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ABSTRACT 

Complex organic mixtures in the environment can contain hundreds to thousands 

of different organic molecules, and their composition and reactivity can have 

important environmental implications. In addition to gases, the atmosphere is 

made of a variety of small liquids and solids called aerosols. These aerosols 

have large impacts on human health, climate, and atmospheric chemical 

reactions. Here, secondary organic aerosol (SOA) from the ozonolysis of α-

pinene is characterized. The atmospheric lifetime of SOA is very uncertain, but 

recent laboratory and modeling studies have demonstrated that photolysis is 

potentially an important process for organic mass loss from aerosol particles.1-5 

Photolysis modifies the molecular composition and properties of aerosols through 

photolytic cleaving and repartitioning of volatile products. 

Characterization of dry, irradiated SOA can provide insights into photolysis driven 

changes in absorption properties and chemical composition. These results 

illuminate aging mechanisms and chemical and physical properties of organic 

aerosols in order to improve atmospheric modeling and the understanding of 

atmospheric chemical reactions. However, the high chemical complexity and low 

atmospheric abundance presents a difficult analytical challenge. Milligrams, or 

more, of material may be needed for speciated spectroscopic analysis.6 This 

study used a suite of advanced analytical techniques, including a novel 

combination of action spectroscopy and mass spectrometry that provides more 

structural information on organic mixtures than mass spectrometry alone. This 

study also used tunable light from a free electron laser, infrared and UV/Vis 

absorption, and computational chemistry to characterize molecules in α-pinene 

SOA. 

In addition, complex organic mixtures are also found in particulate matter that 

has deposited onto Earth’s surface. The preliminary results of dew analysis, 

including a foundation method of analysis for future study, gives the first look at 

organic material deposited into dew water on natural surfaces. This offers insight 

into atmospheric organic deposition to better understand chemical transport, air 

quality, and carbon cycling in the atmosphere.
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Chapter 1: Introduction 

1.1 Carbon in the Atmosphere 

The Earth’s atmosphere is a dynamic system; it is the air we breathe and 

the environment in which we live. The composition and reactivity of trace 

atmospheric components directly affects living organisms, air quality, and climate 

change. Carbon is an essential trace element in the atmosphere and 

understanding its lifecycle is critical to understanding and predicting the effects of 

climate change. The collection of non-methane organic molecules, found in both 

volatile organic compounds (VOCs) and in organic aerosols, is called reactive 

organic carbon (ROC).7-9 A great deal of work has been carried out to understand 

the composition of this material and the reactions it can undergo in the 

atmosphere as it plays a key role in driving the chemistry there and thus impacts 

ecosystems, climate change, and human health.9 

A variety of sources deliver carbon into the atmosphere. These include 

anthropogenic emissions from human activities as well as natural, biogenic 

emissions from trees and plants. Carbon from anthropogenic sources, such as 

vehicle emissions, manufacturing, and waste incineration, is in the form of both 

VOCs and primary organic aerosol (POA). These VOCs can also react in the 

atmosphere to form secondary organic aerosol (SOA). The POA produced by 

these sources are finer particles formed from gas conversion and 

combustion.10,11 Since the Industrial Revolution, humans have increased the 

amount of carbon emitted directly into the atmosphere. The contribution of these 

anthropogenic emissions, ~127 Tg/yr VOC,8 is dominated by combustion of fossil 
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fuels.7,8,12 Biogenic and natural emissions of carbon include volcanic eruptions, 

droplet spray and VOC emissions from rivers and oceans, forest fires and 

biomass burning, and wind erosion of rock faces10,13 all of which generate larger 

particles that often contain elements from the soil.14 But vegetation releases the 

largest quantity of VOCs, ~1,000 Tg/yr globally (isoprene ~50%; monoterpene 

~15%; sesquiterpenes ~3%).7,8,12 

The fate of atmospheric organic carbon (including carbon in the gas phase 

(VOCs) and in aerosol particles) is either complete oxidation to CO or CO2, or 

deposition (wet or dry).8 On the path to either of these fates, organic molecules 

react in the atmosphere and are impacted by atmospheric aging. Their 

composition and structure can change via functionalization (oxidation) to form 

products with lower volatility (which can contribute to SOA) and fragmentation to 

form molecules of higher volatility.8 Questions remain about the kinetics and 

products formed during these reactions as well as the total quantity of organic 

material removed via each pathway (CO2 formation vs. deposition). One of the 

largest gaps lies in our understanding of the amount of SOA produced and the 

magnitude that is deposited out of the atmosphere.8 

With the multitude of organic compounds present in the atmosphere, 

thousands of molecular structures exist. Molecular structure dictates an organic 

compound’s properties, including location (gas vs. particle phase), and behavior 

in the atmosphere. For example, increased oxidation can add oxygen containing 

functional groups to a VOC molecule which decreases its vapor pressure and 

increases the likelihood it will condense onto aerosol or other surfaces. Organic 
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compounds greatly differ in fundamental properties like volatility, reactivity, water 

solubility, and cloud condensation nuclei (CCN) efficiency;8 the fate of organic 

compounds, including their atmospheric lifecycles, lifetimes, and the impacts they 

have, depend on these structurally determined molecular properties. The 

volatility of a compound is very important8 because it governs the partitioning 

between the gas and particle phases. Chemical reaction rates and removal rates 

differ between gas and particle phase molecules thus the location of the 

molecule (gas vs. particle) impacts the atmospheric lifetimes of compounds.8 

Atmospheric lifetimes in the gas phase are based on reactivity and 

dependent upon the availability of radical oxidants and sunlight, while lifetimes in 

the particle phase are assumed to be longer because of lower formation rates of 

oxidants, shielding effects of neighboring compounds, and slow diffusion rates.8 

Organic compounds with low vapor pressures (<10-11 atm) tend to exist as 

aerosol particles while semi-volatile organic compounds (vapor pressures 10-5 to 

10-11 atm) fluctuate between the gas and particle phase depending on 

surrounding temperature and pressure.8 

Appreciating the complexity of ROC structures is vital to the 

comprehension of its reactions and properties and provides perspective for the 

impacts of SOA on atmospheric chemistry. By looking at the mixtures of 

chemicals in these condensed phases, we can probe the potential reactivity of 

the mixture in the atmosphere with important implications for organic carbon 

cycling. 
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This thesis focuses on studying carbon in the condensed phase. Two 

condensed phases exist in equilibrium with the gas phase on Earth. The first is 

aerosol particles, and the second is organic films deposited on Earth’s surfaces 

through dry deposition of lower volatility ROC. Compounds in each phase are 

aged through oxidation, hydrolysis, or photolysis. Both phases are very complex 

mixtures of organic molecules with major questions remaining about their 

composition and how they react with the atmosphere; thus, advanced analytical 

techniques are needed to characterize these molecules. 

1.2 Aerosols in the Atmosphere 

Atmospheric aerosols are made of a variety of liquid and solid particles 

suspended in the air.8,15 Predictably, aerosols’ compositions depend on their 

sources; for organic aerosols, these are the same anthropogenic and biogenic 

sources as carbon. Secondary aerosols, which are formed in the atmosphere, 

tend to be finer particles and are mostly composed of SO4
2-, NO3

-, and NH4
+ from 

reactions of SO2, nitrogen oxides, and NH3 found in the atmosphere.10,11 Fine 

aerosol particles are less than 2 µm in diameter.16 In contrast, coarser particles 

range from 2 – 20 µm in diameter.16 Ninety percent of aerosols have natural 

origins, which generate these larger particles. There are about one million 

particles per cubic centimeter of anthropogenic aerosols and one thousand 

particles per cubic centimeter of naturally created aerosols.17 

In 1995 it was estimated that one thousand to five thousand metric tons of 

soil dust a year contributed to atmospheric aerosols, and up to 50% of that was 

produced by human disturbances to the environment.11 Organic aerosols make 
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up a significant portion of atmospheric fine particulate matter,18,19,20 20 – 90% of 

atmospheric dry particle mass.21 These different sources mean aerosols consist 

of a myriad of compounds with varying physiochemical properties of which very 

little information is known.22,23,24 

Given the range of different sources and particle types, classifications of 

aerosols are used to simplify the system. Aerosols are separated into two 

categories: primary and secondary aerosols.10 Those characterized as primary 

aerosols are particles that have been directly emitted into the atmosphere as 

liquids or solids and exist in their original state.10,14,24,25 Biomass burning; 

incomplete combustion of fossil fuels; volcanic eruptions; suspension of road, 

soil, and mineral dust; sea salt; and biological material such as plant fragments, 

microorganisms, and pollen all generate primary aerosols.24,25  

SOA is formed in the atmosphere by gas-to-particle conversion.10,14,22,24 

VOCs are oxidized in the atmosphere initially forming a variety of alkyl, alkoxy, 

and peroxy radicals which, through either fragmentation or functionalization, 

transform into stable products like carbonyl compounds, carboxylic acids, and 

alcohols. Fragmentation leads to volatile products that can ultimately form CO2 

whereas most functionalization reactions create complex, lower volatility 

compounds which can condense into SOA.8 Globally, biogenic VOCs account for 

around 90% of VOC emissions and of SOA formation at 90 billion kg of carbon a 

year.22 However, there is an incomplete understanding of biogenic VOC 

contribution to the formation of SOA.7,8 
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Aerosols have different lifetimes spent in the atmosphere, from hours to 

weeks, making them very difficult to measure and categorize.16,17,26 During their 

lifetimes, aerosols undergo various chemical and physical changes through 

processes summarized as atmospheric aging.24 These transformations involve 

the changes in particle composition, size, structure through chemical reaction, 

and gas uptake.24 

Organic aerosols are considered part of the carbon cycle (Figure 117,27). 

Organic carbon enters the atmosphere at a rate of almost 1,000 Tg/yr. Once in 

the atmosphere, carbon can partition between the particle and gas phases. The 

distribution of semi-volatile organic compounds in these phases is important for 

understanding human toxicology and atmospheric chemistry.10 Organic aerosol 

can be removed from the atmosphere and deposited back to Earth’s surface as 

either wet or dry deposition. Wet deposition occurs when particles reach the 

surface of the earth as a result of precipitation.24 Dry deposition occurs when 

aerosols are removed without the aid of airborne water particles or 

precipitation.24 There is a chance, after deposition, for these particles to be re-

emitted into the atmosphere, represented by the dashed line in Figure 1, but 

quantitative data is uncertain. The other loss process of organic carbon from the 

VOC/aerosol mixture is through complete oxidation to CO and CO2.17 



7 

 

 

Figure 1 The carbon cycle. The dashed arrow indicates a path of re-emission. 

1.2.1 Direct and Indirect Radiative Forcing 

The earth exists within a balance of incoming solar radiation and outgoing 

infrared radiation; this energy balance is known as the radiative forcing budget, 

and it affects the temperature of the earth.23,28,29 There are two types of radiative 

forcing — positive and negative.28,29 Positive radiative forcing increases the 

energy budget and leads to warming by agents absorbing infrared radiation and 

re-emitting it back to Earth’s surface.10,23 Negative radiative forcing decreases 

the energy budget leading to cooling by agents reflecting solar radiation back into 

space.10 Carbon plays a role in the radiative budget, as do aerosols. Aerosols 

have the capability to affect both positive and negative radiative forcing, directly 

and indirectly,10,15,28 but the extent of their effects is largely unknown (Figure 

211,16,30). 
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Figure 2 The Global Mean Radiative Forcing Budget. 

Aerosols directly contribute to radiative forcing by both scattering and 

absorbing these two types of incoming and outgoing radiation.11,13,16,22 Scattering 

occurs when a particle changes the direction of propagation of a radiation beam 

— without an absorption taking place — through reflection, refraction, or 

diffraction.16,22 The efficacy of a particle’s scattering depends on size; the larger 

the particle, the more efficient scattering. Atmospheric aerosols with a diameter 

between 0.1 and 1 µm can accumulate23 in the atmosphere due to their 

inefficient removal mechanisms and become efficient scatterers of solar 

radiation.16 Maximum scattering is achieved for a particle, or particle cluster from 

accumulation, with a radius corresponding to the wavelength of radiation.16 Light 

scattering can be measured and calculated from definitive aerosol size and 

composition.11 

Aerosols act as an indirect agent by altering cloud formation, cloud 

properties, and precipitation efficiency.11,16 When aerosols take on the role of 
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CCN, small particles providing a surface on which water vapor can condense, 

they form what can be called “polluted” clouds.11,16,17 Polluted air contains a 

higher concentration of water soluble particles; therefore, pollution rich clouds 

have more numerous but smaller droplets making the cloud look brighter than it 

otherwise might be. The many droplets provide more surface area for reflection 

thus scattering more light and sending radiation back into space, producing net 

cooling.16 This cloud albedo effect is poorly characterized and has only recently 

started to be quantified.7,8,13 These polluted clouds spend a longer time in the 

atmosphere, produce a smaller droplet number concentration (produce less rain), 

and reflect more light away from the earth’s surface.10,11,17 Polar functional 

groups such as carboxylic and dicarboxylic acids contribute to organic aerosols’ 

water solubility thus making them excellent candidates as CCN.11  

Models estimate aerosols’ cooling effect has counteracted only about half 

of the warming caused by the buildup of greenhouse gases since the 1880s, yet 

scientists believe the cooling from reflective aerosols, including sulfates, 

overwhelms the warming facilitated by black carbon and other absorbing 

aerosols over the planet.13 However, unlike most greenhouse gases, aerosols 

are not distributed evenly around the planet, so their impacts are more strongly 

felt regionally.13 

1.3 Carbon and Aerosols’ Effect and Impact 

 Aerosols’ concentration, size, asymmetrical shape, mass, phase, chemical 

composition, lifetime, and surface properties — all of which are highly variable 

spatially and temporally — have unquantified impacts on radiative forcing, human 
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health, ecosystems, regional visibility, global transportation, and 

deposition.10,19,20,23,24,31,32 

It has been well established that exposure to aerosols has damaging 

effects on respiratory and cardiovascular systems.14,16,23 Aerosol size and 

solubility play a major role in determining whether particles can be inhaled (and 

therefore, absorbed) into an organism’s respiratory system.10 Smaller particles 

have the ability to penetrate deeper into the lungs where the body has no way to 

dispose of them.10 This type of aerosol exposure increases the risk of 

pneumonia, lung cancer, and heart disease and contributes to about four million 

premature deaths per year worldwide.17 

Atmospheric particulate matter has a strong, yet poorly characterized 

effect on climate.21,33 It’s no secret that Earth’s temperature, as a whole, has 

been rising over the last 100 years.29,34 CO2 levels have been creeping up since 

the first measurement in 1958;35,36 in fact, only 10 years later, in 1968, CO2 levels 

had increased by 8 ppm.35-38 Arguably, the influence from aerosols most talked 

about is their contribution to climate change. The haze over a cityscape is a clear 

indication of the impact of aerosols on climate.19,20,31,32 The ability to see objects 

over far distances depends on the concentration of aerosols and their 

absorbance and light scattering characteristics within that distance.10,16 An 

absence of aerosols, and their scattering ability, would increase visible range to 

about 186 miles.16  

Additionally, aerosols can be carried over long distances; accumulation 

also facilitates this transportation.13,23 Particles move with the atmosphere at 5 
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m/s and travel thousands of miles in a week.13 In fact, mineral dust that 

originated in western China has been detected in western North America and 

mineral dust from Africa has been found in Florida.10 Looking at organic aerosols 

from polluted regions provides understanding of aerosol distribution and regional 

anthropogenic and natural sources of aerosol particles. 

