
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2019

On Enhancing Security of Password-Based Authentication On Enhancing Security of Password-Based Authentication

Yue Li
William & Mary - Arts & Sciences, liyueam10@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Yue, "On Enhancing Security of Password-Based Authentication" (2019). Dissertations, Theses, and
Masters Projects. William & Mary. Paper 1563898928.
http://dx.doi.org/10.21220/s2-j1wq-4306

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1563898928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1563898928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-j1wq-4306
mailto:scholarworks@wm.edu

On Enhancing Security of Password-based Authentication

Yue Li

Chengdu, Sichuan, China

Bachelor of Engineering, Chinese University of Hong Kong, 2013

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
May, 2019

© Copyright by Yue Li 2019

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Ke Li

Reviewed by the Committee, May 2019

Committee Chair
Professor Raining Wang, Electrical and Computer Engineering

University of Delaware

Associate Professor Kun Sun, Information Sciences and Technology
George Mason University

Associate Professor Gang Zhou, Computer Science
College of William & Mary

Professor Chase Co on, Electrical and Computer Engineering
University of Delaware

..

COMPLIANCE PAGE

Research approved by

Raymond McCoy

Protocol number(s): PHSC-2015-09-14-10591-ksun

Date(s) of approval: 10/15/2015

ABSTRACT

Password has been the dominant authentication scheme for more than 30 years, and it will
not be easily replaced in the foreseeable future. However, password authentication has long
been plagued by the dilemma between security and usability, mainly due to human
memory limitations. For example, a user often chooses an easy-to-guess (weak) password
since it is easier to remember. The ever increasing number of online accounts per user even
exacerbates this problem. In this dissertation, we present four research projects that focus
on the security of password authentication and its ecosystem.

First, we observe that personal information plays a very important role when a user creates
a password. Enlightened by this, we conduct a study on how users create their passwords
using their personal information based on a leaked password dataset. We create a new
metric—Coverage—to quantify the personal information in passwords. Armed with this
knowledge, we develop a novel password cracker named Personal-PCFG (Probabilistic
Context-Free Grammars) that leverages personal information for targeted password
guessing. Experiments show that Personal-PCFG is much more efficient than the original
PCFG in cracking passwords.

The second project aims to ease the password management hassle for a user. Password
managers are introduced so that users need only one password (master password) to access
all their other passwords. However, the password manager induces a single point of failure
and is potentially vulnerable to data breach. To address these issues, we propose BluePass,
a decentralized password manager that features a dual-possession security that involves a
master password and a mobile device. In addition, BluePass enables a hand-free user
experience by retrieving passwords from the mobile device through Bluetooth
communications.

In the third project, we investigate an overlooked aspect in the password lifecycle, the
password recovery procedure. We study the password recovery protocols in the Alexa top
500 websites, and report interesting findings on the de facto implementation. We observe
that the backup email is the primary way for password recovery, and the email becomes a
single point of failure. We assess the likelihood of an account recovery attack, analyze the
security policy of major email providers, and propose a security enhancement protocol to
help securing password recovery emails by two factor authentication.

Finally, we focus on a more fundamental level, user identity. Password-based
authentication is just a one-time checking to ensure that a user is legitimate. However, a
user’s identity could be hijacked at any step. For example, an attacker can leverage a
zero-day vulnerability to take over the root privilege. Thus, tracking the user behavior is
essential to examine the identity legitimacy. We develop a user tracking system based on
OS-level logs inside an enterprise network, and apply a variety of techniques to generate a
concise and salient user profile for identity examination.

