3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2019

GPGPU Reliability Analysis: From Applications to Large Scale
Systems

Bin Nie
William & Mary - Arts & Sciences, bnie0307@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Nie, Bin, "GPGPU Reliability Analysis: From Applications to Large Scale Systems" (2019). Dissertations,
Theses, and Masters Projects. William & Mary. Paper 1563898932.
http://dx.doi.org/10.21220/s2-j086-2347

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1563898932&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1563898932&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-j086-2347
mailto:scholarworks@wm.edu

GPGPU Reliability Analysis:
from Applications to Large Scale Systems

Bin Nie

Dalian, Liaoning, China

Master of Science, Fordham University, 2014
Bachelor of Engineer, Xiamen University, 2012

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of
Doctor of Philosophy

Department of Computer Science

College of William & Mary
May, 2019

© Copyright by Bin Nie 2019

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

B, Nee

Bin Nie

Approved by the Committee, May 2019

p@é&w’
v . .
Committee Chair

Professor Evgenia Smirni, Computer Science
College of William & Mary

B Ny

Professor Adwait Jog, Comp%r Science
College of William & Mary

m/\/
Professor Xu Liu, Computer Science
College of William & Mary

T~

Professor Bin Ren, Computer Science
College of William & Mary

Y bay 1.1

Professor Karthik Pat’tabiraman, Electrical and Computer Engineering
University of British Columbia

ABSTRACT

Over the past decade, GPUs have become an integral part of mainstream
high-performance computing (HPC) facilities. Since applications running on HPC
systems are usually long-running, any error or failure could result in significant
loss in scientific productivity and system resources. Even worse, since HPC
systems face severe resilience challenges as progressing towards exascale
computing, it is imperative to develop a better understanding of the reliability of
GPUs. This dissertation fills this gap by providing an understanding of the effects
of soft errors on the entire system and on specific applications.

To understand system-level reliability, a large-scale study on GPU soft errors in
the field is conducted. The occurrences of GPU soft errors are linked to several
temporal and spatial features, such as specific workloads, node location,
temperature, and power consumption. Further, machine learning models are
proposed to predict error occurrences on GPU nodes so as to proactively and
dynamically turning on/off the costly error protection mechanisms based on
prediction results.

To understand the effects of soft errors at the application level, an effective
fault-injection framework is designed aiming to understand the reliability and
resilience characteristics of GPGPU applications. This framework is effective in
terms of reducing the tremendous number of fault injection locations to a
manageable size while still preserving remarkable accuracy. This framework is
validated with both single-bit and multi-bit fault models for various GPGPU
benchmarks. Lastly, taking advantage of the proposed fault-injection framework,
this dissertation develops a hierarchical approach to understanding the error
resilience characteristics of GPGPU applications at kernel, CTA, and warp levels.
In addition, given that some corrupted application outputs due to soft errors may
be acceptable, we present a use case to show how to enable low-overhead yet
reliable GPU computing for GPGPU applications.

TABLE OF CONTENTS

Acknowledgments

Dedication

List of Tables

List of Figures

1

2

Introduction

1.1 Contributions
1.1.1 GPU Reliability Analysis at the System Level
1.1.2 GPU Reliability Analysis at the Application Level

1.2 Organization

Background and Related Work

2.1 Benefits of Accelerators on Large-Scale Systems

2.2 General-Purpose GPUs for Scientific Computing
2.2.1 Baseline GPU Architecture
2.2.2 GPGPU Applications and Execution Model
2.2.3 GPU Errors in the Field

2.3 Reliability Analysis in the Field
2.3.1 System-Level Reliability Analysis
2.3.2 Application-Level Reliability Analysis

2.4 Chapter Summary

Vil

viil

1X

x1

3 A Large-Scale Study of Soft-Errors on GPUs in the Field

3.1 Related Work
3.2 Methodology
3.2.1 Titan Supercomputer Organization and NVIDIA K20X GPU
Architectureo
3.2.2 GPU Errors: Collection and Analysis Methodology
3.2.3 Limitations and Scope
3.3 Analyzing Single Bit Errors (SBEs)
3.4 Analyzing Dynamic Page Retirement (DPR) Errors on the Titan Su-
percomputer oL o e e e e e e
3.5 Analyzing Performance Variance in SBE and DPR Affected GPU
Nodes o .
3.6 Effect of Temperature on Dynamic Page Retirement Errors

3.7 Chapter Summary

Characterization of Single-Bit Error in the Wild
4.1 Temperature Characteristics
4.2 GPU Error Characterization
4.2.1 SBE Offender Nodes
4.2.2 Application
4.2.3 Temperature and Power Consumption
4231 Abirdseyeview
4.2.3.2 Considering the time dimension
4.2.3.3 Considering the space dimension

4.3 Chapter Summary

5 Predicting GPU Soft-Errors with Neural Networks

5.1 Related Work

ii

5.2
5.3

5.4

5.5

5.6

5.1.1 Applications of Machine Learning Models in Systems 65

5.1.2 Time Series Prediction 66
Overview of the Methodology 66
SBE Prediction Framework 69
5.3.1 Feature Selection L. 69
5.3.2 Challenge: Imbalanced Data Set 70
5.3.3 Model Selection 73
Evaluation 73
5.4.1 Evaluation with Oracle Data 74
5.4.2 PRACTISE for Feature Prediction 77
5.4.3 SBE Prediction with PRACTISE 78
Discussiono 80
5.5.1 Application of SBE Prediction. 80
5.5.2 Open Problems and Challenges 81
Chapter Summary 81

Predicting GPU Soft-Errors with a Variety of Machine Learning Models 83

6.1

6.2

6.3

Feature Selection 84
6.1.1 Temporal Features 84
6.1.2 Spatial Features 85
Machine Learning Framework and Model 86
6.2.1 Overview 86
6.2.2 Challenge: Imbalanced Dataset 87
6.2.3 Two-Stage Machine Learning Models 88
6.2.4 Machine Learning Model Selection 90
Evaluation and Analysis 91
6.3.1 Data Description and Evaluation Metrics 91

iii

6.4

6.3.2 Machine Learning Model Comparison 92

6.3.3 Feature Analysis L. 94
6.3.4 Prediction Analysiso 97
Chapter Summary 99

Fault Site Pruning for Practical Reliability Analysis of GPGPU Applications101

7.1
7.2

7.3

7.4
7.5

Related Work o 105
Background and Methodology 107
7.2.1 Baseline Fault Injection Methodology 107
7.2.2 Baseline Fault Model 108
7.2.3 Statistical Considerations 108
Progressive Fault Site Pruning 110
7.3.1 Overview 110
7.3.2 Thread-Wise Pruning 112

7.3.2.1 CTA-wise Pruning 113

7.3.2.2 Thread-wise Pruning 116
7.3.3 Instruction-Wise Pruning 119
7.3.4 Loop-Wise Pruning 122
7.3.5 Bit-Wise Pruning oo 124
Evaluation oo 126
Multi-Bit Fault Injection oL 130
7.5.1 Assumptions. 130
7.5.2 Extending Pruning to Multi-bit Fault Injection 131

7.5.2.1 Extending to double-bit fault injection 132

7.5.2.2 Extending to multi-bit fault injection 132
7.5.3 Evaluationo L o 133

7.5.3.1 Comparison of accuracy 133

v

7.5.3.2 Impact of multi-bit faults 136
7.6 Chapter Summary 138

A Hierarchical Approach to Enabling Low-Overhead Reliable GPU Comput-

ing 139
8.1 Related Worko 143
8.2 Evaluation Methodology 145
8.2.1 Benchmarks and Evaluation Metrics 145
8.2.2 Evaluation Framework 146

8.3 A Hierarchical Approach to Thread Classification 149
8.3.1 Multi-level Classification and Thread Selection 150
8.3.1.1 CTA-level classification 150

8.3.1.2 Warp-level classification 152

8.3.1.3 Classification result and thread selection 153

8.4 Hierarchical Approach to Error Resilience Characterization 156
8.4.1 Application Kernel Level Characteristics 156
8.4.1.1 Scope of accuracy-aware resilience 156

8.4.1.2 Sensitivity to input size 158

8.4.2 CTA Level Characteristics 159
8.4.3 Warp Level Characteristics 160
8.4.4 Statistical Validation 0oL 161

8.5 Use Case: Reducing Protection Overhead 162
8.6 Chapter Summary 167
Future Work 168
9.1 Fault Injection for Multiple Inputs 168
9.2 Low-Overhead Reliable GPU Computing 169
9.2.1 Thread-to-CTA Remapping 169

9.2.2 Resilience-Aware Scheduling

vi

ACKNOWLEDGMENTS

I would like to thank everyone who has helped with this thesis, especially:

My advisor, Professor Evgenia Smirni, who encourages me all the time,
continuously teaches me new knowledge, and brings lots of chances to me to grow
up in the research world. Without her patient guidance and persistent help, this
thesis would not be possible.

My committee members, Professor Adwait Jog, Professor Xu Liu, Professor Bin
Ren, and Professor Karthik Pattabiraman for their great support and insightful
feedback and comments.

My intern mentors, Dr. Devesh Tiwari in Northeastern University, Dr. Mehran
Kafai and Dr. Kave Eshghi in Hewlett Packard Enterprise, and Dr. Jianwu Xu
and Dr. Hui Zhang in NEC Labs America. Without their guidance and help, I
would not go through so many interesting and exciting projects.

All the faculty and staff at the Computer Science Department of the College of
William and Mary. Special thanks to Vanessa Godwin, Jacqulyn Johnson, and
Dale Hayes for their considerate and efficient assistance.

Ji Xue, Lishan Yang, Jacob Alter and many other dear friends for their support
and help.

Finally, and foremost, I would like to give special thanks to my husband, Zhuo, for
his understanding and encouragement, and my parents for their support
throughout this research endeavor.

vii

I would like to dedicate this dissertation to my family, who provided endless

support and love throughout my time at William and Mary.

viii

2.1
2.2

3.1
3.2
3.3

4.1

4.2

5.1
5.2

6.1
6.2
6.3
6.4

6.5

6.6

LIST OF TABLES

Comparison: 5 World’s Most Powerful Supercomputers [15].

Comparison: Titan vs. Blue Joule [15].

Specifications and Features of the Titan Supercomputer [17].
Statistics for Temperature (°C) (DPR)
Statistics for Temperature (°C) (DBE)

Temperature mean retention time for cabinets in different tempera-
ture zones for GPU and CPU.

Statistics of temperature and power on Non-SBE offenders.

Precision and recall for three neural networks.

SBE Occurrence Prediction: Oracle vs. PRACTISE.

Precision and recall for basic schemes.
F1 score for SBE occurrence prediction.
Mean training time for various models.
Effect from temporal and spatial aspects of temperature and power
features.
SBE occurrence prediction for “short-running” and “long-running” ap-
plications.
Percentage of correctly classified SBE-affected application runs in four

severity levels.

1X

7.1

7.2
7.3
7.4
7.5
7.6

7.7

8.1
8.2

8.3

8.4

Various metrics (including the total number of possible fault sites)

related to considered GPGPU application kernels.
Fault sites and other statistics for GEMM.
CTA and threads groups for 2DCONV.
CTA and threads groups for HotSpot.
Effect of instruction-wise pruning for two threads.
Summary of instruction-wise pruning for selected kernels. Other ker-

nels do not exhibit instruction commonality.

Statistics related to loops. L.

List of Applications with Evaluation Metrics and Thresholds.
The Impact of Different Inputs on CTA Group Popularity for HotSpot
and RAY. Notation: GRP-S/M/L=the percentage of CTAs
in that group with Small/Medium/Large input, R=regular,
IR=irregular.
CTA-level and Warp-level Classification for Benchmark Kernels. No-
tation: %R-Grp.— % regular groups over all groups, # DI

Grp.=# of groups classified by dynamic instruction counts,

ErrDist Grp.=# of groups refined by fault distribution.

Resilience Coverage vs. Overhead Reduction.

110

. 155

2.1
2.2

3.1
3.2

3.3

3.4

3.5

3.6

LIST OF FIGURES

A representative CUDA-based GPU architecture.

A simplified overview of GPGPU application hierarchy.

Overview of the Titan supercomputer’s physical organization.
Architecture of NVIDA K20X GPU deployed on the Titan supercom-
puter [9]. ...
Cumulative single bit error (SBE) count distribution over days (a),
and cumulative SBE count distribution over days excluding top 2
days (b). . .
Daily SBE count across time excluding the top two days (a), and
autocorrelation function of the SBE interarrival times (b).
Number of SBE-affected days for all nodes (sorted in increasing order
of total SBE count) (a), and normalized variation in the daily SBE
count distribution for the top twenty SBE offender nodes excluding
the top two nodes (red line in the middle represents median while
green dot represents mean) (b). Lo
GPU resource distribution for the SBE offender nodes (excluding top
two SBE offenders): GPU core hours (a), and GPU memory utiliza-
tion (b). . ..

X1

3.7 Variance in the GPU resource utilization and daily SBE count: GPU
core hours for top 50 days (a), for top 50 days excluding the top 3
days (b), GPU memory utilization for top 50 days (c), and for top
50 days excluding the top 3 days (d). Days are sorted in increasing
order of SBE count.o

3.8 GPU core-hours for users (a), and applications (b) experiencing SBEs.

3.9 DPR errors for SBE offender cards (excluding top two SBE offenders
which had no DPRs). oo
3.10 Histograms of difference in SBE count for a 24-hour windows after
and before the DPR occurrence for DPR offender nodes (a), and non-
DPR offender nodes (b). Dotted vertical lines represent the average
difference in SBE count.o
3.11 Cumulative distributions of difference in SBE count for a 24-hour
window (a) and a 72-hour window (b) for DPR offender nodes and
non-DPR offender nodes. Some outliers are omitted for clarity. Omis-
sion of outliers causes the DPR-curve not to approach 1.
3.12 DPR affected GPU nodes with increasing error counts and normalized
GPU core-hours (a), and normalized GPU memory utilization (b).
3.13 DPR errors and GPU core-hours for DPR affected users (a), and DPR
affected applications (b). oL
3.14 Distribution of execution time on random nodes, top 10 SBE nodes,
and DPR offending nodes. 0.
3.15 Temperature variation before each DPR occurrence.
3.16 Temperature variation before each DPR error.

3.17 CDF of temperature variation before DPR errors.

xii

32

37

39

44

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

(a) Histogram of temperature for GPUs, CPUs, and DIMMs. The
average temperature of GPU, CPU and DIMM are 28.1°C', 28.3°C
and 26.1°C, respectively. The standard deviation of GPU, CPU and
DIMM are 6.1, 9.4 and 2.6, respectively. (b) Monthly Histogram of
GPU temperature.
hot state: retention time histogram for (a) GPU and (b) CPU. (Note
that the long tail is truncated at 140min in both figures.)
normal state: retention time histogram for (a) GPU and (b) CPU.
(Note that the long tail is truncated at 140min in both figures.)
Weekly ranking for five hottest (a) and five coldest (b) cabinets. . . .

Non-uniform distribution of GPU error offender nodes at the cabinet

Non-uniform distribution of SBE-affected application runs at the cab-
inet level. oo
Workload and GPU error distribution: a small set of workloads expe-
rience most of the soft errors (a), and fraction of executions affected
by SBEs for SBE-affected application runs (b).
Scatter plot of SBE count of SBE-affected application runs and their
GPU utilization: core-hours (a) and memory (b).
Distribution of temperature (a) and power consumption (b) accumu-
lative over the whole period at the cabinet level.
Temperature distribution of SBE offender nodes during SBE-free pe-
riods (a) and SBE-affected periods (b). Vertical lines represent mean
values. . ..o
Power consumption distribution of SBE offender nodes during SBE-
free periods (a) and SBE-affected periods (b). Vertical lines represent

mean values.,

4.12 Effect of neighboring components on temperature/power of an appli-
cation over two runs on the same node overtime. Vertical solid lines

represent the start and end of the aprun execution.

5.1 SBE occurrence prediction at the cabinet level.
5.2 Comparison between CDFs of ground truth, all prediction, and true

positives for SBE occurrences at the cabinet level.
5.3 Autocorrelation and PRACTISE prediction for temperature.
5.4 Prediction for SBE occurrence at node level with PRACTISE.

6.1 TwoStage method: prediction flow.
6.2 Comparison of SBE occurrence prediction across different models for
DS1.
6.3 Effect of different feature groups on F1 score, in terms of the im-
provement over Basic A. All means using all features discussed in
Section 6.1. Hist, TP, and App correspond to SBE history, temper-
ature/power consumption, and application-related features, respec-
tively. . . .
6.4 Decrement on F1 score if removing a certain feature set from the
original feature combination: global vs local (a), and different length
of SBE history (b).
6.5 Comparison between SBE occurrence prediction and ground truth at

the cabinet level.

7.1 Overview of the 4-stage Fault Site Pruning Mechanism.

Xiv

78
79

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

CTA grouping after 60K fault injection runs of one target instruction
for (a) 2DCONV and (b) HotSpot. CTAs with the same color are

classified into the same group. In the box plot, the horizontal green

lines represent the median and red dots represent the mean.

CTA grouping given by average dynamic thread instruction count
(iCnt) per CTA for (a) 2DCONV and (b) HotSpot. CTAs with the

same color are classified into the same group. A significant similarity

is is observed with Figure 7.2. oo

Thread Grouping inside one CTA.

PTXplus code comparison of two representative threads for

PathFinder. Blue bold lines indicate common instructions.

Impact of loop-wise pruning on distribution of fault injection out-

comes for (a) PathFinder, (b) SYRK, and (c)-(d) for K-Means K1

with different random seeds.

Distribution of fault injection outcomes of different bit position sec-

tions of two major register types (.u32 and .pred) for (a) 2DCONV

and () MVT.

Impact of bit-wise pruning on distribution of fault injection outcomes

for (a) 2DCONYV and (b) MVT (all registers). Percentage of outputs

stabilizes at 16 bits.

Error resilience comparison of progressive fault site pruning tech-

niques against the ground truth (baseline).

Xv

120

124

7.10

7.11

7.12

7.13

7.14

8.1

Fault site reduction comparison based on various feature-based prun-
ing techniques. “+" indicates that each pruning stage is progressively
built upon the pruned sites resulted from the previous stage. The
height of the pruned fault sites bar is normalized by the original
exhaustive fault sites for each application kernel, see last column of
Table I. The effectiveness of progressive fault site pruning is compared
against comprehensive baseline injection (60K random experiments).
The exact numbers are shown on the top of the last two columns for
the proposed method and the baseline case, respectively.
Error resilience comparison of progressive fault site pruning tech-
niques against the ground truth (baseline) for (a) injecting double-bit
faults and (b) injecting triple-bit faults.
Impact of increasing number of injected faults on the difference in
terms of the percentage of (a) masked, (b) SDC, and (c) other outputs
given by the proposed pruning technique and baseline for selected
benchmark kernels. oL
Mean values of differences in terms of percentage numbers of differ-
ent fault injection outcomes calculated (a) across all kernels and (b)
across all kernels but excluding Gaussian K125.
Error resilience changes over increasing number of injected faults for

representative benchmark kernels.

Effect of a single bit fault on the BlackScholes application output
shows that a significant percentage of the fault injection runs lead
to silent data corruption (SDC), which can be acceptable to a user
(SDC-Accept). The percentage of SDC-Accept increases as the user-

defined acceptability threshold becomes less conservative.

Xvi

135

8.2 A high-level view of fault injection and evaluation framework. 147
8.3 Distribution of thread dynamic instruction (DI) counts at the CTA
level for regular benchmarks (a) BlackScholes and (b) SCP. The red
triangle indicates the average and the blue error bar indi-
catesone std.o 151
8.4 Distribution of thread dynamic instruction (DI) counts at the CTA
level for irregular benchmarks (a) HotSpot and (b) RAY. The red
triangle indicates the average and the blue error bar indi-
catesonestd. 151
8.5 Distribution of thread dynamic instruction counts at the warp level
for SCP. The red triangle indicates the average and the blue
error bar indicatesonestd. 153
8.6 Distribution of thread dynamic instruction counts at the warp level
for MD k1, using two inputs: (a) Small and (b) Large. The red tri-
angle indicates the average and the blue error bar indicates
onestd. 154
8.7 Distribution of fault injection outcomes at benchmark kernel level.
(SDC faults are evaluated with the default threshold values.) 157
8.8 Impact of Small and Large inputs on fault distribution. 158
8.9 Error resilience characteristics at CTA level. Each bar is distin-
guished by its group name and whether it is regular (R) or
irregular (IR).. 160
8.10 Error resilience characteristics at warp level. Each bar is distin-
guished by its group name and whether it is regular(R) or

irregular(IR). 161

Xvil

8.11

8.12

9.1

9.2

Changes in the percentage of faults with increasing sample size for
(a) BlackScholes and (b) SCP. PCT.MSK, PCT.SDC, and PCT. OTR
indicate the percentage of masked, SDC, and other (including DDC,

crashed, and hangs) faults, respectively. Error bars give the 95%

confidence intervals.

Resilience coverage (% of Masked + SDC-accept outputs) as a func-

tion of different output quality. Output quality changes with different

SDC acceptability thresholds.

The dynamic instruction count of threads in their launching order for

HotSpot..

The composition of threads with different dynamic instruction count
inside each CTA for HotSpot. Each CTA contains 256 threads. None

of the CTAs contains only one thread type while the colored part

represents the dominant thread type.

xviil

170

Chapter 1

Introduction

Over the past decade, GPUs have become an integral part of mainstream high perfor-
mance computing facilities. Parallelism provided by the GPU architecture has enabled
domain scientists to simulate physical phenomena more quickly and accurately (i.e., at a
finer granularity) {146, 79, 93] than what was previously possible by CPU-based large-scale
clusters. Scientists are already benefiting from GPU deployment in large-scale comput-
ing systems such as the Titan supercomputer, the Blue Waters supercomputer, and the
Keeneland cluster [146, 79, 69, 93|. Recognizing the performance and energy-efficiency
benefits of GPUs, next generation pre-exascale supercomputers are also expected to con-
tinue taking advantage of parallelism provided by GPUs [13, 12]. Given the challenges
of power provisioning for exascale systems, GPUs will continue to be an attractive choice
due to their performance-per-watt characteristics that are better compared to their CPU
counterparts [90].

Given the technology-trends and wide-spread adoption of GPUs, many researchers
have studied the performance and energy-efficiency aspects of GPU-based applications
in detail. In the meantime, the reliability of GPUs cannot be overlooked because most
scientific applications are long-running, taking several hours or even days to complete. If
software or hardware errors occur during application execution, they can not only lead to

lower scientific productivity and operational efficiency of large-scale systems but can also

cause significant monetary loss [133]. Therefore, in addition to the principle of striving to
achieve exascale performance at a stringent power budget, it is equal imperative to strive
for more reliable GPU computing.

An initial step of any reliability study is to develop a deep understanding of GPU er-
rors in the field. Computer architects have been investigating reliability characteristics of
GPUs and ways to increase their reliability. Such efforts are often guided by technology
projections and simplistic scientific kernels, and are performed using architectural simula-
tors and modeling tools. Lack of large-scale field data impedes the effectiveness of such
efforts. Only recently, researchers have started to investigate the reliability characteristics
of GPUs using large-scale field data [140, 139, 92|. These recent studies have quantified the
hardware and manufacturing-related failures of GPUs, firmware/application-related GPU
errors, and how error resilience improves over generations of upgrades in GPU architecture.
Still, as one of the most commonly observed errors, GPU soft errors (e.g., single-bit errors,
double-bit errors, and dynamic page retirement errors), have not yet been studied well.
There are many interesting aspects regarding GPU soft errors that are imperative to be
explored, such as 1) the relationship between different types of GPU soft-errors, 2) the
impact of soft-errors on application performance, and 3) the relationship between GPU
soft-errors and user jobs, GPU resource utilization, temperature, and power consumption.
Developing a better understanding on these aspects is the first focus of this dissertation.

Traditionally, the reliability of applications running on general-purpose GPUs is en-
sured with frequent check-pointing of application states [78] and error correction and
detection codes for major GPU storage components (i.e., register files, shared memory,
caches, and main memory). However, these protection mechanisms often come at high
performance, power, and area costs [74, 155, 156, 75, 76]. For example, the impact of
error-correcting code (ECC) overhead on real-world computational science applications
can be as high as 10% on GPUs [26]. Nevertheless, the decreased memory bandwidth
caused by ECC overhead can result in larger performance degradation than the decreased

fraction of bandwidth itself due to queuing. Facing such expensive reliability overhead in

2

large-scale systems, computational scientists already naively turn off ECC for their appli-
cation runs [53]. Still, completely turning off error protection can be too risky. In such
cases, a prediction model that can accurately forecast the occurrences of GPU soft-errors
would be useful in guiding flexible error protection mechanisms for GPU nodes, e.g., by
dynamically turning on/off error protection based on prediction. Acknowledging the ne-
cessity of an error predictor, the second focus of this dissertation is to elaborate on the
challenges, process, and solutions involved in building effective error prediction models.
Specifically, we consider features that are related to the occurrences of GPU soft errors
guided by our large-scale reliability analysis in the field. We observe that the relation-
ship is rather complex and is non-trivial to be exploited by straight-forward statistical
models. Therefore, we leverage machine learning models to capture such complicated in-
teractions between system/application features and the prediction target (i.e., soft-error
occurrences). Through our evaluation, the proposed models are able to accurately forecast
the occurrences of soft errors on GPU nodes.

The aforementioned characterization and prediction efforts towards GPU soft errors
are performed at the system level. Such coarse-grained reliability analysis is beneficial
in terms of acquiring an overview on the GPU soft errors in the field and of developing
system-level solutions to improve system reliability. Still, such analysis has its inherent
drawbacks. First, large-scale system measurement data in the wild are post hoc and we
have limited control over the data collection methodology, i.e., our analysis is subject to
the data and information provided by Titan’s system administrators. Second, we have
no knowledge regarding the applications running on the system, except for their binary
executable file names. Unfortunately, the lack of application-related information impedes
us from any further exploration towards specific application types. To understand the
effects of soft errors on specific applications, we do fine-grained reliability analysis on a
wide set of popular GPGPU benchmarks to understand why applications react to GPU
soft errors differently, that is we aim to explore the different error resilience characteristics

of GPGPU applications. This is the third focus in this dissertation.

3

There is a rich body of prior work studying the error resilience characteristics of GPU
applications [154, 85, 44, 59|. These works propose different kinds of fault-injection models
to systematically inject faults to diverse locations (i.e., registers) in applications (commonly
referred to as fault sites) and evaluate the tolerance of applications in the presence of
GPU errors. One of the major challenges in building an effective fault-injection model
is fault sites selection, i.e., injecting faults in all possible fault sites and explore their
effect. Suppose we consider a single-bit flip model that injects one fault per application
execution, which is the de-facto model used in studies in this area [154, 44, 59| and is
shown to be effective and sufficient in capturing the error resilience characteristics of GPU
applications [124], the total number of exhaustive fault injection sites for benchmarks in
commonly used benchmark suites (i.e., CUDA [110], Rodinia [31], and Polybench [54]) can
range from millions to even billions, such as 3.44 x 107 for HotSpot [31] and 6.23 x 108
for GEMM [54], and 6.38 x 10° for BlackScholes [110]. The tremendous size of fault sites
is due to the fact that each GPGPU application kernel can spawn hundreds to thousands
of threads and each thread is assigned to a dedicated amount of on-chip resources (e.g.,
register files, ALUs, and shared memory). For the calculation of fault sites reported above,
we only consider soft errors that occur in functional units (e.g., arithmetic logic unit and
load-store unit), which are not protected in current commercial GPUs [4, 8, 10]. Yet, the
number of fault sites is tremendous. Executing one experiment per fault site in such a
vast space to collect application reliability metrics is clearly impossible and absolutely not
practical.

Consequently, it is imperative to first resolve this challenge of how to systematically
and efficiently reduce the number of fault sites required in a fault-injection campaign. Fac-
ing this challenge, prior works [85, 44, 59| mainly resort to statistical solutions, such as
randomly selecting a number of fault sites based on the desired error margin and confi-
dence interval [83]. Such statistical methods have two limitations. First, a large number of
fault sites is required to deliver statistically significant results. For example, it is necessary

to conduct 60K experiments to achieve a confidence interval of 99.8% and an error mar-

4

gin of 1.26% [83]. Second, this method gives no intuition about fault site selection from
the architecture perspective, such as whether different GPGPU application resources react
similarly or differently to faults. In this dissertation, we take an orthogonal approach, by
pruning the large amount of fault sites via carefully considering the properties of GPGPU
applications. By carefully selecting pruning mechanisms, we aim to reduce the total num-
ber of required fault sites while still maintain accuracy in capturing GPGPU application
resilience characteristics. Naturally, this framework can serve as a tool to deepen the
understanding on the error resilience characteristics of GPGPU applications.

Note that, this framework is build on the commonly used single-bit fault model [154, 44,
59], the next natural step is to extend it to multi-bit fault model, especially for GPGPU
applications. Previous studies have looked into the impact of multi-bit faults for CPU
applications [124]. However, GPGPU applications normally spawn many more threads
than CPU applications, making it non-trivial to directly apply those techniques to GPGPU
applications. Therefore, in this dissertation, we also investigate the impact of multi-bit
faults on the outcomes of GPGPU applications by extending the proposed framework to
the multi-bit fault model.

Lastly, inspired by the proposed framework, we devise a hierarchical approach to study
the error resilience characteristics of GPGPU applications at three different levels, includ-
ing kernel levels, CTA levels, and warps levels. We observe that CTAs (or warps) show
different resilience features. In other words, some CTAs (or warps) are very error resilient
while others are sensitive to soft errors. In addition, we notice that not all corrupted
application outputs due to soft errors are unacceptable to the end users. If users are will-
ing to sacrifice some output quality, there would be sufficient opportunities for providing

low-overhead and reliable GPGPU error protection strategies.

1.1 Contributions

The contributions of this dissertation are summarized as follows:

o System-level GPU reliability analysis [101, 102, 103]: We conduct a large-scale study
on GPU soft-errors on a real-world in-production HPC system — the Titan supercom-
puter, which is America’s fastest supercomputer for open science [18]. We discover
features with indicative capability of GPU errors and exploit them for error occur-

rence prediction.

o Application-level GPU reliability analysis [104, 100]: We investigate the effect of GPU
errors on application execution by first proposing a systematic way of progressively

pruning the fault site space for a doable and practical fault injection campaign.

1.1.1 GPU Reliability Analysis at the System Level

o We perform a large-scale study on GPU soft-errors on the Titan supercomputer,
including single-bit errors (SBEs), double-bit errors (DBEs), and dynamic page re-
tirement errors (DPRs). We investigate their characteristics and relationship with
GPU resource utilization, applications, users, and temperature, as well as the rela-

tionship between different types of errors [101].

e We conduct a deep exploration on the most commonly observed errors — single-bit er-
rors (SBEs) [102, 103]. We discover that workload characteristics, certain GPU cards,

temperature and power consumption have complex interaction with GPU SBEs.

e We propose two effective machine-learning-based predictors that are able to accu-

rately forecast the occurrences of GPU SBEs [102, 103]|. More specifically,

— We show how to systematically select input features for prediction models by

categorizing them into spatial and temporal dimensions [103].

— We acknowledge the presence of imbalanced dataset in the Titan traces and
overcome this challenge with a customized similarity-reduction-based algorithm

that is capable of under-sampling the majority class [102].

— We devise a neural-network-based prediction framework [102] to forecast GPU

SBE occurrences.

— We devise a two-stage prediction framework by taking advantage of the inherent
dataset features and evaluate its effectiveness across several machine learning

models [103].

1.1.2 GPU Reliability Analysis at the Application Level

e We quantify the problem of high number of fault sites in the fault-injection campaign

for GPGPU applications [104].

e We develop progressive pruning techniques by leveraging GPGP U-specific properties,
such as similarity in terms of resilience characteristics in threads, commonality in
common code blocks, presence of large portion of loop iterations, and relationship
between resilience features and location of bits in the registers. With the proposed
solution, we are able to reduce the fault space by up to seven orders of magnitude

while maintaining accuracy that is close to the ground truth [104].

o We extend the proposed fault site pruning technique to multi-bit fault model and

evaluate the accuracy via various GPGPU benchmarks.

e We come up with a hierarchical approach to study the error resilience characteristics
of GPGPU applications at various levels, including kernel level, CTA level, and warp
level. We observe that different CTAs (or warps) exhibit different error resilience

characteristics [100].

e Giving the fact that not all corrupted GPGPU application outputs are unacceptable
to the user, we are able to strike the balance between reducing error protection
overhead and preserving acceptable application output quality at the kernel, CTA,

and warp levels [100].

1.2 Organization

This dissertation is organized as follows. In Chapter 2, we present the background and
basic concepts that are used in this dissertation. In Chapter 3, we present a large-scale
study of soft-errors on GPUs in the field [101]. In Chapter 4, we focus on the most
commonly observed GPU soft-errors, that is single-bit errors (SBEs), and investigate their
complex interaction with several related features [102, 103]. In Chapter 5 and 6, we
introduce two machine-learning-based solutions to predict SBE occurrences [102, 103]. In
addition to the study of GPU reliability at the system level, in Chapter 7 we turn to
understand the resilience features of GPGPU applications, by starting with designing an
effective fault injection framework with progressively pruned fault sites, for both single-bit
and multi-bit fault models [104]. Then, in Chapter 8, we show a hierarchical approach
to understanding error resilience characteristics of GPGPU applications at kernel, CTAs,
and warps levels and illustrate opportunities of enabling low-overhead yet reliable GPGPU
computing through a use case [100]. Finally, in Chapter 9, we describe future research

directions.

Chapter 2

Background and Related Work

In this chapter, we introduce basic concepts and terminology that are used in the entire
dissertation. First, we present the prevalent adoption and the benefits of accelerators,
especially GPUS, on large-scale systems (see Section 2.1). Then, in Section 2.2, we explain
the background knowledge related to GPUs. Lastly, we discuss related work on GPU

reliability analysis in Section 2.3.

2.1 Benefits of Accelerators on Large-Scale Systems

Recently, supercomputers have been providing powerful computational capability for sci-
entific applications from diverse domains, such as science, engineering, medicine, social
media, gaming, and finance [41, 119, 136, 46, 125, 112, 106, 109]. For years, researchers
keep pushing the envelop on the maximum and peak computational speed of supercom-
puters, reflecting as the constantly fluctuating ranks on the Top500 list [18]. On the other
hand, supercomputers are normally costly. They require huge power for computation and
on cooling. Consequently, power efficiency (i.e., performance-per-watt) is becoming impor-
tant complement metric to compare supercomputers, yielding in another fierce competition
in Greenb500 list [15].

Table 2.1 presents the 5 most powerful supercomputers in the world (as of Novem-

ber, 2017) [18, 15]. Surprisingly, we notice that Tianhe-2 (launched in 2013) and Titan

9

(launched in 2012) still provide superior computational capability that outperform a lot of

newly-launched systems. From the table, we make several observations:

Table 2.1: Comparison: 5 World’s Most Powerful Supercomputers [15].

Top500/ Power
Gré)e 1500 Name Country, Total Rmax Rpeak Power Effeciency Accelerator/
Rank Year Cores [TFlop/s|]| [TFlop/s| (kW) [GFlops Co-Processor
/Watts|
Sunway Tai- China,
1/20 huLight [48] 2016 1.1e+07 | 9.3e+04 1.3e+4-05 1.5e+04 6.05 None
2/137 | Tianhe-2 [16] 02}(1)1{1;, 3.1e+06 | 3.4e+04 | 5.5e+04 | 1.8e+04 1.90 gﬁfgi{gf;
Switzer-
3/10 | PizDaint [11] | land, | 3.66105 | 2104 | 2.5¢+04 | 2.3¢403 10.40 TI;IYI?)II%O
2017 s
4/5 Gyoukou [6] J;gf;" 2.0e+07 | 1.9e+04 | 2.8¢+04 | 1.4e+03 14.17 PEOZOKE?
5/105 Titan [17] ggf; 5.6e+05 1.8e+04 2.7e+04 8.2e+03 2.14 Tl(js\lgllj(lﬁ)x

Rmax - Maximal LINPACK performance achieved; Rpeak - Theoretical peak performance.
Rank is as in November, 2017.

First of all, except the top first supercomputer — Sunway TaihuLight, all others are
assisted with accelerators or co-processors to boost achievable performance. Note that,
the Top500 list is ranked by Rmaz (i.e., maximal performance achieved). When looking at
Ppeak (i.e., theocratical peak performance), Sunway Taihulight is beaten by all the other
four, including the two launched in 2012/2013. This indicates the powerful performance
boosting ability provided by accelerators/co-processors.

Most importantly, if we focus on the power efficiency (i.e., performance per watt), we
further acknowledge the importance of deploying accelerators/co-processors. Gyoukou and
Piz Daint are very power-efficient by achieving a score over 14.17 GFlops/Watts and 10.40
GFlops/Watts, respectively. They mainly benefit from accelerators. Piz Daint is equipped
with NVIDIA Tesla P100 [14], a powerful general-purpose GPU that is specially designed
for compute-intensive and high-parallel applications. Gyoukou uses PEZY-SC2 [34], a very
close cousins of GPU chips. Moreover, it is worth mentioning that Titan (with power effi-
ciency of 2.14 GFlops/Watts) and Tianhe-2 (with power efficiency of 1.90 GFlops/Watts)

surprisingly beat Sunway TaihuLight (with power efficiency of 6.05 GFlops/Watts). In

10

fact, if we look at supercomputers launched in 2012, Titan has the close-to-best power ef-
ficiency but superior computational capability, as compared with the most power-efficient
supercomputer Blue Joule at that time (see Table 2.2). A noticeable difference between
the two supercomputers is that Titan accelerates by GPUs while Blue Joule does not.
These evidences show that accelerators/co-processors play an important role in building

power-efficient supercomputers.

Table 2.2: Comparison: Titan vs. Blue Joule [15].

Top500/ Power
Grgen 500 Name Country, Total Rmax Rpeak Power Effeciency Accelerator/
Rank Year Cores [TFlop/s]| [TFlop/s| (kW) [GFlops Co-Processor
/Watts|
5/105 Titan [17] IQJ(?fAQ, 5.6e-+05 1.8e+04 2.7e+04 8.2e+03 2.14 Tle\Is\l;I]Ij(Ié?)x
88/92 Blue Joule [2] ;)Ifé 1.3e+05 | 1.4e+03 | 1.7e+03 | 6.6e+02 2.18 None

Rmax - Maximal LINPACK performance achieved; Rpeak - Theoretical peak performance.
Rank is as in November, 2017.

Inspired by the success of deploying accelerator/co-processors on high-performance
computing systems, two more powerful next-generation supercomputers are being deployed
— Summit [13| on Oak Ridge National Lab and Sierra [12| on Lawrence Livermore National
Lab, both are expected to in operation in 2018.

Acknowledging the necessity of accelerators/co-processors in achieving both power-
ful computational ability and power efficiency, we focus in this dissertation on the most

commonly-used accelerators— general-purpose GPUs (or GPUs in short) 18, 15].

2.2 General-Purpose GPUs for Scientific Computing

In this section, we introduce the concepts and background knowledge for general-purpose
GPUs (or GPUs for short). Throughout the dissertation, we use CUDA-based terminol-
ogy (CUDA stands for Compute Unified Device Architecture [1]) created by NVIDIA as

NVIDIA GPUs are widely-used in the field. In fact, among the supercomputers with

11

accelerators/co-processors in Top500 List, over 85% are boosted with NVIDIA Tesla
GPUs [18].