The uncertainty in aerosols’ contribution to the radiative forcing budget, 

and the impacts had on human health and Earth’s climate, need to be 

explored.16,30 

1.4 Motivation for Characterizing Complex, Atmospheric Organic Mixtures 

To decisively know aerosols’ complete, quantitative contribution to the 

radiative balance, a clear distinction must be made between anthropogenic and 

natural aerosols.11 Additionally, spatially and temporally resolved information, the 

radiative properties aerosols possess, and further understanding of aerosol size 

variance — including any changes due to relative humidity (solubility) and 

refractive index — needs to be reasonably determined.11 Gaining insight into the 

contents of the atmosphere and the reactions that take place within it can lead to 

improved health, reduced (and possibly partially reverse) impact to climate 

change, and a greater understanding of chemistry as a whole. With better 

understanding comes better prevention and control. 

Quantitative and predictive understanding of aerosols, particularly SOA, 

are extremely limited, and this incomplete understanding of aerosols’ properties, 

such as their specific sources and quantities released by those sources, their 

composition and mechanisms of formation, and full scope of their direct and 
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indirect contribution to the global energy budget, is a driving force for current 

aerosol study.14 

Particle mass spectrometry measurements taken from a variety of ground-

based monitoring locations, and from aircrafts, show most particles dispersed 

throughout the troposphere are organics — anywhere from ten to one hundred 

thousand different organic compounds (Figure 314,19). 

 

Figure 3 Locations of AMS datasets. Study labels indicate the type of sample location: urban 

area (blue), <100mi. downwind of major cities (black), and rural areas >100mi. downwind 

(pink). Pie charts show the average mass concentration and chemical composition: organics 

(green), sulfate (red), nitrate (blue), ammonium (orange), and chloride (purple) of non-

refractory, submicron aerosols. 

Yet the bulk of atmospheric research and understanding is of inorganic ions and 

small acids. There is a comprehensive understanding through research and 

measurement of inorganic gas conversion such as sulfur dioxide, nitrate, and 

ammonium, but much ambiguity when it comes to SOA formation from oxidation 
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products of VOCs undergoing gas-particle transfer.14 VOC reaction with hydroxyl 

radicals, ozone, nitrate radicals, or via photolysis cause VOC oxidation and the 

formation of organic products with polar, oxygenated functional groups.14 Not 

only are these products water soluble, but they are also less volatile,14 which 

contributes to their longer lifetimes in the atmosphere and the ability to form 

SOA. 

To get estimates of global SOA production, two approaches are used: 1) 

bottom-up or 2) top-down. The bottom-up technique is the most traditional 

approach where known or inferred biogenic VOCs, such as isoprene and 

terpene, or anthropogenic VOC precursors, are combined in a global model built 

from oxidation experiments leading to SOA formations. It gives a global organic 

aerosol estimation.14 The top-down method estimates SOA distribution in the 

atmosphere by inferring global SOA production based on known precursor 

emissions.14,29 It is essential to have correct computer models for environmental 

predictions, yet when it comes to predicting and accounting for aerosols, there is 

much room for improvement. VOC mass loadings and SOA formation and 

lifelong characteristics are severely underestimated in current models.8,21,39,40 

Only a handful of the 25 climate models considered by the Fourth 

Intergovernmental Panel on Climate Change (IPCC) considered the direct effects 

of aerosols other than sulfates, and fewer than a third of the models included, 

even in a very limited way, indirect aerosol effects.13 One of the most significant 

fundamental assumptions current gas particle partitioning models maintain is that 

SOA particles remain in a liquid state throughout their lifetime in the atmosphere 
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and therefore SOA evaporates with the same kinetics as a liquid droplet and that 

this evaporation behavior is size dependent.14,21,41,42 This affects calculations of 

condensation and evaporation of particles in the atmosphere.14,21,41,42 But 

research has shown SOA particles are not just liquid throughout their lifetime; for 

example, SOA has been presented as solid under ambient conditions, and 

consequently do not behave as expected.21,22,43 Organic compounds can re-

evaporate back into the atmosphere over hours or days, much longer than the 

calculated minutes from evaporation kinetics.8 Experimental findings regarding 

SOA phase, evaporation rates, aging, etc. indicate the need to reformulate the 

way SOA is treated by models.21 

Through analysis including an aerosol mass spectrometer (AMS), an 

Orbitrap™ MS, attenuated total reflectance Fourier transform infrared 

spectrometer (ATR-FTIR), UV/Vis spectrometer, and computational analysis, the 

William and Mary O’Brien lab characterizes SOA in order to 1) understand the 

chemical and physical properties of SOA as they naturally age to determine how 

these products behave in the atmosphere which will allow us to more accurately 

predict their impacts and improve models and 2) understand, quantitatively, how 

influential these SOA are on the environment and health. The specific impacts 

my research has had and will have in this overall goal is the development of 

analytical techniques and experimental platforms to build a foundational 

framework for investigating complex organic mixtures in the atmosphere by 

looking at aerosol composition through mass spectrometry and computations; 
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aerosol lifetimes and natural aging through photolysis, IR, and UV/Vis; and 

analyzing material found in dew as a proxy for gas phase deposition. 
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Chapter 2: IRMPD Analysis at FELIX 

2.1 Motivation for IRMPD Analysis 

SOA is highly chemically complex with low atmospheric abundance which 

makes it difficult to analyze; spectroscopic analysis needs milligrams or more of 

material to speciate molecules. Mass spectrometry has high sensitivity (able to 

deal with trace samples) and high mass resolving power (able to observe the 

rapid chemical reactions that are occurring) but comes at the expense of 

structural information.44-50 Previous studies have coupled mass spectrometry with 

online derivatization,51,52 two-dimensional gas chromatography,53 liquid 

chromatography,54 and ion mobility separations55 to expand the range of SOA 

compounds that are separated and characterized, yet gaps remain in the ability 

to fully speciate organic mixtures. Mass spectrometry, alone, is unable to resolve 

isomers which are often present in complex organic mixtures. 

 Infrared (IR) action spectroscopy of gas phase ions provides spectra 

similar to IR absorption spectroscopy. When combined, mass spectrometry and 

IR techniques make up for the shortcomings of the other by uniting the 

information obtained from fingerprint IR spectroscopy and mass spectrometry to 

generate characteristic IR spectra of individual isolated ion populations. Figure 4 

shows a simplified diagram of this combined analysis. Individual ions are isolated 

in the mass spectrometer, a mass to charge ratio is isolated and irradiated, and 

then scanned to generate an IR spectrum. Soft ionization combined with in-situ 

IR, using the tunable free-electron laser at FELIX, provides detailed information 

on molecular structures and functional groups. 
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Figure 4 The combined MS and IR analysis technique following the collection of aerosols. 

 Applying this novel analytical technique of merging the strengths of IR 

action spectroscopy with mass spectrometry, along with computational modeling, 

characterizes organic molecules in SOA, formed from the ozonolysis of α-pinene. 

The results of a good spectral overlap between 1) a standard and an expected, 

first generation SOA, thus identifying the molecular structure of the ion, and 2) 

the characterization of isomers for multiple SOA products, using both 

computations and analyses of fragment ion spectra, demonstrate the detailed 

structural information obtained by this combination of analytical techniques. 

While acceptable spectral matches between standards and unknowns do not 

necessarily positively identify the structure of an unknown, this technique 

provides a solid support for assignments, especially if known isomers have 

differing IRMPD spectra. Even if the exact structure cannot be determined, the 

IRMPD spectrum will be able to significantly reduce the number of possible 

candidates. 

2.2 Instrumental and Computational Analysis 

Infrared multiphoton dissociation (IRMPD) is an action spectroscopy 

technique that fragments molecules in the gas phase. The resulting decrease in 

precursor ion signal and increase in fragment ion signal can be used to generate 

spectrum for structural analysis of the precursor molecule. (Action spectroscopy 

is the extent of photochemical reaction as a function of wavelength).56,57 An IR 
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laser is directed through an IR transparent window into, for this particular 

experiment, a quadrupole ion trap MS (Bruker amaZon) to induce wavelength 

dependent photodissociation. The precursor molecule absorbs multiple IR 

photons until its bonds break from excited energetic vibrational states.  

IR action spectroscopy of gas phase ions provides similar spectra to that 

of IR absorption spectroscopy; it probes ion dissociation after irradiation at 

specified wavelengths. IRMPD observes the fingerprint region (~600 – 1900 

cm-1) or the hydrogen stretching region (2800 – 4000 cm-1) using high intensity, 

tunable IR radiation, typically generated with free electron lasers (FEL) or optical 

parametric oscillator/amplifier (OPO/OPA) lasers, respectively. 

The FEL in the FELIX Laboratory at Radboud University in Nijmegen, the 

Netherlands, was used to give detailed information on molecular structures and 

functional groups. This laser uses a combination of soft ionization with in situ IR 

spectroscopy.58 FEL irradiated, mass-isolated ion populations in the MS produce 

data sets consisting of mass spectra showing the isolated precursor ion, the 

fragment ions produced as a function of IR wavelength, and the IRMPD spectrum 

of the selected ion. 

Computational modeling aids in spectral interpretation of gas phase ion 

conformations.59-64 Here, computational analysis is used to characterize isomers 

for multiple SOA products by comparing the computational ion spectra to that of 

the experimental IRMPD fragment ion spectra. Computations were carried out 

using PCModel 9.0 and Gaussian 09 software packages. Anions for each 

molecule were created by deprotonating at the most acidic site. 
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Each ion underwent manual, exhaustive conformational searches to locate 

all relevant structures. After ions were minimized in PCModel, the lowest energy 

conformers were searched for with the GMMX (Global-MMX) force field. Of the 

10,000 conformers that were assessed, the four lowest free energy 

conformations of each ion were selected for further analysis.  

Computations of ground state geometries and vibrational frequencies 

were calculated using density functional theory (DFT) at the B3LYP/6-

311++G(d,p) level of theory with Gaussian 09.65 All computations were 

completed in the gas phase at 300 K to match experimental conditions. For these 

conformers, vibrational frequencies were extracted and adjusted by a scaling 

factor of 0.98.66 Full width at half maximum of 20 cm-1 was applied for easy 

comparison with experimental spectra.67 

2.3 Experimental Methods 

2.3.1 SOA Generation for IRMPD 

 The sample preparation and data collection were carried out by Professor 

Rachel O’Brien at MIT and FELIX, respectively, as she was finishing her 

postdoctoral. The description below is provided by her; a similar type of SOA 

generation was conducted by me in the O’Brien laboratory at William and Mary 

and is described in Chapter 3. 

 Laboratory generated, α-pinene SOA was collected on a filter, extracted, 

and characterized with IRMPD. Aerosols were generated in a five-foot long, 3 5/8 

inch diameter polycarbonate flow tube (Figure 5).  
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Figure 5 Polycarbonate flow tube for IRMPD SOA generation. 

To create a laminar flow region, a spacer with small holes was placed one foot 

away from the two inlets. The first inlet brought in zero air (Aadco 737-13 Pure 

Air Generator) at a flow rate of 1 L/min and had liquid α-pinene (Sigma-Aldrich) 

evaporated into the airflow via a syringe pump (Harvard Apparatus) with a flow 

rate of 20 µL/hr. The second inlet introduced 1.5 L/min of zero air from a Penray 

ozone generator (Model 600, Jelight Co. Inc.) which produced ~15 ppm ozone for 

the flow tube. The tube was at room temperature with ambient pressure, and the 

zero air source provided low relative humidity air (<5%). 

After the aerosols were formed, they traveled through a four-foot black 

carbon denuder to remove excess ozone and VOCs before being collected on a 

Zefluor® 2.0 µm Teflon™ filter. Collection was taken for three hours per filter at a 

flow rate of ~2 L/min; excess flow was vented through a carbon trap. Filters were 

weighed before and after collection to determine approximately 3 mg of sample 

was collected per filter. Filters were extracted in methanol (Sigma-Aldrich) and 

ultrasonicated for ~20 minutes; the extract was then dried using ultrapure 

nitrogen. Four filter extractions were combined, frozen, and transported to the 

FELIX Laboratory for analysis.
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2.3.2 Analysis at FELIX 

Analysis of samples at FELIX was conducted with the assistance of 

laboratory scientists at the facility. There, SOA extracts were diluted with 5 mL of 

a 50/50 water/methanol solution to a concentration of ~10 mM. Immediately 

before a run was taken, this stock SOA solution was further diluted, with 

methanol and ~0.1% ammonium hydroxide, to ~20 – 40 µM; this aided in ion 

formation for the negative ion mode. 

