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ABSTRACT

Source code evolves – inevitably – to remain useful, secure, correct, readable, and
efficient. Developers perform software evolution and maintenance activities by
transforming existing source code via corrective, adaptive, perfective, and
preventive changes. These code changes are usually managed and stored by a
variety of tools and infrastructures such as version control, issue trackers, and code
review systems. Software evolution and maintenance researchers have been mining
these code archives in order to distill useful insights regarding the nature of
developers’ activities. One of the long-lasting goals of software engineering
research is to better support and automate different types of code changes
performed by developers. In this thesis we depart from classic manually crafted
rule- or heuristic-based approaches, and propose a novel technique to learn code
transformations by leveraging the vast amount of publicly available code changes
performed by developers. We rely on Deep Learning, and in particular on Neural
Machine Translation (NMT), to train models able to learn code change patterns
and apply them to novel, unseen, source code.

First, we tackle the problem of generating source code mutants for Mutation
Testing. In contrast to classic approaches, which rely on handcrafted mutation
operators, we propose to automatically learn how to mutate source code by
observing real faults. We mine millions of bug fixing commits from GitHub, and
then process and abstract this source code. This data is used to train and evaluate
an NMT model to translate fixed code into buggy code (i.e., the mutated code).
In the second project, we rely on the same dataset of bug-fixes to learn code
transformations for the purpose of Automated Program Repair (APR). This
represents one of the most challenging research problem in Software Engineering,
whose goal is to automatically fix bugs without developers’ intervention. We train
a model to translate buggy code into fixed code (i.e., learning patches) and, in
conjunction with beam search, generate many different potential patches for a
given buggy method. In our empirical investigation we found that such a model is
able to fix thousands of unique buggy methods in the wild. Finally, in our third
project we push our novel technique to the limits by enlarging the scope to
consider not only bug-fixing activities, but any type of meaningful code changes
performed by developers. We focus on accepted and merged code changes that
have undergone a Pull Request (PR) process. We quantitatively and qualitatively
investigate the code transformations learned by the model to build a taxonomy.
The taxonomy shows that NMT can replicate a wide variety of meaningful code
changes, especially refactorings and bug-fixing activities.

In this dissertation we illustrate and evaluate the proposed techniques, which
represent a significant departure from earlier approaches in the literature. The
promising results corroborate the potential applicability of learning techniques,
such as NMT, to a variety of Software Engineering tasks.
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Chapter 1

Introduction

1.1 Overview

Software and its source code evolves continuously in order to remain useful, secure, and

correct for users as well as readable and maintainable for developers and contributors.

Developers perform a myriad of different types of changes on the source code during soft-

ware evolution and maintenance activities. These operations are usually classified [124]

according to the following categories :

Corrective changes that aim at correcting or fixing discovered problems (i.e., bugs) in

the system;

Adaptive changes which are intended to keep a software product useful in a changing

environment (e.g., requirements, standards);

Perfective changes that are performed in order to improve performance or maintainability

of the code;

Preventive changes that aim to detect and correct latent faults in the software product

before they become effective faults.

We refer to all these types of changes as code transformations. These transformations

are usually managed and stored by a variety of tools and infrastructures such as version
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control (e.g., git [19], svn [30]), issue trackers (e.g., Bugzilla [14], Jira [24]), and code

review systems (e.g., Gerrit [18]). The advent and continuous success of open source

software projects has made enormous amount of data publicly available for practitioners

and researchers to analyze. Certainly, many researchers have mined and analyzed code

archives in order to distill useful insights on the nature of code changes and developers’

activities. For example, some have studied the nature of commits [91, 206], others analyzed

the changes and diffs performed by developers [99, 159], while others have focused on

particular types of changes such as bug-fixes [121, 100] and refactorings [70].

One of the long-lasting goals of Software Engineering research is to better support

and automate different types of code changes performed by developers, such as bug-fixes,

refactoring, testing etc. However, the foundation of state of the art techniques are generally

based upon manually crafted rules or heuristics defined by human experts. This not only

means limited automation, but also intrinsic bias introduced by the human experts who

crafted these rules and mechanisms.

In this thesis we propose to adopt Deep Learning techniques and models to automat-

ically learn from thousands of code changes. In particular, we aim to learn what the

important code features that represents the source code are, without manually specify-

ing what we – as researchers or developers – believe is important. We propose to learn

change patterns by observing thousands of real world code transformations performed by

real developers. With this knowledge, we aim to automatically apply code transformations

on novel, unseen code, with the goal of automating code transformations that would be

otherwise performed by developers.

Given a software change that transforms the code before the change into the code after

the change, we represent this as a Neural Machine Translation problem, where the code

before is the original text, the code after is a translated text, and the change itself is the

translation process. This idea is depicted in Figure 1.1.

Neural Machine Translation is an end-to-end deep learning approach for automated

translation. In this thesis we apply Neural Machine Translation to learn code transforma-

3



Figure 1.1: Code Transformations as Neural Machine Translation problem
tions in the context of three Software Engineering tasks: Mutation Testing, Automated

Program Repair, and Learning Code Changes.

1.2 Motivation – Learning for Automation

The main goal of the work described in this thesis is to devise a set of techniques that

are able to learn code transformations from real world data, with the final objective of

automating a variety of software engineering tasks.

This work is motivated primarily by the fact that the literature’s landscape is dominated

by techniques relying on manually handcrafted rules or heuristics.

1.2.1 Mutation Testing

Mutation Testing is a strategy used to evaluate the quality of a test suite, which involves

the creation of modified versions of the tested code (i.e., mutants) and observing how well

the existing test suite is able to detect the inserted mutants. Classic approaches rely on

well-defined mutation operators to generate the code variants, by applying these opera-

tors in all, or random, possible locations in the code. These operators are intended to

mimic usual program mistakes and are defined by human experts which usually derive
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them through observation of real bugs, past experience or knowledge of the programming

constructs and errors. For example, a state of the art mutation tool, Pit [32], offers 22

mutation operators manipulating different programming constructs, such as: conditional

statements (i.e., Conditionals Boundary Mutator, Negate Conditionals Mutator), math-

ematical operations (i.e., Math Mutator, Increments Mutator), return statements (i.e.,

Empty returns Mutator, False Returns Mutator), etc. While these mutation operators

range across many types of potential bugs, they are still limited and somewhat trivial.

Existing mutation approaches generate too many and too simple mutants, which some-

times are not even compilable or worth to execute. These approaches are also limited in

their applicability to automation, in the sense that the types and locations of the mutation

operators need to be selected. Finally, and most importantly, there is no evidence that

these mutation operators are actually similar to real bugs and follow similar changes and

distribution.

We propose a novel approach to automatically learn mutants from faults in real pro-

grams, by observing that a buggy code can arguably represent the perfect mutant for the

corresponding fixed code.

1.2.2 Automated Program Repair

Automated Program Repair (APR) represents one of the most challenging research prob-

lem in Software Engineering, whose goal is to automatically fix bugs without developers’

intervention. Similarly to Mutation Testing, existing APR techniques are mostly based

on hard-coded rules and operators – defined by human experts – used to generate po-

tential patches for a buggy code. For example, GenProg [121] works at statement-level

by inserting, removing or replacing a statement taken from other parts of the same pro-

gram. MutRepair [131] attempts to generate patches by applying mutation operators on

suspicious if-condition statements. SemFix [144] instead uses symbolic execution and con-

straint solving to synthesize a patch by replacing only the right-hand side of assignments

or branch predicates. These approaches have several limitations, rooted in the fact that
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they are based on handcrafted rules with limited scope (i.e., single statements, limited

number of mutation operators, specific parts of expressions). Moreover, Smith et al. [168]

showed that these approaches tend to overfit on test cases, by generating incorrect patches

that pass the test cases, mostly by deleting functionalities.

Conversely, we aim to automatically learn how to fig bugs by observing thousands of

real bug-fixes performed by developers in the wild.

1.2.3 Code Changes

As we discussed previously, there are many different types of changes, outside of those

focusing on testing and bug-fixing. Adaptive, perfective, and preventive changes can vary

widely based on the context and their final objective. In this realm, there exist plenty of

tools and infrastructures that attempt to automate or support developers in performing

particular types of changes. Tools for Refactoring [49], API Evolution [200], Code Smell

removal [173], Performance, and Optimization depend on hard-coded rules that apply in

specific situations.

We aim to train NMT models to learn a wide variety of types of changes which apply

in different contexts by training our models on software changes that have been reviewed

and accepted by developers during code review process.

1.3 Contributions & Outline

In this thesis we devise a technique that enables to learn code transformations via Neural

Machine Translation. We mine a large dataset of code transformations, such as bug-fixes

and reviewed code changes, from publicly available repositories. These changes are then

analyzed with a fine-grained AST differencing tool and appropriately clustered together.

We devise a technique called Code Abstraction which is intended to transform the original

source code into a representations that is suitable for NMT and at the same time preserve

syntactic and semantic information of the code. Finally, we train and evaluate NMT
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models that are able to predict and replicate a large variety of bug-fixes, mutants, and

other changes. The results show that the models can emulate a large set of AST operations

and generate syntactically correct code.

In Chapter 2 we provide background related to Neural Machine Translation and

details on how we apply this technique on source code.

In Chapter 3 we develop a novel technique to learn how to generate mutants from

bug-fixes. This technique relies on NMT to learn how to translate fixed code into the

buggy version of the same code, by observing millions of real world examples of bug-fixes

performed by developers in open source repositories. After we mined millions of bug-fixes

from GitHub, we process this data and perform code abstraction, a procedure we developed

that makes NMT feasible on source code. The bug-fixes are then clustered together based

on their AST operations and different models are trained for each cluster. The content of

this chapter is based primarily on the paper [183].

In Chapter 4 we devise an Automated Program Repair (APR) technique that learns

how to fix bugs by observing real world examples of developers’ bug-fixes, rather than

relying on manually crafted rules and heuristics. The technique is based on a NMT model

which works in conjunction with beam search to generate many different translations (i.e.,

patches) of a given buggy method. The content of this chapter is based primarily on the

paper [181, 182].

In Chapter 5 we study the potential of NMT models to learn a wide variety of code

changes. To this goal, we mine accepted and merged code changes that have undergone

a Pull Request (PR) process, from Gerrit, a code review system. We then train NMT

models and investigate – both quantitatively and qualitatively – the number and types of

code changes successfully learned by the model and devise a taxonomy. The content of

this chapter is based primarily on the paper [178].

In addition to the contributions outlined in this dissertation, the author has worked

on a wide array of research topics in software engineering over the course of his career

as a doctoral student including: (i) code smells and anti-patterns both in production
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[177, 174, 148] and test code [175]; (ii) deep learning code similarities [196, 180, 195];

(iii) software compilation and building [176, 179]; (iv) Android testing [186, 138] and

performance [125, 51].
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Chapter 2

Background

2.1 Neural Machine Translation

Neural Machine Translation (NMT) is an end-to-end deep learning approach for auto-

mated translation. It outperforms phrase-based systems without the need of creating

handcrafted features such as lexical or grammatical rules. It has been used not only in

language translations – such as Google Translate [23] – but also in text summarization

[162], question-answering tasks [47], and conversational models [187]. Basically any prob-

lem in which one wants to learn a mapping between an input sequence of terms and a

corresponding output sequence of terms could be potentially mapped as a Neural Machine

Translation problem.

NMT was introduced by Kalchbrenner et al. [106], Sutskever et al. [171], and Cho et

al. [59] who defined Recurrent Neural Networks (RNN) models for machine translation.

The most famous architecture and what we used in our study was introduced by Bahdanau

et al. [46] in 2015.

At the very high level, NMT models are comprised of an Encoder and a Decoder, both

are Recurrent Neural Networks that are trained jointly. An attention mechanism helps

aligning the input tokens to the output tokens in order to facilitate the translation. The

Encoder reads the input sentence and generates a sequence of hidden states. These hidden
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states are then used by the Decoder to generate a sequence of output words, representing

the translation of the input sentence.

Figure 2.1: Neural Machine Translation model

2.1.1 RNN Encoder-Decoder

The models trained and evaluated in this thesis are based on an RNN Encoder-Decoder

architecture, commonly adopted in NMT [106, 171, 59]. This model consists of two major

components: an RNN Encoder, which encodes a sequence of terms x into a vector repre-

sentation, and an RNN Decoder, which decodes the representation into another sequence

of terms y. The model learns a conditional distribution over a (output) sequence condi-

tioned on another (input) sequence of terms: P (y1, .., ym|x1, .., xn), where n and m may

differ. In our case, we would like to learn the code transformation codebefore → codeafter,

therefore given an input sequence x = codebefore = (x1, .., xn) and a target sequence

y = codeafter = (y1, .., ym), the model is trained to learn the conditional distribution:

P (codeafter|codebefore) = P (y1, .., ym|x1, .., xn), where xi and yj are abstracted source to-

kens: Java keywords, separators, IDs, and idioms. Fig. 2.1 shows the architecture of the

Encoder-Decoder model with attention mechanism [46, 128, 54]. The Encoder takes as in-

put a sequence x = (x1, .., xn) and produces a sequence of states h = (h1, .., hn). We rely
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Figure 2.2: Beam Search Visualization.
on a bi-directional RNN Encoder [46], which is formed by a backward and a forward RNN,

which are able to create representations taking into account both past and future inputs

[54]. That is, each state hi represents the concatenation (dashed box in Fig. 2.1) of the

states produced by the two RNNs when reading the sequence in a forward and backward

fashion: hi = [
−→
hi ;
←−
hi ].

The RNN Decoder predicts the probability of a target sequence y = (y1, .., ym) given h.

Specifically, the probability of each output term yi is computed based on: (i) the recurrent

state si in the Decoder; (ii) the previous i−1 terms (y1, .., yi−1); and (iii) a context vector ci.

The latter constitutes the attention mechanism. The vector ci is computed as a weighted

average of the states in h: ci =
∑n

t=1 aitht where the weights ait allow the model to pay

more attention to different parts of the input sequence. Specifically, the weight ait defines

how much the term xi should be taken into account when predicting the target term yt.

The entire model is trained end-to-end (Encoder and Decoder jointly) by minimizing

the negative log likelihood of the target terms, using stochastic gradient descent.

2.1.2 Generating Multiple Translations via Beam Search

The classic greedy decoding selects, at each time step i, the output term yi with the highest

probability. The downside of this decoding strategy is that, given a codebefore as input, the

trained model will generate only one possible sequence of predicted codeafter. Conversely,

we would like to generate multiple potential translations (i.e., candidates for codeafter) for

a given codebefore. To this aim, we employ a different decoding strategy called Beam Search

and used in previous applications of deep learning [158]. The major intuition behind Beam

11



Search decoding is that rather than predicting at each time step the token with the best

probability, the decoding process keeps track of k hypotheses (with k being the beam size

or width). Formally, let Ht be the set of k hypotheses decoded till time step t:

Ht = {(ỹ11, . . . , ỹ1t ), (ỹ21, . . . , ỹ2t ), . . . , (ỹk1 , . . . , ỹkt )}

At the next time step t + 1, for each hypothesis there will be |V | possible yt+1 terms

(V being the vocabulary), for a total of k · |V | possible hypotheses.

Ct+1 =

k⋃
i=1

{(ỹ11, . . . , ỹ1t , v1), . . . , (ỹk1 , . . . , ỹkt , v|V |)}

From these candidate sets, the decoding process keeps the k sequences with the highest

probability. The process continues until each hypothesis reaches the special token repre-

senting the end of a sequence. We consider these k final sentences as candidate patches for

the buggy code. Note that when k = 1, Beam Search decoding coincides with the greedy

strategy.

Fig. 2.2 shows an example of the Beam Search decoding strategy with k = 3. Given

the codebefore that represents a buggy code input (top-left), the Beam Search starts by

generating the top-3 candidates for the first term (i.e., public, void, private). At the

next time step, the beam search expands each current hyphothesis and finds that the top-3

most likely are those following the node public. Therefore, the other two branches (i.e.,

void, private) are pruned (i.e., red nodes). The search continues till each hypothesis

reaches the <eos> (End Of Sequence) symbol. Note that each hypothesis could reach the

end at different time steps. This is a real example generated by our model, where one of

the candidate patches codeafter is the actual fixed code (i.e., green path).
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2.1.3 Hyperparameter Search

Table 2.1 shows the 10 different configurations of hyperparameters we employed when

tuning the models. Each row represents a configuration with the following fields:

• ID: Configuration number;

• Embedding: the size of the embedding vector used to represent each token in the

sentence;

• Encoder and Decoder: Encoder and Decoder settings:

– Layers: number of layers;

– Units: number of units (i.e., neurons);

• Cell: Type of RNN cell used (e.g., LSTM or GRU);

Table 2.1: Hyperparameter Configurations

Encoder DecoderID Embedding Layers Units Layers Units Cell

1 256 1 256 2 256 GRU
2 256 1 256 2 256 LSTM
3 256 2 256 4 256 GRU
4 256 2 256 4 256 LSTM
5 256 2 512 4 512 GRU
6 256 2 512 4 512 LSTM
7 512 2 512 4 512 GRU
8 512 2 512 4 512 LSTM
9 512 1 256 2 256 GRU
10 512 1 256 2 256 LSTM

It is worth noting that, while there can be many more possible configurations, our goal

was to experiment with a diverse set of values for each parameter in a reasonable time.

More fine tuning will be needed in future work. In defining the grid of hyperparameter

values, we relied on the suggestions available in the literature [54], in particular, we define
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the Decoder to be deeper (i.e., number of layers) than the Encoder as experimental studies

suggest.

We found that the configuration yielding the best results is the #10: 512 embedding

size, 1-layer Encoder, 2-layers Decoder both with 256 neurons and LSTM cells. It is in-

teresting to note that this represents the shallowest model we tested, but with the biggest

dimensionality of embedding size. We believe this is due to two major factors: (i) the rela-

tively small number of training instances w.r.t. the model parameters makes larger models

effectively not being able to generalize on new instances; (ii) a larger dimensionality will

result in a more expressive representation for sentences, and in turn, better performances.

In recent experiments we tested an even smaller model (based on configuration #10)

with only 128 neurons for each layer with the goal of minimizing the model and obtain

better generalization. We observed a slight drop in performances (∼5%) but faster training

time. Further experiments shall be performed in order to tune the parameters of the model

and find the sweet spot between size and performances.

2.1.4 Overfitting

All standard neural network architectures such as the fully connected multi-layer

perceptron are prone to overfitting [74]: While the network seems to get better

and better, i.e., the error on the training set decreases, at some point during

training it actually begins to get worse again, i.e., the error on unseen examples

increases.

— Lutz Prechelt, Early Stopping - But When? [155]

This phenomenon is depicted in Figure 2.3, where the error (i.e., loss function) on the

training and validation set is observed throughout the training iterations. The error on the

training set steadily decreases during the training iterations, on the other hand, the error

on unseen examples belonging to the validation set starts to get worse at some point during

the training. In other words, the model stops generalizing and, instead, starts learning the
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statistical noise in the training dataset. This overfitting of the training dataset will result

in an increase in generalization error, making the model less useful at making predictions

on new data points.

Figure 2.3: Overfitting

Intuitively, we would like to stop the training right before the model starts to overfit

on the training instances (i.e., the early stopping point in Figure 2.3).

This strategy is known as early stopping. It is probably the most commonly

used form of regularization in deep learning. Its popularity is due both to its

effectiveness and its simplicity.

— Goodfellow et al., Deep Learning [77]

In this work, we employ early stopping to avoid overfitting. In particular, we let the

model train for a maximum of 60k iterations and select the model’s checkpoint with the

minimum error on the validation set – not the training set – and finally testing this selected

model on the unseen data in the test set.
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Chapter 3

Learning How to Mutate Source

Code from Bug-Fixes

3.1 Introduction

Mutation testing is a program analysis technique aimed at injecting artificial faults into

the program’s source code or bytecode [89, 64] to simulate defects. Mutants (i.e., versions

of the program with an artificial defect) can guide the design of a test suite, i.e., test cases

are written or automatically generated by tools such as Evosuite [71, 72] until a given

percentage of mutants has been “killed”. Also, mutation testing can be used to assess the

effectiveness of an existing test suite when the latter is already available [139, 53].

A number of studies have been dedicated to understand the interconnection between

mutants and real faults [41, 42, 63, 104, 127, 166, 105, 57]. Daran and Thévenod-Fosse [63]

and Andrews et al. [41, 42] indicated that mutants, if carefully selected, can provide a good

indication of a test suite’s ability to detect real faults. However, they can underestimate

a test suite’s fault detection capability [41, 42]. Also, as pointed out by Just et al. [105],

there is a need to improve mutant taxonomies in order to make them more representative

of real faults. In summary, previous work suggests that mutants can be representative

of real faults if they properly reflect the types and distributions of faults that programs
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exhibit. Taxonomies of mutants have been devised by taking typical bugs into account

[145, 110]. Furthermore, some authors have tried to devise specific mutants for certain

domains [98, 188, 65, 146, 186]. A recent work by Brown et al. [55] leveraged bug-fixes

to extract syntactic-mutation patterns from the diffs of patches. The authors mined 7.5k

types of mutation operators that can be applied to generate mutants.

However, devising specific mutant taxonomies not only requires a substantial manual

effort, but also fails to sufficiently cope with the limitations of mutation testing pointed

out by previous work. For example, different projects or modules may exhibit diverse

distributions of bugs and types, helping to explain why defect prediction approaches do

not work out-of-the-box when applied cross-project [205]. Instead of manually devising

mutant taxonomies, we propose to automatically learn mutants from existing bug fixes.

Such a strategy is likely to be effective for several reasons. First, a massive number of bug-

fixing commits are available in public repositories. In our exploration, we found around

10M bug-fix related commits on GitHub just in the last six years. Second, a buggy code

fragment arguably represents the perfect mutant for the fixed code because: (i) the buggy

version is a mutation of the fixed code; (ii) such a mutation already exposed a buggy

behavior; (iii) the buggy code does not represent a trivial mutant; (iv) the test suite did

not detect the bug in the buggy version. Third, advanced machine learning techniques

such as deep learning have been successfully applied to capture code characteristics and

effectively support several SE tasks tasks [189, 196, 115, 83, 81, 158, 92, 38, 39, 35].

