

W&M ScholarWorks

Dissertations, Theses, and Masters Projects

Theses, Dissertations, & Master Projects

2019

Modeling the Effects of Supercomplex Formation and Stress Response on Alzheimer'S Disease Progression

Morgan Griffin Shelton William & Mary - Arts & Sciences, mgshelton127@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Biochemistry Commons

Recommended Citation

Shelton, Morgan Griffin, "Modeling the Effects of Supercomplex Formation and Stress Response on Alzheimer'S Disease Progression" (2019). *Dissertations, Theses, and Masters Projects.* William & Mary. Paper 1563899025.

http://dx.doi.org/10.21220/s2-c9zh-am42

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Modeling the effects of supercomplex formation and stress response on Alzheimer's disease progression

Morgan Griffin Shelton

West Point, Virginia

Bachelor of Science, The College of William & Mary, 2017

A Thesis presented to the Graduate Faculty of The College of William & Mary in Candidacy for the Degree of Master of Science

Department of Chemistry

College of William & Mary May 2019

© Copyright by Morgan G Shelton 2019

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of the requirements for the degree of

Chemistry Master of Science Morgan Griffin Shelton

Approved by the Committee April 2019

man Chair mntittee

Professor Randolph Coleman, Chemistry College of William & Mary

Professor Lisa Landino, Chemistry College of William & Mary

nana

Professor Nathaniel Kidwell, Chemistry College of William & Mary

rans

Professor Frank Castora Eastern Virginia Medical School

ABSTRACT

Alzheimer's disease is a specific form of dementia characterized by the aggregation of Amyloid- β plaques and tau tangles. New research has found that the formation of these aggregates occurs after dysregulation of respiratory activity and the production of radical oxygen species. Proteomic data shows that these changes are also related to unique gene expression patterns. We investigate the impact of these findings on new therapeutic options via metabolic flux analysis of sirtuin stress response pathways and respiratory supercomplex formation. Our results indicate CRISPR Cas-based gene therapy focused on upregulating stable CIII expression, and protective changes in SIRT1 and AMPK expression are potential avenues for therapeutics. This work also highlights the importance of metabolic enzyme activity in maintaining proper respiratory activity.

TABLE OF CONTENTS

Ackowledgements	ii
Dedication	iii
Introduction	1
Methods	13
Results	18
Discussion	28
References	31
Appendix	39

ACKNOWLEDGEMENTS

I want to thank Professor Coleman for his guidance, patience and criticism throughout the investigation as well as Dr. Castora for thoughtful insight and helping me understand the broader scope of this research. Finally I want to thank Jess Crowley, Sonali Shirali and Zhenyu Han for their invaluable assistance in designing and understanding these models. Without them, I could not have completed this project. This MS is dedicated to my late grandmothers.

Introduction

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the aggregation of neurofibrillary tangles and amyloid plaques (Cadenas & Davies, 2000; Grimm, Friedland, & Eckert, 2016). It is unclear if these aggregates cause cognitive degeneration or if they are a byproduct of other degenerative stimuli (Herrup, 2015). However, it is becoming increasingly apparent that mitochondrial impairment plays a significant role in the onset and progression of AD (Cai, Yan, Li, Quazi, & Zhao, 2012). Current research suggests that the mitochondrial efficiency plays a significant role on when and if a person develops dementia (Grimm et al., 2016; Mancuso, Orsucci, Siciliano, & Murri, 2008). With these new findings, researchers are looking into new ways to understand AD by studying changes in mitochondrial activity. Synthesis of this new research and older findings have produced two new theories about AD onset. The two theories are the Inverse Warburg Hypothesis (IW) and the Mitochondrial Cascade Hypothesis (MC) which explain the relationship between mitochondrial impairment and characteristic plaque buildup.

Both the IW and MC theories were created to explain late onset AD (LOAD; Campion et al., 1999). The IW postulates that, prior to degeneration, there is an unsustainable increase in metabolic demand by neurons to compensate for respiratory inefficiency. Because neurons do not process glucose directly, they rely on astrocytes to process glucose into lactate which is then transferred from the astrocytes to the nearby neurons (Demetrius & Simon, 2013). One dysfunctional neuron's elevated metabolic demand consumes a high concentration of the astrocyte's limited glucose pool. The high consumption leaves nearby, healthy neurons lacking essential metabolites. Eventually the entire neuronal system begins collapsing leading to apoptosis and memory loss (Grimm Modeling the effects of SC formation and stress response on AD progression 2 et al., 2016). There is no recorded evidence of the initial increase in metabolic demand that the IW theory predicts making it difficult to prove.

The MC hypothesis claims that genetics determine an innate level of respiratory chain efficiency. As people age, respiratory activity slows producing less ATP and more H₂O₂. During this process, minor impairments in the respiratory chain become more apparent. The subsequently high levels of ROS leave the mitochondria more susceptible to oxidative damage (Mosconi, 2013; Swerdlow, Burns, & Khan, 2010). ROS accumulation leads to activation of transcription factors peroxisome proliferator-activates receptor gamma, coactivator 1 (PGC1 α) and forkhead box O3 (FOXO3) to increase mitochondrial biogenesis or induce autophagic pathways (Brenmoehl & Hoeflich, 2013). Proteomic data showing differences in gene expression support this theory. Compared to control tissue, nuclear encoded mitochondrial subunit expression is suppressed, and cell death related pathways are upregulated.

We have created two models to investigate how changes in respiratory activity explained by these hypotheses influence mitochondrial viability as well as changes in stress signaling. Based on proteomic data, we investigated the impact changes in nuclear encoded subunits play in respiratory efficiency as well as how the related ROS production can influence gene transcription. During this investigation, we hope to better understand how the mitochondria reduces and responds to long term increases in oxidative stress as well as how to leverage these pathways to treat a serious underlying problem in AD affected brain cells.

Respiratory Modeling

Respiration is the process of oxidizing NADH and FADH₂ to release electrons which reduce Coenzyme Q (CoQ) before being transferred to cytochrome C (cyt C) and

Modeling the effects of SC formation and stress response on AD progression 3 eventually convert O_2 gas into water. This process is carried out across multiple respiratory complexes (RC), which pump high concentration of protons from the matrix into the intermembrane space (Murphy, 2009). A few decades ago, this was believed to occur across individual complexes embedded in the inner membrane. Today, two different models, fluid and solid state, have been proposed to describe how this transfer takes place. The fluid model which describes the electron transport chain (ETC) as separate complexes within the membrane. Once loaded or unloaded, CoQ and Cyt c diffuse until they reach the next complex in the RC (Letts, Fiedorczuk, & Sazanov, 2016). The solid state model proposes that individual complexes assemble to form a large multimeric complex known as the respirasome to be functional (Lapuente-Brun et al., 2013). In reality, the mitochondria functions with a spectrum of individual complexes, supercomplexes (SCs; functional intermediaries composed of a fraction of the complexes within the respirasome) and the respirasome. The purpose of these structures is unclear. SCs may reduce the diffusion distance of Cyt c and CoQ which may increase RC efficiency (Milenkovic, Blaza, Larsson, & Hirst, 2017). Researchers have found that formation of the respirasome limits ROS production by stabilizing NADH dehydrogenase (CI) structure and covering one oxygen binding site on CI which plays a role in mitochondrial stress signaling (Stroud et al., 2016). SC assembly varies with cell state and type, which indicates SC formation could be physiologically significant and needs further exploration (Lopez-Fabuel et al., 2016).

CI is the largest of the respiratory chain complexes, it oxidizes NADH and transfers the electrons to CoQ. This predominant producer of signaling-linked ROS contains two oxygen binding sites, one of which is protected when CI assembles to form the respirasome and other SCs. The two O_2 binding sites are Flavin mononucleotide (FMN) and N2 (an iron-sulfur cluster); oxygen binding at either location results in ROS production

Modeling the effects of SC formation and stress response on AD progression 4 (Acín-Pérez, Fernández-Silva, Peleato, Pérez-Martos, & Enriquez, 2008). Reverse electron transport (RET), which inefficiently reduces NAD when the Q pool is highly reduced and results in heightened levels of mitochondrial ROS (Lambert & Brand, 2004). RET occurs when CI, CoQ and later complexes become saturated with electrons. This ROS production seems to be linked to CI in its monomeric form, not as part of a complex with CIII or within the respirasome (Lenaz et al., 2010). Arthur, Morton, Dunham, Keeney, and Bennett (2009) found that the connection may in part be due to a slowed electron flow though CI and higher stability when part of an SC.

If CI is not properly stabilized, increasing concentrations of ROS are produced causing mitochondrial oxidative stress (Cadenas & Davies, 2000; Liu et al., 2010; Ray, Huang, & Tsuji, 2012). This oxidative stress can activate signaling cascades which change gene transcription (Bechtel & Bauer, 2009). Changes in gene transcription can be seen by analyzing the changes in an organism's proteome. Our collaborators with Dr. Castora at Eastern Virginia Medical School have done analyses that show changes in mitochondrial biogenesis with AD. Their analysis of tissues affected by AD indicate that the pathways related to the changes in ROS proliferation, defense, and energy production are altered. Our proposed mitochondrial models (SC assembly and oxidative stress) focus on the effects of oxidative stress on the antioxidant defense system and the induction of stress response signaling cascades. Through careful analysis we propose for effective therapy routes, SIRT1, AMPK and ETC subunit UQCRC1, for in vitro AD treatment testing.

Supercomplex assembly model

After individual complexes have formed, complexes CI, Ubiquinone-Cytochrome C Reductase (CIII), and Cytochrome C Oxidase (CIV) begin to associate and form SCs. SCs are stable intermediates between respirasomes (solid state model) and individual complexes (fluid model). The two most prevalent SC compositions are CIVCIII₂ and CICIII₂ (abbreviated CIVCIII and CICIII), the latter being more common (Ramírez-Camacho, Flores-Herrera, & Zazueta, 2019). The work by Maranzana et al. (2013), has implicated SCs in increasing respiratory efficiency and reducing ROS proliferation. SC and

respirasome concentrations also vary between cell types. For example, astrocytes have been shown to have lower levels of SC formation, and this increases the basal level of ROS within the mitochondria (Lopez-Fabuel et al., 2016).

Nuclear encoded ETC subunits are used to stabilize complexes as well as assemble SCs and respirasomes. The lesser found SC CIVCIII formation requires the COX7A2L isoform being present in CIV; it results in rapid assembly of the respirasome Modeling the effects of SC formation and stress response on AD progression 6 (Lobo-Jarne et al., 2018; Figure 1b).COX7A2, the shorter isoform, within CIV leads to CICIII SC intermediate formation before final respirasome formation (Lapuente-Brun et al., 2013; Figure 1a). Within CIII, the expression of subunits, UQCRFS1, UQCRC1 and UQCRB ensure stable association with COX7A2L (Letts et al., 2016). CI association with the CIII dimer (usually forming CICIII₂) reduces ROS formation in the mitochondria making the association highly favorable both *in vivo* and *in vitro* (Greggio et al., 2017). This association utilizes two bonding groups for stabilization including CI subunits NDUFB4

Figure 2: Assembly of SC's. is dependent on the expression of nuclear encoded subunits NDUFB9, NDUFA11, NDUFB4, NDUFS1 in CI and UQCRFS1, UQCRC1, and UQCRQ in CIII

and NDUFB9 which bind to CIII subunits UQCRFS1 and UQCRC1. CICIII also uses NDUFA11 and NDUFB4 to bond with UQCRQ (Letts et al., 2016; Stroud et al., 2016). Absence of one of these subunits does not prevent SC formation, but it does form a less stable association between individual complexes (Acin-Perez & Enriquez, 2014).

An SC with a CICIII₂CIV composition is known as a respirasome, but larger respirasome structures have been reported with up to four CIII and CIV present (Letts et al., 2016). Only 20% of mitochondrial CIV is incorporated into the respirasome compared to 55-65% of CIII and over 85% of CI (Greggio et al., 2017). This near complete

Modeling the effects of SC formation and stress response on AD progression 7 incorporation of CI into SCs supports the hypothesis that all SC formation stabilizes CI and reduces ROS production (Maranzana et al., 2013). Lopez-Fabuel et al. (2016) report that CI subunit NDUFS1 deletion or downregulation has been shown to inhibit respirasome formation. This loss *in vivo* could significantly affect mitochondrial SC composition which in turn can change ROS production and mitochondrial signaling.

Oxidative Stress Modeling

Figure 3: The innate antioxidant system contains three enzymes SOD2, Cat and Gpx which process superoxide through a series of reaction to form inert water and oxygen gas.

Occasionally electrons escape ETC complexes during electron transport and create hydroxyl and superoxide radicals (Figure 3; Murphy, 2009; Sena & Chandel, 2012). Small amounts of ROS production is normal and easily regulated by constitutively expressed antioxidant proteins including superoxide dismutase (SOD2), Glutathione peroxidase (Gpx), Catalase (Cat) (Ighodaro & Akinloye, 2017). These proteins convert ROS into inert water or signaling molecules such as hydrogen peroxide. This is typical mitochondrial activity, but when more ROS is being produced than these antioxidant proteins can handle, oxidative stress signaling activates changes in gene expression to stop ROS accumulation or eliminate dysfunctional mitochondria (Ogura et al., 2018). PGC1α and FOXO3 are two important transcription factors that mitigate oxidative stress. They lead to the induction of antioxidant and autophagic proteins to include mitophagy

Modeling the effects of SC formation and stress response on AD progression 8 which help eliminate terminally dysfunctional mitochondria and prevent cell apoptosis (Blacker & Duchen, 2016). Mitochondrial biogenesis is also altered by these changes in gene transcription which increase ETC subunit and antioxidant transcription. If these interventions fail, apoptosis is induced to prevent total cell dysfunction and cellular decay (Du & Yan, 2010).

During the process of activating antioxidant systems, autophagy and apoptosis, pathological biomarkers of AD including amyloid aggregates and hyper phosphorylated tau are produced and accumulate, which amplifies these initial changes in gene transcription (Kim, Kim, Rhie, & Yoon, 2015). Based on the mitochondrial cascade hypothesis and the work done by Dr. Castora's research group, we propose that gene therapies focused on reestablishing basal mitochondrial function, increasing ATP (adenosine triphosphate) and decreasing ROS production, we can successfully minimize or halt the accumulation of aggregates.

Pathways

Radical Quenching

The ETC oxidizes NADH and FADH₂ to create the membrane potential for oxidative phosphorylation. During this process, electrons can leak out of the ETC and create ROS (Starkov & Fiskum, 2003). To combat the production of excess ROS, the cell has evolved an antioxidant system involving two lines of defense; initial radical guenching and subsequent alterations in gene transcription (Ighodaro & Akinloye, 2017; Zhang et al., 2018). Sirtuins (SIRTs) are a family of proteins predominately found within the cytosol, nucleus, and mitochondria. The two primary SIRTs found in the human brain are SIRT3 and SIRT1 (Brenmoehl & Hoeflich, 2013). SIRT1 and SIRT3 use NAD to modulate the activation of local enzymes (Figure 4). When NADH levels are low and therefore NAD

Modeling the effects of SC formation and stress response on AD progression 9 levels are high, the cell can enter into an energy deprived or stressed state (Stein & Imai, 2012). This causes an increase in NAD which increases SIRT activity making SIRTs valuable nutrient sensors. Their increased activity modulates enzyme activation via deacetylation to regulate enzyme activity in response to the cellular and mitochondrial NAD/NADH ratios (Brenmoehl & Hoeflich, 2013; Feldman, Dittenhafer-Reed, & Denu, 2012). SIRT3 regulates the activity of antioxidant enzymes as well as the ETC and ATP synthase in the mitochondria (Kincaid & Bossy-Wetzel, 2013; Rangarajan, Karthikeyan, Lu, Ling, & Dheen, 2015). Metabolic activity in the nucleus and cytoplasm is modulated by SIRT1 (Cantó et al., 2009). When active, SIRT1 can activate multiple pathways related to antioxidant defense, cell metabolism, mitophagy and apoptosis (Feldman et al., 2012).