The solution was passed into the instrument with a flow rate of 120 µL/hr, 

spraying with a voltage of -4,500V, and dry N2 nebulizing gas. Precursor ions 

were isolated in the ion trap and irradiated for 2 – 3 seconds using the 10-Hz rep 

rate light pulses from the FEL. IRMPD yield, defined as the ratio of the summed 

fragment ion intensities divided by the total ion intensity, was determined from 

the recorded mass spectra. The IR frequency was scanned in steps of ~3 cm-1; 

at each frequency in the fingerprint spectral region, new populations of ions were 

irradiated. An average of eight mass spectral scans were used for each 

irradiation wavelength, and IRMPD spectra were linearly corrected for variations 

in laser power as a function of photon energy. 

The resulting data sets were brought to William and Mary by Professor 

O’Brien and given to me for analysis. The IRMPD spectra and fragmentation ion 

spectra were compared to previous work on α-pinene SOA characterizations 

found in the literature, and computations were used to look for the presence of 

isomers.
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2.4 Data Analysis and Discussion 

2.4.1 Soft Ionization and Photodissociation 

Figure 6 shows an IRMPD spectrum of 157 m/z (bottom) as a 

representative selected ion isolated from the full mass spectrum (top). 

Electrospray ionization (ESI) in the negative ion mode generated ions 

corresponding to monomers of α-pinene ozonolysis products; dimers and trimers 

also formed through oligomerization reactions.68,69 For this thesis, monomers that 

have previously been reported in the literature were the ions selected for isolation 

and irradiation. These include ion populations where both a single SOA product 

is expected as well as populations that should contain more than one isomer. 

 

 
Figure 6 IRMPD spectrum of a selected monomer ion (157 m/z, bottom) from a full mass 

spectrum (top) of α-pinene ozonolysis products. 
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 The IRMPD spectra from the monomers show absorbance features in the 

carbonyl stretching region (~1600 – 1800 cm-1, also seen in Figure 6) from the 

formation of ketones, aldehydes, carboxylic acids, and lactones during the 

ozonolysis reaction. A separate carbonyl peak can often be found at higher 

frequencies and, similar to absorption IR, this frequency can shift depending on 

whether the carbonyl is part of a ketone, aldehyde, or lactone functional group.70 

Additional peaks are observed at lower frequencies corresponding to other 

stretching modes and coupled vibrations. Computational comparisons 

deprotonate a carboxylic acid to form a carboxylate group with a distinct IR 

fingerprint characterized by both asymmetric and symmetric stretches. 

 The frequencies of the vibrations are very sensitive to the chemical 

environment. Thus, by comparing the location of these experimental absorption 

peaks to computations and/or standards, insights into the structure of the 

molecule can be gained. The full data sets obtained with this method contain 

information on molecular weight, tandem MS fragmentation products, and 

chemical structures of the isolated ion population. The following sections present 

a detailed characterization of select isolated mass to charge ratios to 

demonstrate the range and depth of information available with this technique. 

2.4.2 Comparison with Standards 

 Comparing the IRMPD spectra of a known standard with an ion of the 

same expected identity, but formed from α-pinene ozonolysis, demonstrates the 

utility of this technique to help identify the structure of unknowns using 

synthesized standards. Previous studies have determined that cis-Pinonic Acid is 
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a major SOA product.29,71,72 The IRMPD spectra for the isolated, SOA anion at 

183 m/z and the standard cis-Pinonic Acid (Sigma-Aldrich), along with the 

computed IR spectrum of cis-Pinonic Acid, are compared in Figure 7. 

 
Figure 7 The IRMPD spectra of standard cis-Pinonic Acid (black) and SOA ion 183 m/z (blue), 

and calculated IR spectrum of cis-Pinonic Acid (red). 

The high degree of overlap between the locations and relative intensities of the 

major absorption peaks confirm the identity of the SOA product. Assignments of 

IR absorption peaks can be made based on previous analyses of IRMPD spectra 

for molecules containing carboxylate and carbonyl groups67,73 and quantum 

calculations. Peaks at 1617 and 1704 cm-1 are associated with the asymmetric 

carboxylate stretch and the ketone carbonyl stretch, respectively; peak 1326 cm-1 

is the symmetric carboxylate stretch; and peaks at 1218 and 1170 cm-1 are 

assigned to coupled CH vibrational modes. (A full collection of calculated SOA 

molecule observed stretches can be found in Appendix A).
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2.4.3 Computational Analysis 

 When comparing experimental IRMPD spectra to computed spectra, the 

locations of the absorption peaks are most informative for structural 

interpretation. The intensities observed in the IRMPD spectra can be influenced 

by experimental factors, and DFT modeling of intensities is not as accurate as 

that of frequencies.60,63 All calculated spectra presented here are of the lowest 

energy conformer. 

 The IRMPD spectrum for the ion population isolated at 171 m/z (Figure 8) 

is very different from the one in Figure 7. This confirms the expectation that 

spectral differences can be observed between components in this mixture, 

despite the likely presence of similar functional groups in the product SOA 

molecules. The broader absorption peaks may be from contributions of multiple 

conformers or isomers but have also been observed when protons are shared 

between nucleophilic functional groups.67 

 
Figure 8 Experimental IRMPD spectra for 171 m/z (black) compared to the calculated spectra 

with 4 cm-1 (colored line) and 20 cm-1 (shaded) peak widths of Norpinic Acid (blue) and 

Terpenylic Acid (red). 

The anion population with 171 m/z has at least two potential isomers: 

Norpinic (blue) and Terpenylic (red) Acid.72,74,75 For clarity of interpretation, the 

calculated spectra have been broadened by Gaussian peak convolution with 
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widths of 4 (colored line) and 20 (shaded) cm-1 full width at half maximum 

(FWHM). The calculated spectrum for Terpenylic Acid matches well with the 

experimental spectrum, especially for the major carbonyl (1780 cm-1) and 

carboxylic acid (1644 cm-1) C=O stretches. 

Norpinic Acid’s calculated spectrum somewhat matches the carbonyl 

peaks but is missing frequencies that correspond to the measured peaks near 

1250 and 930 cm-1. These missing calculated peaks indicate that Norpinic Acid 

may be present but cannot be the only isomer at 171 m/z, thus making 

Terpenylic Acid the most likely candidate for this mass ratio. 

2.4.4 Fragment Ion Spectra 

 The IRMPD spectrum for 169 m/z, shown in Figure 9 A, is very similar to 

the spectrum observed for 183 m/z, cis-Pinonic Acid. Given this similarity, and 

the fact that a difference of 14 atomic mass units (amu) can be achieved by 

replacing a methyl group with a hydrogen, it is expected that possible structures 

for the dominant components are very similar to cis-Pinonic Acid. As previously 

reported, possible isomers of 169 m/z include Pinalic-3-Acid, Pinalic-4-Acid, and 

Norpinonic Acid;29,76 their calculated spectra are seen in Figure 9 B, C, and D, 

respectively. 
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Figure 9 (A) IRMPD spectrum for 169 m/z and calculated spectra for (B) Pinalic-3-Acid, (C) 

Pinalic-4-Acid, and (D) Norpinonic Acid.  

All three calculated spectra have two absorption peaks >1600 cm-1. The 

lower peak (~1620 cm-1) corresponds to the carboxylate asymmetric stretch in 

each isomer; the higher peak is the carbonyl stretch. This peak is calculated at 

1735 and 1720 cm-1 for Pinalic-3-Acid and Pinalic-4-Acid, respectively; both of 

which have an aldehyde functional group. Norpinonic Acid’s higher peak is red-

shifted to 1695 cm-1; it has a ketone functional group. The absorption peak at 

~1330 cm-1 corresponds to the symmetric carboxylate stretch. Because all three 

isomers have similar calculated spectra and the widths of the peaks in the 

experimental spectrum are relatively broad, chromatography combined with 

detailed scans of the regions with the largest calculated differences (~1690 – 
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1740 cm-1 and 600 – 1200 cm-1) would aid in the absolute identification of these 

compounds. 

 Figure 10 A shows the intensities of the IR-induced fragment ions 

averaged over the full IRMPD spectrum; the fragments are colored coded to 

Figure 10 C – G which display the ions as a function of IR frequency. Figure 10 B 

is a reproduction of the IRMPD spectrum for the full ion population (Figure 9 A). 

 
Figure 10 Individual fragment ion spectra for the anion 169 m/z. (A) Reconstructed fragment 

ion spectrum using the average intensity across the IRMPD scan. (B) IRMPD yield spectrum. 

(C – G) Fragment ion spectra. Vertical, dotted lines highlight the red-shifted (red) and blue-

shifted (blue) peaks. 
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Fragment ions associated with the loss of CO2 (-44 m/z, red) and CO with 

H2O (-46 m/z, orange) have very similar spectra, with the exception of the 

intensity difference for the peak near 1200 cm-1. Fragment ion 70 m/z (-99 neutral 

loss, blue) has similar peak locations but significant differences in intensities for 

the first two carbonyl stretch peaks (~1620 and 1715 cm-1). Fragment ion 58 m/z 

(-111 neutral loss, purple) also has an absorption peak ~1620 cm-1, but its higher 

carbonyl stretch peak is red-shifted to ~1686 cm-1 compared to the red, orange, 

and blue fragment ions (vertical, red dashed line). These differences are 

consistent with the trend observed in Figure 9 where a red shift in peak position 

is present when the carbonyl is a ketone compared to an aldehyde. 

 Fragment ion 97 m/z (-72 neutral loss, green) has a carbonyl absorption 

peak centered around 1770 cm-1; a blue-shifted carbonyl stretch (vertical, blue 

dashed line). The DFT calculations for Pinalic-3-Acid, Pinalic-4-Acid, and 

Norpinonic Acid show no carbonyl stretching peaks near 1770 cm-1 indicating 

fragment ion 97 m/z is possibly an unidentified isomer formed during α-pinene 

ozonolysis. Absorptions at 1780 cm-1 have been observed for lactone containing 

molecules (like Terpenylic Acid) which suggests the structure for this isomer 

possibly contains a ketone on a ring providing similar electron density to that of a 

lactone functional group. 
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Chapter 3: Atmospheric Aging of SOA through Photolysis 

3.1 Motivation for SOA Photolysis 

To characterize chemical composition changes of dry SOA as a result of 

long-term atmospheric aging, with a focus on improving atmospheric modeling of 

SOA loss, SOA films undergoing photolysis were investigated. Photolytic aging 

leads to SOA mass loss and affected lifetimes in the atmosphere.5,77 Because 

aerosols can chemically react they can fragment, therefore the sun could be 

destroying aerosol particles on a timescale much faster than is presently 

assumed. Currently, models are based on fresh SOA characteristics including 

their molecular composition and absorption cross sections. SOA is expected to 

degrade to the point of complete volatilization. However, photolytic aging 

bleaches the carbonyl chromophores, possibly decreasing the chemical changes 

that occur, causing SOA mass loadings to decay to a plateau rather than be 

completely destroyed. Much of the research of photochemical reactions occurring 

in the atmosphere has focused on photolysis of organics in water droplets. 

Though understanding how light affects organics in aqueous solutions helps us 

understand how the light from the sun affects the photochemical reactions of 

these mixtures in the atmosphere, aerosol particles spend a significant fraction of 

their lifetime dry. Thus, more research of ambient organics in the gas phase is 

needed to create a better proxy for atmospheric reactions. 

After collection of SOA on filters and exposure to UV light over different 

lengths of time, changes were observed in the absorption cross sections of the 

sample with corresponding changes in the molecular composition characterized 
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with offline AMS and soft ionization ultrahigh resolution mass spectrometry 

(UHR-MS). The following presents advances in analytical techniques, a building 

of an experimental foundation being developed by this lab to enable a more 

thorough analysis of photolysis of complex SOA films. 

3.2 Experimental and Methods 

3.2.1 SOA Generation for Photolysis 

The oxidation of various biogenic compounds produces SOA, but only 

terpenes are believed to be a significant source of SOA under atmospheric 

conditions;29 monoterpenes are considered the most reactive of these 

compounds.29 α-pinene, a naturally emitted molecule from pine trees and the 

most abundant biogenic monoterpene,7,23 is 

unsaturated and can be rapidly oxidized by 

ozone, OH radicals, and NO3 radicals.29 A 

majority of the observed aerosol products come 

from the reaction of α-pinene and 

ozone,20,21,24,29 one of the most abundant oxidants in Earth’s atmosphere.16 

Laboratory generated SOA, including the aerosols observed for this thesis with 

lifetimes of about 1 – 2 weeks, exhibit evaporation behavior quite similar to that 

of ambient SOA21 making them perfectly acceptable as a proxy for SOA aging 

processes happening in the atmosphere. 

A similar SOA generating apparatus to the one described in the previous 

chapter was developed (Figure 12). 

 
Figure 11 α-pinene structure. 



32 

 

 

 

Figure 12 Photolysis SOA generation apparatus. 

Ozone (Jelight Co. Inc., Model 610; 2 – 3 ppm) flowed at a rate of ~2.5 L/min to 

react with α-pinene (Sigma-Aldrich) vapors flowing into the gas stream through a 

borosilicate capillary at 20 µL/hr. SOA was generated in a 5 L glass jar and 

collected on a Zefluor Teflon filter (1.0 µm pore size, 47 mm diameter) at a rate of 

~1 L/min for three hours before the filter was removed. The carbon traps assured 
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the air was clean, and no black carbon particles were observed on the SOA 

loaded filters. The mass of the filter was recorded before and after collection to 

determine the mass of SOA collected and aid in concentration calculations. 

Filters were frozen immediately after collection, before photolysis, to prevent 

reactions on the filter from occurring before analysis could be started. 

3.2.2 Atmospheric Aging through Photolysis 

To best mimic the atmosphere, while controlling interfering variables, 

photolysis was conducted in a sealable, near air-tight box (Figure 13), referred to 

as the miniaturized chamber box or simply “the box” throughout this manuscript. 

A 

B 

Figure 13 (A) The box setup ~8 in. in front of the xenon arc lamp. (B) Inside the box where the 

filters are in Positions 1, 2, 3, and 4. 