2.2.1 Baseline GPU Architecture

Figure 2.1 shows a representative CUDA-based GPU architecture. A typical GPU consists
of multiple simple cores, also called streaming-multiprocessors (SMs) in NVIDIA termi-
nology [111]. Each core is associated with private L1 data, texture and constant caches,
software-managed scratchpad memory, and register files. Cores are connected to memory
channels (partitions) via an interconnection network. Each memory partition is associated
with a shared L2 cache, and its associated memory requests are handled by a GDDR5 mem-
ory controller. Recent commercial GPUs, i.e., Fermi [8|, Kepler [10] and Pascal [4], use
unified single-error-correction double-error-detection (SEC-DED) error correction codes
(ECCs) to protect register files, L1/L2 caches, shared memory and DRAM from soft er-
rors, and use parity to protect the read-only data cache. Other structures like arithmetic
logic units (ALUs), thread schedulers, instruction dispatch unit, and interconnect network
are not protected.

GPU Architecture Streaming Multiprocessor (SM)

Thread Block Scheduler Warp Scheduler

Inst. Dispatch Unit

Instruction Cache

Core Core Core

12 Cache Core Core Core

Interconnect Network
_ \\\ L i
and L1 Cache

Figure 2.1: A representative CUDA-based GPU architecture.

12

2.2.2 GPGPU Applications and Execution Model

GPGPU applications rely on the single-instruction-multiple-thread (SIMT) philosophy and
concurrently execute thousands of threads over large amounts of data to achieve high
throughput. Figure 2.2 presents a simplified overview of thread hierarchy in GPGPU
applications. A typical GPGPU application execution starts with the launch of kernels on
the GPU. Each kernel is divided into groups of threads, called thread blocks, which are also
known as Cooperative Thread Arrays (CTAs) in CUDA terminology. A CTA encapsulates
all synchronization and barrier primitives among a group of threads [77, 67]. Having such
an abstraction allows the underlying hardware to relax the execution order of the CTAs
to maximize parallelism. The underlying architecture sub-divides each CTA into groups
of 32 individual threads (called warps) that execute a single instruction on the functional
units in lock step. This sub-division is an architectural abstraction and is transparent to

the application programmer.

et 56 |
e 1Y T

T e

32

Figure 2.2: A simplified overview of GPGPU application hierarchy.

2.2.3 GPU Errors in the Field

GPU errors can be classified into several categories. GPU hardware related errors, such
as double bit errors, off-the-bus errors, and micro-controller halts cause the application to

crash. Soft errors that can be corrected by the ECC mechanism do not result in execution

13

loss. Single bit errors are corrected by the SECDED ECC. Two single bit errors on the
same page result in a dynamic page retirement (DPR) error [108|. This particular error is
also reported when a double bit error happens and the page is retired in order to improve
the longevity of the card.

There is a host of GPU related errors including errors that are caused by the application,
driver issues, firmware bugs, or thermal issues. Note that NVIDIA documents a list of such
XID errors and their possible causes [19]. GPU applications may also terminate with a
non-zero exit code, indicating that the execution was not successful. Other than hardware-
related and XID errors, several other reasons may be responsible for non-zero exit codes,
e.g., programming errors and expiration of time-quota. Prior works [55, 139] study these

XID errors and system-integration errors (e.g., Off the Bus).

2.3 Reliability Analysis in the Field

In the Section 2.1, we give an overview of the performance/power efficiency benefits of
deploying GPU accelerators in supercomputers. Reliability of such large-scale systems is
equally worthy of research attention, especially since the scientific applications running on
these systems are typically long-running [140, 139]. Any software or hardware error that
occurs during application execution decreases the scientific productivity and operational
efficiency and could result in significant monetary loss [133]. Therefore, it is important
that applications are able to cope with different types of runtime failures and errors. As
we progressing towards exascale, applications are going to face even more severe resilience
challenges, due to the increasing number and decreasing size of the components required
for exascale systems [90]. In this section, we discuss past work on reliability analysis from
two perspectives: large-scale system level (see Section 2.3.1) and application level (see

Section 2.3.2).

14

2.3.1 System-Level Reliability Analysis

Quantifying and characterizing system failures is key to improving the reliability of any
computing system. This is even more important for large-scale computing systems since
the impact of system failures is large on these system and may lead to significant scien-
tific productivity and monetary loss. Consequently, researchers have investigated failures
on large-scale systems in detail [92, 42, 88, 89, 113, 117, 123, 128]. Several studies have
exploited the insights from such efforts to predict failures and adapt fault-tolerance mech-
anisms to minimize the impact of system failures. Some of these studies propose to predict
failure by identifying the correlation among failure events |49, 50, 51, 88]. Such propos-
als often rely on machine learning and other prediction techniques on the RAS logs and
the system logs. This may result in high-overhead and low lead time for prediction, but
nevertheless they demonstrate that failure prediction is possible and effective in certain
cases.

Several studies have focused on studying the reliability aspect of large-scale computing
systems. For example, Liang et al. investigated different component failures including net-
work, disk, memory and CPU for the Blue Gene/L system, and proposed failure prediction
models [88]. Oliner et al. investigated system failure logs for multiple HPC systems at
the Los Alamos National Laboratory and the Sandia National Laboratory, including Red-
Storm and Thunderbird system [113]. They studied both software and hardware errors
and developed a methodology for applying filtering of failure logs. Schroeder et al. have
studied the system failures and its impact on multiple HPC systems at LANL [128].

There have also been more failure studies for a given system component such as DRAM,
disks, and SSDs. For example, DRAM-focused efforts have shown the effect of vendors on
soft-errors [62, 129, 135|. These studies also show the pitfalls in studying the DRAM errors
and its impact on the reliability assessment of the system. Disk-focused studies demon-
strate that disk failures in the field can be significantly higher than what one would estimate

from the vendor’s sheet [126, 23]. Such studies also show that peripheral components fail

15

more often than one may expect in large scale storage systems. Recent studies [95] on
SSD failure in the field provide insights about differences in the early detection life cycle
between SSDs and Disks, lack of read disturbance error in the wild, and implication of
these findings for future SSDs. However, large-scale GPU reliability characterization stud-
ies have been relatively limited [57, 92, 140], primarily because the GPU architecture is a
relatively newer technology.

Recently, there have been efforts focusing on studying and improving GPU reliability
at scale [25]. Several recent studies [92, 140, 139| present error characterization for the
GPU-enabled Cray supercomputers such as the NCSA Blue Water and Titan supercom-
puter. They study the spatial and temporal characteristics of GPU errors, how these errors
propagate spatially in a short time-window, frequency of GPU errors in different memory
structures of a GPU, correlation between batch jobs and correctable GPU errors, etc. These
efforts have primarily focused on understanding XID errors, manufacturing errors (e.g., Off
the Bus error), and its effect on application-execution. These studies have also shown via
neutron beam testing that more recent generation of GPUs are more error resilient than
previous generation of GPU architecture. These studies have also focused on issues and
challenges with current GPU error logging methods. Previous efforts by Haque et al. [57]
have deployed a software-based GPU soft-error detector on Folding@home distributed plat-
form for two different architectures, the G80 and GT200 architectures. They showed that
newer generation of GPUs observed significantly lower soft error rate. Additionally, they
found that the GPUs were sensitivity to memory faults in a pattern-dependent manner.

Limaitations of prior work: None of the aforementioned studies present detailed analysis
and characterization of soft-errors on GPUs at large-scale, especially the most commonly
observed single-bit errors. It is important to understand the complex interplay between
GPU errors and related factors (i.e., workloads, resource utilization, temperature, and
power consumption). Such understanding helps strike a balance in reducing resilience

overhead and preserving reliability, i.e., by building effective error prediction frameworks.

16

2.3.2 Application-Level Reliability Analysis

Besides the preceding system-level reliability studies, researchers have also leveraged
simulation-based analysis to detect critical hardware structures that are more vulner-
able to soft errors. In particular, prior works [45, 64, 138] have conducted architec-
tural vulnerability analysis (AVF), which tracks every bit in an architecture during
the application run and calculates the likelihood of the bit that can affect the out-
put. In addition, fault-injection models are also effective in understanding the impact
of faults. Although there is a large body of prior work on fault injection models/frame-
works 92, 42, 88, 89, 113, 117, 123, 128, 126, 23, 95, 49, 50, 51| in the context of CPUs,
only a limited set of fault injector models have been proposed for GPUs. Yim et al. [154]
built a source-to-source translator, SWIFI, to investigate error resilience in GPUs and
demonstrate that the ratio of silent data corruption (SDC) in GPUs is much higher than
that observed in CPUs. In order to capture the impact of faults at the architecture level,
Fang et al. [44] developed GPU-Qin that leverages the GPU debugging tool cuda-gdb [3]
to inject one fault into the destination operand or the address operand of arithmetic and
memory instructions. However, since GPU-Qin uses cuda-gdb, it cannot inject faults into
control flow instructions. Hari et al. [59] addressed this problem with a compiler-based
fault injection framework, SASSIFI, which injected single bit errors into the destination
operand of any kind of assembly instructions.

Limitations of prior work: Prior work mainly focuses on developing fault injection
models using compiler-based or simulation-based tools. In terms of fault sites selection,
these works mostly randomly sample a tiny subset of all potential fault injection locations
in the application, whose size is often in the magnitude of millions to billions, to capture
a view of the overall resilience characteristics for GPGPU applications [83]. For example,
with 95% confidence interval and error margin of 6%, it is necessary to launch around 1000
fault injection runs. The number increases to 60K when seeking a more strict requirement,

i.e., 99.8% confidence interval and error margin of only 1.26% [83]. However, such fault

17

site selection methodology impedes any deeper resilience analysis at the kernel, CTA, and
warp levels. In addition, it would be also interesting to see if we can deliver the same
resilience characteristics with fault sites with less than 60K or even less than 1K samples,

which is the focus of this dissertation.

2.4 Chapter Summary

In this chapter, we first show the benefits given by the prevalent adoption of GPUs in large-
scale systems. Then, we discuss prior efforts in understanding the reliability of GPUs that
motivate and guide the research presented in this dissertation. Finally, we explain useful

GPU-related knowledge.

18

Chapter 3

A Large-Scale Study of Soft-Errors
on GPUs in the Field

In this chapter, we describe a large-scale investigation on GPU soft-errors in the filed
by analyzing large amount of measured system related data on the Titan supercomputer,
which is America’s fastest supercomputer for open science [17]. We are especially interested
in characterizing GPU soft-errors in the field, focusing on their impact on application
performance, their relation to user jobs, GPU resource utilization, and temperature, as well
as the relationship between difference kinds of GPU soft-errors. The goal of this chapter
is to improve our understanding in the aforementioned aspects and identify observations
that are instructive to future system design and resource management.

Unfortunately, there are several challenges in building such an understanding. First,
there are often multiple factors responsible for different types of GPU errors, making it
hard to distill their cause and their impact on applications. Second, it is hard to study
the correlation or impact of applications on GPU reliability characteristics or resource
utilization since we do not have access to the end-user application-base. Third, we often
do not have control over several factors such the power/cooling conditions, user behavior
or node-assignments to different jobs. This makes the development of an accurate under-

standing of the GPU errors more challenging. Despite these challenges, in this chapter,

19

we attempt to improve our current understanding about GPU reliability at-scale while
carefully considering these challenges.

Specifically, we quantify and characterize the soft-errors on the Titan supercomputer’s
GPU nodes. This chapter uncovers several interesting and previously unknown insights
about the characteristics and impact of soft-errors (e.g., single bit error, dynamic page re-
tirement error, and double bit error). We characterize the temporal characteristics of single
bit errors and its association with other errors. We study the impact of workloads, resource
utilization, and variance in load-level on error-affected GPU nodes. In particular, our study
aims to understand the correlation between application characteristics and specific GPU
errors. Our study also provides a deep understanding of possible temperature effects on
soft-errors. As we describe our findings, we also point out how different methodologies may
lead to different observations, and the importance of our observations to system admin-
istrators and architects. We believe that insights obtained from our large-scale field data
analysis carry significant implications for current and future HPC computing facilities,
system operators, and system architects.

This chapter is organized as follows. In Section 3.1, we discuss on related work. Sec-
tion 3.2 presents the organization of the Titan supercomputer, the data collection method-
ology, and the limitation and scope of this study. In Sections 3.3 and 3.4, we investigate the
characteristics of single-bit errors (SBEs) and dynamic page retirement errors (DPRs) on
the Titan supercomputer, respectively. We explore the application performance variance
on soft-error-affected GPU nodes in Section 3.5 and the relationship between tempera-
ture and GPU soft-errors in Section 3.6. Finally, we offer brief chapter conclusions in

Section 3.7.

3.1 Related Work

There is a rich body of work in the literature in understanding the reliability of large-

scale distributed systems [92, 42, 88, 89, 113, 117, 123, 128, 126, 23, 95, 49, 50, 51].

20

The focus of these studies is to identify failures of different components such as network,
disk, memory and CPU, analyze their impact on HPC systems, and predict future failure
events. Sridharan et al. [134] conducted a large-scale study on DRAM failures on the
Jaguar supercomputer at Los Alamos National Lab and found that soft faults account
for around 30% of all kinds of DRAM failures. Siddiqua et al. [131] suggested that this
percentage is smaller based on the data collected from the studies performed on a variety
of large-scale data centers. Recent large-scale studies in the wild [92, 140, 139| reveal
that modern GPU architectures suffer from reliability shortcomings. Martino et al. [92]
and Tiwari et al. [140, 139| characterized the statistical characteristics of GPU failures
and errors on the Blue Waters supercomputer at the University of Illinois and the Titan
supercomputer at Oak Ridge National Laboratory, respectively, and show that GPU error
rates are non-negligible.

The above works target all kinds of GPU errors. Given the fact that GPU soft-errors
are the most commonly observed errors in the Titan supercomputer, it is imperative to
specifically focus on soft-errors on GPU nodes. In this chapter, we discover several pre-
viously unknown insights about the characteristics of GPU soft-errors, such as single-bit
errors, dynamic page retirement errors, and double-bit errors. For the first time, we char-
acterize the temporal characteristics of single bit errors and their association with other
errors. In contrast to previous works, we investigate the impact of workloads, resource
utilization, and variance in load-level on error-affected GPU nodes in detail. This chap-
ter also provides a deep understanding of the temperature effects on soft-errors in GPUs.
Given that GPUs are likely to be an important part of an exaflop HPC system, we believe
that our study with the America’s largest GPU-enabled system would help the community
in improving the understanding the impact of GPU errors on scientific applications and

their implications for large-scale GPU resource management.

21

3.2 Methodology

In this section, we provide an overview of Titan and its GPU architecture. Next, we
provide details about our data collection and analysis methodology. We also describe the

limitations of this study.

3.2.1 Titan Supercomputer Organization and NVIDIA K20X GPU Ar-

chitecture

Fig. 3.1 shows the physical organization of the Titan supercomputer. It consists of 200
cabinets organized in 25 rows and 8 columns. Each cabinet has three cages/chassis. There
are eight blades in each cage. Four nodes constitute one blade. Each node has one AMD
Opteron 6274 CPU (with 32 GB of DDR3 memory) and one NVIDIA K20X GPU (with
6 GB of GDDR5 memory). Each blade has two high-speed interconnect Gemini routers,

each shared by two nodes. Table 3.1 lists Titan system specifications and features [17].

BRRAAR

N i)
il =
L U U
Node Blade Cage Cabinet Titan supercomputer
(GPU +CPU) (four nodes) (eight blades) (three cages) (200 cabinets)

Figure 3.1: Overview of the Titan supercomputer’s physical organization.

Table 3.1: Specifications and Features of the Titan Supercomputer [17].

Architecture Cray XK7 Meng(;ll;y/n- 32GB + 6GB
Processor 16-Core AMD Memory /core 2GB
Cabinets 200 Interconnect Gemini

Nodes 18,688 AMD Opteron GPUs 18,688 K20X Keplers

Cores/node 16 Speed 27 PetaFlops

Total cores 299,008 Opteron Cores

The GPU deployed on the Titan supercomputer is NVIDIA K20X GPU [9], which is

22

able to provide a peak performance of over 1.30 Tflops (double precision). The K20X
GPU has a total of 14 streaming multiprocessors. Figure 3.2(a) presents the architecture
of one streaming multiprocessor. Each streaming multiprocessor has 192 CUDA cores, 64K
registers, 64KB of combined shared memory and L1 cache, and 48KB of read-only data
cache. Figure 3.2(b) shows the memory hierarchy of K20X GPU. We see that the L2 cache
(1536 KB) and the GDDR5 memory (6GB) is shared by all streaming multiprocessors.
On-chip and off-chip GPU memory structures including the device memory, L2 cache,
instruction cache, register files, shared memory, and L1 cache are protected by a Single
Error Correction Double Error Detection (SECDED) error correction code (ECC). The
read-only data cache is parity protected. On the other hand, structures such as logic,
thread schedulers, instruction dispatch unit, and interconnect network are not protected

by the ECC.

>

88
aan =

00 3000066006 0G0 3
OO0 D 00CDNnE6EE M EEE D
000 £ 6606 M5 6660 666 Mm@

:16

Jieie Jroe Jic)lic [l fusen]s] s e ielie fmsan) e/l c N o] vs s
000 CCECOEDEN6E0EEDEEE N0 Ea

002000 MmNe00EmEeEEmBa

64 KB Shared Memory/L1 Cache

48 KB Read-only Cache

@) single precision/integer CUDA core memory load/store unit
[77) double precision FP unit B special function unit

(a) Architecture in the Streaming Multiprocessor

Host
Memory

SMX 0 SMX 13
()| |C)
[(] v v v]

[

DRAM(Global Memory)

(b) K20X GPU Memory Hierarchy

1
1
1
1
1
1
1
1
1
1
)
1
1
1
1
1

Figure 3.2: Architecture of NVIDA K20X GPU deployed on the Titan supercomputer [9].

3.2.2 GPU Errors: Collection and Analysis Methodology

In this chapter, we study GPU soft-errors that occurred on 18,688 GPUs deployed on the
Titan supercomputer, including single bit errors (SBEs), dynamic page retirement errors
(DPRs), and double bit errors (DBEs). We use GPU-error related data from February
2015 to June 2015 (more than 60 million node hours). The console logs from Titan are
parsed to log critical system events. These critical system events alert the system operators
of unexpected/undesired behavior. We point out that we apply a filter to separate a
“parent” failure event from its “child” events. This methodology is similar to the one
outlined in previous works [55, 140, 141, 113], but understanding the impact and effect of
“parent/child” failure events is not the focus of this chapter, this topic is covered in detail
by other works [55, 139].

We note that single bit errors are not logged in the console log, these errors are collected
via the nvidia-smi utility on all GPU nodes. This utility provides snapshot information,
i.e., it does not timestamp individual single bit errors, but records single bit errors before
and after each batch job. This allows us to do temporal analysis on single bit errors, albeit
at the granularity of a “batch job”. We denote a batch job as a set of applications that are
submitted by the same user (using a gqsub command on Titan). Multiple “applications”
(also referred as “apruns”) can run within a submitted batch job (also referred to as “job”
or “batch”). The single bit error count is collected at the start and end of the batch job
and hence, can not be associated with an application run directly. We also note that
our framework can identify the node locations on which the single bit errors occur. We
collect GPU resource utilization information such as GPU core-hours, maximum memory
consumption, and total memory consumption, on a per application basis.

The output from the nvidia-smi utility also includes double bit and dynamic page
retirement related errors. We do not use this utility to analyze double bit or dynamic
page retirement errors due to inconsistency in error logging as pointed out by previous

works [140].

24

3.2.3 Limitations and Scope

While our study covers the GPU error data for a supercomputing facility over an extended
period of time, we recognize that our work is subject to assumptions and limitations.

First, our analysis is post-hoc in nature and hence, by definition, it can not answer
what-if scenarios where one may require changing the system/workload environment to
observe the effect of a change.

Second, we note that such a large-scale computing facility is often very dynamic in
nature with respect to software stack changes. Operational practices are continuously
tweaked and unscheduled outages take place among other system updates. We have limited
control over such factors. Therefore, isolating the impact of the above factors on our study
is challenging. Instead, as we discuss our findings in this chapter, we specifically point out
the external factors that we believe may influence our findings. Previous works have also
pointed out that NVIDIA’s GPU error logging has improved over time [140, 139]. Our error
collection framework attempts to mitigate this by collecting the same error information
via multiple possible methods.

Third, our study provides insights about correlation between applications/users and
GPU error characteristics. Yet, it is not possible to investigate specific applications since
we do not have access to application source codes. We point out that we have little to no
knowledge about users’ intentions. User behavior may change over time as the scientific
knowledge in a particular domain improves. A new computational model or method in
a particular domain may affect all applications in that domain at a given time or over
a period of time. We also note that while our logs report the application name (binary
name) at the end of each job, it is possible for a user to use the same binary name for two
different applications, or the same application with different input types. For our analysis,
we conservatively treat them as the same application because of the lack of more detailed

knowledge.

25

3.3 Analyzing Single Bit Errors (SBEs)

In this section, we aim to understand the temporal characteristics of single bit errors (SBE)
on the Titan. While previous studies have shown that most of the SBEs tend to occur
only in a few GPU cards [140], the temporal characteristics of the SBEs have not been
explored because of the inability to collect SBE occurrence information continuously over
time. As described earlier in Section 3.2, our framework enables us to collect SBE counts
at the batch job granularity.

Fig. 3.3(a) shows the CDF of the single bit error counts on a per day granularity. Recall
that the time stamp of each SBE occurrence is not recorded. However, since the Titan
supercomputer is highly utilized, we are able to collect the SBE data from a large number
of batch jobs and aggregate them over 24-hour periods. The x-axis in Fig. 3.3(a) presents

the days in the observation data in increasing order of their daily SBE count.

100% 100%
i} 0
c goo,L All days £ 0% Exclude top2 days i
8 8

60%} 60%}]
i g
L 40%] N 20%|]
o 15
L 20%| L 20%)| 1
© O% 44 © 0% I I I I I

Q 10 3O O 0 ,\'00 ,\}Q Q fLQ O O O ,\'QQ ,\}Q
Days Days

(a) (b)
Figure 3.3: Cumulative single bit error (SBE) count distribution over days (a), and cumulative
SBE count distribution over days excluding top 2 days (b).

The steep curve of the distribution suggests that only a few days account for most of
SBEs. In fact, only three days account for 97.18% of the total SBEs, while the top ten
days with most SBEs account for 97.84% of the total SBEs. Due to this skewness, it not
clear how errors are being accumulated over the rest of the days. To better view this, we
plot in Fig. 3.3(b) the cumulative distribution function of SBE counts but exclude the top

two days. We observe that SBE occurrences are not proportionally distributed over the

26

rest of the days either, i.e., 40% of the days with the lowest SBE daily counts account for
only 10% of the total SBE counts, while the remaining 60% of the days account for 90%
of SBEs.

This uneven distribution of SBEs across days led us to investigate how these errors
appear across time. Fig. 3.4(a) shows the normalized SBE count per day for the whole
period of the study. We normalize the daily SBE count by the average of the daily SBE
count over the whole period. This figure indicates that the density of SBEs across days is

fairly uneven and appears bursty.

£0.25 0.4

o)

S0.20 5

LIJ -

B0.15 s 0.2

> —

‘50.10 S L, oake

o S 0.0f R

:0.05 > |

g < [1 1

=0.00 0T 0 P 0 O
’L\\‘ ’L\’L’\"b\\'(o D‘\cJ D«\ff)%\'\(o 6\& (90 '\90 »\“)Q 'LQQ ffog 3()0

Date Lag

(a) (b)

Figure 3.4: Daily SBE count across time excluding the top two days (a), and autocorrelation
function of the SBE interarrival times (b).

To examine whether there is burstiness and/or periodicity in SBEs, we analyze the
time series of SBE occurrences and plot the autocorrelation function of the inter-arrival
times of SBE-affected batches with non-zero SBE counts since SBE measurements are at
the per batch granularity. Autocorrelation is a mathematical representation of the degree
of similarity in a time series and a lagged version of itself. As such, it is ideal for discovering
repeating patterns by quantifying the relationship between different points of a time series
as a function of the time lag [82]. The autocorrelation metric is in the range of [—1,1].
Higher positive values indicate that the two points between the computed lag distance are
“similar”, i.e., have stronger correlation. Zero values suggest no periodicity. Negative values
show that the two points that are lag elements apart are diametrically different. Fig. 3.4(b)

illustrates the autocorrelation function of the inter-arrivals of batches as a function of the

27

distance between successive arrivals (lags). The figure illustrates a noticeable periodic
pattern: the pattern repeats within every 6 weeks, and the periodic pattern for positive
autocorrelation values becomes even more pronounced as the lag increases. This indicates
that both burstiness and periodicity are present, it may be therefore possible to predict
future SBE occurrences using this information|[151]. One may argue that burstiness in SBE
occurrence is an artifact of burstiness in the inter-arrival of GPU jobs. To address this, we
performed the autocorrelation analysis on the number of applications executed every day.
We found the autocorrelation metric to be close to zero, indicating lack of burstiness in
the inter-arrival of GPU applications. This is expected since the Titan supercomputer is a
highly-utilized computing platform with long job-queue waits. Therefore, we conclude that

our observation about SBEs in not an artifact of the GPU job execution characteristics.

Observation 3.1 Our field data analysis suggests that single bit error occurrences on
the Titan supercomputer are bursty in nature. These errors tend to be clustered in time.
Given that most of these errors are also limited to only a few GPU cards [140], system
administrators can exploit these observations together for better GPU job scheduling at
a large scale (e.g., avoid scheduling critical workloads on certain nodes / days, and pos-

sibly turn off ECC on certain nodes during specific time-periods for improved performance).

Previous work has shown that only a few selected GPU cards experience most of the
SBEs in the system [140]. We note that the measurement period here does not overlap
with that of a previous study on the same system but, our study reconfirms the findings
presented in previous work [140]. Here, the top two SBE offenders out of all 590 SBE
offenders account for 96.9% of SBE errors. Interestingly, we also found that these top two
SBE offenders accumulate all the SBEs on a single day. This leads us to investigate how
SBE offender nodes accumulate these errors over time and look for how many distinct days
each SBE offender experiences one or more SBEs. Fig. 3.5(a) shows the number of distinct

days that a specific SBE offender node experiences an error. We make two observations.

28

First, as illustrated by the points in the bottom right corner of the plot, a few top SBE
offender nodes experience most of their errors over a small number of days. Second, the
rest of nodes do not show a linear trend in terms of the number of distinct days over
which SBEs occur. For example, the bottom 65% of the SBE offenders (approximately
400 nodes) accumulate their SBEs over less than 20 days, while the top 35% of SBE
offenders (approximately 200 nodes) take up to 6 times more days to accumulate their
SBEs. This non-linearity in SBE accumulation can be particularly useful to HPC facility
administrators for identifying high SBE offender nodes and exploiting this information for

better GPU job scheduling.

120 - €0.8
z : |
o 10 Sosf !
o 80f a2 e
o ol " -TinT T
5 60} g 204
. . —_ I

E aof S 80.2 | e i]
= 20} ar] : EB L Bb1i HEabg

° o Eo.0f siBb1e Husay

O A0 00 500 A0 OO ° = SBE offender nodes

SBE offender nodes (top 3 to 20 only)

(a) (b)

Figure 3.5: Number of SBE-affected days for all nodes (sorted in increasing order of total SBE
count) (a), and normalized variation in the daily SBE count distribution for the top twenty SBE
offender nodes excluding the top two nodes (red line in the middle represents median while green
dot represents mean) (b).

Motivated by the above observation, we look deeper into the top 20 SBE offender nodes.
In particular, we plot the variation in daily SBE count for the top 3 to 20 nodes (we do not
consider the top 2 nodes because all their SBEs occur on a single day only). Fig. 3.5(b)
illustrates the boxplot of the daily SBE counts that shows the 25th and 75th percentiles
as well as median (flat line) and mean (dot). The boxplots show that variation can be
significantly high for certain nodes. This suggests that while high count SBE offenders
accumulate single bit errors over a large number of distinct days, it may be challenging
to predict the number of single bit errors these nodes are expected to experience on a

particular day.

29

Observation 3.2 A few top SBE offenders experience all of SBEs over a wvery small
number of days. However, the rest of nodes do mot show a linear trend in terms of the
number of distinct days over which SBEs occur. High count SBE offenders experience
errors over a significantly high number of distinct days compared to the low count SBE
offenders nodes. Moreover, the wvariation of SBE occurrence among days can change

significantly across SBE offender nodes.

After investigating the temporal characteristics of SBE occurrences, we attempt to
understand how GPU resource utilization affects SBE occurrences. In particular, we test
if higher GPU resource utilization may lead to higher SBEs. We point out that single bit
errors can occur due to multiple reasons, therefore, higher GPU resource utilization alone
may not be considered as the “cause”. Fig. 3.6 shows the normalized GPU core hours and
memory utilization for all SBE offender nodes. The normalization is performed using the
average for all SBE offender nodes except the top two nodes (which are considered outliers,
as their SBEs occur in a single day only). We observe that the nodes with higher SBE

count do not necessarily use higher GPU core hours or run workloads with higher memory

utilization.
2.0 2.0
+%e SBE countee. GPU core-hours e%e SBE count ¢+« GPUsum-mem
w 1-5" - o ... “ g 1'5 . . oo u
% ’ﬁ- -“% ‘h"-{ @"" M"' b7 't'z) o(g?ma‘s'f-‘*"v J.-‘aw
\ .. 3 . . \ -
;10 ° ..';.'.'J'..;':.I'. "':. ..':%' -:. .5 ; 10 « % .o :* J- ‘:- - ‘-. o: . ' ’
< > . ; £ ; . e, é
o o P R ST o J KLY 'cbw"u\ w k«
2 0.5k AT MR m gl A 205 e #d"
0.Q — | 00 o ® ® . ®
O (00 (a0 5P QO (O 0 AQY 4OV 200 Q0 OV O
SBE offender nodes SBE offender nodes

(a) (b)

Figure 3.6: GPU resource distribution for the SBE offender nodes (excluding top two SBE
offenders): GPU core hours (a), and GPU memory utilization (b).

While GPU resource utilization does not seem to be directly correlated with the SBE

occurrence frequency on the GPU nodes, we suspect that the variance in GPU resource

30

€9
£140 Sal T
2120} H £]
< 1 T 7k 4
$100} H Eel .
S 80 i a5 | -
2 60| " 24l : "
O 4ol 1 O3} h :r
= 20} :L =2 * :: H
g o TR W) Soltitlin aMntn o il
O A0 "&Day? AN 0O A0 90 a0 O O
Days
(a) top 50 days (b) top 50 days
27 T GEJ7
= i 1 £6f ? 1
o5l } 1 £5)]]
S e a S f
'
2 ! ° o) il
3+ n ! y a3t i
%ZV :' :: l.| i 02, :: i
c ! e, n £ i
- 1f I o1 ! 1)
EO s s "! e, S04 r>50 1 i R e
= Q A0 190 20 8O 0 Q A0 190 20 O 0
Days Days
(c) top 4 to 50 days (d) top 4 to 50 days

Figure 3.7: Variance in the GPU resource utilization and daily SBE count: GPU core hours for
top 50 days (a), for top 50 days excluding the top 3 days (b), GPU memory utilization for top 50
days (c), and for top 50 days excluding the top 3 days (d). Days are sorted in increasing order of
SBE count.

utilization may be correlated to higher SBE occurrences. More precisely, we want to test
the hypothesis that days with higher variance in GPU utilization experience higher single
bit errors. Fig. 3.7 shows the top 50 days that encountered most SBEs (in increasing
order) and the corresponding variance in GPU resource utilization on that day. We note
that Figs. 3.7(a)-(b) indicate that the couple of days with the highest SBE count may also
experience the highest variance in their GPU resource utilization. However, a closer look

at the top 4 to 50 days (Figs. 3.7(c)-(d)) shows that variance in GPU resource utilization

does not imply higher daily SBEs.

Observation 3.3 We found that GPU resource utilization and the wvariance in the

GPU resource utilization do not seem to be significantly correlated with the SBE oc-

31

currences. Higher GPU resource wutilization or its wvariance do not necessarily result
in a higher SBE count. We believe that an important implication of this finding is
that GPU resilience simulation and modeling frameworks do not necessarily need to
vary the soft-error rate based on the compute load or variance in the load. This can

potentially simplify the design of such tools without compromising the accuracy of the study.

We learned that the GPU resource utilization is not highly correlated with the SBE
frequency on SBE offender nodes. Here, we investigate the relationship between specific
users/applications and SBE counts. In other words, is a certain fraction of users/applica-
tions experiencing more single bit errors than others? If so, what are the respective GPU
resource utilization levels?

Fig. 3.8(a) shows the SBE count of different users versus their respective GPU core
hours. Both SBE count and GPU core hours have been normalized by their respective
average values. We also point out that only users that encountered at least one single bit
error are included in the plot. We found that the correlation between GPU core hours
and SBE count is significant when studied at the user-level. The Pearson coefficient is
0.59 with p-value < 0.05 while the Spearman coefficient is 0.89 with p-value < 0.05. This
indicates a strong non-linear correlation. We did similar analysis between the SBE count

for users versus their respective GPU memory utilization. We found similar trends in the

results.
16 16
¢ —¢ SBE count T ¢ —¢ SBE count
Y 12[| « - GPU core-hours t Y 12}| -+ GPU core-hours N
© . = i
> I S »
. 8 ! . 8
! 1
5 i s .ot
. !
=! A = A
o 1 0l &
J’\ ,"Q f\l. f. i‘ ! N*I"]rqh 1
0 Z L b 0 4 éa
Q0[0 100]0 D(QOIO 600'0 %Qolo xggclo 00]0 ’),Qolo D(QO'O Q)QOIO %Q°|° ;\QQO'O

SBE experiencing users SBE experiencing applications
(a) (b)

Figure 3.8: GPU core-hours for users (a), and applications (b) experiencing SBEs.

32

Fig. 3.8(b) shows that SBE count for applications versus its respective GPU core hours.
Only the applications affected by SBEs are included in the plot. Similar to our previous
analysis for users, we found strong non-linear correlation in this case as well. The Pearson
coefficient is 0.67 with p-value < 0.05 while the Spearman coefficient is 0.89 with p-value
< 0.05. Analysis between the SBE count of different applications versus their respective
GPU memory utilization shows similar trends.

In summary, our data suggests that GPU resource utilization at the user-level appears

highly correlated with the SBE frequency for different users and applications.

Observation 3.4 SBE occurrence frequency appears to be highly correlated with users and
applications. This correlation s better expressed by a non-linear relationship and is not
necessarily an artifact of the bursty nature of single bit errors. This indicates the necessity

and importance of application-centric GPU error resilience techniques and tools.

3.4 Analyzing Dynamic Page Retirement (DPR) Errors on

the Titan Supercomputer

Dynamic Page Retirement (DPR) is an important resilience feature to improve the
longevity of an otherwise good GPU card. A page in the GPU device memory is blacklisted
if two single bit errors or one double bit error occur on the same page. This page is not
allocated to the application on the next reload of the GPU driver [108]. In this section, we
study single bit errors and dynamic page retirement errors together since SBEs can cause
DPRs. We also investigate the impact of GPU resource utilization and applications on
DPR occurrence.

For the measurement period, we observe a total of 50 DPR errors on 43 distinct GPU
cards. Recall that we observe that SBEs tend to be more concentrated in a few selected
GPU cards. More generally, the distribution of SBEs is not uniform among all the 590

SBE offender cards. Therefore, we hypothesize that DPR errors are more likely to occur in

33

the top SBE offender cards. Fig. 3.9 shows the DPR and SBE error frequencies for all SBE
offender cards (excluding the top 2 SBE offenders which do not have any DPR). The plot
shows that some top SBE offender cards do observe DPR errors. For example, the top 10
SBE offender cards account for 4 DPR errors, while the top 20 SBE offender cards account
for 7 DPR errors out of total 50 DPRs. Cards with low SBE counts show no DPRs during
the measurement period. Most of the top SBE offenders do not experience any DPRs
either. It is possible that some top SBE offender cards may potentially experience a DPR
error in the future but we argue that our measurement period is long enough to account

for most of such cases given the bursty occurrences of SBEs.

3 L3 & &
e*s DPR error count
e « ¢+ SBE count(norm.)
= .
o
(w]
G
= 1 L 2 2 X o soconcrd
L i
]
|

Q ,\00 ,LQQ ,503 0(00 6)00 600
SBE offender nodes

Figure 3.9: DPR errors for SBE offender cards (excluding top two SBE offenders which had no
DPRs).

Observation 3.5 Top SBE offender GPU cards do not necessarily experience more
dynamic page retirement errors. In fact, DPR errors may occur on any SBE offender

cards, even to those with relatively lower single bit error counts.

One can also reasonably hypothesize that the SBE count is likely to be higher on DPR
offender nodes before the DPR error, since two SBEs trigger a DPR. To test this hypothesis,
we calculate the difference of SBE counts after and before each DPR occurrence within a
certain time window (i.e., 24-hours), for both DPR offender nodes and non-DPR offender
nodes. In other words, we accumulate the SBE count on the node for a 24 hour window

both after and before the DPR event, and then take their difference. Fig. 3.10 presents

34

the histograms of the difference in SBE count for a 24-hour window for both DPR, offender
nodes and non-DPR offender nodes. The dotted vertical line in each graph shows the
average. Average value of this difference for DPR offenders is around 160 while the value for
non-DPR offenders is around 0. Similarly, the cumulative distribution in Fig. 3.11(a) shows
that DPR offending nodes and non-DPR nodes have significantly different distributions.
We also conduct the Kolmogorov-Smirnov Test (KS test) to test this hypothesis. We find
that D = 0.389, p-value = 5.991 x 10~7. For our sample size here, the critical D value
is 0.19 and therefore we can reject the null hypothesis, and conclude that DPR, offending

nodes show significantly higher values of difference in SBE counts compared to non-DPR

nodes.
12% | 12%
s 24 hours s 24 hours
c 9% : c 9%
a i a
5 6% : 5 6%
8] ! U
© 3% ! © 3%
[N L
0%0 QO 0 O, a0 .0 .0 .0 0%0 Q O l() ‘Q ‘Q ‘0 Q
/7'0 /»\‘0 A0 70V A0V pOV O /fLQ /\,0 A0 40V 20V pOV «Q
Difference in SBE count Difference in SBE count

(a) (b)

Figure 3.10: Histograms of difference in SBE count for a 24-hour windows after and before the
DPR occurrence for DPR offender nodes (a), and non-DPR offender nodes (b). Dotted vertical
lines represent the average difference in SBE count.

Next, we test if SBEs continue to occur on the DPR offender nodes beyond the 24-hour
period since the last DPR error occurrence. If so, for how long do the DPR offender nodes
continue to experience single bit errors? Fig. 3.11 shows the cumulative distributions of
difference in SBE count for two different size of time windows. As a comparison point, we
present results for 24 hours time-window and 72 hours time-window (Fig. 3.11(a) and (b)).
We observe that the cumulative distribution does not change significantly from 24 hours
to 72 hours. This indicates that the majority of SBEs occurring after the DPR occurrence

tend to occur within the first 24 hours. We find that the likelihood of SBEs increases after

35

the DPR occurrence, but it does not continue to remain at that level always. We also note
that the time-period after which the probability of SBE occurrence returns to normal level
can vary across GPU nodes. We find 24 hours to be a good threshold. In summary, this
is an interesting and counter-intuitive finding as the original hypothesis suggests higher
SBE occurrences before the DPR error; on the contrary, our field data indicates that more

SBESs are likely to occur after the DPR, error.

100% 100%
o, ||** DPR o, [|** DPR
80%1 e « NonDPR|f | 4 e+ 80%][| . + Non-DPR R
L 60% L 60% oo
a a
© 40% © 40%
20% 20%
24 hours 72 hours
0% - 0% ! !
/,\'QQ /60 Q c)Q ,\90 /,\00 /60 Q 60 ,\90
Difference in SBE count Difference in SBE count

(a) (b)

Figure 3.11: Cumulative distributions of difference in SBE count for a 24-hour window (a) and
a 72-hour window (b) for DPR offender nodes and non-DPR offender nodes. Some outliers are
omitted for clarity. Omission of outliers causes the DPR-curve not to approach 1.