Stemming from such considerations, and being inspired from the work of Brown et

al. [55], we propose an approach for automatically learning mutants from actual bug

fixes. After having mined bug-fixing commits from software repositories, we extract change

operations using an AST-based differencing tool and abstract them. Then, to enable

learning of specific mutants, we cluster similar changes together. Finally, we learn from

the changes using a Recurrent Neural Network (RNN) Encoder-Decoder architecture [106,

171, 59]. When applied to unseen code, the learned model decides in which location and

what changes should be performed. Besides being able to learn mutants from an existing
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source code corpus, and differently from Brown et al. [55], our approach is also able to

determine where and how to mutate source code, as well as to introduce new literals and

identifiers in the mutated code.

We evaluate our approach on 787k bug-fixing commits with the aim of investigating (i)

how similar the learned mutants are as compared to real bugs; (ii) how specialized models

(obtained by clustering changes) can be used to generate specific sets of mutants; and

(iii) from a qualitative point of view, what operators were the models able to learn. The

results indicate that our approach is able to generate mutants that perfectly correspond

to the original buggy code in 9% to 45% of cases (depending on the model). Most of the

generated mutants are syntactically correct (more than 98%), and the specialized models

are able to inject different types of mutants.

This chapter provides the following contributions:

• A novel approach for learning how to mutate source code from bug-fixes. To the

best of our knowledge, this is the first attempt to automatically learn and generate

mutants.

• Empirical evidence that our models are able to learn diverse mutation operators that

are closely related to real bugs.

• We release the data and code to enable replication [43].

3.2 Approach

We start by mining bug-fixing commits from thousands of GitHub repositories (Sec. 3.2.1).

From the bug-fixes, we extract method-level pairs of buggy and corresponding fixed code

that we call transformation pairs (TPs) (Sec. 3.2.2.1). TPs represent the examples we use

to learn how to mutate code from bug-fixes (fixed → buggy). We rely on GumTree [67]

to extract a list of edit actions (A) performed between the buggy and fixed code. Then,

we use a Java Lexer and Parser to abstract the source code of the TPs (Sec. 3.2.2.2)
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into a representation that is more suitable for learning. The output of this phase is the

set of abstracted TPs and their corresponding mapping M which allows to reconstruct the

original source code. Next, we generate different datasets of TPs (Sec. 3.2.2.4 and 3.2.2.5).

Finally, for each set of TPs we use an encoder-decoder model to learn how to transform a

fixed piece of code into the corresponding buggy version (Sec. 3.2.3).

3.2.1 Bug-Fixes Mining

We downloaded the GitHub Archive [80] containing every public GitHub event between

March 2011 and October 2017. Then, we used the Google BigQuery APIs to identify

commits related to bug-fixes. We selected all the commits having a message containing

the patterns: (“fix” or “solve”) and (“bug” or “issue” or “problem” or “error”). We identified

10,056,052 bug-fixing commits for which we extracted the commit ID (SHA), the project

repository, and the commit message.

Since we are aware that not all commit messages matching our pattern are neces-

sarily related to corrective maintenance [44, 93], we assessed the precision of the regular

expression used to identify bug-fixing commits. Two authors independently analyzed a

statistically significant sample (95% confidence level ±5% confidence interval, for a total

size of 384) of identified commits to judge whether the commits were actually referring to

bug-fixing activities. Next, the authors met to resolve a few disagreements in the evalua-

tion (only 13 cases). The evaluation results, available in our appendix [43], reported a true

positive rate of 97%. The commits classified as false positives mainly referred to partial

and incomplete fixes.

After collecting the bug-fixing commits, for each commit we extracted the source code

pre- and post- bug-fixing (i.e., buggy and fixed code) by using the GitHub Compare API

[75]. During this process, we discarded files that were created in the bug-fixing commit,

since there is no buggy version to learn from, as the mutant would be the deletion of the

entire source code file. In this phase, we also discarded commits that had touched more

than five Java files, since we aim to learn from bug-fixes focusing on only a few files and
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not spread across the system, and as found in previous work [94], large commits are more

likely to represent tangled changes, i.e., commits dealing with different tasks. Also, we

excluded commits related to repositories written in languages different than Java, since we

aim at learning mutation operators for Java code. After these filtering steps, we extracted

the pre- and post-code from ∼787k (787,178) bug-fixing commits.

3.2.2 Transformation Pairs Analysis

A TP is a pair (mb,mf ) where mb represents a buggy code component and mf represents

the corresponding fixed code. We will use these TPs as examples when training our RNN.

The idea is to train the model to learn the transformation from the fixed code component

(mf ) to the buggy code (mb), in order to generate mutants that are similar to real bugs.

3.2.2.1 Extraction

Given a bug-fix bf, we extracted the buggy files (fb) and the corresponding fixed (ff )

files. For each pair (fb, ff ), we ran AST differencing between the ASTs of fb and ff

using GumTree Spoon AST Diff [67], to compute the sequence of AST edit actions that

transforms fb into ff .

Instead of computing the AST differencing between the entire buggy and fixed files, we

separate the code into method-level pieces that will constitute our TPs. We first rely on

GumTree to establish the mapping between the nodes of fb and ff . Then, we extract the

list of mapped pairs of methods L = {(m1b,m1f ), . . . , (mnb,mnf )}. Each pair (mib,mif )

contains the method mib (from the buggy file fb) and the corresponding mapped method

mif (from the fixed file ff ). Next, for each pair of mapped methods, we extract a sequence

of edit actions using the GumTree algorithm. We then consider only those method pairs

for which there is at least one edit action (i.e., we disregard methods unmodified during

the fix). Therefore, the output of this phase is a list of TPs = {tp1, . . . , tpk}, where each

TP is a triplet tp = {mb,mf , A}, where mb is the buggy method, mf is the corresponding

fixed method, and A is a sequence of edit actions that transforms mb in mf . We do not
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consider any methods that have been newly created or completely deleted within the fixed

file, since we cannot learn mutation operations from them. Also, TPs do not capture

changes performed outside methods (e.g., class name).

The rationale behind the choice of method-level TPs is manyfold. First, methods

represent a reasonable target for mutation, since they are more likely to implement a

single task. Second, methods provide enough meaningful context for learning mutations,

such as variables, parameters, and method calls used in the method. Smaller snippets of

code lack the necessary context. Third, file- or class-level granularity could be too large

to learn patterns of transformation. Finally, considering arbitrarily long snippets of code,

such as hunks in diffs, could make the learning more difficult given the variability in size

and context [113, 33]. Note that we consider each TP as an independent fix, meaning that

multiple methods modified in the same bug fixing activity are considered independently

from one other. In total, we extracted ∼2.3M TPs.

3.2.2.2 Abstraction

The major problem in dealing with raw source code in TPs is the extremely large vocabu-

lary created by the multitude of identifiers and literals used in the code of the ∼2M mined

projects. This large vocabulary would hinder our goal of learning transformations of code

as a neural machine translation task. Therefore, we abstract the code and generate an

expressive yet vocabulary-limited representation. We use a combination of a Java lexer

and parser to represent each buggy and fixed method within a TP, as a stream of tokens.

First, the lexer (based on ANTLR [152, 150]) reads the raw code tokenizing it into a stream

of tokens. The tokenized stream is then fed into a Java parser [185], which discerns the

role of each identifier (i.e., whether it represents a variable, method, or type name) and

the type of literals.

Each TP is abstracted in isolation. Given a TP tp = {mb,mf , A}, we first consider

the source code of mf . The source code is fed to a Java lexer, producing the stream of to-

kens. The stream of tokens is then fed to a Java parser, which recognizes the identifiers and
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literals in the stream. The parser then generates and substitutes a unique ID for each iden-

tifier/literal within the tokenized stream. If an identifier or literal appears multiple times

in the stream, it will be replaced with the same ID. The mapping of identifiers/literals with

their corresponding IDs is saved in a map (M). The final output of the Java parser is the

abstracted method (abstractf ). Then, we consider the source code of mb. The Java lexer

produces a stream of tokens, which is then fed to the parser. The parser continues to use

mapM formb. The parser generates new IDs only for novel identifiers/literals, not already

contained in M , meaning, they exist in mb but not in mf . Then, it replaces all the iden-

tifiers/literals with the corresponding IDs, generating the abstracted method (abstractb).

The abstracted TP is now the following 4-tuple tpa = {abstractb, abstractf , A,M}, where

M is the ID mapping for that particular TP. The process continues considering the next

TP, generating a new mapping M . Note that we first analyze the fixed code mf and then

the corresponding buggy code mb of a TP since this is the direction of the learning process

(from mb to mf ).

The assignment of IDs to identifiers and literals occurs in a sequential and positional

fashion. Thus, the first method name found will receive the ID METHOD_1, likewise the

second method name will receive ID METHOD_2. This process continues for all method

and variable names (VAR_X) and literals (STRING_X, INT_X, FLOAT_X). Figure 3.1 shows an

example of the TP’s abstracted code. It is worth noting that IDs are shared between the two

versions of the methods and new IDs are generated only for newly found identifiers/literals.

The abstracted code allows to substantially reduce the number of unique words in the

vocabulary because we allow the reuse of IDs across different TPs. For example, the first

method name identifier in any transformation pair will be replaced with the ID METHOD_1,

regardless of the original method name.

At this point, abstractb and abstractf of a TP are a stream of tokens consisting of

language keywords (e.g., if), separators (e.g., “(”, “;”) and IDs representing identifiers and

literals. Comments and annotations have been removed.
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public MyList checkList(MyList l){
   if(l.size() < 0)
      populateList(l);
   return l;}

public MyList checkList(MyList l){
   if(l.size() < 1)
      populateList(l);
   return l;}

buggy code fixed code
bug-fix

mutation

public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . METHOD_2 
( )  < INT_1 ) METHOD_3 
( VAR_1 ) ; return VAR_1 ; }

abstracted buggy code abstracted fixed code
public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . METHOD_2 
( )  < INT_2 ) METHOD_3 
( VAR_1 ) ; return VAR_1 ; }

public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . size 
( )  < 1 ) METHOD_2 ( VAR_1 ); 
return VAR_1 ; }

abstracted buggy code with idioms abstracted fixed code with idioms
public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . size 
( )  < 0 ) METHOD_2 ( VAR_1 ) ; 
return VAR_1 ; }

learning

Figure 3.1: Transformation Pair Example.
Figure 3.1 shows an example of a TP. The left side is the buggy code and the right side

is the same method after the bug-fix (changed the if condition). The abstracted stream of

tokens is shown below each corresponding version of the code. Note that the fixed version

is abstracted before the buggy version. The two abstracted streams share most of the

IDs, except for the INT_2 ID (corresponding to the int value 0), which appears only in the

buggy version.

There are some identifiers and literals that appear so often in the source code that, for

the purpose of our abstraction, they can almost be treated as keywords of the language.

For example, the variables i, j, or index are often used in loops. Similarly, literals such

as 0, 1, -1 are often used in conditional statements and return values. Method names,

such as getValue, appear multiple times in the code as they represent common concepts.

These identifiers and literals are often referred to as “idioms” [55]. We keep these idioms in

our representation, that is, we do not replace idioms with a generated ID, but rather keep

the original text in the code representation. To define the list of idioms, we first randomly

sampled 300k TPs and considered all their original source code. Then, we extracted the

frequency of each identifier/literal used in the code, discarding keywords, separators, and

comments. Next, we analyzed the distribution of the frequencies and focused on the top

frequent words (outliers of the distribution). In particular, we focused on the top 0.005% of
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the distribution. Two authors manually analyzed this list and curated a set of 272 idioms.

Idioms also include standard Java types such as String, Integer, common Exceptions,

etc. The complete list of idioms is available on our online appendix [43].

Figure 3.1 shows the idiomized abstracted code at the bottom. The method name size

is now kept in the representation and not substituted with an ID. This is also the case for

the literal values 0 and 1, which are very frequent idioms. Note that the method name

populateList is now assigned ID METHOD_2 rather than METHOD_3. This representation

provides enough context and information to effectively learn code transformations, while

keeping a limited vocabulary (|V | = ∼430). Note that the abstracted code can be mapped

back to the real source code using the the mapping (M).

3.2.2.3 Filtering Invalid TPs

Given the extracted list of 2.3M TPs, we manipulated their code via the aforementioned

abstraction method. During the abstraction, we filter out such TPs that: (i) contain

lexical or syntactic errors (i.e., either the lexer or parser failed to process them) in either

the buggy or fixed version of the code; (ii) their buggy and fixed abstracted code (abstractb,

abstractf ) resulted in equal strings. The equality of abstractb and abstractf is evaluated

while ignoring whitespace, comments or annotations edits, which are not useful in learning

mutants. Next, we filter out TPs that performed more than 100 atomic AST actions

(|A| > 100) between the buggy and fixed version. The rationale behind this decision was

to eliminate outliers of the distribution (the 3rd quartile of the distribution is 14 actions)

which could hinder the learning process. Moreover, we do not aim to learn such large

mutations. Finally, we discard long methods and focus on small/medium size TPs. We

filter out TPs whose fixed or buggy abstracted code is longer than 50 tokens. We discuss

this choice in the Section 3.5 and report preliminary results also for longer methods. After

the filtering, we obtained ∼380k TPs.
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3.2.2.4 Synthesis of Identifiers and Literals

TPs are the examples we use to make our model learn how to mutate source code. Given a

tp = {mb,mf , A}, we first abstract its code, obtaining tpa = {abstractb, abstractf , A,M}.

The fixed code abstractf is used as input to the model which is trained to output the

corresponding buggy code (mutant) abstractb. This output can be mapped back to real

source code using M .

In the current usage scenario (i.e., generating mutants), when the model is deployed,

we do not have access to the oracle (i.e., buggy code, abstractb), but only to the input

code. This source code can then be abstracted and fed to the model, which generates as

output a predicted code (abstractp). The IDs that the abstractp contains can be mapped

back to real values only if they also appear in the input code. If the mutated code suggests

to introduce a method call, METHOD_6, which is not found in the input code, we cannot

automatically map METHOD_6 to an actual method name. This inability to map back

source code exists for any newly created ID generated for identifiers or literals, which are

absent in the input code. Synthesizing new identifiers would involve extensive knowledge

about the project, control and data flow information. For this reason, we discard the TPs

that contain, in the buggy method mb, new identifiers not seen in the fixed method mf .

The rationale is that we want to train our model from examples that rearrange existing

identifiers, keywords and operators to mutate source code. Instead, this is not the case

for literals. While we cannot perfectly map a new literal ID to a concrete value, we can

still synthesize new literals by leveraging the type information embedded in the ID. For

example, the (fixed) if condition in Figure 3.1 if(VAR_1.METHOD_2( ) < INT_1) should

be mutated in its buggy version if(VAR_1.METHOD_2( ) < INT_2). The value of INT_2

has never appeared in the input code (fixed), but we could still generate a compilable

mutant by randomly generating a new integer value (different from any literal in the input

code). While in these cases the literal value is randomly generated, the mutation model

still provides the prediction about which literal to mutate.
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For such reasons, we create two sets of TPs, hereby referred as TPident and TPident−lit.

TPident contains all TPs tpa = {abstractb, abstractf , A,M} such that every identifier ID

(VAR_, METHOD_, TYPE_) in abstractb is found also in abstractf . In this set we do allow

new literal IDs (STRING_, INT_, etc.). TPident−lit is a subset of TPident, which is more

restrictive, and only contains the transformation pairs tpa = {abstractb, abstractf , A,M}

such that every identifier and literal ID in abstractb is found also in abstractf . Therefore,

we do not allow new identifiers nor literals.

The rationale behind this choice is that we want to learn from examples (TPs) where

the model is able to generate compilable mutants (i.e., generate actual source code, with

real values for IDs). In the case of the TPident−lit set, the model will learn from examples

that do not introduce any new identifier and literal. This means that the model will likely

generate code for which every literal and identifier can be mapped to actual values. From

the set TPident the model will likely generate code for which we can map every identifier

but we may need to generate new random literals.

In this context it is important to understand the role played by the idioms in our code

representation. Idioms help to retain transformation pairs that we would otherwise discard,

and learn transformation of literal values that we would otherwise need to randomly gen-

erate. Consider again the previous example if(VAR_1 . METHOD_2 ( ) < INT_1) and

its mutated version if(VAR_1 . METHOD_2 ( ) < INT_2). In this example, there are no

idioms and, therefore, the model learns to mutate INT_1 to INT_2 within the if condition.

However, when we want to map back the mutated (buggy) representation to actual source

code, we will not have a value for INT_2 (which does not appear in the input code) and,

thus, we will be forced to generate a synthetic value for it. Instead, with the idiomized

abstract representation the model would treat the idioms 0 and 1 as keywords of the lan-

guage and learn the exact transformation of the if condition. The proposed mutant will

therefore contain directly the idiom value (1) rather than INT_2. Thus, the model will learn

and propose such transformation without the need to randomly generate literal values. In

summary, idioms increase the number of transformations incorporating real values rather
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than abstract representations. Without idioms, we would lose these transformations and

our model could be less expressive.

3.2.2.5 Clustering

The goal of clustering is to create subsets of TPs such that TPs in each cluster share a

similar list of AST actions. Each cluster represents a cohesive set of examples so that a

trained a model can apply those actions to a new code.

As previously explained, each transformation pair tp = {mb,mf , A} includes a list

of AST actions A. In our dataset, we found ∼1,200 unique AST actions, and each TP

can perform a different number and combination of these actions. Deciding whether the

transformation pairs, tp1 and tp2, perform a similar sequence of actions and, thus, should

be clustered together, is far from trivial. Possible similarity functions include the number

of shared elements in the two sets of actions and the frequency of particular actions within

the sets. Rather than defining such handcrafted rules, we choose to learn similarities

directly from the data. We rely on an unsupervised learning algorithm that learns vector

representations for the lists of actions A of each TP. We treat each list of AST actions

(A) as a document and rely on doc2vec [161] to learn a fixed-size vector representation

of such variable-length documents embedded in a latent space where similarities can be

computed as distances. The closer two vectors are, the more similar the content of the

two corresponding documents. In other words, we mapped the problem of clustering TPs

to the problem of clustering continuous valued vectors. To this goal, we use k-means

clustering, requiring the number of clusters (k) into which to partition the data upfront.

When choosing k, we need to balance two conflicting factors: (i) maximize the number

of clusters so that we can train several different mutation models and, as a consequence,

apply different mutations to a given piece of code; and (ii) have enough training examples

(TPs) in each cluster to make the learning possible. Regarding the first point, we target at

least three mutation models. Concerning the second point, with the available TPs dataset

we could reasonably train no more than six clusters, so that each of those contain enough
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TPs. Thus, we experiment on the dataset TPident−lit with values of k going from 3 to 6

at steps of 1 and we evaluate each clustering solution in terms of its Silhouette statistic

[107, 112], a metric used to judge the quality of clustering. We found that k = 5 generates

the clusters with the best overall Silhouette values. We cluster the dataset TPident−lit into

clusters: C1, C2, C3, C4, C5.

3.2.3 Learning Mutations

3.2.3.1 Dataset Preparation

Given a set of TPs (i.e., TPident, TPident−lit, C1, . . . , C5) we use the instances to train

our Encoder-Decoder model. Given a tpa = {abstractb, abstractf , A,M} we use only the

pair (abstractf , abstractb) of fixed and buggy abstracted code for learning. No additional

information about the possible mutation actions (A) is provided during the learning process

to the model. The given set of TPs is randomly partitioned into: training (80%), evaluation

(10%), and test (10%) sets. Before the partitioning, we make sure to remove any duplicated

pairs (abstractf , abstractb) to not bias the results (i.e., same pair both in training and test

set).

3.2.3.2 Encoder-Decoder Model

Our models are based on an RNN Encoder-Decoder architecture, commonly adopted in

Machine Translation [106, 171, 59]. This model comprises two major components: an

RNN Encoder, which encodes a sequence of terms x into a vector representation, and

an RNN Decoder, which decodes the representation into another sequence of terms y.

The model learns a conditional distribution over a (output) sequence conditioned on an-

other (input) sequence of terms: P (y1, .., ym|x1, .., xn), where n and m may differ. In

our case, given an input sequence x = abstractf = (x1, .., xn) and a target sequence

y = abstractb = (y1, .., ym), the model is trained to learn the conditional distribution:

P (abstractb|abstractf ) = P (y1, .., ym|x1, .., xn), where xi and yj are abstracted source
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tokens: Java keywords, separators, IDs, and idioms. The Encoder takes as input a se-

quence x = (x1, .., xn) and produces a sequence of states h = (h1, .., hn). We rely on

a bi-directional RNN Encoder [46] which is formed by a backward and forward RNNs,

which are able to create representations taking into account both past and future inputs

[54]. That is, each state hi represents the concatenation of the states produced by the two

RNNs reading the sequence in a forward and backward fashion: hi = [
−→
hi ;
←−
hi ]. The RNN

Decoder predicts the probability of a target sequence y = (y1, .., ym) given h. Specifically,

the probability of each output term yi is computed based on: (i) the recurrent state si in

the Decoder; (ii) the previous i − 1 terms (y1, .., yi−1); and (iii) a context vector ci. The

latter practically constitutes the attention mechanism. The vector ci is computed as a

weighted average of the states in h, as follows: ci =
∑n

t=1 aitht where the weights ait allow

the model to pay more attention to different parts of the input sequence. Specifically, the

weight ait defines how much the term xi should be taken into account when predicting

the target term yt. The entire model is trained end-to-end (Encoder and Decoder jointly)

by minimizing the negative log likelihood of the target terms, using stochastic gradient

descent.