Generated zero air (Environics® Series 7000), synthetic air containing less than 

0.1 ppm of hydrocarbon impurities, was let into the box (1 L/min) containing four 

unfrozen SOA filters. A xenon arc lamp (Newport, Oriel Instruments U.S.A., lamp 
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power 50 – 500 W) was used to imitate sunlight as it emits radiation with similar 

wavelengths. To reduce interference of the incoming light, a hole was cut in the 

lid of the box and covered with Teflon film. Filters underwent various time 

exposures to the arc lamp; the details are summarized in Appendix B.  

3.2.3 ATR-FTIR Analysis: Investigating Changes in SOA Functional Groups 

When a time exposure was complete, a filter was removed from the box 

and a small slice of the filter was taken for ATR-FTIR analysis. Tweezers were 

used to grab the filter’s edge where there was visibly no SOA residue, and a slice 

was taken using Teflon-coated scissors. 

IR was used to observe any changes in functional groups as exposure to 

light progressed. IR spectra was collected using a Shimadzu IRTracer-100 

MIRacle 10 instrument where filter slices were placed on the diamond crystal 

ATR probe with the following parameters: scanning range 4000 – 400 cm-1; 

number of scans 45; resolution 4; apodization Happ-Genzel; measurement mode 

%Transmittance. In ATR-FTIR, a beam of infrared light penetrates micrometers 

into the loaded sample before the light is reflected back and analyzed by a 

detector where the absorption can be measured. Molecules selectively absorb 

radiation at specific wavelengths causing a change in dipole moment and, 

therefore, the vibrational energy level goes from the ground state to an excited 

state. The frequency of an absorption peak is determined by this vibrational 

energy gap. The resulting data can give structural information on the type of 

functional groups in organics. Since the mixture studied in this thesis is complex, 

with many different molecules with different types of functional groups (as seen in 
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Chapter 2), the absorption peaks are broad and molecular level identification is 

not possible. Instead, ATR-FTIR analysis can show if shifts in the population of 

functional groups in the mixture occur as a result of photolysis. 

3.2.4 UV/Vis Analysis: Investigating the Change in Efficacy of SOA 

Absorption Properties 

The remaining filter, after the slice used for IR analysis, was extracted for 

UV/Vis analysis. The filter was cut into small pieces using Teflon-coated scissors, 

the slices collected in a baked, glass vial (described in detail in the next chapter) 

with ~2 mL ACN added. The vial was agitated to extract the SOA from the filter 

for ~20 minutes; then the solution was dried with ultrapure nitrogen until the ACN 

had completely evaporated (~30 minutes). Using 200 µL of Milli-Q® water 

(MilliporeSigma), the sample was reconstituted and agitated until small, white 

flecks could be seen in the solution. 20 µL was set aside in a smaller clean vial 

for AMS and Orbitrap MS analysis; the remaining 180 µL was used for UV/Vis 

analysis. 

A PerkinElmer Lambda 35 spectrometer, with deuterium (D2) and 

tungsten halogen lamps, collected spectra. The D2 lamp provides ultraviolet light 

with wavelength range from 190 – 370 nm while the tungsten lamp provides 

visible light with wavelength range from 320 – 1100nm. For the purposes of this 

thesis, a wavelength range of 200 – 550 nm was analyzed with a lamp change 

occurring at 326 nm, a slit width of 1.00 nm, and a scan speed of 480 nm/min. 

Due to the initial small volumes being analyzed, a super microcuvette (ThorLabs, 

UV Fused Quartz, CV10Q100, 100 µL) was chosen. 
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The UV/Vis analysis provides data on the absorption constant as a 

function of wavelength. This allows for the observation of how SOA absorption 

efficacy changes over time and with exposure to light. Most previous research 

has focused on the absorption properties of fresh SOA that has not been aged. 

This research will give a more accurate prediction as to what happens to 

aerosols in the atmosphere as they are irradiated over multiple days. 

3.2.5 Mass Spectrometry Analysis: Determining SOA Concentration and 

Molecular Weight 

A high resolution time of flight (HR-TOF) AMS (Tofwerk, AG) was used to 

provide the concentration of organics in the solution, along with a Thermo 

Electron Corporation, Finnigan LTQ XL Orbitrap, with an ESI ion source to 

provide the average molecular weight of SOA extracted from the filter. 

A majority of the SOA loaded filters presented in this thesis have not been 

analyzed by the AMS and estimates have been used for their concentrations. In 

the future, to determine the concentration of SOA extracted, a calibration curve 

first needs to be constructed. Two internal standards (IS) will be used: 1) 

mannitol (Sigma-Aldrich) as the organic internal standard and 2) isotopically 

labelled ammonium nitrate (NH4
15NO3, Sigma-Aldrich) as the inorganic internal 

standard. The calibration curve will be created by plotting organic/IS 

measurements as a function of [organic]/[IS]. Once this is done, SOA samples 

can be measured and their concentrations determined.6 

A preliminary method for the determination of molecular weight is 

presented here. 100 µL of Milli-Q was mixed with 3 µL of SOA extraction and 
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electrosprayed into the Orbitrap, with voltages between 4.0 – 4.4 kV, at a flow 

rate of ~2 µL/min. Four collections were taken per sample:  

Resolution Run Time m/z 

60,000 ~7 min 120 – 1000 

100,000 ~12 min 120 – 1000 

100,000 ~7 min 250 – 1000 

30,000 ~7 min 120 – 1000 

The m/z range was changed for the third collection because the signal of the 

peaks >250 m/z was being overwhelmed by the signal of the peaks <250 m/z. By 

cutting out the lower m/z, it allows the peaks >250 m/z to dominate the signal 

scale for better observation. 

3.3 Data Analysis and Discussion 

3.3.1 Calculating Epsilon through Calibration Curves 

Absorption cross sections, σ, specify a molecule’s absorption properties, 

or its absorption efficiency, by measuring the effective area of the molecule that a 

photon needs to traverse in order to be absorbed. An absorption cross section 

corresponds to the molar absorption coefficient, ε, via the following equation: 

𝜎(𝑐𝑚2) =
2.303(𝑐𝑚3𝐿−1)

6.02 ∗ 1023(𝑚𝑜𝑙−1)
𝜀(𝐿𝑚𝑜𝑙−1𝑐𝑚−1) (1) 

The relationship between the absorption cross section and the molar absorption 

coefficient can be seen through the following derivation.78  

𝑇 =  
𝐼

𝐼0
 (2) 

where T is the transmittance, I is the intensity of outgoing light after it’s passed 

through the sample, and I0 is the incident intensity, or the intensity of incoming 

light. Absorbance is defined by 
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𝐴 =  − log
𝐼

𝐼0
 (3.1) 

therefore 𝐴 =  − log(𝑇) (3.2) 

therefore 𝑇 =  10−𝐴 (3.3) 

From the Beer-Lambert Law, 

𝐴 =  𝜀𝑙𝑐 (4) 

where l is the length of the sample that light passes through and c is the molar 

concentration. Using equations 3.3 and 4, as well as c defined as 
𝑛

𝑁𝐴
, where n is 

the density of absorption centers within the molecule and NA is Avogadro’s 

number, equation 5 is derived. 

10−𝐴 =  10−𝜀𝑙𝑐 =  10
−𝜀𝑙𝑛

𝑁𝐴
⁄  (5) 

Additionally, from the Beer-Lambert Law, to bring in the cross section variable, is 

the following equation: 

𝐼 =  𝐼0𝑒−𝑛𝜎𝑙 (6.1) 

therefore 
𝐼

𝐼0
=  𝑒−𝑛𝜎𝑙 = 𝑇 (6.2) 

Based on equation 6.1, combined with equation 5,  

𝑒−𝑛𝜎𝑙 =  10
−𝜀𝑙𝑛

𝑁𝐴
⁄  

Taking the natural log of both sides, 

−𝑛𝜎𝑙 =  ln(10) [−𝜀𝑙 (
𝑛

𝑁𝐴
)] 

𝜎𝑁𝐴 = 2.303𝜀 

𝜀 =  
𝜎𝑁𝐴

2.303
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Therefore, the absorption cross section can be determined from UV/Vis 

measurements through 

𝐴 =  
𝜎𝑙𝑛

2.303
 𝜎 =  

2.303𝐴

𝑙𝑐𝑁𝐴
 

The molar absorption coefficient was calculated by creating a calibration 

curve of absorption as a function of concentration for a single wavelength. To 

make a calibration curve from the UV/Vis data sets, the AMS concentration (in 

g/L) was calculated for each dilution. For the work here, an estimate based on 

initial AMS data was used. Finalized concentrations will move the absorption 

measurements up or down the y-axis and, hopefully, will make them overlay at 

lower wavelengths (~245 – 250 nm). With the known mass from Orbitrap MS 

measurements, the molar concentration was calculated for each dilution, and 

from this, the number of molecules per milliliter. Calculations for Box 1.1 

(meaning a filter under the conditions of Box 1 in Position 1), as an example, can 

be seen in Appendix B; calculations for Box 1.1 are representative of calculations 

and data processing for all other boxes as they are replicates, outlined in 

Appendix B. 

 Absorbance values were processed as follows. Each sample was run in 

the UV/Vis three times resulting in three absorbances per wavelength to account 

for any possible lamp flux; the average absorbance was calculated and will now 

be referred to as simply absorbance. Because of the lamp change at 326 nm, a 

step is generated in the data (Figure 14 A). To smooth the data, the difference in 

the absorbance between 326 nm and 327 nm was calculated and added to the 

absorbances for wavelengths 200 – 326 nm (Figure 14 B). 
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A 

 

B 

 
Figure 14 Box 1.1, 24hr light, (A) showing a step in the data at 326 nm due to a lamp change 
and (B) smoothed. Selected total sample volumes shown for clarity. 

Any absorbance above 1.5 was ignored as these values are unreliable due to too 

high a concentration to be accurately measured. 

 Once the concentrations and absorbances were processed and plotted, a 

line was fit to each calibration curve, the slope of which is the value of the molar 

absorption coefficient (Figure 15). 

 

Figure 15 Calibration curve at 310 nm for Box 1.1, 24hr light. 
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3.3.2 Calculating and Analyzing the Cross Sections 

 Calculating the cross sections required absorbances to be multiplied by 

2.303, the natural log of 10, as described in the equations above. Cross sections 

were determined just as the molar absorption coefficient was; absorbance was 

plotted as a function of concentration for each wavelength, and the slope of the 

best fit line was the cross section. 

 Position 4 is likely being exposed to less light, or more indirect light, than 

the other positions in the box. This can be seen in Figure 16.  

 
Figure 16 Box 4, 96hr light, all positions. Position 4 is an outlier compared to the other 

positions. 

Box 4 had filters in all positions exposed to 96 hours of light. Looking at the cross 

sections it is quite obvious that Position 4’s absorption plateaus just before 350 

nm while the other positions continue to see absorption decay at higher 

wavelengths. The reason for this behavior is unclear; it was not observed in other 

measurements. There also appears to be a slightly lower signal around 280 nm 

for Position 4 possibly indicating it is experiencing fewer photons from the lamp. 
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For this reason, Box 1’s Position 4 will be replaced by Box 4.2, a position known 

to have the expected light exposure. 

 A comparison of all relevant experiments’ Position 4 are shown in Figure 

17 where the shape of Box 1.4 and Box 2.4’s cross sections are very similar to 

that of Box 4.1, 2, and 3. This indicates that the plateau of Box 4.4 is an anomaly 

and that, perhaps, some interference occurred during the Box 4 experiment, 

specifically at Position 4. 

 
Figure 17 Box 4 (green), 96hr light, positions compared to Box 1.4 (red) and Box 2.4 (orange), 

96hr light, positions. The shape of Box 4.1, 2, and 3 are very similar to the shape of Box 1.4 

and Box 2.4 thus indicating possible interference with Box 4.4 during the experiment. 

Further research will involve repeating the 96 hour time exposure experiment at 

all four positions, focusing on the results of Position 4. Actinometry experiments 

will also be performed to assess the validity of Position 4. 
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Actinometry measures the intensity of radiation typically by determining 

the number of photons from a beam absorbed into a chemical reactor based on 

the speed of a photochemical reaction.79 The following equation is used to 

determine radiation intensity, or photon flux. 

𝐽 =  ∑ 𝜎𝜆𝛷𝜆𝐹𝜆∆𝜆 

where J is the reaction rate constant, σ is the cross section, Φ is the quantum 

yield, and F is what is being solved for, the photon flux, all as a function of the 

change in wavelength.79 By doing this, the radiation intensity for each position in 

the box will be determined in order to assess the equivalency of those positions. 

 Figure 18 compares Box 1 (1 – 4 days of irradiation) to an SOA loaded 

filter not exposed to light nor the conditions of the box; this is considered T0. 

A 

 

B 

 
Figure 18 (A) Box 1 compared to an SOA loaded filter not exposed to light, T0 (dashed line). 

(B) Zoomed to 220 – 330 nm. Note the presence of a peak at ~280 nm for T0 that decreases 

for Box 1 as photolysis increases. 

The dashed line of T0 has a prominent hump of absorption at ~280 nm from a 

large population of carbonyls.80 The presence of this absorption begins to wane 

as photolysis increases. This likely corresponds to the loss of carbonyls and 

removal of chromophores from the system consistent with photobleaching. 
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 This conclusion was explored more fully by comparing Box 1 to Box 3 

(Figure 19). Box 3 consisted of filters not exposed to light but analyzed at the 

same time points as Box 1. 

 
Figure 19 Comparing Box 1 (light) and Box 3 (dark) exposures where a carbonyl absorbance 

peak is absent for photolyzed filters but present for non-photolyzed filters. 

The 24 (Position 1), 48 (Position 2), 72 (Position 3), and 96 (Position 4) hour dark 

exposures all have an absorption between ~280 – 300 nm whereas the 

corresponding light exposures appear flatter, losing that carbonyl absorption due 

to photolysis. This decrease is consistent with literature results from aqueous 

photolysis reactions. 