Observation 3.6 Our field data analysis shows that single bit errors tend to occur
more frequently on the DPR offender nodes after the DPR error than before. This is
counter-intuitive since single bit errors are a cause of DPR errors, and hence, one would
expect the SBE error rate to be higher before the DPR error. We also observe that the
magjority of SBEs occurring after the DPR occurrence tend to occur within first 24 hours.
This finding can be useful in cases where an application/user may turn on/off ECC

support based on the probability of soft-error occurrences.

Recall that the DBE is another cause for DPR errors. We conduct analysis to under-
stand the relationship between DBEs and DPRs. However, due to the limited number of
errors, it is not possible to draw conclusions with high statistical significance. Next, we

investigate the effect of GPU resource utilization on the DPR error frequency, similar to

36

the analysis performed for single bit errors. Fig. 3.12 presents the GPU resource utilization
for the GPU nodes that experience DPR errors. We point out that the GPU core-hours
and sum-memory metrics are normalized to the corresponding average across all nodes.
Fig. 3.12 shows that GPU resource utilization points do not show any clear trend. Nodes
that experience a DPR do not have higher resource utilization compared to nodes that do
not experience DPR errors. This finding is similar to the one expressed in Fig. 3.6 where

SBE events do not show strong association with the GPU resource utilization.

3 | 3 |
¢ ¢ DPR error count I ¢ ¢ DPR error count I
e o GPU core-hours(norm.) ,’ e o GPU sum-mem(norm.) ,’
2 *> 2 *
I]
1" .l ;’ '..\’..i/ﬁ\i?,io’?i,“\l!'Q 1’. * ’..‘M’QfQ /1,’","9’,*
14 1
L oe A wimt L
0 : : : : 0 ‘ ‘ ‘ ‘
Q A0 10 20) N\ A0 10 N pO

DPR offender nodes DPR offender nodes
(a) (b)

Figure 3.12: DPR affected GPU nodes with increasing error counts and normalized GPU core-
hours (a), and normalized GPU memory utilization (b).

Observation 3.7 There is no significant association between DPR count and GPU

resource utilization.

As we do not find any significant relation between GPU resource usage on DPR affected
GPU nodes and DPR error frequency, we now look into how GPU resource usage of certain
users and applications correlates to DPR errors. Naturally, the GPU resource usage varies
among different users and applications. Therefore, we investigate if applications that
experience higher DPR errors also have higher GPU resource utilization. Fig. 3.13 shows

that GPU resource utilization is not necessarily correlated to the number of DPR events

experienced by different users and applications. The Spearman and Pearson coefficients

37

show almost no correlation. In summary, we can observe from Fig. 3.13 that users that

experience more DPR errors do not necessarily use longer GPU hours.

e ° 4 S =GPU core-h 1

= --GPU core-hours = 3 core-hours »
Jc-:) 6 § < #DPR error count 9 §
g *DPR error count 3 °© 5 4 , 9
o 4 9 O e
3 5 5 5 O
: 5 E 35
S 5

DPR experiencing users DPR experiencing applications

(a) (b)

Figure 3.13: DPR errors and GPU core-hours for DPR affected users (a), and DPR affected
applications (b).

3.5 Analyzing Performance Variance in SBE and DPR Af-
fected GPU Nodes

In this section, we investigate if nodes affected by SBE and DPR errors are more likely
to show higher performance variation or significant degradation in performance compared
to error-free nodes. Toward this, we perform extensive experiments on the SBE and DPR
affected nodes and randomly selected nodes on Titan.

We run two representative GPU kernels, Matrix Multiplication (MM) and Breadth-first
Search (BFS) on all DPR nodes, top 10 SBE offender nodes, and randomly selected error-
free GPU nodes. These kernels have significantly different computational characteristics.
MM is a regular, compute-intensive benchmark, while BFS is an irregular data-intensive
one. The MM and BFS kernels were obtained from the NVIDIA CUDA toolkit [107] and
Rodinia Benchmark Suite [31], respectively. We collect performance data by repeatedly
running these kernels on the selected GPU nodes. We conducted over 24,000 experiments

on Titan GPU nodes, covering more than 9,000 randomly selected GPU nodes. Each kernel

38

i 4% T 14% | 14% T
! > -
Q— 1 Q_ : Q_ !
£ 39| ! € 10.5% . € 10.5%}
a - S ! ©
1
qa 2%l ! '46 7% ‘*5 7%}
. 1 - .
(@]
% 1%F : © 3.5%F % 3.5%!|
f u’: uL_
L
0, 00\, n L 0, X X
S Ry e, 0% 02 A% 3383 08T 0% AT A% a2
Norm. execution time Norm. execution time Norm. execution time
(a) MatMul. (b) MatMul. (¢) MatMul.
Random Nodes. Top 10 SBE Nodes. All DPR Nodes.
4% T 4% T 4% .
o ! o Q :
£ 3% : £ 3% € 39l
3 - 3 3
"‘6 2%} I "‘6 2%} q6 2%
O 104 O g, O 1ol
© ° © © o]
i i o
0% " 0% a2 0% ’L
0° 02 Y A A 0° 02 Y A 8 35 0% A0 AN
Norm. execution time Norm. execution time Norm. execution time
(d) BFS. (e) BFS. (f) BFS.
Random Nodes. Top 10 SBE Nodes. All DPR Nodes.

Figure 3.14: Distribution of execution time on random nodes, top 10 SBE nodes, and DPR
offending nodes.
is run 100 times on each DPR offender node and top 10 SBE offender nodes.

Fig. 3.14 shows the distribution of execution times on randomly-selected nodes, top
10 SBE offender nodes, and DPR offender nodes. The execution time on the x-axis is
normalized with respect to average performance across all runs. We note that some outliers
in these plots are omitted for presentation clarity but their effect on mean and standard
deviation is reflected on the graphs. For the MM benchmark, we notice that SBE nodes
and DPR nodes have 3-4% better performance on average compared to the randomly
selected nodes. This is because randomly-selected nodes exhibit a bimodal distribution of
execution times, making the average execution time of these nodes slightly higher. For
the BFS benchmark, there is no significant difference in average performance between the

top 10 SBE and DPR offender nodes compared to randomly-selected nodes. The SBE

39

and DPR offending nodes show slightly lower standard deviation compared to randomly
selected Titan nodes. This is primarily because the number of DPR and top 10 SBE
offender nodes are much smaller compared to our randomly-selected node pool (over 9,000
nodes). There are other factors that can cause higher standard deviation among such a

large number of nodes (e.g., variance in temperature, spatial location, device properties).

Observation 3.8 The distribution of execution time across randomly selected nodes on
Titan in itself may be application-dependent. Experimental data suggests that top 10 SBE
and DPR offending nodes do not exhibit lower performance than the average performance
of randomly selected nodes. The implication of this finding is that system operators do not
need to replace GPU cards with high SBE / DPR error counts specifically for performance

degradation or variance reasons.

3.6 Effect of Temperature on Dynamic Page Retirement Er-

rors

In this section, we investigate the effect of temperature on GPU soft-errors, in particular
DPRs, DBEs, and SBEs. Past work points to temperature dependence of hardware errors
on other systems [127, 43|. Here, we perform a detailed analysis of the relationship between
temperature and soft-errors on GPUs.

In the Titan supercomputer, upper cages are typically at higher temperature than
lower cages. We found that the distribution of DPR errors across different levels of cages
is fairly equally distributed. Therefore, this does not imply a direct impact of temperature
on DPR errors as such. To investigate deeper, we collected GPU card-level temperature
for different time windows of 5 minutes, 15 minutes, and 60 minutes before each DPR
occurrence for a large number of GPU nodes. We collect temperature data every minute
for each GPU card. Table 3.2 shows the mean and standard deviation of temperatures

across the three time windows of 5 minutes, 15 minutes, and 60 minutes before each DPR

40

occurrence. These statistics are collected for the DPR offender node, all nodes within its

cage, and over 800 random nodes in the system.

Table 3.2: Statistics for Temperature (°C) (DPR)

60min before 15min before 5min before

(avg / stddev) (avg / stddev) (avg / stddev)

DPR 34.55 / 8.53 37.00 / 8.95 39.02 / 8.79
(iﬁ]iz;) 34.68 / 8.71 36.77 / 9.24 38.56 / 9.27
1(\1(:;'51}){ 30.54 / 7.70 31.54 / 7.79 32.47 / 8.11

First, we observe that temperature across all three types of nodes increases consistently
during the hour as the DPR occurrence approaches (Table 3.2). This may be possibly
due to power/cooling condition in the machine room or the currently running workload.
Interestingly, the DPR offenders have higher average temperature than randomly selected
nodes. This indicates that higher temperature may be associated with DPR errors. We
also note that the nodes in the same cage as the DPR offenders show similar average
temperature. This suggests that higher temperature may be associated with the increase
in the likelihood of a DPR error. However, one can not trivially conclude that higher
temperature leads to DPR, errors since other GPU nodes in the same cage do not observe
a DPR error despite similar average temperature.

These results emphasize the importance of selecting the correct methodology for com-
parisons: comparing the data across random nodes in the entire system and nodes within
the same cage, we see the importance of selecting what to compare with. Choice of random
nodes may sound as the right choice for comparison but in such-large scale systems usage
behavior and node characteristics can be significantly different in randomly chosen nodes.

Table 3.2 also shows that the standard deviation in temperature across all three types
of nodes is similar. Yet, the standard deviation for DPR offenders is generally higher than

the standard deviation for randomly selected nodes. Since the standard deviation is a

41

single number and may not capture the entire picture, we investigate deeper to under-
stand the effect of temperature variation of DPR errors. Fig. 3.15(a)-(f) illustrate how
temperature variations occur for different type of nodes with a DPR occurrence for the
extreme time windows: 5 minutes and 60 minutes. Each element on the x-axis corresponds
to a DPR occurrence (i.e., its timestamp), each box-plot shows the 25 and 75 percentiles,
the median (as a flat line), as well as the ending points of the temperature distribution
(whiskers). We observe that there is more variation in the temperatures if the time window
is longer. This observation is true across all types of nodes. However, closer to the DPR
occurrence, the temperature variations decrease significantly for DPR offender nodes as
compared to randomly selected nodes and nodes in the same cage as the DPR offender.
Unlike previous research for hard-disk related errors [43], our analysis suggests that higher
temperature variation does not necessarily increase the probability of DPR errors. In fact,
the majority of DPR offender nodes remain comparatively hotter and with non-fluctuating
temperatures. We also point out that the temperature variation for randomly selected
nodes is also affected by the large number of samples, partially contributing toward higher
variance.

Next, Fig. 3.16 presents histograms of the frequencies of temperatures for the three
categories of nodes: DPR offenders, DPR cages, and random. The average values are
denoted by the dashed lines in each histogram. The figure indicates that for the randomly
selected nodes the right tails (corresponding to higher temperatures) are thinner than
those of the DPR and DPR-cage ones. Focusing on the histograms that correspond to
the 5 min observations (i.e., the upper row of Fig. 3.16), one can notice the difference
in shapes across the three histograms. The random nodes, shown in Fig. 3.16(c) have
significant probability mass that is below 40 °C comparing to the DPR offenders and non-
DPR offenders within the same cage. This mass may not be as pronounced in the 60 min
observations, but it is still present across all histograms in the second row of Fig. 3.16.
Overall, the six histograms shown in this figure allow the reader to appreciate how mere

differences in standard deviation shown in Table 3.2 indeed correspond to significantly

42

G 70= . , ~ 70— _ _
& 6ol Time Window: 5 min g 60| Time Window: 60 min
2 50 R -4 ¢ s0 T el
FEEERER S E——
© B . 1 © SR T 7T PR "-'I|I 1y
“é.’_;’g- - e L B?é [;l “é_;’g- Pl TTT?quD?l*éé**g i
€ 10 , © 10 .

DPR timestamp DPR timestamp

(a) DPR offender nodes (b) DPR offender nodes

~ 70— - - G 0= - -
¢ 60[Time Window: 5 min ﬂ ; ¢ o[Time Window: 60 min :
g 50 5 o B oalien 2 so 8 e ST
€ b afn i aggd ot ﬂ-*?‘ ﬂﬁﬂﬂ“ § 20 o Mot “ﬂﬂagﬂﬂﬂﬂgg[
g ooV et g U | g Vot "Bty i el
£ 10 : € 10 :

DPR timestamp DPR timestamp

(c) Non-DPR offender nodes (same cage) (d) Non-DPR offender nodes (same cage)

g ég Tinje Window: 5 min e Ik ::::I' Q ;8 TirTlieWiHQOW1_60 min — 'rI: . E’IE:EI
23T:EEE,;i,E:E;;E_E,:,,H:iéiggiEh”i.rﬁ:z”’g' 28—.Eﬂi:;i,f:f:;i;f;;n;ﬂ”é?:[ﬂ:g:g:fiﬂiiiiiif'f
C Sy Y 2 b il
® 10 ® 10

DPR timestamp DPR timestamp

(e) Non-DPR offender nodes (random) (f) Non-DPR offender nodes (random)

Figure 3.15: Temperature variation before each DPR occurrence.

different temperature frequencies.

To better compare these histograms quantitatively, we compare them as CDFs in
Fig. 3.17. Fig. 3.17(a) shows all CDFs for the 5 minutes case and Fig. 3.17(b) shows
all CDFs for the 60 minutes case. Across both graphs, we see that the random nodes (non-
DPR) have significantly lower temperature than those of DPR offenders. For example, in
the 5-minute window, we see that 50% of random nodes have temperature less than 35°C,
but only 25% of those within the DPR case reach this mark. This trend is consistent
across most temperatures, nearly 20% of nodes that are randomly selected are consistently
cooler than those in the DPR categories (individual and cage). Further we see that even
within the same temperature percentile level, there is a difference in temperatures ranging
between three to ten degrees. For the longer time window of 60 minutes, these differences

still exist but are not as large.

43

Temperature (°C)
(a) DPR offender nodes

- 0/,
g.9% T 60 min

ORGS0 20 p0 90 €0 70

Temperature (°C)
(d) DPR offender nodes

Figure 3.16:

5 9% 5.9%
€
6% B 6%
]
3% . 3%
O
0, E 0,
0257020 10 o0 O 10 T ORSH 50 30 60 0 40
Temperature (°C) Temperature (°C)
(b) Non-DPR offender (c) Non-DPR offender nodes
nodes (same cage) (random)
g_g% 60 min g_g% : 60 min
B6% B 6% '
bS]]
. 3% 3%
O O
O o O
0RO 50 0O 00 ¢ 10 L ORSTI0 20 30 90 &0 10
Temperature (°C) Temperature (°C)
(e) Non-DPR offender nodes (f) Non-DPR offender nodes
(same cage) (random)

Temperature variation before each DPR error.

100% 100%
80% 80%
W 60% L 60%
[a) s o
© 40% - O 40%
- DPR = DPR
20% - non-DPR(cage) 20% - non-DPR(cage)
=+ non-DPR(rand.) =+ non-DPR(rand.)
0% . n n 0% . . n n
NS D O P P N)
Temperature (°C) Temperature (°C)
(a) 5 min before (b) 60 min before

Figure 3.17: CDF of temperature variation before DPR errors.

44

In summary, we have seen that while the temperatures of DPR offenders may be
similar to nodes within the same cage, they are consistently hotter than randomly selected
nodes. This further supports the observation that high temperature may precipitate the
occurrence of a DPR, especially if it remains consistently high (i.e., temperature variations
are rather limited).

We conduct similar analysis for DBE occurrences, results are shown in Table 3.3. We
observe that there is no significant difference in temperature of a DBE offender node, other
nodes in the same cage as the DBE errors, and randomly selected nodes. Therefore, we
can not conclude the effect of temperature on DBEs as per this analysis. However, we
found that DBEs occur more frequently in the upper cages than the lower cages (similar to
previous work [140]). This indicates some association with temperature, since the upper
cages are typically hotter than the lower ones. This in itself can not lead to any well-formed
conclusion due the varying temperature of nodes over time. Recall that single bit errors
are collected at the start and end of each batch job and hence, we do not have the exact
timestamp of occurrence. This limits our capability to perform fine-grained analysis on

the effect of temperature on single bit errors.

Table 3.3: Statistics for Temperature (°C) (DBE)

60min before 15min before 5min before

(avg / stddev) (avg / stddev) (avg / stddev)

DBE 32.64 / 5.97 32.02 / 5.54 33.30 / 6.18

Non-DBE 32.14 / 6.24 32.23 / 6.07 33.14 / 6.82
(same cage)

iiidzi? 32.89 / 8.54 32.79 / 7.96 33.39 / 7.89

Observation 3.9 Temperature may have an impact on GPU soft errors (DPR and DBE),
but this conclusion is highly dependent on the choice of nodes to compare against. Our
analysis clearly shows that a comprehensive methodology should be followed and described

when making such assessments. We find that higher temperatures may be correlated with

45

DPR and DBE errors and that higher variabilities in temperature data do not necessarily

lead to increased probability for DPR errors.

3.7 Chapter Summary

In this chapter we focus on single bit errors (SBEs), dynamic page retirement errors
(DPRs), and double bit errors (DBEs) on the GPUs on the Titan supercomputer and
analyze their characteristics and relationships with resource usage, applications, users,
and temperature. Our study discovers several previously unknown insights about the
characteristics of SBE, DBE, and DPR errors. For example, we show that SBEs happen in
bursts and tend to be clustered in time. Average GPU resource utilization and its variance
do not seem to be significantly correlated with the SBE occurrences, but shows strong
dependence with respect to users and applications. Interestingly, our analysis also shows
that top SBE offending GPUs do not necessarily experience more dynamic page retirement
errors or DBEs. Another counter-intuitive finding is that SBEs are more likely to occur
on the DPR offending GPUs after the DPR error rather than leading to the DPR error.
We also provide analysis about possible performance-variation effects of soft-errors and its

association with temperature.

46

Chapter 4

Characterization of Single-Bit Error

in the Wild

In the previous chapter, we study the characteristics of three GPU soft-errors on the Ti-
tan supercomputer: single-bit errors (SBEs), double-bit errors (DBEs) and dynamic page
retirement errors (DPRs). In this chapter, we take a close look on SBEs. We focus on
understanding the complex interplay between various kinds of system & workload condi-
tions with SBEs and on discovering insights that are useful for building reliable large-scale
systems.

There are several reasons that motivate us to focus on SBEs. First, SBEs occur most
frequently comparing to other errors. Their large amount make SBEs an appropriate
candidate for analysis on GPU reliability that is of statistical significance. Second, current
commercial GPUs support error correction codes (ECCs) on partial components [4, 8, 10].
For instance, a single-error-correction double-error-detection(SDC-DED) algorithm is able
to correct SBEs occurred in major memory components, including register files, .1 and L2
caches, shared memory, and DRAM, while parity is capable of detecting SBEs occurred in
read-only data cache. In contrast, other structures, such as arithmetic logic units (ALUs),
thread schedulers, instruction dispatch unit, and interconnect network, are not protected.

Any SBE occurring in those structures would result in incorrect application output or even

47

program crash. Most importantly, the ECC overhead is significant from the viewpoint of
the entire system. On Titan, each K20X GPU contains 6GB of memory. With ECC
enabled, the available memory size per GPU reduces by 12.5%, ending in approximately
5.25GB. Given the large number of GPU nodes (18,688) on Titan, a total of 14016GB is
used by ECC. In addition to the overhead in storage, ECC also reduces the achievable
bandwidth by more than 15% [7]. Therefore, we believe that a study on the characteristics
of SBEs is meaningful and would help in discovering opportunities to reduce the ECC
overhead, i.e., by dynamically turning on/off ECC.

Before studying the single-bit errors, we first take a look at the characteristics of the
temperature distribution on the Titan supercomputer. The motivation is that, temperature
has impact on the occurrence of GPU soft-errors (see Chapter 3). Here, we investigate
how the GPU temperature distribution varies in time and space across the system. We
also compare GPUs with other components, such as CPU and DIMM, and study how their
temperature distributions differ from one another over time. In addition, we study how
frequently Titan nodes become extremely hot and for how long they stay in such a hot
state. We discover that the retention time histogram in the hot state and in the normal
state varies significantly between CPUs and GPUs. Interestingly, we find that GPUs switch
in and out of the hot and cold states more frequently compared to CPUs and stay in these
states for a shorter period of time. We also observe that surprisingly, the retention time
of the hot state remains similar for cabinets from different temperature zones.

With a good understanding on the temperature distribution on Titan, we focus on
the characteristics of GPU single-bit errors. We show that there exists an interconnection
between workload characteristics, certain GPU cards, temperature, power consumption,
and GPU single-bit errors. We also show that, it is challenging to exploit this relationship.

This chapter is organized as follows. In Section 4.1, we investigate the temperature
behavior on the Titan. In Section 4.2, we explore the relationship between single-bit errors
and other related features, such as workloads, GPU node locations, temperature, and

power consumption. Section 4.3 gives a brief summary of this chapter. Note that, the

48

data collection methodology is the same as that described in Chapter 3.

4.1 Temperature Characteristics

Before exploring the relationship between temperature, power consumption, and SBEs,
one needs to develop a deep understanding of the temperature behavior on the Titan.
Power consumption is highly correlated with temperature, i.e., the Spearman correlation
coefficient is as high as 0.5. Consequently, we primarily show temperature analysis. Similar
analysis (and conclusions) can also be applied to power consumption. There are two major
questions we want to address for the temperature characteristics: (1) what are the GPU
temperature characteristics at the node level, and how do these characteristics compare
against other components in the system such as CPU and DIMM? (2) what are the GPU
temperature characteristics at a coarser granularity such as at the cabinet level, and how
do these characteristics differ from CPU and DIMM?

We first show a general view of the temperature on the Titan supercomputer. Fig-
ure 4.1(a) presents the empirical pdf of temperature for different components (GPU, CPU,
and DIMM) cumulated over the whole sampling period for the entire system. Each Titan
node contains one CPU, one GPU, and four DIMMs. Here, we only show the histogram of
DIMM A, since all four DIMMs expose similar behavior. We observe that the GPU tem-
perature histogram is fairly spread. While the mean is similar, the variance of the GPU
temperature histogram is significantly different from the variance of the CPU and DIMM
temperature histograms. This implies that all components attain a range of temperature
values over time, and variance may vary from one component to another. Then, we show
the monthly empirical pdf for temperature in Figure 4.1(b) and find that the temperature
distribution remains steady over time. While the temperature distribution itself may not
be used for SBE prediction, such high similarity in temperature distribution over time
makes it amenable to learn and exploit it for other purposes by system administrators and

facility operators.

49

Beyond the overall temperature distribution, we are also interested in how frequently
Titan nodes become extremely hot and for how long they stay in such a hot state. Prior
works [140, 115, 43| suggest that high temperature values are more likely to have high
impact on errors. Here we choose (mean+2std.) as the hot state threshold. That is, a
node enters a hot state if its temperature value exceeds (mean+2std.); otherwise, it stays
in the normal state. Note that the temperature threshold for GPUs (Thr GPU=40°) is
different from that for CPUs (Thr CPU=47°) as the temperature distributions of the two
components are different (see Figure 4.1). We define the continuous period during which
a node stays in the hot state or normal state as the retention time. Note that we exper-
iment with different temperature thresholds and find that observed trends and insights
remain largely similar. We also clarify that these thresholds do not have correlations with

utilization levels, i.e., staying in normal state does not imply that the component is idle.

0.16 0.10
S| — GPU Feb
5. 0.12 fiol-- cru ., 0.08 Mar
= « DIMM A = < A
= Z 0.06 pr
© 0.08 © May
o S 0.04
Q- 0.04) . = 502
’ B * ~
0.00 fods e 0.00 . ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Temperature(°C) Temperature(°C)

(a) (b)
Figure 4.1: (a) Histogram of temperature for GPUs, CPUs, and DIMMs. The average tem-
perature of GPU, CPU and DIMM are 28.1°C, 28.3°C and 26.1°C, respectively. The standard
deviation of GPU, CPU and DIMM are 6.1, 9.4 and 2.6, respectively. (b) Monthly Histogram of
GPU temperature.

Figures 4.2(a)-(b) show the retention time histogram for the hot state (for GPU and
CPU components, respectively), while histograms for the normal state are presented in
Figures 4.3(a)-(b). We make several interesting observations. First, the retention time
histogram in the hot state and in the normal state varies significantly between CPUs and

GPUs, implying a difference in their utilization patterns. Second, GPUs stay in the hot

state for a shorter period compared to CPUs (i.e., when GPUs get relatively hotter, they

50

0.14 0.14

0.12 mean=10.8min| 0.12 mean=31.7min|
20.10 20.10 g
‘5 0.08 S 0.08 g
3 0.06 S 0.06 1
o o
& 0.04 . & 0.04 .

0.02 1 0.02 .

0.00 . . . - 0.00 - - .

0 20 40 60 80 100120140 0 20 40 60 80 100120140
Hot State Retention Time (min) Hot State Retention Time (min)
(a) GPU (b) CPU

Figure 4.2: hot state: retention time histogram for (a) GPU and (b) CPU. (Note that the long
tail is truncated at 140min in both figures.)

8:1; mean=4.3h| 8:1: mean=44.7h|
>0.10 20.10
Z 0.08 = 0.08
§ 0.06 § 0.06
a 0.04 1 & 0.04
0.02 1 0.02
0-00)6 40 60 80 100 120 140 0-00) 0 40 60 80 100 120 140
Normal State Retention Time (min) Normal State Retention Time (min)
(a) GPU (b) CPU

Figure 4.3: normal state: retention time histogram for (a) GPU and (b) CPU. (Note that the
long tail is truncated at 140min in both figures.)

are likely to remain in that state for a shorter period compared to CPUs). Recall that
the absolute temperature thresholds for entering the hot state are different for GPUs and
CPUs. At the same time, GPUs stay in normal state for shorter time too (i.e., when
GPUs get relatively colder, they are likely to remain in that state for a shorter period as
compared to CPUs). This indicates that GPUs switch in and out of the two states more
frequently compared to CPUs and stay in these states for a shorter period of time.

Next, we look at the temperature distribution at the cabinet level (our previous analysis
is at the node level). We investigate if the retention time for hot and normal states varies
across cabinets with different relative hotness. To achieve this, we first rank all cabinets
according to their cumulative temperature over every node. Then, we divide cabinets into

three temperature zones based on their cumulative temperature values. We pick the 10

o1

hottest cabinets (HotCabs), 10 coldest cabinets (ColdCabs), and 10 cabinets ranking in the
middle (MidCabs), as representatives of the cabinets in each temperature zone. Table 4.1
shows the average retention time of the selected cabinets in each temperature zone for both
hot and normal states (for GPU and CPU, respectively).

Table 4.1: Temperature mean retention time for cabinets in different temperature zones for GPU
and CPU.

Cabinets GPU CPU

hot state ‘ normal state hot state ‘ normal state
HotCabs 10.9min 2.7h 34.6min 22.0h
MidCabs 11.0min 4.2h 31.6min 56.0h
ColdCabs 10.5min 4.9h 31.9min 50.5h

We observe that, surprisingly, the retention time in the hot state remains similar for
cabinets from all three temperature zones. Notice that this is not an artifact of the cooling
mechanism since it is not a reactive measure that kicks in after a threshold. In contrast, as
expected, the normal state retention time of cabinets in ColdCabs is significantly greater
than that of cabinets in HotCabs. In other words, cabinets in HotCabs enter a hot state
more frequently, this holds for both GPUs and CPUs. While comparing GPUs and CPUs,
we notice that the hot/normal state switch is more frequent for GPUs than for CPUs in
all three temperature zones (consistent with Figures 4.2 and 4.3).

The preceding analysis is performed over the entire sampling period. It is also inter-
esting to break down the time domain by looking into the dynamic nature of temperature
distribution week by week. Towards this goal, we first rank all 200 cabinets according to
their cumulative temperature over the entire sampling period. Note that a higher rank
indicates a hotter cabinet, i.e., the hottest cabinet ranks 200 while the coldest one ranks
1. We present the weekly ranking over the entire period (19 weeks in total) for the 5
hottest and 5 coldest cabinets, see Figure 4.4. The 5 hottest and 5 coldest cabinets exhibit
dramatic variation in their relative hotness ranking over the period. That is, the hot/cold

ranking of cabinets changes significantly and frequently over time. We observe similar

92

trends for other cabinets as well. This observation is particularly interesting because it
suggests that although there are hotspot cabinets, these hotspots keep changing over time.
Hence, to exploit the correlation between SBEs and temperature for SBE prediction, we

must learn and capture this dynamic behavior accurately.

— Hlewe H2 -- H3+* Hiaa s HS — Clews C2-- C3# % C4n s C5
200 s AT TEL A 200 —= —
190} i I’ *;Z:’:f\ ,**»*\,, ~")F*”.}’\, ’,"."\.
< 180 | Lasofief\ ST 50 ek
© ., 3 © B
8 17004 s ’
% 160 3 100 :
= c B
£ 1501 N
8 140| v 8 50 :
130} e
120 ol s
R E B U S R N TG & @ © W@ @ 0?0 W o0
Week Week
(a) Top 5 hottest cabinets (b) Top 5 coldest cabinets

Figure 4.4: Weekly ranking for five hottest (a) and five coldest (b) cabinets.

4.2 GPU Error Characterization

Soft errors may occur during an application execution on GPUs for multiple reasons,
i.e., cosmic ray strikes, voltage fluctuations, elevated temperature, manufacturing defects,
and complex workload-hardware interaction. However, pinpointing the root cause of soft
errors is challenging and cannot be easily used to predict soft error occurrences. While soft
error occurrences have limited predictability, we find that not all soft error occurrences
are random. Our results reveal that certain system and workload properties may have
hidden correlations with GPU soft errors, albeit such correlations can not be attributed
as causations. In particular, we show that certain GPU cards, workload behavior, GPU
temperature, and GPU power consumption may have complex interactions with GPU soft

€rror occurrences.

4.2.1 SBE Offender Nodes

We start by investigating how GPU errors are distributed across the entire system. Since

the 200 cabinets on the Titan are organized as a 25 x 8 grid, we present the normalized

93

average value of SBE-affected nodes at the cabinet level in Fig. 4.5. Clearly, GPU errors are
not uniformly distributed. The number of SBE-affected GPU cards are not the majority
of all cards in the system either. Exploiting this observation in isolation is not likely to
yield good prediction of future SBEs. For example, if we predict that all applications
executing on these SBE offender nodes will experience errors, it results in a high false
positive rate because SBE offender nodes do not experience errors uniformly over all days
either. Actually, 80% of error offender nodes experience a soft error on less than 20% of
the total days over the trace period. Nevertheless, the non-uniform distribution of soft
error offender nodes in the space and time domains open the possibility for learning-based

predictions.

6.4 g
l 5.6§
485

H 403

32%

H 24 €
O L 162
u 08 E

0.0 =

O N WAL

0123456 7 8 9101112131415161718192021222324
X

Figure 4.5: Non-uniform distribution of GPU error offender nodes at the cabinet level.

4.2.2 Application

It is also important to analyze the impact of various workloads on GPU soft error occur-
rences. As a first step, we explore the spatial distribution of SBE-affected applications and

observe the non-uniform distribution across the Titan system (see Fig. 4.6).

wn

36 ¢

71l [| H N 322

6 . . 2.8<

5 [| 2.4§

. 4 | 202

o

3 16 ¢

2 1.2 5

08=

! L 04 E

0 s
0.0

01234567 8 9101112131415161718192021222324 =

X

Figure 4.6: Non-uniform distribution of SBE-affected application runs at the cabinet level.

o4

Next, we look at the severity of SBE-affected applications by analyzing their SBE count
(application and SBE correlation is normalized by the GPU core hours, i.e., runtime x
number of nodes). Fig. 4.7(a) shows that a smaller set of workloads, less than 20% of all

applications, experience the majority of errors (> 90%).

100% ., 100%
£ 5
S 80% 2 80%|
o
O 60%| o 60%]
@ &
V' 40% s 40% |
(0]
S 20%} 5 20%f
0% : ' g o : ‘ ‘ ‘
0o|<> ’LQOIO b‘Qolo 60°|° %0010 \900|0 w 0<>|<> ’LQO'O I)(Qo]o 600[0 %00|o ‘\000|o
SBE-affected application SBE-affected application
(a) Total SBE count (b) Fraction of SBE apruns

Figure 4.7: Workload and GPU error distribution: a small set of workloads experience most of
the soft errors (a), and fraction of executions affected by SBEs for SBE-affected application runs

(b).

Fig. 4.7(b) shows that even SBE-affected applications do not experience SBEs uniformly
across all application runs. The top 20% of the SBE affected workloads experience all their
share of soft errors during 60% of their total application executions, while the lower 20%
of the SBE affected workloads experience all their share of soft errors during less than 10%
of their total application executions.

We further investigate the relationship between the severity of SBE-affected applica-
tion runs and their GPU utilization, i.e., core-hours and memory, see Fig. 4.8. The high
Spearman coefficient values (see inset in each figure for the exact values) indicate that
applications with more SBEs tend to utilize more GPU memory and for longer duration.
The above observations imply that application related measurements such as utilization,

are good indicators for SBE occurrences.

4.2.3 Temperature and Power Consumption

Consistent with previous studies on GPU errors [55, 101, 140, 102], we analyze the potential

relationship between GPU temperature/power consumption and GPU errors.

95

2 2
g 101 > 10
o 10} et g 107} PR
; of RCTX I] . et
o 10 e i g 10°F oL tE T
8 10] .0. .. $° ° E E 10-1 3 * c. : e o & : E
iy 102 | . g22 N E 5 O .
T 103p et e . o 10 e T ;
9 0f tor. ; g100F 7T]
g o . E_ .l - ..
= 107 F . [e] 10 .
o 10 correl. coefficient= 0.897 Z 105 »* correl. coefficient= 0.70]
=2
10* 103 102 101 1o° 101 102 10 103 1o2 101 10° 101 102
Norm. SBE count Norm. SBE count
(a) GPU core-hours (b) GPU memory

Figure 4.8: Scatter plot of SBE count of SBE-affected application runs and their GPU utilization:
core-hours (a) and memory (b).

4.2.3.1 A bird’s eye view

We first explore whether GPU temperature/power consumption correlate with soft error
occurrences. Fig. 4.9 shows the cumulative temperature /power consumption over the entire

sampling period of every cabinet in the Titan.

. 1.08

‘ 1.06
B 1.04

1.02

u 1.00

0.98

0.96

[| 0.94
[| 0.92

012 3 4 5 6 7 8 9101112131415161718192021222324

Temp.

oORNWAUON
GPU

Norm. Cum.

(a) Temperature distribution

1.08
1.04
1.00
0.96
0.92
0.88
0.84
0.80

O N WA UL O N
Norm. Cum. GPU Power

0123456 7 8 9101112131415161718192021222324
X

(b) Power consumption distribution

Figure 4.9: Distribution of temperature (a) and power consumption (b) accumulative over the
whole period at the cabinet level.

We observe that the temperature distribution is non-uniform in space, i.e., cabinets in

the upper left corner and lower right corner tend to be hotter than the rest. In contrast,

o6

power consumption is more evenly spread, implying that the Titan is intensively utilized
both time-wise and space-wise.

Next, we compare the non-uniform temperature distribution with the SBE-affected
node distribution (Fig. 4.5) by calculating the Spearman correlation coefficient at the
node level. The low value (0.07) implies that the accumulative temperature distribution
is not related to the distribution of SBE offender nodes in space. The same observation
is reached when comparing the temperature distribution and the SBE-affected applica-
tion distribution (the Spearman correlation coefficient is only 0.15). Similar analysis is
conducted for power consumption, which also shows weak correlation between power con-
sumption and SBE-affected nodes or SBE-affected application runs. In summary, the effect
of temperature on SBEs may not be entirely captured by SBE offender nodes or workload

characteristics only.

4.2.3.2 Considering the time dimension

We turn the focus to SBE offender nodes and temperature characteristics across time.
We divide the time dimension in two parts: (1) the time during which a soft error occurs
(SBE-affected period) and (2) the time during which no soft error occurs (SBE-free period).
Fig. 4.10 shows the empirical temperature distribution of SBE offender nodes during these

two periods. The distribution for GPU power consumption is presented in Fig. 4.11.

0.10 0.10

! avg=31.71 : avg=35.02

> 0.08 std=4.81 > 0.08 1 std=6.42
% 0.06 % 0.06
-8 0.04 g 0.04
* 0.02 * 0.02
0.00 0.00

10 20 30 40 50 60 70 10 20 30 40 50 60 70
Temperature(°C) Temperature(°C)
(a) SBE-free period (b) SBE-affected period

Figure 4.10: Temperature distribution of SBE offender nodes during SBE-free periods (a) and
SBE-affected periods (b). Vertical lines represent mean values.

57

0.12 0.12

! avg=55.79 ! avg=72.63
JoLor : std=22.68 | JoLor | std=3155 |
£ 0.08} ! . =2 0.08} ! 1
—3 1 = 1
T 0.06} ! © 0.06} - .
Q 1 o] 1
2 0.04} 2 0.04} . .
o [« 9 1
0.02 1 0.02} : 1
0.00 0.00
0 50 100 150 200 0 50 100 150 200
Power (watt) Power (watt)
(a) SBE-free period (b) SBE-affected period

Figure 4.11: Power consumption distribution of SBE offender nodes during SBE-free periods (a)
and SBE-affected periods (b). Vertical lines represent mean values.

We observe that the SBE offender nodes are relatively hotter during the SBE-
affected period by more than 3°C on average, compared to SBE-free period (Fig. 4.10(a)
vs. 4.10(b)). The SBE offender nodes also consume relatively higher power during the
SBE-affected period by more than 15 watts on average, compared to the SBE-free pe-
riod (Fig. 4.11(a) vs. 4.11(b)). Note that higher power consumption likely contributes to
increased temperature. However, due to varying cooling efficiency and workload character-
istics, temperature elevation may be caused by other factors too. The above observation
implies that SBEs are more likely to happen during periods of elevated temperature. Our
measured data do not conclusively indicate that SBEs definitely occur above a certain
threshold of temperature/power consumption. Sometimes even during the SBE-free pe-
riod, temperature can be significantly high (see Fig. 4.10(a)), making the relationship
between SBE occurrence and temperature/power consumption not straightforward.

We caution that the effect of temperature or power consumption on SBEs is still not
conclusive. The preceding analysis only considers SBE offender nodes — providing limited
view of the whole system. For example, our previous analysis does not show that non-
SBE offender nodes consistently attain lower temperature than SBE offender nodes during
the SBE-affected period. So temperature and power consumption characteristics of non-
SBE offender nodes should also be considered. Unfortunately, performing a meaningful

and accurate data analysis on non-SBE offender nodes is challenging for multiple reasons.

o8

First, the number of non-SBE offender nodes is large (> 17,000 nodes) as compared to
SBE-offender nodes (< 700 nodes). Second, the long observation period of this study
induces difficulties in analyzing temperature and power consumption data in a meaningful
and representative manner.

An intuitive solution to this problem is to randomly sample a subset of non-SBE
offender nodes and perform comparisons with SBE-offender nodes. Unfortunately, this
method leads to inaccurate conclusions. Random sampling of non-SBE offender nodes
may include idle time at certain GPUs and hence, may likely result in lower average tem-
perature and power consumption values. An alternative method is to sample only active
GPUs at a given time. However, we found two issues that impede the practicality of
this solution. First, current GPU resource utilization monitoring tools can not be used at
runtime to monitor GPU utilization without imposing significant overhead on production
systems. Second, sampled GPUs can execute workloads that finish at different times than
the SBE-affected period on SBE offender nodes. To mitigate these challenges, we find that
comparing against the other nodes in the same cage for a given SBE offender node result
in consistent comparisons. The reasons are: (1) the nodes in the same cage are likely to be
active at the same time due to the scheduling policy which is likely to pack one job in the
same cage, (2) nodes in the same cage are likely to show similar variation in temperature
due to power/cooling and spatial locality.