The mitochondria keep an NAD/NADH ratio around 0-10 under normal conditions, allowing for low levels of SIRT3's antioxidant activities and promoting cell longevity (Kincaid & Bossy-Wetzel, 2013). Deacetylation uses NAD which is converted into the sirtuin inhibiting molecule, NAM (nicotinamide; Guan, Lin, Knoll, & Chakrabarti, 2014). To permit continued SIRT activity, NAM must be converted back to NAD. This is done by two enzymes, NAMPT (nicotinamide phosphoribosyltransferase) and NMNPT (nicotinamide

Figure 4: General SIRT1 and SIRT3 deacetylation mechanism. NAD is a cofactor and the enzymatic reaction produces inhibitor NAM which must then be converted back to NAD by NAMPT and NMNT. The rate limiting step in this regenerative cycle is the conversion of NMN to NAD (as shown by the thinner arrow).

Modeling the effects of SC formation and stress response on AD progression 10 mononucleotide adenylyltransferase; Figure 4). NAMPT is the rate limiting step in this reaction chain (Ling Liu et al., 2018). Slowing of NAMPT's activity increases the NAM pool (Nikiforov, Dölle, Niere, & Ziegler, 2011).

Radical quenching is performed by the antioxidant enzyme system which includes SOD2, Cat, and Gpx (Ighodaro & Akinloye, 2017). Cat and SOD2 have low levels of activity under normal conditions, but SIRT3 increases their activity as ROS accumulates in the matrix (Chen et al., 2011; Rangarajan et al., 2015). This allows the mitochondria to conserve their energy and only induce energy demanding changes in gene expression under periods of stress. SOD2 converts radical oxygen into peroxide (Sun, Oberley, & Li, 1988). Gpx uses two monomers of glutathione (GSH) to convert peroxide into water creating a glutathione dimer (GSSG) in the process. GSSG is then reduced to GSH by glutathione reductase (GR) so that Gpx can continue processing the peroxide being produced by SOD2 (Carlberg & Mannervik, 1975; Ighodaro & Akinloye, 2017). When there is a high concentration of glutathione dimers, common under oxidative stress conditions, SIRT3 deacetylates IDH2, catalyzing the reduction of glutathione dimers back to their monomeric state. (Yu, Dittenhafer-Reed, & Denu, 2012). If peroxide levels get too high, Cat will begin to convert the excess peroxide into water and oxygen (Bechtel & Bauer, 2009).

Response Pathways

Figure 6: Deacetylation of LKB1 results in AMPK activation under energy deficient conditions (high AMP). Activation of AMPK results in transcription factor activation and changes in metabolic activity increasing in NAD/NADH ratio and SIRT1 activity.

Activation of AMP-activated protein kinase (AMPK) is the transition point from quick modifications of enzyme activity to changes in gene transcription to implement new stress response strategies (Figure 5) (Mihaylova & Shaw, 2011). AMPK activation is dependent on the AMP/ATP ratio, making it an energy sensor. The binding of AMP to AMPK results in increased activity of AMPK. Activation at high AMP/ATP ratios leads to the induction of PGC1α, FOXO3, and metabolic changes (Figure 6; Hart et al., 2015).

Modeling the effects of SC formation and stress response on AD progression

12

As ROS accumulate in the mitochondria, oxidative damage to the lipid bilayer, proteins and mtDNA will cause cellular stress and dysfunction. If there continues to be an increase in ROS production beyond the capacity of the antioxidant system, mitophagy will be activated and the mitochondria degraded (Mihaylova & Shaw, 2011). When the majority of mitochondria within a cell are dysfunctional, cell death can be initiated to prevent excessive consumption of valuable resources and deleterious signaling from hurting neighboring cells (Lukiw, 2004). This clearance requires changes in gene transcription. For this reason, one of the other targets of SIRT3 is the promoter FOXO3a. SIRT3 deacetylates the protein allowing its export from the mitochondria to the cytosol and further posttranslational modifications which result in changes in mitochondrial gene transcription (Rangarajan et al., 2015).

Figure 7A & B: Transcription Factor Activation **A**. PGC1a activation increases antioxidant transcription and mitochondrial biogenesis. **B**. FOXO3a activation leads to mitochondrial degradation as well as increased antioxidant expression.

Before FOXO3a can be activated by AMPK, it must first be deacetylated by SIRT3 in the mitochondria (permitting export to the cytosol), and SIRT1 in the cytosol. Phosphorylation allows for translocation to the nucleus and activation of different transcription factors. PGC1α is activated by initial deacetylation by SIRT1 in the nucleus Modeling the effects of SC formation and stress response on AD progression 13 and subsequent phosphorylation by AMPK (Figure 7; Brenmoehl & Hoeflich, 2013; Zrelli, Matsuoka, Kitazaki, Zarrouk, & Miyazaki, 2011). In the nucleus, SIRT1 activates LKB1 via deacetylation. LKB1 can then activate AMPK (Zhang et al., 2018; Figure 6). These pathways are key to the initial response to changes in available glucose, energy and response to metabolic stress and ROS. In turn, these enzymes are regulated by ROS and cofactor levels within the brain. Once activated, FOXO3a will promote the transcription of SOD2, Cat, and different autophagic pathways (Cantó et al., 2009; Hart et al., 2015). Activation of the PGC1 α promoter leads to increased antioxidant and biogenesis enzyme transcription (Figure 7; Sheng et al., 2012). Its gene targets include: SIRT3, PGC1 α , Nrf-1 and nuclear respiratory factors (Nrf-1 and Nrf-2) that lead to changes in ETC and ATP synthase gene expression (Ruetenik & Barrientos, 2015).

Methods

These models were created in CellDesigner 4.2 and converted into a set of ordinary differential equations by SBMLsqueezer (Dräger, Hassis, Supper, Schröder, & Zell, 2008a; Xie, Allaire, & Grolemund, 2019). Model analysis was done in COPASI 4.24.197 (Hoops et al., 2006). Every arrow within the model is represented by a "flux equation." If the arrow represents formation of the specie, the flux value is positive (Figure 8). If the reaction is using the specie, the reaction with have a negative value. These equations can describe catalyzed and uncatalyzed reactions. If the reaction is not enzyme catalyzed, the flux is described by a simple mass action equation (Equation 1). Like Michaelis-Menten (M-M), the mass action equation also has a rate constant (k_{cat}) but unlike M-M, the overall rate is strictly dependent on the concentration of substrate present. If the reaction is enzyme catalyzed, then the equation takes the form of an M-M equation (2). M-M describes the rate of an enzymatic reaction using two constants. The first describes and enzyme's binding affinity for its substrate(s), the M-M constant (K_m). The

Modeling the effects of SC formation and stress response on AD progression 14 second describes the maximum rate of the reaction (k_{cat}) (Equation 2). For reactions with more than one substrate, the M-M equation is modified to accommodate a second substrate assuming a random order mechanism (Equation 3). This equation has an additional K_m specific for the second substrate and an inhibition constant (K_i). Like M-M, bi-substrate random order mechanisms assume rapid equilibrium. Under these conditions, $K_{i2}K_{m1} = K_{i1}K_{m2}$ and the latter is simplified out of the final equation (Dräger, Hassis, Supper, Schröder, & Zell, 2008b). These equations are combined to form a series of Flux equations that describe the entire reaction (Figure 8).

$$k_{cat} * [substrate] \tag{1}$$

$$\frac{k_{cat}*[enzyme]*[substrate]}{[substrate]+K_m}$$
(2)

Figure 8: Flux equations describing the cleavage of APP protein to AB42. Each specie (APP, C99, and AB42) have a differential equation describing the change in concentration over time. Positive equations calculate the production of a specie, negative equations calculate the consumption of a protein.

Concentrations (uM) of proteins were calculated using brain tissue specific abundances from the Pax database and the molecular weights from the Uniprot database (The Uniprot Consortium, 2019; Wang, Herrmann, Simonovic, Szklarczyk, & von Mering,

Modeling the effects of SC formation and stress response on AD progression 15 2015). Metabolite concentrations were taken from the Human Metabolome Database (Wishart et al., 2018). Parameter values were assigned from the BRENDA database (Placzek et al., 2017).

Model Assumptions

SC Assembly

SC assembly is a complex, reactive process of combining respiratory complexes into larger structures. As Late-Onset Alzheimer's Disease is a slow degenerative disease, we followed the MC hypothesis that predicts small differences in RC subunit expression cause a change in respiratory efficiency which can leave neurons more susceptible to inflammation, oxidative damage, and cell death. The SC assembly model investigates how changes in gene expression, determined through proteomic analysis, influence SC assembly and sequestration of CI to reduce ROS formation. The initial model (Figure S1) considers the interactions between four CI subunits and five CIII nuclear encoded subunits not required for ETC function, but required to stabilize the complexes. The stability of the respirasome depends on the expression of associating subunits within each respiratory complex (Lenaz et al., 2010; Ramírez-Camacho et al., 2019). Figure S1 shows that the expression of different subunits, or the loss of subunits, produces respiratory complexes with differing levels of SC stability. Weaker connections cause an increase in ROS production as CI will not be fully stabilized by the SC formation (parameters and equations can be found in the supplement, S3 and S2). When the concentrations of subunits are considered (Table 1), and assuming preference for creating complexes with all of the subunits, S1 is reduced to the model shown in Figure 9.

The high concentration of NDUFS1 predicts that assembly favors respirasome formation. Missing one or two subunits results in a weaker association (s2CICIII). When the complexes contain all of the stabilizing subunits, the SC is less likely to disassemble and forms a complete respirasome at a faster rate. The availability of predominant CIV COX7 isoforms COX7A2 and COX7A2L determines whether SC CICIII or CIVCIII will form (Lobo-Jarne et al., 2018).

Antioxidant Model

In living cells, the NAD/NADH pools are linked through the reduction and oxidation of various metabolites to connect glycolysis in the cytosol to energy production in the mitochondria. These two separate pools have differing NAD/NADH ratios to facilitate normal compartment activity, energy production within the mitochondria, and cofactors in the cytosol. AMPK also regulates the NAD/NADH ratio in the cytosol, as it does *in vivo*

Figure 10: The mitochondria model being simulated to test analyze the activation of transcription factors and antioxidant system capacity.

(Cantó et al., 2009). In this model, we assumed that the two pools were separate and that the local changes in the NAD/NADH ratios are only changing in response to respiratory activity, ROS production and AMPK-mediated metabolic changes. ATP consumption was also generalized to hydrolysis of ATP to AMP rather than ADP. Though both do happen, the simplification to only show ATP and AMP levels was done to show ATP consumption as well as activation of AMPK through AMP binding The ETC concentration is also assumed due to stable complexes not missing subunits.

Parameter Optimization

The final parameter set for the oxidative stress models was found by providing an initial parameter set. This set was created based on rate constants found in the BRENDA database. Those that could not be found were given an initial value of 0.01 for Km and 1

Modeling the effects of SC formation and stress response on AD progression 18 for k_{cat} . The initial and final parameter sets can be found in the supplement (S7 and S6). Parameter units for k_{cat} , and K_m are min⁻¹ and uM respectively. This set underwent an optimization using the Hooke and Jeeves solver in COPASI to produce the final parameter set. These adjusted values better illustrate true pathway activity.

Sensitivity data

A sensitivity analysis (SA) of the oxidative stress model was performed to quantify sensitive points within the model system. The task perturbs one specie concentration by 1%, and COPASI records how this change effects the dependent variables of the system (reaction rates and transient concentrations). The results are presented as the average percent dependency of a dependent variable's value on the initial concentration being varied. This analysis is only accurate for perturbations up to 5%, higher changes in concentration deviate from the predicted trend.

Treatment Tests

Treatment data was determined using COPASI's time course analysis. Each treatment mimics the effects of CRISPR-Cas type gene therapy and was done by adjusting the protein concentration up or down 50%. Steps of 0.1 minutes were used to record transient concentration values over the course of a 100 minute simulations. Most data is presented as the percent difference between the control model and the treatment model. Calculations and graphing were done in RStudio (3.5.2) by finding the difference between treatment (up or down regulation) groups and the control then dividing by the control concentration and multiplying by 100.

Results

The two models produced data explaining different aspects of mitochondrial dysfunction and potential treatment directions. The SC assembly model demonstrates how differences in AD and healthy gene expression can change the concentration of SC's

Modeling the effects of SC formation and stress response on AD progression 19 and respirasomes in the cells which has wider impacts on mitochondrial efficiency. The oxidative stress model shows that an increase in ROS due to structural or other changes in SC content and formation observed in the SC assembly model can impact the activation of transcription factors. Together these therapeutic tests provide valuable information on how changes in subunit or enzyme expression can influence further changes in gene transcription in response to superoxide production.

SC Assembly Results

The formation of SC's varies between cell types and is implicated in ROS production (Acin-Perez & Enriquez, 2014). The uniqueness of SC formation to cell types predicts that changes in assembly will have widespread effects on mitochondrial and subsequently cellular homeostasis. To understand how AD affects respirasome formation and to grow intuition about how increasing subunit expression can either alleviate or exacerbate these issues, we simulated SC formation in control and AD conditions. After compiling specie concentrations, the fold regulations from Dr. Castora's work was used to determine the AD concentrations (Table 1). The values were then loaded into the model assuming that only one subunit could be absent from a functional complex. There is an overall decrease in available subunits including a decrease of approximately 2-fold in essential respirasome assembly subunit NDUFS1.

After determining AD ETC concentrations, treatment sets were created by increasing one subunit concentration by 50% relative to AD concentrations. The concentration of individual complexes was reassessed with the treatment and shown in Table 2. The treatment sets were analyzed for how they affected CI stability via assembly with CIII and CIV. CIII is an important initial CI binding partner with CIV providing minor additional stability after CICIII formation (Lobo-Jarne et al., 2018). Subunit targets were

Modeling the effe	ects of SC formation	and stress respons	e on AD progression

1 (uM)	Control	AD
UQCRFS1	13.62	7.41
UQCRC1	9.57	3.75
UQCRQ	5.14	2.49
NDUFB9	7.42	2.52
NDUFB4	10.06	9.22
NDUFA11	1.85	0.84
NDUFS1	6.29	2.44
COX7A2L	3.54	2.04
COX7A2	28.63	13.39

Table 1: Control and AD tissue ETC subunit concentrations given in uM. Complex abbreviations: UQCR- CIII, NDUF- CI, COX- CIV

2 (uM)	Control	AD	UQCRC1	UQCRQ	NDUFA11	NDUFS1	NDUFB9
CI							
B9B4A11S1	1.85	0.84	0.84	0.84	1.26	0.84	0.84
B9B4S1	4.44	1.60	1.60	1.60	1.18	2.83	2.93
CIII							
FS1QC1	5.15	2.49	2.49	3.73	2.49	2.49	2.49
FS1C1	2.72	1.26	3.13	0.02	1.26	1.26	1.26

Table 2: Initial concentrations of individual complexes based on control, AD and treatment subunit concentrations. Treatment sets were created by increasing one subunits concentration by 50%. Subunits that did not increase or decrease the concentration of complexes were not considered

selected based on their effect on CI or CIII concentrations compared to AD values. Simulations of SC assembly produced information about changes in respirasome concentration (Figure 11) and changes in the percent of CI: free CI, and sequestered by CICIII or respirasomes (Figure 12). The percentage of free CI in the AD sample is double that of the control, and the decreased respirasome formation (Figure 11 & 12) indicates that the AD tissue underwent a long period of oxidative stress. The CI subunit treatments

Figure 11: Respirasome concentration (uM) in the control, AD, and treatment groups

predict that increasing respirasome concentration comes with an increase in free CI and potentially dangerous levels of ROS production. NDUFS1 and NDUFB9 treatments were able to increase the concentration of respirasome (Figure 12), but this increase in respirasome concentration was paralleled by an increase in free CI. UQCRC1 treatment was the only therapy predicted to increase respirasome formation and CI sequestration and ultimately a decreased percentage of free CI. Based on this model, we predict that Modeling the effects of SC formation and stress response on AD progression 22 targeting increased CIII binding to CI and not increasing available CI for respirasome binding is a viable treatment strategy to increase sequestration of CI and reduce ROS production related to CI activity.