 Due to cancellation of production of Zefluor filters, a switch to EZFlow® 

(Foxx Life Sciences, PTFE Membrane, 0.22 µm pore size, 47 mm diameter) 

filters was made. These new filters (NF) have about 1/5 the pore size of the old 

filters (OF). Figure 20 shows the difference in absorption between the Zefluor 

and EZFlow filters. 
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Figure 20 Zefluor (OF) absorbance compared to EZFlow (NF) absorbance, both blank, non-

SOA loaded filters. OF, in general, has a higher absorbance than NF across the range of 

wavelengths. Selected total sample volumes shown for clarity. 

It’s worth noting the lower absorption the EZFlow filters have, in general, 

compared the Zefluor filters. While the absorption contribution of the filters 

themselves should never interfere with the absorption results from SOA samples 

(because SOA is being extracted from the filter), should any contamination be 

occurring, EZFlow filters would provide less of an interference. From this alone, 

one might consider these filters to be a better choice. However, it is possible the 

very small pore size is hindering the SOA loading process as seen by the 

following. 

 EZFlow filters were used in Box 5 and Box 6 experiments. While the 

absorbances from Box 1.4 (96hr light) can’t directly be compared to the 

absorbances of Box 6.1 (120hr light), due to different photolysis times, it is worth 

noting the very low absorbances of SOA from the EZFlow filter compared to the 

Zefluor filter (Figure 21). 



46 

 

 
Figure 21 Box 1.4, 96hr light, compared to Box 6.1, 120hr light. Note the low absorbances 

associated with Box 6 using the EZFlow filter. Selected total sample volumes shown for clarity. 

Box 1’s absorbances are well exceeding 1.0, even before the wavelength range 

limit of 200 nm, at its highest total sample volume, while Box 6’s absorbances 

quickly fall to about half of that at the same dilution. In addition, as seen in the 

table of samples in Appendix B, Zefluor filters have an average SOA mass 

loading of 2.87 mg while EZFlow filters have an average SOA mass loading of 

0.85 mg — granted only two filter masses are available at this time. Again, many 

more future experiments are needed to explore what changing to these EZFlow 

filters is doing in terms of SOA mass loading. 

 Some SOA is being loaded onto the EZFlow filters, however. Figure 22 

shows Box 5, a box of non-loaded, blank filters, compared to SOA loaded filters 

of Box 6. 
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B 

 
Figure 22 Box 5 (dark) compared to Box 6 (light), (A) Position 1 at 120hr time exposure and 

(B) Position 2 at 144hr time exposure. The higher absorbances of Box 6 indicate EZFlow filters 

are collecting some SOA during loading. Selected total sample volumes shown for clarity. 

Because Box 6 is showing absorbances greater than that of Box 5, SOA must be 

present in some capacity on EZFlow filters. Figure 23 shows Box 6’s longer 

photolysis times of 120 and 144 hours. 

 
Figure 23 Box 6.1, 120hr light, and Box 6.2, 144hr light. 

Not much difference can be seen between absorbances of the five and six day 

exposures. Perhaps SOA’s rate of reactivity begins to plateau at this point. Cross 

section analysis of these longer photolysis times will be investigated. 

 Future research will continue to explore the result of photolysis on the 

carbonyl absorption peak as well as continue to perfect the methodology of this 
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experiment.  Replicates will be done for both light and dark exposures, and an 

increased number of time points will be added; the validity of Position 4 will be 

explored through actinometry; UHR-MS average molecular weight and molecular 

composition information will be collected for Boxes 2 – 6 as well as blank and T0 

samples. 

3.3.3 ATR-FTIR Analysis 

 Just as the variance in SOA mass loadings for each filter effects the 

UV/Vis analysis results, so does the variance in SOA loading thickness for each 

filter effect IR analysis. Film thickness is something that can’t and isn’t attempted 

to be controlled by this lab at this point. Therefore, no quantitative functional 

group changes can be drawn from the IR data presented here. IR analysis is 

simply showing the shape change of absorption peaks as a result of increased 

photolysis, supporting the results from UV/Vis analysis that the SOA sample is 

changing. 

 Figure 24 shows the percent transmittance, normalized to the Teflon 

peak, of Box 1. Peaks of importance are that of the OH, CH, and carbonyl 

stretching. A table summarizing the range and type of stretching can be found in 

Appendix B. 
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Figure 24 IR of Box 1 Position 1 (red), Position 2 (orange), Position 3 (green), and Position 4 

(blue). Transmittance normalized to the Teflon peak. 

IR data sets were converted from percent transmittance to absorbance 

using 𝐴 = 2 −  log 𝑇 and then normalized to the maximum absorbance value for 

each time exposure; this was the Teflon peak. To test methodology, an IR 

comparison was made between a blank filter, a morning SOA loaded filter, and 

an afternoon SOA loaded filter. As shown in Figure 25, these filters can be 

considered equal and do not seem to be affected by the initial set up of the 

apparatus at the beginning of the day. 



50 

 

 
Figure 25 A comparison of morning (blue, 110218a) and afternoon (green, 110118p) SOA 

loaded, Zefluor filters. The similarity in absorbance indicates morning and afternoon loaded 

filters can be considered equal. The blank (red) is 012919 filter. 

 The UV/Vis data analysis shows an important point of investigation seems 

to be the carbonyl peak at ~1700 – 1750 cm-1; thus, IR peak shape analysis 

focused on that range. Using the Igor Pro 7 software package, a series of 

parabolas were fit to the raw data peak to find the area under that peak. For 

example, Figure 26 A shows the absorbance of Box 1.1 zoomed to the carbonyl 

peak, and Figure 26 B shows the peak fitting. 

 A 

 

B 

 
Figure 26 (A) Box 1.1, 24hr light, carbonyl absorbance peak. (B) Fitted peak picking of Box 

1.1. 

In Figure 26 B, the top of the figure shows how well the estimated peaks fit the 

raw data peak, the residual calculation; a straight line at zero would be ideal and 
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indicate a perfect fit. The middle of the figure shows the sum of the fitted peaks 

(in blue) overlaid on the raw data peak (in red). Last in the figure shows the 

shape of the four peaks used in fitting. The shape changes of these four peaks, 

as well as the change in the area under the raw data peak will be analyzed. 

 Four peaks were chosen to be fit to the raw data: Peak 0 at 1641.5 cm-1 

with a width of 40 cm-1, Peak 1 at 1708 cm-1 with a width of 30 cm-1, Peak 2 at 

1735.1 cm-1 with a width of 30 cm-1, and Peak 3 at 1770.3 cm-1 with a width of 40 

cm-1. These constraints were used for every sample analyzed. The height of the 

peaks varied based on the fitting parameters of the program. These peaks do not 

have any correlation to the functional groups; they are simply the minimum 

number of peaks needed to initially fit the peak from Box 1.1. This analysis 

provides a more numerical view of the shape changes observed in the carbonyl 

peak as a function of irradiation. 

Box 1 of photolyzed filters was compared to Box 3 of non-photolyzed 

filters and a filter of T0 (filter 110118p) in Figure 27 A and B. Peak fitting 

comparisons of Box 1.1, Box 1.4, Box 3.1, Box 3.4, and T0 will be presented 

here. All other peak fitting data can be found in Appendix B.  
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Figure 27 A Box 1 (light, red) and Box 3 (dark, blue) IR comparison at all positions. 0hr (black) 

is SOA loaded 110118p filter never exposed to any box conditions. 
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Figure 27 B Compiled Box 1 (light) and Box 3 (dark) carbonyl peaks at all positions. 

In Figure 27 B, the carbonyl absorbance peak for the dark filters (Box 3, 

purple and blue spectra) seems to be slightly red-shifted compared to the 

photolyzed filters (Box 1, yellow and red spectra). Future investigation might 

explore the relationship between this observed IR red shift and the red shift 

discussed in Chapter 2 regarding a carbonyl in a ketone rather than an aldehyde 

functional group. This shift may also be influenced by the changes of carbonyls 

to other C=O functional groups like acids and esters. It is not expected that there 

are many, or any, C=C functional groups in the SOA. Ozone is a good oxidant 

and is expected to have reacted with any unsaturated carbons in the gas phase 

and on the filter. 

In Figure 28, a shape change can be seen in Peaks 0, 2, and 3 in the 

span of a day of photolysis. The comparison of the photolyzed box and the dark 

box (Figure 29) show there is a shape difference between Peaks 2 and 3. Table 

1 summarizes the area of each fitted peak as well as the percentage of the total 

area that peak accounts for. 
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B

 
Figure 28 (A) 0hr filter compared to (B) Box 1.1, 24hr light, peak fitting. Note the change in 
shape of fitted Peaks 0, 2, and 3. The y-axis is absorbance normalized to the Teflon peak. 

A 

 

B 

 
C 

 

D 

 
Figure 29 Peak fitting of (A) Box 1.1, 24hr light, (B) Box 3.1, 24hr dark, (C) Box 1.4, 96hr light, 
and (D) Box 3.4, 96hr dark. A shape change can be seen in fitted Peaks 2 and 3 between Box 
1 and Box 3. The y-axis is absorbance normalized to the Teflon peak. 
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Table 1 Summary of Fitted Peak Areas 

0hr Frequency (cm-1) Area Area Sum % of Area 

Peak 0 1641.5 2.2476 

25.0239 

9.0 

Peak 1 1708 16.876 67.4 

Peak 2 1735.1 2.6009 10.4 

Peak 3 1770.3 3.2994 13.2 

24hr 
Light 

    

Peak 0 1641.5 1.0241 

9.2171 

11.1 
Peak 1 1708 4.6462 50.4 
Peak 2 1735.1 2.0544 22.3 
Peak 3 1770.3 1.4924 16.2 

24hr 
Dark 

    

Peak 0 1641.5 2.7023 

20.9406 

12.9 
Peak 1 1708 13.645 65.2 
Peak 2 1735.1 2.0178 9.6 
Peak 3 1770.3 2.5755 12.3 

96hr 
Light 

    

Peak 0 1641.5 4.112 

32.5629 

12.6 
Peak 1 1708 15.714 48.3 
Peak 2 1735.1 6.7714 20.8 
Peak 3 1770.3 5.9655 18.3 

96hr 
Dark 

    

Peak 0 1641.5 2.1627 

19.7689 

10.9 
Peak 1 1708 12.663 64.1 
Peak 2 1735.1 2.4472 12.4 
Peak 3 1770.3 2.496 12.6 

     
The peak percentages are relatively stable for both photolyzed and non-

photolyzed peaks across all time exposures. A main shape shift can be seen 

between Peaks 1 and 2 (1708 and 1735.1 cm-1). Photolyzed filters have a lower 

percentage for Peak 1 than that of the dark filters, yet a higher percentage for 

Peak 2. 

 Box 6 could not be fit for peak picking. Figure 30 B particularly shows the 

difficulty presented when trying to fit these two peaks and Figure 30 A shows 

there may not be a significant enough peak at ~1700 cm-1 anyway. 
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Figure 30 (A) IR of Box 6.1, 120hr light, (red) and Box 6.2, 144hr light (blue). (B) IR of Box 6 

zoomed to the carbonyl absorbance peak. 

Once again, the different characteristics between the two filters used in this 

experiment, and their possible influence on the data, needs to be better 

understood. Just as the Zefluor filter differed from the EZFlow filter for the UV/Vis 

analysis, so do the filters differ in IR analysis (Figure 31). 

 
Figure 31 Zefluor (red) and EZFlow (blue) IR, normalized to the Teflon peak. 

 Part of the OH stretching in the collected IR data sets is likely from water. 

Virginia is very humid, and the water in the atmosphere interferes with IR 

readings. Future experiments might consider setting up a box over the ATR 

crystal to ensure exact relative humidity measurements. Additionally, controlling 

film thickness as SOA is being loaded onto the filters should be explored. 



57 

 

Chapter 4: Organic Deposition through Dew Analysis 

4.1 Motivation for Investigating Organic Deposition 

Aerosols should not only be of concern when they exist in the atmosphere, 

but also should be considered for their impacts once they have been removed. 

Particles are removed from the atmosphere through deposition which is dictated 

by particulate mechanisms — impaction, sedimentation, and diffusion.10 Reactive 

organic carbons (ROCs) in the atmosphere exist in the gas phase as volatile 

organic compounds (VOCs) as well as the condensed phase as aerosols or 

cloud droplets. Knowing the fraction of emitted ROCs that are oxidized to 

completion as CO and CO2 as opposed to those lost to surfaces via deposition is 

an area of active research. Current models deal with deposited ROCs onto 

Earth’s surfaces by removing them entirely from the modeled atmosphere. Yet, in 

the lab, deposited organic molecules can react by heterogeneous oxidation as 

well as photolysis to produce small VOCs, proving that current atmospheric box 

models do not capture the return of deposited carbon back into the 

atmosphere.8,21,23,39,40 Quantifying and characterizing the extent of deposition and 

the effects of subsequent reactions will improve current atmospheric models and 

their predictions. 

Dew forms on nights when there is little-to-no cloud cover or wind, and it 

forms when the air is humid. For dew to manifest, surfaces must radiate their 

heat until their temperature has become equal to or lower than a critical 

temperature called the dew point. When this happens, water vapor contacting a 

cold surface condenses at a rate greater than that of evaporation.81,82 After the 

dew begins to form, organic compounds from the atmosphere are deposited 
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throughout the night. Additionally, dew is forming on surfaces which often have 

had dry deposition of material occurring throughout the previous day(s). 

Previous research has focused on inorganic ions and small acids found 

within dew droplets, but little is known about the organic composition or how this 

can vary by location, season, and possible chemistry occurring while the dew 

evaporates in the morning. Many deposited, small organic compounds are water 

soluble and can potentially re-volatilize off a surface as water evaporates. The 

identities of those organic compounds, and the magnitude in which they re-enter 

the atmosphere, are still unknown. Environmental surface waters, including dew, 

provide a good system to begin investigating these processes. Grass blades 

provide a suitable outdoor surface to investigate aerosol deposition and chemical 

composition to identify and quantify small organics. 