Table 4.2 shows the mean and standard deviation of the temperature and power con-
sumption for non-SBE offenders in the same cage during SBE-affected and SBE-free period
as observed on the SBE offender node (see Figure 4.10 and 4.11). We observe that even
non-SBE offender nodes are relatively hotter during SBE-affected period compared to
SBE-free period. Note that non-SBE offender nodes do not experience any SBE during
an SBE-affected period or an SBE-free period. In addition, while non-SBE offender nodes
are relatively hotter during the SBE-affected period, the SBE offender node is on average
hotter than non-SBE offender nodes in the same cage. Similar observations can be drawn

for power consumption. The above observations imply that temperature and power con-

99

sumption may have some effect on SBE occurrence, but, it is challenging to quantify the

correlation due to monitoring limitations and interaction of other possible factors.

Table 4.2: Statistics of temperature and power on Non-SBE offenders.

. . Temperature (°C) Power (watt)
Time Period Mean ‘ Std. Mean ‘ Std.
SBE-affected Time 3430 | 6.76 68.22 | 33.09
| SBE-free Time 3044 | 521 817 | 23.79

4.2.3.3 Considering the space dimension

Besides the time domain, it is natural to also explore whether similarities exist across space.
In fact, our measured data indicate that GPU power consumption and temperature profile
can change for the same workload across runs, possibly due to effects from neighboring
nodes (i.e., spatial effects). We first investigate how the temperature profile changes when
the same workload is executed repeatedly on the same node. Intuitively, one does not
expect the temperature profile to change. To test this, we select a computational chemistry
application that is executed multiple times on the same node at different times. Fig. 4.12
shows the temperature and power profiles of GPU during two different runs on different
days, but on the same node to avoid location specific power/cooling side-effects. We plot
the average temperature and power values for all other nodes in the same slot or cage,
as well as the temperature profile of the CPU in the same target node. For the power
profile, we do not have the ability to measure CPU power consumption out-of-the-band.
We include the 30 min time window before and after the application run to evaluate the
results in context.

From Fig. 4.12, we observe that the temperature profile changes from one run to another
and that it is not necessarily correlated to fluctuations in the power profile. The graph
indicates that changes in the temperature/power consumption of neighboring nodes and

the CPU in the same target node may contribute to the variation in the temperature

60

— node_gpu -+ slot_avg — node_gpu e slot_avg
- - node_cpu xx cage_avg - - node_cpu xx cage_avg
55 55
T B G 50 v
: o - < -
@’45» : L,’ 1 845 .
240 . 240
S 35f [T T | S 35 O
Q aQ
% 30 oo, | 1 QE, 30
2 25¢ - 1 e 25 Hi
20 - - 20 . L
0 40 80 120 160 0 40 80 120 160
Time(min) Time(min)
— node T slot avg — node - - slot_avg
160 = 160
5 120 % 120
© 2
2 U =
= 80 " 9] 80
g i :
£ 40 a 40
0 L L
0 0 40 80 120 160

0 40 80 120 160

Time(min) Time(min)

(b) Temperature and power from second
run

(a) Temperature and power from first run

Figure 4.12: Effect of neighboring components on temperature/power of an application over two
runs on the same node overtime. Vertical solid lines represent the start and end of the aprun
execution.

profile of the target node. Other factors such as change in power/cooling efficiency in
the spatial region may also contribute to variation in the temperature profile, although
these factors are hard to detect and quantify. Motivated by the above evidence, we argue
that temperature and power consumption from neighboring nodes in the same slot, as well
as the temperature of the CPU on the same node, may also help with SBE occurrence
prediction. Still, it is non-trivial to understand whether or how much the behavior of

neighboring nodes can actually improve error prediction capabilities.

4.3 Chapter Summary

In this chapter, we take a close look into the single-bit errors on the Titan’s GPU nodes.

We reveal several interesting and useful insights obtained via studying the complex impact

61

of certain GPU cards, workloads, temperature, and power consumption on the occurrences
of GPU single-bit errors. These insights indicate that these factors could have predictive
or associative capabilities with GPU errors, but it is non-trivial to exploit them to guide
the design of low-overhead yet reliable GPU-accelerate systems. In Chapter 5 and 6,
we demonstrate that simple schemes based on these observations show poor indicative
capability of GPU errors. On the other hand, machine-learning-based approaches, which
are able to capture the hidden interactions between GPU soft-errors and their related
features, are able to accurately predict the error occurrences. Such predictability is useful
in building reliable systems with lower overhead, such as systems that allow to dynamically
turning on/off ECC protection based on prediction results. This saves the protection

overhead when the probability of SBE occurrence is very low.

62

Chapter 5

Predicting GPU Soft-Errors with

Neural Networks

In the previous chapter, we have discovered that workload characteristics, certain GPU
cards, temperature, and power consumption could be indicative of GPU single-bit errors.
However, it is non-trivial to naively exploit them for error prediction. Motivated by these
observations and challenges, in this chapter, we resort to machine-learning models to cap-
ture the hidden interactions between GPU SBEs and their related factors. Such models
are useful in guiding flexible error protection schemes for GPU nodes, e.g., by dynamically
turning on/off error protection based on prediction results.

One may argue that completely turning off error protection may be too risky. However,
it is important to notice that the impact of error-correcting code (ECC) overhead on real-
world computational science applications can be as high as 10% on GPUs [26]. Specifically
for the Titan supercomputer, we have pointed out in Chapter 4 that enabling ECC reduces
the available memory size per GPU node by 12.5% and decreases the achievable system
memory bandwidth by more than 15% [7]. Nevertheless, the decreased memory bandwidth
caused by ECC overhead can result in larger performance degradation than the decreased
fraction of bandwidth itself due to queuing. In fact, computational scientists already

naively turn off ECC for their application runs [53]. In such cases, a prediction model

63

would be useful instead of always turning off ECC.

Acknowledging the necessity of an error predictor, in this chapter, we elaborate on
the challenges, process, and solutions involved in building effective machine-learning-based
prediction models. The goal of the predictor is that given an upcoming application to
be launched on a certain GPU node, to determine whether this application is going to
encounter any SBE occurrence or not (i.e., a binary classifier). Here, we choose artificial
neural networks (NNs) as the model because of its superior ability in capturing the non-
linear functions between the input features and the prediction target [21]. This chapter

makes the following contributions:

e We select a host of factors, including resource utilization, node location, application

type, temperature, and power consumption, as input features for prediction models.

e We discover the presence of imbalanced dataset challenge in the Titan dataset. In
addition, we overcome the challenge with a customized algorithm, which is based
on similarity comparison of the feature sets among different samples in the majority

class.

e We propose a neural-network-based predictor that is able to accurately forecast the

SBE occurrences.

This chapter is organized as follows. We summarize related work in Section 5.1. Sec-
tion 5.2 briefly introduces the steps required in building machine-learning-based prediction
models. In Section 5.3, we elaborate on the methodology and challenges in designing the
neural-network-based SBE occurrence prediction model. The proposed model is evaluated
in Section 5.4. In Section 5.5, we discuss several open problems and challenges. Section 5.6

provides a brief chapter summary.

64

5.1 Related Work

5.1.1 Applications of Machine Learning Models in Systems

There is a rich body of prior works that utilize machine learning models to predict perfor-
mance measures in systems and data centers. Couceiro et al. [36] leverage neural network
to predict performance of the total order broadcast in fault-tolerant replicated systems.
Nikravesh et al. [105] and Hu et al. [61] resort to support vector machine to predict the
workload pattern in auto-scaling systems in the Infrastructure as a Service (IaaS) layer
of cloud computing and for grid resource monitoring and prediction, respectively. Other
works [22, 38, 40] take advantage of other machine learning models, such as Bayesian
models and decision tree, to predict system workload.

In addition to system workload and performance prediction, machine learning models
also help in forecasting system failures. For example, researchers leverage various kinds
of machine learning models to predict drive failures in order to improve the reliability of
storage systems [91, 87, 99|. Zhang et al. [157] use support vector machines for switch
failure prediction in data center networks.

In this chapter, we show the effectiveness of using neural networks for predicting the
occurrences of SBEs on Titan’s GPU nodes. In Chapter 6, we apply more machine learning
models (i.e., logistic regression, support vector machine, and gradient boosting decision
tree) and make comparisons in terms of the prediction quality and model overhead across
various models.

In this work, we use neural networks to successfully predict the number of SBE occur-
rences at the node level and at the cabinet level in a large-scale HPC system. The use
of neural networks is necessary for predicting SBE occurrences as the statistical analysis
that has been used for prediction [55] is insufficient here. The proposed neural network
combines a set of features that can be used as a whole for SBE prediction and shows that
in addition to node location, utilization and workload type, temperature is also important

for future SBE prediction.

65

5.1.2 Time Series Prediction

When building the machine-learning model, some of the selected input features cannot be
known prior to application execution, such as the temperature and power consumption
during the application run. Therefore, we need to leverage time-series prediction tools
to forecast those features. Fortunately, there are plenty prior works focusing on this pur-
pose. Time series prediction tools (i.e., ARMA/ARIMA [28] and Holt-Winters exponential
smoothing [52]) have been widely applied to quantify the impact of workload changes to
application and/or system performance [142, 158, 130, 152]. Tran et al. [142] leverage
ARIMA to improve block prefetching for scientific applications while Zhuang et al. [158]
use ARIMA for effective user traffic prediction for capacity planning. Compared to tradi-
tional models, neural networks have shown to be efficient in capturing irregular patterns in
data center resource usage [151, 150, 149], effective characterization of TCP/IP [35], and
web server views [86].

Here, we leverage PRACTISE [151] to first forecast features based on time series and
then plug them into the proposed models for SBE occurrence prediction. We choose
PRACTISE over other solutions because of its capability of accurately capturing short-
term (i.e., as short as 15 minutes) temporal dependency in the time series, which fits the

purpose of predicting features before the execution of applications.

5.2 Overview of the Methodology

In this section, we describe the general procedure of building a machine-learning-based pre-
dictor and discuss the several commonly-used evaluation metrics that are able to quantify
the prediction quality of machine learning models.

In Chapter 4, we illustrate that GPU errors are potentially correlated with different
system and workload characteristics. Formally, we are interested in finding a mathematical
function that maps these properties (features) to the probability of GPU error occurrence.

If we express system and workload dependent properties as features xg, x1, 2, . . ., xn, there

66

exists a function Fj,..4, such that the probability of GPU error occurrence during program

execution is expressed by:

Probey, = Fpred(an T1,22,- .- ,(L‘n) . (51)

Note that, many such functions can exist with varying accuracy-levels because the
probability of GPU error occurrence during program execution may not always be depen-
dent on the value of different features only. It is possible that a mathematical function can
not fully capture the behavior because of the inherent randomness involved with soft error
occurrences. Therefore, the goal is to “learn” a classification function, Fj,..q, that provides
high accuracy based on the available features. Given this, we take the following steps:

Step 1: Feature selection and engineering. We select a set of features as input
to the desired function. We elaborate the process, challenges, and solutions involved in
selecting a useful set of features (Section 5.3.1).

Step 2: Function discovery. We discuss how to learn the desired classification
function in a generic yet meaningful way. We provide details on the challenges in learning
the classification function (Section 5.3.3).

Step 3: Analysis of the learned function. We investigate the usefulness of the
learned function and analyze the function to assess if it can provide meaningful results
under different circumstances (Section 5.4).

We emphasize that these steps are means to show that such a problem can be solved

with reasonable accuracy and under practical constraints.

Evaluation metrics selection: In order to perform Step 3, it is important to choose
meaningful metrics to measure the goodness of the machine learning model. Accuracy is
a simple and widely used metric to assess the effectiveness of predictions. However, it
is misleading for evaluating imbalanced datasets (which is present in our dataset, see

Section 5.3.2). A naive method, such as always predicting every sample as the majority

67

class, can lead to high accuracy for highly imbalanced dataset but fails to predict the
minority class. Here, we leverage three commonly-used evaluation metrics for classification
tasks, including precision, recall, and F1 Score [118].

Precision is defined as the ratio of correct predictions (true positives) to all predictions

(true positives and false positives):

Precisi True Positives (5.2)
recision = , .
True Positives + False Positives

while Recall reveals the ratio of identified samples to the ground truth, expressed by the

following formula:

True Positives
Recall = . 5.3
cea True Positives + False Negatives (5:3)

The value of both precision and recall falls in the range between 0 and 1. The higher
the value, the better the prediction quality. The main goal of any prediction mechanism
is to improve both precision and recall. However, precision and recall sometimes can be
conflicting, i.e., increasing precision might result in decreasing recall and vice versa. This
is because as we increase the true positives, the false positives may also increase [29].
Consequently, we resort to F1 Score, the harmonic mean of precision and recall (see
Eq. 5.4),

2 x Precision x Recall

F158 = 5.4
core Precision + Recall (5:4)

as another evaluation metric to additionally capture the trade-off between prediction and
recall. A higher F1 score indicates better prediction quality.

In this chapter, we only utilize precision and recall for evaluation as we only use one
machine learning model (that is, neural network) here. In Chapter 6, we use the F1 score as
we apply four different machine learning models and F1 score allows for easier comparisons

across models.

68

5.3 SBE Prediction Framework

Our characterization results reveal a relationship among temperature, power, and SBE
occurrences, but not a clear one. It is unclear how to accurately predict SBE occurrences
simply based on the statistical properties of temperature and power. In this section, we
resort to machine learning models to explore whether the time series of temperature, power,

and other features can be used to predict SBE occurrences.

5.3.1 Feature Selection

To begin with, we discuss how to select features that are potentially related to an SBE
occurrence. Determining an effective set of features to learn the desired function is chal-
lenging. First, measuring and collecting plausible features correlated with GPU errors is
not always possible. For example, the memory access pattern could be associated with
SBEs. However, the overhead to collect this information in a production system with dy-
namically changing workloads is cost prohibitive. Second, selecting features from what can
be measured and collected is taxing. One can conservatively collect data from all instru-
mentation sources, but it may result in excessive storage and processing overhead without
clear understanding if they are indeed related to the final outcome. Consequently, feature
selection is a critical aspect toward learning the desired function. We refer to the process
of transforming the selected features into quantifiable and meaningful representation as
feature engineering.

Our feature engineering is guided by the characterization analysis in Chapter 4, where
we observe that workload characteristics, certain GPU cards, temperature, and power
consumption could be indicative of GPU SBEs. The following list shows the selected input

features:

e Temperature: We use the mean and standard deviation of temperature during an

application run as input features. To account for dynamic temperature behavior, the

69

mean and standard deviation of the temperature difference between two consecutive

minutes are also selected.

e Power: Similar to temperature, four metrics are selected for power: mean and stan-
dard deviation of consumed power during the application run, and mean and standard

deviation of the power difference between two consecutive power measurements.

e Node location: Row, column, and cage indices for each node are included (recall
that the Titan is organized as a two-dimensional grid of cabinets, with each cabinet

consisting of three cages).

e Memory utilization: GPU memory utilization for every node that the application

is assigned to.

e Application: The application run execution time and the application vector are also
considered as features. The walltime of the application run is the value normalized
by the total number of nodes launched by this application run, while the application

vector represents which application is executed.

5.3.2 Challenge: Imbalanced Data Set

After discussing the feature selection process, we provide details on the training data
set. We collect data for all application runs during the sampling period. For application
runs executing on SBE offender nodes, we divide the node’s busy time into two parts:
(1) SBE-affected time, if the application run sees at least one SBE; otherwise, (2) SBE-
free time. Busy time is defined as the time when a given GPU node is not idle. By
definition, for non-SBE nodes, the busy time is always SBE-free time. We use the first
three and half months of our entire sampling data as the training data set, this encom-
passes about 70,000 application runs (i.e., 6 million samples). Each sample is identified by
<applicationrun_id,node _id>. For example, an application run launching on 5 nodes

will produce 5 samples. Note that the number of application runs per month are not the

70

same across each month. We select the first three and half months to collect enough ob-
servation samples. Indeed, as shown later in Section 5.4.1, the testing data set contains
the samples in the following two weeks, which encompass 16,000 application runs, such
that the testing data is about 23% of the size of the training data, which is around the
rule-of-thumb ratio of the testing data set to the training data set [56].

Our first effort is to use the raw samples as input to train a machine learning model,
e.g., a neural network. Unfortunately, both precision and recall for SBE occurrence is as
low as 0.01 while the precision and recall for non-SBE occurrence prediction is as high as
0.95. Clearly, the low precision and recall values for SBE occurrences imply that such a
naive model is not useful as it mislabels all samples as non-SBE.

Looking into the training data set, we find that the raw training data set is extremely
imbalanced: almost 98% of all training data are non-SBE occurrence samples, which results
in a highly biased model. Imbalanced data sets is a noteworthy difficulty to machine
learning models [120] as the resulted models favor the majority class and almost ignore the
minority class, which is exactly what we observe here. To mitigate the imbalanced data
problem, there are two common solutions [120]: (1) over-sample the minority class or (2)
under-sample the majority class. Over-sampling replicates samples by creating synthetic
minority samples based on nearest neighbors [30]. Here, we opt for under-sampling of the
majority class, since this allows us to work with real rather than synthetic data.

One method for under-sampling is to reduce similar samples in the majority class. Here,
we propose a customized under-sampling method, which is based on similarity comparison
of the feature sets among different training samples from the same application run in the
majority class. Algorithm 1 shows how to select representative samples for one application
run. The key idea is that if two feature sets are highly correlated, we only select one
of them for training. The algorithm inputs are: 1) the normalized features of all training
samples for this application run, denoted by S, and 2) a threshold pipres, used to determine
whether the Pearson correlation of the feature sets is strong enough. The larger the pipres,

the stronger the similarity between the samples. Sample thinning is based on ppres as

71

Algorithm 1 Select representative samples for one application run based on feature cor-
relation.

1: procedure SIMILARITY REDUCTION(S, pihres)

2: // Get each sample’s high correlated samples

3 high corr samples < hashtable(sid,{});

4 for s; in S do

5 feature; < feature list of sample s;;
6: for s; in S do
7.
8
9

feature;j < feature list of sample s;;
corr < pearson_ corr(feature;, feature;);
if corr > pinres then

10: high corr_samples(s;) < sj;

11: end if

12: end for

13: end for

14:

15: // Sort in descending order

16: Sorted S « sort(size(high corr samples(sid)));
17:

18: // Select representative samples for this application run
19: selected < {};

20: avail < Sorted_S;

21: for s; in Sorted S do

22: if size(avail) # 0 then

23: selected < sj;

24: avail.remove(s;);

25: for s; in high corr_samples(s;) do
26: avail.remove(s;);

27: end for

28: end if

29: end for

30: return selected;

31: end procedure

smaller values for pgp.s force more aggressive data reduction. We repeat the algorithm for
every application run in the training data set for the majority class. Several correlation
threshold values for ppes can be used. With p;p,es less than 0.7, the data set reduction is
too aggressive and too few representatives are left for the majority class when compared
with the original minority class. This confirms our assumption that there are plenty of
redundant training samples in the majority class. We select pipres = 0.9 as the threshold
value, this selection reduces the raw data sufficiently.

Note that pires = 0.9 is a choice that achieves good reduction of the dataset but

72

certainly not the only one that can be used. Experimentation shows that various pipres
values close to 0.9 are also effective. Moreover, to avoid favoring some application runs (we
certainly want to avoid an imbalanced data set for application runs), we guarantee that
for each application run we select at least 2 training samples. The above efforts result in a
significant data set reduction to a total of 0.2 million samples of which 60% are non-SBE

occurrences and 40% are SBEs.

5.3.3 Model Selection

In this chapter, we leverage a neural network model to predict SBE occurrences due to its
superiority in capturing the complex interactions between input features and the prediction
target [21]. Artificial neural networks are inspired by biological neural networks and are
composed of many interconnected neurons [21]. The weights associated with the neurons
are used to approximate non-linear functions of the input features and are tuned during
training. Our purpose here is to use neural networks to explore hidden relationships
among the selected features (i.e., temperature, power consumption, and utilization) and
upcoming SBE occurrences. Note that, building the training dataset and evaluating the
trained model is an iterative process that aims to refine the learned classification function
as time passes. Here, the model construction is relatively less frequent (i.e., once every

two weeks).

5.4 FEvaluation

In this section, we evaluate the proposed neural-network-based prediction model. Note
that, some of the selected input features (see Section 5.3.1 for feature selection) for the tar-
get application run can be collected prior to execution (i.e., node location and application
information), while certain program specific features such as GPU power and temperature
profiles can not always be known a priori. We experiment with two approaches and achieve

similar results.

73

e In the first approach, the prediction can be done at the end of the application ex-
ecution, and a possible re-execution may be required depending on the program’s

resilience needs. In this case, all input features are known correctly.

e The second approach is that certain input features are learned using statistical models
and are fed into the learned function. Note that, this approach can not guarantee
that all input feature values are 100% accurate. Fortunately, HPC workloads are
fairly repetitive. It is possible to effectively learn and accurately predict program
specific features, i.e., their temperature and power profile, by leveraging time-series

prediction tools, e.g., |28, 151].

Here, we leverage PRACTISE [151], a neural-network-based time-series prediction tool.
In Section 5.4.2, we explain the reason that we choose PRACTISE over other solutions
and show the effectiveness of PRACTISE capturing the feature time series. We show that
the SBE predictor using the values partially inferred by PRACTISE (see Section 5.4.3) is

able to achieve the same quality as the one using oracle values (see Section 5.4.1).

5.4.1 Evaluation with Oracle Data

For the testing data set, we choose two weeks after the training period (2015/5/16-
2015/5/29), containing 16,000 application runs, i.e., 0.5 million samples, bringing the
ratio of application runs of testing versus training to 23%. Here, we assume that we know
a priori for features that cannot be known before application execution, such as tempera-
ture, power, and utilization, to test the neural network model. In the next subsection, we
will discuss how to predict these features in advance and compare with the results shown
here.

Table 5.1 shows the precision and recall of non-SBE and SBE occurrences for the testing
data set using three different neural networks: one with all features described in Section 5.3,
one with all features except power, and one with all features except temperature. All three

models have similar prediction quality, while the one without power is slightly better than

74

the rest two. Precision and recall are higher than 0.69 for all three cases, suggesting
that all models can identify most of SBE occurrences. Besides, we notice that the model
without power and the one without temperature expose similar prediction ability. This is
understandable since temperature and power consumption are highly correlated as stated
previously. In the remaining of this section we focus on the neural network model that is
trained without the power data. Note that we conduct experiments with all three neural

networks and results are indeed very close to each other.

Table 5.1: Precision and recall for three neural networks.

Feature Set Non-SBE SBE
Precision ‘ Recall Precision ‘ Recall
All Features 0.76 0.70 0.71 0.78
No Power 0.78 0.69 0.71 0.80
No Temperature 0.77 0.69 0.70 0.78

Precision and recall give an overview of the goodness of prediction. Figure 5.1 shows
a fine-grained SBE prediction quality at the cabinet level throughout the Titan layout.
Recall that, the cabinets on Titan are organized as a 25 x 8 grid. In the heatmap, each
cell represents the number of SBE occurrences per cabinet. A color closer to red indicates
there are more SBE occurrences in that cabinet. Figure 5.1(a) corresponds to the ground
truth. Figure 5.1(b) presents all SBE predictions at the cabinet level, including those
correct predictions (true positives) and incorrect predictions (false positives). In contrast,
Figure 5.1(c) only shows the correct predictions (true positives). For the majority of the
cabinets, SBE prediction is quite close to ground truth with the exception of the middle
upper part in Titan’s layout.

To deliver a better overview of prediction, we compare the cumulative distribution plots
of SBEs across the entire system to the ground truth, all predictions (true positives plus
false positives), and true positives, see Figure 5.2. The three CDFs are close to each other,
which further confirms that the neural network prediction is overall successful.

In addition, we observe that there are around 5% of cabinets where the neural network

75

4 B 180
6 W | M Bico v
5 [| 140 m
2 120 0
> 100 4%
3 80 o
2 60 E
1 40
! n - 0 2
01234567 8 9101112131415161718192021222324
X
(a) Ground Truth
4 B ‘H N
c W H s N |
5 5
>4 >4
3 3
2 2
1 1
0 0
01234567 8 9101112131415161718192021222324 01234567 8 9101112131415161718192021222324
X X
(b) True Positives + False Positives (¢) True Positives

Figure 5.1: SBE occurrence prediction at the cabinet level.

100% ————=

80% R i
L 60% d
8 :

40% :5',' — Ground Truth

20% _:.-‘ . = = Prediction

:': ----- True Positive
0% le

0 30 60 90 120 150 180
Num. of SBE Occurrence

Figure 5.2: Comparison between CDFs of ground truth, all prediction, and true positives for SBE
occurrences at the cabinet level.

underestimates SBEs. These cabinets correspond to the ones in the upper middle part
(9< X <16 and 5 <Y <7) of the cabinet layout, see Figure 5.1. To better understand
why the neural network sometimes fails, we focus on two cabinets with underestimates
and two cabinets with good predictions. For each SBE occurrence sample in the testing
data set, we compute the correlation of feature sets, with every SBE sample and non-SBE
sample in the training data set. We find that in the two cabinets with poor prediction 59%
SBE occurrence samples in the testing data set have similar features to non-SBE samples
in the training data set. This number is dramatically low (only 5%) for the cabinets where

the prediction is good. Essentially, it is not possible for the neural network to perform well

76

for the cabinets with such close feature similarities. Perhaps more features for training are

needed to increase prediction robustness to cover such situations.

5.4.2 PRACTISE for Feature Prediction

In order to predict future SBE occurrence, we need to predict the input features. Location,
memory utilization, and application related features are constant overtime, thus we use
the average of recent observations as input. Temperature and power are not constant but
rather fluctuate across time. To solve the challenge of temperature/power prediction, we
leverage PRACTISE [151], which is a neural network prediction tool for time series data
that is publicly available.

For PRACTISE to be successful, the time series needs to show temporal dependency.
We use autocorrelation to quantify temporal dependency [82]. Figure 5.3(a) shows the
autocorrelation of temperature for a random node in the training data set. The lag granu-
larity is one minute. The vertical dashed line indicates the mean application run duration,
i.e., 2.8 hour. The autocorrelation value of lag=2.3h for the temperature series is 0.5
while autocorrelation values are much stronger for smaller lags. This implies that the
temperature series have strong temporal dependency.

Figure 5.3(c) shows the comparison between real values and PRACTISE-predicted tem-
perature series of the node shown in Figure 5.3(a). The temperature prediction is very
close to the actual values. Yet, this is just the prediction across a short time window. Fig-
ure 5.3(b) illustrates the CDF of the absolute prediction error (APE) for the temperature
data for the entire prediction week. APE is the absolute difference between actual value

and prediction value divided by the actual value.

|Actual — Prediction)|

APE =
Actual

(5.5)

The smaller the APE, the better the accuracy of prediction. Figure 5.3(b) shows that for

more than 90% of time, the APE is below 10%.

7

1.0 100%
80.9—
=0.8f
o
0.7}
50.6f
1%
20.5})
> 1
<0.4f .

N N N N 0, L L L
035 ! 4 5 0% 5 10 15 20

2 3
Lag(hour) Temperature APE(%)

80%
60%

CDF

40%

20%

(a) Autocorrelation of temperature in the (b) PRACTISE prediction accuracy for
training set. temperature.

v
[-- Real — PRACTISE

Time (hour)

(c) PRACTISE temperature prediction overtime.

Figure 5.3: Autocorrelation and PRACTISE prediction for temperature.

5.4.3 SBE Prediction with PRACTISE

The above illustrates that PRACTISE can predict future temperature series accurately.
As a next step, we apply the predicted temperature features to the neural network model,
to test whether we can achieve good prediction of future SBE occurrences or not. All
other features of the neural network model (node location, application) are known as well
as duration and memory utilization (we use the average values from past runs of this
application). Since we are interested in a fine granularity of prediction, i.e., on the specific
node where the SBE may occur, we focus on a small set of cabinets. We choose 4 cabinets
(384 nodes in total) in the upper left area (row 0 and 1 and column 6 and 7), which account
for 10.4% of the total number of SBE occurrences in the entire sampling period.

Table 5.2 shows the precision and recall for SBE occurrence prediction using real values
(i.e., if we know the future temperature features) and PRACTISE-predicted temperatures.
We observe that it is effective to leverage PRACTISE-predicted temperature values for

prediction. The similar precision values indicate that using PRACTISE is able to achieve

78

the same level of correctness in prediction. While comparing recall values, the one with
PRACTISE plugged-in is more conservative, reflected by the higher SBE recall and lower
non-SBE recall.

Table 5.2: SBE Occurrence Prediction: Oracle vs. PRACTISE.

Inout T Non-SBE SBE

put Lype Precision‘ Recall Precision‘ Recall
| Oracle 086 | 0.72 082 | 092
| PRACTISE 088 | 0.62 082 | 0.9

Similarly to Section 5.4.1 (see Figure 5.2), we compare the CDFs of SBE predictions
per-node: ground truth, all predictions, and true positive predictions, see Figure 5.4(a).
We can barely distinguish the three lines from one another, indicating that the prediction is
remarkably accurate. Figure 5.4(b), shows the CDFs of the difference between ground truth
and all predictions. For less than 20% of nodes, we over predict their SBE occurrences,

but over-prediction is small (less than 2), especially comparing to the maximum number

of SBE occurrences per node, which is around 25.

90% of predictions are exactly accurate.

100% = 100%
98% __--f 80%
i
W 96% i L 60%
S ! S
o,
94% , — Ground Truth 40%
92% 141 = = Prediction 20%
: « True Positive [
o . - - - . 0% ‘
0% s 10 15 20 25 2 1 0

Num. of SBE Occurrence

(a) Prediction vs. Ground Truth

Ground Truth - Prediction

(b) Difference from Prediction

Figure 5.4: Prediction for SBE occurrence at node level with PRACTISE.

In sum, we have shown that it is possible to accurately predict future SBE occurrences
on specific nodes. This could have multiple applications including tuning the ECC turn
on/off period on selected nodes and for selected applications, resulting in significantly

reducing memory space and memory bandwidth overheads for many applications.

79

5.5 Discussion

In this section, we discuss the applications of the proposed SBE occurrence prediction tool.
Meanwhile, we also demonstrate several open questions and challenges in this study and

plans for future work.

5.5.1 Application of SBE Prediction.

An intuitive application of SBE prediction could be dynamically turning on/off the ECC
mechanism on certain nodes for certain applications based on the prediction result. How-
ever, one may argue that it is too risky to completely turn off the ECC protection, especially
for long-running scientific applications, as the aftermath of even a small probability of false
positives is much more severe than the overhead of wastefully turning on ECC for a large
portion of true negatives across the entire system.

Fortunately, there are several opportunities for bypassing this risk. First, we can lever-
age the fact that not all hardware errors will be reflected in the application outputs, which
means that some of the errors are masked. Several show this by evaluating the impact of
soft-errors, especially single bit errors, on GPU architecture with various fault-injection
models and frameworks [154, 44, 59, 85|. For example, Hari et al. [59] build a compiler-
based error injection, SASSIFI, and show that on average 80% of the injected single bit
errors are actually masked in the output and thus are not perceived by the end user. More-
over, in [145], the authors claim that even for those corrupted outputs, there are chances
that the outputs are acceptable by the end users. Though this work is done in the CPU
domain, it is reasonable to assume that similar opportunities exist for GPU-accelerated
applications. Note that, this idea of not-accurate but acceptable output is consistent with
the goal pursued by scientists in approximate computing, including domains such as bioin-
formatics |96, 63|, performance analysis [143], data mining [97], and image recognition [94].
Consequently, for those applications that do not require very strict accuracy, we can dy-

namically decide whether to turn on or turn off ECC protection based on our prediction

80

results. Clearly, we can always keep ECC on for those applications that need high-level of
ECC protection. Therefore, by taking advantages of these opportunities, we are able to

strike the balance between performance, overhead, and reliability.

5.5.2 Open Problems and Challenges

There are still several interesting open problems and challenges that are worthy of more
detailed discussions. In this chapter, we perform feature selection based on the conclusions
derived from the characterization section, as well as previous observations made by related
works [140, 101, 55]. We demonstrate that the selected features all together are effective
for SBE occurrence prediction. But it is also interesting to investigate which features
or combinations of features play an irreplaceable role in prediction. Here, we leverage a
neural network because of its powerful learning ability. Neural networks require a lot of
computational capability and sometimes are prone to overfitting. Comparing our neural
network solution with other machine learning models, such as SVM and decision trees,
needs to be explored. Finally, SBEs show apparent spatial and temporal locality, which

can also be leveraged by the prediction model.

5.6 Chapter Summary

In this chapter, we elaborate on how to exploit various related features for GPU SBE
occurrence prediction. We propose a machine-learning-based technique that leverages ob-
servations of past system measurements to predict soft errors on Titan GPU nodes. We
show that temperature and power consumption are of almost equal importance in GPU
SBE occurrence prediction and together with a host of other factors including resource
utilization, node location, and application type, are able to determine whether an upcom-
ing application execution on a set of GPU nodes will result in SBEs or not. We evaluate
our technique under various scenarios to demonstrate its effectiveness and robustness. In

the next chapter, we explore the effectiveness of other machine learning models, such as

81

logistic regression, decision-tree-based models, and support vector machine, and compare

their prediction quality.

82

Chapter 6

Predicting GPU Soft-Errors with a

Variety of Machine Learning Models

In the previous chapter, we acknowledge the necessity of an error predictor for building
a reliable system with lower error protection overhead and evaluate the effectiveness of
a neural-network-based predictor. In this chapter, we explore the effectiveness of other
machine learning models for predicting SBE occurrences on the Titan GPU nodes.

We first show how to select features in a systematical manner by categorizing them
across space and time. Second, unlike the previous chapter, we overcome the imbalanced
dataset challenge by taking advantage of inherent features of the dataset. Then, we use the
selected features to train various machine learning models, including Logistic Regression
(LR), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), and
Neural Network (NN).

Finally, we evaluate the machine learning models via different metrics and under diverse
testing scenarios. Our results indicate that the proposed models achieve high prediction
quality and are robust. In particular, the GBDT-based prediction achieves an F1 score of
0.81, significantly outperforming other models. The corresponding high recall (i.e., 0.87)
and good precision (i.e., 0.76) indicate that the GBDT-based model is conservative in

identifying as many SBE cases as possible. This is preferable as the aftermath of missing

83

an SBE occurrence is likely to be more severe than mislabeling a non-SBE occurrence.
Our evaluation also uncovers interesting insights from comparison across different models,
training /testing data, and feature combinations. We show that the proposed prediction
models impose moderate overhead and are feasible in practice for GPU soft error prediction.

This chapter is organized as follows. In Section 6.1, we discuss how to select input
features systematically from temporal and spatial perspectives. Section 6.2 illustrates the
design details of building SBE occurrence predictors with a variety of machine learning
models. We evaluate the proposed models under various conditions in Section 6.3. Sec-

tion 6.4 summarized our findings.

6.1 Feature Selection

In this chapter, we focus on features that are related to GPU SBEs and organize them
into time and space dimensions. The key premise is that soft errors are not an outcome
that can be predicted by observing the instantaneous values of features. Therefore, it is
important to include both temporal and spatial dimensions. Next, we list different features

and their corresponding quantifiable representation.

6.1.1 Temporal Features

e Application: Some applications experience higher number of soft errors than others,
indicating that application-specific features could be useful toward soft error predic-
tion. We use application-specific features that can be obtained in non-intrusive man-
ner, including the application binary name, total execution time (from past runs),
and GPU resource utilization. GPU resource utilization includes the aggregate GPU
core time, aggregate GPU memory, and maximum GPU memory. To capture the
temporal behavior, we also use the application name that ran before the current

execution to account for post-effects of an application run.

84

e Temperature/power consumption: We have shown evidence that temperature
may be correlated with soft error occurrences in Chapter 4. However, capturing this
complex correlation is non-trivial. We propose the following four temperature fea-
tures to capture temporal aspects. First, we use the mean and standard deviation of
the temperature during the current application run as two input features. In addi-
tion, to capture the dynamic behavior during a run, we use the mean and standard
deviation of the difference between two consecutive temperature measurements as
two additional input features. The above four features do not account for recent
historical temperature behavior. To address this, we use temperature characteristics
before the execution of a current application on the node. Specifically, we use the
mean and standard deviation of the temperature series and the mean and standard
deviation of the difference between two consecutive temperature measurements on
the same node before the execution of the current application. We consider four time
windows: 5min, 15min, 30min, and 60min prior to the start of the current execution
to calculate the aforementioned four temperature features. Similarly, we apply the

above described metrics for GPU power consumption.

6.1.2 Spatial Features

e Node location: Our characterization results indicate that error offender nodes
are not uniformly distributed in space, and some error offenders experience SBEs
repeatedly. Therefore, node location is used as a feature to capture node-specific

and location-specific correlations.

e Temperature/power consumption: We have observed the prediction capabili-
ties with temperature and power consumption on neighboring nodes. Similar to the
representations of temperature and power consumption used in the temporal feature
set, we leverage the mean and standard deviation of temperature and power con-

sumption, as well as the mean and standard deviation of the difference between two

85

consecutive measurements for (1) the temperature of the CPU on the same node and
(2) the temperature and power consumption of the GPU nodes in the same slot, as

parts of the spatial feature set.

e SBE history: We include the error frequency in order to capture non-uniform
temporal distribution of SBEs. Specifically, we use the total error count over the
preceding day i.e., in the past 24 hours, at the node-level, and for the whole machine
as features to capture the spatial behavior of error occurrence. We refer to this
information as SBE rate history at the local (node) and global (whole machine)
levels. We also include the SBE rate in the past 24 hours of the given application

and the nodes allocated to it as additional history features.

6.2 Machine Learning Framework and Model

In this section, we focus on the discovery of the function that captures the relationship
between input features and GPU soft error occurrences. To this end, we use several
widely-used machine learning models including Logistic Regression (LR), Gradient Boost-
ing Decision Tree (GBDT), Support Vector Machine (SVM), and Neural Network (NN).
Our goal is to understand how the classification function can be learned effectively via
carefully choosing a combination of features and an appropriate learning model, as well as

what insights can be learned from evaluating such models.

6.2.1 Overview

The first step of the machine learning framework requires building the training dataset by
collecting input features. In our case, we periodically collect information on input features
for jobs running on the Titan. As a second step, this training dataset is used to build the
machine learning model. The chosen model outputs the desired classification function that
can be used for GPU soft error prediction. The desired classification function is a two-class

classifier (i.e., whether an error occurs or not during the target program execution), and is

86

dependent on the training dataset and the selected model. Building the training dataset
and estimating the classification function is an iterative process that aims to refine the
learned classification function as time passes. Here, the model construction is relatively
less frequent (i.e., once every two weeks). The final step is to feed the features of the target
program into the models to predict error occurrence.

Here, we encounter the same problem as in Chapter 5: some input features for the
target application run can be collected prior to execution (e.g., machine-level error rate,
node specific characteristics) while certain program specific features such as GPU power
and temperature profiles can not always be known a priori. Similarly, we experiment with

two approaches (see also Section 5.4 for additional detailed discussion):

e Predict at the end of the application execution so that we know all input features

correctly.

e Predict before the application execution and infer those input features that cannot

be known a priori with time-series prediction tools, e.g., [28, 151].

In Chapter 5.4, we have shown that the temperature and power consumption profile can
be accurately captured by PRACTISE [151], which is a neural-network-based time series
prediction tool. Moreover, we observe that the model trained with the values predicted by

PRACTISE is able to achieve very close prediction quality as using oracle values.