Oxidative Stress Model Results

3	ETC	Metabolic	SIRT3	ATPsyn
Concentration Sensitivity				
NADH	-3.408	3.428	0.000	0
O2 Radicals	0.003	0.563	0.000	0
NADPH	-0.013	-2.142	0.000	0
Glutathione Dimer	0.003	0.996	0.000	0
Flux Sensitivity				
Exported FOXO3	0.000	0.004	0.078	0
Peroxide Formation	0.003	0.990	0.000	0
e- capture	1.002	0.982	-0.016	0
GSSG reduction	0.003	0.990	0.000	0
FOXO3 export	0.000	0.006	0.130	0

Table 3: Scaled SA analysis of the oxidative stress model to perturbations in therapy target species ETC, Metabolic Enzymes, SIRT3, and ATP synthase. **Upper:** sensitivity of key model species concentrations. **Lower**: Sensitivity of reaction fluxes to perturbations

Mitochondrial biogenesis is a delicate process facilitating mitochondrial activity

through increased antioxidant and mitochondrial subunit expression in response to changes in ATP and ROS production. When energy production cannot be salvaged and continual oxidative stress places the cell at risk of apoptosis, these response pathways activate autophagy and mitophagy. Our results predict that metabolic activity, ETC stability and electron saturation play important roles in ROS generation and mitochondrial oxidative stress. SIRT1 and AMPK are also an important for sending extra-mitochondrial stress signals which activate and transport transcription factors.

An SA of the oxidative stress model was done to assess potential therapeutic targets. The analysis predicted that increased stable ETC, changes in metabolic enzymes

Modeling the effects of SC formation and stress response on AD progression 23 and increased SIRT3 protein will decrease superoxide accumulation or activate the oxidative stress response. It also predicts that treatments dealing with ETC and metabolic enzyme concentrations will have opposing effects (Table 3). Increased metabolic activity meant that NADH levels increased, providing more substrate for energy production. However, as the literature also shows (Pryde & Hirst, 2011), increased availability of NADH is linked to heightened superoxide levels as the ETC and CoQ pools become more reduced. The high levels of reduced ETC and CoQ lead to reverse electron transport and an increased potential for oxygen binding to CI. Both of these facilitate superoxide production. An increase in NADH can also dampen the ability of SIRT3 to increase antioxidant activity and activate FOXO3 export from the mitochondria. Decreased levels of NADPH and increasing glutathione dimers also indicate that changes in the metabolic activity affect the overall redox state of the mitochondria (Table 3). The minimal change in GSSG reduction and increased FOXO3 export indicate a higher level of stress and subsequent activation of a stress response. Low changes in superoxide with increased stable ETC is in agreement with the literature (Ramírez-Camacho et al., 2019) that CI saturation with electrons (from NADH) leads to increased superoxide production. Higher levels of stable ETC complexes results in a lower percentage of these complexes existing in a reduced state. This limits the potential production of superoxide. Within the model, increasing the ETC did not change peroxide production (a common marker of superoxide production) compared to the control. As small amounts of peroxide production are important for normal mitochondrial signaling, if the SA results hold true at perturbations at higher than 1% this provides a promising avenue for targeting SC stability for AD treatment.

Modeling the effects of SC formation and stress response on AD progression

The SA indicated that metabolic enzymes had a negative effect on the model. Therefore, when considering treatments, we tested a 50% decrease in metabolic enzymes, as well as a 50% increase in SIRT3 and stable ETC. After an initial spike in activity related to beginning the model simulation, there is no change in superoxide production by the ETC while the metabolic enzyme treatment decreased superoxide production (Figure 13). As a certain level of peroxide is necessary for normal cell function, the benefits of metabolic enzyme treatment are likely highly sensitive to the exact enzymes and pathways being targeted.

Figure 13: Percent difference in superoxide production compared to control. Therapy targets ETC and SIRT3 do not make a long term impact on the production of superoxide. Theoretical metabolic enzyme therapy reduces the superoxide production by approximately 50%

24

Figure 14: Percent change in NADP+ concentration with ETC, metabolic enzyme and SIRT3 treatment compared to control.

The decreasing NADP⁺ concentration with metabolic treatment (Figure 14) demonstrates that the antioxidant cofactor is becoming more reduced with treatment and the mitochondria then has a heightened ability to eliminate ROS. As with superoxide production shown in Figure 13, the ETC stabilizing treatment does not affect NADPH levels. Another aspect of mitochondrial function is the availability of NAD and NADH. The NAD/NADH ratio governs metabolic activity and influences antioxidant cofactor availability. The control NAD/NADH ratio in this model is high compared to that found in living systems, but it is proportionally smaller than the cytoplasmic ratio as seen in the same living systems. Increasing SIRT3 made no difference in the NAD/NADH ratio despite use of NAD as a cofactor. For drug targets aimed to increase antioxidant activity, this is important as it predicts minimal unanticipated effects on normal mitochondrial activity.

4	AMPK	LKB1	SIRT1			
Concentration Sens	Concentration Sensitivities					
PGC1α	0.000	0.000	0.001			
FOXO3	0.029	0.001	0.578			
NAD/NADH	0.587	0.346	0.003			
Flux Sensitivities						
NAM to NMN	0.026	0.022	0.587			
AMPK activation	0.000	0.481	0.587			
NADH oxidation	0.016	0.009	0.000			

Modeling the effects of SC formation and stress response on AD progression

 Table 4: Cytosolic Target SA Upper: Sensitivities of active transcription factor concentration and NAD/NADH ratio to targets AMPK, LKB1 and SIRT1. Lower: Sensitivities of reaction fluxes to perturbations in enzyme concentrations.

This predicts that increased SIRT activity may be a way of strengthening mitochondrial stress response without interfering with normal respiratory activity. Consistent with Figure 15 and Table 4, decreasing metabolic enzymes had a beneficial impact on the NAD/NADH ratio. Increasing stable ETC leads to a notably higher ratio. This higher ratio favors activation of antioxidant pathways which can decompose any stress-related increases in superoxide not handled by the decreased demand and oxidation of the individual complexes.

The SAs of cytosolic therapy targets highlight important relationships between the signaling pathways, feedback loops and transcription factor activation. Both AMPK and LKB1 had a minor impact on PGC1α and FOXO3 activation (Table 4), but were able to increase the flux of NMN synthesis, an indicator of SIRT1 activity and the AMPK positive feedback loop. The sensitivity of active FOXO3 to SIRT1 concentrations indicates that SIRt1 is important for FOXO3 activation. However, there is potential for AMPK treatment to increase the positive feedback loop with SIRT1 to increase FOXO3 activation. The

Figure 15: Changes in mitochondrial NAD/NADH ratios with target treatments. Metabolic enzyme treatment (blue) made the largest impact on the NAD/NADH ratio. The stabilized ETC treatment (green) caused the ratio to triple while SIRT3 treatment (purple) did not change the NAD/NADH ratio correlation between AMPK activity and the NAD/NADH ratio (Table 4) results in the beneficial increase in SIRT1 activity shown by the increase in nicotinamide (NAM).

The cytosolic reactions shown in this model are only in response to oxidative stress. They are analyzed for changes in transcription factor activation. PGC1 α and FOXO3 both require SIRT1 deacetylation and AMPK phosphorylation to enter the nucleus. The activity of these proteins is increased with increasing oxidative stress *in vitro* (Duan et al., 2016), but this model shows a preferential activation of FOXO3 (Figure 16). There was no change in ATP/AMP ratio.

Time (1/min)

Figure 16: Transcription factor activation with therapy targets SIRT1 (**A**), LKB1 (**B**), and AMPK (**C**). The model predicts that FOXO3 will be preferentially activated by changes in ROS production. AMPK and SIRT1 are the most effective treatment options.

The model predicted that FOXO3 is preferentially activated by oxidative stress. The lack of PGC1a activation indicates that it is more sensitive to ATP availability and production which deactivates AMPK. SIRT1 is predicted to be the more effective therapeutic target due to the changes in the FOXO3a activation and its widespread impact on autophagy activation (Figure 16). AMPK is a second potential target. It plays an important role in both FOXO3 and PGC1a activation, but the low PGC1 α activation in this model hints that changes in ATP availability may be more important for PGC1a activation FOXO3. than Depending on the goal of therapy (eliminate dysfunctional mitochondria or restore respiratory activity) different targets should be considered.

Discussion

The MC hypothesis predicts that deficits in respiratory chain efficiency lead to ROS accumulation as we age and predisposes individuals to the onset of

Modeling the effects of SC formation and stress response on AD progression 29 neurodegenerative diseases (Mosconi, 2013). The work of Dr. Castora's lab complements this hypothesis, showing that there are changes in respiratory chain gene expression levels in individuals with AD. Using this information on gene expression, we created two models investigating the impacts such differences can have in respiratory function and subsequent stress-related signaling. ROS production increases the activity of SIRT3, SOD2, Cat, and Gpx to prevent oxidative damage to surrounding tissues and mitochondrial DNA (Ighodaro & Akinloye, 2017). If this constitutive antioxidant system cannot reduce ROS, SIRT3 activates a signaling cascade inducing FOXO3 and PGC1a mediated transcription of antioxidant and autophagic genes (Brenmoehl & Hoeflich, 2013). Specific transcription factor activation is important for disease onset and well as mitigation. By activating the correct transcription factor, we can direct activation of beneficial pathways and prevent the activation of detrimental pathways. This model predicts that ROS production does not directly affect ATP production, but preferentially activates the FOXO3 transcription factor. Therefore, a decrease in ATP resulting from lower respiratory activity better activates AMPK, initiating PGC1 α activation and mitochondrial biogenesis. As FOXO3 transcriptional targets activates autophagy as well as antioxidant proteins, this avenue of treatment should be considered with caution. Moderate increases in activity will likely activate the clearance of ROS and dysfunctional mitochondria, but if changes are too large they can result in a hyperactive autophagy pathway which is more cytotoxic than neuroprotective. SIRT1 is a viable target as it is predicted to be important for both FOXO3 and PGC1a activation. AMPK would be effective in upregulating PGCIa and increasing mitochondrial biogenesis inducing the feedback loop to SIRT1 activation. Picking AMPKrelated targets may also provide more balance between FOXO3 and PGC1α activation to prevent conservation of irreversibly dysfunctional mitochondria that put the entire neuron at risk.

Modeling the effects of SC formation and stress response on AD progression

Respiratory and metabolic targets present a safer therapeutic avenue. By picking targets that increase stable SC formation, we can decrease ROS production at its root with fewer risks of aberrant pathway or signaling changes. CICIII formation is the most important step in reducing CI related ROS production. By covering one of two oxygen binding sites as well as increasing CI binding partners, CIII subunit UQCRC1 is predicted to be the most effective subunit target. The model shadowed this prediction as seen in the increase in CI sequestered within SC's.

These model predictions about transcription factor activation and SC assembly may be of importance when understanding the mitochondrial differences between elder and long-lived individuals. People who live to be older than 75 years have defective mitochondria with high peroxide concentrations and low ATP levels (Sgarbi et al., 2014). The results of this model would predict that this unique trait may be due to sequential changes in gene transcription allowing for mitochondrial fusion (changes in bioenergetics) before autophagy activation. This sequence could prevent autophagic degradation because the hyperfusion of mitochondria make them resistant to degradation. It is unclear how this adaptation relates to AD, but the correlation with lifespan is favorable. Further work studying the effects of subunit and antioxidant therapies on mitochondrial stress response *in vitro* to assess the utility of these treatments is required to confirm these predictions.

References

- Acin-Perez, R., & Enriquez, J. A. (2014). The function of the respiratory supercomplexes: The plasticity model. *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1837(4), 444–450. https://doi.org/10.1016/J.BBABIO.2013.12.009
- Acín-Pérez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A., & Enriquez, J. A. (2008).
 Respiratory Active Mitochondrial Supercomplexes. *Molecular Cell*, 32(4), 529–539.
 https://doi.org/10.1016/J.MOLCEL.2008.10.021
- Arthur, C. R., Morton, S. L., Dunham, L. D., Keeney, P. M., & Bennett, J. P. (2009). Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. *Molecular Neurodegeneration*, *4*(1), 37. https://doi.org/10.1186/1750-1326-4-37
- Bechtel, W., & Bauer, G. (2009). Catalase protects tumor cells from apoptosis induction by intercellular ROS signaling. *Anticancer Research*, 29(11), 4541–4557. https://doi.org/29/11/4541 [pii]
- Blacker, T. S., & Duchen, M. R. (2016). Investigating mitochondrial redox state using NADH and NADPH autofluorescence. *Free Radical Biology and Medicine*, 100, 53–65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010
- Brenmoehl, J., & Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. *Mitochondrion*, *13*(6), 755–761. https://doi.org/10.1016/j.mito.2013.04.002
- Cadenas, E., & Davies, K. J. A. (2000). MITOCHONDRIAL FREE RADICAL GENERATION, OXIDATIVE STRESS, AND AGING. *Radical Biology & Medicine*, *29*(3/4), 222–230. https://doi.org/0891-5849/00/\$
- Cai, Z., Yan, L.-J., Li, K., Quazi, S. H., & Zhao, B. (2012). Roles of AMP-activated Protein Kinase in Alzheimer's Disease. *NeuroMolecular Medicine*, *14*(1), 1–14. https://doi.org/10.1007/s12017-012-8173-2

Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., ... Frebourg, T.