3.2.3.3 Configuration and Tuning

For the RNN Cells we tested both LSTM [96] and GRU [59], founding the latter to be

slightly more accurate and faster to train. Before settling on the bi-directional Encoder,

we tested the unidirectional Encoder (with and without reversing the input sequence), but

we consistently found the bi-directional one yielding more accurate results. Bucketing and

padding was used to deal with the variable length of the sequences. We tested several

combinations of the number of layers (1,2,3,4) and units (256, 512). The configuration

that best balanced performance and training time was the one with 1 layer encoder, 2

layer decoder both with 256 units. We train our models for 40k epochs, which represented

our empirically-based sweet spot between training time and loss function improvements.

The evaluation step was performed every 1k epochs.
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3.3 Experimental Design

The evaluation has been performed on the dataset of bug fixes described in Section ?? and

answers three RQs.

RQ1: Can we learn how to generate mutants from bug-fixes? RQ1 investigates

the extent to which bug fixes can be used to learn and generate mutants. We train models

based on the two datasets: TPident and TPident−lit. We refer to such models with the

name general models (GMident, GMident−lit), because they are trained using TPs of each

dataset without clustering. Each dataset is partitioned into 80% training, 10% validation,

10% testing.

BLEU Score. The first performance metric we use is the Bilingual Evaluation Under-

study (BLEU) score, a metric used to assess the quality of a machine translated sentence

[149]. BLEU scores require reference text to generate a score, which indicates how similar

the candidate and reference texts are. The candidate and reference texts are broken into

n-grams and the algorithm determines how many n-grams of the candidate text appear

in the reference text. We report the global BLEU score, which is the geometric mean of

all n-grams up to four. To assess our mutant generation approach, we first compute the

BLEU score between the abstracted fixed code (abstractf ) and the corresponding target

buggy code. This BLEU score serves as our baseline for comparison. We compute the

BLEU score between the predicted mutant (abstractp) and the target (abstractb). The

higher the BLEU score, the more similar abstractp is to abstractb, i.e., the actual buggy

code. To fully understand how similar our prediction is to the real buggy code, we need to

compare the BLEU score with our baseline. Indeed, the input code (i.e., the fixed code)

provided to our model can be considered by itself as a “close translation” of the buggy

code, therefore, helping in achieving a high BLEU score. To avoid this bias, we compare

the BLEU score between the fixed code and the buggy code (baseline) with the BLUE

score obtained when comparing the predicted buggy code (abstractp) to the actual buggy

code (abstractb). If the BLEU score between abstractp and abstractb is higher than that
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one between abstractf and abstractb, it means that the model transforms the input code

(abstractf ) into a mutant (abstractp) that is closer to the buggy code (abstractb) than it

was before the mutation, i.e., the mutation goes in the right direction. In the opposite

case, the predicted code represents a translation that is further from the buggy code when

compared to the original input. To assess whether the differences in BLEU scores between

the baseline and the models are statistically significant, we employ a technique devised

by Zhang et al. [203]. Given the test set, we generate m = 2, 000 test sets by sampling

with replacement from the original test set. Then, we evaluate the BLEU score on the

m test sets both for our model and the baseline. Next, we compute the m deltas of the

scores: δi = modeli − baselinei. Given the distribution of the deltas, we select the 95%

confidence interval (CI) (i.e., from the 2.5th percentile to the 97.5th percentile). If the CI

is completely above or below the zero (e.g., 2.5th percentile > 0) then the differences are

statistically significant.

Prediction Classification. Given abstractf , abstractb and abstractp, we classify each

prediction into one of the following categories: (i) perfect prediction if abstractp = abstractb

(the model converts the fixed code back to its buggy version, thus reintroducing the

original bug); (ii) bad prediction if abstractp = abstractf (the model was not able to

mutate the code and returned the same input code); and (iii) mutated prediction if

abstractp 6= abstractb AND abstractp 6= abstractf (the model mutated the code, but

differently than the target buggy code). We report raw numbers and percentages of the

predictions falling in the described categories.

Syntactic Correctness. To be effective, mutants need to be syntactically correct, allow-

ing the project to be compiled and tested against the test suite. We evaluate whether the

models’ predictions are lexically and syntactically correct by means of a Java lexer and

parser. Perfect predictions and bad predictions are already known to be syntactically cor-

rect, since we established the correctness of the buggy and fixed code when extracting the

TPs. The correctness of the predictions within the mutated prediction category is instead

unknown. For this reason, we report both the overall percentage of syntactically correct
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predictions as well as the mutated predictions. We do not assess the compilability of the

code.

Token-based Operations. We analyzed and classified models’ predictions also based on

their tokens’ operations, classifying the predictions into one of four categories: (i) insertion

if #tokens predictions >#tokens input; (ii) changes if #tokens prediction = #tokens input

AND prediction 6= input; (iii) deletions if #tokens prediction < #tokens input; (iv) none

if prediction = input. This analysis aims to understand whether the models are able to

insert, change or delete tokens.

AST-based Operations. Next, we focus on the mutated predictions. These are not

perfect predictions, but we are interested in understanding whether the transformations

performed by the models are somewhat similar to the transformations between the fixed

and buggy code. In other words, we investigate whether the model performs AST ac-

tions similar to the ones needed to transform the input (fixed) code into the corresponding

buggy code. Given the input fixed code abstractf , the corresponding buggy code abstractb,

and the predicted mutant abstractp, we extract with GumTreeDiff the following lists of

AST actions: Af−b = actions(abstractf → abstractb) and Af−p = actions(abstractf →

abstractp). We then compare the two lists of actions, Af−b and Af−p, to assess their

similarities. We report the percentage of mutated predictions whose list of actions Af−p

contains the same elements and frequency of those found in Af−b. We also report the per-

centage of mutated predictions when only comparing their unique actions and disregarding

their frequency. In those cases, the model performed the same list of actions but possibly

in a different order, location or frequency than those which led to the perfect prediction

(buggy code).

RQ2: Can we train different mutation models? RQ2 evaluates the five models

trained using the five clusters of TPs. For each model, we evaluate its performance on

the corresponding 10% test set using the same analyses discussed for RQ1. In addition,

we evaluate whether models belonging to different clusters generate different mutants. To

this aim, we first concatenate the test set of each cluster into a single test set. Then, we
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feed each input instance in the test set (fixed code) to each and every mutation model

M1, ..,M5, obtaining five mutant outputs. After that, we compute the number of unique

mutants generated by the models. For each input, the number of unique mutants ranges

from one to five depending on how many models generate the same mutation. We report

the distribution of unique mutants generated by the models.

RQ3: What are the characteristics of the mutants generated by the mod-

els? RQ3 qualitatively assesses the generated mutants through manual analysis. We first

discuss some of the perfect predictions found by the models. Then, we focus our attention

on the mutated predictions (neither perfect nor bad predictions). We randomly selected

a statistically significant sample from the mutated predictions of each cluster-model and

manually analyzed them. The manual evaluation assesses (i) whether the functional behav-

ior of the generated mutant differs from the original input code; (ii) the types of mutation

operations performed by the model in generating the mutant.

Three judges, among the authors, were involved in this analysis, and we required

each instance to be independently evaluated by two judges. The judges were presented

with the original input code and the mutated code. The judges defined the mutation

operations types in an open-coding fashion. Also, they were required to indicate whether

the performed mutation changed the code behavior. After the initial evaluation, two of the

three judges met to discuss and resolve the conflicts in the evaluation results. We define

a conflict as any instance for which two of the judges disagreed on either the changes

in the functional behavior or the set of mutation operations assigned. We report the

distribution of the mutation operators applied by the different cluster-models and highlight

the differences.

3.4 Results

RQ1: Can we learn how to generate mutants?
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Table 3.1: BLEU Score

Model abstractf - abstractb abstractp - abstractb 2.5th percentile
(baseline) (mutation) δ =mutation - baseline

GMident 71.85 76.68 +5.63
GMident−lit 70.07 76.92 +7.97

M1 67.18 82.16 +17.01
M2 51.58 50.96 +1.01
M3 81.89 83.15 +0.94
M4 67.04 78.87 +12.45
M5 65.68 77.73 +13.51

BLEU Score. The top part of Table 3.1 shows the BLEU scores obtained by the two

general models and compared with the baseline. The rightmost column represents the

2.5th percentile of the distribution of the deltas. Compared to the baseline, the models

achieve a better BLEU score when mutating the source code w.r.t. the target buggy code.

The differences are statistically significant, and the 2.5th percentile of the distribution of

the deltas (+5.63 and +7.97), shows that the models’ BLEU scores are significantly higher

than those obtained by the baseline. The observed increase in BLEU score indicates

that the code mutated by our approach (abstractp) is more similar to the buggy code

(abstractb) than the input code (abstractf ). Thus, the injected mutations push the fixed

code towards a “buggy” state, exactly what we expect from mutation operators. While our

baseline is relatively simple, improvements of few BLEU score points have been treated as

“considerable” in neural machine translation tasks [199].

Prediction Classification. Table 3.2 shows the raw numbers and percentages of predic-

tions falling into the three categories previously described (i.e., perfect, mutated, and bad

predictions). The GMident generated 1,991 (17%) perfect predictions whereas GMident−lit

2,132 (21%) perfect predictions. We fed into the trained model a fixed piece of code, which

the model has never seen before, and the model was able to perfectly predict the buggy

version of that code, i.e., to replicate the original bug. No information about the type of

mutation operations to perform nor mutation locations are provided to the model. The

fixed code is its only input. It is also important to note that, for the perfect predictions

of the GMident−lit model, we can transform the entire abstracted code to actual source
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Table 3.2: Prediction Classification

Model Perfect pred. Mutated pred. Bad pred. Total

GMident 1,991 (17%) 6,020 (52%) 3,548 (31%) 11,559
GMident−lit 2,132 (21%) 5,240 (52%) 2,644 (27%) 10,016

M1 1,348 (45%) 1,500 (49%) 190 (6%) 3,038
M2 65 (9%) 635 (91%) 1 (0%) 701
M3 392 (13%) 967 (33%) 1,603 (54%) 2,962
M4 721 (29%) 1,453 (57%) 358 (14%) 2,532
M5 366 (34%) 681 (63%) 33 (3%) 1,080

code by mapping each and every ID to their corresponding value. The perfect predictions

generated by GMident can be mapped to actual source code but, in some cases, we might

need to randomly generate new literal values.

GMident and GMident−lit generate 6,020 (52%) and 5,240 (52%) mutated predictions,

respectively. While these predictions do not match the actual buggy code, they still rep-

resent meaningful mutants. We analyze these predictions in terms of syntactic correctness

and types of operations they perform.

Finally, GMident and GMident−lit are not able to mutate the source code in 3,548 (30%)

and 2,644 (26%) cases, respectively. While the percentages are non-negligible, it is still

worth noting that overall, in 69% and 73% of cases, the models are able to mutate the

code. These instances of bad predictions can be seen as cases where the model is unsure

on how to properly mutate the code. There are different strategies that could be adopted

to force the model to mutate the code (e.g., penalize during training predictions that are

equal to the input code, modify the inference step, or using beam search and select the

prediction that is not equal to the input).

Syntactic Correctness. Table 3.3 reports the percentage of syntactically correct predic-

tions performed by the model. More than 98% of the model predictions are lexically and

syntactically correct. When focusing on mutated predictions, the syntactic correctness is

still very high (>96%). This indicates that the model is able to learn the correct syntax

rules from the abstracted representation we use as input/output of the model. While we
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Table 3.3: Syntactic Correctness

Model Mutated pred. Overall

GMident 96.96% 98.42%
GMident−lit 96.56% 98.20%

M1 96.07% 98.06%
M2 95.12% 95.58%
M3 94.42% 98.18%
M4 95.25% 97.27%
M5 91.48% 94.63%

do not report statistics on the compilability of the mutants, we can assume that the ∼20%

perfect predictions generated by the models are compilable, since they correspond to actual

buggy code that was committed to software repositories. This means that the compilabil-

ity rate of the mutants generated by our models is at least around 20%. This is a very

conservative estimation that does not consider the mutated predictions. Brown et al. [55]

achieved a compilability rate of 14%. Moreover, “the majority of failed compilations (64%)

arise from simple parsing errors” [55], whereas we achieve a better estimated compilability

and a high percentage of syntactically correct predictions.

Token-based Operations. Table 3.4 shows the classification of predictions based on the

token-based operations performed by the models. GMident and GMident−lit generated

predictions that resulted in the insertion of tokens in 1% of the cases, changed nodes in

5% and 3% of the cases, and deletion of tokens in 63% and 69%, respectively. While most

of the predictions resulted in token deletions, it is important to highlight that our models

are able to generate predictions that insert and change tokens. We investigated whether

these results were in-line with the actual data, or whether this was due to a drawback

of our learning. We found that the operations performed in the bug-fixes we collected

are: 72% insertion, 8% deletion, and 20% changes. This means that bug-fixes mostly tend

to perform insert operations (e.g., adding an if statement to check for an exceptional

condition), which means that when learning to inject bugs by mutating the code, it is

expected to observe a vast majority of delete operations (see Table 3.4).
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Table 3.4: Token-based Operations

Model Insertion Changes Deletion None

GMident 97 (1%) 624 (5%) 7,290 (63%) 3,548 (31%)
GMident−lit 125 (1%) 264 (3%) 6,983 (70%) 2,644 (26%)

M1 11 (0%) 30 (1%) 2,807 (93%) 190 (6%)
M2 27 (4%) 11 (2%) 662 (94%) 1 (0%)
M3 42 (2%) 217 (7%) 1,100 (37%) 1,603 (54%)
M4 87 (3%) 123 (5%) 1,964 (78%) 358 (14%)
M5 25 (2%) 20 (2%) 1,002 (93%) 33 (3%)

Table 3.5: AST-based Operations

Model Same Operation Set Same Operation List

GMident 16.02% 13.90%
GMident−lit 24.44% 21.90%

M1 54.46% 48.66%
M2 11.18% 10.23%
M3 15.20% 14.27%
M4 31.65% 29.24%
M5 41.55% 37.44%

AST-based Operations. Table 3.5 reports the percentage of mutated predictions that

share the same set or list of operations that would have led to the actual buggy code.

GMident and GMident−lit generate a significant amount of mutated predictions which per-

form the same set (16% and 24% respectively) or the same type and frequency (14% and

21%) of operations w.r.t. the buggy code. This shows that our models can still generate

mutated code that is similar to the actual buggy code.

Summary for RQ1. Our models are able to learn from bug-fixes how to mutate source

code. The general models generate mutants that perfectly correspond to the original buggy

code in ∼20% of the cases. The mutants generated are mostly syntactically correct (>98%)

and with an estimated compilability rate of at least 20%.

RQ2: Can we train different mutation models? We present the performance

of the cluster models M1,..,M5 based on the metrics introduced before. Each model has
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Perfect prediction generated by the general models
1
2

Mutated prediction generated by the general models
public boolean isFound (Calculation currentElement, Object expectedElement ) { return currentElement.equals ( expectedElement ) ; }
public boolean isFound (Calculation currentElement, Object expectedElement ) { return (currentElement) == ( expectedElement ) ; }

3
4

Diverse mutants generated by the cluster models
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount ++ ; } }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount ++ ; } }
private void addPhotoFace ( int x , int y ) { }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; } }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount = 1 ; } }
private void addPhotoFace ( int x , int y ) { while ( rowCount < y ) ) { addRow ( rowCount , x ) ; } }

F
M1
M2
M3
M4
M5

public TYPE_1 remove ( int index ) { TYPE_2 < TYPE_1 > VAR_1 = this . VAR_2 . remove ( index ) ; return null != VAR_1 ? VAR_1 . get ( ) : null ; }
public TYPE_1 remove ( int index ) { return this . VAR_2 . remove ( index ) . get ( ) ; }

Figure 3.2: Qualitative Examples
been trained and evaluated on the corresponding cluster of TPs, with respective sizes of

C1 = 30,385, C2 = 7,016, C3 = 29,625, C4 = 25,320, and C5 = 10,798.

BLEU Score. Table 3.1 shows the BLEU scores obtained by the five models. The BLEU

scores for these models (mutation column) are relatively high, between 77.73 and 83.15

(with exception of model M2), meaning that the mutated code generated by such models

is a very close translation of the actual buggy code. Looking at the distribution of the

deltas, we can notice that all the 2.5th percentiles are greater than zero, meaning that the

models achieve a BLEU score which is statistically better than the baselines. Even in the

case of M2, for which the global BLEU score is slightly lower than the baseline, when the

comparison is performed over 2,000 random samples, it outperforms the baseline.

Prediction Classification. Table 3.2 shows the raw numbers and percentages of predic-

tions falling in the three categories we defined. Model M1 achieves the highest percentage

of Perfect predictions (44%), followed by model M5 (33%) and model M4 (28%). This

means that, given a fixed code, it is very likely that at least one of the models would

predict the actual buggy code, as well as other interesting mutants. At the same time, the

percentages of Bad predictions decreased significantly (except for M3) w.r.t. the general

models.

The high percentage of bad predictions for M3 can be partially explained by looking

at the actual data in the cluster. The TPs in C3 exhibits small transformations of the

code. This is also noticeable from Table 3.1, which shows a baseline BLEU score of 81.89

(the highest baseline value), which means that the input fixed code is already a close

translation of the corresponding buggy code. This may have led the model to fall in a local
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Figure 3.3: Cluster Models Operations
minimum where the mutation of the fixed code is the fixed code itself. Solutions for this

problem may include: (i) further partitioning the cluster into more cohesive sub-clusters;

(ii) allowing more training times/epochs for such models; (iii) implementing changes in the

training/inference that we discussed previously.

Syntactic Correctness. Table 3.3 reports the percentage of syntactically correct predic-

tions performed by the models. Overall, the cluster model results are in-line with what

was found for the general models, with an overall syntactic correctness between 94.63%

and 98.18%. When focusing only on the mutated predictions, we still obtain very high

syntactic correctness, between 91% and 97%. In terms of compilability, we could expect

even better results for these models, given the higher rate of perfect predictions (which are

likely to be compilable) generated by the cluster models.

Token-based Operations. Table 3.4 shows the classification of predictions based on the

token-based operations performed by the models. The results for the cluster models are

similar to what we found for general models, with higher percentages of deletions. In the
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next sections we will look more into the differences among the operations performed by

each model.

AST-based Operations. Table 3.5 reports the percentage of mutated predictions sharing

the same set or list of operations w.r.t. the target buggy code. Cluster models, trained on

cohesive sets of examples, generate a higher percentage of mutated predictions sharing the

same set or list of operations as the target buggy code, as compared to the general models.

The results for M1, M4, and M5 are particularly good as they generate mutants with the

same set of operations in 54%, 31%, and 41% of the cases, respectively, and with the same

list of operations in 48%, 29%, and 37%, respectively.

Unique Mutants Generated. The distribution of unique mutants generated by the five

models has the 1st Qu. and Median values equal to 4, the mean equal to 4.2, and the 3rd

Qu. equal to 5. Thus, the distribution appear to be skewed towards the maximum value

(5). This demonstrates that we are able to train different mutation models that generate

diverse mutants given the same input code.

Generate Multiple Mutants. We showed that clusters models are able to generate a

diverse set of mutants, however it is also possible – for each single model – to generate

k different mutants for a given piece of code via beam search decoding. In a preliminary

investigation we performed, we found that each model can generate more than 50 diverse

mutants for a single method, with impressive ∼80% syntactic correctness.

Summary for RQ2. The cluster models generate a high percentage of perfect predic-

tions (between 9% and 45%) with a syntactic correctness between 94% and 98%. Even

when the models generate mutants that are not perfect predictions, they usually apply a

similar set of operations w.r.t. the buggy code. Furthermore, the trained models generate

diverse mutants.

RQ3: What are the characteristics of the mutants generated by the models?

Figure 3.2 shows examples of perfect and mutated predictions generated by the general

models, as well as diverse mutants generated by the cluster models for the same input
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code. At the top, each example shows the input code (fixed) followed by the generated

mutated code.

The first example is a perfect prediction generated by the general model. The top line

is the abstracted fixed code fed to the model, and the bottom line represents the output

of the model, which perfectly corresponds to the target buggy code. The fixed code first

removes the element at index from VAR_2, assigning it to the VAR_1, and then, if the newly

defined variable is not null, it invokes the method get and returns its value, otherwise it

returns null. The general model was able to apply different transformations of the code to

generate the original buggy code, which invokes all the methods in sequence and returns

the value. If the removed element is null, the buggy code will throw an exception when

invoking the method get. This transformation of the code does not fit in any existing

mutation operator category.

Next, we report an interesting case of mutated prediction. In this case, we used the

mapping M to automatically map back every identifiers and literals, showing the ability

to generate actual source code from the output of the model. The model replaced the

equals() method call with an equality expression (==). This shows how the model was

able to learn common bugs introduced by developers when comparing objects. Note that

the method name equals is an idiom, which allowed the model to learn this transformation.

Finally, the bottom part of Figure 3.2 shows the five mutants generated by the cluster

models for the same fixed code (F) provided as input. In this case, we used the mapping

M to retrieve the source code from the output of the models. We selected this example

because it shows both interesting mutations and some limitations of our approach. M1

was not able to generate a mutant and returned the same input code (bad prediction). M2

generated a mutant by removing the entire method body. While this appears like a trivial

mutation, it is still meaningful as the method is not supposed to return a value, but only

perform computations that will result in some side-effects in the class. This means that

the test suite should carefully evaluate the state of the class after the invocation of the

mutant. Mutants generated by M3 and M4 are the most interesting. They both introduce
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an infinite-loop, but in two different ways. M3 deletes the increment of the rowCount

variable, whereas M4 resets its value to 1 at each iteration. Finally, M5 changes the if

condition and introduces an infinite loop similarly to the modelM3. However it also deletes

the variable definition statement for rowCount, making the mutant not compilable. All the

predictions (including perfect, mutated, and diverse) are available in our appendix [43].