6.2.2 Challenge: Imbalanced Dataset

It is desired to select the training and testing data so that they cover a wide variety
of workload and system properties, and are also representative of a real-world scenario.
In our approach, any workload execution that uses GPU resources is a qualified sample.
This ensures that our dataset corresponds to different kinds of workloads distributed over
both time and space dimensions. However, as stated in Section 5.3.2, this data collection
approach results in a challenging problem: a highly imbalanced dataset. The problem

stems for the fact that only a limited number (< 2% in our case) of application runs

87

encounter SBEs. This makes the size of majority class (SBE-free samples) much larger
than that of the minority class, which is our focus.

Mitigating the imbalanced dataset challenge usually has two solutions. The first one
is over-sampling the minority class, i.e., by generating synthetic samples [120, 30|. The
other solution is to under-sample the majority class, i.e., by randomly choosing a subset of
samples [132] or control under-sampling via clustering algorithms such as k-means [27]|. In
Chapter 5, we propose a customized under-sampling algorithm that is able to effectively
reduce the size of the majority class (see Section 5.3.2). However, none of these methods
take the inherent dataset features into consideration. In the following section, we propose
a two-stage method, which first leverages the dataset characteristics to mitigate the chal-
lenge of the imbalanced dataset and then apply machine learning models to predict SBE

occurrences.

6.2.3 Two-Stage Machine Learning Models

In Chapter 4, we observe that a small fraction of GPU nodes and workloads are responsible
for a large number of SBEs. It is intuitive to think that previous SBE-affected nodes/-
workloads may continue seeing SBEs while those SBE-free nodes/workloads are likely to
remain in “safe status" in the future. Accordingly, we consider three basic schemes: Basic
A predicts that any application run involving a SBE offender node will result in a SBE-
affected run. Basic B predicts that previously SBE-affected applications will result in
future SBE-affected runs. Basic C predicts that top SBE-affected applications will result
in a future SBE-affected run. Top SBE affected applications are defined as the top 20%
applications that encounter SBEs in the training phase in terms of their total number of
SBEs.

Table 6.1 reports the precision and recall scores for the above three basic schemes,
compared to a trivial random classifier that assumes the probability of encountering SBEs
is 0.5. The random classifier achieves a mere 0.5 recall. Due to the high imbalance

between the two classes, the random classifier achieves very low precision for the SBE class

88

prediction. Basic A significantly outperforms the random classifier and the other two basic

schemes, achieving a high SBE prediction recall (0.94), albeit at fairly low precision (0.40).

This indicates that the scheme Basic A could capture most SBE cases but still over-predicts

the SBE class, implying that this scheme alone is insufficient for robust prediction.

Table 6.1: Precision and recall for basic schemes.

Scheme SBE Sample Non-SBE Sample
Precision ‘ Recall Precision ‘ Recall
Random 0.02 0.50 0.98 0.50
Basic A 0.40 0.94 0.99 0.98
Basic B 0.02 0.69 0.98 0.24
Basic C 0.00 0.06 0.98 0.76

Inspired by Basic A, which achieves a reasonable prediction quality, we derive a

TwoStage method. This method leverages the inherent temporal dependency of our dataset

and takes advantage of the power of machine learning techniques. Unlike Basic A, the

TwoStage method is able to accurately predict the samples from SBE offenders, instead of

blindly assuming them to always encounter SBEs in the future. During training, we train

the model solely on samples from SBE offender nodes. The prediction flow is presented in

Fig. 6.1.

Sample:
<app, node>

node saw
SBE before?

Predict as
BE sample}

I SBE-Free I

Figure 6.1: TwoStage method: prediction flow.

At the first stage, samples are checked to see if they come from SBE or non-SBE

offender nodes. They are passed to the second stage only if they come from SBE offender

nodes. The advantages of this method are three-fold: (1) the number of SBE offender

nodes is much smaller than the number of non-SBE offender nodes. Therefore, this step

89

automatically reduces the training data size, resulting in less training overhead (both in
terms of time and storage). (2) As discussed previously, the relationship between SBEs
and different features is complex. By focusing on SBE offender nodes only, we avoid the
noise and interference from error-free samples. (3) Most importantly, this approach solves
the problem of data imbalance. Now, after the first stage, the ratio between SBE-free
samples and SBE-affected ones is roughly 2 : 1 (consider that the original ratio is almost
50 : 1). The downside is that this method always misses SBE occurrences on previously
error-free nodes. Fortunately, on the Titan, such probability is low and frequent periodic
training of the model resolves this issue. Section 5.4 shows that TwoStage introduces low

overhead and can be trained periodically to provide high prediction quality.

6.2.4 Machine Learning Model Selection

We select four widely used machine learning models that provide a wide variety of trade-offs
and advantages. Logistic Regression (LR) is a simple and fast model for understanding
the influence of several independent variables but limited by the linear function between
inputs and outputs. Gradient Boosting Decision Tree (GBDT) is a boosting-based
model that is essentially an ensemble of weak models. GBDT is effective in tackling the
variance-bias problem, but is computationally expensive. Support Vector Machine
(SVM) is designed to solve classification problems by performing non-linear classification
using a kernel. Artificial Neural Networks (NN) are inspired by biological neural
networks and are composed of many interconnected neurons. The weights associated with
the neurons are used to approximate non-linear functions of the input. Neural networks
capture the complex pattern between features and targets. In the evaluation section (Sec-
tion 6.3), we incorporate the aforementioned models to the TwoStage method and compare

their effectiveness.

90

6.3 Evaluation and Analysis

Before discussing the prediction results, we describe the data used for model training and

testing, as well as the evaluation metrics.

6.3.1 Data Description and Evaluation Metrics

In this chapter, we use the same system data as in Chapter 5. We collect all features
discussed in Section 6.1 over the entire sampling period (from January to June, 2015) for
both SBE-affected and SBE-free periods. Unlike Chapter 5, we divide this dataset into
three pairs of training and testing sub-datasets based on the time dimension so that we
can also evaluate the robustness of TwoStage. In each sub-dataset, the training dataset
consists of 3.5-month samples. The samples in the following two weeks are used for testing.
Each sample is identified as the pair of the application name and the node ID. For example,
our first training dataset (i.e., DS1) corresponds to 6.7 thousand application executions,
with roughly 5 million samples. Note that each application run may produce multiple
number of samples depending on the number of nodes allocated during the execution. For
determining the length of the training and testing datasets, we follow the rule-of-thumb
ratio of the testing data size to the training data size (20% — 25%) [56]. We also ensure
that the three testing datasets cover diverse workloads and have different compositions of
samples.

In order to meaningfully evaluate the results, we use all three metrics described in
Section 5.2: precision, recall, and F1 score. We focus on F1 score, the harmonic mean of
precision and recall, to capture the trade-off between prediction and recall and evaluate
prediction quality across different models. F1 score allows for easy comparisons across

models using a single metric.

91

6.3.2 Machine Learning Model Comparison

As stated in Section 6.2.4, we apply four machine learning models (i.e., LR, GBDT, SVM,
and NN) on the second stage of the TwoStage method. Here, we discuss which machine
learning model works most efficiently.

Accuracy and robustness comparison: Choosing an effective model is one of the
key challenges. Fig. 6.2 reveals the F1 score of SBE class using the first dataset (DS1) for
the four machine learning models. Note that the result of SBE-free class is not shown (also
in later evaluation parts) because all models are able to achieve high prediction quality
for the SBE-free cases (i.e., the majority class) due to the highly imbalanced nature of our

testing samples.

[Basic A /1 LR =3a GBDT E3 SVM =3 NN

1.0

0.8} —
0.6

0.4

0.2t r]
0.0 —

F1 Score Precision Recall

Figure 6.2: Comparison of SBE occurrence prediction across different models for DS1.

We notice that applying machine learning models always significantly surpasses the
Basic A scheme, with at least 0.1 improvement for the F1 score. Applying GBDT achieves
the highest F1 score (0.81), outperforming the least effective one (LR) by 0.14. To
investigate why GBDT works better than the other models, we also look at the precision
and recall values. We find that all four models are able to achieve similar precision values
(around 0.8), but GBDT is able to achieve a much higher recall value (0.87) than the other
three models (around 0.6). A high recall value implies that the boosting nature of GBDT
enables it to identify more SBE samples, while similar precision across four different
learning models indicates that GBDT also conservatively predicts SBE occurrences as

the other three models. This result suggests that GBDT achieves the most accurate

92

prediction of SBE occurrences among the four machine learning models.

Across different datasets: We have shown that applying GBDT yields to the best
prediction result for the first dataset. Here we validate whether GBDT works best for other
datasets (i.e., DS2 and DS3). Note that these testing and training datasets are disjoint
and the machine learning models are trained independently for each dataset. Table 6.2
summarizes the F1 scores for the other two datasets. First, the table shows that applying
machine learning models almost always leads to improvement in the F1 score, compared
with Basic A. Secondly, using GBDT results in satisfactory prediction quality (F1 score)
across different datasets and significantly outperforms all the other three models. Even for
the most tough-to-predict dataset (DS3), applying GBDT within TwoStage improves the

F1 score to 0.71. The above observations confirm the efficiency and robustness of GBDT.

Table 6.2: F1 score for SBE occurrence prediction.

‘ Dataset ‘ Basic A ‘ LR ‘ GBDT SVM NN
DS1 0.56 0.67 0.81 0.70 0.69
DS2 0.75 0.80 0.81 0.79 0.77
DS3 0.55 0.52 0.71 0.55 0.51

Model overhead comparison: In the previous subsection, we have illustrated that
the TwoStage method with GBDT is effective and robust. Here, we evaluate its training
overhead, especially since the Titan operation would require re-training to occur periodi-
cally. The comparison of the training time of the four machine learning models is presented
in Table 6.3. Note that all experiments are conducted on an Intel Xeon server (Intel E5-
4627v2) with 512GB RAM. The training time is the longest for SVM and is approximately
one hour. This is due to the computationally expensive quadratic RBF kernel used in
the SVM model. LR consumes the least amount of time, but it also fails to provide a
guaranteed prediction quality (see Fig. 6.2 and Table 6.2). Considering both prediction
quality and overhead, GBDT is superior as it strikes a good balance between these two

measures. Note that since the training process can be done offline and periodically (e.g.,

93

repeated every two weeks), the relative model re-training time is truly negligible. Overall,
GBDT’s small training time would allow re-training to happen even several times during
the day if needed. In addition, the data movement overhead for storing and preprocessing

the data is of the order of minutes.

Table 6.3: Mean training time for various models.

| | LR | GBDT | SVM | NN |

| Model Mean Time | 4.81s | 40.53s | 1.04 h | 20.01 min |

The aforementioned evidence supports that TwoStage with GBDT is practically feasible
for error prediction. In the later sections, we show prediction results based on this model

only.

6.3.3 Feature Analysis

Besides choosing an appropriate machine learning model, the selection of features is another
key to achieving high-quality of prediction. In Section 6.1, we illustrate several features
from temporal and spatial perspectives, which may contribute to the SBE occurrence
prediction. This does not imply that all features are needed for training the most effective
model. Nonetheless, it is non-trivial to discover and engineer the feature set resulting
in the highest prediction quality. In this section, we explain how to perform the feature
discovery process.

The large number of features and complexity of advanced learning models make it
challenging to meaningfully understand the impact of each feature. Consequently, we
simplify this problem by grouping features into categories (feature groups) and train the
machine learning models with each feature group. The goal is to see which feature group
contributes most to the prediction quality. We also train one model with all features.
Fig. 6.3 shows the effect of different feature groups on the prediction quality, in the form
of the percentage improvement for the F1 score comparing to Basic A. The labels in the

figure legend indicate the corresponding feature groups used in each experiment.

94

50%

= 40% 2= E—3 Hist == App
c TP == Al
2 30%1 [
% 20% A
S 10%- 1
g 0% L_\l'_:[7'|

-10%

DS1 DS2 DS3

Figure 6.3: Effect of different feature groups on F1 score, in terms of the improvement over Basic
A. All means using all features discussed in Section 6.1. Hist, TP, and App correspond to SBE
history, temperature/power consumption, and application-related features, respectively.

We observe that almost all models trained with any feature group positively contribute
to the SBE occurrence prediction, but with different degrees of improvement. Meanwhile,
no single feature group is the winner across all datasets. For example, Hist is the most
effective feature group for DS1, but it negatively impacts prediction quality in DS2. How-
ever, in all datasets, using the combination of all features always results in the biggest
improvement, implying that all features are valuable and needed for achieving good pre-
diction.

Besides feature grouping, it is also interesting to conduct a deeper and more fine-grained
investigation on input features. We start by quantifying the impact of various types of tem-
perature/power consumption features. As stated in Section 6.1, temperature and power
consumption features are collected from both temporal and spatial perspectives, on the
targeted node and other neighboring nodes in the same slot. Therefore, we conduct exper-
iments with various combination of temperature and power consumption features to see
their impact on SBE occurrence prediction, see Table 6.4. Cur refers to using temperature
and power consumption data collected only from the targeted node during the applica-
tion run, together with all other groups of features mentioned in Section 6.1. In addition
to the features used in Cur, CurPrev also leverages temperature and power consumption
data prior to the execution of application on the targeted node (in four time windows,
up to one hour). Similarly, CurNei adds the temperature and power consumption data

on neighboring nodes (i.e., in the same slot as the targeted node). CurPrevNei leverages

95

all temperature and power consumption features discussed above. Interestingly, we notice
that the prediction quality is not significantly affected by the various feature combinations.
Looking at F1 score, CurPrev and CurPrevNei work worse than Cur. In contrast, CurNei
achieves slightly better prediction quality, but it also leverages more features which means
it introduces more overhead in terms of data collection and model training. Cur exhibits
high recall and good precision. Consequently, we select Cur as an effective and light-weight

representation of temperature and power consumption information for model training.

Table 6.4: Effect from temporal and spatial aspects of temperature and power features.

Feature Set ‘ Precision Recall ‘ F1 Score ‘
Cur 0.764 0.865 0.820
CurPrev 0.801 0.830 0.815
CurNei 0.815 0.838 0.826
CurPrevNei 0.807 0.829 0.818

As a next step, we analyze the impact of various types of history features on the
SBE occurrence prediction. Unlike the aforementioned experiments, here we conduct the
experiment by removing one type of history features and see the decrease in F1 score.
First, we compare the effects from global (overall information collected from the whole
system) and local (information collected from the targeted node) SBE history on SBE
occurrence prediction, see Fig. 6.4(a). Interestingly, removing global and local history
even increases the F1 score in DS2, which is consistent with the observation in Fig. 6.3,
where SBE history features contribute negatively in DS2. However, if we focus on DS1 and
DS3, we notice that local history information plays a more important role in prediction,
i.e., removing these features leads to 15% to 25% loss in F1 score. The impact of history
length on prediction quality is presented in Fig. 6.4 (b). From this figure, we observe that
the importance of SBE history generally increases as it is closer to the current time. Note
also that there is no particular length (i.e., today, yesterday, or full history) that is always
effective across all datasets. This illustrates the importance of inclusion of all SBE history

features.

96

10% 10%

= 5% A) 5% A

& 0%{= 3 T 0% = __H

GE) -5% g -5% !

> -10% A > -10%

O -15%1 O -15%

g-zo%- 1 Global g-zo%- =1 Before =1 Today

— -25%1 [Local — -25% 1 E3 Yesterday

-30% T T T -30% T T T
DS1 DS2 DS3 DS1 DS2 DS3
(a) Global vs. Local (b) Length of history

Figure 6.4: Decrement on F1 score if removing a certain feature set from the original feature
combination: global vs local (a), and different length of SBE history (b).

6.3.4 Prediction Analysis

In the previous sections, we have determined that GBDT is the best machine learning
model for the TwoStage method, and the most effective feature combination for its training.
Here, we conduct an evaluation on the prediction quality of this model with the most
efficient feature combination as inputs. We illustrate the analysis on the results of using
the first dataset only. The quality of prediction for the two other datasets is similar to
that of DSI.

Spatial robustness: We investigate if TwoStage performs well spatially across the
entire Titan system. Fig. 6.5(a) shows the proximity of the cumulative distribution plots
of SBE predictions across the entire system for the ground truth, prediction (true positives
plus false positives) and true positives. We then present the absolute difference between
the number of SBE affected application runs (ground truth) and the prediction for the
testing period at the cabinet level, see Fig. 6.5(b). For over 95% of cabinets, the error
difference is relatively small, ranging in [—15,13]. In fact, there are only 3 (out of 200)
cabinets where the prediction overestimates SBE affected application runs by more than
25. This is encouraging as thousands of applications are executed over each cabinet. We
also perform such analysis at the node level and observe accurate prediction for more than
99% of nodes.

We also investigate how the choice of optimal model changes across the various cabinets.

97

100% 100%
80% 1 £ 80%
71
w 60%7 u 60%
O 40% —— Ground Truth O 10%
o | & e Prediction
ek ——- True Positives 20%
0% O 10 O 0O .10, o 0%
© 120 80 P 20\ OOMONEO °7230 -20 -10 0 10
Num. of SBE Occurrences (a) Ground Truth - Prediction (b)
Comparison of CDFs Diff. from prediction

Figure 6.5: Comparison between SBE occurrence prediction and ground truth at the cabinet
level.

We find that TwoStage with GBDT remains the close-to-the-best choice among all models
for all cabinets. The number of cabinets where this scheme is not the optimal choice is
limited across the machine in all three datasets. In fact, we find that even if the prediction
model is chosen with the apriori knowledge (oracle) on the optimal model, the overall F1
score improves only by 0.01, 0.02, and 0.001 for the three datasets, respectively. Overall,
our results indicate that TwoStage with GBDT delivers robust and consistent results across
the whole machine and it is not restricted to performing well only in selected sections of
the machine.

Effect of application runtime: We look into whether the quality of the prediction
is significantly impacted by the length of the application execution. In other words, do
short-running and long-running applications attain comparable prediction quality? We
classify an application as “short-running” if its runtime falls in the bottom 25 percentile
range and as “long-running” if its runtime falls in the top 25 percentile range. Table 6.5
confirms that both types of application achieve high prediction quality with comparable
F1 scores. Moreover, “long-running” applications achieve better prediction quality than
“short-running” ones. This is quite favorable since the cost of mislabeling a “long-running”
application would be higher, e.g., if re-execution is needed.

Effect of SBE severity:

An error predictor that is able to label more severe application runs (i.e., with a higher

98

Table 6.5: SBE occurrence prediction for “short-running” and “long-running” applications.

Application Precision Recall F1 Score
All 0.76 0.87 0.81
Short 0.77 0.94 0.84
Long 0.93 0.90 0.92

number of SBEs) as SBE-affected is desirable. Towards this goal, we first group application
runs into four levels of SBE severity (25 percentile per level), i.e., the bottom 25 percentile
applications with the least number of SBEs are in Light while the top 25 percentile ones are
in level Extreme. Table 6.6 presents the percentage of correctly classified SBE-affected runs
in each level. Our results indicate that as the number of SBEs increases among application
runs in our dataset, the effectiveness of the TwoStage method grows. For example, 74%
of the application runs in level Light are already correctly predicted to be SBE-affected
cases. The percentage number increases as the SBE severity level goes higher, becoming
95% for Extreme application runs. The results show that TwoStage is able to achieve high
prediction quality for SBE occurrences, especially for those applications affected by more

SBEs.

Table 6.6: Percentage of correctly classified SBE-affected application runs in four severity levels.

Light Moderate Severe Extreme
(<25%-ile) | (25-50%-ile) | (50-75%-ile) | (>75%-ile)

| Severity PCT. | 74% | 88% | 93% | 95% |

6.4 Chapter Summary

In this chapter, we propose several machine learning-based models that use workload and
system features as input for GPU soft-error prediction. We overcome the imbalanced
dataset challenge by taking advantage of the inherent feature present in our dataset.

We examine their effectiveness under various scenarios and in multiple aspects including

99

accuracy, robustness, overhead, and model interpretations.

100

Chapter 7

Fault Site Pruning for Practical
Reliability Analysis of GPGPU

Applications

In the previous chapters, we take a large-scale study on the GPU soft errors on America’s
fastest supercomputer — Titan, with a special emphasize on the single-bit errors. Through
the characterizing analysis, we observe that GPU soft errors are related to many features,
including workloads, resource utilization, temperature, and power consumption (see Chap-
ters 3 and 4). In Chapters 5 and 6, we propose two SBE occurrence predictors on top of
four commonly-used machine learning models. These two chapters address the problem
from the perspective of the entire system. Still, such analysis has its inherent drawback.
The large-scale system measurement data are post hoc, i.e., we have limited control over
the data collection methodology and we cannot use our techniques to dynamically turn
on/off ECC. In this chapter, we adopt an application-level view of the GPU reliability
problem. In Chapters 3 and 4, we observe that different applications experience different
rates of bit flips, possibly due to their data access pattern and interaction with hard-
ware. In this chapter, we aim to deepen this understanding. Here, we consider analysis

at the application-level to explore the reasons why some applications are more resilient

101

to GPU soft errors than others. Such understanding is helpful in building reliable GPU
architectures.

Past work [154, 44, 59| investigates the error resilience of GPU applications. A popular
way is to understand resilience by artificially but systematically injecting faults into various
register states or logic units and then by examining their effects on the application output.
These faults can result in: a) no change in application output (i.e., faults are masked),
b) change in application’s output due to data corruption but still execution terminates
successfully (i.e., faults are silent), and c) application crashes and hangs. The latter two
outcomes are certainly not desirable from the reliability point-of-view and hence a lot of
high-overhead protection mechanisms such as check-pointing [137, 80] and error correction
codes (ECC) [8, 10, 4] are employed to strive for reliable executions.

One of the major challenges in evaluating error resilience of applications is to obtain a
very high fault coverage, i.e., inject faults in all possible fault sites and record its effect. This
procedure is already very time consuming and tedious. In our own analysis of GPGPU
applications, we have found that the total number of fault sites can be in the order of
billions. Assuming a single-bit flip model, Table 7.1 quantifies the total number of fault
injection sites for a large number of diverse GPGPU application kernels. The tremendous
size of fault sites is due to the fact that each GPGPU kernel can spawn thousands of
application threads and each thread is assigned to a dedicated amount of on-chip resources.
For the calculation of fault sites reported in Table 7.1, we only consider soft errors that
can occur in functional units (e.g., arithmetic logic unit and load-store unit) [59]. Yet, the
number of fault sites is tremendous. Executing one experiment per fault site in such a vast
space to collect application error resilience metrics is clearly very difficult and absolutely
not practical.

In order to develop a robust and practical reliability evaluation for GPUs, prior works
have considered a variety of fault injection methodologies such as LLFI-GPU [85] and
SASSIFT [59] that sample a subset of fault sites to capture a partial view of the overall

error resilience characteristics of GPGPU applications. These works claim that experiments

102

Table 7.1: Various metrics (including the total number of possible fault sites) related to considered

GPGPU application kernels.

) # Total
Suite ApPllca- Kernel Name 1D 7" Fault
tion Threads .
Sites
HotSpot calculate temp K1 9216 3.44E+07
invert mapping K1 2304 1.47E+4-07
R-Means kmeansPoint K2 2304 | 9.67E-+07
Fanl K1 512 1.63E+05
Gaussian Fan2 K2 4096 4.92E+4-06
Rodinia | Elimination Fanl K125 512 1.09E+-05
Fan2 K126 4096 8.79E-+05
PathFinder dynproc_kernel K1 1280 2.7TE+07
LU Decom- lud perimeter K44 32 1.75E+06
position lud internal K45 256 6.84E+05
(LUD) lud_diagonal K46 16 5.26E-+05
2DCONV Convolution2D kernel K1 8192 6.32E4-06
MVT mvt_kernell K1 512 6.83E+-07
Polybench 2MM mm2_kernell K1 16384 5.55E-+08
GEMM gemm_kernel K1 16384 6.23E+4-08
SYRK syrk kernel K1 16384 6.23E-+08

on a small and randomly selected set of fault sites is sufficient for results within 95%
confidence intervals and error margins within a 6% range [83]. In this chapter, we take
an orthogonal approach — our goal is to prune the large amount of fault site space via
carefully considering the properties of GPGPU applications. Our pruning mechanisms not
only reduce the total number of required fault injections (in some cases to a few hundreds
only while still maintaining superior accuracy), but also equivalently reduce the total time
to complete the required experiments.

To this end, we focus on the following fundamental observations relevant to GPGPU
applications: a) GPGPU applications follow the SIMT execution style that allow many
threads to execute the same set of instructions with slightly different input values, b) There
is an ample commonality in code across different threads, ¢) Each GPU thread can have

several loop iterations that do not necessarily change the register states significantly, and d)

103

GPGPU applications themselves are error resilient and hence changes in the precision/ac-
curacy of register values do not necessarily change the final output of an application. By
leveraging these properties, we propose progressive pruning that systematically reduces the
number of fault sites while preserving the application error resilience characteristics. Our
proposed methodology consists of:

o Thread-wise Pruning: The first step focuses on reducing the number of threads for
fault injection. We find that a lot of threads in a kernel have similar error resilience
characteristics because they execute the same number and type of dynamic instructions.
Based on the grouping of threads based on dynamic instruction count, we select a small
set of representative threads per kernel and prune the redundant fault sites belonging to
other threads.

o Instruction-wise Pruning: Our detailed analysis show that many of these selected
representative threads still execute subsets of dynamic instructions that are identical across
threads. This implies that all instructions are not required to be considered for fault
injection, and that the replicated subsets across threads can be considered only once.
Therefore, the replicated fault sites are further pruned while preserving the application
error resilience characteristics.

e Loop-wise and Bit-wise Pruning: We observe that there is a significant redundancy in
fault sites across loop iterations and register bit positions. Therefore, such redundant fault
sites can be further pruned for further savings while accurately capturing the application
error resilience characteristics.

To the best of our knowledge, this is the first work that quantifies the problem of high
number of fault sites in GPUs and develops progressive pruning techniques by leveraging
GPGPU application-specific properties. Our newly proposed methodology is able to reduce
the fault site space by up to seven orders of magnitude while maintaining accuracy that
is close to that of ground truth. We further extend the progressive fault site pruning
technique to multi-bit fault model and investigate the impact of increasing number of

faults on application outcomes.

104

This chapter is organized as follows. In Section 7.1, we discuss related work. Sec-
tion 7.2 explains the background and methodology. We illustrate the design details of the
progressive fault site pruning in Section 7.3 and evaluate it in Section 7.4. In Section 7.5,
we extend the pruning technique to the multi-bit fault model and evaluate the impact of
multiple faults on the outcomes of GPGPU applications. Finally, Section 7.6 summarizes

the chapter.

7.1 Related Work

To the best of our knowledge, this is the first work that identifies the problem of large
number of fault sites that make GPU reliability assessment impractical and proposes ways
to efficiently address it. In this section, we briefly discuss works that are most relevant to
this study.

High-level Reliability Analysis. Simulation-based analysis is employed widely in char-
acterizing critical hardware structures for the purpose of finding vulnerabilities introduced
by soft errors. Prior work [45, 64, 138| performed architectural vulnerability analysis
(AVF) by performing exhaustive fault injection experiments. For the analysis purposes,
faults are injected at various levels (e.g., application- or micro-architecture-level) and the
effects of bit flips are measured by analyzing the application output. Application-level
fault injection techniques are widely used in evaluating error resilience characteristics for
both CPU [32, 153] and GPU applications [154]. They are generally fast and still can
provide detailed information. However, Cho et al. [33] pointed out that application-level
methods can be inaccurate as compared to flip-flop-level methods for CPU applications.
Another option is performing neutron-beam experiments [47], which is not always feasi-
ble. We acknowledge the aforementioned pros and cons of various techniques for reliability
analysis. In this chapter, we follow the process of studying reliability via fault injection, at
PTXPlus-level, which is much faster and feasible than beam injection and is also reason-

ably accurate [144]. The aforementioned studies adopt the commonly used single-bit fault

105

model. Still, it is worthwhile to investigate multi-bit fault model. Sangchoolie et al. [124]
look into the impact of multi-bit faults for CPU applications. In this chapter, we start
with single-bit fault model and extend the proposed methodology to multi-bit fault model
for GPU applications.

Fault Injection Analysis. Although much work has been done on fault injector mod-
els/frameworks [92, 42, 88, 89, 113, 117, 123, 128, 126, 23, 95, 49, 50, 51| in the CPU
domain, there are only a limited number of fault injection models designed specifically
for GPUs. For example, to evaluate application error resilience in GPUs, Fang et al. [44]
proposed GPU-Qin to understand how faults affect an application’s output in GPUs. A
GPU debugging tool cuda-gdb 3] is leveraged by GPU-Qin to inject single bit errors into
the destination operands. Similarly, Hari et al. [59] developed a fault injection tool, called
SASSIFI, which injects different kinds of faults into destination register values, destination
register indices and store addresses, and register files.

Fault-site Pruning. One of the major concerns of aforementioned fault injection works,
both in CPU and GPU domain, is the space complexity of possible fault sites. Within
the CPU context, major works by Relyzer [58] and MeRLiN [70] grouped fault sites into
equivalence classes and select one or more pilots per class for fault injection. They showed
significant benefits of employing their mechanisms in the workloads typically executed on
CPUs. We believe directly transferring such pruning techniques to GPU applications is
not straightforward because GPU applications typically spawn hundreds to thousands of
threads, leading to enormous fault site space. Our work identifies fruitful features that
play a role in the final error resilience characteristics of an application and leverage them
to carefully prune the fault site space. Finally, to illustrate the effectiveness of our pruning
mechanisms, we performed exhaustive experiments on the pruned space and compared the

results to the ones closest to the ground truth.

106

7.2 Background and Methodology

We selected applications from commonly used suites (i.e., Rodinia [31] and Polybench [54])
that cover a variety of workloads from different domains. Note that, as kernels of GPGPU
applications normally implement independent modules/functions, we perform resilience
analysis separately for each kernel. We focus on every static kernel in the application.
For static kernels with more than one dynamic invocations, we randomly select one for
fault injection experiments. Table 7.1 shows the evaluated 10 applications (16 kernels). In
the rest of this chapter, if the kernel index is not specified, it implies that the application

contains only one kernel.

7.2.1 Baseline Fault Injection Methodology

We employed a robust fault injection methodology based on GPGPU-Sim [24], a widely-
used cycle-level GPU architectural simulator. The usability of GPGPU-Sim with PTXPlus
mode (which provides a one-to-one instruction mapping to actual ISA for GPUs [144, 24|)
for reliability assessment is validated by GUFI [144]|, a GPGPU-Sim based framework. In
this work, we inject faults using GPGPU-Sim with the PTXPlus mode.

For each experiment, we examine the application output to understand the effect of an
injected fault. We classify the outcome of a fault injection into one of the three categories:
(1) masked output, where the injected fault leads to no change in the application output,
(2) silent data corruption (SDC) output, where the injected fault allows the application
to complete successfully albeit with an incorrect output, and (3) other output, where the
injected fault results in application hangs or crashes. The distribution (or percentage) of
fault injection outcomes in these three different categories form the error resilience profile

(or characteristics) of a GPGPU application.

107

7.2.2 Baseline Fault Model

We focus on injecting faults in the destination registers to mimic the effect of soft errors
occurred in the functional units (e.g., arithmetic and logic units (ALUs) and the load-store
units (LSUs)) [44, 59]. The destination registers and associated storage are identified by
thread id, instruction id, and bit position. Table 7.1 shows a few characteristics of various
application kernels, including the number of threads spawned by each kernel and the total
number of fault sites (also called fault coverage). The fault coverage for each application
kernel (consisting of N threads) is calculated as per Equation (7.1). Suppose that a target
thread ¢ (¢ € [1, N]) consists of M (t) dynamic instructions and that the number of bits in
the destination register of instruction i (i € [1, M (¢)]) is bit(¢,). The number of exhaustive
fault sites is the summation of every bit in every instruction from every thread in the kernel

and is given by:
N M(2)

FaultCoverage = Z Z bit(t,). (7.1)

t=1 i=1
This number for the GPGPU kernels that we consider in this chapter is reported in the

rightmost column of Table 7.1. Recall that, the numbers are obtained under the context of
single-bit fault model, which is the commonly used model in most fault injection studies 44,
59]. In this chapter, we study both single-bit and multi-bit fault models. We start with
single-bit fault model to build a fault site pruning technique. Then, we explain how to

extend the technique to multi-bit fault model.

7.2.3 Statistical Considerations

Looking at the number of exhaustive fault sites shown in Table 7.1, it is clear that it is
not practical to perform fault injection runs for all fault sites. This is especially true when
application execution time is very long, which is especially true for production software or
workloads executing in data centers [121]). Taking GEMM from Polybench as an example
and assuming that it takes a (nominal) one minute to execute one fault injection experi-

ment, then 7.73E+08 minutes (or about 1331 years) are needed to complete experiments

108

for the entire fault site space (see the first row in Table 7.2). Therefore, it is desirable to
reduce the number of fault injection experiments but also guarantee a statistically sound
resilience profile (i.e., percentages of masked, SDC, and other outputs — see Section 7.2.1)
of the considered application kernel. To this end, prior work [83] has shown that given
an initial population size N (in our case, N is the number of exhaustive fault sites), a
desired error margin e, and a confidence interval (expressed by the t-statistic), the number

of required experiments n (in our case, fault sites) is given by:

N

= 2 N-—1
1+e” X t2xpx (1—p)

n (7.2)

Note that p in the above equation is the program vulnerability factor, i.e., the percentage
of fault injection outcomes that are in the masked output category. If n < N, (e.g.,
if the percentage of samples is less than 5% of the entire population), then N can be

approximated by oo, resulting in the following equation [82]:

N 12
lim n= lim = —=xpx(1-p). 7.3
N—o0 N—oo 14 e2 x Tox(1=0] X}ZO\;_(%—p) e2 p (p) ()

Since p is the result of fault injection experiments, p is still unknown. To ensure that the
number of fault injection experiments n is sufficient to capture the true p [83], then

2 tQ

t
n:magc{e—2 X p X (1—p)}=m7 (7.4)

where n is the minimum sample size (i.e., number of fault injection experiments) required
to calculate the fraction of fault injection outcomes in the masked output category, with
a certain confidence interval and a user-given error margin e. To maximize the term
p x (1 —p), pis set to 0.5.

Table 7.2 presents the required number of fault injection experiments (i.e., fault sites)
in GEMM given a confidence interval and an error margin. We consider the reliability

profile results of 60K experiments (with 99.8% confidence interval and an error margin of

109

Table 7.2: Fault sites and other statistics for GEMM.

Confidence Error # Fault Estimated Masked
Interval Margin Sites Time Output (%)
100% 0.0% 7.73E+08 1331 years ?
99.8% +0.63% 60,181 40 days 24.2%
95% +3.0% 1,062 16 hours 21.6%

e = 0.63%) as the ground truth |70]. Clearly, there is a significant discrepancy between the
percentage of masked outputs for 60K versus 1K fault injections (see last column). The
goal of our fault site pruning mechanism is to achieve the accuracy of the 60K results but

with a much reduced number of experiments.

7.3 Progressive Fault Site Pruning

In this section, we explain the proposed error site pruning techniques while providing

intuition along the steps.

7.3.1 Overview

Figure 7.1 provides an overview of our fault site pruning four-stage mechanism. This
mechanism is progressive, i.e., every successive stage further reduces the number of fault
sites of the previous one. There are four primary stages: a) Thread-wise Pruning, b)
Instruction-wise Pruning, c¢) Loop-wise Pruning, and d) Bit-wise Pruning. In each stage
as depicted in Figure 7.1, black parts represent the selected fault sites while the gray parts
represent the pruned ones.

In the first stage, we perform a) thread-wise pruning where kernel threads are classi-
fied into different groups. This classification is based on the distribution of fault injection
outcomes: threads in the same group share a similar application error resilience profile.
From each group, we are able to randomly select one thread as the group representative.

Yet, thread classification is challenging. In Section 7.3.2, we show that the dynamic in-

110

struction (DI) count per thread can be used as proxy for effective thread classification. We

classify threads based on their dynamic instruction count into several groups, then select

one representative (i.e., one black thread) per group.

Legend

ernel

Il Representative Sites

\

[PrunedSites

\

R2 a) Thread-wise Pruning

DI Group 1 DI Grol

DI Group 3|

Dynamic Instruction Order

SN F

X A}

........ l.“"‘* Common Instructions

b) Instruction-wise Pruning
== Destination Registers

Dynamic Instruction Order

c) Loop-wise Pruning

Destination Registers

Dynamic Instruction Order

d) Bit-wise Pruning

=234 Destination Registers

Figure 7.1: Overview of the 4-stage Fault Site Pruning Mechanism.

In the next pruning stage, we perform b) instruction-wise pruning, which leverages

common blocks of code that are shared among the selected representative threads of the

previous pruning stage. We find that because of the SIMT nature of the GPU execution

model many threads execute the same subsets of instructions. These common instruction

blocks are likely to have similar resilience characteristics (discussed further in Section 7.3.3),

thus become candidates for pruning (see gray segments in Figure 7.1, stage b) Instruction-

wise Pruning). Black segments are selected for fault injection and move to the next pruning

stage.

In the subsequent pruning stage, loop-wise prumning, we identify loops in the threads

111

that are selected from the previous stage and we randomly sample several loop iterations to
represent the entire loop block (we elaborate on how we do this sampling in Section 7.3.4).
Within each loop, we are able to use a part of representative iterations (marked as black)
and discard the rest (marked as gray), see Figure 7.1 stage c.

As a last step, with bit-wise pruning, we consider several pre-selected bit positions for
fault injection. These bit positions are selected to cover a range of positions in registers to
further reduce the fault site space (Section 7.3.5 gives the rationale behind the bit position
selection). Similarly, to the rest of Figure 7.1, black bit positions are the selected fault
sites while gray ones are pruned. Overall, Figure 7.1 gives a road-map of the progressive
pruning steps that are discussed in detail in the following subsections.

To clarify that, in the rest of this section, the proposed pruning framework is illustrated
with the results of a single input. For a different input, we have to follow the above four
steps again to determine the pruned fault space. For example, the selected representative
threads might be different for another input. The reason is that those pruning features are
application-dependent and input-dependent. Fortunately, the profiling cost for one input
is affordable as all information can be collected through one fault-free execution. Still it
would be interesting to study the impact of different inputs on those pruning features,
such as whether different inputs result in different CTA-wise and warp-wise grouping.
Such insights (i.e., trends and variations) would be meaningful for developing efficient

fault injection framework for different inputs.

7.3.2 Thread-Wise Pruning

As discussed in Section 7.2, GPGPU applications typically spawn thousands of threads.
Therefore, injecting faults to all thread registers is not practical. To this end, we classify
threads into groups that share similar resilience behavior. The challenge here is to choose an
effective metric that can be easily extracted from the application to guide this classification.

In order to develop a classification process, we study the error resilience characteristics

of CTAs and threads of a kernel through a large fault injection campaign (i.e., over 2

112

million fault injection runs). We investigate the fault resilience features hierarchically,

starting from CTA-, thread-, and instruction-level. Our analysis illustrates that:

o A few representative CTAs and threads can capture the error resilience characteristics

of the entire kernel.

e The number of dynamic instructions (short as iCnt) per thread can be used as an

effective classifier to identify representative threads and guide the first pruning step.

7.3.2.1 CTA-wise Pruning

We first focus on understanding the error resilience characteristics at the CTA level. Al-
though it is not practical to perform an exhaustive fault injection campaign at this level, it
is relatively manageable to run exhaustive experiments for target instructions. We select
a diverse set of dynamic instructions including memory access (e.g., ld), arithmetic (e.g.,
add and mad), logic (e.g., and and shl), and special functional instructions (e.g., rcp), and
from different code locations (e.g., beginning, middle, and end). Although the fault sites
are already reduced by targeting certain instructions and narrowing down to few locations,
the number of (reduced) fault sites per kernel is still large, e.g., 1,217K for HotSpot, 774K
for 2DCONYV, 412K for K-Means.

