 1) but not so small that a satisfactory dark matter annihilation cross

section cannot be obtained. So that the dark gauge coupling remains perturbative, we

assume ↵D/(4⇡) < 1/3 or equivalently gD < 4⇡/
p
3 ⇠ 7.25; one-loop corrections become

comparable to tree-level amplitudes when ↵/(4⇡) ⇡ 1, so one-third of this value is a rea-
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sonable upper limit on the dark coupling constant. For the purposes of determining g⇤, we

assume all exotic mass eigenstates other than  (1) and A
3
D
, are atmZ = 91.1876 GeV. With

this choice, the Z boson cannot decay into �� or �⌧ , which could lead to an unacceptable

broadening of the precisely measured Z boson width [1].
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FIG. 5.2: Regions of the gD-m (1) plane in which the dark matter relic density is within two
standard deviations of the WMAP result 0.1186 ± 0.0020 [1], for fixed choices of mA

3
D

and ✓.
The allowed bands are not perfectly smooth due to their dependence on g⇤, which is not a
continuous function. The point of minimum gD corresponds to resonance annihilation, where
m (1) = mA

3
D
/2. Note that as ✓ decreases the range of m (1) in which gD remains perturbative

moves towards the resonance region.

Fig. 5.2 shows the regions of the gD-m (1) plane in which the dark matter relic density

is within two standard deviations of the WMAP result 0.1186±0.0020 [1], for fixed choices

of mA
3
D

and ✓. We have intentionally centered the plots around the point of resonance

annihilation m (1) = mA
3
D
/2 where the cross section is largest. For small values of gD

at fixed ✓, some tuning is required to achieve a large enough annihilation cross section.

However, Fig. 5.2 indicates that we can have larger, perturbative values of gD without

requiring that we sit unnaturally close to the resonance. As ✓ is made progressively

smaller, however, more tuning is required. This is indicated by the narrowing range in

m
 (1) for each solution in which gD is also perturbative.

Of course, the values of ✓ that are indicated in Fig 5.2 are related to choices for the
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masses and coupling in the model, such that ✓2 = gD

✓
m

2
1

M
2
1

�
m

2
2

M
2
2

◆
, where the mi and Mi

were defined in Eq. (5.8). It is not hard to verify that the values of ✓ shown in Fig. 5.2 can

be achieved given the assumptions that went into the making of the plots. For example,

in the mA
3
D
= 10 GeV plot, consider the point where gD ⇡ 1 and m

 (1) ⇡ 8.5 GeV, on the

✓ = 0.1 band. Given our earlier assumption in computing g⇤ that the heavier exotic states

are at mZ , one can check that this is consistent with, for example, vD1 = vD2 ⇡ 14 GeV,

vT ⇡ 49 GeV, �s ⇡ 0.85, and y1 = y2 ⇡ 0.06, where the Yukawa couplings yi were defined

in Eq. (5.6). Similar statements can be made about other points on the allowed bands3.

5.4.2 Direct Detection

The interactions that we have discussed to this point have involved leptons exclu-

sively, but couplings to quarks that are generated at the loop level also have significant

consequences. In this section, we consider direct detection of the dark matter in the model

via dark-matter-nucleon elastic scattering. The couplings to quarks arise after the SU(2)D

symmetry is spontaneously broken, since kinetic mixing between A
3
D

and hypercharge is

then allowed, via an e↵ective dimension-5 operator

Leff = X tr
�
hHT iT

a
A

a

Dµ⌫

�
Y

µ⌫
, (5.44)

where we have set the triplet Higgs to its vev, as per Eq. (5.4). Here, X is a constant with

3The scenario that we have considered assumes that communication between dark and visible sectors
occurs primarily through the portal that we have proposed, involving mixing with vector-like leptons. It
is of course possible to have scenarios in which communication is also significant through Higgs portal
couplings or other mediators. The present model could therefore represent a subset of the parameters
space of a more complicated model with other dark matter annihilation channels. There are also di↵erent
parameter regions in the model as we have defined it where other annihilation channels become relevant,
for example  (1)

 (1) ! A
3
D
A

3
D
, when mA

3
D
 m (1) . The results presented in this section demonstrate the

e↵ectiveness of the portal we have proposed in a region of parameter space where it provides the dominant
contribution to the dark matter annihilation cross section due to mixing e↵ects that would not be possible
in models without flavor sequestering. This does not imply that other viable regions of parameter space
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FIG. 5.3: Self energies leading to kinetic mixing between the third dark gauge boson A
(3)
D

and
hypercharge Y after SU(2)D is spontaneously broken.