In the manual evaluation, three judges analyzed a total of 430 samples (90, 82, 86, 89,

and 83 from M1, M2, M3, M4, M5, respectively). For every sample instance, the judges

agreed that the mutated code appeared to have a different functional behavior w.r.t. the

original input code. Only one case was debated, corresponding to a mutant which was

created by deleting a print call. In this case, the functional behavior may or may not have

been changed, depending on whether the output console is assessed as part of the behavior

of the method. Thus, all the instances except one were evaluated as actual mutants that

introduced a buggy behavior.

Figure 3.3 shows a heatmap of the frequency of mutation operations for each trained

model. The intensity of the color represents the frequency with which a particular operation

(specified by the row) was performed by the particular cluster model (columns). Due to

space constraints, the rows of the heatmap contain only a subset of the 85 unique types

of operations performed by the models, i.e., only those performed in at least 5% of the

mutations by at least one model.

We also highlighted in red boxes the peculiar, most frequent operations performed

by each model. M1 appears to focus on deletion of method calls; M3 on deletion and

replacement of an argument in a method call; M4 mostly operates on if-else blocks and

its logical conditions; M5 focuses on deleting and replacing variable assignments. Finally,

it is worth noting the large variety of operations performed by M2, ranging from addition,

deletion, and replacement of method calls, variable assignments, arguments, etc.. This

might also explain the lower BLEU score achieved by the latter model, which performs

large and more complex operations w.r.t. the other models which tend to focus on a smaller

set of operations. Differences among the mutation models can also be appreciated by the
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number of different mutation operations performed for each mutant. The models M1, M2,

M3, M4, M5 performed 1.19, 3.48, 1.42, 1.93, 2.02 average number of operations for each

mutant, respectively.

Summary for RQ3. The mutation models are capable of performing a diverse set of

operations to mutate source code.

3.5 Threats to Validity

Construct validity. To have enough training data, we mined bug-fixes in GitHub, rather

than using curated bug-fix datasets such as Defects4j, while still very useful but limited

in size. To mitigate imprecisions in our datasets (i.e., commits not related to bug fixes),

we manually analyzed a sample of the extracted commits. Moreover, we disregarded large

commits (too many files/AST operations) that might refer to tangled changes.

Internal validity. In assessing whether the generated mutants change the behavior

of the code, we analyzed the mutated method in isolation (i.e., not in the context of

its system). This might have introduced imprecisions that were mitigated by assigning

multiple evaluators to the analysis of each mutant.

External validity. We only focused on Java code. However, the learning process

is language-independent and the whole infrastructure can be instantiated for different

languages by replacing the lexer, parser and AST differencing tools. We only focused on

methods having no more than 50 tokens. In our appendix [43] we report experimental

results on larger methods (between 50 and 100 tokens) using the same configuration of the

network and training epochs. The trained model was still able to generate ∼6% of perfect

predictions. We are confident that with more training time and parameters’ tuning better

results can be obtained for larger methods.
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3.6 Related Work

Brown et al. [55] leveraged bug-fixes to extract syntactic-mutation patterns from the diffs

of patches. Our approach is novel and differs from Brown et al. in several aspects:

• Rather than extracting all possible mutation operators from syntactic diffs, we au-

tomatically learn mutations from the data;

• Rather than focusing, in isolation, on contiguous lines of code changed in the diff,

we learn the mutation in its context (e.g., method). This allows learning which type

and variation of mutation operator is more likely to be effective, given the current

context (i.e., methods, variables, scopes and blocks);

• Our approach is able to automatically mutate identifiers and literal by inserting

idioms (based on what learned) in the new mutant. When the model suggests to

mutate a literal with another unknown literal, it is generated randomly. Brown’s et

al. approach does not contemplate the synthesis of new identifiers (cfr. Section 2.3

[55]);

• Rather than extracting a single mutation pattern, we can learn co-occurrences and

combinations of multiple mutations;

• While the approach by Brown et al. randomly applies mutation operators to any

code location unless the user specifies a rule for that, our approach automatically

applies, for a given piece of code, the mutation(s) that according to the learning

might reflect likely bugs occurring in such a location. While limiting mutants only to

the most suitable ones for each location might not be always necessary, because one

can apply as many mutants as possible to increase fault detection, this could lead

to an overestimate of at test suite effectiveness or to more effort to unnecessarily

augment a test suite. In a view of test suite optimization, an approach that learns

where and how to mutate code is therefore desirable.
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Currently, a direct comparison between the two approaches was not viable as the ap-

proaches have been developed for different programming languages (C vs. Java).

Different general-purpose mutation frameworks have been defined in the literature, in-

cluding µJava [129], Jester [31], Major [104], Jumble [184], PIT [32], and javaLanche [164].

The main novelty of our work over those approaches is the automation of the learning

and application of the mutation. Relevant to our work are also studies investigating the

relationship between mutants and real faults. Andrews et al. [41, 42] showed that carefully

selected mutants can provide a good assessment of a test suite’s ability to catch real faults

and hand-seeded faults can underestimate the test suite’s bug detection capability. Daran

and Thévenod-Fosse [63] found that the set of errors produced by carefully selected mu-

tants and real faults with a given test suite are quite similar, while Just et al. [105] reported

that some types of real faults are not coupled to mutants and highlighted the need for new

mutation operators. Finally, Chekham et al. [57] showed that strong mutation testing

yields high fault revelation, while this is not the case for weak mutation testing. Our work

builds on these studies, cementing an approach for learning mutants from real bug fixes.

Hence, we avoid the need for manually selecting the mutants to inject and increase the

chances of generating mutants representative of real bugs.

Allamanis et al. [37] generate tailored mutants, e.g., exploiting API calls occurring

elsewhere in the project and show that tailored mutants are well-coupled to real bugs.

Differently from them, we automatically learn how to mutate code from an existing dataset

of bugs rather than using heuristics.

3.7 Conclusion

We presented the first approach to automatically learn mutants from existing bug fixes.

The evaluation we performed highlights that the generated mutants are similar to real

bugs, with 9% to 45% of them (depending on the model) reintroducing in the fixed code

(provided as input) the actual bug. Moreover, our models are able to learn the correct
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code syntax, without the need for syntax rules as input. We release the data and code

to allow researchers to use it for learning other transformations of code [43]. Future work

includes additional fine tuning of the RNN parameters to improve performance.
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Chapter 4

An Empirical Study on Learning

Bug-Fixing Patches in the Wild via

Neural Machine Translation

4.1 Introduction

Localizing and fixing bugs is known to be an effort-prone and time-consuming task for

software developers [103, 165, 194]. To support programmers in this common activity, re-

searchers have proposed a number of approaches aimed at automatically repairing programs

[45, 119, 78, 79, 117, 109, 126, 191, 144, 134, 108, 201, 133, 172, 116, 52, 156, 153, 193, 170].

The proposed techniques either use a generate-and-validate approach, which consists of

generating many repairs (e.g., through Genetic Programming like GenProg [192, 121]),

or an approach that produces a single fix [144, 102]. While automated program repair

techniques still face many challenges to be applied in practice, existing work has made

strides to be effective in specific cases. These approaches, given the right circumstances,

substantially contribute in reducing the cost of bug-fixes for developers [120, 130].

Two major problems automated repair approaches have, is producing patches ac-

ceptable for programmers and especially for generate-and-validate techniques, over-fitting
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patches to test cases. Qi et al. [157] found that the majority of the reported patches gener-

ated by several generate-and-validate techniques are not correct, and that such techniques

mostly achieve repair by deleting pieces of functionality or by overfitting on test cases. To

cope with this problem, Le et al. [117] leverages the past history of existing projects — in

terms of bug-fix patches — and compares automatically-generated patches with existing

ones. Patches that are similar to the ones found in the past history of mined projects are

considered to be more relevant. Another approach that identifies patches from past fixes

is Prophet [126], which after having localized the likely faulty code by running test cases,

generates patches from correct code using a probabilistic model.

Our work is motivated by the following three considerations. First, automated repair

approaches are based on a relatively limited and manually-crafted (with substantial effort

and expertise required) set of transformations or fixing patterns. Second, the work done by

Le et al. [117] shows that the past history of existing projects can be successfully leveraged

to understand what a “meaningful" program repair patch is. Third, several works have

recently demonstrated the capability of advanced machine learning techniques, such as

deep learning, to learn from relatively large software engineering datasets. Some examples

of recent models that can be used in a number of software engineering tasks include: code

completion [158], defect prediction [189], bug localization [115], clone detection [196], code

search [81], learning API sequences [83], or recommending method names [35].

Forges like GitHub provide a plethora of change history and bug-fixing commits from

a large number of software projects. A machine-learning based approach can leverage this

data to learn about bug-fixing activities in the wild.

In this work, we expand upon our original idea of learning bug-fixes [181] and exten-

sively evaluate the suitability of a Neural-Machine Translation (NMT-based approach to

automatically generate patches for buggy code.

Automatically learning from bug-fixes in the wild provides the ability to emulate real

patches written by developers. Additionally, we harness the power of NMT to “translate”

buggy code into fixed code thereby emulating the combination of Abstract Syntax Tree
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(AST) operations performed in the developer written patches. Further benefits include the

static nature of NMT when identifying candidate patches, since, unlike some generate-and-

validate approaches, we do not need to execute test cases during patch generation[202, 168].

Test case execution on the patches recommended by the NMT approach would still be

necessary in practice, however, this would only be needed on the candidate set of patches.

To this aim, we first mine a large set of (∼ 787k) bug-fixing commits from GitHub.

From these commits, we extract method-level AST edit operations using fine-grained source

code differencing [67]. We identify multiple method-level differences per bug-fixing commit

and independently consider each one, yielding to ∼ 2.3M bug-fix pairs (BFPs). After that,

the code of the BFPs is abstracted to make it more suitable for the NMT model. Finally,

an encoder-decoder model is used to understand how the buggy code is transformed into

fixed code. Once the model has been trained, it is used to generate patches for unseen

code.

We empirically investigate the potential of NMT to generate candidate patches that are

identical to the ones implemented by developers. Also, we quantitatively and qualitatively

analyze the AST operations the NMT model is able to emulate when fixing bugs. Finally,

we evaluate its efficiency by computing the time needed to learn a model and to infer

patches.

The results indicate that trained NMT models are able to successfully predict the fixed

code, given the buggy code, in 9-50% of the cases. The percentage of bugs that can be

fixed depends on the number of candidate patches the model is required to produce. We

find that over 82% of the generated candidate patches are syntactically correct. When

performing the translation the models emulate between 27-64% of the AST operations

used by developers to fix the bugs, during patch generation. The NMT models are capable

of producing multiple candidate patches for a given buggy code in less then a second. In

all, the chapter provides the following contributions:
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Figure 4.1: Overview of the process used to experiment with an NMT-based approach.
• An extensive empirical investigation into the applicability of NMT techniques for

learning how to generate patches from bug-fixes;

• A detailed process for training and evaluating NMT models by mining, extracting,

and abstracting bug-fixing examples in the wild;

• A publicly available replication package, including datasets, source code, tools, and

detailed results reported and discussed in this study [43].

4.2 Approach

Fig. 4.1 shows an overview of the NMT approach that we experiment with. The dark boxes

represent the main phases, the arrows indicate data flows, and the dashed arrows denote

dependencies on external tools or data. We mine bug-fixing commits from thousands

of GitHub repositories using GitHub Archive [80] (Section 4.2.1). From the bug-fixes,

we extract method-level pairs of buggy and corresponding fixed code named bug-fix pairs

(BFPs) (Section 4.2.2.1). BFPs are the examples that we use to learn how to fix code from

bug-fixes (buggy → fixed). We use GumTree [67] to identify the list of edit actions (A)

performed between the buggy and fixed code. Then, we use a Java Lexer and Parser to

abstract the source code of the BFPs (Section 4.2.2.2) into a representation better suited

for learning. During the abstraction, we keep frequent identifiers and literals we call idioms

within the representation. The output of this phase are the abstracted BFPs and their

corresponding mapping M , which allows reconstructing the original source code. Next,

we generate two datasets of BFPs grouping together fixes for small and medium methods,
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respectively (Section 4.2.2.3). Finally, for each set, we use an encoder-decoder model to

learn how to transform a buggy code into a corresponding fixed version (Section 4.2.3).

The trained models can be used to generate patches for unseen buggy code.

4.2.1 Bug-Fixes Mining

We downloaded from GitHub Archive [80] every public GitHub event between March 2011

and October 2017 and we used the Google BigQuery APIs to identify all commits having a

message containing the patterns [69]: (“fix” or “solve”) and (“bug” or “issue” or “problem” or

“error”). We identified ∼10M (10,056,052) bug-fixing commits. As the content of commit

messages and issue trackers might imprecisely identify bug-fixing commits [44, 93], two

authors independently analyzed a statistically significant sample (95% confidence level

±5% confidence interval, for a total size of 384) of identified commits to check whether

they were actually bug fixes. After solving 13 cases of disagreement, they concluded that

97.6% of the identified bug-fixing commits were true positive. Details about this evaluation

are in our online appendix [43].

For each bug-fixing commit, we extracted the source code before and after the bug-fix

using the GitHub Compare API [75]. This allowed us to collect the buggy (pre-commit)

and the fixed (post-commit) code. We discarded commits related to non-Java files, as well

as files that were created in the bug-fixing commit, since there would be no buggy version

to learn from. Moreover, we discarded commits impacting more than five Java files, since

we aim to learn focused bug-fixes that are not spread across the system. The result of this

process was the buggy and fixed code of 787,178 bug-fixing commits.

4.2.2 Bug-Fix Pairs Analysis

A BFP (Bug-Fixing Pair) is a pair (mb,mf ) where mb represents a buggy code component

and mf represents the corresponding fixed code. We will use these BFPs to train the NMT

model, make it learning the translation from buggy (mb) to fixed (mf ) code, thus being

able of generating patches.
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4.2.2.1 Extraction

Given (fb, ff ) a pair of buggy and fixed file from a bug-fix bf, we used the GumTree Spoon

AST Diff tool [67] to compute the AST differencing between fb and ff . This computes

the sequence of edit actions performed at the AST level that allows to transform the fb’s

AST into the ff ’s AST.

Since the file-level granularity could be too large to learn patterns of transformation,

we separate the code into method-level fragments that will constitute our BFPs. The

rationale for choosing method-level BFPs is supported by several reasons. First, methods

represent a reasonable target for fixing activities, since they are likely to implement a single

task or functionality. Second, methods provide enough meaningful context for learning

fixes, such as variables, parameters, and method calls used in the method. This choice

is justified by recent empirical studies, which indicated how the large majority of fixing

patches consist of single line, single churn or, worst cases, churns separated by a single line

[169]. Smaller snippets of code lack the necessary context and, hence, they could not be

considered. Finally, considering arbitrarily long snippets of code, such as hunks in diffs,

makes learning more difficult given the variability in size and context [113, 33].

We first rely on GumTree to establish the mapping between the nodes of fb and ff .

Then, we extract the list of mapped pairs of methods L = {(m1b,m1f ), . . . , (mnb,mnf )}.

Each pair (mib,mif ) contains the method mib (from the buggy file fb) and the correspond-

ing method mif (from the fixed file ff ). Next, for each pair of mapped methods, we

extract a sequence of edit actions using the GumTree algorithm. We then consider only

those method pairs for which there is at least one edit action (i.e., we disregard methods

that have not been modified during the fix). Therefore, the output of this phase is a list

of BFPs = {bfp1, . . . , bfpk}, where each BFP is a triplet bfp = {mb,mf , A}, where mb

is the buggy method, mf is the corresponding fixed method, and A is a sequence of edit

actions that transforms mb in mf . We exclude methods created/deleted during the fixing,

since we cannot learn fixing operations from them. Overall, we extracted ∼2.3M BFPs.
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It should be noted that the process we use to extract the BFPs: (i) does not capture

changes performed outside methods (e.g., class signature, attributes, etc.), and (ii) consid-

ers each BFP as an independent bug fix, meaning that multiple methods modified in the

same bug fixing activity are considered independently from one another.

4.2.2.2 Abstraction

Learning bug-fixing patterns is extremely challenging by working at the level of raw source

code. This is especially due to the huge vocabulary of terms used in the identifiers and

literals of the ∼2M mined projects. Such a large vocabulary would hinder our goal of

learning transformations of code as a NMT task. For this reason, we abstract the code and

generate an expressive yet vocabulary-limited representation. We use a Java lexer and a

parser to represent each buggy and fixed method within a BFP as a stream of tokens. The

lexer, built on top of ANTLR [152, 150], tokenizes the raw code into a stream of tokens,

that is then fed into a Java parser [185], which discerns the role of each identifier (i.e.,

whether it represents a variable, method, or type name) and the type of a literal.

Each BFP is abstracted in isolation. Given a BFP bfp = {mb,mf , A}, we first consider

the source code of mb. The source code is fed to a Java lexer, producing the stream of

tokens. The stream of tokens is then fed to a Java parser, which recognizes the identifiers

and literals in the stream. The parser generates and substitutes a unique ID for each iden-

tifier/literal within the tokenized stream. If an identifier or literal appears multiple times

in the stream, it will be replaced with the same ID. The mapping of identifiers/literals with

their corresponding IDs is saved in a map (M). The final output of the Java parser is the

abstracted method (abstractb). Then, we consider the source code of mf . The Java lexer

produces a stream of tokens, which is then fed to the parser. The parser continues to use a

mapM when abstractingmf . The parser generates new IDs only for novel identifiers/liter-

als, not already contained inM , meaning, they exist inmf but not inmb. Then, it replaces

all the identifiers/literals with the corresponding IDs, generating the abstracted method

(abstractf ). The abstracted BFP is now a 4-tuple bfpa = {abstractb, abstractf , A,M},
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where M is the ID mapping for that particular BFP. The process continues considering

the next BFP, generating a new mapping M . Note that we first analyze the buggy code

mb and then the corresponding fixed code mf of a BFP, since this is the direction of the

learning process.

IDs are assigned to identifiers and literals in a sequential and positional fashion: The

first method name found will be assigned the ID of METHOD_1, likewise the second method

name will receive the ID of METHOD_2. This process continues for all the method and

variable names (VAR_X) as well as the literals (STRING_X, INT_X, FLOAT_X).

At this point, abstractb and abstractf of a BFP are a stream of tokens consisting

of language keywords (e.g., for, if), separators (e.g., “(”, “;”, “}”) and IDs representing

identifiers and literals. Comments and annotations have been removed from the code

representation.

Some identifiers and literals appear so often in the code that, for the purpose of our

abstraction, they can almost be treated as keywords of the language. This is the case for

the variables i, j, or index, that are often used in loops, or for literals such as 0, 1, -1,

often used in conditional statements and return values. Similarly, method names, such as

size or add, appear several times in our code base, since they represent common concepts.

These identifiers and literals are often referred to as “idioms” [55]. We include idioms in

our representation and do not replace idioms with a generated ID, but rather keep the

original text when abstracting the code.

To define the list of idioms, we first randomly sampled 300k BFPs and considered

all their original source code. Then, we extracted the frequency of each identifier/literal

used in the code, discarding keywords, separators, and comments. Next, we analyzed the

distribution of the frequencies and focused on the top 0.005% frequent words (outliers of

the distribution). Two authors manually analyzed this list and curated a set of 272 idioms

also including standard Java types such as String, Integer, common Exceptions, etc.

The list of idioms is available in the online appendix [43].
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This representation provides enough context and information to effectively learn code

transformations, while keeping a limited vocabulary (|V | = ∼430). The abstracted code

can be mapped back to the real source code using the mapping (M).

buggy code fixed code

bug-fix

abstracted buggy code abstracted fixed code

abstracted buggy code with idioms abstracted fixed code with idioms
learning

public Integer getMinElement(List myList) {
   if(myList.size() >= 0) {
      return ListManager.getFirst(myList);
   }
   return 0;
}

public Integer getMinElement(List myList) {
   if(myList.size() >= 1) {
      return ListManager.min(myList);
   }
   return null;
}

public TYPE_1 METHOD_1 ( TYPE_2 VAR_1 ) 
{ if ( VAR_1 . METHOD_2 ( ) >= INT_1 ) 
{ return TYPE_3 . METHOD_3 ( VAR_1 ) ; } 
return INT_1 ; }

public TYPE_1 METHOD_1 ( List VAR_1 ) 
{ if ( VAR_1 . size ( ) >= 0 ) 
{ return TYPE_2 . METHOD_3 ( VAR_1 ) ; } 
return 0 ; }

public TYPE_1 METHOD_1 ( TYPE_2 VAR_1 ) 
{ if ( VAR_1 . METHOD_2 ( ) >= INT_2 ) 
{ return TYPE_3 . METHOD_4 ( VAR_1 ) ; } 
return null ; }

public TYPE_1 METHOD_1 ( List VAR_1 ) 
{ if ( VAR_1 . size ( ) >= 1 ) 
{ return TYPE_2 . min ( VAR_1 ) ; } 
return null ; }

Figure 4.2: Code Abstraction Example.

To better understand our representation, let us consider the example in Fig. 4.2,

where we see a bug-fix related to finding the minimum value in a list of integers. The

buggy method contains three errors, which the fixed code rectifies. The first bug is within

the if-condition, where the buggy method checks if the list size is greater than or equal to

0. This is problematic since a list without any values cannot have a minimum value to

return. The second bug is in the method call getFirst, this will return the first element

in the list, which may or may not be the minimum value. Lastly, if the if-condition fails in

the buggy method then the method returns 0; returning 0 when the minimum is unable to

be identified is incorrect as it indicates that one of the elements within the list is 0. The

fixed code changes the if-condition to compare against a list size of 1 rather than 0, uses

the min method to return the minimum value and changes the return value to null when

the if-condition fails.

Using the buggy and fixed code for training, although a viable and realistic bug-fix,

presents some issues. When we feed the buggy piece of code to the Java Parser and

Lexer, we identify some problems with the mapping. For example, the abstracted fixed
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code contains INT_2 and METHOD_4, which are not contained in the abstracted version of

the buggy code or its mapping. Since the mapping of tokens to code is solely reliant on

the buggy method, this example would require the synthesis of new values for INT_2 and

METHOD_4. However, the methodology takes advantage of idioms, allowing to still consider

this BFP. When using the abstraction with idioms, we are able to replace tokens with the

values they represent. Now, when looking at the abstracted code with idioms for both

buggy and fixed code, there are no abstract tokens found in the fixed code that are not

in the buggy code. Previously, we needed to synthesize values for INT_2 and METHOD_4,

however, INT_2 was replaced with idiom 1 and METHOD_4 with idiom min. With the use

of idioms, we are capable of keeping this BFP while maintaining the integrity of learning

real, developer-inspired patches.