Instead, we resort to Equation 7.4 to obtain n=60K random samples for every tar-
get instruction in a kernel. We use 2DCONV and HotSpot, which are diverse nature in
terms of number of threads and similarity across threads. For each application kernel, we
manually select 5 instructions that cover the aforementioned diversity, resulting in 300K
fault injection runs per application kernel. Figure 7.2(a)-(b) shows the grouping results
given by one target instruction for 2DCONYV and HotSpot, respectively. The results for
the remaining four target instructions are not shown for brevity.

Figure 7.2(a) shows the distribution of fault injection outcomes for all 32 CTAs in
2DCONV. CTAs are listed in the order of their launching time along the x-axis. For

every CTA, we calculate the percentage of masked outputs (percentage of SDC and other

113

75% |

50% |-

PCT. MASKED

f_}ﬁ
100% [+ 7 < & -> o - . -> . - . - o - o - o
25% - l

[]

0% k=

C1 C2 C(C3G4 c8 C9 Ci10 c-4
FL\(#‘—H‘LH—L\ hdid !_L\v . M_LH .]
100% T — . alis ol SR mi B ol o
@75%» 1 1
(V)]
< s50%f . L4 4
G 2sufe
0% [EEisssss T T T
3 333355 5 353555533333 3
S © & © o o (1Y) S S S S+ S S o 1N
S A d M soh S a4 d TS adAdm T

CTA (in launching order)

(b) HotSpot (line=52, opcode=add)

Figure 7.2: CTA grouping after 60K fault injection runs of one target instruction for (a) 2DCONV
and (b) HotSpot. CTAs with the same color are classified into the same group. In the box plot,
the horizontal green lines represent the median and red dots represent the mean.
outputs are not shown) for each of its 256 threads and show the distribution of masked
outputs using boxplots (i.e., one boxplot for each CTA to illustrate salient points in the
distribution of masked outputs, including the 25th and 75th percentiles, and the mean
and median). We observe that CTAs exhibit three distinct distributions as given by the
different shapes of boxplots. Each group is marked by a different color. Therefore, 3 CTAs
(one per group) is sufficient to represent the entire kernel. Similarly, Figure 7.2 (b) shows
the CTA grouping results for HotSpot. There are 36 CTAs in total, each containing 256
threads. For clarity, we show a few CTAs only. We observe that HotSpot has more diverse
CTAs than 2DCONYV and hence we classify its CTAs into 10 groups (C-1 to C-10).

Although the experiments illustrated in Figure 7.2 point to a promising methodology
to obtain a first-order CTA grouping, it is obtained with 300K fault injection runs per
kernel. This is still not always practical, as one can always opt to the random fault injection

campaign [83], which requires 60K runs. Therefore, it is imperative to find an effective

114

metric that can further prune the fault space. We show that the number of dynamic
instructions per thread (iCnt) is an alternative good measure for thread classification.
This is encouraging as only one fault-free execution is sufficient to collect all the required

1Cnt information.

C-1 C-2 C-3
50
< L)
S 40
c
v
< 30
o
©
¢ 20
£
10k = > > - Lo *> ¢ LX - *> <> ¢ * > 9

(a) 2DCONV
-3C: - - C-4

Thread Insn. Cnt
o N & 9
o w o (6]

L4

I D |

—4)

=T e 1]
HI e T 1]
H¢]

el

(o |

(o |

(o |

=4

e

~
v

T
I

233333 2355355533353
222990 o0 IYITTI T Y00 DD
cod s cogoeasvwednsny

CTA (in launching order)

(b) HotSpot

Figure 7.3: CTA grouping given by average dynamic thread instruction count (iCnt) per CTA
for (a) 2DCONV and (b) HotSpot. CTAs with the same color are classified into the same group.
A significant similarity is is observed with Figure 7.2.

Figure 7.3(a)-(b) shows the results for 2DCONV and Hotspot. Each boxplot shows
the distribution of thread iCnt per CTA. Recall that each boxplot in Figure 7.2 represents
the distribution of percentage of masked outputs. Similarly here, we are able to classify
the CTAs into the same groups as in Figure 7.2 (both Figure 7.2 and 7.3 use the same
color-code). Table 7.3 and 7.4 report the grouping results guided by the average thread
iCnt per CTA (given by Figure 7.3) for 2DCONV and HotSpot, respectively (see the left
three columns).

To summarize, the above results confirm that iCnt is effective in capturing the error

115

Table 7.3: CTA and threads groups for 2DCONV.

CTA Grp. | Ave. iCnt | T2 P | thd. Grp. | Thd. icnt | TP .Pri'

portion portion

T-11 13 12.50%

C-1 43 6.25% T-12 15 2.73%
T-13 48 84.77%

T-21 15 313%

C-2 4T 43.75% T-22 48 96.87%
3 11 50.00% T-31 11 100.00%

* For each CTA group, we show its percentage of threads belonging to the corre-
sponding thread group.

resilience characteristics at the CTA-level. Based on the grouping guided by iCnt, only
a few CTAs per kernel are sufficient to capture the entire picture. We have conducted
similar experiments for other application kernels that overwhelmingly support the above

conclusion.

Observation 7.1 A few CTAs are enough to capture the error resilience characteristics of

a kernel. These CTAs are selected based on the average thread dynamic instruction count

(iCnt).

7.3.2.2 Thread-wise Pruning

By narrowing down to only a few CTAs in a kernel, we are able to significantly reduce
the number of fault sites. Yet, an exhaustive fault injection campaign using all threads in
selected CTA representatives is not viable. For example, for a CTA with 256 threads, if
each thread executes an average of 100 dynamic instructions and if all destination registers
are 32-bit wide, then a total of 819, 200 runs are needed. Therefore, we continue the thread
classification within each CTA in order to select only a few representative threads. As done
previously, we classify threads inside a CTA using (1) a large number of fault injection
runs and (2) iCnt. We confirm that the two methods lead to the same thread grouping

results, see Figure 7.4. In other words, thread iCnt is also effective within a CTA to classify

116

Table 7.4: CTA and threads groups for HotSpot.

) CTA Pro- Thd. iCnt | Thd. Pro-
CTA Grp. | Avg. iCnt portion Thd. Grp. Range portion*
T-11 77 — 98 23.44%
C-1 154 2.78% T-12 111 —115 10.55%
T-13 183 66.02%
T-21 77 — 90 12.50%
C-2 159 8.33% T-22 108 — 115 16.41%
T-23 183 71.09%
T-31 77 — 103 45.31%
C-3 137 2.78% T-32 108 — 115 8.98%
T-33 183 45.70%
T-41 77 — 99 28.91%
4 % 30.56% T-42 103 71.09%
T-51 89 — 111 18.75%
T-52 113 5.08%
-5 160 8.33% T-53 115 5.08%
T-54 183 71.09%
T-61 108 6.25%
T-62 111 6.25%
-6 166 25.00% T-63 113 —115 10.94%
T-64 183 76.56%
T-71 95 — 108 43.75%
C-7 143 8.33% T-72 113 —115 7.03%
T-73 183 49.22%
T-81 80 — 98 45.31%
C-8 135 2.78% T-82 111 —113 8.98%
T-83 183 45.70%
T-91 80 — 95 37.50%
C-9 139 8.33% T-92 108 — 113 13.28%
T-93 183 49.22%
T-101 80 — 103 60.94%
C-10 124 2.78% T-102 108 — 113 7.42%
T-103 183 31.64%

* For each CTA group, we show its percentage of threads belonging to the corre-

sponding thread group.

threads.

Figure 7.4(a) shows results for 2DCONV. Each blue dot represents the percentage of

masked outputs in that thread (left y-axis) and each red dot indicates the corresponding

117

® PCT. MASKED @ Thread Insn. Cnt] [0T21 C_J71-22]

100% [
o/ | i e
@ 80% 0%
=
g 60% g
= 13°s
O % | 19
O 40% g
LVICIE QLT N SRSy PR T LRy . H20F
20% | (Nl s e TN B e N N N g et ep s NSNS
. -
1050 1100 1150 1200 1250
Thread ID
(a) 2DCONV: CTA Group C-2
[@ pct. MaskeD @Thread insn. cnt] [CO1-00 0792 193]
100%F oL . T {180
LY . | N . c I . § .
{160 £
a
U o80%f <
2 {140 g
c
g <
= 1120 %
§ 0% S| b 4 .y oem 8Leh das £
R IR L R T i S ——— 1100 =
- . o ew %S Py
20%] | ° A .) J) J “ ' 480
” 6400 6450 6500 6550 6600 6650

Thread ID

(b) HotSpot: CTA Group C-9

Figure 7.4: Thread Grouping inside one CTA.

thread :Cnt (right y-axis). We mark threads in the same group with the same color. We
observe a clear repeating pattern that allows for classifying all threads into two distinct

groups (one marked with green color, the other one is uncolored, see Figure 7.4(a)):
1. T-21: threads with iCnt=15 and percentage of masked outputs at around 100%.
2. T-22: threads with iCnt=48 and percentage of masked outputs between 20% to 30%.

Table 7.3 reports the thread grouping details for 2DCONV (right three columns). A
potential reason for such similarity in the distribution of fault injection outcomes among
threads with different :Cnt is the fact that these threads share large common code blocks,
this is further discussed in Section 7.3.3.

Figure 7.4(b) shows that threads in HotSpot can be also classified into several groups
(Table 7.4). Due to the complexity of this kernel, we merge thread groups with similar iCnt
together for visualization purposes, resulting in 3 distinct groups: one marked in green,

one marked in yellow, and the third one is uncolored. Note that, during the actual fault

118

injection campaign, we still classify threads based on the exact thread iCnt (a total of 87
thread groups across selected CTAs) and select one representative thread per group.

We find that it is important to perform the grouping in two steps: first at the CTA level
and then at the thread level. Through our fault injection runs, we find that threads with
the same iCnt from different CTAs could have different instructions and thus show different
distribution of fault injection outcomes (this is observed in HotSpot and Gaussian K2).

Therefore, the step of CTA-wise grouping cannot be skipped.

Observation 7.2 Threads can be further classified within a CTA. A few threads within a

CTA are able to represent the CTA’s error resilience characteristics.

7.3.3 Instruction-Wise Pruning

Our analysis shows that different threads normally share a large portion of common in-
structions. We aim to further prune the fault sites by finding common instruction blocks
among the resulted set of thread representatives after the thread-wise pruning stage. We
illustrate this observation using PathFinder application. Figure 7.5 shows instruction snip-
pets of its two representative threads (“a" and “b") chosen from the previous pruning stage.
Comparing their PTXPlus code, dynamic instructions from the first line till line number
53 are all the same; thread “a" has 17 more instructions in the middle; at the end, all the
remaining 463 instructions across the two threads are also the same.

Table 7.5 shows the percentage of masked and SDC outputs for PathFinder if soft errors
are injected in their common portion only. The distributions of fault injection outcomes
that stem from this common block are quite close (see columns 4 and 5 in the table).
Naturally, fault injections have to occur in the entire body of thread “a" to calculate its
resilience, but since there is a common code block across the two threads, it can be used to
extrapolate the distribution of fault injection outcomes of thread “b". This eliminates the
need to inject faults in thread “b" and essentially prunes the fault sites generated for this

thread. We introduce —0.078% error for the percentage of masked outputs and —0.031%

119

Thread “a” (iCnt = 533) Thread “b” (iCnt = 516)

1 shl.u32 $r3, s[0x0010], 0x00000001 1 shlLu32 $r3, s[0x0010], 0x00000001
2 cvt.u32.u16 $r1, %ctaid.x 2 cvt.u32.u16 $r1, %ctaid.x

3 add.u32 $r3, -$r3, 000000100 3 add.u32 $r3, -$r3, 0x00000100

4 mul.wide.u16 $r4, $r1.lo, $r3.hi 4 mulwide.u16 $r4, $r1.lo, $r3.hi

5 mad.wide.u16 $r4, $r1.hi, $r3.lo, $r4 5 mad.wide.u16 $r4, $r1.hi, $r3.lo, $r4
49 cvts32.s32 $r2, -$r2 49 cvt.s32.832 $r2, -$r2

50 and.b32 $p0|$0127, $r5, $r2 50 and.b32 $p0|$0127, $r5, $r2

51 ssy 0x00000228 51 ssy 0x00000228

52 mov.u32 $r2, $r124 52 mov.u32 $r2, $r124

53 @$p0.eq bra 10x00000228 53 @$p0.eq bra 1000000228

54 add.half.u32 $r7, s[0x0038], $r1

55 mov.half.u32 $r2, s[0x0030]

s6 mul.wide.u16 $r8, $r2.1o, $r7.hi

57 mad.wide.u16 $r8, $r2.hi, $r7.lo, $r8
58 shl.u32 $r8, $r8, 0x00000010

66 min.s32 $r7, s[$ofs2+0x0040], $r8
67 Id.global.u32 $r2, [$r2]

68 add.u32 $r2, $r2, $r7

69 mov.u32 s[$ofs3+0x0440], $r2

70 mov.u32 $r2, 0x00000001

71 10x00000228: nop 54 10x00000228: nop

72 bar.sync 0x00000000 55 bar.sync 0x00000000

73 set.eq.s32.s32 $p0/$0127, $r6, $r1 56 set.eq.s32.s32 $p0/$0127, $r6, $r1

74 @$p0.ne bra 10x000002b8 57 @$p0.ne bra 10x000002b8

75 set.ne.s32.s32 $p1/$r1, $r2, $r124 58 set.ne.s32.s32 $p1/$r1, $r2, $r124

529 set.eq.s32.s32 $p0/$0127, $r6, $r1 512 set.eq.s32.s32 $p0/$0127, $r6, $r1

530 @$p0.ne bra 10x000002b8 513 @$p0.ne bra 10x000002b8

531 g)r)%g(‘)‘OOOZb& set.ne.s32.s32 $p0/$0127, $r2, 514 Isl)r)sgl‘)tOOOZbS: set.ne.s32.s32 $p0/$0127, $r2,
532 bral0x000002c8 515 bra10x000002c8

533 10x000002c8: @$p0.eq retp 516 10x000002c8: @$p0.eq retpz

Figure 7.5: PTXplus code comparison of two representative threads for PathFinder. Blue bold
lines indicate common instructions.

error for the percentage of SDC outputs (both minimal variations), but with a significant

reduction of 12,344 fault sites.

Table 7.5: Effect of instruction-wise pruning for two threads.

% % %

Application Thread Common Insn. MSK SDC
' a 92.1% 89.4% 0.0%
PathFinder b 100.0% 90.1% 0.4%

To confirm that this behavior persists across kernels, we conduct exhaustive experi-
ments across the fault site space after CTA-wise and thread-wise pruning and confirm that
common blocks of instructions across threads share a surprisingly similar distribution of
fault injection outcomes (Table 7.6). The third column of Table 7.6 shows the percentage of
pruned common instructions, and the 4th and 5th columns show the error of pruned results,

compared to the exhaustive experiments before pruning common instruction blocks. This

120

pruning technique is useful for complicated applications such as PathFinder and HotSpot,
with the reduction of 92.81% instructions and 92.80% instructions, respectively. Table 7.6
shows that the percentage of common instructions pruned in applications kernels ranges
from 42.86% to 92.81% and the error introduced by pruning common instruction blocks

for masked and SDC outputs is —0.15% and —0.1%, respectively.

Table 7.6: Summary of instruction-wise pruning for selected kernels. Other kernels do not exhibit
instruction commonality.

Application Kernel % Pruned Introduced Error
Common Insn. MSK ‘ SDC

HotSpot K1 92.81% -0.14% 0.14%
PathFinder K1 92.80% 0.03% -0.09%
LUD k46 80.00% -0.78% -0.70%
2DCONV k1 66.67% 0.09% -0.09%
Gaussian K2 62.50% -0.13% 0.13%
Gaussian K126 42.86% 0.00% 0.00%
Average 72.94% -0.15% -0.10%

Note that several application kernels (e.g., 2MM, MVT, SYRK, and GEMM) after
thread-wise pruning end up with only one representative thread. These kernels are not
suitable for instruction-wise pruning, and are therefore not included in the table. For
Gaussian K1 and K2, and K-Means K1, instruction-wise pruning is also not applicable.
For these application kernels, there are two representative threads, one with very few
instructions (i.e., less than 10) and other with many (i.e., hundreds or thousands), leaving

few opportunities to explore code commonality.

Observation 7.3 Different representative threads may share significant portions of com-
mon instructions. Therefore, distributions of fault injection outcomes of these common por-

tions are similar. Consequently, a large number of fault sites can be pruned while achieving

significant accuracy.

121

7.3.4 Loop-Wise Pruning

Table 7.7 shows the total number of instructions and the number of loop iterations per
kernel. The kernels are sorted in increasing order by the portion of instructions in loops
(after the loop is unrolled). Excluding kernels with no loops, a large portion of instructions
in a kernel come from loop iterations, ranging from 65.79% in LUD K46 to 99.71% in
MVT. Such an abundance in the repetitive instruction blocks indicates large opportunities
for pruning. We aim to discover whether the distribution of fault injection outcomes can

be captured by a subset of loop iterations.

Table 7.7: Statistics related to loops.

‘ Application ‘ Kernel ‘ # Thd. ‘ # Loop Iter. ‘ % Insn. in Loop ‘

HotSpot K1 9216 0 0.0%
2DCONV K1 8192 0 0.0%
NN K1 43008 0 0.0%
K1 512 0 0.0%
Gaussian K2 4096 0 0.0%
K125 512 0 0.0%
K126 4096 0 0.0%
K45 256 0 0.0%
LUD K46 16 120 65.79%
K44 32 120 78.75%
K-Means K1 2304 34 82.42%
K2 2304 170 87.6%
PathFinder K1 1280 20 92.84%
SYRK K1 16384 128 98.13%
2MM K1 16384 128 98.18%
GEMM K1 16384 128 98.21%
MVT K1 512 512 99.71%

Towards this goal, we consider a number of randomly sampled iterations for fault
injections. We present results for different fault site sizes, defined by the total number
of sampled iterations (num _iter) ranging from 1 to 15. Figure 7.6 shows the impact of
num__iter on the distribution of fault injection outcomes for PathFinder, SYRK, and K-

Means K1. For K-Means K1, we show the effect of two different random seeds for sampling

122

the loop iterations. We observe that the distribution of fault injection outcomes is stable
after a certain number of sampled loop iterations. Looking closer into the application
source code, we observe that: 1) several loop conditions are controlled by constants and
not variables that are changed within the loop and 2) there is no data communication
among different loop iterations. Therefore, there is no error propagation among different
loop iterations, thus sampling is sufficient for obtaining the distribution of fault injection
outcomes. These observations hold true for the evaluated applications, but may not be
true for other applications.

Figure 7.6 shows that different applications require different numbers of sampled loop
iterations to reach stability for the percentage of masked, SDC, and other outputs. Fig-
ure 7.6(a) shows that PathFinder requires 3 sampled loop iterations. Figure 7.6(b) shows
that the output of SYRK becomes stable after 8 sampled loop iterations. In both cases the
trend is clear. For K-Means K1 (Figure 7.6(c)), there is no clear trend with a few sampled
iterations but results stabilize when the number of sampled loop iterations reaches 15. To
further explore the behavior of this kernel, we sample the loop iterations of K-Means K1
using another random seed. Figure 7.6(d) reports the results and shows that stability is
again achieved with 15 loop iterations, as shown in Figure 7.6(c).

To summarize, Figure 7.6 suggests that randomly sampling a few iterations is generally
sufficient in capturing the distribution of fault injection outcomes of application kernels.
This offers another way to further reduce the fault sites within a thread. Similar experi-
ments are done for all other applications and result in the same conclusion. Therefore, we
randomly add iterations one by one, until the result is stable. For the examined kernels,
the number of iterations sampled among loops differs from a minimum of 3, to a maximum

of 15, with an average of 7.22 iterations across all application kernels.

Observation 7.4 Distribution of fault injection outcomes in a kernel can be captured by a
subset of iterations in the loop. This provides an opportunity for fault site pruning thanks

to the abundance of instructions in a loop.

123

—e— masked == other sdc —&— masked =~ other sdc

100% 100%
2 80%f 8 80%f¢f
a a
L o/ L
g 60% g 60%
o/ L o/ |
b. 40% 'C) 40%
& 20%¢ & 20% et
0 L‘—‘T‘—L n ”‘;73 ; G r.‘ 0, L L L L L
0% 2 4 6 8 10 0% 2 4 6 8 10
Number of iterations Number of iterations
(a) PathFinder (Max # of Loop (b) SYRK (Max # of Loop
Iterations=20) Iterations=128)
—#— masked —— other sdc —#— masked —— other sdc
100% 100%
o g o M
> 3
£ 60% /,,_._,_.,-*...,._..._. £ 60%
g 40% o~ g 40%
AU S ——— S 20%[4 /fpma-r-o—aaaaa-uu
0, L L L 1 1 1 1 1 0, L L 1 1 1 1 1 1
0/013579111315 0A)13579111315
Number of iterations Number of iterations
(c) K-Means K1 (Max # of Loop (d) K-Means K1, using a different seed

Iterations—34)

Figure 7.6: Impact of loop-wise pruning on distribution of fault injection outcomes for (a)
PathFinder, (b) SYRK, and (c)-(d) for K-Means K1 with different random seeds.

7.3.5 Bit-Wise Pruning

Beyond instruction-wise pruning, we explore whether it is possible to further prune the
fault site space from the perspective of bit positions. The intuition is that not all bit
positions contribute equally to incorrect outputs. Intuitively, one may assume that bit
flips in higher bit positions would produce more problematic outputs as the difference
between the original value and flipped value tends to be larger. However, this intuition
does not always hold true. The error pattern depends on application kernels and register
types.

Figure 7.7(a)—(b) presents the distribution of fault injection outcomes for two major

types of registers (i.e., .u82 and .pred) for 2DCONV and MVT, respectively. We evenly

124

RegType: .u32 RegType: .pred

100%
9 75%f
3
g
3 50%f
b 0 I masked
o 25%r [[sdc
. Il other
0% 07 815 16-23 24-31 o 1 2 3
Bit Position Bit Position
(a) 2DCONV
100% RegType: .u32 RegType: .pred
J
9 75%f
3
s
3 50%}
5 0 [masked
o 25%¢r [sdc
. Il other
0%—07 815 1623 2431 o 1 2 3
Bit Position Bit Position
(b) MVT

Figure 7.7: Distribution of fault injection outcomes of different bit position sections of two major
register types (.u32 and .pred) for (a) 2DCONV and (b) MVT.
partition bit positions in a register into 4 sections and show the distribution of fault
injection outcomes for every section. First, we notice that for register type .u32, the
intuition of higher bit sections having more problematic outputs holds for both application
kernels. For MV'T, the percentage of masked outputs decreases with increasing bit positions
and becomes almost invisible in the higher two bit sections. For register type .pred that
has 4 bits, we observe that for both applications, the lowest bit position results in output
errors, while the higher three bit positions are very error resilient (they result only in
masked outputs). This is the nature of 4-bit predicate system [5]: the highest three bits in
register type .pred are used for overflow flag, carry flag, and sign flag, respectively, while
the lowest bit represents the zero flag. Within the context of the applications we study in
this work, only the zero flag is used for branch conditions, so we can confidently prune the
other three bit positions in register type .pred.

Note that since the .pred register is not a common one, the scope of pruning is not

significant. For .u32 (see Figure 7.7) there is a consistent pattern as a function of the bit

125

position, therefore we select several bit positions from each register section resulting in a
total of 4, 8, and 16 bit samples (at most, depending on the register size) and compare the
distribution of fault injection outcomes with that of all bit positions. Note that the selected
bits are separated by equal intervals. For instance, for a 32-bit register and selecting 2 bit
positions per section, we focus on bits in the following positions {3,7,11,15, 19, 23,27, 31}.
Figure 7.8 shows the results. For 2DCONV (see Figure 7.8 (a)), the change in distribution
of fault injection outcomes changes as the number of sampled bits increase. This behavior
persists in Figure 7.8 (b) for MVT. Overall, sampling 16 bits is promising as fault site

space can be significantly pruned.

4 V4
< 20%} £ 20%¢
Q '%:’ 10%+
0, 0,
0%="y 8 16 Al %4 8 16 Al
o o 75%
3 50%} 7 50%
E,' 'Q 25%¢
0, 0,
0%, 8 16 Al 0% =4 8 16 Al
Sampled Bit Positions # Sampled Bit Positions
(a) 2DCONV (b) MVT

Figure 7.8: Impact of bit-wise pruning on distribution of fault injection outcomes for (a) 2DCONV
and (b) MVT (all registers). Percentage of outputs stabilizes at 16 bits.

Observation 7.5 [t is possible to reduce the number of fault sites by examining only a

subset of bit positions.

7.4 FEvaluation

In this section, we evaluate the proposed progressive pruning methodology by comparing
with 60K random experiments (baseline case, see Section 7.2.3).

We calculate the distribution of fault injection outcomes for every application kernel
and compare with the percentage numbers given by the baseline (the closest approximation

to ground truth as discussed in Section 7.2.1). The error margin and confidence interval of

126

baseline are set to 0.63% and 99.8%, respectively. Figure 7.9 shows the comparison results.
We observe that our pruning method produces very accurate error resilience estimations for
several benchmark kernels including Hotspot, K-Means K2, Gaussian K2, Gaussian K126,
PathFinder, LUD K44, LUD K46, 2DCONV, GEMM, and SYRK. For these kernels, the
difference in terms of the percentage of masked outputs comparing with baseline is always
less than 1%. For the remaining kernels, there is no significant mismatch from the baseline.
On average, the differences in terms of masked, SDC, other outputs are 1.68%, 1.90%, and
1.64%, respectively.

100%
masked

sdc
other

80%

60%

ANRARRRNY

40%

ANRRRRRRRRN
ANRRRRRRRRRY
ARRARRRRRRRY

811l

1 v
E ;
; é
s a2

PCT. Outputs

Pruned

20% Baseline

0%

HotSpot K1
K-Means K1
K-Means K2
Gaussian K1

Gaussian K2
Gaussian K125
Gaussian K126

PathFinder K1
LUD K44

LUD K45

LUD K46
2DCONV K1
MVT K1

2MM K1
GEMM K1
SYRK K1

Figure 7.9: Error resilience comparison of progressive fault site pruning techniques against the
ground truth (baseline).

Next, we compare the effectiveness of the proposed progressive feature-based pruning
in terms of fault site reduction. Figure 7.10 shows the comparison results. Note that we
use log scale with a base of 10 for the y-axis. The number of fault sites left after each
pruning step is normalized by the original exhaustive fault sites for every application kernel
for cross-kernel comparison. The height of each bar represents the normalized number of
fault sites after each step and the decrease in bar height from the previous bar indicates
the reduction in fault site space. The last two bars in each sub-figure report also a number
that indicates the fault site size of the fully pruned space versus the 60K baseline case
which is the closest to the ground truth. Note that our pruning technique needs one-time
offline profiling to collect the application features needed for pruning. We observe from

Figure 7.10(a) that Thread-wise pruning is the most effective, as it reduces the magnitude

127

3 Exhaustive [Thread-wise [+Insn-wise [+Loop-wise [+Bit-wise [Baseline

wn

[0}
= 107!
0

—

O 1073

—
w

- 1073

£

o
= 1077

GaUSSIan Gaussian LUD HotSpot 2DCONV PathFlnder
K126 K46

(a) Kernels with instruction-wise commonality

0 V4
210 5
5 = 2
g 10 =
w
: 1075
£
o
Z 107 :
Gaussian Gaussian K- Means K- Means LUD LUD
K1 K125 K44 K45
(b) Kernels without instruction-wise commonality
wn
0
£ 1071
o 5
O 102 X © X x
5 © © © ©
£ 107 3 S S 8
€ 2 3 ~
[e)
Z 107
2MM MVT GEMM SYRK
K1 K1 K1 K1

(c) Kernels not applicable to instruction-wise commonality

Figure 7.10: Fault site reduction comparison based on various feature-based pruning techniques.
“+" indicates that each pruning stage is progressively built upon the pruned sites resulted from the
previous stage. The height of the pruned fault sites bar is normalized by the original exhaustive
fault sites for each application kernel, see last column of Table I. The effectiveness of progressive
fault site pruning is compared against comprehensive baseline injection (60K random experiments).
The exact numbers are shown on the top of the last two columns for the proposed method and the
baseline case, respectively.

of the number of fault sites by up to 5 orders of magnitude. With Thread-wise pruning,
we only use a few representative threads (i.e., less than 10) per application kernel. This
is a significant reduction compared to the original number of threads per kernel, e.g., 1
representative out of 16384 threads for GEMM, SYRK, and 2MM, and 6 representatives
out of 8192 threads for 2DCONYV. Such efficient first-order thread-wise pruning lays a

substantial base for the following steps. One important clarification that needs to be stated

128

is that any later pruning is performed on the selected thread representatives, therefore
further reductions after this step are expected to be modest.

Instruction-wise pruning exploits the commonality among the thread representatives
selected in the previous step. It is important to clarify that kernels in the second row (see
Figure 7.10 (b)) are not suitable for Instruction-wise pruning, because their representative
threads do not have many common instruction blocks. Kernels in Figure 7.10 (c) are not
applicable to Instruction-wise pruning as there is only one thread group per kernel, i.e.,
they only have a single representative thread. Comparing results within the first row of
Figure 7.10, we observe that Instruction-wise pruning is most effective for HotSpot and
PathFinder, with the reduction of 92.81% and 92.80% instructions, respectively.

Loop-wise and Bit-wise pruning progressively contribute to the reduction of the fault
sites for each application kernel. The effectiveness of Loop-wise pruning depends on the
percentage of loop instructions in the fault sites left by the previous step. We observe
a large reduction in K-Means K2, LUD K46 and matrix-related applications including
2MM, GEMM, SYRK, and MVT. This matches the fact that there is a large portion of
loop instructions in these kernels (see Table 7.7). On the other hand, the effectiveness of
Bit-wise pruning is relative stable, i.e., the percentage of reduction in fault sites obtained
by Bit-wise pruning is consistent across kernels.

Summary: We present results of the 10 applications (16 kernels) using the pruned
fault site subspaces outlined above to seek the distribution of application outputs (masked,
SDC, and other). Our proposed mechanism is able to produce comparable distribution
numbers of fault injection outcomes against a comprehensive baseline injection of 60K
experiments which we use here as a statistically sound approximation of ground truth. For
each step of feature-based progressive fault site pruning, we observe significant progressive
reduction in the number of fault sites, ending up with only a few hundreds of fault sites in

several kernels.

129

7.5 Multi-Bit Fault Injection

In the previous sections, we present and evaluate a progressive fault site pruning technique,
which is able to accurately estimate the distribution of fault injection outcomes but with
a much smaller number of fault-injection runs. In this technique, we focus on injecting
single bit fault per run. In addition, it is also interesting to see how multiple single-bit
faults affect the outcome of application runs. Multi-bit faults in this context represent
more than one bit flips that occurred during the application run on different threads, i.e.,
one single-bit fault per thread.

In the rest of this section, we first clarify the assumptions we make to extend the
single-bit fault site pruning technique to the context of multi-bit faults. Then, we discuss
how to obtain the distribution of multi-bit faults injection outcomes using the single-
bit fault injection outcomes. Lastly, we evaluate the pruning accuracy in the context of
injecting multiple faults and present observations on the error resilience characteristics of

applications over increasing number of injecting faults.

7.5.1 Assumptions

In this subsection, we state several assumptions to extend the result of single-bit fault
injection to the context of multi-bit faults. Note that the goal here is not to provide the
most accurate estimation of the outcomes of multi-bit fault injection runs, but how to take
advantage of the distribution of single-bit fault injection to estimate the output distribution
in the presence of multiple single-bit faults. We make the following two assumptions.
Assumption-1 We consider injecting multi-bit faults into different threads for GPGPU
applications.
When injecting multiple faults in a single application run, those faults can be injected a)
in the same register, b) in different registers but in the same thread, and c) in different
threads. Sangchoolie et al. [124] study the impact of multi-bit faults for CPU applications

under the context of scenarios a) and b) and conclude that one bit is often enough. They

130

do not consider scenario c¢) because CPU applications are normally single threaded. In
contrast, GPGPU applications can spawn hundreds to thousands threads (see Table 7.1),
making scenario c¢) a significant one. Here, we focus on scenario ¢) in the context of
GPGPU applications, which is injecting multi-bit faults in different threads throughout
the application run.
Assumption-2 We assume that threads do not interact with each other.

In current GPGPU programming, threads can communicate through shared memory |8,
4, 10|. Intuitively, since GPGPU applications aim at exploiting a high parallelism degree,
there should be very little shared memory communication otherwise latency becomes high
again. To validate this intuition, we look into the source codes of the benchmarks selected

in this chapter (see Table 7.1) and make the following observations:

1. Most benchmarks do not use shared memory at all, including all benchmarks in the

Polybench suite and Gaussian Elimination in the Rodinia suite.

2. Only a few benchmarks use shared memory. However, we find that they use shared
memory to efficiently read input and write output, rather than for the purpose of
thread communication. Benchmarks including HotSpot, K-Means and PathFinder

fall in this category.

3. LU Decomposition is the only benchmark that does not fall under the previous two
categories. In this benchmark, partial kernels (i.e., lud_ perimeter and lud_ diagonal)
use shared memory for thread communication. For this case, we are able to provide
only an upper bound of the error resilience level, because if threads communicate
with each other, then the aftermath of multi-bit faults should be the same or worse

as compared to no communication among threads.

7.5.2 Extending Pruning to Multi-bit Fault Injection

So far, we have stated the two assumptions that we can use to simplify the complexity of

multi-bit fault injection. Here, we explain how to take advantage of the results of single-

131

bit fault injection to obtain the outcome of multi-bit fault injection. For the remaining of
this chapter, we consider injecting multi-bit faults into different threads and ignore thread

communication (if any) for GPGPU applications.

7.5.2.1 Extending to double-bit fault injection

We start with the scenario of considering two faults. Injecting two faults is actually a two-
step procedure. We first select one fault site either randomly (i.e., the baseline technique)
or as instructed by the progressive fault sites pruning technique (see Section 7.3). If the
first fault does not cause the program to crash, then we can inject a second fault after
the first one till the end of the execution, still following the same manner. Given that the
distribution of single-bit fault injection outcomes of one benchmark kernel is % masked,
y% SDC, and 2% other, which is obtained by either the baseline technique (i.e., 60K
experiments) or the fault sites pruning technique. The outcome of two-bit fault injection

can be then calculated as follows:
1. masked% = % x =%,
2. SDC% = % x y% + y% x 2% + y% x y%,

3. other% = 1— masked%— SDC%.

7.5.2.2 Extending to multi-bit fault injection

We then extend the procedure to obtain the outcome of m-bit fault injection recursively
by adding one single-bit fault to the outcome of injecting m-1 faults if the m-1 faults do
not cause the program to crash. Given that the distribution of the m-1 faults injection
outcome of one benchmark kernel is x,,_1% masked, y,,—1% SDC, and z,,_1% other and
that the distribution of single fault injection outcome is 1% masked, y1% SDC, and z1%

other, then we can calculate the outcome of m-bit fault injection as follows:
1. masked% = xm_1% x 1%,

132

2. SDC% = xp—1% x 1% + ym-1% X 1% + ym—1% x 11 %,

3. other% = 1— masked%— SDC%.

7.5.3 Evaluation

In this section, we evaluate the results of multi-bit fault injection. We first compare the
discrepancy of extending to multi-bit fault injection using the outcome of single-bit fault
injection obtained by the baseline technique (i.e., the 60K random experiments, which is
closest to the ground truth) and the proposed progressive fault site pruning technique (see
Section 7.2.1). Then, we present how the error resilience characteristics change over an

increasing number of injected faults for different benchmark kernels.

7.5.3.1 Comparison of accuracy

We start by comparing the outcomes obtained using the proposed progressive fault site
pruning technique against the baseline, which is the closest approximation to ground truth
as discussed in Section 7.2.1. The error margin and confidence interval of baseline are
set to 0.63% and 99.8%, respectively. Figure 7.11(a) shows the distribution of double-
bit fault injection outcomes for every application kernel. We observe that the pruning
method still produces accurate estimations of error resilience for most of the benchmark
kernels. For example, the difference in terms of the percentage of masked outputs is
within +1% for 10 out of the 16 selected benchmark kernels, including Gaussian K2,
Gaussian K126, PathFinder, LUD K44, LUD K45, LUD K46, 2DCONV, MVT, SYRK,
and GEMM. Gaussian K125 shows the largest difference (9%), which is also the most
challenging one for the pruned space even in the single-bit fault injection campaign (see
Figure 7.9). The differences in terms of the percentage of SDC and other outputs are
slightly larger but still acceptable for most benchmark kernels. The number of benchmark

kernels where the discrepancy is within 1% is 6 and 5 for SDC outputs and other outputs,

133

respectively. On average, the differences in terms of the percentage of masked, SDC, and

other outputs are 1.81%, 2.58%, and 2.03%, respectively.

LUD K46

100% T
% Z 2
g 8% ’ R ‘ in. A A0z B masked
Bl AR
2 eo%l| K A1 a8 18 181 E | mm other
5 ¢ sARZRRZRRZRRZRN~
3 Z ZRRZRRZRRZRNZERZANZ
- 40% ? ‘ ’ ’ ’ ’ ‘
9] ZRRZRRZRRZRRZRRZRRZ I IO
& 20% f ‘ ’ ’ ‘ ’ ‘ @=g Baseline
C L2 e b Zjuz
ef 9228 8¢§8§8¢¢¢¢¢
g ¢
§ 5 5 % ¢ 5 s £ 3858358z 3% § &
° = = > > @ B [8 [G]
T v v 8 & % 9 % ~
& & =
(a) Outcome of injecting double-bit faults
2 7
a a 2 2 B masked
2 Z Z ANz A | B | P | P == sdc
E‘ ‘ 7 ’ ‘ 2 2 ‘ ’ ‘ ‘ I other
5 | A ’ A | A sARZBRZRRZRRZ
(@] 2 & % I % % z I I &
| |2 Z AN
Q | A ‘ ‘ ¢ Z ’ ’ ‘ ‘ s Pruned
’ ’ z z ’ ’ ‘ ’ w2 Baseline
2 zhhz ZRNZRn~RNZaNZ
o < wn —~ —~ — — —
g EEfzcs sz ¢
3 2 2 S = N B &
=1 O 6]
3 Q

HotSpot K1
K-Means K1
K-Means K2
Gaussian K1
Gaussian K125
Gaussian K126
PathFinder K1

(b) Outcome of injecting triple-bit faults

Figure 7.11: Error resilience comparison of progressive fault site pruning techniques against the
ground truth (baseline) for (a) injecting double-bit faults and (b) injecting triple-bit faults.

In Figure 7.11 (b), we present the the comparison of triple-bit fault injection outcomes
obtained by the two techniques. We observe that the differences start to be visible as
compared to single-bit fault injection (see Figure 7.9) and double-bit fault injection (see
Figure 7.11(a)). The number of benchmark kernels where the discrepancy is within £1%
reduces to 9, 4, and 5 for masked, SDC, and other outputs, respectively. The average
differences in terms of the percentage of masked, SDC, and other outputs increase to
1.89%, 3.45%, and 2.79%, respectively.