Researching the changes in composition of organic aerosols of polluted 

regions reveals information on both aerosol distribution and whether particles are 

created from natural or anthropogenic sources. Specifically, this research on 

organic carbon deposition lays the groundwork for an experimental platform to 

inform future studies on atmospheric organics to improve understanding of 

chemical transport and air quality, as well as to provide data on organic 

composition, potential clues about localization or seasonal changes, and whether 

re-emission into the atmosphere is occurring during dew evaporation.
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4.2 Experimental Methods 

4.2.1 Materials and Collection Method 

To avoid contamination of the organics being collected and analyzed, it 

was essential that any residual organic material on the collection apparatuses 

and in the collection vials was removed. To achieve this, all glassware was first 

placed in an oven and baked at 450°C for six hours to burn off any organics. 

Dew collection occurred during the early morning. A glass rod was swiped 

over an area of wet blades of grass then tilted vertically to allow the droplets of 

dew to drip from the rod and into a baked, glass vial. This was done until about 8 

– 10 mL was collected. After some experimentation, the glass rod was later 

replaced with a stainless steel, Fisherbrand™ Scoopula® spatula which was able 

to collect more dew droplets in its trough-like shape with one swipe across the 

grass blades. This dew solution was then pushed through a 

polytetrafluoroethylene (PTFE) or Teflon filter (Thermo Fisher Titan3, 0.2 µm) to 

remove grass, dirt, bacteria that would destroy the organic compounds, and any 

other foreign particles. This fluoropolymer is hydrophobic and nonreactive due to 

the high electronegativity of fluorine and the strength of the bonds between 

carbon and fluorine. The sample was then placed in a freezer until needed, at 

which time it was thawed for analysis. 

Initial tests on dew water samples in syringe fed ESI set ups clogged the 

spray capillary. It was determined that sample preparations required the dew 

solutions to undergo solid phase extraction (SPE)83,84 A nonpolar Bond Elut™ 
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PPL syringe (Agilent Technologies, 500 mg, 6 mL, Figure 32) with a styrene-

divinylbenzene (SDVB) polymer cartridge was used. 

 
Figure 32 Agilent Technologies PPL syringe.  

The syringe was chosen for its ability to retain polar analytes, its large, 

hydrophobic surface area, and its large pore size allowing for easy flow of 

particulate rich water samples. It was first rinsed with two cartridges (~4.4 mL) of 

MeOH29 to prepare the syringe, ensuring the sample would immediately be 

absorbed into the cartridge. A Pasteur pipet was used to load the dew sample 

into the PPL syringe to be filtered, collecting the eluate of elements of the dew 

sample that did not stick to the cartridge. Next, at least two cartridges of Milli-Q 

water spiked with one drop of 36 – 37% HCl was used to wash the PPL syringe; 

this was also collected. The PPL syringe was then dried by placing it under pure 

nitrogen flow for about 5 – 10 minutes. After the syringe cartridge was dry, a final 

collection was taken by washing with at least one cartridge of MeOH. This last 

eluate collection was analyzed via mass spectrometry. Preparing the PPL 

syringe for reuse required MeOH wash of at least 25 mL. 

4.2.2 Preliminary Results 

Initial sample analysis was done on a mass spectrometer (Thermo 

Finnigan LCQ Deca) linear ion trap which used a 2 mL blank of Milli-Q water 

spiked with 2 µL of formic acid for background, followed by a dew sample also 
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spiked with 2 µL of formic acid. This initial sample was too dilute to see any 

peaks and remaining samples needed to be concentrated. 

 Since water takes a long time to evaporate under gentle N2 flow, 

lyophilization, the process of freeze drying a sample in a vacuum, was chosen as 

the method of concentration. During lyophilization, volatile material in the sample 

is lost. AMS offline mass spectra for fresh dew and lyophilized dew samples 

(Figure 33) was taken to ensure this method would leave enough dew sample 

later for analysis. 

 
Figure 33 AMS offline mass spectra for (A) fresh dew and (B) lyophilized dew. The change 

between the two samples is consistent with the loss of more volatile organics during 

lyophilization. 

The difference between the two spectra is consistent with the loss of more 

volatile compounds during lyophilization; however, sufficient mass remained for 

analysis. Thus, this is a valid method for concentrating dew samples. 

 The lyophilized sample was run again on the linear ion trap (Figure 34). 

The sample concentration seemed to be remedied, but, eventually, the sample 

clogged the capillary. To clean the dew samples, SPE procedures were initiated 

using the PPL syringe as described in the Materials and Collection Method 

section. SPE is a commonly used method to prepare dissolved organic matter 

samples from other sources, such as lakes, oceans, etc. 
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Figure 34 Mass spectrum of a dew sample (black) and Milli-Q water (red). 

At this point, the samples were ready for the next round of data collection. 

A high resolution, Fourier transform ion cyclotron resonance mass spectrometer 

(FTICR-MS), located at Old Dominion University, was used to generate mass 

spectra for the dew sample. This analysis revealed a complex organic mixture 

along with large sugars (Figure 35). Sugars are likely from guttation: a process 

where material is expelled from plants at night.85 

 
Figure 35 Mass spectrum of a solid phase extracted dew sample analyzed by an FTICR at Old 

Dominion University. A complex mixture of organic molecules was observed along with large 

sugars (red). 
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4.2.3 Future Research 

Dew samples will continue to be lyophilized to increase concentration for 

future analysis. This method of freeze drying the samples will be done by placing 

them under a vacuum, preventing the samples from being contaminated by 

organics and increasing the concentration through the loss of water; however, 

some volatile compounds will be lost as well. 

SPE is a good preparation technique for soft ionization analysis, yet the 

material that is extracted may or may not be reproducible. Therefore, the reason 

initial tests clogged the capillary will be investigated.  

To probe the chemical identities of the components, samples will be 

derivatized with N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) and solvent 

extractions will be performed. This will enable composition identification done 

through gas chromatography mass spectrometry (GC/MS) using retention times 

from the GC and electron ionization fragmentation/fingerprint matching from the 

MS. After the most abundant compounds have been identified, standards will be 

used to calibrate the GC/MS to quantify these compounds across different 

samples. This process will be imposed on two different types of dew samples: 

“clean” samples that have been collected from Teflon sheets and natural dew 

water that has been collected from grass and leaves using glass rods or 

Scoopulas. 

Natural dew complexity can vary from surface to surface and is based on 

each surface’s history. To characterize this complexity, direct injection into an 

UHR-MS (either an Orbitrap or FTICR) via soft ionization (likely ESI) will be done. 
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This will provide the elemental formulas for a majority of the organic materials 

with sub-ppm mass accuracy in a single measurement.86 

Future research will continue to focus on characterizing chemical 

composition and changes throughout aging processes on both natural and 

cleaned surfaces by looking at impermeable surfaces, like urban buildings 

including tiles, walls, windows, etc.; biologic surfaces, like leaves and grass; and 

aqueous films and droplets, like dew. Laboratory experiments will probe 

deposited ROC by evaluating reactive uptake of oxidized VOCs into a sample 

and observing the chemical reactions that occur as samples are cycled in relative 

humidity, irradiated, and exposed to oxidants. Organic material remaining on the 

surface after these aging reactions will be characterized using advanced MS 

techniques and fluxes will be integrated into existing atmospheric models to 

better constrain organic carbon cycling in the atmosphere. 
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Chapter 5: Conclusion 

Combining the strengths of IR action spectroscopy, mass spectrometry, 

and computational modeling proved to be a successful analytical technique in 

generating detailed structural information of isolated ion populations. While this 

thesis demonstrated an acceptable spectral match of a cis-Pinonic Acid standard 

to an unknown, it is understood that this technique does not necessarily 

positively identify the structures of unknowns; however, implementing this 

method provides considerable support for assignments of isomers. Even if exact 

structures of unknowns cannot be determined, this system will significantly 

reduce the number of possible candidates. 

To move away from research of photochemical reactions in water droplets 

and increase the research of ambient organics in the gas phase, we are building 

an experimental foundation by developing methods for a more thorough analysis 

of photolysis of complex SOA films. From the ATR-FTIR results, we know the 

SOA film is changing with increased exposure to light. The UV/Vis analysis of 

photolyzed SOA cross sections showed a decrease in absorption for carbonyls 

(~280 nm), indicating chromophore bleaching. The red-shifted carbonyl 

absorbance peak from the comparison of photolyzed and non-photolyzed filters 

may denote shifts in C=O components in SOA. These likely include unknown 

amounts of ketones and aldehydes as well as carboxylic acids and esters. 

The next steps in this project will focus on collection of concentration data; 

evaluation of the efficacy of the new, EZFlow filters; replicates of the box 

experiments, especially looking at Position 4; continued comparison of 
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photolyzed and non-photolyzed exposures; increased time exposures; and 

further investigation of the changes in absorption of the carbonyl peak. This 

research will give insights to improve atmospheric models by providing more 

accurate data of aged SOA, replacing the current inputs of molecular 

composition and absorption cross section data from fresh SOA. 

The O’Brien lab will continue to research condensed phase organic 

carbon (both aerosol and deposited films) to explore changes the in composition 

of organic aerosols in different regions, gaining insight into aerosol chemical 

distributions and aerosol sources. 

Preliminary dew analysis resulted in the realization that dew sample 

concentration needs to be increased, and samples need to be cleaned more 

thoroughly. Investigation into why these samples clog the capillaries will be 

conducted, and lyophilization as a concentration method will be continued. 

The laboratory will continue analyzing the composition and reactivity of 

deposited organic materials on indoor and outdoor surfaces. It is anticipated that 

laboratory aging experiments will take place in two different types of indoor 

chambers. The first will be a Teflon-film-lined chamber for surface water droplets 

with a temperature-controlled Teflon, multiwell plate, involving the photolysis box. 

Light will be directed into the box containing dew samples, where they will be 

irradiated and dried out simultaneously to see if and how composition changes. 

The second chamber will be a Teflon-lined glove box to enable time resolved, dry 

surface analysis. This dew analysis research, though in its beginning stages, lays 

the groundwork for an experimental platform to inform future research seeking to 
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understand chemical transport and air quality through the study of aging organic 

films on natural surfaces. 

This laboratory’s ultimate goal with its research is to characterize chemical 

composition and changes as a result of atmospheric aging to understand carbon 

cycling, lifetimes, and transportation to improve existing atmospheric models and 

predictions benefitting human health and influence positive climate change.  
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APPENDIX A 

 

Table A1: A summary of IR stretches for the lowest energy conformations of 

calculated anions. 

 

 

 
 

 

  

Norpinic Acid 

 

Frequency (cm-1) Vibrational Mode 

504 Whole molecule shifting with no clear focal point 

591 Carboxylic acid hydrogen swinging 

773 
Symmetric carboxylic acid stretch, at the site of the anion, with 

slight twist/rotation of the oxygens around the carbon; residual ring 
movement 

1063, 1135 
Carboxylic acid C-O bond (OH) stretch; expansion and contraction 

of the ring 

1153 Aliphatic stretching/swinging 

1352 Symmetric carboxylic acid stretch at the site of the anion 

1655 Asymmetric carboxylic acid stretch at the site of the anion 

1788 Carbonyl stretch at the carboxylic acid 

 

Norpinonic Acid 

 

Frequency (cm-1) Vibrational Mode 

776 
Symmetrical carboxylic acid stretch, with slight twist/rotation of the 

oxygens around the carbon; residual ring movement 

1172, 1187, 1190 Aliphatic stretching along with stretching within the ring 

1350 Symmetric carboxylic acid stretch 

1654 Asymmetric carboxylic acid stretch 

1752 Carbonyl stretch at the ketone 

 

Pinalic-3-Acid 

 

Frequency (cm-1) Vibrational Mode 

1349 Symmetric carboxylic acid stretch; residual aliphatic stretching 

1653 Asymmetric carboxylic acid stretch 

1770 Carbonyl stretch at the aldehyde 

 

Pinalic-4-Acid 

 
 

Frequency (cm-1) Vibrational Mode 

1339 Symmetric carboxylic acid stretch; residual aliphatic stretching 

1656 Asymmetric carboxylic acid stretch 

1747 Carbonyl stretch at the aldehyde 
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Pinic Acid (R)-COO 

 
 

Frequency (cm-1) Vibrational Mode 

534 Carboxylic acid hydrogen swinging 

1292 
Carboxylic acid hydrogen swinging directly under carbon of 

carbonyl 

1344 Symmetric carboxylic acid stretch at the site of the anion 

1652 Asymmetric carboxylic acid stretch at the site of the anion 

1822 Carbonyl stretch at the carboxylic acid (not at the site of the anion) 

 

Pinic Acid COO  

 
 

Frequency (cm-1) Vibrational Mode 

573 Carboxylic acid hydrogen swinging 

584 Whole molecule shifting with no clear focal point 

615 Carboxylic acid hydrogen swinging 

1343 Symmetric carboxylic acid stretch at the site of the anion 

1652 Asymmetric carboxylic acid stretch at the site of the anion 

1783 Carbonyl stretch at the carboxylic acid (not at the site of the anion) 

 

Pinolic Acid COO  

 
 

Frequency (cm-1) Vibrational Mode 

1279 Alcohol hydrogen swinging 

1344 Symmetric carboxylic acid stretch at the site of the anion 

1649 Asymmetrical carboxylic acid stretch 

  

  

  

 

Pinolic Acid OH  

 
 

Frequency (cm-1) Vibrational Mode 

567 Carboxylic acid hydrogen swinging 

603 
Hydrogen and carbonyl oxygen pinched towards each other at the 

carboxylic acid 

615 Carboxylic acid hydrogen swinging 

1097, 1170 
Rotation of hydrogens and carbons throughout the molecule and 

ring expansion and contraction 

1787 Carbonyl stretch at the carboxylic acid 
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Terebic Acid  

 
 

Frequency (cm-1) Vibrational Mode 

677, 931.71 

Slight symmetric carboxylic acid stretch, but mainly a result of the 
expansion and contraction of the 5-membered ring (latter more 
asymmetrical stretching within ring, focused around the oxygen 

contained within the ring) 

763 
Symmetric and slight twisting carboxylic acid stretch; expansion 

and contraction of the 5-membered ring 

1349 Symmetric carboxylic acid stretch 

1673 Asymmetric carboxylic acid stretch 

1792 Carbonyl stretch not at the site of the anion 

  

  

  

 

Terpenylic Acid  

 
 

Frequency (cm-1) Vibrational Mode 

868, 1335 Symmetric carboxylic acid stretch 

1670 Asymmetric carboxylic acid stretch 

1809 Carbonyl stretch not at the site of the anion 
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APPENDIX B 

The xenon arc lamp uses a 299 nm cut-off filter. Solar radiation that reaches 

Earth’s surface is greater than 290 nm, therefore light with shorter wavelengths is 

being absorbed and removed by the ozone layer. The cut-off filter implements 

the same principle as the ozone layer by removing this light from the lamp beam 

to produce a better match to ambient light. The lamp also had cooling water flow 

to limit IR exposure to the filters. IR light in the form of heat is coming from the 

lamp. To avoid the SOA film being heated, and thus evaporated, this water flow 

absorbs the IR light. 