664–670. https://doi.org/10.1086/302553

- Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., ... Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity Europe PMC Funders Group. *Nature*, 458(7241), 1056–1060. https://doi.org/10.1038/nature07813
- Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. *The Journal of Biological Chemistry*, 250(14), 5475–5480.
 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/237922
- Chen, Y., Zhang, J., Lin, Y., Lei, Q., Guan, K. L., Zhao, S., & Xiong, Y. (2011). Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. *EMBO Reports*, 12(6), 534–541. https://doi.org/10.1038/embor.2011.65
- Demetrius, L. A., & Simon, D. K. (2013). The inverse association of cancer and Alzheimer's: a bioenergetic mechanism. *Journal of The Royal Society Interface*, *10*(82), 20130006– 20130006. https://doi.org/10.1098/rsif.2013.0006
- Dräger, A., Hassis, N., Supper, J., Schröder, A., & Zell, A. (2008a). SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks. *BMC Systems Biology*, 2(1), 39. https://doi.org/10.1186/1752-0509-2-39
- Dräger, A., Hassis, N., Supper, J., Schröder, A., & Zell, A. (2008b). SBMLsqueezer: Kinetic Laws.
 University of Tubingen. Retrieved from https://staticcontent.springer.com/esm/art%3A10.1186%2F1752-0509-2-39/MediaObjects/12918 2007 196 MOESM1 ESM.pdf
- Du, H., & Yan, S. S. Du. (2010). Mitochondrial permeability transition pore in Alzheimer's disease: Cyclophilin D and amyloid beta. *Biochimica et Biophysica Acta - Molecular Basis of Disease*, 1802(1), 198–204. https://doi.org/10.1016/j.bbadis.2009.07.005

Duan, W.-J., Li, Y.-F., Liu, F.-L., Deng, J., Wu, Y.-P., Yuan, W.-L., ... He, R.-R. (2016). A

- Modeling the effects of SC formation and stress response on AD progression 33 SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed peritoneal macrophages and RAW 264.7 macrophages. *Free Radical Biology*, 95, 230–242. https://doi.org/10.1016/j.freeradbiomed.2016.03.022
- Feldman, J. L., Dittenhafer-Reed, K. E., & Denu, J. M. (2012). Sirtuin Catalysis and Regulation. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 276(51), 42419–42427. https://doi.org/10.1074/jbc.R112.378877
- Greggio, C., Jha, P., Kulkarni, S. S., Lagarrigue, S., Broskey, N. T., Boutant, M., ... Amati, F. (2017).
 Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human
 Skeletal Muscle. *Cell Metabolism*, 25(2), 301–311.
 https://doi.org/10.1016/J.CMET.2016.11.004
- Grimm, A., Friedland, K., & Eckert, A. (2016). Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease. *Biogerontology*, *17*(2), 281–296. https://doi.org/10.1007/s10522-015-9618-4
- Guan, X., Lin, P., Knoll, E., & Chakrabarti, R. (2014). Mechanism of Inhibition of the Human Sirtuin Enzyme SIRT3 by Nicotinamide: Computational and Experimental Studies. *Computational* and Experimental Studies, 9(9). https://doi.org/10.1371/journal.pone.0107729
- Hart, P. C., Mao, M., De Abreu, A. L. P., Ansenberger-Fricano, K., Ekoue, D. N., Ganini, D., ...
 Bonini, M. G. (2015). MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. *Nature Communications*, *6*, 1–14. https://doi.org/10.1038/ncomms7053
- Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. *Nature Neuroscience*, *18*(6), 794–799. https://doi.org/10.1038/nn.4017
- Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., ... Kummer, U. (2006). COPASIa COmplex PAthway SImulator. *Bioinformatics*, 22(24), 3067–3074.
 https://doi.org/10.1093/bioinformatics/btl485
- Ighodaro, O. M., & Akinloye, O. A. (2017). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire

- Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. *Experimental Neurobiology*, 24(4), 325. https://doi.org/10.5607/en.2015.24.4.325
- Kincaid, B., & Bossy-Wetzel, E. (2013). Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. *Frontiers in Aging Neuroscience*, 5, 48. https://doi.org/10.3389/fnagi.2013.00048
- Lambert, A. J., & Brand, M. D. (2004). Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J (Vol. 382). Retrieved from http://www.biochemj.org/content/ppbiochemj/382/2/511.full.pdf
- Lapuente-Brun, E., Moreno-Loshuertos, R., Acín-Pérez, R., Latorre-Pellicer, A., Colás, C., Balsa,
 E., ... Enríquez, J. A. (2013). Supercomplex Assembly Determines Electron Flux in the
 Mitochondrial Electron Transport Chain. *Science*, *340*(6140), 1567–1570.
 https://doi.org/10.1126/SCIENCE.1230381
- Lenaz, G., Baracca, A., Barbero, G., Bergamini, C., Dalmonte, M. E., Del Sole, M., ... Solaini, G. (2010). Mitochondrial respiratory chain super-complex I–III in physiology and pathology. *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1797(6–7), 633–640. https://doi.org/10.1016/J.BBABIO.2010.01.025
- Letts, J. A., Fiedorczuk, K., & Sazanov, L. A. (2016). The architecture of respiratory supercomplexes. *Nature*, 537(7622), 644–648. https://doi.org/10.1038/nature19774
- Ling Liu, X. S., William J. Quinn III, ..., Timothy J. Mitchison, Joseph A. Baur, & Joshua D. Rabinowitz. (2018). Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. *Cell Metabolism*, 27, 1067–1080. https://doi.org/https://doi.org/10.1016/j.cmet.2018.03.018
- Liu, S.-H., Huang, J.-P., Lee, R. K.-K., Huang, M.-C., Wu, Y.-H., Chen, C.-Y., & Chen, C.-P. (2010). Paracrine Factors from Human Placental Multipotent Mesenchymal Stromal Cells Protect Endothelium from Oxidative Injury via STAT3 and Manganese Superoxide Dismutase

Activation1.BiologyofReproduction,82(5),905–913.https://doi.org/10.1095/biolreprod.109.081828

- Lobo-Jarne, T., Nývltová, E., Pérez-Pérez, R., Timón-Gómez, A., Molinié, T., Choi, A., ... Barrientos, A. (2018). Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics. *Cell Reports*, 25(7), 1786–1799.e4. https://doi.org/10.1016/j.celrep.2018.10.058
- Lopez-Fabuel, I., Le Douce, J., Logan, A., James, A. M., Bonvento, G., Murphy, M. P., ... Bolaños, J. P. (2016). Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. *Proceedings of the National Academy of Sciences of the United States of America*, *113*(46), 13063–13068. https://doi.org/10.1073/pnas.1613701113
- Lukiw, W. J. (2004). Gene Expression Profiling in Fetal, Aged, and Alzheimer Hippocampus: A Continuum of Stress-Related Signaling*. *Neurochemical Research*, 29(6), 1287–1297. Retrieved from

https://link.springer.com/content/pdf/10.1023%2FB%3ANERE.0000023615.89699.63.pdf

- Mancuso, M., Orsucci, D., Siciliano, G., & Murri, L. (2008). Mitochondria, mitochondrial DNA and Alzheimer's disease. What comes first? *Current Alzheimer Research*, *5*(5), 457–468. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18855587
- Maranzana, E., Falasca, A., Barbero, G., Falasca, A. I., Lenaz, G., & Genova, M. L. (2013).
 Mitochondrial Respiratory Supercomplex Association Limits Production of Reactive Oxygen
 Species from Complex I. *Antioxid. Redox Signal*, 19, 1469–1480.
 https://doi.org/10.1089/ars.2012.4845
- Mihaylova, M. M., & Shaw, R. J. (2011). The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. *Nature Cell Biology*, *13*(2011), 1016–1023. https://doi.org/10.1038/ncb2329
- Milenkovic, D., Blaza, J. N., Larsson, N.-G., & Hirst, J. (2017). The Enigma of the Respiratory Chain Supercomplex. *Cell Metabolism*, 25(4), 765–776.

- Mosconi, L. (2013). Glucose metabolism in normal aging and Alzheimer's disease: Methodological and physiological considerations for PET studies. *Clinical and Translational Imaging*, *1*(4). https://doi.org/10.1007/s40336-013-0026-y
- Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. *Biochemical Journal*, *417*(1), 1–13. https://doi.org/10.1042/BJ20081386
- Nikiforov, A., Dölle, C., Niere, M., & Ziegler, M. (2011). Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation. *Journal of Biological Chemistry*, 286(24), 21767–21778. https://doi.org/10.1074/jbc.M110.213298
- Ogura, Y., Kitada, M., Monno, I., Kanasaki, K., Watanabe, A., & Koya, D. (2018). Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. *Redox Report*, *23*(1), 153–159. https://doi.org/10.1080/13510002.2018.1487174
- Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J., & Schomburg, D. (2017). BRENDA in 2017: new perspectives and new tools in BRENDA. *Nucleic Acids Research*, 45. https://doi.org/10.1093/nar/gkw952
- Pryde, K. R., & Hirst, J. (2011). Superoxide Is Produced by the Reduced Flavin in Mitochondrial Complex I. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 286(20), 18056–18065. https://doi.org/10.1074/jbc.M110.186841
- Ramírez-Camacho, I., Flores-Herrera, O., & Zazueta, C. (2019). The relevance of the supramolecular arrangements of the respiratory chain complexes in human diseases and aging. *Mitochondrion*. https://doi.org/10.1016/J.MITO.2019.01.001
- Rangarajan, P., Karthikeyan, A., Lu, J., Ling, E. A., & Dheen, S. T. (2015). Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. *Neuroscience*, *311*, 398–414. https://doi.org/10.1016/j.neuroscience.2015.10.048
- Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. *Cellular Signalling*, 24, 981–990.

- Ruetenik, A., & Barrientos, A. (2015). Dietary restriction, mitochondrial function and aging: From yeast to humans. *Biochimica et Biophysica Acta Bioenergetics*, *1847*(11), 1434–1447. https://doi.org/10.1016/j.bbabio.2015.05.005
- Sena, L. A., & Chandel, N. S. (2012). Molecular Cell Review Physiological Roles of Mitochondrial Reactive Oxygen Species. *Molecular Cell*, 48, 158–167. https://doi.org/10.1016/j.molcel.2012.09.025
- Sgarbi, G., Matarrese, P., Pinti, M., Lanzarini, C., Ascione, B., Gibellini, L., ... Salvioli, S. (2014).
 Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. *Aging*, *6*(4), 296–310. Retrieved from www.impactaging.com
- Sheng, B., Wang, X., Su, B., Lee, H., Casadesus, G., Perry, G., & Zhu, X. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. *Journal of Neurochemistry*, *120*(3), 419–429. https://doi.org/10.1111/j.1471-4159.2011.07581.x
- Starkov, A. A., & Fiskum, G. (2003). Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. *Journal of Neurochemistry*, 86(5), 1101–1107. https://doi.org/10.1046/j.1471-4159.2003.01908.x
- Stein, L. R., & Imai, S. I. (2012). The dynamic regulation of NAD metabolism in mitochondria. *Trends in Endocrinology and Metabolism*, 23(9), 420–428. https://doi.org/10.1016/j.tem.2012.06.005
- Stroud, D. A., Surgenor, E. E., Formosa, L. E., Reljic, B., Frazier, A. E., Dibley, M. G., ... Ryan, M. T. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. *Nature*, *538*, 123–126. Retrieved from https://core.ac.uk/download/pdf/153544165.pdf
- Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. *Clinical Chemistry*, *34*(3), 497–500. https://doi.org/10.1074/jbc.M113.471342

- Swerdlow, R. H., Burns, J. M., & Khan, S. M. (2010). The Alzheimer's disease mitochondrial cascade hypothesis. *Journal of Alzheimer's Disease : JAD*, 20(Suppl 2), S265-79. https://doi.org/10.3233/JAD-2010-100339
- The Uniprot Consortium. (2019). UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research*, *47*(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
- Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D., & von Mering, C. (2015). Version 4.0 of
 PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines.
 PROTEOMICS, *15*(18), 3163–3168. https://doi.org/10.1002/pmic.201400441
- Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., ... Scalbert,
 A. (2018). HMDB 4.0: the human metabolome database for 2018. *Nucleic Acids Research*,
 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089
- Xie, Y., Allaire, J. J., & Grolemund, G. (2019). *R Markdown: The Definitive Guide*. Chapman & Hall/CRC. Retrieved from https://bookdown.org/yihui/rmarkdown/
- Yu, W., Dittenhafer-Reed, K. E., & Denu, J. M. (2012). SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. *The Journal of Biological Chemistry*, 287(17), 14078–14086. https://doi.org/10.1074/jbc.M112.355206
- Zhang, M., Deng, Y.-N., Zhang, J.-Y., Liu, J., Li, Y.-B., Su, H., & Qu, Q.-M. (2018). SIRT3 Protects
 Rotenone-induced Injury in SH-SY5Y Cells by Promoting Autophagy through the LKB1AMPK-mTOR Pathway. *Aging and Disease*, 9(2), 273.
 https://doi.org/10.14336/AD.2017.0517
- Zrelli, H., Matsuoka, M., Kitazaki, S., Zarrouk, M., & Miyazaki, H. (2011). Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. *European Journal of Pharmacology*, 660(2–3), 275–282. https://doi.org/10.1016/j.ejphar.2011.03.045

Modeling the effects of SC formation and stress response on AD progression Appendix

S1: Complete SC model

S1: Model of potential SC assemblies based on Subunit expression. CI is shown in light blue, CIII in red and CIV in purple. SC CICIII is shown in purple, CIVCIII in orange and Respirasome in white. The letter and number pairs represent the potential groupings of subunits (CI(blue): B9=NDUFB9, B4=NDUFB4, A11=NDUFA11 and S1=NDUFS1; CIII(red): FS1=UQCRFS1, Q=UQCRQ, and C1=UQCRC1; CIV(orange): 7AL=COX7AL, and 7A2=COX7A2). CICIII is differentiated by the number of stable inter-complex bonds being formed with 3 being the most in 1 the least. The prefix "s" represents the presence of CI subunit NDUFS1, an essential subunit for respirasome formation. This models represents all potential combinations.

Modeling the effects of SC formation and stress response on AD progression S2: SC assembly model ODE system

Modeling the effects of SC formation and stress response on AD progression

41

Modeling the effects of SC formation and stress response on AD progression S3: SC assembly Kinetic Parameters

> re647 µmol/(l*s) k1 k2 0.05 1/s µmol/(l*s) re648 kf_re648 kr_re648 re649 µmol/(l*s) kf re649 kr_re649 re650 µmol/(l*s) kf_re650 kr_re650 re652 µmol/(l*s) kf_re652 kr_re652 re654 µmol/(l*s) kf re654 kr_re654 re657 µmol/(l*s) kf_re657 kr_re657 re661 kf_re661 kr_re661 re666 kf_re666 kr_re666 re690 kf_re690 kr_re690 re693 kf_re693 kr_re693

0.5 l/(µmol*s) 0.3 1/(µmol*s) 0.05 1/s 0.7 1/(µmol*s) 0.05 1/s 0.7 1/(µmol*s) 0.05 1/s 0.8 1/(µmol*s) 0.05 1/s 0.8 1/(µmol*s) 0.05 1/s 0.9 1/(µmol*s) 0.01 1/s nan µmol/(l*s) 0.8 1/(µmol*s) 0.05 1/s nan µmol/(l*s) 0.3 1/(µmol*s) 0.01 1/s nan µmol/(l*s) 0.3 1/(µmol*s) 0.05 1/s nan µmol/(l*s) 0.3 1/(µmol*s) 0.05 1/s

42

Modeling the effects of SC formation and stress response on AD progression S3: Detailed Oxidative Stress Model

S3: Oxidative stress model showing each explicit reaction used to create the differential equation system.