Notice that for some benchmark kernels (including LUD K44, LUD K45, LUD K46,
2DCONV, MVT, GEMM, and SYRK), there are already almost no masked outputs (i.e.,

masked% < 5% in Figure 7.11(b)), indicating that there is no need to inject more faults

134

to them. The remaining kernels still have a significant portion of masked outputs, ranging
from 6% to over 90%. For those benchmark kernels, we continue to increase the num-
ber of injected faults and show the impact of more faults on the difference between the
distribution of fault injection outcomes given by the baseline and by the pruned method.
Figure 7.12 shows that generally the difference increases as we inject more faults. However,
the magnitude of increment varies for different type of outputs and benchmark kernels. For
the majority of the benchmark kernels, the difference is always within +5% for all three
types of outputs. HotSpot is the most problematic case, the difference in terms of SDC
and other outputs exceeds +5% after injecting 6 and 5 faults, respectively. Luckily, the
difference of the percentage of masked outputs for HotSpot is always less than 2%, which

is preferable as pruning is able to provide a good estimation for this more critical type of

outputs.
o 2% A —e w 10%f
§ — \0\.\‘\.\. §
8 0% peveiny ,W 8 5%
= e, B pom N =
8 . - _ea* 8 »>
= 2% q\\. - ool —.__“ o 0%r — S ——— —— o — & —&
= m S : . - =
£ j“\tha‘:—“"’r e e —_—
Sanl, . tgiggy R e e i
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Injected Faults # Injected Faults
(a) masked outputs (b) SDC outputs
w S%f SIEE e S SRS S A |
3 ..g,.j—-g' —e— HotSpot K1
] ¥ ‘= K-Means K1
O 0%l o= B
g —o— K-Means K2
%':f -#- Gaussian K1
c % —#+— Gaussian K2
I > Gaussian K126
£

-10% PathFinder K1

1 2 3 4 5 6 7 8 9 10
Injected Faults

(c) other outputs

Figure 7.12: Impact of increasing number of injected faults on the difference in terms of the
percentage of (a) masked, (b) SDC, and (c¢) other outputs given by the proposed pruning technique
and baseline for selected benchmark kernels.

Figure 7.13 (a) shows an overview of the average errors by presenting the mean dif-
ference values over all kernels. As expected, the average errors increase as injecting more

faults, up to 2.83%, 7.19%, and 5.28% for masked, SDC, and other outputs, respectively.

135

If Gaussian K125 is excluded and mean error values are re-calculate, the difference is then
less than 2% for masked outputs and less than 6% for SDC and other outputs for up to

10 injected faults, see Figure 7.13 (b).

" —&— masked sdc -m- other " —&— masked sdc —m- other
5 8% 5 8%
b= s
p=) 3
O 6% O 6% -
5 -8 = -
& 49 - " g aor n--"
= 4%t . - = 4% T
. ," . -
5’05 2% - -E 2% [-grop®

s rﬂ\.*._.__‘__'__._.
5 s
Q 0%k . . . 0 0% . X x
= 1 2 3 4 5 6 7 8 9 10 = 1 2 3 4 5 6 7 8 9 10

Injected Faults # Injected Faults
(a) All kernels (b) All but Gaussian K125

Figure 7.13: Mean values of differences in terms of percentage numbers of different fault injection
outcomes calculated (a) across all kernels and (b) across all kernels but excluding Gaussian K125.

Observation 7.6 The difference between the distribution of fault injection outcomes ob-
tained by the proposed fault site pruning technique and baseline is acceptable, i.e., within

+3% for up to 3-bit fault injection and within +6% for up to 10-bit fault injection.

Observation 7.7 The proposed fault site pruning gives a better estimation for masked
outputs (i.e., the difference from baseline is less than 2% on average) than for SDC and

other outputs.

7.5.3.2 Impact of multi-bit faults

Having established in the previous section that the distribution of fault injection outcomes
obtained through the proposed progressive fault site pruning technique is close to the
distribution achieved by the baseline (i.e., the 60K experiments) under the context of
multi-bit fault injection, we use the pruning outcome to explore how the error resilience
characteristics of a specific application change as a function of the number of injected
faults.

Figure 7.14 presents the distribution of fault injection outcomes of four representative

benchmark kernels. First, we observe that the percentage of masked outputs reduces

136

significantly as we inject more faults and ends up at 0% within 10 injected faults for most
benchmark kernels, see HotSpot K1 and MVT K1 in Figure 7.14 (a) and (b), respectively.
With the exception of K-Means K2 (see Figure 7.14 (e)) and PathFinder K1 (not shown
as it is similar to Figure 7.14 (e)), whose percentage of masked outputs stabilizes at 0%
for up to 30 injected faults, this shows that these two kernels are more error resilient than
the others. Another exception is Gaussian K126 (see Figure 7.14 (d)), whose percentage
of masked outputs is still over 97% with 10 faults injected, implying that this kernel is
even more error resilient. In general, if the benchmark is resilient to single fault, then it is
resilient to multiple faults. Looking into the code, Gaussian K2 and K126 come from the
same static kernel. There is a branch condition to determine whether the program goes
into a loop or if it returns. For K2, most of the times, it goes into the loop, instructions
in which result in a lot of SDC outputs. For K126, most of the times, it takes the return

branch, leading to large portion of masked outputs.

—e— masked sdc -a- other —— masked sdc -a- other
100% F
w 80%[v 60%F r_,.——"
3 3 -
g 60%[g ,,r"
3 3 40% o
. 40% . -
E 5 200 Pl
€ 0l Q 20%F N
| ¢
0% S — - —-B -8 -8 ——§-= 0%, f s : : —t—¢—¢ ¢
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Injected Faults # Injected Faults
(a) HotSpot K1 (b) MVT K1
—e— masked sdc -#- other —e— masked sdc -#- other
100% F % F & - -
° -“..,.“--ul- 100%
@ B0%F T » 80%f
p=) 3
S e0%f S 60%f
3 3
- 40%r o 40%[
O O
T 20%f o 20%f
0% WO S Soh SEL Sih SE el ot il Bk |
1 2 3 4 5 6 7 8 9 10
Injected Faults # Injected Faults
(c) K-Means K2 (d) Gaussian K126

Figure 7.14: Error resilience changes over increasing number of injected faults for representative
benchmark kernels.

Observation 7.8 For the majority of benchmark kernels, the percentage of masked outputs

137

stabilizes at 0% with 10-bit fault injections.

7.6 Chapter Summary

In this chapter, we demonstrate that fault sites in GPUs are very large and hence it is
impractical to inject faults at every site to gain a comprehensive understanding of the
GPGPU application error resilience. To address this, we present a progressive fault site
reduction methodology based on GPGPU application-specific features. The key insight
behind this methodology stems from the fact that GPGPU applications spawn a lot of
threads, however, many of them execute the same set of instructions. Therefore, several
fault sites are redundant and can be pruned by a careful analysis of faults across threads
and instructions. For additional benefits, we also considered loop iterations within the
same thread and register bit positions. We pruned the associated redundant fault sites
that are not necessary to capture the GPGPU application error resilience. Across a set
of 10 GPGPU applications (16 kernels in total) from the Rodinia and Polybench suites,
we achieve a significant reduction in the number of fault-injection experiments (up to
seven orders of magnitude) needed for an accurate GPU reliability assessment. We further
extend the proposed fault site pruning technique to multi-bit fault model and confirm
its accuracy for multi-bit fault injection. Note that, the proposed progressive fault site
pruning is application-specific and input-dependent. We leave the study of the impact of

multiple inputs on pruning results for future work (see Chapter 9.1 for more discussion).

138

Chapter 8

A Hierarchical Approach to Enabling
Low-Overhead Reliable GPU

Computing

In Chapter 7, we propose a progressive fault site pruning method to systematically reduce
the number of fault sites needed in an fault injection campaign. By carefully selecting
pruning steps following GPGPU application specific features, we not only reduce the to-
tal number of required fault injections (in some cases to a few hundreds only while still
maintaining superior accuracy), but also equivalently reduce the total time to complete
the required experiments. This framework provides a good tool to deeply understand the
error resilience characteristics of GPGPU applications. More specifically, in this chapter,
we take advantage of this framework to study the error resilience characters of GPGPU
applications not only at the kernel level, but also at finer granularities, such as CTA and
warps levels. Such fine-grained understandings are beneficial to enable low-overhead yet
reliable GPU computing.

In Chapter 3, we show that GPGPUs are prone to soft errors in real-world systems.
Traditionally, GPGPUs are covered by various kinds of protection mechanisms such as

frequent check-pointing of necessary application states, re-computation of vulnerable codes,

139

or other fault protection mechanisms in order to ensure reliable GPU computation [78, 74,
155, 75]. However, these methods often incur high overhead in terms of performance,
power, and hardware resources [74, 155, 156, 75, 76]. To reduce these overheads, we
revisit the concept of approximate computing, which acknowledges that not all faults
result in unacceptable loss in application output quality. Therefore, if a user is willing to
tolerate a quantifiable loss in output quality, the overhead to achieve high resilience can
be avoided. We call this concept accuracy-aware resilience. In order to understand the
interplay between approximate computing and application resilience consider, we show the
effects of over 15K single-bit! fault-injection experiments on the output of the BlackScholes
application [110] in Figure 8.1. We assume that a user can measure the acceptability of the
output quality with five different thresholds ranging from very strict to very relaxed. We
observe that with the default threshold (i.e., the value specified by the CUDA benchmark),
a total of 89.1% faults are benign: 31.8% are masked (i.e., there is no change in the
application output) and 57.3% can be accepted (SDC-Accept). Only 10.9% of the outputs
are badly corrupted, either beyond user acceptability (SDC-Reject) or easily detectable
(DDC), or result in crashes or hangs. If the user accepts more relaxed thresholds for the
application output, the application resilience coverage, i.e., the percentage of benign faults
(masked and SDC-Accept), further increases.

Motivated by the above observations, we ask the following two questions:

1. How can we systematically analyze the accuracy-aware error resilience of GPGPU

applications?
2. How can we leverage this analysis to enable low-overhead reliable GPU computing?

One of the major challenges in answering these questions is to come up with a method-
ical approach that captures the execution flows and resource usage of thousands of con-

currently executing threads in GPGPU applications. To this end, we adopt a hierarchical

!We focus on single-bit faults, which are the most commonly observed faults in GPGPUs [140] and are
shown to be sufficient in capturing the reliability characteristics of GPGPU applications [124].

140

[MSK BEEE SDC-A [SDC-R 3 DDC B OTHER

100%
80%
60%
40%
20%
. A

PCT. Output

0%

SDC Threshold

Figure 8.1: Effect of a single bit fault on the BlackScholes application output shows that a
significant percentage of the fault injection runs lead to silent data corruption (SDC), which can
be acceptable to a user (SDC-Accept). The percentage of SDC-Accept increases as the user-defined
acceptability threshold becomes less conservative.

approach, which is inspired by the inherent GPGPU application hierarchy that arranges
threads at three levels: kernels, thread-blocks (or cooperative thread arrays (CTAs) in
CUDA terminology), and warps. Note that resource allocation in GPUs happens in the
same order [67]. The kernel(s) are first launched on the GPUs, followed by per-core re-
source allocation across CTAs. The warps inside each CTA are then launched in a lock-step
fashion on the single-instruction-multiple-thread (SIMT) execution lanes taking advantage
of per-CTA resources. We associate this resource allocation procedure with our proposed
accuracy-aware resilience analysis, which we show to be an effective way to determine
which resources at what levels of the application hierarchy contribute to the user acceptable
(SDC-Accept) faults and hence can be protection-free.

As a use case of the proposed hierarchical analysis of GPGPU resilience, we consider
the popular re-computation model [145] as a way to provide protection and assure reli-
able computing: if the application outputs of the actual computation and re-computation
match, then execution can be declared fault-free. Clearly, the overhead of re-computation
can be severe. For example, if re-computation is performed in parallel to the actual exe-
cution, double hardware resources (e.g., core/memory /register files) would be required. If

performed sequentially, the total execution time (including re-computation) would be dou-

141

bled. Our hierarchical approach first analyzes the error resilience of representative threads
of a kernel to determine if the kernel has the level of resilience that is required by the user.
If it is the case, the re-computation of the entire kernel is not required and its associated
overheads are saved. On the other hand, if the resilience coverage is not adequate, we per-
form the error resilience analysis at a finer granularity (i.e., at CTA-level). If this analysis
determines that only a fraction of CTAs do not meet the resilience coverage requirements,
we require only the re-computation of such vulnerable CTAs. Consequently, the overall
re-computation overhead is reduced because not all CTAs need to be re-computed. We
show that our statistically-validated hierarchical approach can provide significant reduction
in re-computation overhead while still meet the user requirements for application output
accuracy and resilience coverage.

To the best of our knowledge, this is the first work to systematically and compre-
hensively analyze the accuracy-aware resilience for a diverse set of GPGPU applications.
Specifically, we study a total of 15 benchmarks (26 kernels) and launch over 330K fault-
injection runs (with an average of 10K runs per kernel), leading to the following key

contributions and observations:

e We introduce the concept of accuracy-aware resilience to GPGPU applications, which

provides more opportunities for exploring low-overhead reliable GPU computing.
e We conduct a thorough resilience analysis of a diverse set of GPGPU applications
and and reach the following observations:

a) Kernel-level: Accuracy-aware error-resilience can increase significantly if the

user is able to tolerate a limited amount of inaccuracy in the application outputs.

b) CTA-level: Accuracy-aware error-resilience can vary significantly across groups
of CTAs. Studying a few CTAs per group is enough to represent the overall accuracy-

aware error-resilience of GPGPU applications.

c) Warp-level: Accuracy-aware error-resilience is similar across warps within a

142

group of CTAs. Therefore, it is sufficient to perform accuracy-aware error-resilience

analysis only at the CTA-level.

e As a case study, we show that the proposed hierarchical approach can reduce the pro-
tection overheads related to re-computation based on user-defined fault tolerance and
resilience coverage. Specifically, we observe that: d) The physical resources allocated
to the entire kernel for re-computation are saved (and potentially be used for other
useful work or be turned-off for power savings) if a user is able to accept a certain
resilience coverage and output quality. e) Under stricter user-defined requirements,
the re-computation overhead can still be reduced by enabling re-computation at a
finer granularity (e.g., at CTA-level). Overall, the proposed hierarchical approach is
able to reduce re-computation overhead while satisfying user-defined output quality

and resilience coverage.

This remaining of this chapter is organized as follows. In Section 8.1, we discuss related
work. Section 8.2 explains the evaluation methodology. We illustrate the design details
of the hierarchical approach to thread classification in Section 8.3. The error resilience
characterization is given in Section 8.4. In Section 8.5, we present a use case to show how
to use the characterization results to reduce GPU resilience protection overhead. Finally,

Section 8.6 gives a summary of this chapter.

8.1 Related Work

To the best of our knowledge, this is the first work that introduces the concept of accuracy-
aware resilience in GPUs. In this section, we briefly discuss the most relevant related work.

There are a large number of studies that focus on leveraging simulation-based anal-
ysis to detect critical hardware structures that are more vulnerable to soft errors. Prior
works [45, 64, 138] have conducted architectural vulnerability factor (AVF) analysis, which

tracks every bit in an architecture during the application run and calculates the likelihood

143

of the bit that can affect the output. Although there is a large body of work on fault
injection models/frameworks (92, 42, 88, 89, 113, 117, 123, 128, 126, 23, 95, 49, 50, 51| in
the context of CPUs, only a limited set of fault injector models have been proposed for
GPUs [154, 59, 44, 85|. For example, Yim et al. [154] build a source-to-source translator,
SWIFI, to investigate error resilience in GPUs and demonstrate that the ratio of silent
data corruption (SDC) in GPUs is much higher than that observed in CPUs.

GPU-Qin [44] uses the number of dynamic instructions (DI) per thread as a proxy for
thread behavior. The rationale is that threads with the same dynamic instruction count
are likely to execute the exact same set of instructions, thus resulting in similar error
resilience behavior. GPU-Qin groups threads with the same dynamic instruction counts at
the kernel-level and randomly chooses a single thread per group for fault injection. There
are two primary differences between our work and GPU-Qin. GPU-Qin groups threads
strictly based on the DI count. Therefore, threads with different DI count are grouped
in different groups. Our hierarchical based method may put threads with the different
DI count in the same group based on additional hierarchical information (Section 8.4.2).
This allows higher overhead reduction compared to GPU-Qin because vulnerable threads
are encapsulated into fewer CTAs, which then can be recomputed. On the other hand,
a DI-count based method can find vulnerable threads spanning across a large number of
CTAs (because threads with different DIs are present in large number of CTAs), leading
to larger overhead.

While the purpose of fault protection is to completely avoid faults, approximate com-
puting instead explores the trade-off between accuracy, performance, and energy effi-
ciency. Prior studies have considered this trade-off in specific areas including bioinfor-
matics [96, 63|, performance analysis [143], data mining [97], and image recognition [94].
Approxilyzer [145] has been proposed to evaluate the three-way trade-off among output
quality, resilience coverage, and overhead reduction. However, it is built for single-threaded
CPU applications only and is not clear how it can be extended for parallel GPGPU appli-

cations with thousands of threads and billions of fault sites.

144

8.2 Evaluation Methodology

In this section, we discuss the benchmarks and corresponding evaluation metrics used in

this chapter followed by an overview of the experimental framework.

8.2.1 Benchmarks and Evaluation Metrics

We select benchmarks that cover various workloads from diverse areas, such as image
processing, finance, linear algebra, physics, molecular dynamics, and data mining. We
select 15 GPGPU applications from widely-used benchmark suites, including CUDA [110],
SHOC [37], Rodinia [31], and Mars [60], see Table 8.1. As kernels of GPGPU applications
normally implement independent modules, we perform resilience coverage analysis sepa-
rately for each kernel. For benchmarks with more than one kernel, we randomly select at
most four kernels for fault injection experiments. In the rest of this chapter, if the kernel
index is not specified, it implies that the benchmark only contains one kernel.

In order to determine whether a certain SDC output is acceptable or not, we need a
metric and threshold value to quantitatively measure the difference between the outputs
of fault-injected and fault-free runs. Choosing the most appropriate metric and thresh-
old requires domain knowledge. We anticipate that the evaluation metrics/thresholds are
provided by the user or system administrator. In addition, we also provide several choices
of commonly used metrics and threshold default values [145|. For most applications, we
choose widely-used metrics such as mean squared error (MSE)? and percentage loss (Per-
cLoss)3. For certain applications, we use domain-specified metrics. For example, RAY
and JPEG, which are image processing applications, are evaluated by the MSE of images
pixel by pixel. For Neural Network (NN), the prediction accuracy for the faul-free run is
100%, we use the difference to this value as the evaluation metric. For Sort, the result of

which is a ranked list, we use the commonly used Ranked Biased Overlap (RBO) [148] to

*MSE =137 (X;—Y;)? where X and Y are two vectors of size n.
miss_match

3PercLoss = % total x 100%, where # miss _match is the number of different values in the
fault-free and fault-injected outputs, and # total is the total count of values.

145

Table 8.1: List of Applications with Evaluation Metrics and Thresholds.

. . . Default
Suite Benchmark Evaluation Metric Threshold
BlackScholes (BS) L1 norm* le —6
Ray Tracing (RAY) MSE of images 0.1
Convolution Separable . %
(CONS) Relative L2 norm le—6
Fast Walsh Transform "
CUDA (FWT) L2 norm le — 6
JPEG MSE of images 0.1
Kmeans (KMN) MSE of .Centr01d 0.01
coordinates
Laplace3D (LPS) RMS error* le—6
Neural Network (NN) Difference in prediction 1%
accuracy
Scalar Product (SCP) L1 norm* le — 6
Scan Large Array (SLA) PercLoss 1%
Mars WordCount (WC) Difference in word count 1
.. MSE of output
Rodinia HotSpot (HS) temperature list 0.01
Breadth-First Search (BFS) PercLoss 1%
SHOC Molecular Dynamics (MD) PercLoss 1%
Sort Ranked Biased Overlap 0.01

* indicates metrics and thresholds as provided by benchmarks. Alternatively, the
threshold values can be provided by the user or administrator.

quantify the difference between fault-free and fault-injected outputs. Table 8.1 shows the
evaluation metrics and default threshold values for every benchmark. Besides the default
threshold, we also evaluate application output with two more strict and two more relaxed
threshold values, yielding to a total of five levels of SDC threshold values (as shown in

Figure 8.1).

8.2.2 Evaluation Framework

Figure 8.2 gives an overview of the fault injection and evaluation framework, which con-
sists of four components. For a given benchmark kernel, we first use the @ Classifier, to

identify a number of threads from the massive number of parallel threads in the kernel.

146

Then, for every candidate thread, we resort to the @ Fault Injector to determine po-
tential fault-injection spots, such as instructions and bit positions in destination registers.
Next, in @ Simulation-Level Analyzer, for every selected spot, we use the GPGPU-Sim
simulator to execute the kernel multiple times. We inject only one fault per run. Finally,
the output of fault-injected runs are passed to @ Quality Analyzer to investigate the
accuracy-aware resilience for the benchmark kernel. In the rest of this section, we discuss

the design details of these four components.

GPU
Applications

Classifier

[SDC-Accept |
SDC-Reject
|

4
Quality
Analyzer

Error
Injector

Figure 8.2: A high-level view of fault injection and evaluation framework.

@ Classifier. GPGPU applications can contain a massive number of threads. There-
fore, it is unrealistic to perform fault-injection runs on every thread. Consequently, we
have to identify a fraction of representative threads, which is a challenging open prob-
lem. We realize this with a hierarchical (i.e., CTA-level and warp-level) classification and
thread selection method. In Section 8.3, we illustrate the motivation and effectiveness of
this approach.

® Fault Injector. The goal is to determine interesting and meaningful fault sites.
We used the popular single-bit fault injection model [44, 59, 104] to evaluate the effect of
soft errors in GPUs. These faults affect the functional units such as arithmetic-logic units
(ALUs) and the load-store units (LSUs), which are not protected in commercial GPUs. A
fault site contains three aspects of data: (1) tid indicates the candidate thread, (2) inst_id

and sim__cycle identify the instruction and the simulation cycle it is executed (sim__cycle

147

is necessary because the same instruction can be executed many times, i.e., if inside a
loop), (3) bit_pos tells which bit to flip in the register.

The first element tid is determined in and passed by @. Next, we profile the thread
with the GPGPU-Sim simulator to collect instruction-related execution details, including
the instruction type, the simulation cycle it is executed, and the destination register type.
There can be tens to thousands of dynamic instructions in one thread. In order to control
the number of fault sites, we randomly sample a few iterations for instructions inside loop
blocks. We also select all instructions outside loop blocks to make sure we cover all types
of instructions. Finally, for every selected instruction, we flip one bit in its destination
register. The bit _pos is chosen from a set of pre-selected bit position candidates that are
evenly spread in the register. Those bit positions are selected to cover a range of positions
in registers, as it is impractical to conduct experiments on every single bit.

® Simulation-Level Analyzer. This component accepts the selected list of fault
sites and performs fault-injection experiments using GPGPU-Sim [24], a widely-used
cycle-accurate GPU architectural simulator. We choose GPGPU-Sim over hardware-level
tools (e.g., SASSIFI [59]) because of its capability of capturing all the detailed micro-
architectural and architectural states of all hardware components (e.g., registers, cache
lines). Its functional model is validated against real hardware [24], so that the simulation
results are representative. Note that, we only inject a single fault per application run and
record the detailed execution information provided by GPGPU-Sim, including the fault
site, the original and impacted values in the register, and the final output. For all chosen
benchmarks (see Table 8.1), we launch 330K fault-injected runs, with an average of 10K
runs per benchmark kernel. In Section 8.4.4 we show that the data provide an ample state
space for results of statistical significance.

® Quality Analyzer. In this component, we investigate the fault-injected outputs
and evaluate accuracy-aware resilience. Soft errors can have diverse effects on the execution
of an application. For example, sometimes faults may not lead to any difference between

the fault-injected and the fault-free outputs, thus are classified as Masked faults. In some

148

cases, although faults allow the application to execute completely, the application output
is incorrect. Such faults are typically classified as Silent Data Corruption (SDC) faults. In
certain circumstances, users can accept the approximate version of the application output.
Therefore, we further classify SDC faults into SDC-Accept and SDC-Reject according to the
user acceptability threshold. Furthermore, some corrupted results can be easily detected
(i.e., irregular negative value, infinite or NaN value), we classify these faults as Detectable
Data Corruption (DDC). Lastly, faults can also result in crashes or hangs. In summary,
as shown in Figure 8.2, we classify the output of fault-injected runs into five categories:
(1) Masked, (2) SDC-Accept, (3) SDC-Reject, (4) DDC, and (5) OTHER. The first two
faults are benign and define the resilience coverage of the application, while the rest are

non-benign.

8.3 A Hierarchical Approach to Thread Classification

In the previous section, we discuss the design details of the components in the fault in-
jection and evaluation framework, except for the thread classification component (@) in
Figure 8.2. In this section, we explain in detail how we systematically perform the hierar-
chical classification and thread selection.

Fault-injection models are commonly used to explore resilience characteristics of CPUs
and GPUs. Typically, in the CPU domain, faults are uniformly injected throughout the
entire application execution. The effect of each fault is examined in isolation via separate
application runs. Unfortunately, such an approach is tedious for GPUs, as there can be
hundreds to thousands of threads running concurrently. Injecting faults to every thread
dramatically increases the model complexity and results in an astronomical number of
fault-injection runs. To address this issue, we have to select a manageable number of

representative threads for fault injection.

149

8.3.1 Multi-level Classification and Thread Selection

We propose and evaluate a hierarchical approach for thread grouping. Following the hier-
archy of GPGPU applications, we classify threads at the CTA and warp levels. We group
CTAs (or warps) based on the distribution of thread dynamic instruction (DI) counts?,
which has been shown to be an effective proxy for accurately capturing the error resilience
of threads [44, 104]. The rationale is that threads with the same DI count are likely to
execute the exact same set of instructions, thus resulting in similar error resilience be-
havior. Such rationale is also confirmed with millions of fault injection experiments [104].
We consider the mean and one standard deviation of DI counts to quantitatively compare
different CTAs (or warps). Then, from each CTA (or warp) group, we randomly select a

limited number of threads for fault injection.

8.3.1.1 CTA-level classification

Regular CTA Analysis. First, we illustrate the distribution of DIs at the CTA level for
different benchmarks. Figure 8.3 focuses on two regular benchmarks: BlackScholes and
SCP. The x-axis indicates the index of CTAs, while the red triangle and the blue error
bar correspond to mean and one standard deviation of DI counts, respectively. CTAs are
sorted by the average DI counts in the ascending order along the x-axis. Since we classify
CTAs with similar DI distribution as one group, there exist two distinct CTA groups
for BlackScholes (see Figure 8.3(a)). In addition, each group only contains one type of
thread (i.e., the standard deviation of DI counts is 0). For such regular benchmarks,
we only group at the CTA level, since grouping at the warp level makes no difference.
Figure 8.3(b) reports on SCP, another regular benchmark. All CTAs share the same mean
and standard deviation of DI counts while the standard deviation is higher than that in

Figure 8.3(a). For kernel-level and CTA-level analysis, we classify all CTAs in SCP as a

“Detailed kernel/CTA /warp/thread information can be obtained through the GPGPU-Sim simula-
tor [24].

150

single group. Because of the high variance in DI counts in certain CTAs, we also perform

warp-level analysis (see Section 8.3.1.2).

3220f Cm—)
&) G2 0
5 32007 E
31801 ;
(o)}
z 3160 61 %
3140 |(Tm—) Z

0 100 200 300 400

CTA 0 20 40 60 80 100 120
CTA
(a) BlackScholes (b) SCP

Figure 8.3: Distribution of thread dynamic instruction (DI) counts at the CTA level for regular
benchmarks (a) BlackScholes and (b) SCP. The red triangle indicates the average and the
blue error bar indicates one std.

Irregular CTA Analysis. Figure 8.4 illustrates two irregular benchmarks: HotSpot
and RAY, which exhibit divergence in the DI distributions due to branch instructions in
their kernels. We classify CTAs in HotSpot into two groups (see Figure 8.3(a)): group G1
(regular group) contains CTAs with low standard deviation of DI counts while group G2
(irregular group) contains CTAs with diverse threads. Likewise, in RAY (see Figure 8.4(b)),

CTAs with no variance in DI counts are grouped into regular groups G1 and G2, while all

other CTAs are classified into the irregular group GS.

®
5 3000
£ 200 o
= o
3 45 2000
w150
* 2 1000
2 100 —GZ <
< . : : , , , , ,
0 500 1000 1500 0 100 200 300 400 500
CTA CTA
(a) HotSpot (b) RAY

Figure 8.4: Distribution of thread dynamic instruction (DI) counts at the CTA level for irregular
benchmarks (a) HotSpot and (b) RAY. The red triangle indicates the average and the blue
error bar indicates one std.

Effect of Input. We explore the question: does the CTA grouping method change with

151

application input? If not, this implies that it is possible to profile the kernel once and the
resulted grouping is applicable to other inputs. To explore this, we feed HotSpot and RAY
with three inputs: Small, Medium, and Large. Table 8.2 shows the effect of various inputs
on group “popularity" (i.e., the percentage of CTAs in that group).

Table 8.2: The Impact of Different Inputs on CTA Group Popularity for HotSpot and RAY.

Notation: GRP-S/M/L=the percentage of CTAs in that group with Small/Medi-
um/Large input, R=regular, IR=irregular.

‘ Benchmark ‘ Grp. ‘ Type ‘ GRP-S ‘ GRP-M ‘ GRP-L ‘
HotSpot G1 R 31% 26% 26%
G2 IR 69% 74% 74%
G1 R 25% 25% 27%
RAY G2 R 9% 22% 28%
G3 IR 66% 53% 45%

* R: regular group; IR: irregular group.

We observe that for both benchmarks, the number of CTA groups, as well as their types
(regular or irregular), is the same in all three inputs, implying that the CTA grouping
strategy is input-independent. Additionally, we notice that group popularity changes with
different inputs. For example, for HotSpot, the popularity of GI starts from 31% for
Small input, then decreases but stabilizes at 26% as the input size increases. For RAY,
the popularity of G1 is quite stable but that of G2 increases significantly from 9% to
28% with larger input sizes. We also explore the impact of input size on CTA grouping
strategy for other benchmarks and this observation persists. For brevity, we do not show
those results. In sum, the number of groups persists across different inputs while their

popularity may change.

8.3.1.2 Warp-level classification

As the next level of the GPU resource allocation procedure, we focus on the warp level to
explore whether heterogeneity in terms of dynamic instruction counts exists within CTAs.

Figure 8.5 shows the mean and one standard deviation of DI counts at the warp level for

152

SCP, which is different from the CTA-level (compare to Figure 8.3(b)). At the warp level,
we are able to classify warps into four groups: regular groups G1, G2, and G& with no

variance in DI counts, and irregular group G4.

G4

©o
w
o

©o
o
o

G3
G2

Avg. # of DI
&
o

o]
o
o

G1

~

w

o
Orgr

200 400 600 800 1000
Warp

Figure 8.5: Distribution of thread dynamic instruction counts at the warp level for SCP. The
red triangle indicates the average and the blue error bar indicates one std.

We also investigate whether warp-level grouping is input-independent and this holds
for all benchmark kernels except MD. Figure 8.6(a) and (b) show the warp-level plots for
MD k1 using Small and Large inputs, respectively. For Small input, we classify all warps
into one irregular group while for Large input, we classify warps into two groups: the
regular G1 and the irregular G2. However, if we further explore the warp-level DI counts
in MD k1 with Large input, we find that all warps look very similar. In fact, almost all
(i.e, > 94%) threads in most (i.e., > 98%) warps in G2 share the same DI count as threads
in G1. That is, only 1 or 2 threads out of all 32 threads per warp are different. Therefore,
all warps in MD k1 with Large input can also be classified as one group, just as in the
classification for MD k1 with Small input. Consequently, even though different inputs may
change the look of error bars, it does not truly impact the resulting warp grouping strategy.
In other words, we can still apply the same warp-level grouping method derived from one

input to others.

8.3.1.3 Classification result and thread selection

We apply the CTA-level and warp-level grouping method described above to every bench-

mark kernel. Table 8.3 shows the classification results. Column Grp. Level indicates the

153

G1

4400

I
J
o
o

G1

I
8
of DI

4600
4000 st

Avg. # of DI
Avg

G2

3800 4500

0 100 200 300
Warp

0 20 40 60 80
Warp
(a) Small input (b) Large input

Figure 8.6: Distribution of thread dynamic instruction counts at the warp level for MD k1, using
two inputs: (a) Small and (b) Large. The red triangle indicates the average and the blue
error bar indicates one std.

classification level, i.e., CTA or warp. Recall that we only consider the warp level for
SCP-like benchmark kernels. Column # DI Grp. shows the number of groups classified by
the distribution of DIs in CTA or warp, while Column % R-Grp points out the percentage
of regular groups (i.e., groups with low to no variance in DI counts). Naturally, due to
the simplicity in thread selection, regular groups are preferable. Fortunately, we observe
a significant percentage of regular groups in most benchmark kernels, varying from 26%
to 100% with an average of 82%. We also explore the error resilience group-wise and fur-
ther combine groups that share similar resilience characteristics. Column # FErrDist Grp.
indicates such refined group counts. More details are discussed in Section 8.4.

Having determined the grouping level and strategy, the next step is to select a limited
number of threads per group for fault injection runs. For regular groups, where all threads
share similar dynamic instruction counts, it is straightforward to randomly select one
thread per group. For irregular groups, which contain a variety of different threads, we

randomly select a limited number of threads based on the frequency of their DI counts.

Observation 8.1 Only a few groups of CTAs are different in terms of the number of

dynamic instructions they execute.

Observation 8.2 Only a few warps within the selected groups of CTAs are different in

terms of the number of dynamic instructions they execute.

154

Table 8.3: CTA-level and Warp-level Classification for Benchmark Kernels. Notation: %R-
Grp.— % regular groups over all groups, # DI Grp.—# of groups classified by dynamic
instruction counts, # ErrDist Grp.=# of groups refined by fault distribution.

7#

Benchmark | # CTA Wzérp IC; rvi.l R-((ygrp érI;I ErrDist

Grp.

BlackScholes 480 1920 CTA 100% 2 1
RAY 512 2048 CTA 55% 3 3
CONS k6 1152 4608 CTA 100% 3 1
CONS k7 2304 4608 CTA 100% 2 1
FWT k6 1024 16384 CTA 100% 1 1
FWT k13 128 1024 CTA 100% 1 1
JPEG 512 1024 CTA 100% 1 1
KMN k1 121 968 CTA 100% 2 2
KMN k2 121 968 CTA 100% 2 2
LPS 128 512 CTA 0% 3 1
NN k4 1000 1000 CTA 100% 2 2
HotSpot 1849 14792 CTA 26% 2 2
BFS k3 20 320 CTA 90% 3 3
BFS k9 20 320 CTA 90% 3 3
BFS k11 20 320 CTA 85% 3 3
WC k114 512 2048 CTA 94% 2 2
WC k5 1 8 Warp 5% 2 2
WC k91 32 256 Warp 85% 5 2
SCP 128 1024 Warp 87.5% 4 1
SLA k256 8 64 Warp 87.5% 4 1
SLA k258 8 64 Warp 0% 1 1
MD k1 48 384 Warp 100% 1 1
MD k3 48 384 Warp 100% 1 1
Sort k8 512 4096 Warp 88% 2 1
Sort k20 512 4096 Warp 87.5% 2 1
Sort k24 512 4096 Warp 87.5% 2 2

155

Observation 8.3 Hierarchical grouping is not sensitive to the type or size of the input.

8.4 Hierarchical Approach to Error Resilience Characteriza-
tion

Having demonstrated the rationale and methodology for the hierarchical thread classifica-

tion and selection method, in this section we characterize and analyze benchmark resilience.

8.4.1 Application Kernel Level Characteristics

We start the resilience coverage analysis at the highest level, that is investigating the
benchmark kernel as a whole. We evaluate the soft-error resilience by computing the
distribution of fault injection outcomes, which is the percentage of each type of fault
(i.e., Masked, SDC-Accept, SDC-Reject, DDC, and Others) among all fault-injection runs.
Recall that we launch over 330K fault-injection runs, with an average of 10K runs per
kernel. In Section 8.4.4, we validate statistically that 10K runs are sufficient to obtain the

error resilience profile of GPGPU applications.

8.4.1.1 Scope of accuracy-aware resilience

Figure 8.7 presents the distribution of fault injection outcomes evaluated with the default
SDC threshold of every benchmark kernel listed in Table 8.1. Every stacked bar repre-
sents the fault distribution of one benchmark kernel. The first impression is that for all
benchmarks, the majority of soft-errors are masked, i.e., they are imperceptible to the end
user. The actual percentage numbers of Masked faults vary from 31.8% in BlackScholes to
100% in Sort k20, SLA k258, and CONS k7. For CONS k6, there are very few non-masked
faults (i.e., < 1%), which are barely visible in Figure 8.7. We check the number of loop
iterations in those benchmarks with close to 100% Masked outputs and the low number
(< 6) confirms that the results are not biased due to sampling. Such a large portion of

Masked faults implies that the protection effort for these runs is perhaps not necessary.

156

= MsK
. B SDC-A
= SDCR
== DDC

BN OTHER

PCT. Output

° T k1 k3 k1 k1 k1 k4 k1 k1 k5 k91 k114 k8 k20 k24 k6 k13 k1 k2 k3 k9 k11 k256 k258 k6 k7
BS MD HS RAY JPEG NN SCP LPS wcC Sort FWT KMN BFS SLA CONS

Figure 8.7: Distribution of fault injection outcomes at benchmark kernel level. (SDC faults are
evaluated with the default threshold values.)

Secondly, we notice that the majority of the benchmark kernels present a non-negligible
percentage of SDC' faults. In previous works, these faults are deemed unacceptable. In
approximate computing users may be willing to trade corrupted output with lower resilience
overhead and better performance, as long as the “degree of corruption” is within expected
ranges. For this reason, we further divide the SDC results into SDC-Accept and SDC-
Reject. We observe that those benchmark kernels with a large portion of SDC faults also
exhibit a significant percentage of SDC-Accept faults. Note that the fault distribution
in Figure 8.7 is evaluated with the application default threshold values. The percentage
of SDC-Accept is expected to increase when the benchmark is evaluated with relaxed
threshold values (see also Figure 8.1). From Figure 8.7, we see that the percentage of
SDC-Accept faults can be very high in some benchmarks, such as 12.8% in RAY, 17.7% in
HotSpot, 15.5% in FWT k6, 25.9% in FWT k13, and even 57.3% in BlackScholes. While
in some other benchmarks (i.e., LPS, SLA, and CONS), there are little to no SDC-Accept
faults. Note also that these benchmarks have a significant percentage (> 89%) of Masked
faults.

From the domain perspective, image processing applications such as RAY and JPEG
are resilient to soft-errors, as minor changes in output images are barely distinguishable
by the end users. NN also digests single bit flips well. Those soft errors slightly impact the
weights of trained neural networks, thus barely result in wrong outputs. In contrast, SCP
and FWT are more sensitive to soft errors, see the percentage of benign faults (Masked

and SDC-Accept) in Figure 8.7.

157

8.4.1.2 Sensitivity to input size

Besides the kernel-level investigation on accuracy-aware resilience for GPGPU applications,
it is also interesting to understand the impact of different inputs on fault distribution.
Toward this, we apply two choices of inputs, i.e., Small vs. Large, on five of the benchmark

kernels, see Figure 8.8.

3 MsK I SDC-Accept [SDC-Reject 3 bbDC Il OTHER
100%

80%
60%

40%

PCT. Output

20%

0%

S L S L S L S L S L S L
MD HS RAY NN KMN k1 KMN k2

Figure 8.8: Impact of Small and Large inputs on fault distribution.

For NN and KMN k1, whose scope of SDC-Accept is negligible (i.e., < 1%), we observe
high similarity in the fault distribution when using different input sizes. For other bench-
mark kernels, using large input leads to a decrease in the percentage of Masked faults,
specifically to 4.1% for KMN k2, 0.3% for MD, and 4.5% for HotSpot. Fortunately, for
these kernels, the percentage of SDC-Accept increases correspondingly with large input,
resulting in a similar scope of benign faults comparing to the small case. KMN k2 is the
only exception, where the increase of SDC-Accept is less than the increase of SDC-Reject.
Moreover, for RAY, whose scope of Masked faults is not impacted by the input size, using
the large input makes the kernel more error resilient by having a larger percentage (i.e.,

6.6% more) of SDC-Accept faults.