Table B1: A summary of the preliminary SOA sample filters. Filter name refers to 

the date SOA was loaded onto the filter with “a” designating a morning collection, 

“p” an afternoon collection, and “n” a night collection. Filters 10/22/18p and 

10/23/18a were placed in the miniaturized chamber box without zero air flow or a 

Teflon cover. Filter 10/24/18p was placed in the box without zero air flow but with 

a Teflon cover. 

Filter 
Name 

SOA Mass 
(mg)* 

SOA Loading 
Time 

Irradiation 
Time 

IR UV/Vis 

Blank 307.6** — — Y Y 

10/22/18p 2.5 3hr 

0hr 

Y N 

6hr 

12hr 

24hr 

29hr 

10/23/18a 2.0 3hr 

0hr 

Y N 

3hr 

6hr 

9hr 

12hr 

10/24/18a 1.7 3hr — N Y 

10/24/18p 1.6 3hr 24hr N Y 

10/25/18p 2.5 3hr — N Y 

11/1/18p 3.7 3hr — Y N 

11/2/18a 2.4 3hr — Y N 
*Gravimetric; measured on a Denver Instrument APX – 200, d = 0.1 mg balance 
**Average mass of Zefluor filter 
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Table B2: The total sample volume (µL) of dilutions for the UV/Vis analyzed box 

samples. 

 
 

Table B3: A summary of SOA loaded, Zefluor filters photolyzed in the miniature 

chamber box under zero air flow and Teflon cover conditions. Extracted 

concentrations refers to AMS (g/L) and Orbitrap (mM) concentrations at a total 

sample volume of 180 µL. Concentration data only concluded for Box 1 and thus 

extrapolated for Boxes 2 – 4. 

 
 

 

  

 
Filter 
Name 

Box Starting 
Date 

SOA Mass 
(mg)* 

SOA Loading 
Time 

Irradiation 
Time 

Extracted 
Concentrations 

(g/L, mM) 

Box 1.1 10/30/18a 

11/15/18 

3.7 3hr 24hr 16.08 45.94 

Box 1.2 10/29/18a 2.3 3hr 48hr 7.93 21.73 

Box 1.3 10/26/18a 5.6 3hr 72hr 10.70 29.48 

Box 1.4 10/29/18p 2.0 3hr 96hr 4.13 11.38 

Box 2.1 10/30/18p 

11/25/18 

2.9 3hr 24hr 16.08 42.43 
Box 2.2 10/31/18a 2.3 3hr 48hr 7.93 20.49 
Box 2.3 10/31/18p 2.7 3hr 72hr 10.70 29.32 
Box 2.4 11/1/18a 1.9 3hr 96hr 4.13 11.32 

Box 3.1 11/3/18p 

11/30/18 

4.0 3hr 24hr 16.08 40.92 
Box 3.2 11/3/18n 3.4 3hr 48hr 7.93 20.18 
Box 3.3 11/5/18a 3.2 3hr 72hr 10.70 27.23 
Box 3.4 11/6/18a 3.1 3hr 96hr 4.13 10.51 

Box 4.1 11/7/18a 

1/2/19 

2.1 3hr 96hr 4.13 11.32 
Box 4.2 11/7/18p 3.2 3hr 96hr 4.13 11.32 
Box 4.3 11/8/18a 3.6 3hr 96hr 4.13 11.32 
Box 4.4 11/13/18a 3.6 3hr 96hr 4.13 11.32 
*Gravimetric; measured on a Denver Instrument APX – 200, d = 0.1 mg balance 
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Table B4: A summary of SOA loaded, EZFlow filters photolyzed in the miniature 

chamber box under zero air flow and Teflon cover conditions. Box 5 consists of 

non-SOA loaded filters, subject to the box conditions but not exposed to light. 

Concentration data collection from the AMS and Orbitrap has not been 

conducted at this time. 

 
Filter 
Name 

Box Starting 
Date 

SOA Mass 
(mg)* 

SOA Loading 
Time 

Irradiation 
Time 

 Blank  133.6** — — 

Box 5.1 Dark 1 

1/9/19 

133.6** — 96hr Dark 
Box 5.2 Dark 2 133.6** — 120hr Dark 
Box 5.3 Dark 3 133.6** — 144hr Dark 
Box 5.4 Dark 4 133.6** — 168hr Dark 

Box 6.1 1/14/19a 
1/25/19 

1.1 3hr 120hr 
Box 6.2 1/15/19a 0.6 3hr 144hr 
*Gravimetric; measured on a Denver Instrument APX – 200, d = 0.1 mg balance 
**Average mass of EZFlow filter 

  



74 

 

Table B5: An example, using Box 1.1, of the concentration calculations to create 

calibration curves. 

Total Sample 
Volume (µL) 

Concentration (g/L) 
Molarity 
(mol/L) 

molecules/L 

180 16.08 0.0459 — 
300 9.65 0.0276 1.7e19 
400 7.24 0.0207 1.2e19 
500 5.79 0.0165 10.0e18 
… … … … 

3450 0.84 0.0024 1.4e18 

The original AMS concentration is divided by the total sample volume of a dilution 

to get that dilution’s concentration. 

16.08
𝑔
𝐿 (180𝜇𝐿)

300𝜇𝐿
⁄ = 9.65

𝑔

𝐿
 

This concentration is then divided by the mass obtained from the Orbitrap to 

convert into molarity. 

9.65
𝑔
𝐿

350
𝑔

𝑚𝑜𝑙

⁄  =  0.0276
𝑚𝑜𝑙

𝐿
 

Then, molarity is converted into molecules per milliliter by multiplying molarity by 

Avogadro’s number and dividing by milliliters. 

0.0276
𝑚𝑜𝑙

𝐿 (6.022 ∗ 1023 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝑚𝑜𝑙

)

1000𝑚𝐿
⁄ = 1.7 ∗  1019

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚𝐿
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Table B6: A summary of the IR stretches associated with this thesis. 

Frequency 

(cm-1) 
Absorption (cm-1) Appearance Group 

Compound 
Class 

4000 – 3000 3550 – 3200 Strong, Broad 
O–H 

Stretch 
Alcohol 

3000 – 2500 3100 – 3000 Medium 
C–H 

Stretch 
Alkene 

 3000 – 2840 Medium 
C–H 

Stretch 
Alkane 

2000 – 1650 1750 – 1735 Strong 
C=O 

Stretch 
Lactone 

 1720 - 1706 Strong 
C=O 

Stretch 
Carboxylic 

Acid of Dimer 

1400 – 1000 
1400 – 1000 
1211, 115487 

Strong 
C–F 

Stretch 
Fluoro 

Compound 

<650 63987 Strong 
C–F 

Stretch 
Fluoro 

Compound 
IR Spectrum Table & Chart. Sigma-Aldrich88 

Table B7: A summary of the area of each fitted peak, as well as the percentage 

of the total area that peak accounts for, for Box 1.2, 3 and Box 3.2, 3. 

48hr Light Frequency (cm-1) Area Area Sum % of Area 

Peak 0 1641.5 1.6307 

15.1005 

10.8 

Peak 1 1708 6.7362 44.6 

Peak 2 1735.1 3.9043 25.9 

Peak 3 1770.3 2.8293 18.7 

72hr Light     

Peak 0 1641.5 2.7606 

22.9897 

12.0 
Peak 1 1708 10.781 46.9 
Peak 2 1735.1 5.0351 21.9 
Peak 3 1770.3 4.4130 19.2 

48hr Dark     

Peak 0 1641.5 0.80416 

5.78165 

13.9 
Peak 1 1708 3.5997 62.3 
Peak 2 1735.1 0.68852 11.9 
Peak 3 1770.3 0.68927 11.9 

72hr Dark     

Peak 0 1641.5 1.4754 

11.9301 

12.4 
Peak 1 1708 7.4104 62.1 
Peak 2 1735.1 1.5648 13.1 
Peak 3 1770.3 1.4795 12.4 
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APPENDIX C 

Abbreviations 

AMS Aerosol Mass Spectrometer 

ATR-FTIR Attenuated Total Reflectance Fourier Transform Infrared 

(Spectrometer) 

CCN  Cloud Condensation Nuclei 

DFT  Density Functional Theory 

ESI  Electrospray Ionization 

FEL  Free Electron Laser 

FTICR  Fourier Transform Ion Cyclotron Resonance (Mass Spectrometer) 

GC  Gas Chromatography 

HR-TOF High Resolution Time of Flight 

IR  Infrared 

IRMPD Infrared Multiphoton Dissociation 

MS  Mass Spectrometry/Spectrometer 

POA  Primary Organic Aerosol 

ROC  Reactive Organic Carbon 

SOA  Secondary Organic Aerosol 

SPE  Solid Phase Extraction 

UHR-MS Ultrahigh Resolution Mass Spectrometer 

VOC  Volatile Organic Compound  



77 

 

REFERENCES 

1. Epstein, S.A.; Blair, S.L.; Nizkorodov, S.A. Environ. Sci. Technol., 2014, 

48, 11251 – 11258. 

2. Henry, K.M.; Donahue, N.M. J. Phys. Chem. A, 2012, 116, 5932 – 5940 

3. Hodzic, A.; Madronich, S.; Kasibhatla, P.S.; Tyndall, G.; Aumont, B.; 

Jimenez, J.L.; Lee-Taylor, J.; Orlando, J. Atmos. Chem. Phys., 2015, 15, 

9253 – 9269. 

4. Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J.H. Environ. 

Sci. Technol., 2006, 15, 1869 – 1877. 

5. Wong, J.P.S.; Zhou, S.; Abbatt, J.P.D. J. Phys. Chem. A, 2015, 119, 4309 

– 4316. 

6. O’Brien, R.E.; Ridley, K.J.; Canagaratna, M.R.; Jayne, J.T.; Croteau, P.L.; 

Worsnop, D.R.; Budisulistiorini, S.H.; Surratt, J.D.; Follett, C.L.; Repeta, 

D.J.; Kroll, J.H. Atmos. Meas. Tech. Discuss, 2018, in review. 

7. Breitenlechner, M.; Fischer, L.; Hainer, M.; Heinritzi, M.; Curtius, J.; 

Hansel, A. Anal. Chem., 2017, 89, 5824 – 5831. 

8. Glasius, M.; Goldstein, A.H. Environ. Sci. Technol., 2016, 50, 2754 – 

2764. 

9. Safieddine, S.; Heald, C.L. “Wet Deposition Flux of reactive Organic 

Carbon.” AGU, 2016. 

10. Marley, N.A.; Gaffney, J.S. ACS Symposium Series, 2006, 1 – 21. 

11. Penner, J.E.; Andreae, M.; Annegarn, H.; Barrie, L.; Feichter, J.; Hegg, D.; 

Jayaraman, A.; Leaitch, R.; Murphy, D.; Nganga, J.; Pitari, G. IPCC WGI 

Third Assessment Report, 2000, 289 – 348.  

12. Prentice, I.C.; Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, 

M.; Jaramillo, V.J.; Kheshgi, H.S.; LeQuéré, C.; Scholes, R.J.; Wallace, 

D.W.R. IPCC, 2001: Climate Change 2001: The Scientific Basis. 

Contributions of Working Group I to the Thrid Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, 185 – 237. 

13. Voiland, A. “Aerosols: Tiny Particles, Big Impact.” NASA, NASA, 2010. 

earthobservatory.nasa.gov/features/Aerosols/page1.php 

14. Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; 

Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; 

Hamilton, J.F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, 

M.E.; Jimenez, J.L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; 

Mentel, Th.F.; Monod, A.; Prevot, A.S.H.; Seinfeld, J.H.; Surratt, J.D.; 

Szmigielski, R.; Wildt, J. Atmos. Chem. Phys., 2009, 9, 5155 – 5236. 



78 

 

15. Kommalapati, R.R.; Valsaraj, K.T. Atmospheric aerosols and their 

importance. ACS Symposium Series, 2009, 1 – 10. 

16. Jacob, D.J. Introduction to Atmospheric Chemistry. Princeton University 

Press, 1999. 

17. O’Brien, R.E. Chemical characterization of organic compounds in dew 

water. 2017, 1 – 4. 

18. O’Brien, R.E.; Neu, A.; Epstein, S.A.; MacMillan, A.C.; Wang, B.; Kelly, 

S.T.; Nizkorodov, S.A.; Laskin, A.; Moffet, R.C.; Gilles, M.K. Geophys. 

Res. Lett., 2014, 41, 4347 – 4353. 

19. Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, 

I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; Dzepina, K.; 

Dunlea, E.; Docherty, K.; DeCarlo, P.F.; Salcedo, D.; Onasch, T.; Jayne, 

J.T.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; 

Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; 

Williams, P.; Bower, K.; Bahreini, R.; Cottrell, L.; Griffin, R.J.; Rautiainen, 

J.; Sun, J.Y.; Zhang, Y.M.; Worsnop, D.R. Geophys. Res. Lett., 2007, 34, 

L13801. 