4.2.2.3 Filtering

We filter out BFPs that: (i) contain lexical or syntactic errors (i.e., either the lexer or

parser fails to process them) in either the buggy or fixed code; (ii) their buggy and fixed

abstracted code (abstractb, abstractf ) resulted in equal strings; (iii) performed more than

100 atomic AST actions (|A| > 100) between the buggy and fixed version. The rationale

behind the latter decision was to eliminate outliers of the distribution (the 3rd quartile of

the distribution is 14 actions), which could hinder the learning process. Moreover, we do

not aim to learn such large bug-fixing patches. Next, we analyze the distribution of BFPs

based on their size, measured in the number of tokens, shown in Fig. 4.3. We can notice

that the density of BFPs for the buggy code has a peak before 50 tokens and a long tail

that extends over 300 tokens.

NMT models require large training dataset in order to achieve reasonable results. More-

over, the variability in sentences length can affect training and performance of the models,

even when techniques such as bucketing and padding are employed. For these reasons, we

decided to focus on the intervals where most of the data points are available. From Fig.

4.3 it is clear that most of the data points are concentrated in the interval 0-100. Further
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Figure 4.3: Distribution of BFPs by the number of tokens.
analysis showed that there are more data points in the interval 0-100 than in the larger

interval 100-500. Therefore, we disregard long methods (longer than 100 tokens) and fo-

cused on small/medium size BFPs. We create two datasets: BFPsmall = {bfp ≤ 50} and

BFPmedium = {50 < bfp ≤ 100}.

4.2.2.4 Synthesis of Identifiers and Literals

BFPs are the examples we use to make our model learn how to fix source code. Given a

bfp = {mb,mf , A}, we first abstract its code, obtaining bfpa = {abstractb, abstractf , A,M}.

The buggy code abstractb is used as input to the model, which is trained to output the

corresponding fixed code abstractf . This output can then be mapped back to real source

code using M .

In the real usage scenario, when the model is deployed, we do not have access to the

oracle (i.e., fixed code, abstractf ), but only to the input code. This source code can then be

abstracted and fed to the model, which generates as output a predicted code (abstractp).

The IDs that the abstractp contains can be mapped back to real values only if they also

appear in the input code. If the fixed code suggests to introduce a method call, METHOD_6,

which is not found in the input code, we cannot automatically map METHOD_6 to an actual

method name. This inability to map back source code exists for any newly created ID

generated for identifiers or literals, which are absent in the input code.
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Therefore, it appears that the abstraction process, which allows us to limit the vocabu-

lary size and facilitate the training process, confines us to only learning fixes that re-arrange

keywords, identifiers, and literals already available in the context of the buggy method.

This is the primary reason we decided to incorporate idioms in our code representation,

and treat them as keywords of the language. Idioms help retaining BFPs that otherwise

would be discarded because of the inability to synthesize new identifiers or literals. This

allows the model to learn how to replace an abstract identifier/literal with an idiom or an

idiom with another idiom (e.g., bottom part of Fig. 4.2).

After these filtering phases, the two datasets BFPsmall and BFPmedium consist of 58k

(58,350) and 65k (65,455) bug-fixes, respectively.

4.2.3 Learning Patches

4.2.3.1 Dataset Preparation

Given a set of BFPs (i.e., BFPsmall and BFPmedium) we use the instances to train an

Encoder-Decoder model. Given a bfpa = {abstractb, abstractf , A,M} we use only the

pair (abstractb, abstractf ) of buggy and fixed abstracted code for learning. No additional

information about the possible fixing actions (A) is provided during the learning process to

the model. The given set of BFPs is randomly partitioned into: training (80%), validation

(10%), and test (10%) sets. Before the partitioning, we make sure to remove any duplicated

pairs (abstractf , abstractb) to not bias the results, i.e., same pair both in training and test

set.

4.2.3.2 NMT

The experimented models are based on an RNN Encoder-Decoder architecture, commonly

adopted in NMT [106, 171, 59]. This model consists of two major components: an

RNN Encoder, which encodes a sequence of terms x into a vector representation, and

an RNN Decoder, which decodes the representation into another sequence of terms y.
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The model learns a conditional distribution over a (output) sequence conditioned on an-

other (input) sequence of terms: P (y1, .., ym|x1, .., xn), where n and m may differ. In

our case, given an input sequence x = abstractb = (x1, .., xn) and a target sequence

y = abstractf = (y1, .., ym), the model is trained to learn the conditional distribution:

P (abstractf |abstractb) = P (y1, .., ym|x1, .., xn), where xi and yj are abstracted source to-

kens: Java keywords, separators, IDs, and idioms. Fig. 4.1 shows the architecture of the

Encoder-Decoder model with attention mechanism [46, 128, 54]. The Encoder takes as in-

put a sequence x = (x1, .., xn) and produces a sequence of states h = (h1, .., hn). We rely

on a bi-directional RNN Encoder [46], which is formed by a backward and a forward RNN,

which are able to create representations taking into account both past and future inputs

[54]. That is, each state hi represents the concatenation (dashed box in Fig. 4.1) of the

states produced by the two RNNs when reading the sequence in a forward and backward

fashion: hi = [
−→
hi ;
←−
hi ].

The RNN Decoder predicts the probability of a target sequence y = (y1, .., ym) given h.

Specifically, the probability of each output term yi is computed based on: (i) the recurrent

state si in the Decoder; (ii) the previous i−1 terms (y1, .., yi−1); and (iii) a context vector ci.

The latter constitutes the attention mechanism. The vector ci is computed as a weighted

average of the states in h: ci =
∑n

t=1 aitht where the weights ait allow the model to pay

more attention to different parts of the input sequence. Specifically, the weight ait defines

how much the term xi should be taken into account when predicting the target term yt.

The entire model is trained end-to-end (Encoder and Decoder jointly) by minimizing

the negative log likelihood of the target terms, using stochastic gradient descent.

4.2.3.3 Generating Multiple Patches via Beam Search

After the model is trained, it is evaluated against the test set of unseen buggy code.

The classic greedy decoding selects, at each time step i, the output term yi with the

highest probability. The downside of this decoding strategy is that, given a buggy code as

input, the trained model will generate only one possible sequence of predicted fixed code.
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Figure 4.4: Beam Search Visualization.
Conversely, we would like to generate multiple potential patches (i.e., sequence of terms

representing the fixed code) for a given buggy code. To this aim, we employ a different

decoding strategy called Beam Search and used in previous applications of deep learning

[158].

The major intuition behind Beam Search decoding is that rather than predicting at

each time step the token with the best probability, the decoding process keeps track of

k hypotheses (with k being the beam size or width). Formally, let Ht be the set of k

hypotheses decoded till time step t:

Ht = {(ỹ11, . . . , ỹ1t ), (ỹ21, . . . , ỹ2t ), . . . , (ỹk1 , . . . , ỹkt )}

At the next time step t + 1, for each hypothesis there will be |V | possible yt+1 terms

(V being the vocabulary), for a total of k · |V | possible hypotheses.

Ct+1 =

k⋃
i=1

{(ỹ11, . . . , ỹ1t , v1), . . . , (ỹk1 , . . . , ỹkt , v|V |)}

From these candidate sets, the decoding process keeps the k sequences with the highest

probability. The process continues until each hypothesis reaches the special token repre-

senting the end of a sequence. We consider these k final sentences as candidate patches for

the buggy code. Note that when k = 1, Beam Search decoding coincides with the greedy

strategy.

Fig. 4.4 shows an example of the Beam Search decoding strategy with k = 3. Given

the abstractb code as input (top-left), the Beam Search starts by generating the top-3

candidates for the first term (i.e., public, void, private). At the next time step, the
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beam search expands each current hyphothesis and finds that the top-3 most likely are

those following the node public. Therefore, the other two branches (i.e., void, private)

are pruned (i.e., red nodes). The search continues till each hypothesis reaches the <eos>

(End Of Sequence) symbol. Note that each hypothesis could reach the end at different

time steps. This is a real example generated by our model, where one of the candidate

patches is the actual fixed code (i.e., green path).

4.2.3.4 Hyperparameter Search

For both models built on the BFPsmall and BFPmedium dataset (i.e.,Msmall andMmedium)

we performed hyperparameter search by testing ten configurations of the encoder-decoder

architecture. The configurations tested different combinations of RNN Cells (LSTM [96]

and GRU [59]), number of layers (1, 2, 4) and units (256, 512) for the encoder/decoder, and

the embedding size (256, 512). Bucketing and padding was used to deal with the variable

length of the sequences. We trained our models for a maximum of 60k epochs, and selected

the model’s checkpoint before over-fitting the training data. To guide the selection of the

best configuration, we used the loss function computed on the validation set (not on the

test set), while the results are computed on the test set. All the configurations and settings

are available in our online appendix [43].

4.2.3.5 Code Concretization

In this final phase, the abstracted code generated as output by the NMT model is con-

cretized by mapping back all the identifiers and literal IDs to their actual values. The

process simply replaces each ID found in the abstracted code to the real identifier/literal

associated with the ID and saved in the mapping M , for each method pair. The code is

automatically indented and additional code style rules can be enforced during this stage.

While we do not deal with comments, they could be reintroduced in this stage as well.
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4.3 Experimental Design

The goal of this study is, as stated in the introduction, to empirically assess whether NMT

can be used to learn fixes in the wild. The context consists of a dataset of bug fixes mined

from Java open source projects hosted on GitHub (see Section Section 4.2).

The study aims at answering three research questions, described in the following.

4.3.1 RQ1: Is Neural Machine Translation a viable approach to learn

how to fix code?

We aim to empirically assessing whether NMT is a viable approach to learn transformations

of the code from a buggy to a fixed state. To this end, we use the two datasets BFPsmall

and BFPmedium to train and evaluate two NMT models Msmall and Mmedium. Precisely,

given a BFP dataset, we train different configurations of the Encoder-Decoder models,

then select the best performing configuration on the validation set. We then evaluate the

validity of the model with the unseen instances of the test set.

The evaluation is performed as follows: letM be a trained model (Msmall orMmedium)

and T be the test set of BFPs (BFPsmall or BFPmedium), we evaluate the model M for

each bfp = (abstractb, abstractf ) ∈ T . Specifically, we feed the buggy code abstractb to

the model M , performing inference with Beam Search Decoding for a given beam size k.

The model will generate k different potential patches P = {abstract1p, . . . , abstractkp}. We

say that the model generated a successful fix for the code if there exists an abstractip ∈ P

such that abstractip = abstractf . We report the raw count and percentage of successfully

fixed BFPs in the test set, varying the beam size k from 1 (i.e., a single patch is created

by M) to 50 (i.e., 50 patches are created) with incremental steps of 5.
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4.3.2 RQ2: What types of operations are performed by the models?

This RQ investigates the quality and type of operations performed by the fixes that our

model generates. We perform the investigation by means of automated and manual anal-

ysis.

We first analyze the syntactic correctness of the patches for all beam widths. That

is, we feed each potential patch abstractip to a Java lexer and parser in order to assess

whether the patch is lexically and syntactically correct. We do not assess the compilability

of the patches, since it would require us to download the exact, entire snapshot of each

Github project. This would entail downloading thousands of different GitHub projects

and attempting to compile them with the newly generated patch. There are also obstacles

when dealing with different building systems.

Next, we focus on the BFPs that are successfully fixed by the models and analyze

the types of AST operations performed during the fix. While these NMT models do not

technically operate on the source code’s AST, but rather on sequences of tokens, it is still

worthwhile to understand the types of AST operations that such models can emulate. This

analysis will provide an idea on the potential and/or limitations of such models. In detail,

we extract the AST operations by selecting the action set A of the BFPs successfully fixed

by the model. We identify the set MA of unique AST actions performed by the model M

in the successful fixes and compare them with the overall set OA of unique AST operations

contained within the entire test set of BFPs (i.e., those that are needed to fix all the

bugs in our test sets). With this information we can compute the percentage of AST

actions in OA that are learned and applied by M (i.e., |MA|/|OA|). We also calculate the

“theoretical bug coverage” ensured by MA as the percentage of bugs in the test set that

could be theoretically fixed by only using a subset of operations in MA. This allows us

to check whether the AST operations that are not “learned” by M (i.e., |OA| \ |MA|) are

used in many bug-fixing activities, thus representing an important loss for our model. A

low theoretical bug coverage indicates that many bugs in test sets can not be fixed by only
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Figure 4.5: Number of perfect prediction, operation (orange) bug (green) coverage, and
syntactic correctness for varying beam width and for different method lengths.
using the operations in MA, while a high theoretical bug coverage points to the fact that

the operations not learned by M are only sporadically used to fix bugs.

Finally, we discuss some interesting examples of the patches generated by NMT models.

4.3.3 RQ3: What is the training and inference time of the models?

In this RQ we evaluate the performance of the models in terms of execution time. Specif-

ically, we analyze and discuss the time required to train the models, and the time needed

to perform an inference once models have been deployed. For the latter, we report the

total time of inference and compute the average time per patch generated for every beam

width.
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4.4 Results

4.4.1 RQ1: Is Neural Machine Translation a viable approach to learn

how to fix code?

When performing the hyperparameter search, we found that the configuration, which

achieved the best results on the validation set, for both Msmall and Mmedium, was the

one with 1-layer bi-directional Encoder, 2-layer Attention Decoder both with 256 units,

embedding size of 512, and LSTM [96] RNN cells. We trained the Msmall and Mmedium

models for 50k and 55k epochs, respectively.

Table 4.1 reports the number and percentage of BFPs correctly predicted by the models

for different beam sizes. As expected, increasing the beam size and, therefore, generating

more candidate patches, increases the percentages of BFPs for which the models can per-

fectly generate the corresponding fixed code starting from the buggy code input. The most

surprising results are those obtained with small beam sizes. The models can predict the

fixed code of 9% and 3% of the BFPs with only one attempt. If we let the models generate

15 candidate patches, the percentage of perfect predictions bumps to 40% and 20% for

small and medium methods, respectively. The number of BFPs patched steadily increases

when more candidate patches are generated by the models (i.e., bigger beam size), to reach

a 50% and 28% of perfect predictions when 50 candidates patches are considered.

The leftmost graphs in Fig. 4.5 shows the percentage of successful fixes as a function of

the beam size. When setting the beam size to 50, Msmall fixes 2,927 bugs (out of 5,835) in

the same exact way they were fixed by developers. Likewise,Mmedium fixes 1,869 bugs (out

of 6,545). It is important to note that all BFPs in the test sets are unique and have never

been seen before by the model during the training or validation steps. Moreover, there is

no inherent upper bound to the beam width used during inference, therefore even larger

beam widths could be set. All perfect predictions generated by the models at different

beam sizes as well as experiments with even larger beam sizes are available in our online

appendix [43]. The differences in performances between the Msmall and Mmedium could be
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Table 4.1: Models’ Performances

Beam Msmall Mmedium

1 538 / 5835 (9.22%) 211 / 6545 (3.22%)
5 1595 / 5835 (27.33%) 859 / 6545 (13.12%)
10 2119 / 5835 (36.31%) 1166 / 6545 (17.82%)
15 2356 / 5835 (40.37%) 1326 / 6545 (20.25%)
20 2538 / 5835 (43.49%) 1451 / 6545 (22.16%)
25 2634 / 5835 (45.14%) 1558 / 6545 (23.80%)
30 2711 / 5835 (46.46%) 1660 / 6545 (25.36%)
35 2766 / 5835 (47.40%) 1720 / 6545 (26.27%)
40 2834 / 5835 (48.56%) 1777 / 6545 (27.15%)
45 2899 / 5835 (49.68%) 1830 / 6545 (27.96%)
50 2927 / 5835 (50.16%) 1869 / 6545 (28.55%)

explained by the fact that larger methods have potentially more faulty locations where a

transformation of the code could be performed.

Summary for RQ1.

Using NMT, we trained a model on small BFPs, which can produce developer inspired

fixes for 9.22% - 50.16% of bugs (dependent upon beam width). Likewise, a model trained

on medium BFPs is capable of producing developer inspired fixes for 3.22% - 28.55% of

bugs (dependent on beam width). These results indicate that Neural Machine Translation

is a viable approach for learning how to fix code.

4.4.2 RQ2: What types of operations are performed by the models?

Fig. 4.5 also shows the results of the two models (i.e., Msmall top, Mmedium bottom) in

terms of operations coverage, and syntactic correctness of the generated patches. Before

discussing these results, it is important to comment on the dataset characteristics for small

and medium BFPs. To fix the 5,835 small methods, developers adopted combinations of

600 different types of operations at the AST level (e.g., Insert BinaryOperator at Condi-

tional, Delete Catch, etc.). Of these, only 87 have been used in more than 1% of bug-fixes,

meaning that a vast majority of the AST operations have been rarely used to fix bugs
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(e.g., in the case of the BFPsmall, 513 types of AST operations have been used for the

fixing of less than 58 bugs). Also, the average number of operations needed to fix a bug in

the “small” dataset is 4.5. Similar observations can be done for BFPmedium (see Fig. 4.5).

4.4.2.1 Syntactic Correctness

We start by analyzing the syntactic correctness (rightmost graphs). We can notice that,

when the models are asked to generate a single prediction (i.e., the most likely one), the

overall syntactic correctness of the predicted code is very high (99% and 98%). Clearly,

the more candidate predictions the model is required to generate, the more likely is that

it introduces syntactic errors during the transformation of the code. We observe this phe-

nomenon in the graph with a decreasing syntactic correctness, reaching 82% and 85% when

50 variants of patches are generated. The slightly better syntactic correctness achieved by

the Mmedium model could be explained by the fact that, in larger methods, there are more

potential points of transformation where syntactically correct variants can be generated,

with respect to smaller methods. While we do not measure the compilability rate of the

generated patches, it is worth to note that the perfect predictions generated by the models

correspond to the code that was actually committed to repositories by developers. For

such reasons, we could reasonably expect those predicted patches to be compilable.

4.4.2.2 AST Operations

The center graphs in Fig. 4.5 show the operation coverage (orange line) and theoretical

bug coverage (green line) when varying the beam size. When only one candidate patch

is generated, the models Msmall and Mmedium cover 28% and 16% of the total unique

operations in the entire test sets, which include 600 and 690 operations, respectively. An

increase of the beam size to 5 and 10 leads to a dramatic surge in the coverage of various

operations in the test set. These results show that allowing the models to generate more

candidate patches not only leads to more fixes, but also to a larger variety of bug fixing
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operations being performed. The operation coverage keeps increasing with larger beam

widths.

We observe a similar trend for the theoretical bug coverage, with large improvements

in the early beam widths, and a steady increase afterwards. It is also worth to carefully

speculate on the theoretical bug coverage percentages. As a matter of fact, the results

suggest that – with combinations of the AST actions learned and successfully emulated by

the models in perfect fixes – the models could theoretically cover 94% and 84% of the bug

fixes in the test set.

4.4.2.3 Qualitative Examples

Fig. 4.6 shows some interesting examples of patches generated by the model. For space

limitations, we focus on interesting fixes distilled from the set of perfect predictions gen-

erated by the model Msmall. The examples are shown in abstracted code (with idioms),

as they are fed and generated by the models. The actual source code can be generated by

mapping back all the IDs to the real values stored in the mapping M . Fig. 4.6 also groups

the examples based on the “type of fix” implemented, showing the ability of the model in

learning different fixing patterns, also in the context of the same group. For example, we

show that not all fixes dealing with if conditions are identical. All examples are perfect

predictions meaning that the model changed the buggy method to reflect exactly how the

developer changed the method in the wild.