Modeling the effects of SC formation and stress response on AD progression S4: Oxidative Stress Model Equations

d ([SOD2] · V mette)	kcat_re13_s85 ⁺ (score_ery] [aSIRT3] [NAD(matrix)] [SOD2]
dt	= - ^v matrix [kic_re13_s22_s85 _[19000 set7] kmc_re13_s4_s85 _[19000 set7] + [SOD2] [NAD(matrix]] + kmc_re13_s4_s85 _[19001 set7] [SOD2] + kmc_re13_s22_s85 _[19000 set7] (IVAD(matrix])]
	+ V(k1_mm),(aS002])
d/INADH{matrix}1·V	kizi re40 s105(NAD(matrix)]
dt	= + V _{mathi} [metabolic]
	(krat re7 c71
	V mates [EFC]
4.6-60001-1/	
d ((aSOD2)*V matrix)	= +V _{math}
dr.	(المدر) (1002)
	- Vrastis (KL(*5000 desct)*[aSO02])
d([ATP{matrix}]·V _{matrix})	= -{V{int}} {id_re47_{error}} {ATP(matrix)}
dt	(man = (x) what) - · · · ·
	V Types membrane space * KK2L*P24_S82(*x1*yer)* [A1P3yin] (*Tr+(*nner membrane space *)* [(AMP4(matrix))]
	(wc_leri2se_barrent and wc_leri2se_barrent) wc_leri2se_barrent and ware (mean with the mean mean same space)] + wwc_leri2se_barrent and ware (mean with the mean same space)]
	· ^V maths: (XL ^{(A,TH} camants (nb)) ² (A I V (mdTRL)))
d ([GSSG]·V _{matrix})	= +V _{math}
ar	[kt_rel1_518_563/v002 decemp (GeV)" ktmc_rel1_560_563/v002 decemp (GeV)" [H202] (GSH] + ktmc_rel1_580_563/v002 decemp (GeV)" [H202] + ktmc_rel1_518_563/v102 decemp (GeV)" [H502] + ktmc_rel1_518_563/v102 dec
	-V _{matha}
	(kic_rel8_s59_s64_cosse_nam) *kmc_rel8_s62_s64_cosse_nam) + (GSSG) *(NADPH] + kmc_rel8_s62_s64_cosse_nam) (GSSG) + kmc_rel8_s59_s64_cosse_nam) *(NADPH])
d ([GSH]·V _{matrix})	= -V
dt	
	+ V (GR) [[NADPH]-[GSSG]
	المعادي (142-18_19_16_16_16_16_16_16_16_16_16_16_16_16_16_
d (["NADP+"] · V _{matrix})	= + V [NADPH]-[GSSG]
dt	^{maxm} (kic_re18_s59_s64 _{(0006 rdm}), ⁻ Umc_re18_s62_s64 _{(0006 rdm}), ⁻ (GSSG):(NADPH) + kmc_re18_s62_s64 _{(0006 rdm}), ⁻ (GSSG) + kmc_re18_s59_s64 _{(0006 rdm}), ⁻ (NADPH))
	- V [kcat_re73_s127("NADP+"]
	* metter (kic_re73_s61_s127_(NKCP refer) *kmc_re73_s6_s127_(NKCP refer) *("NADP+") ("H+(matrix)"] + kmc_re73_s6_s127_(NKCP refer) *("NADP+") + kmc_re73_s61_s127_(NKCP refer) *("H+(matrix)"]
d ([NADPH] · V _{matrix})	= -V / kcat_re18_s64(cssc.stury) [GR] [NADPH] [GSSG]
dt	^{mamm} (kic_re18_559_s64 _{rc3556 rds7} , kmc_re18_s62_s64 _{rc3556 rds7}) + [GSSG] rNADPH] + kmc_re18_s62_s64 _{rc3556 rds7} (GSSG] + kmc_re18_s59_s64 _{rc3556 rds7} (NADPH])
	+ V { kcat_re73_s127_mucor.dum? [alDH2] ['IH+ {matrix}"] ['NADP+"]
	^{maxim} (kic_re73_661_s127 _(NACP starr) kmc_re73_s6_s127 _(NACP starr) + ["NADP+"] ["H+(matrix)"] + kmc_re73_s6_s127 _(NACP starr) ("NADP+"] + kmc_re73_s61_s127 _(NACP starr) ("H+(matrix)"])
d ([LKB1]·V _{cut})	= - V { kcat_re37_s88("usat_arr) '[SIRT1] '[NAD(cell)] '[LKB1]
dt	as (افتر=127_569_588رس: مدر)، استر=127_5114_588رس: مدر)، (الدلال): (الممال (مدر): الدلال): المحروطة): الدلال المحروطة): (المدالية المدالية
	+ ¹ / _{out} ⁻ (K1 _{(¹/₁/₁), (id.KB1))}
4 M 10 M 11 1 1	
	$= V_{off} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	າກ. າ. ເຫັດເລັ່ມ (ພາຕິເລັ່ງລາວຍັບໃນເຫັນ) ພາຕິເລັ່ງສາມະລາຍໃນເຫັນນີ້ (ການາີ (ທານໃດລີ) ມະຫາຕິເລັ່ງສາມະລາຍໃນແລະເຮັດ (ການາ້ມະຫະລາຍໃນແ
d/faLKB11:V	** ad (**(visi see*) (www.s.)) kcat re37 988
dt	$= + V_{eff}$ (kc re37 s59 s88 imm re37 s114 s88 + (KBi11+kmc re37 s114 s88 (KBi11+kmc re37 s114 s88 (KBi11+kmc re37 s114 s88 (KBi11+kmc re37 s114 s88)))
d([AMPK]·V_m)	kcat_re20_s70_rstore_security_1_{4MPR(cell)}_{AMPR(cell)}
dt	= - V est (isc_re20_s28_s70_rwrst_statuster) - imc_re20_s116_s70_rwrst_statuster) + [AMPR(cell)] + imc_re20_s116_s70_rwrst_statuster) - [AMPR(cell)]
	/V_math.WL_TE21_(WWK.deer) [aMMK] [ATP(cell)]
	+Vot Vot
d([PRPP{matrix}]·V_matrix)	V - /M //MAM/matrix11/DE00D/matrix1N
dt	 antie (c_(Intervate(int)), (i.e., (interval))
d((Ph)(matrix)) · V matrix)	= + V _{math} [k1 ₁ upus_supuppy] [NAM(matrix)] [P8PP(matrix)])
d ([NMN{matrix}]·V)	kat re27 s51
dt	$= -V_{math} \left[\left(M00AT3 \frac{1}{N_{max}} - \frac{1}{N_{max}} - \frac{1}{N_{max}} + \frac$
	+ V _{math} (k1 _{muto-NetWinton}) [V4M(matrix)] [P6PP(matrix)])
d([NAD{matrix}]·V _{matrix})	kcat_ret0_s105_rwsc.stm.(mmsy) [NAD(matrix)]
dt	= - * mates (Intercontex, Kenc_re40_s102_s105(macrime (water)) + [NAD(matrix)])
	+{v
	(mean ref_s16_s21_mAdva erers) + [NADH(matrix)]
	+V _{math} [[MM9AT3] <u>kat_re27_s51pun-sucjouring</u> [MM9(matrix]]
	NITC_TEX_V_N_(S)_[0000_N00(0000)] + [[N000(N0000)]]
	- V mate (μ ₁ = 0.0 ×
	الاستان المحمد من المحمد (المحمد المحمد المحم المحمد المحمد
	ic re24 s81 s85 /mrc re24 s4 s85 re201/mAD/msth/l.hmrc re24 s85 re200/mstr/b)
	المعادية (معادية معادية المعادية (معادية معادية المعادية (معادية معادية المعادية معادية معادية معادية معادية م المعادية (معادية معادية معادية معادية معادية (معادية معادية معادية معادية معادية معادية معادية معادية معادية مع
	· / vala (kc_re66_s127_s5_max) w kmc_re66_s4_s5_max) (IVI2] (Nu2(matri)) kmc_re66_s4_s5_max) (IIVI2) + kmc_re66_s127_s5_max) (Nu2(matrix))
d([SIRT3]·V _{matric})	· · · · · · · · · · · · · · · · · · ·
dt	$= + V_{math} \left(C \left[V_{TMT} \right]_{descr} \right) \left[dSh(I,J) \right]$
	kcat_ret_s14(nurser) [SRT3]

-V_{matte} [02'] kmc_re1_s5_s14("SIRT3 act")</sub> + [SIRT3]