units of GeV�1 which is found by integrating out the “heavy” physics, i.e., the � fields,

the only fields that are charged both under SU(2)D and hypercharge U(1)Y . To proceed,

we study the self-energy shown in Fig. 5.3, where �(1) and �(2) here represent the heavy

mass eigenstates, whose mass eigenvalues are given approximately by m�(1) = M� � �

and m
�(2) = M� + � where � ⌘ �

0
s
vT/2. (For the purposes of this estimate, we ignore

mass mixing with the standard model lepton, which is a subleading correction.) The first

diagram is given by

iM1 = �
gDgY

2

Z
d
4
k

(2⇡)4
tr
⇥
�
µ
�
/k +m

�(1)

�
�
⌫
�
/k + /p+m

�(1)

�⇤

[k2 �m
2
�(1) + i✏][(k + p)2 �m

2
�(1) + i✏]

. (5.45)

After carrying out this loop integral using dimensional regularization in D = 4� ✏ dimen-

sions, the amplitude is

iM1 = �
gDgY

8⇡2

Z 1

0

dx x(1�x)

✓
4

✏
� 2� + 2 log(4⇡)� 2 log(�1)

◆
i(gµ⌫p2�p

µ
p
⌫) , (5.46)

where �1 = m
2
�(1) � x(1 � x)p2. Since A

3
D

couples to the � proportional to �3
/2, the

amplitude iM2 shown in Fig. 5.3 will di↵er from iM1 by a overall minus sign and the

replacement of the �(1) by the �(2) mass. Hence, �1 is replaced by �2 = m
2
�(2)�x(1�x)p2.

are impossible.
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Then, when these two amplitudes are added together, all terms in the remaining Feynman

parameter integral cancel, except for the terms that depend on the fermion masses:

iM1 + iM2 = i(gµ⌫p2 � p
µ
p
⌫)
gDgY

4⇡2

Z 1

0

dx x(1� x) log

✓
�1

�2

◆
. (5.47)

Assuming the mass splitting � is small compared to the � masses (which will turn out to

be the case) the integrand can be expanded in �. The leading order term can be found

using x(1�x) log(�1/�2) ⇡ �
4mx(1� x)

m2 � x(1� x)p2
�. Moreover, we can also expand the result

in powers of momentum, which can later be compared to a derivative expansion in the

low-energy e↵ective theory. We find

iM1 + iM2 = �i
gDgY �

6⇡2M�

(gµ⌫p2 � p
µ
p
⌫) + · · · , (5.48)

where the · · · represents terms involving higher powers of � and p
2
/M

2
�
. The result in

Eq. (5.48) must be matched to a similar amplitude in the low-energy e↵ective theory in

which the � fields have been integrated out. We identify this as the tree-level amplitude

associated with the Eq. (5.44), treated as a two-point vertex,

iA = iXvT

�
p
2
g
µ⌫

� p
µ
p
⌫
�

, (5.49)

from which we conclude

X = �
gDgY �

6⇡2M�vT
. (5.50)

Using Eqs. (5.44) and (5.50), we can now calculate the cross section for dark matter

scattering o↵ of nucleons. We will be working in the limit of low momentum transfer

q ⇠ O(100) MeV (⌧ M�), where the e↵ective description is accurate and where scattering
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FIG. 5.4: The Feynman diagram for the scattering of the dark matter particles,  (1), o↵ of
protons, P , through kinetic mixing of the dark matter boson A

3
D

and the photon, �.

through the Z boson is suppressed by q
2
/m

2
Z
⇠ 10�6 compared to the photon. Hence, we

will consider kinetic mixing involving the photon only from here on. First, we consider

the dark matter,  (1), scattering o↵ of a quark, qf , as in the diagram in Fig. 5.4, with the

protons replaced by a quark of flavor f . This can be described by the e↵ective dimension-

six operator

Leff,q = Cf  
(1)�

µ
 

(1)
qf�µqf . (5.51)

In the full theory, this quark-dark matter scattering amplitude is

iMf = iXvTQf

gD

2
e

1

(q2 �m
2
A

3
D
+ i✏)(q2 + i✏)

 (1)�
µ
 

(1)
qf�µqf (5.52)

or, in the limit of q2 ⌧ m
2

A
(3)
D

,

iMf = �i
XvTQf

m
2
A

3
D

gD

2
e (1)�

µ
 

(1)
qf�µqf . (5.53)

From this, we conclude the coe�cient Cf for quarks is

Cf = �
gdeXvTQf

2m2
A

3
D

=
g
2
D
e
2
�Qf

12⇡2M�m
2
A

3
D

. (5.54)
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Of interest, however, is the e↵ective interactions involving nucleons rather than quarks,

which can be written

Leff,N = Cn  
(1)�

µ
 

(1)
n�µn+ Cp  

(1)�
µ
 

(1)
p�µp . (5.55)