Our first group of examples (1-6) concern buggy methods that were missing and if or

that benefited from its addition. Thus, the added condition either helped to prevent errors

during execution or ensured the expected outcome from the executed code. Example 1

shows an in-line if condition added to the fixed method to check whether the getValue

method is being called on a null object and returns 0 if it is. If the object is not null, then

the original getValue method is called on the object and that value is returned. This fix

ensures that the get method is not called on a null object. Likewise, example 2 inserts a

similar check but targeting the length of a variable rather than a getter method. The in-line
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Examples of successfully fixed bugs

1 private static long METHOD_1 ( TYPE_1 VAR_1 ) { return VAR_1 . METHOD_2 ( ) . getValue ( ) ; }
private static long METHOD_1 ( TYPE_1 VAR_1 ) { return ( VAR_1 . METHOD_2 ( ) ) == null ? 0 : VAR_1 . METHOD_2 ( ) . getValue ( ) ; }

if statement

2 public int METHOD_1 ( ) { java.lang.String VAR_1 = null ; return VAR_1 . length ( ) ; }
public int METHOD_1 ( ) { java.lang.String VAR_1 = null ; return VAR_1 == null ? 0 : VAR_1 . length ( ) ; }

3 public void METHOD_1 ( final int VAR_1 ) { VAR_2 . get ( VAR_1 ) . METHOD_1 ( ) ; }
public void METHOD_1 ( final int VAR_1 ) { if ( ( VAR_2 . get ( VAR_1 ) ) != null ) { VAR_2 . get ( VAR_1 ) . METHOD_1 ( ) ; } }

4 public void METHOD_1 ( ) { TYPE_1 VAR_1 = VAR_2 . remove ( ) ; VAR_1 . METHOD_2 ( ) ; }
public void METHOD_1 ( ) { if ( ( VAR_2 . size ( ) ) > 0 ) { TYPE_1 VAR_1 = VAR_2 . remove ( ) ; VAR_1 . METHOD_2 ( ) ; } }

5 public boolean METHOD_1 ( ) { return METHOD_2 ( ) . METHOD_3 ( ) . METHOD_4 ( ) ; }
public boolean METHOD_1 ( ) { if (( METHOD_2 ( ) . METHOD_3 ( ) ) != null) {return METHOD_2 ( ) . METHOD_3 ( ) . METHOD_4 ( ) ;} return false ;}

6 public void METHOD_1 ( TYPE_1 < ? > VAR_1 ) { VAR_2 . add ( VAR_1 ) ; }
public void METHOD_1 ( TYPE_1 < ? > VAR_1 ) { if ( ! ( VAR_2 . contains ( VAR_1 ) ) ) VAR_2 . add ( VAR_1 ) ; }

7 public float METHOD_1 ( ) { return values [ INT_1 ] ; }
public float METHOD_1 ( ) { return ( ( float ) ( values . get ( INT_1 ) ) ) ; }

casting

8 private synchronized void METHOD_1 ( ) { VAR_1 . METHOD_2 ( VAR_2 ) ; VAR_1 . METHOD_3 ( listener ) ; }
private synchronized void METHOD_1 ( ) { VAR_1 . METHOD_3 ( listener ) ; VAR_1 . METHOD_2 ( VAR_2 ) ; }

code structure

9 private boolean METHOD_1 ( int type ) { switch ( type ) { case VAR_1 : return true ; } return false ; }
private boolean METHOD_1 ( int type ) { switch ( type ) { case VAR_1 : return true ; default : return false ; } }

10

public static void METHOD_1 ( ) { for ( TYPE_1 VAR_1 : VAR_2 ) { try { VAR_1 . update ( ) ; } catch ( java.lang.Exception VAR_3 ) { TYPE_2 . 
METHOD_2 ( STRING_1 , VAR_3 . toString ( ) ) ; } } }
public static void METHOD_1 ( ) { try { for ( TYPE_1 VAR_1 : VAR_2 ) { VAR_1 . update ( ) ; } } catch ( java.lang.Exception VAR_3 ) { TYPE_2 . 
METHOD_2 ( STRING_1 , VAR_3 . toString ( ) ) ; } }

try-catch statement

11 protected void METHOD_1 ( ) throws java.io.IOException {if (( VAR_1 )<( VAR_2 )) {VAR_1 = VAR_2;} else if (( VAR_1 )>( VAR_3 )) { METHOD_2 ();}}
protected void METHOD_1 ( ) throws java.io.IOException {if (( VAR_1 )<( VAR_2 )) {VAR_1 = VAR_2;} else { METHOD_2 ();}}

else statement

12 public float op ( float VAR_1 ) { return TYPE_1 . METHOD_1 ( VAR_1 , num . METHOD_2 ( ) ) ; }
public float op ( float VAR_1 ) { return TYPE_1 . min ( VAR_1 , num . METHOD_2 ( ) ) ; }

method calls

14 public void METHOD_1 (TYPE_1 VAR_1) { if (VAR_2) { VAR_3.setText( TYPE_2.METHOD_2 (((TYPE_3) ( VAR_3.getContext ())))); } VAR_2 = ! (VAR_2);}
public void METHOD_1 (TYPE_1 VAR_1) { if (!(VAR_2)) { VAR_3.setText( TYPE_2.METHOD_2 (((TYPE_3) ( VAR_3.getContext ())))); } VAR_2 = ! (VAR_2);}

logic/boolean operators

15 public void METHOD_1 (java.lang.CharSequence title){METHOD_1(title); if((title!=null)||((METHOD_2())!=null)){METHOD_2().METHOD_1(title.toString());}}
public void METHOD_1 (java.lang.CharSequence title){METHOD_1(title); if((title!=null)&&((METHOD_2())!=null)){METHOD_2().METHOD_1(title.toString());}}

16 public void METHOD_1 ( ) { while ( ( VAR_1 ) <= ( VAR_2 ) ) { TYPE_1 VAR_3 = TYPE_2 . METHOD_2 ( ) ; add ( VAR_3 ) ; ( VAR_1 ) ++ ; } }
public void METHOD_1 ( ) { while ( ( VAR_1 ) < ( VAR_2 ) ) { TYPE_1 VAR_3 = TYPE_2 . METHOD_2 ( ) ; add ( VAR_3 ) ; ( VAR_1 ) ++ ; } }

13 public void METHOD_1 ( ) { if ( ! ( VAR_1 . equals ( VAR_2 . intValue ( ) ) ) ) { ( VAR_1 ) ++ ; METHOD_2 ( ) ; } }
public void METHOD_1 ( ) { if ( ! ( VAR_1 . equals ( VAR_2 ) ) ) { ( VAR_1 ) ++ ; METHOD_2 ( ) ; } }

Figure 4.6: Examples of successfully-generated patches.
if checks to ensure the variable is not null, if it is then the method returns 0, otherwise,

the method returns the result of VAR_1.length(). Examples 3, 4 and 5 all insert similar

if-checks that are not in-line ifs. Examples 3 and 5 both add an if condition handling

cases in which the invoked method returns null, while example 4’s if condition checks the

size of a variable before operating on it.

The last example in this group (i.e., number 6) is different from the others, since the

if condition is more complex and makes use of the boolean operator not (!). Here the fix
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is preventing the method from adding a duplicated value to VAR_2. If the value VAR_1 is

already present in VAR_2, then the method will not add VAR_1 again. It is important to

note that although these examples all add an if check as the fix, they are all unique and

tailored to the method’s context. The model was able to learn the correct changes needed

for the specific method that would mimic a developer’s changes.

The second group of fixes addresses issues related to the cast of a specific variable.

The original method in example 7 would throw an error if executed because the method

signature calls for a return value of type float, but the method returns a value of type int.

The model recognized this error and casted the return value of type float. Additionally,

the fix also changes the mechanism by which the value is extracted from values (see Fig.

4.6). This not only changes the type of value returned by also the mechanism by which it

is returned.

The next group of examples pertain to the implementation or structure of the code,

leading to incorrect execution. Example 8 switches the statements’ order of execution,

without applying any other change. This swap could be needed due to the first statement

changing the state of the system (e.g., the value of VAR_1) which would then cause the

VAR_1.METHOD_2(VAR_2) invocation to have a different outcome. Our model is capable of

finding such errors in order execution and provide an adequate fix. Example 9 is similar in

that the structure of the code is incorrect. Here the switch statement is missing a default

case in the buggy method. Thus, the buggy method will execute the switch and, if no

case condition will be met, the code outside the switch statement will be run. The fix

adds a default case to the switch statement to handle cases in which no case condition

is met. This fix does not change the outcome of the code since the code executed outside

the case statement (buggy version) and inside the default statement (fixed version) is

exactly the same (see Fig. 4.6). However, it improves the readability of the code, making

it adhering to the Java coding convention suggesting that switch statements should have

a default case, which occurs when no other case in the switch has been met.
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Our fourth category of examples are changes where the model fixes try-catch state-

ments. We report one representative example (number 10). This fix changes the scope of

the try block to also include in it the for loop, that was instead containing the try block

in the buggy method.

The fifth group of fixes we found addresses incorrect else statements. In example 11

we see that the else if statement is removed from the buggy method. This change is

seen as a bug fix since the buggy method only defines its behavior when VAR_1 < VAR_2

or VAR_1 > VAR_2. It has no behavior defined when VAR_1 == VAR_2, which could lead

to unexpected errors. The model fixes this by replacing the else if statement with an

else, covering all possible relations between VAR_1 and VAR_2.

The sixth group of fixes aims at replacing incorrect method calls. As seen in example

12, the method call METHOD_1 is replaced with min. The example demonstrates the power

of idioms. Indeed, without this idiom, we would discard this fix since we would be unable

to generate a name for the unseen method min in the fix and would name it METHOD_3.

Since METHOD_3 would not be seen in our mapping M , we would have to synthesize the

new methods name when translating the abstracted code back into source code. Having

min as an idiom allows us to avoid the synthesis and still learn the fix. Example 13 shows

instead the removal of unnecessary/harmful method calls. Here the model removes in the

fixed method the invocation to intValue() on VAR_2. This method is used to return a

numeric value, represented by an object, as an int. In this situation, textttVAR_2 is

a Java integer object and intValue() would return an int type. The fix removes this

method call which compares an object to int, making equals comparing VAR_1 to the

integer type VAR_2.

Finally, the last group of fixes involves the changing, addition or removal of logic or

boolean operators. Although they changes themselves do not appear massive, they have

major implications on the source code behavior. For instance, example 14 adds a negation

boolean operator to the if condition. This completely changes the functionality of the fixed

method since now it will only execute the if block when ! VAR_2 == true. Example 15
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performs a fix along the same line, changing an operator in the if condition from logical

or (||) to a logical and (&&). This means that both conditions must be met in order to run

the code within the if block. Since the buggy method allowed only one condition to be

met, it is possible that this led to undesired results for the developers. Example 16 changes

a <= to a < operator. It is worth noting that this operator change takes place within the

scope of a while loop, thus reducing by one the times that the code in the while loop is

executed.

The reported qualitative examples show the potential of NMT models to generate

meaningful correct patches, by learning from real bug-fixes wrote by developers, which al-

lows the model to avoid problems arising with existing program repair techniques. Indeed,

a previous work by Qi et al. [157] found that existing techniques achieve repair by overfit-

ting on the test cases, or by simply deleting pieces of functionality. The models produced

many other interesting patches, which are not discussed here due to space limitations. Our

online appendix [43] contains many more examples of bug-fixes using different operations,

considering methods with different lengths, and using a variety of beam widths.

Summary for RQ2. The models exhibit a very high syntactic correctness of the gen-

erated patches ranging between 99% and 82%. Moreover, while the models are able to

learn on how to apply a subset of the AST operation types exploited by developers to fix

all bugs in the test set, the learned operations are the most representative ones, allowing

to, theoretically, fix a large percentage of bugs.

4.4.3 RQ3: What is the training and inference time of the models?

The training of the modelsMsmall andMmedium took six and 15 hours respectively, running

on a server with three consumer-level GPUs. Overall, this is an acceptable one-time cost

that allows building a cross-project bug-fixing model in a reasonable amount of time. Fig.

4.7 shows the average inference time per patch (orange line) and per bug (green line) for

theMmedium model with increasingly large beam size. While the average time per bug rises

with larger beam sizes (i.e., more patches generated for the same bug) from a minimum
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Figure 4.7: Inference Time (Mmedium).
of only 0.006s (k = 1) to a maximum of 0.226s (k = 30), the average time per patch

generated stays well below 0.030s. Overall, the model is able to generate 50 candidate

patches for a bug in less than a second. The inference times for Msmall are even lower.

The complete timing results, raw values, and total number of seconds are available in our

online appendix [43].

Summary for RQ3. After training for less than 15 hours, the models are able to

generate 50 candidate patches for a single bug in less than a second.

4.5 Threats to Validity

Construct validity threats concern the relationship between theory and observation,

and are mainly related to likely sources of imprecision in our analyses. To have enough

training data, we mined bug-fixes in GitHub repositories rather than using curated bug-fix

datasets such as Defects4j [104] or IntroClass[118], useful but very limited in size. To

mitigate imprecisions in our datasets, we manually analyzed a sample of the extracted

commits and verified that they were related to bug-fixes.
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Internal validity threats concern factors internal to our study that could influence our

results. It is possible that the performance of our models depends on the hyperparameter

configuration. We explain in Section 4.2 how hyperparameter search has been performed.

External validity threat concern the generalizability of our findings. We did not com-

pare NMT models with state-of-the-art techniques supporting automatic program repair

since our main goal was not to propose a novel approach for automated program repair,

but rather to execute a large-scale empirical study investigating the suitability of NMT for

generating patches. Additional steps are needed to convert the methodology we adopted

into an end-to-end working tool, such as the automatic implementation of the patch, or

the execution of the test cases for checking a patch’s suitability. This is part of our future

work agenda.

We only focused on Java programs. However, the learning process is language-independent

and the whole infrastructure can be instantiated for different programming languages by

replacing the lexer, parser and AST differencing tools.

Finally, we only focused on small- and medium-sized methods. We reached this decision

after analyzing the distribution of the extracted BFPs, balancing the amount of training

data available and the variability in sentence length.

4.6 Related Work

This section describes related work on (i) automated program repair techniques and, specif-

ically, their underlying redundancy assumption, and (ii) the use of machine translation to

support software engineering tasks.

4.6.1 Program Repair and the Redundancy Assumption

Automated program repair involves the transformation of an unacceptable behavior of a

program execution into an acceptable one according to a specification [136]. Behavioral

repair techniques in particular change the behavior of a program under repair by changing
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its source or binary code [136]. These techniques [119, 78, 167] rely on a critical assump-

tion, the redundancy assumption, that claims large programs contain the seeds of their own

repair. This assumption has been examined by at least two independent empirical stud-

ies, showing that a significant proportion of commits originates from previously-existing

code [132, 48]. Martinez et al. [132] empirically examined the assumption that certain bugs

can be fixed by copying and rearranging existing code. They validated the redundancy as-

sumption by defining a concept of software temporal redundancy. A commit is temporally

redundant if it is a rearrangement of code in previous commits. They measured redundancy

at two levels of granularity: line- and token-level. At line-level granularity, they found that

most of the temporal redundancy is localized in the same file. At token-level granularity,

their results imply that many repairs never need to invent a new token. Barr et al. [48]

examined a history of 15,723 commits to determine the extent to which the commits can

be reconstructed from existing code. The grafts they found were mostly single lines, i.e.,

micro-clones, and they proposed that micro-clones are useful since they are the atoms of

code construction [48]. Their findings align with Martinez et al. [132] in that changes to a

codebase contain fragments that already exist in the code base at the time of the change.

Repair approaches based on the redundancy assumption are called redundancy-based

repair techniques, since they leverage redundancy and repetition in source code [154, 73,

95, 56, 143, 132, 48]. For example, GenProg [119, 78, 79] searches for statement-level

modifications to make to an abstract syntax tree. The approach by Arcuri and Yao [45] co-

evolves programs and test cases using a model similar to the predatory-prey one. Weimer

et al. [191] perform program repair using a deterministic search, reducing the search space

with program equivalence analysis. Le et al. [117] use the content of previous patches to

reward patches that can have a likely better acceptability for developers, and therefore

avoid over-fitting patches to test cases. A complementary set of repair techniques leverage

program analysis and program synthesis to repair programs by constructing code with

particular properties [144, 134, 108, 201, 133, 172, 116, 153].
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Some approaches perform automated program repair by searching the fix among manually-

written patterns, as in the case of PAR [109], or through a SMT (satisfiability modulo

theories)-based semantic code search over a large body of existing code, as for SearchRe-

pair [108]. Instead, Prophet [126] is a learning-based approach that uses explicitly designed

code features to rank candidate repairs. Other approaches train on correct solutions (from

student programs) to specific programming tasks and try to learn task-specific repair strate-

gies [52, 156]. This goal has been achieved successfully in contexts such as in massively

open online courses (MOOC), where the programs are generally small and synthetic [87].

The goal of our empirical investigation was to determine whether NMT could be used

to bring the “redundancy assumption”, but also the heuristics used by program repair

approaches using code search, at a next level. Such a next level would be the capability to

automatically learn patches from large software corpora.

As mentioned in the introduction, this work represent an extension of our previous work

in which we proposed the general idea of learning bug-fixes using NMT [181]. While our

previous paper mainly presented the idea and assessed its overall feasibility, this chapter

reports an extensive evaluation, in which we also (i) generate multiple candidate patches

via beam search; (ii) analyze the types of AST operations performed in the fixes as well as

the syntactic correctness; (iii) qualitatively analyze the kinds of fix operations the learned

models are able to perform, and (vi) assess the timing performance of the approach when

learning the models and when recommending the fix.

4.6.2 Machine Translation in Software Engineering

Modern machine translation systems generally use data-driven methods to translate text or

speech from one language to another. Machine translation systems are trained on translated

texts, or “parallel corpora”, for particular text types [111] in both natural languages and

formal languages such as programming languages. Manually migrating software projects

from one language to another is a time-consuming and error-prone task [204]. Nguyen et

al. [140, 141, 142] used statistical machine translation for method-to-method migration
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from Java to C#, translating small token sequences at a time. Recently, NMT systems

superseded traditional statistical approaches as the state-of-the-art in translation. One

advantage neural systems have over purely statistical systems is they can measure fluency at

a higher level of granularity, e.g., sentence-level granularity, rather than being constrained

to phrases. However, NMT systems are indeed data-hungry systems, and this problem has

been an issue for software engineering applications where there are not a lot of parallel

corpora. DeepAM [85] uses deep learning to automatically mine application programming

interface mappings from a source code corpus without parallel text. Our work is intended

to study the feasibility of using NMT to learn bug-fixes from real-world changes.

4.7 Conclusion

We presented an extensive empirical investigation into the applicability of Neuro-Machine

Translation (NMT) for the purpose of learning how to fix code, from real bug-fixes. We first

devised and detailed a process to mine, extract, and abstract the source code of bug-fixes

available in the wild, in order to obtain method-level examples of bug-fix pairs (BFPs).

Then, we set up, trained, and tuned NMT models to translate buggy code into fixed code.

Our empirical analysis aimed at assessing the feasibility of the NMT technique applied

to the bug-fixing problem, the types and quality of the predicted patches, as well as the

training and inference time of the models.

We found the models to be able to fix a large number of unique bug-fixes, ranging be-

tween 9-50% of small BFPs (up to 2,927 unique fixed bugs) and 3-28% of medium BFPs (up

to 1,869 unique fixed bugs) in our test set, depending on the amount of candidate patches

we require the model to generate. The models generate syntactically correct patches in

more than 82% of the cases. The model Msmall is able to emulate between 28-64% of the

Abstract Syntax Tree operations performed during fixes, while Mmedium achieves between

16-52% of the coverage. Finally, the running time analysis shows that these models are

capable of generating tens of candidate patches in a split of a second.
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This study constitutes a solid empirical foundation upon which other researchers could

build, and appropriately evaluate, program repair techniques based on NMT.
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Chapter 5

On Learning Meaningful Code

Changes via Neural Machine

Translation

5.1 Introduction

Several works recently focused on the use of advanced machine learning techniques on

source code with the goal of (semi)automating several non-trivial tasks, including code

completion [197], generation of commit messages [101], method names [36], code comments

[198], defect prediction [190], bug localization [114] and fixing [181], clone detection [196],

code search [82], and learning API templates [84].

The rise of this research thread in the software engineering (SE) community is due to

a combination of factors. First, is the vast availability of data and, specifically, of source

code and its surrounding artifacts in open-source repositories. For instance, at the time

of writing this chapter, GitHub alone hosted 100M repositories, with over 200M merged

pull requests (PRs) and 2B commits. Second, DL has become a useful tool due to its

ability to learn categorization of data through the hidden layer architecture making it

especially proficient in feature detection [50]. Specifically, Neural Machine Translation
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(NMT) has become a premier method for the translation of different languages, surpassing

that of human interpretation [199]. A similar principle applies to “translating” one piece of

source code into another. Here, the ambiguity of translating makes this method extremely

versatile: One can learn to translate buggy code into fixed code, English into Spanish,

Java into C, etc. Third, the availability of (relatively) cheap hardware able to efficiently

run DL infrastructures.

Despite all the work done, only a few approaches have been proposed to automate

non-trivial coding activities. In particular, Tufano et al. [181] showed that DL can be used

to automate bug-fixing activities. However, there is still a lack of empirical evidence about

the types of code changes that can actually be learned and automatically applied by using

DL. Also, while most of the works applying DL in the software engineering field focus on

quantitatively evaluating the performance of the devised technique (e.g., How many bugs

is our approach able to fix?), little qualitative analysis has been done to deeply investigate

the meaningfulness of the output produced by DL-based approaches.

In this chapter, we make a first empirical step in the direction of quantitatively and

qualitatively investigating the ability of a NMT model to learn how to automatically apply

code changes just as developers do this in PRs. In particular, we harness the power of

NMT to automatically “translate” a code component from its state before the implemen-

tation of the PR and after the PR has been reviewed and merged, thereby, emulating the

combination of code changes that would be implemented by developers in real PRs.

We mine three large Gerrit [18] code review repositories, namely Android [15], Google

Source [16], and Ovirt [17]. In total, these repositories host code reviews related to 339

sub-projects. We collected from these projects 30,292 merged PRs that underwent code

review. We only considered merged and reviewed PRs for three reasons. First, we wanted

to ensure that an NMT model is learning meaningful changes, thus, justifying the choice

of mining “reviewed PRs” as opposed to any change committed in the versioning system.

Second, given the deep qualitative focus of our study (details follow), we wanted to analyze

the discussions carried out in the code review process to better understand the types of
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changes learned by our approach. Indeed, while in the case of commits we would only have

commit notes accompanying them, with a reviewed PR we can count on a rich amount of

qualitative data explaining the rationale behind the implemented changes. Third, we only

focus on merged PRs, since the code before and after (i.e., merged) the PR is available.

This is not the case for abandoned PRs. We extract method-level AST edit operations

from these PRs using fine-grained source code differencing [68]. This resulted in 239,522

method pairs, each of them representing the method before (PR not submitted) and after

(PR merged) the PR process. An Encoder-Decoder Recurrent Neural Network (RNN) is

then used to learn the code transformations performed by developers during PR activities.

We quantitatively and qualitatively evaluate the NMT model. For the quantitative

analysis, we assessed its ability in modifying the project’s code exactly as done by de-

velopers during real PRs. This means that we compare, for the same code components,

the output of the manually implemented changes and of the output of the NMT model.

The qualitative analysis aims instead at distilling a taxonomy of meaningful code trans-

formations that the model was able to automatically learn from the training data — see

Figure 5.1.