Modeling the effects of SC formation and stress response on AD progression

d ([NAM{matrix}] · V matrix)	
dt	= + V metri (K1(*SRT) denko") ((inno(matrix)))
	-V_mate (kt_StRT3.ee&*) [NAM(matrix)] [aSIRT3])
	kcat_re13_s85(9000 arr) [aSIRT3] [NAD{(matrix)] [SOD2]
	+ [/] ^w materi kic_re13_s22_s85 _{(%2002 att}) kmc_re13_s4_s85 _{(%2002 att}) + [SOD2] - [NAD(matrix)] + kmc_re13_s4_s85 _{(%2002 att}) - [SOD2] + kmc_re13_s22_s85 _{(%2002 att}) - [NAD(matrix)]
	/ V _{mathe} -kcat_re24_s85 _(YOXD3 etc) [aSIRT3] [NAD(matrix)] [FOXO3]
	+ (kic_re24_s81_s85_rrouts_em)*(kmc_re24_s4_s85_rrouts_em)* (FOXO3) (NAD(matrix)) + kmc_re24_s4_s85_rrouts_em)*(FOXO3) + kmc_re24_s81_s85_rrouts_em)*(NAD(matrix))
	/ kcat_re86_s5_mm;, [aSIRT3]:[NAD(matrix]):[IDH2]
	+ V matrix (kic_re86_s127_s5_mmfmc_re86_s4_s5_mmf(DH2) (MA0(matrix)) + kmc_re86_s4_s5_mm(IDH2) + kmc_re86_s127_s5_mm(NAD(matrix)))
	-V (NAM(matrix)) (PRPP(matrix))
d/[aSIRT3]·V)	mann f funda-randhard b
dt	= -V_mathix'(k1("12HT) desct") (k2IRT3))
	+V _{meter} (kl ₁₅₈₇₃ , debbes, [inhib(matrix)])
	- //(k
	/ kcat_re1_s14 _(12872 art) [SIRT3] \
	+V _{mata} (02) kmc_re1_s5_s14_ssr3 er) + (SIRT3)
d([aAMPK] V	kcst_re20_s70_kkmc_etkstport_1[dLKB1]-[AMP(cst]]-[AMPK]
dt	= + / cat { kic_re20_s29_570_ware enterior} *kmc_re20_s116_570_ware enterior} + [AMPK]*(AMP(cell)] + kmc_re20_s116_570_ware enterior} *(AMPK) + kmc_re20_s29_s70_ware enterior} *(AMP(cell)]
	/ V*Id_re21_manage_action_ {aAMPK} [ATP(cell)]
	$-V_{off}$ (where V_{off}
d(ISIRT11: V _)	
dt	$= + V_{cal} \left(k_1^{c_{SST1}} (k_2^{c_{SST1}} (k_1^{c_{SST1}} (k_1^{c_{SST1}$
	-V(kl_mmkm_n^{(kl_mmkm_n)})[SIRT1])
d/[aFOXO3]·V)	on (soline)y
dt	= -V _{ot} (K(roma_wer) (6F0X03))
	kcat_re13_s85(ryocos_ery [SIRT1]-[NAD(cell]]-[p_ac_F0X03]
	+ ¹ /ent [kic_re13_s22_s85 _{(7000) sc7} ; kmc_re13_s4_s85 _{(7000) sc7} ; [p_ac_F0X03] [NAD(cell)] + kmc_re13_s4_s85 _{(7000) sc7} ; [p_ac_F0X03] + kmc_re13_s22_s85 _{(7000) sc7} ; [NAD(cell)]
d([PPi{cell}] · V cell)	kcat_re38_s104_rue-smm(catp [NAMPT] [PRPP(cell)][NAM(cell)]
dt	= + V eat [kic_re38_s113_s104_nue_sumgenty" kmc_re38_s101_s104_nue_sumgenty" + [NAM(cell)]: [PRPP(cell)] + kmc_re38_s101_s104_nue_sumgenty" - [NAM(cell)] + kmc_re38_s113_s104_nue_sumgenty" - [NAM(cell)] + kmc_re38_s113_s104_nue_sumgenty" - [NAM(cell)] + kmc_re38_s113_s104_nue_sumgenty - [NAM(cell)] + kmc_re38_s101_s104_nue_sumgenty - [NAM(cell)] + kmc_re38_s10_s104_nue_sumgenty - [NAM(cell)] + kmc_re38_s104_nue_sumgenty - [NAM(cell)] + kmc_re38_s104_nue_sumgenty - [NAM(cell)] + kmc_r
d([PRPP{cell}]·V _{ot})	kcat_re38_s104_mu4->************************************
dt	= - V at [kic_re38_s113_s104_mus-sum(ap) - kmc_re38_s101_s104_mus-sum(ap) + [NAM(cell)] [PRPP(cell)] + kmc_re38_s101_s104_mus-sum(ap) - [NAM(cell)] + kmc_re38_s113_s104_mus-sum(ap) - [NAM(cell)] + kmc_re38_s104_s104_mus-sum(ap) - [NAM(cell)] + kmc_re38_s104_mus-sum(ap) - [NAM(cell)] + kmc_re38_s104_mus-sum
d ([NMN{cell}] · V cat)	kcat_re38_s104_mus-sam(satr) [NAMPT] [P60P(cst))][NAM(cst)]
d ([NMN(cell}]' V _{cell}) d t	= + V ed { kcat_re38_s104_mus.som(cdr) { [NAMPT] { [PRPP(cds] }] { [NAMPT] { [PRPP(cds] }] { [NAM(cdl] }] { kc_re38_s113_s104_mus.som(cdr) { [NAM(cdl] }] kmc_re38_s113_s104_mus.som(cdr) { [PRPP(cdl)] kmc_re38_s101_s104_mus.som(cdr) { [PRPP(cdl)] kmc_re38_s113_s104_mus.som(cdr) { [PRPP(cdl)] kmc_re38_s113_s104_mus.som(cdr) { [PRPP(cdl)] kmc_re38_s101_s104_mus.som(cdr) { [PRPP(cdl)] kmc_re38
$\frac{d([NMN{cel}]) \cdot V_{col})}{d t}$	= + V at { kcd_v283_s1104(nues.nempage) [NAMPT] [PSPP(cd)]] [NAMPT] [PSPP(cd)]] {NAMPCal} } kcd_v283_s111_s104(nues.nempage) {NAMPCal} + kmc_v283_s101_s104(nues.nempage) {PSPP(cd)}] {NAMPCal} + kmc_v283_s104(nues.nempage) {NAMPCal} + kmc_v283_s101_s104(nues.nempage) {NAMPCal} + kmc_v283_s104(nues.nempage) {NAMPCal} + kmc_v283_s10(nues.nempage) {NAMPCal} + k
$\frac{d\left(\left[NMN(cel)\right]: V_{cel}\right)}{dt}$	$= + V_{of} \left[\frac{kcd_{1}c38_{1}11_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kcd_{1}c38_{1}11_{5}104_{(num.sum(odf)}(num.sum(odf))} + kmc_{1}c38_{1}11_{5}104_{(num.sum(odf)}(num.sum(odf))}} - V_{of} \left[\frac{kcd_{1}c40_{5}105_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}105_{(num.sum(odf)}(num.sum(odf))}} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}102_{5}(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))} + \frac{kmd_{1}c40_{5}104_{(num.sum(odf)}(num.sum(odf))}{kmc_{1}c40_{5}104_{(num.sum(odf)$
$\frac{d([NMN(cell)] \cdot V_{col})}{dt}$	$= + V_{ext} \left\{ \frac{kcat_{z}e38_{\pm}113_{\pm}104_{cust_{z},som(cutty})}(WAMPT] (PROP(cut))}{kcat_{z}e38_{\pm}113_{\pm}104_{cust_{z},som(cutty})}(WAM(cutt)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cut)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty})}(PROP(cutt)) + kmc_{z}e38_{\pm}101_{\pm}104_{cust_{z},som(cutty}) + kmc_{z}e38_{\pm}104_{cust_{z},som(cutty}) + kmc_{z}e38_{\pm}104_{cust_{z},som(cutty})}(PROP(cutt)) + kmc_{z}e38_{\pm}104_{cust_{z},som(cutty}) + kmc_{z}e38_{\pm}104_{cust_{z},som($
$\frac{d([1MM(cel]) \cdot V_{col})}{dt}$	$= + V_{eff} \left[\frac{kc_{e}/e38_st11_st04_{(NMS-NMS(eff)}, kmc_{e}/e38_st01_st04_{(NMS-NMS(eff)}, $
$\frac{d([NM%(cd]):V_{cd})}{dt}$ $\frac{d([inhib(matrix)]:V_{math})}{dt}$	= + V ed = + V ed + V ed + Ket_re38_s111_s104_{nues.stm(edf}''''''''''''''''''''''''''''''''''''
$\frac{d([10404(cod)]:V_{cod})}{dt}$ $\frac{d([10404(cod)]:V_{math})}{dt}$ $\frac{d([10404(cod)]:V_{cod})}{dt}$	$= + V_{out} \left[\frac{kcd_{1}=28 \pm 113 \pm 104 (muto.som(out))^{-1}(mut$
$\frac{d([10H4(col)] \cdot V_{col})}{dt}$ $\frac{d([10H1(col)] \cdot V_{math})}{dt}$ $\frac{d([10H1(col)] \cdot V_{math})}{dt}$	$= + V_{est} \left[\frac{kcd_{1} c_{2} c_{3} c_{1} c_{2} c_{2} c_{3} c_{1} c_{1} c_{1} c_{1} c_{2} c_{2} c_{3} c_{2} c_{1} c_{1} c_{1} c_{1} c_{2} c_{$
$\frac{d([NHN(cd)]: V_{max})}{dt}$ $\frac{d([NHN(cd)]: V_{max})}{dt}$ $\frac{d([NHN(cd)]: V_{max})}{dt}$	$= + V_{ed} \left[\frac{kcd_{e} 28_{s} 112_{s} 10(q_{uuts,strat_{o} def})^{104H}(cd)}{kcd_{e} 28_{s} 112_{s} 10(q_{uuts,strat_{o} def})^{104H}(cd)} + kmc_{e} 28_{s} 10(q_{uuts,strat_{o} def})^{104H}(cd)} + kmc_{e} 28_{s} 112_{s} 10(q_{uuts,strat_{o} def})^{104H}(cd)} + kmc_{e} 28_{s} 10(q_{uuts,strat_{o} def})^{104H}(cd) + kmc_{e} 28_{$
$\frac{d([10494(cd3]]^{-}V_{cm})}{dt}$ $\frac{d([10494(cd3]]^{-}V_{math})}{dt}$ $\frac{d([10494(cd3)]^{-}V_{cm})}{dt}$	= +V _{ed} { kcd_r283_s104_{puss.nempedp} [NAMPT] [PSPP(cd)] [NAMPT] [PSPP(cd)] [NAMPT] [PSPP(cd)]] + kmc_r284_s104_{puss.nempedp} [NAMPT] [PSPP(cd)]] + kmc_r284_s101_s104_{puss.nempedp} [NAMPT] [PSPP(cd)]] + kmc_r284_s101_s104_{puss.nempedp} [NAMPC] [NAMPC] [NAMPC]] = kmc_r284_s101_s104_{puss.nempedp} [NAMPC] [NAMPC] [NAMPC]] = kmc_r284_s101_s104_{puss.nempedp} [NAMPC] [NAMPC]] = kmc_r284_s101_s104_{puss.nempedp} [NAMPC] [NAMPC] [NAMPC]] = kmc_r284_s101_s104_{puss.nempedp} [NAMPC] [NAMPC]] = kmc_r284_s101_s104_{puss.nempedp} [NAMPC]] = kmc_r284_s104_s104_s103] = kmc_r284_s104_s104_s103] = kmc_r284_s104_s104_s103] = kmc_r284_s104_s104_s104_s103] = kmc_r284_s104_s104_s104_s103] = kmc_r284_s104_s104_s104_s104_s103] = kmc_r284_s104_s104_s104_s104_s104_s104_s104_s10
$\frac{d([NH4(cal)]: V_{cal})}{dt}$ $\frac{d([VH4(cal)]: V_{metric})}{dt}$ $\frac{d([VH4(cal)]: V_{metric})}{dt}$	$= +V_{eff} \left[\frac{kcd_{g} r_{2}8d_{g} r_{1}11_{g} r_{1}64}{(m_{g} r_{1}r_{2}sd_{g} r_{1}10_{g} r_{1}64} r_{1}r_{2}sd_{g} r_{1}10_{g} r_{1}64} r_{1}r_{2}sd_{g} r_{1}10_{g} r_{1}64} r_{1}r_{2}r_{2}8d_{g} r_{1}10_{g} r_{1}10} r_{1}64r_{1}r_{2}r_{2}8d_{g} r_{1}10_{g} r_{1}10} r_{1}64r_{1}r_{2}r_{2}8d_{g} r_{1}10_{g} r_{1}10} r_{1}64r_{1}r_{2}r_{2}8d_{g} r_{1}10} r_{1}10r_{1}r_{2}r_{2}r_{2}8d_{g} r_{1}10r_{1}r_{2}r_{2}r_{2}8d_{g} r_{1}10r_{1}r_{2}r_{2}r_{2}8d_{g} r_{1}10r_{1}r_{2}r_{2}r_{2}r_{2}r_{2}r_{2}r_{2}r_{2$
$\frac{d([10H4(cd)]: V_{cd})}{dt}$ $\frac{d([10H4(cd)]: V_{math})}{dt}$ $\frac{d([10H4(cd)]: V_{math})}{dt}$	$= + V_{eff} \left[\frac{kcd_{e}=28_{\pm}111_{\pm}104_{(MMS-NNR(edf)} - kmc_{e}=28_{\pm}110_{\pm}1104_{(MMS-NNR(edf)} - kmc_{e}=28_{\pm}111_{\pm}104_{(MMS-NNR(edf)} - kmc_{e}=28_{\pm}111_{\pm}104_{(MMS-NNR(edf)} - kmc_{e}=28_{\pm}111_{\pm}104_{(MS-NNR(edf)} - kmc_{e}=28_{\pm}1111_{\pm}104_{(MS-NNR(edf)} - kmc_{$
$\frac{d([NHN(cd)]: V_{cd})}{dt}$ $\frac{d([Nhlb(matrix]: V_{math})}{dt}$ $\frac{d([Nhlb(matrix]: V_{math})}{dt}$ $\frac{d([Nhlb(cd)]: V_{cd})}{dt}$	$= + V_{ef} \left(\frac{kcd_{v}e38_{s}104_{(max,sumpledy}) [NAMPT] (PSPP(cd)) [NAMPT] (PSPP(cd)) [NAMPC] (PSPP(cd)) [NAMPC] (PSPP(cd))]}{kcd_{v}e38_{s}111_{s}104_{(max,sumpledy}) [NAMPC] (PSPP(cd))] + kmc_{v}e38_{s}111_{s}104_{(max,sumpledy}) [PSPP(cd)]]} + kmc_{v}e38_{s}111_{s}104_{(max,sumpledy}) [PSPP(cd)]] + kmc_{v}e38_{s}111_{s}104$
$\frac{d([NH4(cal)]: V_{cal})}{dt}$ $\frac{d([VhH4(cal)]: V_{math})}{dt}$ $\frac{d([VhH4(cal)]: V_{math})}{dt}$	$= +V_{eff} \left[\frac{kcd_{v} c_{3} g_{v} (1)_{v} (1)_{v} c_{3} g_{v} (1)_{v} (1)_$
$\frac{d([10H4(col)]: V_{col})}{dt}$ $\frac{d([10H1(col)]: V_{math})}{dt}$ $\frac{d([10H1(col)]: V_{math})}{dt}$	$= +V_{eff} \left[\frac{kcd_{eff} c_{g_{eff},s_{10}} c_{g$
$\frac{d([10191c(cd)]: V_{max})}{d t}$ $\frac{d([10191c(matrix)]: V_{max})}{d t}$ $\frac{d([10191c(matrix)]: V_{max})}{d t}$	$= + V_{eff} \left[\frac{kcd_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]}{kcd_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)] + kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]}{kcd_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)] + kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]}{kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)] + kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]}{kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)] + kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]}{kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)]} + kmc_{e}(28_{a}104_{(max.sum(adf)})[MM(cdf)] + kmc_{e}(28_{max})] + kmc_{e}(28_{max})[MM(cdf)] + kmc_{e}(28_{$
$\frac{d([WH4(cd)]: V_{cd})}{dt}$ $\frac{d([Wh1(cd)]: V_{main})}{dt}$ $\frac{d([Wh1(cd)]: V_{main})}{dt}$	$= +V_{eff} \left[\frac{kcd_{r}c_{2}d_{s}c_{1}d_{s}c_{1}c_{2}d_{s}c_{1}d_{s}c_{1}c_{1}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{2}d_{s}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}d_{s}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}d_{s}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}c_{1}d_{s}c_{1}c_{1}c_{1}c_{1}c_{1}c_{1}c_{1}c_{1$
$\frac{d([10H4(col)]: V_{col})}{dt}$ $\frac{d([10Hb(math)]: V_{math})}{dt}$ $\frac{d([10Hb(col)]: V_{col})}{dt}$	$= +V_{eff} \left[\frac{k c (z_1 z_2 z_3 z_1 z_1 z_1 (z_1 (z_{1000, NARROW 0})^{1/m} (z_1 z_2 z_3 z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))}{k c (z_1 z_1 z_2 z_3 z_1 z_1 (z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))} + k c (z_1 z_2 z_3 z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))} \right]$ $= -V_{eff} \left[(1000 k T_1 z_{1000, NARROW 0})^{1/m} (NAR(cd)) + k c (z_1 z_2 z_3 z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))} + k c (z_1 z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))} \right]$ $= -V_{eff} \left[(1000 k T_1 z_{1000, NARROW 0})^{1/m} (NAR(cd)) + k c (z_1 z_2 z_3 z_1 z_1 z_1 (z_{1000, NARROW 0})^{1/m} (PAPP(cd)))} \right]$ $= -V_{eff} \left[(1 c_{1000, NARROW 0})^{1/m} (NAR(cd)) + k c (z_1 z_2 z_3 z_1 z_3 z_1 z_1 z_1 (z_{1000, Cd})) + k c (z_{1000, NAROW 0})^{1/m} (NAROW 0}) \right]$ $= +V_{eff} \left[(1 c_{1000, NAROW 0})^{1/m} (NAR(cd)) + k c (z_1 z_2 z_3 z_1 z_3 z_3 z_1 z_1 z_1 z_1 z_1 (z_{1000, Cd})) + k c (z_{1000, Cd}) + k c (z_{100, Cd}) + k c (z_{100, Cd})) \right] \right]$ $= +V_{eff} \left[(1 c_{1000, NAROW 0})^{1/m} (NAROW 0)^{1/m} (NAROW 0}) + (NAROW 0)^{1/m} (NAROW 0}) + (NAROW 0)^{1/m} (NAROW 0}) \right] \right]$ $= +V_{eff} \left[(1 c_{1000, Cd})^{1/m} (NAROW 0})^{1/m} (NAROW 0}) + (NAROW 0}) + (NAROW 0})^{1/m} (NAROW 0}) \right] \right]$ $= +V_{eff} \left[(1 c_{1000, Cd})^{1/m} (NAROW 0}) + (NAROW 0}) \right] \right]$ $= +V_{eff} \left[(1 c_{1000, Cd})^{1/m} (NAROW 0}) + ($
$\frac{d([WHV(cd)]; V_{cd})}{dt}$ $\frac{d([WhV(cd)]; V_{add})}{dt}$ $\frac{d([WhV(cd)]; V_{cd})}{dt}$ $\frac{d([WhV(cd)]; V_{cd})}{dt}$	$= +V_{eff} \left[\frac{kcd_{v}c38_{v}111_{v}104_{(max, vane(vdf)}^{0} [MAM7] [PSPP(cd]] + kmc_{v}c38_{v}104_{v}104_{v}vane(vdf)} [PSPP(cd)] + kmc_{v}c38_{v}104_{v}(cd)] \right] \\ -V_{eff} \left[\frac{(1900AT)}{kmc_{v}c60_{v}105_{(max, vane(vdf)}^{0} [MM(cd)] + kmc_{v}c38_{v}101_{v}104_{(max, vane(vdf)}^{0} [PSPP(cd)] + kmc_{v}c38_{v}101_{v}104_{v}vane(vdf)} [PSPP(cd)] \right] \\ = -V_{eff} \left[\frac{(1900AT)}{kmc_{v}c60_{v}102_{v}100_{v}vane(vdf)} [PSPP(cd)] + kmc_{v}c38_{v}101_{v}104_{v}vane(vdf)} [PSPP(cd)] \right] \\ = -V_{eff} \left[\frac{(1900AT)}{kmc_{v}c60_{v}102_{v}100_{v}vane(vdf)} [PSPP(cd)] + kmc_{v}c38_{v}101_{v}104_{v}vane(vdf)} [PSPP(cd)] \right] \\ = -V_{eff} \left[\frac{(1900AT)}{kmc_{v}c60_{v}102_{v}vane(vdf)} [PSPP(cd)] + kmc_{v}c38_{v}101_{v}vane(vdf)} [PSPP(cd)] \right] \\ + V_{eff} \left[\frac{(1}{v}vane(vdf)) [VAM(mbb)] \left[\frac{k}{k} \left[\frac{k}{v} \left[$
$\frac{d([WH4(cd)]; V_{cd})}{dt}$ $\frac{d([Wh1(cd)]; V_{mbin})}{dt}$ $\frac{d([Wh4(cd)]; V_{cd})}{dt}$ $\frac{d([Wh4(cd)]; V_{cd})}{dt}$	$= +V_{eff} \left[\frac{kcd_{eff} c_{gef} c_$
$\frac{d([NH4(cal)]: V_{cal})}{dt}$ $\frac{d([VhH4(cal)]: V_{math})}{dt}$ $\frac{d([VhH4(cal)]: V_{math})}{dt}$ $\frac{d([VhH4(cal)]: V_{cal})}{dt}$ $\frac{d([VhH4(cal)]: V_{cal})}{dt}$	$= +V_{eff} \left[\frac{kcd_{v}c38_{u}11d_{v}(u_{v_{v},v_{v}}c38_{u}10d_{v}(u_{v}$
$\frac{d([WH(cal)]: V_{cal})}{dt}$ $\frac{d([Wh(cal)]: V_{math})}{dt}$ $\frac{d([WM(cal)]: V_{cal})}{dt}$ $\frac{d([WM(cal)]: V_{cal})}{dt}$	$= +V_{eff} \left[\frac{kcd_{eff} 28_{\pm} 104_{(max, sumpled})^{10} (MMPT]^{10} (PSP(cd))^{10} (MM(cd))}{kcd_{eff} 28_{\pm} 101_{\pm} 104_{(max, sumpled})^{10} (MM(cd))^{10} (PSP(cd))^{10} (MM(cd))}{km_{eff} 28_{\pm} 101_{\pm} 104_{(max, sumpled})^{10} (MM(cd))^{10} (PSP(cd))^{10} (MM(cd))^{10} (PSP(cd))^{10} (MM(cd))^{10} $
$\frac{d([WH4(cd)]: V_{cd})}{dt}$ $\frac{d([Wh1(cd)]: V_{main})}{dt}$ $\frac{d([Wh1(cd)]: V_{cd})}{dt}$ $\frac{d([Wh1(cd)]: V_{cd})}{dt}$	$= +V_{eff} \left[\frac{kcd_{e}(28_{a}(10^{4})(m_{e})(m_{$
$\frac{d([NH4(cal)]: V_{mb})}{dt}$ $\frac{d([VhH4(cal)]: V_{mbm})}{dt}$ $\frac{d([VhH4(cal)]: V_{mb})}{dt}$ $\frac{d([VhH4(cal)]: V_{mb})}{dt}$ $\frac{d([VhH4(cal)]: V_{mb})}{dt}$	$= +V_{eff} \left[\frac{k (L_{eff} 2 R_{eff} 1 (M_{eff} 2 R_{eff} 2 R_{e$
$\frac{d([10H4(col)]: V_{col})}{dt}$ $\frac{d([10Hb(math)]: V_{math})}{dt}$ $\frac{d([10Hb(col)]: V_{col})}{dt}$ $\frac{d([10Hb(col)]: V_{col})}{dt}$	$= +V_{eff} \left[\frac{k (L_{eff} (2 - L_{eff} (2$
$\frac{d([WH4(cd)]: V_{cd})}{dt}$ $\frac{d([WH1(cd)]: V_{main})}{dt}$ $\frac{d([WH1(cd)]: V_{cd})}{dt}$ $\frac{d([WH1(cd)]: V_{cd})}{dt}$	$= +V_{eff} \left[\frac{kcd_{eff} 28_{eff} 10^{4} (max.som(eff)^{-1} kmc_{eff} 28_{eff} 101_{eff} 104_{eff} 104_{eff} 201_{eff} 201_{eff} 104_{eff} 201_$
$\frac{d([WH4(cd)]: V_{m})}{dt}$ $\frac{d([Wh1(cdi)]: V_{mhn})}{dt}$ $\frac{d([Wh4(cdi)]: V_{mh})}{dt}$ $\frac{d([Wh4(cdi)]: V_{mh})}{dt}$ $\frac{d([Wh4(cdi)]: V_{mh})}{dt}$	$= +V_{eff} \left[\frac{k c (z_1 z_2 z_3 z_1 z_1 z_1 c_{(1_{(100,1.000)(eff)}^{-1}} (m, z_2 z_3 z_1 z_1 z_1 z_1 z_1 c_{(1_{(100,1.000)(eff)}^{-1}} (m, z_2 z_3 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1 z_1$
$\frac{d([10H4(cd)]; V_{cd})}{dt}$ $\frac{d([10H4(cd)]; V_{moth})}{dt}$ $\frac{d([10H4(cd)]; V_{cd})}{dt}$ $\frac{d([10H2(cd)]; V_{cd})}{dt}$ $\frac{d([10H2(cd)]; V_{cd})}{dt}$	$= +V_{eff} \left[\frac{k Ed_{eff} 2d_{eff} (k Ed_{eff} 2d_{eff} 2d_{eff$