Using the fact that the quark vector currents are conserved, so that the spatial integral

of the zeroth component is a quark number operator, one can match matrix elements of

Eq. (5.51) between nucleon states with the same for Eq. (5.55), from which one concludes

Cn = Cu + 2Cd and Cp = 2Cu + Cd, for the neutron and proton, respectively. (There are

no form factors as there would be for scalar quark operators.) Since the flavor dependence

of the Cf comes only from the electric charge, the coe�cient Cn and thus the scattering

amplitude for  (1) o↵ of neutrons are both zero. Therefore, the only relevant scattering is

with the proton, for which

Cp = 2Cu + Cd =
g
2
D
e
2
�

12⇡2M�m
2
A

3
D

. (5.56)

Taking into account that the dark matter is non-relativistic and that momentum transfers

are small, a straightforward calculation of the scattering cross section yields

⌦
� (1)p! (1)p

↵
=

g
4
D
e
4
m

2
p
m

2
 (1)

576⇡5
�
mp +m

 (1)

�2
m

4
A

3
D

✓
2�

M�

◆2

, (5.57)

where we have separated out the dependence on 2�/M�, the fractional mass spitting of

the vector-like leptons. Since this splitting is a free parameter in our model, we can use

the experimental bounds on the dark-matter-nucleon elastic scattering cross section to say

something about the vector-like lepton spectrum.

Using experimental bounds on the cross section from XENON1T [97] and CDM-
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FIG. 5.5: Upper bound on the fractional mass splitting of the �(1) and �(2) fermions as a function
of the mass of the dark matter particle,  (1), assuming gD = 0.3 and mA

3
D

= 10GeV. The
discontinuity in the curve reflects that the bounds on the dark-matter-nucleon elastic scattering
cross section originate from the CDMSlite experiment [98] below m (1) ⇡ 6 GeV, where the
otherwise tighter bounds from the XENON1T experiment [97] do not exist. The results shown
are reliable in the region where 2�/M� is a perturbative expansion parameter less than 1.

Slite [98], we show bounds on the �(1)-�(2) mass splitting for dark matter masses between

2 GeV and 10 GeV. The results of this calculation are shown in Fig. 5.5, where a dark

coupling of gD = 0.3 and a dark boson mass of mA
3
D

= 10GeV have been used. For

dark matter masses below approximately 6 GeV, the cross section bounds from CDMSlite

are used, since no data from XENON1T is available in this region. Although there is

CDMSlite data for dark matter masses above 6 GeV, these bounds are superceded by the

stricter ones from XENON1T. For the range of  (1) masses in Fig. 5.5 that are a↵ected by

the XENON1T bounds, the masses of the charged fermions �(1) and �(2) are degenerate

at the 1-10% level at minimum. This feature could be observed in collider searches for the

vector-like leptons and possibly correlated with a dark matter direct detection signal.
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5.5 Conclusions

We have presented a framework based on flavor symmetries that allows for a light

portal sector of vector-like leptons connecting a dark sector to the standard model. To

illustrate our approach, we considered an explicit, renormalizable non-Abelian dark SU(2)

model which contains two vector-like fermion doublets. One of them,  , includes a dark

matter candidate; the other doublet, �, has the same electroweak quantum numbers as a

right-handed electron, so that communication with the visible sector can occur via mass

mixing. The  and � fields communicate with each other via the dark gauge group, so that

the dark matter may annihilate to standard model leptons. The dark SU(2) symmetry is

spontaneously broken via a Higgs sector involving doublet and triplet fields. The doublet

vacuum expectation value (vev) leads to mixing between the � and standard model lepton

fields, while the triplet vev splits the mass spectrum leaving a simple lower-energy theory

consisting of the dark matter (the lightest  mass eigenstate) and the mediator (the third

component of the SU(2) gauge multiplet). We identify a discrete flavor symmetry that

allows mixing between the vector-like leptons � and a single standard model lepton flavor

exclusively; the remaining standard model lepton flavors may mix only with each other.

This flavor sequestering eliminates lepton-flavor-violating e↵ects, relaxing bounds on the

vector-like lepton mass scale. As a consequence, mixing between the chosen lepton flavor

and the � can be large enough so that the correct relic density can be obtained exclusively

via dark matter annihilation to lepton-anti-lepton pairs, for perturbative values of the dark

gauge coupling. This is true even if no other significant annihilation channels are available.