The achieved results indicate that, in its best configuration, the NMT model is able to

inject the same code transformations that are implemented by developers in PRs in 16-36%

of cases, depending on the number of possible solutions that it is required to produce using

beam search [158] (e.g., if only the top-ranked solution is picked, the model succeeds in 16%

of cases). Moreover, the extracted taxonomy shows that the model is able to learn a rich

variety of meaningful code transformations, automatically fixing bugs and refactoring code

as humans would do. As explained in Section 5.2, these results have been achieved in a

quite narrow context (i.e., we only considered pairs of small/medium methods before/after

the implementation of the changes carried by the PR), and this is also one of the reasons

why our infrastructure mostly learned bug-fixing and refactoring activities (as opposed to

the implementation of new features). However, we believe that our results clearly show the

potential of NMT for learning and automating non-trivial code changes and therefore can
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pave the way to more research targeting the automation of code changes (e.g., approaches

designed to learn and apply refactorings). To foster research in this direction, we make

publicly available the complete datasets, source code, tools, and raw data used in our

experiments [25].

5.2 Approach

Our approach starts with mining PRs from three large Gerrit repositories (Sec. 5.2.1).

From these PRs, we extract the source code before and after the PRs are merged. We pair

the pre-PR and post-PR methods, where each pair serves as an example of a meaningful

code change (Sec. 5.2.2). Method pairs are then abstracted, filtered, and organized in

datasets (Sec. 5.2.3). Next, we train a RNN Encoder-Decoder to translate the version

of the code before the PR into the version of code after the PR, essentially trying to

emulate the code change (Sec. 5.2.4). Finally, the output generated by the NMT model is

concretized in real source code (Sec. 5.2.5).

5.2.1 Code Reviews Mining

We built a Gerrit crawler to collect the PR data needed to train the NMT model. Given

a Gerrit server, the crawler extracts the complete list of projects hosted on it. Indeed,

code reviews for multiple projects can be hosted in a single Gerrit server. Then, for each

project, the crawler retrieves the list of all PRs submitted for review and having “merged”

as the final status (i.e., PRs that had been accepted after the review). We then process

each merged PR P using the following steps. First, let us define the set of Java files

submitted in P as FS = {F1, F2, . . . , Fn}. We ignore non-Java files, since our NMT model

only supports Java. For each file in FS , we use the Gerrit API to retrieve their version

before the changes implemented in the PR. The crawler discards new files created in the

PR (i.e., not existing before the PR) since we cannot learn any code transformation from

them (we need the code before/after the PR to learn changes implemented by developers).
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Then, the Gerrit API is used to retrieve the merged version of the files impacted by the

PR. The two sets of collected files (i.e., before/after the PR) might not be exactly the

same, due to files created/deleted during the code review process (see the next section).

The output of the crawler is, for each PR, the version of the files impacted before

(pre-PR) and after (post-PR, merged) the PR. At the end of the mining process we obtain

three datasets of PRs: PROvirt, PRAndroid, and PRGoogle.

5.2.2 Code Extraction

Each mined PR is represented as pr = {(f1, . . . , fn), (f
′
1, . . . , f

′
m)}, where f1, . . . , fn are the

source code files before the PR, and f ′1, . . . , f
′
m are code files after the PR. As previously

explained, the two sets may or may not be the same size, since files could have been

added or removed during the PR process. In the first step, we rely on GumTreeDiff [68]

to establish the file-to-file mapping, performed using semantic anchors, between pre- and

post-PR files and disregarding any file added/removed during the code review process.

After this step, each PR is stored in the format pr = {(f1, . . . , fk), (f
′
1, . . . , f

′
k)}, where fi

is the file before and f ′i the corresponding version of the file after the PR. Next, each pair of

files (fi, f
′
i ) is again analyzed using GumTreeDiff, which establishes the method-to-method

mapping and identifies the AST operations performed between two versions of the same

method. We select only the pairs of methods for which the code after the PR has been

changed with respect to the code before the PR. Then, each PR is represented as a list of

paired methods pr = {(mb,ma)1, . . . , (mb,ma)n}, where each pair (mb,ma)i contains the

method before the PR (mb) and the method after the PR (ma). We will use these pairs

as examples of code changes to train an NMT model to translate mb in ma.

We use the method-level granularity for several reasons: (i) methods implement a sin-

gle functionality and provide enough context for a meaningful code transformation; (ii)

file-level code changes are still possible by composing multiple method-level code transfor-

mations; (iii) files represent large corpus of text, with potentially many lines of untouched

code during the PR, which would hinder our goal to train an NMT model.
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Table 5.1: Vocabularies

Dataset Vocabulary Abstracted Vocabulary

Google 42,430 373
Android 266,663 429
Ovirt 81,627 351

All 370,519 740

In this chapter we only study code changes which modify existing methods, disregarding

code changes that involve the creation or deletion of entire methods/files (see Section 5.5).

5.2.3 Code Abstraction & Filtering

NMT models generate sequences of tokens by computing probability distributions over

words. They can become very slow or imprecise when dealing with a large vocabulary

comprised of many possible output tokens. This problem has been addressed by artifi-

cially limiting the vocabulary size, considering only most common words, assigning special

tokens (e.g., UNK) to rare words or by learning subword units and splitting the words into

constituent tokens [135, 199].

The problem of large vocabularies (a.k.a. open vocabulary) is well known in the Natural

Language Processing (NLP) field, where languages such as English or Chinese can have

hundreds of thousands of words. This problem is even more pronounced for source code.

As a matter of fact, developers are not limited to a finite dictionary of words to represent

source code, rather, they can generate a potentially infinite amount of novel identifiers and

literals. Table 5.1 shows the number of unique tokens identified in the source code of the

three datasets. The vocabulary of the datasets ranges between 42k and 267k, while the

combined vocabulary of the three datasets exceeds 370k unique tokens. In comparison,

the Oxford English Dictionary contains entries for 171,476 words [147].

In order to allow the training of an NMT model, we need a way to reduce the vocabulary

while still retaining semantic information of the source code. We employ an abstraction

process which relies on the following observations regarding code changes: (i) several chunks

of code might remain untouched; (ii) developers tend to reuse identifiers and literals already
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present in the code; (iii) frequent identifiers (i.e., common API calls and variable names)

and literals (e.g., 0, 1, “foo”) are likely to be introduced in code changes.

We start by computing the top-300 most frequent identifiers (i.e., type, method, and

variable names) and literals (i.e., int, double, char, string values) used in the source code

for each of the three datasets. This set contains frequent types, API calls, variable names

and common literal values (e.g., 0, 1, "\n") that we want to keep in our vocabulary.

Subsequently, we abstract the source code of the method pairs by means of a process

that replaces identifiers and literals with reusable IDs. The source code of a method is

fed to a lexer, built on top of ANTLR [151], which tokenizes the raw code into a stream

of tokens. This stream of tokens is then fed into a Java parser, which discerns the role

of each identifier (i.e., whether it represents a variable, method, or type name) and the

type of a literal. Each unique identifier and literal is mapped to an ID, having the form of

CATEGORY_#, where CATEGORY represents the type of identifier or literal (i.e., TYPE, METHOD,

VAR, INT, FLOAT, CHAR, STRING) and # is a numerical ID generated sequentially for each

unique type of instance within that category (e.g., the first method will receive METHOD_0,

the third integer value INT_2, etc.). These IDs are used in place of identifiers and literals

in the abstracted code, while the mapping between IDs and actual identifier/literal values

is saved in a map M , which allows us to map back the IDs in the code concretization

phase (Section 5.2.5). During the abstraction process, we replace all identifiers/literals

with IDs, except for the list of 300 most frequent identifiers and literals, for which we keep

the original token value in the corpus.

Given a method pair (mb,ma), the method mb is abstracted first. Then, using the

same mapping M generated during the abstraction of mb, the method ma is abstracted in

such a way that identifiers/literals already available in M will use the same ID, while new

identifiers/literals introduced in ma (and not available in mb) will receive a new ID. At

the end of this process, from the original method pair (mb,ma) we obtain the abstracted

method pair (amb, ama).
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We allow IDs to be reused across different method pairs (e.g., the first method name

will always receive the ID METHOD_0), therefore leading to an overall reduction of the

vocabulary size. The third column of Table 5.1 reports the vocabulary size after the

abstraction process, which shows a significant reduction in the number of unique tokens in

the corpus. In particular, after the abstraction process, the vocabulary contains: (i) Java

keywords; (ii) top-300 identifiers/literals; (iii) reusable IDs. It is worth noting that the last

row in Table 5.1 (i.e., All) does not represent the cumulative sum, but rather the count of

unique tokens when the three dataset corpora are merged.

Having a relatively small vocabulary allows the NMT model to focus on learning pat-

terns of code transformations that are common in different contexts. Moreover, the use

of frequent identifiers and literals allows the NMT model to learn typical changes (e.g.,

if(i>1) to if(i>0)) and introduce API calls based on other API calls already available

in the code.

After the abstraction process, we filter out method pairs from which the NMT model

would not be able to learn code transformations that will result in actual source code. To

understand the reasoning behind this filtering, it is important to understand the real use

case scenarios. When the NMT model receives the source code of the method amb, it can

only perform code transformations that involve: (i) Java keywords; (ii) frequent identi-

fiers/literals; (iii) identifiers and literals already available in mb. Therefore, we disregard

method pairs where ma contains tokens not listed in the three aforementioned categories,

since the model would have to synthesize new identifies or literals not previously seen.

In the future, we plan to increase the number of frequent identifiers and literals used

in the vocabulary with the aim of learning code transformations from as many method

pairs as possible. We also filter out those method pairs such that amb = ama, meaning

the abstracted code before and after the PR appear the same. We remove these instances

since the NMT model would not learn any code transformation.

Next, we partition the method pairs in small and medium pairs, based on their size

measured in the number of tokens. In particular, small method pairs are those no longer
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Table 5.2: Datasets

Dataset Msmall Mmedium

Google 2,165 2,286
Android 4,162 3,617
Ovirt 4,456 5,088

All 10,783 10,991

than 50 tokens, while we consider medium pairs those having a length between 50-100

tokens. In this stage, we disregard longer method pairs. We discuss this limitation in

Section ??.

Table 5.2 shows the number of method pairs, after the abstraction and filtering process,

for each dataset and the combined one (i.e., All). Each of the four datasets is then randomly

partitioned into training (80%), validation (10%), and test (10%) sets. Before doing so,

we make sure to remove any duplicate method pairs, to ensure that none of the method

pairs in the test set have been seen during the training phase.

5.2.4 Learning Code Transformations

In this section, we describe the NMT models we use to learn code transformations. In

particular, we train these models to translate the abstracted code amb in ama, effectively

simulating the code change performed in the PR by developers.

5.2.4.1 RNN Encoder-Decoder

To build such models, we rely on an RNN Encoder-Decoder architecture with attention

mechanism [46, 128, 54], commonly adopted in NMT tasks [106, 171, 59]. As the name

suggests, this model consists of two major components: an RNN Encoder, which encodes

a sequence of tokens x into a vector representation, and an RNN Decoder, which de-

codes the representation into another sequence of tokens y. During training, the model

learns a conditional distribution over a (output) sequence conditioned on another (input)

sequence of terms: P (y1, .., ym|x1, .., xn), where the lengths n and m may differ. In our

setting, given the sequence representing the abstract code before the PR x = amb =
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(x1, .., xn) and a corresponding target sequence representing the abstract code after the

PR y = ama = (y1, .., ym), the model is trained to learn the conditional distribution:

P (ama|amb) = P (y1, .., ym|x1, .., xn), where xi and yj are abstracted source tokens: Java

keywords, separators, IDs, and frequent identifiers and literals. The Encoder takes as input

a sequence x = (x1, .., xn) and produces a sequence of states h = (h1, .., hn). In particular,

we adopt a bi-directional RNN Encoder [46], which is formed by a backward and a forward

RNN. The RNNs process the sentence both from left-to-right and right-to-left, and are able

to create sentence representations taking into account both past and future inputs [54].

The RNN Decoder predicts the probability of a target sequence y = (y1, .., ym) given h.

Specifically, the probability of each output token yi is computed based on: (i) the recurrent

state si in the Decoder; (ii) the previous i−1 tokens (y1, .., yi−1); and (iii) a context vector

ci. This vector ci, also called attention vector, is computed as a weighted average of the

states in h: ci =
∑n

t=1 aitht where the weights ait allow the model to pay more attention to

different parts of the input sequence, when predicting the token yi. Encoder and Decoder

are trained jointly by minimizing the negative log likelihood of the target tokens, using

stochastic gradient descent.

5.2.4.2 Beam Search Decoding

For each method pair (amb, ama) the model is trained to translate amb solely into the

corresponding ama. However, during testing, we would like to obtain multiple possible

translations. Precisely, given a piece of source code m as input to the model, we would like

to obtain k possible translations of m. To this aim, we employ a decoding strategy called

a Beam Search used in previous applications of DL [158]. The major intuition behind a

Beam Search decoding is that rather than predicting at each time step the token with the

best probability, the decoding process keeps track of k hypotheses (with k being the beam

size or width). Formally, let Ht be the set of k hypotheses decoded until time step t:

Ht = {(ỹ11, . . . , ỹ1t ), (ỹ21, . . . , ỹ2t ), . . . , (ỹk1 , . . . , ỹkt )}
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At the next time step t + 1, for each hypothesis there will be |V | possible yt+1 terms (V

being the vocabulary), for a total of k · |V | possible hypotheses:

Ct+1 =
k⋃
i=1

{(ỹ11, . . . , ỹ1t , v1), . . . , (ỹk1 , . . . , ỹkt , v|V |)}

From these candidate sets, the decoding process keeps the k sequences with the highest

probability. The process continues until each hypothesis reaches the special token repre-

senting the end of a sequence. We consider these k final sentences as candidate patches

for the buggy code.

5.2.4.3 Hyperparameter Search

We performed hyperparameter search by testing ten configurations of the encoder-decoder

architecture. The configurations tested different combinations of RNN Cells (LSTM [96]

and GRU [59]), number of layers (1, 2, 4) and units (256, 512) for the encoder/decoder, and

the embedding size (256, 512). Bucketing and padding was used to deal with the variable

length of the sequences. We trained the models for a maximum of 60k epochs, and selected

the model’s checkpoint before over-fitting the training data. To guide the selection of the

best configuration, we used the loss function computed on the validation set (not on the

test set), while the results are computed on the test set. All the configurations/settings

are listed in our online appendix [25].

5.2.5 Code Concretization

In this final phase, the abstracted code generated as output by the NMT model is con-

cretized by mapping back all the identifiers and literal IDs to their actual values. The

process simply replaces each ID found in the abstracted code to the real identifier/literal

associated with the ID and saved in the mapping M , for each method pair. The code is

automatically indented and additional code style rules can be enforced during this stage.

While we do not deal with comments, they could be reintroduced in this stage as well.
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5.3 Experimental Design

The goal of this study is to empirically assess whether NMT can be used to learn a diverse

and meaningful set of code changes. The context consists of a dataset of PRs and aims at

answering two research questions (RQs).

5.3.1 RQ1: Can Neural Machine Translation be employed to learn mean-

ingful code changes?

We aim to empirically assess whether NMT is a viable approach to learn transformations

of the code, as performed by developers in PRs. To this end, we use the eight datasets of

method pairs listed in Table 5.2. Given a dataset, we train different configurations of the

Encoder-Decoder models on the training set, then use the validation set to select the best

performing configuration of the model. We then evaluate the validity of the model with

the unseen instances of the test set. In total, we experiment with eight different models,

one for each dataset in Table 5.2 (i.e., one model trained, configured, and evaluated on the

Google dataset of small methods, one on the Google dataset of medium methods, etc.).

The evaluation is performed by the following methodology. Let M be a trained model

and T be the test set of dataset D, we evaluate the model M for each (amb, ama) ∈ T .

Specifically, we feed the pre-PR abstract code amb to the model M , performing inference

with Beam Search Decoding for a given beam size k. The model will generate k different

potential code transformations CT = {ct1, . . . , ctk}. We say that the model successfully

predicted a code transformation if there exists a cti ∈ CT such that cti = ama (i.e.,

the abstract code generated by developers after the merging of the PR). We report the

raw count and percentage of successfully predicted code changes in the test set, with

k = 1, 5, 10. In other words, given a source code method that the model has never seen

before, we evaluate the model’s ability to correctly predict the code transformation that

a developer performed by allowing the model to generate its best guess (i.e., k = 1) or

the top-5 and top-10 best guesses. It should be noted that while we count only perfect
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Table 5.3: Perfect Predictions

Dataset Beam Msmall Mmedium

Google
1 10 (4.62%) 7 (3.07%)
5 17 (7.87%) 13 (5.70%)
10 20 (9.25%) 17 (7.45%)

Android
1 40 (9.61%) 51 (14.12%)
5 71 (17.06%) 73 (20.22%)
10 79 (18.99%) 76 (21.05%)

Ovirt
1 55 (12.35%) 60 (11.78%)
5 93 (20.89%) 90 (17.68%)
10 113 (25.39%) 102 (20.03%)

All
1 228 (21.16%) 178 (16.21%)
5 349 (32.40%) 306 (27.86%)
10 388 (36.02%) 334 (30.41%)

predictions, there are many other (slightly different) transformations that can still be viable

and useful for developers. However, we discount these less-than-perfect predictions since

it is not possible to automatically categorize those as viable and non-viable.

5.3.2 RQ2: What types of meaningful code changes can be performed

by the model?

In this RQ we aim to qualitatively assess the types of code changes that the NMT model

is able to generate. To this goal, we focus only on the successfully predicted code trans-

formations generated by the model trained on the All dataset, considering both small and

medium sized methods.

One of the authors manually investigated all the successfully predicted code transfor-

mations and described the code changes. Subsequently, a second author discussed and

validated the described code changes. Finally, the five authors together defined – and iter-

atively refined – a taxonomy of code transformations successfully performed by the NMT

model.
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Figure 5.1: Taxonomy of code transformations learned by the NMT model
5.4 Results

5.4.1 RQ1: Can Neural Machine Translation be employed to learn mean-

ingful code changes?

Table 5.3 reports the perfect predictions (i.e., successfully predicted code transformations)

by the NMT models, in terms of raw numbers and percentages of the test sets. When we

allow the models to generate only a single translation (i.e., beam = 1), they are able to

predict the same code transformation performed by the developers in 3% up to 21% of the

cases. It is worth noting how the model trained on the combined datasets (i.e., All) is able

to outperform all the other single-dataset model, achieving impressive results even with a

single guess (21.16% for small and 16.21% for medium methods). This result shows that

NMT models are able to learn code transformations from a heterogeneous set of examples

belonging to different datasets. Moreover, this also provides preliminary evidence that

transfer learning would be possible for such models.
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On the other end of the spectrum, the poor performance of the models trained on

Google’s dataset could be explained by the limited amount of training data (see Table 5.2)

with respect to the other datasets.

When we allow the same models to generate multiple translations of the code (i.e.,

5 and 10), we observe a significant increase in perfect predictions across all models. On

average, 1 out of 3 code transformations can be generated and perfectly predicted by the

NMT model trained on the combined dataset.

Summary for RQ1. NMT models are able to learn meaningful code changes and

perfectly predict code transformations in up to 21% of the cases when only one translation

is generated, and up to 36% when 10 possible guesses are generated.

5.4.2 RQ2: What types of meaningful code changes can be performed

by the model?

Here we focus on the 722 (388+334) perfect predictions generated by the model trained

on the whole dataset, i.e., All, with beam size equals 10. These perfect predictions were

the results of 216 unique types of AST operations, as detected by GumTreeDiff, that the

model was able to emulate. The complete list is available in our replication package [25].

Figure 5.1 shows the taxonomy of code transformations that we derived by manually

analyzing the 722 perfect predictions. Note that a single perfect prediction can include

multiple types of changes falling into different categories of our taxonomy (e.g., a refac-

toring and a bug fix implemented in the same code transformation). For this reason, the

sum of the classified changes in Figure 5.1 is 793. The taxonomy is composed of three

sub-trees, grouping code transformations related to bug fixing, refactoring, and “other”

types of changes. The latter includes code transformations that the model correctly per-

formed (i.e., those replicating what was actually done by developers during the reviewed

PRs) but for which we were unable to understand the rationale behind the code trans-

formation (i.e., why it was performed). We preferred to adopt a conservative approach
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and categorize transformations into “refactoring” and “bug-fix” sub-trees only when we can

confidently link to these types of activities. Also, for 27 transformations, the authors did

not agree on the type of code change and, for this reason, we excluded them from our

taxonomy (that, thus, is related to 695 perfect predictions).

Here, we qualitatively discuss interesting examples (indicated using the 0 icon) of code

transformations belonging to our taxonomy. We do not report examples for all possible

categories of changes learned by the model due to lack of space. Yet, the complete set of

perfect predictions and their classification is available in our replication package [25].

5.4.3 Refactoring

We grouped in the refactoring sub-tree, all code transformations that modify the internal

structure of the system by improving one or more of its non-functional attributes (e.g.,

readability) without changing the system’s external behavior. We categorized the code

transformations into five sub-categories.

5.4.3.1 Inheritance

Refactorings that impact how the inheritance mechanism is used in the code. We found

three types of refactorings related to inheritance: (i) forbid method overriding by adding

the final keyword to the method declaration; (ii) invoke overriding method instead of

overridden by removing the super keyword to the method invocation; and (iii) making a

method abstract through the abstract keyword and deleting the method body.

0 Existing method declared as final [3]. In the DirectByteBuffer class of Android,

the NMT model added to the signature of the getLong(int) method the final keyword.

As stated by the developer implementing the PR: “DirectByteBuffer cannot be final, but

we can declare most methods final to make it easier to reason about”.

0Removed unnecessary “super” specifier [28]. A PR in the Ovirt core subsystem was

performed to clean up the class RandomUtil, that extends Java class java.util.Random.
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The nextShort() method implemented in the refactored class was invoking nextInt() of

the base class through the use of the super java specifier. However, such a specifier was

redundant because nextInt() was not overridden in RandomUtil. Thus, it was removed

by the developer: “Using this modifier has no meaning in the context that was removed ”.