+ V cell ([NMNAT] - ([NMN->NAD(celly]) + [NMN{celly]}) + [NMN{celly])

Modeling	the effects	of SC formation	and stress	response	on AD p	progression
d ([ATP{cell}] · V _{cell})	= +(Vkf_re47	[ATP{matrix}]				-

d ([ATP(CEI)] · V cel)	$= + (V_{mather} k L_{rest}^{-rest} (A_{rest}^{-rest} (A_{rest}^{$
dt	Comme - Consequence
	"* al ("""" hydrafa") ("""""""""""""""""""""""""""""""""""
	+//at
	י (ביראר בארב ביר ביר ביר ביר ביר ביר ביר ביר ביר ב
	of the state of th
d (FAMD/coll31+1/	/ [*] od /
	= + V _{ost} (k1 _{2ATD holosophe}) [ATP(cell)])
	-//1/ r=16
	(cm = (we manger) >
	- V at isc re20 s29 s70
	(VOR Assesser)
	$+V_{cl}$
4/(021-1/	l com /
dt	$= + V_{match} \left(k_{1}^{CO matchever} \right) = [0] \cdot [02] \right)$
	kcat_ref_s24(requests formation (scorp) [aSO02] ["H+(matrix)"] [02']
	- V materie (isc_ref_s14_524/Percented termation (2020)) kmc_ref_s6_524/Percented termation (2020) + [027] ["H+(matrix)"] + kmc_ref_s6_524/Percented termation (2020) [027] + kmc_ref_s6_524/Percented termation (2020) ["H+(matrix)"]
d ([H2O2] · V)	kcat_re10_s3_rooz deares (kcat) [H202] \
dt	= -V_math. {(Cat)
	kcat_ref_s24_rpenate temate (5007) [ISO02] [7+(matrix)]:[02]
	+ V matin [kic_rel_s14_s24_memoke termiter (2020)] kmc_rel_s6_s24_memoke termiter (2020)] [] + kmc_rel_s6_s24_memoke termiter (2020)] [] [] + kmc_rel_s14_s24_memoke termiter (2020)] [] + kmc_rel_s14_s24_memo
	kcat_re11_s63_rozz #core (Gev) [GeV] [GSV] [H202]
	- V mates: (isc_ret1_s18_s63_1000:deceme (Genty Hmc_ret1_s60_s63_1000:deceme (Genty H202); [GSH] + kmc_ret1_s60_s63_1000:deceme (Genty H202) + kmc_ret1_s18_s63_1000:deceme (Genty H202) + kmc_ret1_s1
	[6] [02] [['] H+(matrix) [']]
d(["H+{matrix}"]·V _{matrix})	(E1C) X40(10),221(* aption?) KmC_r69_517_521(* aption?) KmC_r69_511_521(* aption?) KmC_r69_56_521(* aption?)
dt	$= -V_{matrix}^{-1}$
	$\binom{1 + \text{kmc}_re9_517_521_{pe_{expluse}}}{1 + \text{kmc}_re9_56_521_{pe_{expluse}}} \binom{1 + \text{kmc}_re9_511_521_{pe_{expluse}}}{1 + \text{kmc}_re9_511_521_{pe_{expluse}}}$
	kcat_ref_s24(remains (rcour); [aSOD2] ["H+(matrix)"] [O2]
	- V metrin (kic_ref_s14_524(rpmeatic lommater, rgazy) kmc_ref_s6_524(rpmeatic lommater, rgazy) + [02] ["H+(matrix}] + kmc_ref_s6_524(rpmeatic lommater, rgazy) [02] + kmc_ref_s14_524(rpmeatic lommater, rgazy) ["H+(matrix]"]
	V*************************************
	+ kic_re14_s20_s83_{rxtrapery} kmc_re14_s90_s83_{rxtrapery} + [AMP(matrix]]: ["H+("inner membrane space")"] + kmc_re14_s90_s83_{rxtrapery} [AMP(matrix]] + kmc_re14_s20_s83_{rxtrapery} ["H+("inner membrane space")"]
	kcat_re73_s127("uccr nor") [alDH2] ["H+(matrix)"] ["NADP+"]
	^{• v mater.} [kic_re73_s61_s127 _{(PMCP refer}] *imc_re73_s6_s127 _{(PMCP refer}] * ["NADP+1] '["H+(matrix)"] + kmc_re73_s6_s127 _{(PMCP refer}] '["NADP+1] + kmc_re73_s61_s127 _{(PMCP refer}] '["H+(matrix)"]
	+ // 'mear membrane space' (<1_(*1+ lastry) [*1+{"inner membrane space"})*])
d/("H+{"inner membrane space"}")"	/) kest re7 s21 (NADH/matrix)] .
dt	$= + \left[V_{max} \left[\text{(ETC)} \right]_{max} \left[\text{(ETC)}_{max} \left[\text{(ETC)} \right]_{max} + \left[\text{(ND)} \left[\text{(MD)} \left[\text{(MD)} \right]_{max} \right]_{max} \right] \right] \right]$
	<pre>//</pre>
	kic_re14_s20_s83
d ([H2O] · V matte)	kat_ret0_s3_room/second (H2O2]
d t	= + V_math: [Lust] kmc_re10_s18_s3_voc: desays [Caty] + [H2O2]
	[ETC]-terest real e21 [e] [02] ["H+(matrix)"]
	(1-1-) Num_(
	+ V _{math}
	$1 + kmc_reg_{517}s_{21}e_{e_{52}kmr_{7}}$ $(1 + kmc_reg_{56}s_{21}e_{e_{52}kmr_{7}})$ $(1 + kmc_reg_{511}s_{21}e_{e_{52}kmr_{7}})$
	kcat_re11_s63_vsc02 decamp (Gyd)" [GPX] [GSH] [H2O2]
	* ¹ Markin [kic_rel1_s18_s63] ^{(h002]} decamp (Geny) ¹ ; Minc_rel1_s60_s63[^{(h002]} decamp (Geny) ¹ ; Hinc_rel1_s18_s63[^(h002) decamp (Geny) ¹ ; Hinc_rel1_s18_s63[^(h002) decamp (Geny) ¹ ; Hinc_rel1_s18_s63[^(h002) decamp (Geny) ¹ ; Hinc_rel1
d([O2]·V _{mattix})	kcat_re10_s3_rozz decays (cory [H2O2])
dt	= + V_math: [LC81] kmc_re10_s18_s3_room (sept + [H202])
	[02] ["H+(mabrix)"]
	[1.1.5] Multi-22_22***(* aptier*) kmc_re9_517_221(* aptier*) kmc_re9_51_212(* aptier*) kmc_re9_55_221(* aptier*)
	- ¹ / _{matta}
	(1+ kmc_re9_s17_s21 _{fe ceptury}) (1+ kmc_re9_s6_s21 _{fe ceptury}) (1+ kmc_re9_s1_s21 _{fe ceptury})
	- V _{minite} . (K1 ₂₀₂ and terminitery) [e]·[02])
	kcat_ref_s24_repeads formatis (poor); [dSOO2]: ["H+{matrix}"]: [02"]
	** matic [kc_ref_s14_s24_{Provesks formation (2002)7} *Kmc_ref_s6_s24_{Provesks formation (2002)7} *[02]*[*H+(matrix)*] + kmc_ref_s6_s24_{Provesks formation (2002)7} *[02]* kmc_ref_s14_s24_{Provesks formation (2002)7} *[*H+(matrix)*]
d ([NADH{cell}] · V _{cell})	
d t	= - * of [x1_mx5m only (y00)] [1000.111(C21)]]
	+ // -://klmm
	cm (((we) idou (dat))) =
	-ν - (r_AMERCI(NOTH(cell))
	a (
d ([inhib{cell}]: V _{cell})	= ((advaracie) (set (
$\frac{d([inhib{cel}]:V_{cel})}{d\ell}$	a (

Modeling the effects of SC formation and stress response on AD progression

	[ETC]-koat_re9_s21_0
d([e]·V _{matrix})	= -V meta
ar	$(1 + \frac{(e)}{1 + 1})^{1/2} + \frac{(7 + (matrix)^{2})}{1 + (matrix)^{2}} + \frac{(22)}{1 + (matrix)^{2}}$
	{ { { { { { { { { { { { { { { { { { {
	- meser ((Cut-al terminater) (()) / keat_r=7=22_mesers.*[NADH(matrix)] \
	+ V match [ETC] . [Incred_states of y = [NADH(matrix)]
d([IDH2]·V _{matt})	$= + V_{matrix} \left[(L_{1}^{n} Cold Amatr}) \left(alD(2) \right) \right]$
	- /
	⁻ سفتش (kic_re86_s127_s5 _{(12012 at7}) -kmc_re86_s4_s5 _{(12012 at7}) + [IDH2] ·[NAD(matrix)] + kmc_re86_s4_s5 ₍₁₂₀₁₂ at7) ·[IDH2] + kmc_re86_s127_s5 _{(12012 at7}) [NAD(matrix)])
d ([aPGC1a]· V _{call})	$= -V_{out}(k_{(POCLus,p)})[aBGCla])$
01	kcat_rei3_s85_mcr_issue_r[SIRT1]-[NAD(call)]-[pac_PGC1a]
	+ V ot kic_re13_s22_s85_msc1.temp1*msc_re13_s4_s85_msc1.temp1*[pac_PGC1a]](VAD(cell)] + kmc_re13_s4_s85_msc1.temp1*[pac_PGC1a] + kmc_re13_s42_s85_msc1.temp1*[NAD(cell)]
d ([pac_PGC1a] · V cal)	
dt	$= + V_{col} \left(\frac{V_{col} + V_{col}}{V_{col} + V_{col}} \right)$
	-V _{est} (kl _{pc21a});pec_PGC1a)
	+ V of ([aMPK] kat_reb3_stopucture.prov [16_PK-La]
	(wmc_reov_sisse0_vec_reov_+ (ec_vec_re)) krst reis #85
	-V at kc re13.s22.s85imc_re13.s4.s85+ [nex_PCi13[[NAD(cell]]+kmc_re13.s4].s85[NAD(cell])]
d([ac_PGC1a]·V_a)	(70C1300)) - (70C1300)) - (70C1300)) - (70C1300)) - (70C1300)) - (70C1300)) - (70C1300))
dt	$= + V_{\text{est}} \left(k_{\text{PpcCup}} \left(pac_{\text{PpcCup}} \right) \right)$
	- Vod ([aMMK] - kmc_re69_s186(vaccus ptor) { (sc_PGCLs) } (sc_PGCLs)
d ([p_ac_FOXO3] · V and)	= + V - (k1,
dt	- · · • • • • • • • • • • • • • • • • •
	+ $V_{ref} \left[(aM48K) + \frac{V_{ref} - v_{so}}{2A + 6C} + \frac{V_{ref}}{4} + V_{re$
	/ التركيمية (المركيمية) + (مدريمية المركيمية) + (مدريمية المركيمية) + (مدريمية المركيمية) + (مدريمية المركيمية مدريمية - 240 (1111) - 240 (1111) - 240 (1111) - 240 (1111)
	-V at kc re13 s22 s85
	-/wit(Armon www.[0.46_0003])
d([ac_FOXO3{cell}] · V) = -(V_, '4/_re35, 'ac_F0X03(cell))
d t	(un = (rouse mann y =
	+
	((Tututa ep) (((Tututa ep) (((((((((((((((((((
	- // est [GAMPK]. kmc_re36_s34_s86_motbacker+ [ac_FOXO3(cell)]
	+ V _{rd} (k1 _{rr001 dehen}) [p_ac_FOX03]
d ([FOXO3] · V _{mattix})	
d t	(and we concretely (the concretely)
	V _{math} , kcat_re24_s85(roucds.exp) [aSIRT3] [NAD(matrix])[FOXO3]
4/7-10421-1/	{ki_re4_981_985_reads_ep}*mc_re24_94_985_reads_ep} + [+UX03]*[read](matrix)]+ kmc_re24_94_980;reads(mep)*[+UX03]+ kmc_re24_981_985;reads(matrix)]/
d(atom2) v matrix)	= - V _{math} (kl ⁺ (14), dear(*); [alDH2])
	، (Kat_re66_s5_mm; , (KatRT3) (NAD{matrix}) (IDH2]
	+ V matrix (kic_re86_s127_s5_reso etc) kic_re86_s4_s5_reso etc) (FDAD(matrix)) + kmc_re86_s4_s5_reso etc) (FDAD2 + kmc_re86_s4_s5_reso etc) (FDAD4 + kmc_re86_s4_s5_reso etc) (FDA14 + kmc_re86_s4_s5_reso etc) (F
	"Proton Grad." = "[H+("inner membrane space")]"
	"[i++(matrix)]"
**	TP/AMP (matrix)* _ AMP(matrix)-articletumber
75	AD/NADH (cvtp)* = [NAD(cell)]
	[NDN+(Cell)]
"NAC	/NADH (matrix) [*] = [max_matrix)] INADH matrix