20. O’Brien, R.E.; Nguyen, T.B.; Laskin, A.; Laskin, J.; Hayes, P.L.; Liu, S.; 

Jimenez, J.L.; Russell, L.M.; Nizkorodov, S.A.; Goldstein, A.H. J. 

Geophys. Res. Atmos., 2013, 118, 1042 – 1051. 

21. Vaden, T.D.; Imre, D.; Beránek, J.; Shrivastava, M.; Zelenyuk, A. Proc. 

Natl. Acad. Sci. U.S.A., 2011, 108, 2190 – 2195. 

22. Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirilä, P.; 

Leskinen, J.; Mäkelä, J.M.; Holopainen, J.K.; Pöschl, U.; Kulmala, M.; 

Worsnop, D.R.; Laaksonen, A. Nature, 2010, 467, 824 – 827. 

23. Lagzi, I.; Mészáros, R.; Gelybó, G.; Leelőssy, A. Atmospheric Chemistry. 

Eötvös Loránd University, 2013. 

24. Speight, J.G. Environmental Organic Chemistry for Engineers. Elsevier 

Inc., 2016. 

25. Oliveira, B.F.; Ignotti, E.; Hacon, S.S. Cad Saude Publica, 2011, 9, 1678 – 

1698. 

26. Pöschl, U. Angew. Chem. Int. Ed., 2005, 44, 7520 – 7540. 

27. Safieddine, S.A.; Heald, C.L.; Henderson, B.H. Geophys. Res. Lett., 2017, 

44, 3897 – 3906. 

28. Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; 

Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, 

V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; 

Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; 

Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; 

Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; 



79 

 

Sun, S.; Tausnev, N.; Thresher, D.; Weilicki, B.; Wong, T.; Yao, M.; 

Zhang, S.  Efficacy of climate forcings. J. Geophys. Res., 2005, 110, 1 – 

45. 

29. Winterhalter, R.; Van Dingenen, R.; Larsen, B.R.; Jensen, N.R.; Hjorth, J. 

Atmos. Chem. Phys. Discuss., 2003, 3, 1 – 39. 

30. “Climate Change Indicators: Climate Forcing.” U.S. Environ. Protection 

Agency, EPA, 2016, epa.gov/climate-indicators/climate-change-indicators-

climate-forcing 

31. Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley Jr., J.A.; 

Hansen, J.E.; Hofmann, D.J. Science, 1992, 255, 423 – 430. 

32. Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; 

Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; 

Swietlicki, E.; Putaud, J.P.; Balkanski, Y.; Fuzzi, S.; Horth, J.; Moortgat, 

G.K.; Winterhalter, R.; Myhre, C.E.L.; Tsigaridis, K.; Vignati, E.; 

Stephanou, E.G.; Wilson, J. Atmos. Chem. Phys., 2005, 5, 1053 – 1123. 

33. Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; 

Dai, X.; Maskell, K.; Johnson, C.A. IPCC, 2001: Climate Change 2001: 

The Scientific Basis. Contribution of Working Group I to the Third 

Assessment Report of the Intergovernmental Panel on Climate Change. 

Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA, 881. 

34. “Scientific Consensus: Earth’s Climate is Warming.” NASA, NASA, 

climate.nasa.gov/scientific-consensus 

35. Monroe, R. “The History of the Keeling Curve.” SCRIPPS Institute of 

Oceanography, 2013, 

scripps.ucsd.edu/programs/keelingcurve/2013/04/03/the-history-of-the-

keeling-curve 

36. Keeling, R.F.; Piper, S.C.; Bollenbacher, A.F.; Walker J.S.  2009. 

37. Keeling, R.F.; Manning, A.C. In Treatise on Geochemistry, 2nd ed.; 2018, 

385 – 404. 

38. Inventory of U.S. Greenhouse Gas Emissions and Sinks. U.S. Environ. 

Protection Agency, EPA, 1990 – 2015. 

39. de Gouw, J.A.; Jimenez, J.L. Environ. Sci. Technol., 2009, 43, 7614 – 

7618. 

40. de Gouw, J.A.; Middlebrook, A.M.; Warneke, C.; Goldan, P.D.; Kuster, 

W.C.; Roberts, J.M.; Fehsenfeld, F.C.; Worsnop, D.R.; Canagaratna, 

M.R.; Pszenny, A.A.P.; Keene, W.C.; Marchewka, M.; Bertman, S.B.; 

Bates, T.S. J. Geophys. Res. Atmos., 2005, 110, D16305. 

41. Pankow, J. F. Atmos. Environ., 1994, 28, 189 – 193. 



80 

 

42. Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prévôt, A.S.H.; Zhang, 

Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; et al. Science, 2009, 326, 1525 – 

1529. 

43. Vaden, T.D.; Song, C.; Rahul, A.Z.; Imre, D.; Zelenyuk, A. Proc. Natl. 

Acad. Sci. U.S.A., 2010, 107, 6658 – 6663. 

44. O’Brien, R.E.; Laskin, A.; Laskin, J.; Rubitschun, C.L.; Surratt, J.D.; 

Goldstein, A.H. J. Geophys. Res. Atmos., 2014, 119, 706 – 12, 720.  

45. O’Brien, R.E.; Laskin, A.; Laskin, J.; Liu, S.; Weber, R.; Russell, L.M.; 

Goldstein, A.H. Atmos. Environ., 2013, 68, 265 – 272. 

46. Lin, P.; Fleming, L.T.; Nizkorodov, S.A.; Laskin, A.; Laskin, J. Anal. 

Chem., 2018, 15, 12. 

47. Nguyen, T.B.; Lee, P.B.; Updyke, K.M.; Bones, D.L.; Laskin, A.; Laskin, J.; 

Nizkorodov, S.A. J. Geophys. Res. Atmos., 2012, 117, (D1). 

48. Pratt, K.A.; Prather, K.A Mass Spectrom. Rev., 2012, 31, 1 – 48. 

49. Isaacman-Vanwertz, G.; Massoli, P.; O’Brien, R.E.; Lim, C.; Franklin, J.P.; 

Moss, J.A.; Hunter, J.F.; Nowak, J.B.; Canagaratna, M.R.; Misztal, P.K.; et 

al. Nat. Chem., 2018, 10, 462 – 468. 

50. Laskin, J.; Laskin, A.; Nizkorodov, S.A. Anal. Chem., 2017, 90, 166 – 189. 

51. Isaacman, G.; Kreisberg, N.M.; Yee, L.D.; Worton, D.R.; Chan, A.W.H.; 

Moss, J.A.; Hering, S.V; Goldstein, A.H. Atmos. Meas. Tech., 2014, 7, 

4417 – 4429. 

52. Isaacman-Vanwertz, G.; Yee, L.D.; Kreisberg, N.M.; Wernis, R.; Moss, 

J.A.; Hering, S.V; de Sá, S.S.; Martin, S.T.; Alexander, M.L.; Palm, B.B.; 

Hu, W.; Campuzano-Jost, P.; Day, D.A.; Jimenez, J.L.; Riva, M.; Surratt, 

J.D.; Viegas, J.; Manzi, A.; Edgerton, E.; Baumann, K.; Souza, R.; Artaxo, 

P.; Goldstein, A.H. Environ. Sci. Technol., 2016, 50, 9952 – 9962. 

53. Worton, D.R.; Decker, M.; Isaacman-Vanwertz, G.; Chan, A.W.H.; Wilson, 

K.R.; Goldstein, A.H. Analyst., 2017, 142, 2395 – 2403. 

54. Cui, T.; Zeng, Z.; dos Santos, E.O.; Zhang, Z.; Chen, Y.; Zhang, Y.; Rose, 

C.A.; Budisulistiorini, S.H.; Collins, L.B.; Bodnar, W.M.; de Souza, R.A.F.; 

Martin, S.T.; Machado, C.M.D.; Turpin, B.J.; Gold, A.; Ault, A.P.; Surratt, 

J.D. Environ. Sci. Process. Impacts, 2018, 20, 1524 – 1536. 

55. Krechmer, J.E.; Groessl, M.; Zhang, X.; Junninen, H.; Massoli, P.; Lambe, 

A.T.; Kimmel, J.R.; Cubison, M.J.; Graf, S.; Lin, Y.H.; et al. Atmos. Meas. 

Tech., 2016, 9, 3245 – 3262. 

56. Sancar, A. Adv. Protein Chem., 2004, 69, 73 – 100. 

57. Bhutani, V.K.; Lamola, A.A. Fetal and Neonatal Physiology (5th. Ed.), 

2017, 2, 942 – 952. 

58. FELIX Laboratory, Radboud University, 2019, ru.nl/felix/ 



81 

 

59. O’Brien, J.T.; Prell, J.S.; Steill, J.D.; Oomens, J.; Williams, E.R. J. Phys. 

Chem. A, 2008, 112, 10823 – 10830. 

60. Forbes, M.W.; Bush, M.F.; Polfer, N.C.; Oomens, J.; Dunbar, R.C.; 

Williams, E.R.; Jockusch, R.A. J. Phys. Chem. A, 2007, 111, 11759 – 

11770. 

61. Martens, J.; Grzetic, J.; Berden, G.; Oomens, J. Nat. Commun. 2016, 7, 

11754. 

62. Martens, J.; Berden, G.; Bentlage, H.; Coene, K.L.M.; Engelke, U.F.; 

Wishart, D.; van Scherpenzeel, M.; Kluijtmans, L.A.J.; Wevers, R.A.; 

Oomens, J J.Inherit. Metab. Dis., 2018, 41, 367 – 377. 

63. Prell, J.S.; Chang, T.M.; O’Brien, J.T.; Williams, E.R. J. Am. Chem. Soc., 

2010, 132, 7811 – 7819. 

64. Poutsma, J.C.; Martens, J.; Oomens, J.; Maitre, P.; Steinmetz, V.; Bernier, 

M.; Jia, M.; Wysocki, V. J. Am. Soc. Mass Spectrom., 2017, 28, 1482 – 

1488. 

65. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; 

Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, 

G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; 

Bloino, J.; Zheng, G.; Sonnenber, D.J. Gaussian 09. Gaussian, Inc. 

Wallingford CT. 2009. 

66. Heiles, S.; Cooper, R.J.; Berden, G.; Oomens, J.; Williams, E.R. Phys. 

Chem. Chem. Phys., 2015, 17, 30642 – 30647. 

67. Oomens, J.; Steill, J.D.; Redlich, B. J. Am. Chem. Soc., 2009, 131, 4310 – 

4319. 

68. Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, 

A.S.H.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; et al. 

Science, 2004, 303, 1659 – 1662. 

69. Tolocka, M.P.; Jang, M.; Ginter, J.M.; Coz, F.J.; Kamens, R.M.; Johnston, 

M.V. Environ. Sci. Technol., 2004, 38, 1428 – 1434. 

70. Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification 

of Organic Compounds Seventh Edition. John Wiley Sons, Inc., 2005. 

71. Zhang, X.; McVay, R.C.; Huang, D.D.; Dalleska, N.F.; Aumont, B.; Flagan, 

R.C.; Seinfeld, J.H. Proc. Natl. Acad. Sci. U.S.A., 2015, 112, 14168 – 

14173. 

72. Finessi, E.; Lidster, R.T.; Whiting, F.; Elliott, T.; Alfarra, M.R.; Mcfiggans, 

G.B.; Hamilton, J.F. Anal. Chem., 2014, 86, 11238 – 11245. 

73. Bythell, B.J.; Rabus, J.M.; Wagoner, A.R.; Abutokaikah, M.T.; Maître, P. J. 

Am. Soc. Mass Spectrom., 2018, 29, 2380 – 2393. 



82 

 

74. Yasmeen, F.; Szmigielski, R.; Vermeylen, R.; Gõmez-González, Y.; 

Surratt, J.D.; Chan, A.W.H.; Seinfeld, J.H.; Maenhaut, W.; Claeys, M. J. 

Mass Spectrom., 2011, 46, 425 – 442. 

75. Claeys, M.; Iinuma, Y.; Szmigielski, R.; Surratt, J.D.; Blockhuys, F.; 

Alsenoy, C.V.; Boge, O.; Sierau, B.; Gomez-Gonzalez, Y.; Verrmeylen, R.; 

et al. Environ. Sci. Technol., 2009, 43, 6976 – 6982. 

76. Jaoui, M.; Kamens, R.M. J. Atmos. Chem., 2003, 44, 259 – 297. 

77. Kroll, J.H.; Seinfeld, J.H. Atmos. Environ., 2008, 42, 3593 – 3624. 

78. Tkachenko, N. V. Optical Spectroscopy: Methods and Instrumentations. 

Institute of Materials Chemistry Tampere University of Technology, 

Tampere, Finland, 2006. 

79. Kuhn, H.J.; Braslavsky, S.E.; Schmidt, R. Pure Appl. Chem., 2004, 76, 

2105 – 2146. 

80. Mang, S.A.; Henricksen, D.K.; Bateman, A.P.; Andersen, M.P.S.; Blake, 

D.R.; Nizkorodov, S.A. J. Phys. Chem. A, 2008, 112, 8337 – 8344. 

81. Agam, N.; Berliner, P.R. J. Arid Environ., 2006, 65, 572 – 590. 

82. Stone, E.C. Q. Rev. Biol., 1963, 38, 328 – 341. 

83. Guide to Solid Phase Extraction. Sigma-Aldrich. 

84. Hennion, M.C. J. Chromatogr. A., 1999, 856, 3 – 54. 

85. Singh, S. Adv. Agron., 2014, 128, 97 – 135. 

86. Schmitt-Kopplin, P.; Hertkorn, N. Anal. Bioanal. Chem., 2007, 5, 1309 – 

1310. 

87. Fazullin, D.D.; Mavrin, G.V.; Sokolov, M.P.; Shaikhiev, I.G. Modern 

Applied Science, 2015, 9, 242 – 249. 

88. IR Spectrum Table & Chart. Sigma-Aldrich. sigmaaldrich.com/technical-

documents/articles/biology/ir-spectrum-table. 


	Complex Mixtures: Identifying and Characterizing Secondary Organic Aerosols
	Recommended Citation

	tmp.1564057447.pdf.e2HcF