0 Existing method converted to abstract [1].

1 float getFloatUnchecked(int index) {

2 throw new UnsupportedOperationException ();

3 }

4

5 abstract float getFloatUnchecked(int index);

The above code listing shows the code taken as input by the NMT model (top part, pre-

PR) and produced as output (bottom, post-PR). The code transformation replicates the

changes implemented by a developer in a PR, converting the getFloatUnchecked method

into an abstract method, deleting its body. The rationale for this change is explained by the

developer who implemented this change: The method getFloatUnchecked is overridden in

all child classes of the abstract class implementing it and, thus, “there is no need for the ab-

stract base class to carry an implementation that throws UnsupportedOperationException”.

The developer also mentions alternative solutions, such as moving this and similar methods

into an interface, but concludes saying that the effort would be much higher. This case is

interesting for at least two reasons. First, our model was able to learn a combination of

code transformations needed to replicate the PR implemented by the developer (i.e., add

the abstract keyword and delete the method body). Second, it shows the rich availability

of information about the “rationale” for the implemented changes available in code review

repositories. This could be exploited in the future to not only learn the code transfor-

mation, but also to justify it by automatically deriving the rationale from the developers’

discussion.
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5.4.3.2 Methods Interaction

These refactorings impact the way in which methods of the system interact, and include

(i) add parameter refactoring (i.e., a value previously computed in the method body is

now passed as parameter to it), and (ii) broadening the return type of a method by using

the Java wildcard (?) symbol.

0 Method returns a broader generic type [20].

1 <I> RestModifyView <P,I> post(P parent) throws [...];

2

3 RestModifyView <P,?> post(P parent) throws [...];

The code listing shows a change implemented in a PR done on the “Google” Gerrit repos-

itory and correctly replicated by the NMT model. The post method declaration was

refactored to return a broader type and improve the usage of generics. As explained by

the developer, this also allows to avoid the ‘unchecked’ warnings from the five implemen-

tations of the post method present in the system, thus simplifying the code.

5.4.3.3 Naming

This category groups refactorings related to the renaming of methods, parameters, and

variables. This is usually done to improve the expressiveness of identifiers and to bet-

ter adhere to the coding style guidelines. Indeed, good identifiers improve readability,

understandability and maintainability of source code [36, 97].

0 Rename method [29]. One example of correctly learned rename method, is the one

fixing a typo from the OnSucessmethod in the Ovirt system [29]. In this case, the developer

(and the NMT model) both suggested to rename the method in OnSuccess.

0 Rename parameter [12]. A second example of renaming, is the renamed parameter

proposed for the endTrace(JMethod type)method in a PR impacting the AbstractTracerBrush

class in the Android repository [12]. The developer here renamed several parameters “for
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clarity” and, in this case, renamed the type parameter into method, to make it more

descriptive and better reflect its aim.

5.4.3.4 Encapsulation

We found refactorings aimed at broadening and narrowing the visibility of methods (see

Figure 5.1). This can be done by modifying the access modifiers (e.g., changing a public

method to a private one).

0 Broadening [5] and narrowing [21] method visibility. An example of a method,

for which our model recommended to broaden its visibility from private to public, is the

of method from the Key Android class [5]. This change was done in a PR to allow the

usage of the method from outside the class, since the developer needed it to implement a

new feature.

The visibility was instead narrowed from public to private in the context of a refactor-

ing performed by a developer to make “more methods private” [21]. This change impacted

the CurrentUser.getUser() method from the Google repository, and the rationale for this

change correctly replicated by the NMT model was that the getUser() method was only

used in one location in the system outside of its class. However, in that location the value

of “the user is already known”, thus do not really requiring the invocation of getUser().

5.4.3.5 Readability

Readable code is easier to understand and maintain [163]. We found several types of code

transformations learned by the model and targeting the improvement of code readability.

This includes: (i) braces added to if statements with the only goal of clearly delimit-

ing their scope; (ii) the merging of two statements defining (e.g., String address;) and

initializing (e.g., address = getAddess();) a variable into a single statement doing both

(e.g., String address = getAddess();); (iii) the addition/removal of the this qualifier, to

match the project’s coding standards; (iv) reducing the verbosity of a generic declaration by
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using the Java diamond operator (e.g., Map < String, List < String >> mapping = new

HashMap < String, List < String >> () becomes Map < String, List < String >> mapping = new

HashMap <>); (v) remove redundant else keywords from if statements (i.e., when the

code delimited by the else statement would be executed in any case); (vi) refactoring

anonymous classes implementing one method to lambda expressions, to make the code

more readable [26]; (vii) simplifying boolean expressions (e.g., if(x == true) becomes

if(x), where x is a boolean variable); and (viii) merging two catch blocks capturing dif-

ferent exceptions into one catch block capturing both exceptions using the or operator

[7].

0 Anonymous class replaced with lambda expression [26].

1 public boolean isDiskExist ([...]) {

2 return execute(new java.util.concurrent.Callable <java.lang.Boolean >()

{

3 @java.lang.Override

4 public java.lang.Boolean call() { try {[...]} } }); }

5

6 public boolean isDiskExist ([...]) {

7 return execute (() -> { try {[...]} }); }

In the above code listing, the NMT model automatically replaces an anonymous class (top

part, pre-PR) with a lambda expression (bottom part, post-PR), replicating changes made

by Ovirt’s developers during the transitions of the code through Java 8. The new syntax

is more compact and readable.

0 Merging catch blocks capturing different exceptions [7].

1 public static Integer getInteger(String nm, Integer val) {

2 [...]

3 try {[...]}

4 catch (IllegalArgumentException e) { }

5 catch (NullPointerException e) { }

6 }

7
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8 public static Integer getInteger(String nm, Integer val) {

9 [...]

10 try {[...]}

11 catch (IllegalArgumentException | NullPointerException e) { }

12 }

As part of a PR implementing several changes, the two catch blocks of the getInteger

method were merged by the developer into a single catch block (see the code above). The

NMT model was able to replicate such a code transformation that is only meaningful when

an exception is caught and the resulting code that is executed is the same for both instances

of the exception (as in this case). This code change, while simple from a developer’s

perspective, is not trivial to learn due to the several transformations to implement (i.e.,

removal of the two catch blocks and implementation of a new catch block using the | or

operator) and to the “pre-condition” to check (i.e., the same behavior implemented in the

catch blocks).

5.4.4 Bug Fix

Changes in the “bug fix” subtree (see Figure 5.1) include changes implemented with the

goal of fixing a specific bug which has been introduced in the past. The learned code

transformations are organized here into five sub-categories, grouping changes related to bug

fixes that deal with (i) exception handling, (ii) the addition/modification of conditional

statements, (iii) changes in the value returned by a method, (iv) the handling of lock

mechanisms, and (v) wrong method invocations.

5.4.4.1 Exception

This category of changes is further specialized into several subcategories (see Figure 5.1) in-

cluding (i) the addition/delation of thrown exceptions; (ii) the addition of try− catch/finally

blocks [2]; (iii) narrowing or broadening the scope of the try block by moving the exist-
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ing statements inside/outside the block [9]; (iv) changing the exception type in the catch

clause to a narrower type (e.g., replacing Throwable with RuntimeException).

0 Add try-catch block [2].

1 public void test_getPort () throws IOException {

2 DatagramSocket theSocket = new DatagramSocket ();

3 [...]

4 }

5

6 public void test_getPort () throws IOException {

7 try (DatagramSocket theSocket = new DatagramSocket ()) {

8 [...]

9 }

10 }

The above code from the Android repository, shows the change implemented in a PR aimed

at fixing “resource leakages in tests”. The transformation performed by the NMT model

wrapped the creation and usage of a DatagramSocket object into a try− with− resources

block. This way theSocket.close() will be automatically invoked (or an exception will

be thrown), thus avoiding resource leakage.

0 Narrowed the scope of try block [9].

1 public void testGet_NullPointerException () {

2 try {

3 ConcurrentHashMap c = new ConcurrentHashMap (5);

4 c.get(null);

5 shouldThrow ();

6 } catch (java.lang.NullPointerException success) {}

7 }

8

9 public void testGet_NullPointerException () {

10 ConcurrentHashMap c = new ConcurrentHashMap (5);

11 try {

12 c.get(null);

100



13 shouldThrow ();

14 } catch (java.lang.NullPointerException success) {}

15 }

Another change replicated by the NMT model and impacting the Andorid test suite is

the code transformation depicted above and moving the ConcurrentHashMap object in-

stantiation outside of the try block. The reason for this change is the following. The

involved test method is supposed to throw a NullPointerException in case c.get(null)

is invoked. Yet, the test method would have also passed if the exception was thrown during

the c instantiation. For this reason, the developer moved the object creation out of the

try block.

5.4.4.2 Conditional statements

Several bugs can be fixed in conditional statements verifying that certain preconditions are

met before specific actions are performed (e.g., verifying that an object is not null before

invoking one of its methods).

0 Added null check [4].

1 public void run() {

2 mCallback.onConnectionStateChange(BluetoothGatt.this , GATT_FAILURE ,

3 BluetoothProfile.STATE_DISCONNECTED);

4 }

5

6 public void run() {

7 if (mCallback != null) {

8 mCallback.onConnectionStateChange(BluetoothGatt.this , GATT_FAILURE ,

9 BluetoothProfile.STATE_DISCONNECTED);

10 }

11 }

The code listing shows the changes implemented in an Android PR to “fix a NullPoint-

erException when accessing mCallback in BluetoothGatt”. The addition of the if statement
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implementing the null check allows the NMT model to fix the bug exactly as the developer

did.

0 Change comparison operand [6].

1 public void reset(int i) {

2 if ((i < 0) || (i >= mLen)) { [...] }

3 }

4

5 public void reset(int i) {

6 if ((i < 0) || (i > mLen)) { [...] }

7 }

A second example of a bug successfully fixed by the NMT model working on the conditional

statements, impacted the API of the FieldPacker class. As explained by the developer,

the PR contributed “a fix to the FieldPacker.reset() API, which was not allowing the

FieldPacker to ever point to the final entry in its buffer ”. This was done by changing the

>= operand to > as shown in the code reported above.

5.4.4.3 Values

The only type of change we observed in this category is the change of methods’ return

value to fix a bug. This includes simple cases in which a boolean return value was changes

from false to true (see e.g., [13]), as well as less obvious code transformations in which

a constant return value was replaced with a field storing the current return value, e.g.,

return ”refs/my/config”; converted into return ref;, where ref is a variable initialized

in the constructor [22].

5.4.4.4 Lock mechanism

These code changes are all related to the usage of the synchronized Java keyword in

different parts of the code. These include its removal from a code block [11], from a method

signature [10], and moving the keyword from the method signature to a code block or vice
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versa [8]. We do not discuss these code transformations due to their simplicity and lack of

space.

5.4.4.5 Methods invocation

These category groups code transformations fixing bugs by changing the order or value of

parameters in method invocations.

0 Flipped parameters in assertEquals [27].

1 public void testConvertMBToBytes () {

2 [...]

3 org.junit.Assert.assertEquals(bytes , 3145728);

4 }

5

6 public void testConvertMBToBytes () {

7 [...]

8 org.junit.Assert.assertEquals (3145728 , bytes);

In this example the developer fixed a bug in the test suite by flipping the order in which

the parameters are passed to the assertEquals method. In particular, while the assert

method was expecting the pairs of parameters (long expected, long actual), test was

passing the actual value first, thus invalidating the test. The fix, automatically applied by

the NMT model, swaps the arguments of the assertEquals.

5.4.5 Other

As previously said, we assigned to the ‘Other’ subtree those code transformations for which

we were unable to clearly identify the motivation/reason. This subtree includes changes

related to: (i) the method signature (added/removed/changed parameter or return type);

(ii) types (removed type casting in method body or its signature, changed variable type);

(iii) variable initialization; (iv) replaced statement/invoked method; (v) added code (con-

dition, statement, invoked method, parameter); (vi) deleted code (if condition, finally
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block, try− catch block, invoked method, statement); (vii) changes triggered by the other

changes (e.g., static method call replaced with an instance method call or vice versa — see

Figure 5.1). Note that, while we did not assign a specific “meaning” to these changes, due

to a lack of domain knowledge of the involved systems, these are still perfect predictions

that the NMT model performed. This means the code changes are identical to the ones

implemented by developers in the PR. While we do not show examples due to lack of space,

all classified code transformations are available in our replication package [25].

Summary for RQ2. Our results show the great potential of NMT for learning mean-

ingful code changes. Indeed, the NMT model was able to learn and automatically apply a

wide variety of code changes, mostly related to refactoring and bug-fixing activities. The

fact that we did not find other types of changes, such as new feature implementation,

might be due to the narrow context in which we applied our models (i.e., methods of

limited size), as well as to the fact that new features implemented in different classes and

systems rarely exhibit recurring patterns (i.e., recurring types of code changes) that the

model can learn. More research is needed to make this further step ahead.

5.5 Threats to Validity

Construct validity. We collected code components before and after pull requests through

a crawler relying on the Gerrit API. The crawler has been extensively tested, and the

manual analysis of the extracted pairs performed to define the taxonomy in Figure 5.1

confirmed the correctness of the collected data.

Internal validity. The performance of the NMT model might be influenced by the

hyperparameter configuration we adopted. To ensure replicability, we explain in Section 5.2

how hyperparameter search has been performed.

We identified through the manual analysis the types of code transformations learned

by the model. To mitigate subjectivity bias in such a process, the taxonomy definition

has been done by one of the authors, double checked by a second author, and finally, the
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resulting taxonomy has been discussed among all authors to spot possible issues. Moreover,

in case of doubts, the code transformation was categorized in the “other” subtree, in which

we only observed the type of code change implemented, without conjecturing about the

goal of the transformation. However, as in any manual process, errors are possible, and we

cannot exclude the presence of misclassified code transformations in our taxonomy.

External validity. We experimented with the NMT model on data related to Java

programs only. However, the learning process is language-independent and the whole

infrastructure can be instantiated for different programming languages by replacing the

lexer, parser and AST differencing tools.

We only focused on methods having no more than 100 tokens. This is justified by

the fact that we observe a higher density of method pairs with sizes less than 100 tokens

in our dataset. The distribution also shows a long tail of large methods, which could be

problematic when training a NMT model. Distribution and data can be accessed in our

replication package [25]. Also, we only focus on learning code transformations of existing

methods rather than the creation of new methods since these latter are (i) complex code

changes that involve a higher level of understanding of the software system in its entirety;

and (ii) not well-suited for NMT models since the translation would go from/to empty

methods.

Finally, pull request data from three Gerrit repositories were used. While these repos-

itories include hundreds of individual projects (thus ensuring a good external validity of

our findings) our results might not generalize to other projects/languages.

5.6 Related Work

Deep Learning (DL) has recently become a useful tool to study different facets of software

engineering. The unique representations allow for features to be discovered by the model

rather than manual derivation. Due to the power of these representations, many works

have applied these models to solve SE problems [76][34][66][61][123][90][160][88]. However,
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to the best of our knowledge, this is the first work that uses DL techniques to learn and

create a taxonomy from a variety of code transformations taken from developers’ PRs.

White et al. uses representation learning via a recursive autoencoder for the task of

clone detection [196]. Each piece of code is represented as a stream of identifiers and

literals, which they use as input to their DL model. Using a similar encoding, Tufano et

al. encodes methods into four different representations, then the DL model evaluates how

similar two pieces of code are based on their multiple representations [180]. Another recent

work by Tufano et al. applies NMT to bug-fixing patches the wild [181]. This work applies

a similar approach, but rather than learning code transformations they attempt to learn

bug-fixing commits to generate patches. These works are related to ours, since we use a

similar code representation as input to the DL model, yet, we apply this methodology to

learn as many code transformations as possible.

White et al. also compare DL models with natural language processing models for

the task of code suggestion. They show that DL models make code suggestions based

upon contextual features learned by the model rather than the predictive power of the

past n tokens [197]. Further expanding upon the powerful, predictive capabilities of these

models, Dam et al. presents DeepSoft, which is a DL-based architecture used for modeling

software, code generation and software risk prediction [62].

DL has also been applied to the areas of bug triaging and localization. Lam et al.

makes use of DL models and information retrieval to localize buggy files after a bug report

is submitted. They use a revised Vector Space Model to create a representation the DL

model can use to relate terms in a bug report to source code tokens [114]. Likewise, to

reduce the effort of bug triaging, Lee et al. applies a CNN to industrial software in order to

properly triage bugs. This approach uses word2vec to embed a summary and a description

which the CNN then assigns to a developer [122]. Related to software bugs, Wang et al.

uses a Deep Belief Network (DBN) to learn semantic features from token vectors taken

from a programs’ ASTs. The network then predicts if the commit will be defective [190].
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Many DL usages aim to help developers with tasks outside of writing code. Choetkier-

tikul et al. proposes a DL architecture of long short-term memory and recurring highway

network that aims to predict the effort estimation of a coding task [60]. Another aid for

developers is the ability to summarize a given segment of source code. To this point Al-

lamanis et al. uses an Attentional Neural Network (ANN) with a convoluation layer in

order to summarize pieces of source code into short, functional descriptions [40]. Guo et al.

develops a DL approach using RNNs and word embeddings to learn the sentence semantics

of requirement artifacts, which helps to create traceability links in software projects [86].

The last example of DL implementations that aid developers in the software development

process is an approach developed by Gu et al. that helps to locate source code. This

implementation uses NNs and natural language to embed code snippets with natural lan-

guage descriptions into a high-dimensional vector space, helping developers locate source

code based on natural language queries [82].

DL-based approaches have also been applied to more coding related tasks, one such

task is accurate method and class naming. Allamanis et al. uses a log-bilinear neural

network to understand the context of a method or class and recommends a representative

name that has not appeared in the training corpus [35]. Also helping with correct coding

practices, Gu et al. uses an RNN encoder-decoder model to generate a series of correct

API usages in source code based upon natural language queries. The learned semantics

allow the model to associate natural language queries with a sequence of API usages [84].

Recently we have seen DL infiltrate the mobile SE realm. Moran et al. uses a DL-based

approach to automatically generate GUIs for mobile apps. In this approach, a deep CNN

is used to help classify GUI components which can later be used to generate a mock GUI

for a specific app [137].

Although DL approaches are prevalent in SE, this work is the first to apply DL to

empirically evaluate the capability to learn code changes from developer PRs. The previous

work has shown that DL approaches can yield meaningful results given enough quality
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training data. Thus, we specifically apply NMT to automatically learn a variety of code

transformations, from real pull requests, and create a meaningful taxonomy.

5.7 Conclusion

In this chapter we quantitatively and qualitatively investigated the ability of Neural Ma-

chine Translation (NMT) models to learn how to automatically apply code transforma-

tions. We first mine a dataset of complete and meaningful code changes performed by

developers in merged pull requests, extracted from three large Gerrit repositories. Then,

we train NMT models to translate pre-PR code into post-PR code, effectively learning

code transformations as performed by developers.

Our empirical analysis shows that NMT models are capable to learn code changes

and perfectly predict code transformations in up to 21% of the cases when only a single

translation is generated, and up to 36% when 10 possible guesses are generated. The

results also highlight the ability of the models to learn from a heterogeneous set of PRs

belonging to different dataset, indicating the possibility of transfer learning across different

projects and domains.

The performed qualitative analysis also highlighted the ability of the NMT models to

learn a wide variety of meaningful code transformations, paving the way to further research

in this field targeting the automatic learning and application of non-trivial code changes,

such as refactoring operations. In that sense, we hope that the public availability of the

source code of our infrastructure and of all the data and tools used in our study [25], can

help in fostering research in this field.

108



Chapter 6

Conclusions & Future Research

In this dissertation, we have presented a novel approach to learn code transformations via

Neural Machine Translation in the context of three major software engineering tasks: (i)

Mutation Testing; (ii) Automated Program Repair; and (iii) Learning Code Changes. The

overarching motivation of this work has been to build intelligent systems that can learn

from real world data with the long-lasting goal of automating different software developers’

activities.

We start by mining real world examples of code transformations performed by develop-

ers in the wild, from publicly available repositories on GitHub and code review systems such

as Gerrit. From this data, we perform fine grained AST differencing and extract method-

level transformation pairs that represents the data points we will use to train our Neural

Machine Translation models to learn from examples. Next, we perform code abstraction, a

process we devised, which transforms the source code into an abstract representation with

limited vocabulary size that also retains syntactical and semantical information. We train

an RNN Encoder-Decoder models with these transformation pairs by learning to translate

the abstract code before the change into the abstract code after the change. We thoroughly

evaluate the models across different dimensions: quality of the translation, the percentage

of successful changes, the syntactic correctness of the proposed sentences, the percentage

of emulated AST operations, and the inference time of the models.
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In the first project we use bug fixes to train a model that learns how to mutate source

code. The model is trained to translate the fixed code into the original buggy code,

therefore, learning to introduce bugs. The results show that the models are able to generate

syntactically correct mutants that resemble real bugs. As future work, we plan to deploy

a full-fledged mutation tool: DeepMutation. Moreover, we plan to provide more empirical

evidence on the types of mutations generated by the model and possibly novel types of

mutants not available in the literature.

In the second project, we instantiate this general idea in the Automated Program

Repair domain. We train NMT models to translate buggy code into fixed code. We rely

on beam search to generate many different translations for the same buggy code, to have

a large set of candidate patches. The results show that the model can successfully fix

(exactly as the developer originally did) thousands of unique bug-fixes that were never

seen in the training set. As future research, we are already involved in extending this idea

by providing the model with even more context (not only the buggy method, but also the

buggy class) and integrating this model into a framework that also tests the candidate

patches against the available test suite. SequenceR [58] is the result of this effort and

collaboration with other researchers in the APR community.

In the last chapter of this dissertation, we push our learning infrastructure to learn

not only mutations and bug-fixes, but many different types of code changes. With this

aim, we mine meaningful code changes, from code review systems, that have undergone

a code review process and have been accepted and merged in the master branch. The

results demonstrate that the models are able to successfully replicate many different types

of changes. These types of changes have been manually classified in a taxonomy, that

shows that the models are able to perform refactoring operations, bug-fixes, and other

changes that modify the behavior of methods. As future work, we plan to integrate these

models in DevOps pipelines and code review systems.
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