Observation 8.4 There is an ample scope of SDC-Accept faults in some GPGPU appli-

cations.

Observation 8.5 Using large input typically preserves or increases the scope of resilience

coverage, i.e., benign outputs.

158

8.4.2 CTA Level Characteristics

Consistent with the hierarchical classification at the CTA level (see Section 8.3), we perform
fault injection runs for every CTA group, in order to explore whether fault distributions
vary across different CTA groups.

In Table 8.3, we show the number of CTA groups based on the distribution of dynamic
instructions in CTAs of the benchmark kernel (see Column “# DI Grp”). We further com-
bine groups that share similar fault distribution and the final number of groups is shown
in Column “# FErrDist Grp.”. Clearly, # ErrDist Grp. < # DI Grp. We observe that
for BlackScholes, CONS, and LPS, all DI groups are combined into one FErrDist group
due to the similarity in the group fault distribution. The reason is that for BlackScholes,
though there are two DI groups (both are regular ones), their average numbers of dynamic
instructions are very close (3135 vs. 3232), yielding to similar fault resilience characteris-
tics. Similar reason applies to CONS. For LPS, all its three DI groups are irregular, and
although they have different average number of dynamic instructions, the major composite
threads are the same (i.e., have the same dynamic instruction counts), resulting in similar
resilience characteristics.

Except for the three aforementioned benchmarks, the rest of benchmark kernels share
different fault distribution at the CTA level. Figure 8.9 shows the stacked bar plots for the
fault distribution of every ErrDist group for 10 benchmark kernels (others are not shown
due to limited space). We observe that the fault distribution can be significantly different
among FErrDist groups. First, the composition of fault distribution can be different. In
KMN k2, almost all soft errors are masked in GI while there is large portion of SDC-
Accept, SDC-Reject, and Other faults (i.e., 4.4%, 4.4%, and 10.2%, respectively) in G2.
Such observation also exists for KMN k1 and WC k114. Second, for some other kernels,
certain ErrDist groups can have more percentage of SDC-Accept faults, including RAY G2
and G3 (14.1% and 15.9%, respectively), HotSpot G2 (23.4%), and BFS k11 G1 (3.0%).
Furthermore, NN k4 GI and BFS k11 G& present a notable larger percentage of SDC-

159

PCT. Output

100%
80% Hl
60% i 3 MSK
40% I SDC-A
o SDC-R
20% H 3 DDC
HEl OTHER

O/DGI(R) G2(R) G1(R) G2(R) G1(R) G2(IR) G1(R)G2(R)G3(IR) G1(R) G2(IR) G1(IR)G2(R)G3(IR) G1(IR)G2(R)G3(IR) G1(IR)G2(R)G3(IR) G1(R) G2(R) G1(IR)G2(IR)G3(IR)
(a)KMN k1 (b)KMN k2 (c)WC k114 (d)RAY k1 (e)HS k1 (f)BFS k3 (g)BFS k9 (h)BFS k11 (i)NN k4 (jILPS k1

Figure 8.9: Error resilience characteristics at CTA level. Each bar is distinguished by its
group name and whether it is regular (R) or irregular (IR).

Reject faults (i.e., 16.9% and 8.2%, respectively), which have the potential to be converted
to acceptable output with relaxed threshold values. In contrast, the difference between the
fault distribution of ErrDist groups in some benchmarks (i.e., BFS k3) can be small, but
the percentage of benign faults in their ErrDist groups is high (> 85%).

In general, we observe that regular groups tend to have a larger portion of benign
faults than irregular ones. Furthermore, if we only focus on Masked faults, which are by
definition always benign, the regular groups always have a large portion as compared to
irregular ones. For instance, the percentage of Masked faults in WordCount k114 is 93.1%
and 42.6% in regular G1 and irregular G2, respectively. In HotSpot, the percentages are

96.9% in the regular group and 55.4% in the irregular one.

Observation 8.6 A significant percentage of CTA groups are more resilient (i.e., have

high percentage of SDC-Accept outputs) than other groups.

8.4.3 'Warp Level Characteristics

Previously, we show that CTA groups have distinct fault distribution, especially comparing
the regular groups with the irregular ones. Here, we are interested in whether such het-
erogeneity persists in the warp level. We use the warp-level grouping strategy (described
in Section 8.3) to classify warps within the same CTA groups. Figure 8.10 (a) to (d) show
the fault distribution of every warp-level DI group for SCP, Sort k24, WordCount k5, and
WordCount k91, respectively. For SCP (see Figure 8.10(a)), all four DI groups share sim-

ilar percentage of faults, while only G1 contains slightly more SDC-Accept outputs than

160

the others. Such similarity in the fault distribution among warp groups is also observed
for Sort k24 in Figure 8.10(b). Consequently, for both kernels, there is only one ErrDist
group.

On the other hand, we observe significant difference in error-resilience among warp
groups in WordCount k5 and k91 (see Figure 8.10 (c¢) and (d), respectively). Some groups
(i.e., G1 for WordCount k5 and G1 and G2 for WordCount k91) are more resilient to in-
jected faults than other groups. Recall that the results shown in Figure 8.10 are evaluated
with default threshold values. By varying levels of thresholds (results are not presented
here due to lack of space), we observe that warp groups exhibit different sensitivity to the
threshold values. For SCP, all the warp groups increase the percentage of SDC-Accept
almost at the same amount as we relax the SDC threshold values. In contrast, for Word-
Count k91, G5 is more sensitive to relaxed threshold values (i.e., we observe an increase

increase in the percentage of SDC-Accept) than the other warp groups.

[MSK [SDC-A [SDC-R [0 DDC @ OTHER

100% —

80% [r — —

60% -

PCT. Output

20% [

0% G1(R) G2(R) G3(R) G4(IR) G1(R) G2(IR) G1(R) G2(IR) G1(R) G2(R) G3(R) G4(R) G5(IR)

(a)SCP k1 (b)Sort k24 (c)WC k5 (d)WC k91

Figure 8.10: Error resilience characteristics at warp level. Each bar is distinguished by its
group name and whether it is regular(R) or irregular(IR).

Observation 8.7 Similar to C'TA-level analysis, some warps are more resilient than oth-
ers.

8.4.4 Statistical Validation

We have shown the resilience characteristics for benchmarks at the kernel, CTA, and warp
levels. The vast parallelization of the GPGPU applications makes the generation of all pos-

sible fault sites not possible. To evaluate the statistical significance of our result, for every

161

benchmark kernel, we randomly sample 10% of the entire space of generated fault sites
and gradually add 10% until we reach 100% (i.e., all generated sites). For every increment,
we calculate the 95% confidence interval. Figure 8.11 reveals how the percentage of fault
changes over increasing sample sizes for BlackScholes and SCP, respectively. It is clear that
the fault percentage fluctuates significantly in the initial increments, indicating that the
sample space in insufficient to reach results of statistical significance, but becomes steady
after the sampling percentage exceeds 80%. Moreover, we see significant overlaps across
the confidence intervals, which suggests that our experiments do capture the “unknown"
means of the fault distributions. In fact, we observe that the average error margin is 1.27%,
0.75%, and 0.75% for the percentage of Masked, SDC, and other faults (including DDC,
crashes, and hangs), respectively (see the ranges of the y-axes of the graphs in Figure 8.11).
Note that we perform such analysis for every benchmark kernel but cannot report results
here due to lack of space. These results show that the number of experiments is sufficient

to obtain average faults of statistical significance.

M 0 M

g 35.0% 2 625% W_H*{P—H

it \+\+——+—+—+—H—H - 60.0%

§ 30.0%EL . R S 9575%kLL o

5 8 0.0

m67.5%—/+——+—+—+—+—9,_+_,_+ 8 40.0%

E E ‘\{, +—+ I"—‘}‘f 4

©6s50%| Q350%L1 , Y11 ! !
o

3
) 1.0%—H/\+__’/+_+_+_H © 2.0% |- +—+—+—’+H
5 =

& 0.5% ' Q 1.0%kL e

‘\po[elgeh’h“o[c @eb Qoye@qo °e|°%°e|oq°e|o\’ 00910 \90|5’L°0[c’5°e|e bpe’0600|06°e|o"00|o%°e|oqco|x 060|o
Sampling PCT. Sampling PCT.
(a) BlackScholes (b) SCP

Figure 8.11: Changes in the percentage of faults with increasing sample size for (a) BlackScholes
and (b) SCP. PCT.MSK, PCT.SDC, and PCT. OTR indicate the percentage of masked, SDC,
and other (including DDC, crashed, and hangs) faults, respectively. Error bars give the 95%
confidence intervals.

8.5 Use Case: Reducing Protection Overhead

In this section, we leverage on the various observations of our characterization study to

improve on application resilience while maintaining reduced overhead. We first discuss the

162

trade-off among the following metrics.

1. Resilience Coverage (RC) and Output Quality (OQ): The perfect output qual-
ity refers to only accepting Masked outputs. However, as shown in Section 8.4, there
exists a large scope of SDC-Accept outputs of GPGPU applications. These tolerable
outputs provide the opportunity of improving the Resilience Coverage (RC), which is
defined as the percentage of runs with benign faults (i.e., Masked and SDC-Accept).

Acceptable resilience coverage is application and user dependent [145].

2. Overhead Reduction (OR): To improve GPGPU application resilience, we con-
sider a re-computation model that computes the kernel again and compares its output
with the actual execution output for any anomalies. As a baseline, we assume all
CTAs of the kernel are vulnerable (i.e., do not meet the Resilience Coverage re-
quirement) and hence need to be re-computed at the expense of additional physical
resources. In the worst case, these resources are twice of the total resource required

for the actual computation.

We focus on how our accuracy-aware resilience characterization can help in reducing
the physical resource requirements. For example, if our characterization shows that 50%
of CTAs are not vulnerable, then only 50% additional physical resources are required for
re-computation. In the remaining section, we consider two different output quality (OQ)

thresholds:
1. Perfect OQ: includes Masked outputs only.

2. Default OQ: includes Masked outputs and SDC-Accept outputs (evaluated with de-

fault thresholds, see Table 8.1).

Table 8.4 shows the trade-off between resilience coverage and re-computation overhead
for different benchmark kernels. Under “Kernel-Level", the “Perfect OQ (OR)" column

provides resilience coverage and (protection overhead reduction) that considers Perfect OQ

163

while the “Default OQ (OR)" column provides resilience coverage and (protection overhead
reduction) that considers Default OQ. For some benchmark kernels, we can further gain

on overhead reduction by considering thread groups at a finer granularity (see column

“Default OQ (OR)" under “CTA-/Warp-Level".)

Table 8.4: Resilience Coverage vs. Overhead Reduction.

Benchmark Kernel-Level CTA-/Warp-Level
Perfect OQ (OR) | Default OQ (OR) Default OQ (OR)
BlackScholes 31.8% (0%) 89.0% (100%) -
RAY 83.2% (0%) 96.0% (100%) -
Sort k8 81.5% (0%) 97.8% (100%) -
JPEG 76.1% (0%) 84.6% (0%) -
SCP 62.1% (0%) 71.6% (0%) -
FWT k6 36.0% (0%) 51.5% (0%) -
FWT k13 28.3% (0%) 54.2% (0%) -
HotSpot 66.2% (0%) 83.8% (0%) 99.6% (26%)
NN k4 89.6% (100%) 89.6% (100%) 91.9% (92%)
WC kb 87.9% (100%) 88.9% (100%) 96.6% (75%)
WC k91 94.9% (100%) 94.9% (100%) 100% (75%)
WC k114 89.8% (100%) 89.8% (100%) 93.4% (94%)
BFS k3 88.5% (100%) 88.5% (100%) 100% (100%)
BFS k9 84.9% (0%) 84.9% (0%) 86.1% (95%)
BFS k11 82.1% (0%) 83.9% (0%) 99.2% (90%)
KMN k1 82.2% (0%) 82.6% (0%) 100% (7%)
KMN k2 81.0% (0%) 85.4% (100%) 100% (7%)

* The resilience coverage requirement is set to be 85%.
* Kernels with no values in the fourth column only contain one fault distribution group,
thus are not applicable for fine-grain analysis.

Coarse-grain Protection Overhead Analysis. We first show analysis at the kernel
level (see the two columns under “Kernel-Level" in Table 8.4). We observe that resilience
coverage increases as we start to relax the output quality requirement, which results in
increasing overhead reduction (OR). For BlackScholes, for example, the resilience coverage
is very low (31.8%) when users desire perfect output quality. With such low resilience
coverage, it is necessary to protect the entire kernel (i.e., 0% overhead reduction). However,

if users are able to accept some inaccuracy in output (i.e., accept the default output

164

quality), the resilience coverage increases to 89.1%. And if this is agreeable with the user,
then the re-computation cost of the entire kernel can be avoided (i.e., 100% overhead
reduction). In the remaining discussion, we assume a 85% resilience coverage requirement
set by the user, as many kernels satisfy it at the default output quality threshold. For
example, we find that for kernels such as RAY, Sort k8, and KMN k2, the resilience coverage
requirement of 85% is met and hence its re-computation can be completely avoided leading
to 100% reduction in protection overhead by accepting Default OQ instead the Perfect OQ.
However, we also find some that other kernels (see cells in bold in Table 8.4) do not meet
the 85% resilience coverage requirement even at the Default OQ. For such kernels, we have
to resort to fine-grain analysis to seek opportunities of overhead reduction.

Fine-grain Protection Overhead Analysis. If the kernels do not meet the resilience
coverage requirement, the protection overhead can still be reduced by exploiting the fact
that some CTAs or warp groups are significantly more error-resilient than others (see
Observations 8.6 and 8.7). We propose not to re-compute such groups and hence reduce
the associated protection overhead. As CTAs are independent of each other, output of
only those CTAs will be required to be compared that have lower resilience coverage. After
applying our resilience characterization (Section 8.4), we find that the resilience coverage
has increased significantly for most kernels (see “Default OQ (OR)" column under “CTA-
/Warp-Level") and still with a significant overhead reduction. For example, for HotSpot,
at the CTA level, users can obtain 99.6% resilience coverage while still reducing overhead
by 26% (i.e., G1 in Figure 8.9(e) can be protection-free). In addition, for kernels with
over 85% resilience coverage (i.e., NN k4, WC k5, WC k91, WC k114, and BFS k3), it is
still possible to further improve their resilience coverage at a finer granularity (see fourth
column). Although the above analysis is for the 85% resilience coverage requirement,
similar analysis can be performed for any other threshold.

Effect of threshold values. So far, we have shown the trade-off between resilience cover-
age and overhead reduction using the default threshold values provided by the benchmarks.

As different users have different resiliency requirements, it would be interesting to evaluate

165

Perfect OQ Default OQ I Relaxed OQ

100%F
80%
60%
40%
20% |

Resilience Coverage

0%

BS JPEG SCP RAY MD Sort Sort NN wWC WC WC FWT FWT
k1 k1 k1 k1 k3 k8 k24 k4 k5 k91 k114 k6 K13

Figure 8.12: Resilience coverage (% of Masked + SDC-accept outputs) as a function of different
output quality. Output quality changes with different SDC acceptability thresholds.

such trade-off under different threshold values. Here we further explore the trade-off under
a relaxed output quality (i.e., evaluated with a relaxed threshold value as compare to the
default one). Note that, determining the suitable relaxed threshold values are application-
specific and beyond the scope of this preliminary study. Figure 8.12 shows the comparison
in terms of the kernel-level resilience coverage.

We observe that, for some benchmark kernels, the resilience coverage increases as we
start to relax the output quality requirement. For example, for BlackScholes K1, the
resilience coverage increases from 89.1% under the Default OQ to 98.2% under the Relaxed
OQ. In contrast, for other benchmarks, such as RAY K1 and WC K5, we observe little to
no increase across different output qualities. This implies that different benchmark kernels
show different sensitivity to the evaluating threshold values. Understanding the reason
to this would help users determine a reasonable threshold value based on their resiliency
requirements. Moreover, we can also explore the impact of different threshold values under

finer granularities, such as CTAs and warps. We leave these as our future work.

Observation 8.8 Hierarchical error-resilience analysis offers flexibility for resilience cov-

erage and overhead reduction.

166

8.6 Chapter Summary

In this chapter, we introduce the concept of accuracy-aware resilience for overhead re-
duction in the context of GPGPUs. We propose a hierarchical thread classification and
selection approach to understand the application resilience coverage. Through a large
number of fault injection runs (330,000 in total) on a variety of GPGPU applications, we
obtain several interesting observations. First, the error resilience of GPGPU application
kernels can significantly increase by embracing a reasonable loss in output quality. Second,
the accuracy-aware error resilience of a kernel can be captured by analyzing threads of
only a few thread-blocks. Third, the proposed hierarchical approach facilitates in reducing
the overhead of protection/recovery mechanisms typically used by GPUs to ensure reliable

output.

167

Chapter 9

Future Work

In this dissertation, we focus on studying the reliability of GPGPUs and conduct this
analysis from two perspectives: system level and application level. At the system-level
analysis, we study large-scale system logs on GPU errors in the field (see Chapters 3
and 4) and propose machine learning models to accurate predict error occurrences to
enable low-overhead reliable computing at the system level (see Chapters 5 and 6). At
the application-level, we build a progressive fault site pruning framework to systematically
reduce the number of fault sites needed in a fault injection campaign (see Chapter 7). This
framework is able to serve as an effective way to deepen the understanding on the error
resilience characteristics for GPGPU applications. In Chapter 8, we hierarchically study
the resilience features of GPGPU applications at various levels, including kernel, CTA,

and warp levels. Here, we outline future work.

9.1 Fault Injection for Multiple Inputs

In Chapter 7, we propose an accurate and effective fault injection framework following
GPGPU-specific features. This framework is application-dependent and input-dependent.
The results shown in Chapter 7 are for one application input. We have to follow the four
progressive pruning steps again for a different input. Even though the profiling cost is

affordable (i.e., all information can be collected with one fault-free execution), it would

168

be interesting to study the trends and variations among the outcomes of fault injection
experiments for different inputs. Li et al. [84] study the variation of silent data corruption
(SDC) probabilities across different inputs of a program. By understanding the reasons of
variations, they propose a model to bound the overall program SDC probabilities under
multiple inputs of one application, with the result obtained by a single input. Similarly
here, we would like to investigate the impact of multiple inputs for GPGPU applications.
With current preliminary results, we observe that there are patterns across different inputs
(i.e., different sizes and distributions) for benchmarks including HotSpot and PathFinder.
Such observations would be helpful to infer the resiliency profile of one application under

multiple inputs.

9.2 Low-Overhead Reliable GPU Computing

9.2.1 Thread-to-CTA Remapping

In Chapter 7, we observe that dynamic instruction count (short as iCnt) of a thread is
an effective proxy for the error resilience profile of a thread. That is, threads with the
same iCnt tend to share similar distribution of fault injection outcomes. The rationale is
that threads with the same number of dynamic instruction count are likely to execute the
same set of instructions and thus result in similar reactions to injected faults. Using this
observation, it is natural to apply different levels of protection mechanisms to different
threads. For example, using the commonly considered re-computation model [147, 39],
we can duplicate the execution of threads that are sensitive to bit flips but execute only
once the error-resilient threads, as distinguished by thread iCnt. Re-computational model
requires comparing the output of two threads. If there is a mismatch, it could re-execute
both threads to get the correct result [147|. Given that threads are grouped into CTAs for
execution, it is more practical to design resilience solutions at the CTA level, instead of at
the thread level.

Towards this perspective, the first step is to understand how threads with different

169

175

150

iCnt

100

75 ki .
0 2000

4000 6000 8000

Threads (in launching order)

Figure 9.1: The dynamic instruction count of threads in their launching order for HotSpot..

iCnt are scheduled currently. Figure 9.1 shows the thread iCnt of each thread in their
launching order for HotSpot. We observe that threads with different iCnt are executed
together in consecutive time. Next, in Figure 9.2, we show the composition of threads
with different iCnt inside each CTA for HotSpot. Each CTA in HotSpot contains 256
threads. However, none of the CTAs contains only one type of thread (i.e., threads with
same iCnt). In fact, each CTA may contain 5 to 11 different types of threads, with one
dominant thread type (marked with blue color in the figure). Figure 9.2 reveals that
currently CTAs contain multiple thread types, so it is necessary to apply remapping. If for
some other benchmarks, each CTA contains only one thread type, then there is no need
for remapping. To summarize, for benchmarks like HotSpot, threads with the same ¢Cnt
are not scheduled together, making it hard to realize the aforementioned protection for

different threads.

100%

QNN BNHANOERHEEHEHERHBOOAED siulslinf=kn
HHH Hodgdg Oodgd Hoddnd i njuigugn]

80% HH A HOodoQd U Oddd oy L] Oy L]
Hgugn L O n u u

=
]
]
]
]
60% I

40%

20%

Freq. of Thread in CTA

0%

Figure 9.2: The composition of threads with different dynamic instruction count inside each CTA
for HotSpot. Each CTA contains 256 threads. None of the CTAs contains only one thread type
while the colored part represents the dominant thread type.

One solution is to break the current mapping of threads to CTAs and re-map threads

170

with same iCnt to the same CTA. That is, after re-mapping, each CTA only contains one
type of thread. Consequently, we can apply the same protection (i.e., either duplicate the
execution or relax the protection) at the CTA level. Clearly, this re-mapping can result in
worse performance because it may break the data locality or other reasons. As long as the
reduction in terms of error protection overhead is significant, it still makes such solution

worthwhile and practical.

9.2.2 Resilience-Aware Scheduling

In the above section, we re-map the threads with same iCnt to the same CTA so that
threads within the same CTA now share similar error resilience characteristics. This pro-
vides opportunities for developing resilience-aware scheduling algorithms for light-weight
reliable GPU computing. In GPU systems, scheduling has been vastly studied at many
levels (e.g., kernel, CTAs, and warps [67, 66, 71, 65, 73, 116, 72, 98]) in order to achieve
better performance. For example, the two-level warp scheduling proposed by Narasiman et
al. [98] increases core utilization by dividing the warps into smaller groups and scheduling
them in a staggered manner. Rogers et al. [122] and Jog et al. [67] proposed warp sched-
ulers to reduce contention in caches. Kayiran et al. [71| proposed to dynamically tune the
thread-level parallelism. Lee et al. [81] proposed a criticality-aware warp scheduler that
prefers critical warps over others for better latency tolerance. Adriaens et al. [20] and Pai
et al. [114] proposed techniques to spatially partition the core resources across concurrent
GPU kernels.

The next natural step is to design GPGPU resource scheduling algorithms for the
purpose of low-overhead reliable computing. We will devise scheduling algorithms that
consider if the error protection of specific hardware components (spatial optimization)
can be turned-off for a limited duration of the application execution (temporal optimiza-
tion). Recall that, a typical GPU consists of multiple simple cores, also called streaming-
multiprocessors (SMs) in NVIDIA terminology [111]|. For example, at an SM-level, we can

develop kernel and CTA scheduling techniques such that error-resilient kernels and CTAs

171

are scheduled on SMs that are protection-free. We believe that even higher benefits can be
achieved if scheduling techniques at all resource allocation levels (i.e., warps, CTAs, and
kernels) are carefully designed.

We expect that side-effects of the resilience-aware scheduling could include
performance- and load-imbalance across different compute resources (i.e., SMs). This is
because of the fact that dynamic tuning of error protection would likely affect the runtime
of certain warps, CTAs, and kernels differently. For example, if some SMs are fast (because
they are now error protection free), we have to take care of possible indications of load
imbalance. We will perform a detailed investigation to find such sources of performance
degradation and develop techniques to mitigate them. Specifically, the SM-level criticality
estimation proposed in [68] will help determine the amount of load imbalance in the system
and design scheduling techniques at all levels of GPU hierarchy to alleviate the problem

of load-imbalance.

172

Bibliography

[1] About CUDA. https://developer.nvidia.com/about-cuda.

[2] Blue Joule - BlueGene/Q, Power BQC 16C 1.60GHz, Custom. https://www.top500.
org/system/177723.

[3] CUDA-GDB. http://docs.nvidia.com/cuda/cuda-gdb/#axzz4dPHxjHEUB.

[4] GP100 Pascal Whitepaper. https://images.nvidia.com/content /pdf/tesla/

whitepaper/pascal-architecture-whitepaper.pdf.
[5] GPGPU-Sim Instruction Set Architecture.
[6] Gyoukou Supercomputer. https://www.top500.org/system/179102/.

[7] K20X By the Numbers. https://www.olcf.ornl.gov/for-users/system-user-guides/

titan /nvidia-k20x-gpus/#k20x-by-the-numbers.

[8] NVIDIA Fermi Architecture Whitepaper. http://www.nvidia.com/content/pdf/

fermi white papers/nvidia_fermi compute architecture whitepaper.pdf.

[9] NVIDIA K20X GPUs. https://www.olcf.ornl.gov/for-users/system-user-guides/

titan /nvidia-k20x-gpus/.

[10] NVIDIA Kepler GK110 Architecture Whitepaper. https://www.nvidia.com/
content /PDF /kepler /NVIDIA-Kepler-GK110- Architecture- Whitepaper.pdf.

173

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

Piz Daint Supercomputer. https://www.cscs.ch /computers/dismissed /

piz-daint-piz-dora/.
Sierra | Computation. https://computation.llnl.gov/computers/sierra.

Summit — Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov/

olcf-resources/compute-systems/summit /.

Tesla P100 Most Advanced Data Center Accelerator|NVIDIA. http://www.nvidia.

com/object /tesla-p100.html.
The Green500 List. https://www.top500.org/green500,/lists/2017/11/.

Tianhe-2 Supercomputer. http://en.nscc-gz.cn/Product/

HighPerformanceComputingService /ServiceCharacteristics.html?

Titan. https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan,/ .

Top500 List. https://www.top500.org/lists/2017/11/.

Understanding XID Errors. http://docs.nvidia.com/deploy/xid-errors/index.html.

JACOB ADRIAENS, KATHERINE COMPTON, NAM SUNG KiM, AND MICHAEL J.
SCHULTE. The case for GPGPU spatial multitasking. In 18th IEEE International
Symposium on High Performance Computer Architecture, HPCA 2012, New Orleans,
LA, USA, 25-29 February, 2012, pages 79-90. IEEE Computer Society, 2012.

NESREEN K AHMED, AMIR F ATivaA, NEAMAT EL GAYAR, AND HisHAM EL-
SHISHINY. An empirical comparison of machine learning models for time series fore-

casting. Econometric Reviews, 29(5-6):594-621, 2010.

ARTUR ANDRZEJAK AND LUIS MOURA SIivA. Using machine learning for non-
intrusive modeling and prediction of software aging. In IEEE/IFIP Network Oper-
ations and Management Symposium: Pervasive Management for Ubioquitous Net-

works and Services, NOMS 2008, 7-11 April 2008, Salvador, Bahia, Brazil, Marcus

174

[23]

[24]

[25]

[26]

[27]

Brunner, Carlos Becker Westphall, and Lisandro Zambenedetti Granville, editors,

pages 25-32. IEEE, 2008.

LAKSHMI NARAYANAN BAIRAVASUNDARAM, ANDREA C ARPACI-DUSSEAU, AND
REMZ1I H ARPACI-DUSSEAU. Characteristics, impact, and tolerance of partial disk

failures. PhD thesis, University of Wisconsin—-Madison, 2008.

ALl BAKHODA, GEORGE L. YUAN, WiLsON W. L. FUNG, HENRY WONG, AND
Tor M. AAMODT. Analyzing CUDA workloads using a detailed GPU simulator. In
IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS 2009, April 26-28, 2009, Boston, Massachusetts, USA, Proceedings, pages
163-174. IEEE Computer Society, 2009.

LEONARDO ARTURO BAUTISTA-GOMEZ, FRANCK CAPPELLO, LuliGl CARRO,
NATHAN DEBARDELEBEN, BO FANG, SUDHANVA GURUMURTHI, KARTHIK PAT-
TABIRAMAN, PAOLO RECH, AND MATTEO SONZA REORDA. Gpgpus: How to com-
bine high computational power with high reliability. In Design, Automation € Test
in Burope Conference & Ezxhibition, DATE 201/, Dresden, Germany, March 24-28,
2014, Gerhard P. Fettweis and Wolfgang Nebel, editors, pages 1-9. European Design

and Automation Association, 2014.

ROBIN M. BETZ, NATHAN DEBARDELEBEN, AND ROss C. WALKER. An investi-
gation of the effects of hard and soft errors on graphics processing unit-accelerated
molecular dynamics simulations. Concurrency and Computation: Practice and Ez-

perience, 26(13):2134-2140, 2014.

MIRELA MADALINA BOTEZATU, IOANA GIURGIU, JASMINA BOGOJESKA, AND
DoroTHEA WIESMANN. Predicting disk replacement towards reliable data centers.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, Balaji

175

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen,
and Rajeev Rastogi, editors, pages 39-48. ACM, 2016.

GEORGE EP Box, GwiLyM M JENKINS, GREGORY C REINSEL, AND GRETA M

LiuNnaG. Time series analysis: forecasting and control. John Wiley & Sons, 2015.

NITESH V CHAWLA. Data mining for imbalanced datasets: An overview. In Data

mining and knowledge discovery handbook, pages 875-886. Springer, 2009.

NiTESH V. CHAWLA, KEVIN W. BOWYER, LAWRENCE O. HALL, AND W. PHILIP
KEGELMEYER. SMOTE: synthetic minority over-sampling technique. Journal of

Artificial Intelligence Research, 16:321-357, 2002.

SHUAI CHE, MICHAEL BOYER, JIAYUAN MENG, DAVID TARJAN, JEREMY W.
SHEAFFER, SANG-HA LEE, AND KEVIN SKADRON. Rodinia: A benchmark suite for
heterogeneous computing. In Proceedings of the 2009 IEEE International Symposium
on Workload Characterization, IISWC 2009, October 4-6, 2009, Austin, TX, USA,

pages 44-54. IEEE Computer Society, 2009.

DANIEL CHEN, GABRIELA JACQUES-SILVA, ZBIGNIEW KALBARCZYK, RAVIs-
HANKAR K IYER, AND BRUCE MEALEY. Error behavior comparison of multiple
computing systems: A case study using linux on pentium, solaris on sparc, and
aix on power. In Dependable Computing, 2008. PRDC’08. 14th IEEE Pacific Rim

International Symposium on, pages 339-346. IEEE, 2008.

HyuNGMIN CHO, SHAHRZAD MIRKHANI, CHEN-YONG CHER, JACOB A. ABRA-
HAM, AND SUBHASISH MITRA. Quantitative evaluation of soft error injection tech-
niques for robust system design. In The 50th Annual Design Automation Conference

2018, DAC 18, Austin, TX, USA, May 29 - June 07, 2013, pages 101:1-101:10.

PEZY CoOMPUTING. Pezy-sc many core processor, 2014.

176

[35]

[36]

[37]

[38]

[39]

[40]

PaurLo CorTEZ, MIGUEL R10, MIGUEL ROCHA, AND PEDRO SOUSA. Multi-scale
internet traffic forecasting using neural networks and time series methods. Fxpert

Systems, 29(2):143-155, 2012.

MARIA COUCEIRO, PAOLO ROMANO, AND Luis E. T. RODRIGUES. A machine
learning approach to performance prediction of total order broadcast protocols. In
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO 2010, Budapest, Hungary, 27 September - 1 October 2010, pages 184—
193. IEEE Computer Society, 2010.

ANTHONY DANALIS, GABRIEL MARIN, COLLIN MCcCURDY, JEREMY S. MERED-
ITH, PHILIP C. ROTH, KYLE SPAFFORD, VINOD TIPPARAJU, AND JEFFREY S.
VETTER. The scalable heterogeneous computing (SHOC) benchmark suite. In Pro-
ceedings of 3rd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU 2010, Pittsburgh, Pennsylvania, USA, March 14, 2010, David R.
Kaeli and Miriam Leeser, editors, volume 425 of ACM International Conference

Proceeding Series, pages 63—74. ACM, 2010.

SHENG D1, DERRICK KONDO, AND WALFREDO CIRNE. Google hostload prediction
based on bayesian model with optimized feature combination. J. Parallel Distrib.

Comput., 74(1):1820-1832, 2014.

MARTIN DIMITROV, MIKE MANTOR, AND HUIYANG ZHOU. Understanding soft-
ware approaches for GPGPU reliability. In Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU 2009, Washington, DC,
USA, March 8, 2009, David R. Kaeli and Miriam Leeser, editors, volume 383 of
ACM International Conference Proceeding Series, pages 94-104. ACM, 2009.

QIA DING. Long-term load forecast using decision tree method. In Power Systems

Conference and Ezrposition, pages 1541-1543, 2006.

177

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ANDERS EKLUND, PAUL DUFORT, DANIEL FORSBERG, AND STEPHEN LACONTE.

Medical image processing on the GPU - past, present and future. Medical Image
Analysis, 17(8):1073-1094, 2013.

NosAYBA EL-SAYED AND BIANCA SCHROEDER. Reading between the lines of fail-
ure logs: Understanding how HPC systems fail. In 2013 /3rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), Budapest,
Hungary, June 24-27, 2013, pages 1-12. IEEE Computer Society, 2013.

NOSAYBA EL-SAYED, IOAN A. STEFANOVICI, GEORGE AMVROSIADIS, ANDY A.
HWANG, AND BIANCA SCHROEDER. Temperature management in data centers: why
some (might) like it hot. In ACM SIGMETRICS/PERFORMANCE Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS ’12, London, United Kingdom, June 11-15, 2012, Peter G. Harrison, Martin F.
Arlitt, and Giuliano Casale, editors, pages 163-174. ACM, 2012.

Bo FANG, KARTHIK PATTABIRAMAN, MATEI RIPEANU, AND SUDHANVA GURU-
MURTHI. Gpu-qin: A methodology for evaluating the error resilience of GPGPU
applications. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 201/, Monterey, CA, USA, March 253-25, 201/, pages
221-230. IEEE Computer Society, 2014.

N FArRAZMAND, R UBAL, AND D KAELI. Statistical fault injection-based AVF

analysis of a GPU architecture. Proceedings of SELSE, 2012.

R FOSTER. How to harness big data for improving public health. Government Health

IT, 2012.

Vinicius FRATIN, DANIEL A. G. DE OLIVEIRA, CAi0 B. LUNARDI, FER-
NANDO SANTOS, GENNARO RODRIGUES, AND PAOLO RECH. Code-dependent and

architecture-dependent reliability behaviors. In 4/8th Annual IEEE/IFIP Interna-

178

48]

[49]

[50]

[51]

[52]

[53]

tional Conference on Dependable Systems and Networks, DSN 2018, Luxembourg
City, Luzembourg, June 25-28, 2018, pages 13—26.

HaoHUAN FU, JUNFENG LiAO, JINZHE YANG, LANNING WANG, ZHENYA SONG,
XIAOMENG HUANG, CHAO YANG, WEI XUE, FANGFANG Liu, FANG-LI QIAO,
WEI ZHAO, XUNQIANG YIN, CHAOFENG Hou, CHENGLONG ZHANG, WEI GE,
JIAN ZHANG, YANGANG WANG, CHUNBO ZHOU, AND GUANGWEN YANG. The
Sunway TaihuLight supercomputer: system and applications. SCIENCE CHINA
Information Sciences, 59(7):072001:1-072001:16, 2016.

SONG FU AND CHENG-ZHONG XU. Quantifying temporal and spatial correlation
of failure events for proactive management. In 26th IEEE Symposium on Reliable
Distributed Systems (SRDS 2007), Beijing, China, October 10-12, 2007, pages 175
184. IEEE Computer Society, 2007.

ANA GAINARU, FRANCK CAPPELLO, JOSHI FULLOP, STEFAN TRAUSAN-MATU,
AND WILLIAM KRAMER. Adaptive event prediction strategy with dynamic time
window for large-scale hpc systems. In Managing Large-scale Systems via the Analysis
of System Logs and the Application of Machine Learning Techniques, page 4. ACM,
2011.

ANA GAINARU, FRANCK CAPPELLO, MARC SNIR, AND WILLIAM KRAMER. Fault
prediction under the microscope: a closer look into HPC systems. In SC' Conference
on High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012, Jeffrey K. Hollingsworth, editor,
page 77. IEEE/ACM, 2012.

PaurL GoopwiIN ET AL. The holt-winters approach to exponential smoothing: 50

years old and going strong. Foresight, 19:30-33, 2010.

ANDREAS W GOTZ, MARK J WILLIAMSON, DONG XU, DUNCAN POOLE, SCOTT

LE GRrRAND, AND Ross C WALKER. Routine microsecond molecular dynamics sim-

179

[54]

[55]

[56]

[57]

[58]

[59]

ulations with amber on gpus. 1. generalized born. Journal of chemical theory and

computation, 8(5):1542-1555, 2012.

ScoTT GRAUER-GRAY, LIFAN XU, ROBERT SEARLES, SUDHEE AYALASOMAYA-
JULA, AND JOHN CAVAZOS. Auto-tuning a high-level language targeted to gpu

codes. In Innovative Parallel Computing (InPar), 2012, pages 1-10. IEEE, 2012.

SAURABH GUPTA, DEVESH TIWARI, CHRISTOPHER JANTZI, JAMES H. ROGERS,
AND DoN MAXWELL. Understanding and exploiting spatial properties of system
failures on extreme-scale HPC systems. In 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2015, Rio de Janeiro, Brazil,

June 22-25, 2015, pages 37-44. IEEE Computer Society, 2015.

ISABELLE GUYON. A scaling law for the validation-set training-set size ratio. ATéT

Bell Laboratories, 1997.

IMRAN S. HAQUE AND V1JAY S. PANDE. Hard data on soft errors: A large-scale
assessment of real-world error rates in GPGPU. In 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, 17-20 May 2010,

Melbourne, Victoria, Australia, pages 691-696. IEEE Computer Society, 2010.

SIvA KUMAR SASTRY HARI, SARITA V. ADVE, HELIA NAEIMI, AND PRADEEP
RAMACHANDRAN. Relyzer: exploiting application-level fault equivalence to analyze
application resiliency to transient faults. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS 2012, London, UK, March 3-7, 2012, pages 123-134.

SivA KUMAR SASTRY HARI, TIMOTHY TSAI, MARK STEPHENSON, STEPHEN W.
KECKLER, AND JOEL S. EMER. SASSIFI: an architecture-level fault injection tool
for GPU application resilience evaluation. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2017, Santa Rosa, CA,
USA, April 24-25, 2017, pages 249-258. IEEE, 2017.

180

[60]

[61]

|62]

[63]

[64]

[65]

BINGSHENG HE, WENBIN FANG, QIONG LUO, NAGA K. GOVINDARAJU, AND TUY-
ONG WANG. Mars: a mapreduce framework on graphics processors. In 17th Interna-
tional Conference on Parallel Architecture and Compilation Techniques, PACT 2008,
Toronto, Ontario, Canada, October 25-29, 2008, Andreas Moshovos, David Tarditi,
and Kunle Olukotun, editors, pages 260-269. ACM, 2008.

LianG Hu, XILONG CHE, AND SI-QING ZHENG. Online system for grid resource

monitoring and machine learning-based prediction. IEEE Trans. Parallel Distrib.

Syst., 23(1):134-145, 2012.

ANDY A. HWANG, IOAN A. STEFANOVICI, AND BIANCA SCHROEDER. Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and the implications for
system design. In Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2012, London,
UK, March 3-7, 2012, Tim Harris and Michael L. Scott, editors, pages 111-122.
ACM, 2012.

RABINDRA KU JENA, MUSBAH M AQEL, PANKAJ SRIVASTAVA, A