47

Modeling the effects of SC formation and stress response on AD progression S6: Oxidative Stress Model Final Parameter Set and Concentrations

Initial State	
Initial Compartment Sizes	
default	11
matrix	6.83e-19 l
inner membrane space	2.28e-19 l
cell	1e-13 l
Initial Species Values	
ETC	4.408 umol/(l)
ATPsvn	26 9466 umol/(l)
SOD2	53 759 µmol/(l)
NADH{matrix}	12 umol/(l)
aSOD2	17 9197 umol/(l)
Cat	15 1617 µmol/(l)
AMP{matrix}	0.0014 umol/(l)
ATP{matrix}	1390 umol/(l)
GSSG	$0.041 \mu mol/(l)$
6556 GSH	1.2 µmol/(l)
	19.6 umol/(l)
NADPH	51 umol/(l)
GPy	17 /155 umol/(l)
GP GP	$0.5972 \mu mol/(l)$
	$0.3972 \mu mol/(l)$
	$0.0506 \mu mol/(l)$
	$0.0530 \mu mol/(l)$
	6.67 umol/(l)
PDi/matrix)	
NIMNI(matrix)	$0.0580 \mu m ol/(l)$
NAD(matrix)	50 umol/(l)
	$0.0075 \mu mol/(l)$
NAM(matrix)	0.0075 µmol/(l)
	$0.0013 \mu mol/(l)$
	$0.0013 \mu mol/(l)$
	$0.0176 \mu mol/(l)$
	$0.0000 \mu mol/(l)$
	$4.9 \mu m o (1)$
	0.0509 µmol/(l)
	$0.4809 \mu m ol/(l)$
	$0.0049 \mu \text{mol}/(1)$
INIVIINA I 3	$0.0664 \mu m ol/(l)$
Innib{matrix}	$0.0012 \mu \text{mol/(I)}$
	0.4809 µmol/(I)
	85 µmol/(l)
	1390 µmol/(I)
	$0.0014 \mu \text{mol/(I)}$
02	
	10.5 µmol/(I)
H+{matrix}	
H+{"Inner memorane sp	
	3∠ μmoi/(I)
	1.17 μmol/(l)
inhib{cell}	0.0012 µmol/(l)

Modeling the effects of SC formation and stress response on AD progression

 $0 \mu mol/(l)$ е IDH2 8.7951 µmol/(l) aPGC1a 1.1e-05 µmol/(I) pac_PGC1a 7.7e-05 µmol/(I) ac_PGC1a 1.65e-05 µmol/(I) p_ac_FOXO3 0.003 µmol/(l) 0.0118 µmol/(I) ac_FOXO3{cell} 0.0039 µmol/(I) FOXO3 2.9317 µmol/(I) aIDH2 $1 \mu mol/(l)$ metabolic UCP5 $1 \mu mol/(l)$ **Initial Global Quantities** Proton Grad 20.8333 dimensionless ATP/AMP {matrix} 992857 dimensionless NAD/NADH {cyto} 72.6496 dimensionless NAD/NADH {matrix} 4.16667 dimensionless **Kinetic Parameters** SIRT3 deact k1 0.0607443 1/min SIRT3 disinhib 0.031598 1/min k1 NAD rdxn {matrix} 9.184 1/min kcat_re40_s105 kmc re40 s102 s105 1.5072e-06 µmol/l AMP transport kf_re46 1e-05 1/min ATP consump {mtx} 0.125164 1/min k1 SOD2 deact 0.00271808 1/min k1 AMPK deact kf_re21 0.0183318 l/(µmol*min) FOXO3 dephos 1.24677e-05 1/min k1 NAM->NMN{mtx} 111.534 l/(µmol*min) k1 LKB1 deact 0.0338412 1/min k1 FOXO3 to matrix kf_re35 0.0278129 1/min SIRT3 inhib 1e-05 l/(µmol*min) k1 SIRT1 disinhib 1.09474 1/min k1 NADH oxdtn {cyto} 0.13173 1/min k1 ATP export kf_re47 17.5096 1/min ATP hydrolysis 0.23558 1/min k1 SIRT1 inhib k1 0.0103606 l/(umol*min) NAD rdxn {cyto} k1 0.00513173 1/min PGC1a acyl

Modeling the effects of SC formation and stress response on AD progression 0.00109024 1/min k1 PGC1a k1 0.0386717 1/min FOXO3a deact 0.0195509 1/min k1 H2O2 decomp (Cat) kcat_re10_s3 0.001248 1/min kmc_re10_s18_s3 7.36 µmol/l SIRT3 act kcat re1 s14 0.0257019 1/min kmc_re1_s5_s14 0.0153836 µmol/l e capture kcat re9 s21 1.264e-05 1/min kmc_re9_s17_s21 0.0353064 µmol/l kmc_re9_s11_s21 0.0143592 µmol/l 0.0242807 µmol/l kmc_re9_s6_s21 O2 rad formation 1e-05 l/(µmol*min) k1 NADH ox (ETC) kcat_re7_s21 2.94443 1/min kmc re7 s16 s21 0.458844 µmol/l Peroxide formation (SOD2) kcat_re4_s24 27.456 1/min kmc re4 s14 s24 0.007 µmol/l kmc_re4_s6_s24 0.004992 µmol/l kic_re4_s14_s24 0.01 µmol/l NMN->NAD{matrix} kcat_re27_s51 112.176 1/min kmc_re27_s47_s51 87.1298 µmol/l H2O2 decomp (Gpx) 30.4704 1/min kcat_re11_s63 kmc_re11_s18_s63 5 µmol/l 2.88 umol/l kmc re11 s60 s63 kic_re11_s18_s63 0.00408 µmol/l GSSG rdxn kcat re18 s64 304.261 1/min kmc_re18_s59_s64 37.516 µmol/l 7.6109 µmol/l kmc_re18_s62_s64 kic_re18_s59_s64 0.0117007 µmol/l AMPK activation 2.16999 1/min kcat re20 s70 kmc re20 s29 s70 14.7446 µmol/l 18.14 µmol/l kmc_re20_s116_s70 7.40837 µmol/l kic_re20_s29_s70 ATP syn kcat_re14_s83 1e-05 1/min kmc_re14_s20_s83 0.226778 µmol/l kmc_re14_s90_s83 0.0743971 µmol/l kic_re14_s20_s83 0.110651 µmol/l SOD2 act 1.44757 1/min kcat re13 s85 kmc re13 s22 s85 1e-05 µmol/l kmc_re13_s4_s85 1e-05 µmol/l kic re13 s22 s85 0.0787856 µmol/l FOXO3a exp

50

Modeling the effects of SC formation and stress response on AD progression 3.24781 1/min kcat_re24_s85 1e-05 µmol/l kmc_re24_s81_s85 kmc_re24_s4_s85 1e-05 µmol/l kic_re24_s81_s85 132.145 µmol/l NADH ox kcat_re54_s86 1213.99 1/min kmc_re54_s123_s86 7.18526 µmol/l PGC1a phos kcat re69 s86 5.43493 1/min kmc re69 s133 s86 0.00896693 µmol/l FOXO3a phos kcat_re36_s86 1.07218 1/min kmc_re36_s34_s86 0.0239716 µmol/l LKB1 act kcat_re37_s88 0.269103 1/min kmc_re37_s69_s88 31.4614 µmol/l 205.788 µmol/l kmc_re37_s114_s88 5.27956 µmol/l kic re37 s69 s88 FOXO3 act kcat_re13_s85 159.577 1/min 260.251 µmol/l kic re13 s22 s85 kmc re13 s22 s85 117.909 µmol/l kmc_re13_s4_s85 1.95425 µmol/l PGC1 deacyl kcat_re13_s85 0.0220595 1/min kic_re13_s22_s85 53.1197 µmol/l kmc re13 s22 s85 183.867 µmol/l kmc_re13_s4_s85 2.67021 µmol/l NAM->NMN{cell} kcat re38 s104 21.1889 1/min kmc_re38_s113_s104 41.2056 µmol/l kmc_re38_s101_s104 0.860579 µmol/l kic re38 s113 s104 0.00753388 µmol/l NMN->NAD{cell} kcat_re40_s105 0.655759 1/min kmc_re40_s102_s105 47.1165 µmol/l NADP rdxn kcat_re73_s127 1e-05 1/min kmc_re73_s61_s127 12.0712 µmol/l kmc_re73_s6_s127 99.8827 µmol/l 0.01616 µmol/l kic_re73_s61_s127 IDH2 deact 0.0444651 1/min k1 IDH2 act 50.985 1/min kcat_re86_s5 kmc_re86_s127_s5 1e-05 µmol/l kmc re86 s4 s5 4.62915 µmol/l kic_re86_s127_s5 1e-05 µmol/l H+ leak k1 0.00026904 1/min

51

Modeling the effects of SC formation and stress response on AD progression S7: Initial Oxidative Stress Model Parameter Values

Initial State **Kinetic Parameters** nan µmol/(I*min) SIRT3 deact k1 1.8 1/min SIRT3 disinhib nan µmol/(I*min) k1 0.0197 1/min NAD rdxn {matrix} nan µmol/(I*min) kcat re40 s105 1.04781 1/min kmc_re40_s102_s105 0.021257 µmol/l AMP transport nan µmol/(min) kf re46 0.24 1/min ATP consump {mtx} nan µmol/(I*min) 0.204 1/min k1 SOD2 deact nan µmol/(I*min) k1 0.03 1/min AMPK deact nan µmol/(I*min) 0.039 l/(µmol*min) kf re21 FOXO3 dephos nan µmol/(I*min) 0.0001 1/min k1 NAM->NMN{mtx} nan µmol/(l*min) 32 l/(µmol*min) k1 LKB1 deact nan µmol/(I*min) k1 0.03 1/min FOXO3 to matrix nan µmol/(min) 0.24 1/min kf re35 SIRT3 inhib nan µmol/(l*min) 0.197 l/(µmol*min) k1 SIRT1 disinhib nan µmol/(I*min) 1.79 1/min k1 NADH oxdtn {cyto} nan µmol/(I*min) k1 0.05 1/min ATP export nan µmol/(min) 9.6 1/min kf_re47 ATP hydrolysis nan µmol/(I*min) 0.204 1/min k1 SIRT1 inhib nan µmol/(I*min) k1 0.01 l/(µmol*min) NAD rdxn {cyto} nan µmol/(I*min) 0.01 1/min k1 PGC1a acyl nan µmol/(I*min) 0.03 1/min k1 PGC1a nan µmol/(I*min) 0.03 1/min k1 FOXO3a deact nan µmol/(I*min) k1 0.03 1/min H2O2 decomp (Cat) nan µmol/(I*min) 0.0012 1/min kcat_re10_s3 20 µmol/l kmc_re10_s18_s3 SIRT3 act nan µmol/(l*min) kcat re1 s14 0.03 1/min kmc_re1_s5_s14 0.2 µmol/l nan µmol/(I*min) e capture kcat re9 s21 10 1/min

Modeling the effects of SC formation and stress response on AD progression 0.01 µmol/l kmc_re9_s17_s21 0.01 µmol/l kmc_re9_s11_s21 kmc_re9_s6_s21 0.01 µmol/l O2 rad formation nan µmol/(I*min) 0.57 l/(µmol*min) k1 NADH ox (ETC) nan µmol/(min) 1 1/min kcat_re7_s21 kmc re7 s16 s21 0.01 µmol/l Peroxide formation (SOD2) nan µmol/(I*min) kcat re4 s24 24 1/min kmc_re4_s14_s24 0.005 µmol/l kmc_re4_s6_s24 0.005 µmol/l kic re4 s14 s24 0.01 µmol/l NMN->NAD{matrix} nan µmol/(I*min) 150 1/min kcat_re27_s51 kmc_re27_s47_s51 66.2 µmol/l nan µmol/(I*min) H2O2 decomp (Gpx) kcat re11 s63 31.74 1/min kmc re11 s18 s63 5 µmol/l kmc_re11_s60_s63 2 µmol/l 0.01 µmol/l kic re11 s18 s63 GSSG rdxn nan µmol/(l*min) 144 1/min kcat_re18_s64 kmc re18 s59 s64 56.7 µmol/l kmc_re18_s62_s64 7.9 µmol/l kic_re18_s59_s64 0.01 µmol/l AMPK activation nan µmol/(I*min) kcat_re20_s70 10 1/min 67.2 µmol/l kmc_re20_s29_s70 48 µmol/l kmc re20 s116 s70 67.2 µmol/l kic_re20_s29_s70 ATP syn nan µmol/(min) kcat re14 s83 0.5 1/min kmc_re14_s20_s83 0.1 µmol/l kmc_re14_s90_s83 0.1 µmol/l kic_re14_s20_s83 0.01 µmol/l SOD2 act nan µmol/(I*min) 0.197 1/min kcat_re13_s85 kmc_re13_s22_s85 25.5 µmol/l kmc_re13_s4_s85 140 µmol/l kic re13 s22 s85 29.4 µmol/l FOXO3a exp nan µmol/(min) 0.197 1/min kcat re24 s85 25.5 µmol/l kmc_re24_s81_s85 673.3 µmol/l kmc_re24_s4_s85 kic_re24_s81_s85 29.4 µmol/l NADH ox nan µmol/(I*min) kcat_re54_s86 270 1/min kmc_re54_s123_s86 8 µmol/l PGC1a phos nan µmol/(I*min) kcat re69 s86 3.42 1/min kmc re69 s133 s86 0.0093 µmol/l FOXO3a phos nan µmol/(I*min) kcat re36 s86 0.72 1/min kmc re36 s34 s86 0.26 µmol/l

53

Modeling the effects of SC formation and stress response on AD progression LKB1 act nan µmol/(l*min) kcat re37 s88 14.4 1/min kmc_re37_s69_s88 25.5 µmol/l kmc_re37_s114_s88 82.6 µmol/l 60.5 µmol/l kic_re37_s69_s88 FOXO3 act nan µmol/(I*min) 14.4 1/min kcat_re13_s85 kic re13 s22 s85 60.5 µmol/l 82.6 µmol/l kmc re13 s22 s85 25.5 µmol/l kmc re13 s4 s85 PGC1 deacyl nan µmol/(l*min) kcat_re13_s85 14.4 1/min kic re13 s22 s85 60.5 µmol/l kmc_re13_s22_s85 82.6 µmol/l kmc_re13_s4_s85 25.5 µmol/l NAM->NMN{cell} nan µmol/(I*min) kcat_re38_s104 32 1/min kmc re38 s113 s104 22.9 µmol/l kmc re38 s101 s104 2.67 µmol/l 0.05 µmol/l kic_re38_s113_s104 nan µmol/(I*min) NMN->NAD{cell} kcat re40 s105 150 1/min kmc_re40_s102_s105 66.2 µmol/l NADP rdxn nan µmol/(I*min) kcat_re73_s127 14400 1/min kmc_re73_s61_s127 7.9 µmol/l kmc re73 s6 s127 56.7 µmol/l kic_re73_s61_s127 0.01 µmol/l IDH2 deact nan µmol/(l*min) 0.03 1/min k1 IDH2 act nan µmol/(l*min) 14.4 1/min kcat_re86_s5 82.6 µmol/l kmc re86 s127 s5 25.5 µmol/l kmc_re86_s4_s5 60.5 µmol/l kic_re86_s127_s5 H+ leak nan µmol/(I*min) k1 1e-05 1/min

54