The structure of our model avoids complications that would ensue if we tried to couple

the dark gauge bosons directly to standard model fields, such as the necessity of including

extraneous fermions to cancel chiral anomalies, or special Higgs representations to allow

for acceptable standard model Yukawa couplings. Unlike some of the non-Abelian dark
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matter models appearing in the literature, the portal we present is renormalizable and

completely specified, including the discrete flavor symmetries that control the pattern of

mixing between exotic and standard model fermions states. The portal we define for com-

munication between the dark and visible sectors can be lighter than in models without the

flavor sequestering we have proposed and presents a well defined framework for answering

phenomenological questions. In this chapter, we showed that there are regions of the dark

gauge coupling - dark matter mass plane where the correct relic density is obtained, and

where current direct detection bounds are satisfied. The latter consideration also allowed

us to conclude that the two heavy lepton mass eigenstates (roughly the two components

of the � doublet) are notably degenerate in mass (to keep kinetic mixing e↵ects small),

a feature that could be tested in collider searches for these states. This observation, to-

gether with the distinct lepton flavor structure of the � decays, suggests that the collider

signatures of the portal that we have proposed are worthy of future detailed investigation.



CHAPTER 6

Conclusions

In this thesis we strived to solve various issues either not explained by or included in

the Standard Model by extending its particle content and symmetries. In Chapter 1, we

solved the flavor problem via a model based on the double tetrahedral group, a discrete

subgroup of SU(2). We showed how such models can arise simply in a nonsupersymmetric

framework, and found that our theory provides a viable description of charged fermion

masses and CKM angles for a range of values of the flavor scale MF , with a preference for

values around the TeV scale. Nonetheless identification of MF with the reduced Planck

scale remains a valid possibility, consistent with a simple picture in which there is no

new physics between the weak and gravitational scales. Indirect probes of the model

are provided by further constraining the lowest MF by flavor-changing-neutral-current

processes that receive contributions from the physical components of the flavon fields. Here

we only considered the charged Yukawa sector, so it would be interesting to incorporate

the neutrino sector as an extension of the study.

Whereas we sought to explain the origin of the hierarchies in the fermion mass spec-

trum in Chapter 2, in Chapter 3 we sought to explain the origins of the Standard Model

117
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gauge couplings. As an alternative to conventional unification, we assumed the existence

of a universal Landau pole in which the gauge couplings blow up at a common scale in

the ultraviolet. Since all the gauge couplings must be asymptotically non-free to achieve

a Landau pole, we added extra matter to the theory. We considered two scales, the scale

of supersymmetry breaking msusy and the scale where the additional vector-like states

appeared mV . We revisited the minimal scenario, in which the minimal supersymmetric

standard model is augmented by a single vector-like generation of matter fields, but found

this to be in some tension with current LHC bounds. Thus we studied extensions of the

minimal scenario, which leads to values of mV that are beyond the reach of the LHC, but

potentially within the reach of a 100 TeV hadron collider.

In Chapter 3 we considered unification of the electromagnetic, weak and strong forces,

but we turn our focus to the fourth fundamental force in Chapter 4: gravity. We visited

a model where gravitational interactions emerged via a constraint of vanishing energy-

momentum tensor in a scalar field theory. We generalized this model to accommodate a

general field space metric for scalar fields that play the role of clock and rulers by a gauge-

fixing condition analogous to the static-gauge condition in string theory. The classical

equations of motion admit a background solution, and the quantum theory then admits

a perturbative expansion about this background. We wrote the curved-space metric as

an expansion about the Minkowski metric and demonstrated that scattering o↵ of the

background spacetime is as in general relativity. Our study opens several avenues of

exploration, including investigation of the contribution of configurations beyond the static-

gauge one, extension of the theory to include scalars with di↵erent masses, and definition

of a physical regulator that would allow for a well-defined description of the physics at

distances shorter than the regulator scale, or else provide an explanation for why such

short distances are not meaningful.

Lastly we addressed the issue of dark matter in Chapter 5, with a model containing
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a light vector-like fermion portal connecting a dark sector to the standard model. The

vector-like lepton is charged under the dark gauge group but has the same electroweak

quantum numbers as a right-handed electron, so that communication with the visible

sector can occur via mass mixing. To avoid the lepton-flavor-violating processes that

emerge when the vector-like leptons mix with all three standard model flavors, we identify

a mechanism, based on discrete symmetries, that we have called “flavor sequestering.”

This allows for mixing between the vector-like leptons and a single standard model lepton

flavor exclusively. We proved that there are regions of the dark gauge coupling - dark

matter mass plane where the correct relic density is obtained, and where current direct

detection bounds are satisfied. We found that the heavy lepton mass eigenstates are

notably degenerate in mass, a feature that could be observed in collider searches for the

vector-like leptons and possibly correlated with a dark matter direct detection signal.
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