TABLE OF CONTENTS

Acknowledgments vii

Dedications viii

List of Tables ix

List of Figures xi

Chapter 1. Introduction 1

1.1 Personal Information in Passwords and Its Security Implications 3

1.2 BluePass: A Secure Hand-free Password Manager 3

1.3 Email as a Master Key: Analyzing Account Recovery in the Wild 4

1.4 UTrack: Enterprise User Tracking Based on OS-Level Audit Logs 4

1.5 Dissertation Organization 5

Chapter 2. Personal Information in Passwords and Its Security Implications 6

2.1 Introduction 6

2.2 Personal Information in Passwords 8

2.2.1 12306 Dataset 8

2.2.1.1 Introduction to Dataset 9

2.2.1.2 Basic Analysis 9

2.2.2 Personal Information 11

2.2.2.1 New Password Representation 12

2.2.2.2 Matching Method 12

2.2.2.3 Matching Results 14

i

2.2.2.4 Gender Password Preference 15

2.2.3 Domain Information 17

2.3 Personal Information in English-based Datasets 18

2.3.1 Methodology 18

2.3.2 Results 19

2.4 Correlation Quantification 20

2.4.1 Coverage 20

2.4.1.1 Computation Method 20

2.4.2 Coverage Results on 12306 24

2.4.3 Coverage Usage 25

2.5 Personal-PCFG 26

2.5.1 Attack Scenarios 26

2.5.2 A Revisit of PCFG 27

2.5.3 Personal-PCFG 27

2.5.3.1 Personal Information Matching 28

2.5.3.2 Password Pre-processing 28

2.5.3.3 Guess Generation 28

2.5.3.4 Adaptive Substitution 29

2.5.4 Cracking Results 29

2.6 Password Protection 32

2.7 Discussion 34

2.7.1 Limitation 34

2.7.2 Ethical Considerations 34

2.8 Conclusion 35

Chapter 3. BluePass: A Secure Hand-free Password Manager 36

3.1 Introduction 36

3.2 System Overview and Threat Model 38

ii

3.2.1 System Overview 39

3.2.2 Threat Model 41

3.3 System Architecture 41

3.3.1 Core Functions 41

3.3.2 Account Management 44

3.3.3 Recovery 45

3.4 Security Analysis 46

3.4.1 Two-Factor Security 46

3.4.2 Data Breach and Brute-force Attacks 46

3.4.3 Broken HTTPS or Bluetooth 47

3.5 Implementation 48

3.5.1 BluePass Server 48

3.5.2 BluePass Client-side Application 48

3.5.3 BluePass Mobile Application 49

3.6 Evaluation 50

3.6.1 Comparative Evaluation Framework 50

3.6.2 Password Auto-fill Latency 51

3.6.3 Power Consumption 53

3.7 User Study 54

3.8 Discussion 56

3.8.1 RSA Key Pair 56

3.8.2 BluePass Limitations 56

3.9 Conclusion 57

Chapter 4. Email as a Master Key: Analyzing Account Recovery in the Wild 58

4.1 Introduction 58

4.2 Terminology and Definitions 60

4.2.1 Recovery Primitive, Method, and Protocol 60

iii

4.2.2 Website Classification 62

4.3 Account Recovery in the Wild 63

4.3.1 Demographics 64

4.3.2 Primitive and Method Usage 65

4.4 Attack Assessment 68

4.4.1 Threat Model 68

4.4.2 Possibility to Break-in 69

4.4.2.1 Lack of Credentials 69

4.4.2.2 Classification-based Authentication 70

4.5 Damage Estimation and Email Security 71

4.5.1 Damage 71

4.5.2 Assessing Email Security 73

4.6 Securing Email-based Account Recovery 74

4.6.1 SEAR Specification 75

4.6.2 Implementation 76

4.7 Conclusion 77

Chapter 5. UTrack: Enterprise User Tracking Based on OS-Level Audit Logs 78

5.1 Introduction 78

5.2 Motivations and Challenges 80

5.2.1 Motivations 80

5.2.2 Challenges 81

5.2.2.1 Accurate Modeling of User Behaviors 81

5.2.2.2 Identifying Data Triggered by Users 82

5.3 System Overview 83

5.4 UTrack Event Association 85

5.4.1 Tracking In-host User Activities 86

5.4.1.1 Process Lineage 86

iv

5.4.1.2 User Log-on Sessions 87

5.4.2 Tracking Cross-host User Activities 88

5.4.3 System Cold Start 90

5.4.4 Scope 91

5.5 Pinpointing User Activities 91

5.5.1 Interactiveness Detection 92

5.5.2 Non-interactive Process Pruning 93

5.5.3 Data Modeling 94

5.6 Implementation and Evaluation 95

5.6.1 Experiment Environment 95

5.6.2 User Tracking 96

5.6.3 User-centric Activity Tracking 97

5.6.4 Data Modeling 99

5.6.5 Graph Presentation 101

5.6.6 Use Cases 103

5.7 Conclusion 103

Chapter 6. Related Work 104

6.1 Password Study 104

6.2 Password Strength Measurement 105

6.3 Password Cracking 105

6.4 Password Manager 106

6.5 Enhancing Password Security 106

6.6 Multi-factor Authentication 106

6.7 Password Recovery 107

6.8 User Tracking and UBA 107

6.9 Log Audit 108

6.10 User Interaction Detection 109

v

Chapter 7. Conclusion and Future Work 110

Bibliography 113

vi

ACKNOWLEDGMENTS

I would like to thank the numerous people who helped me in preparing this dissertation.
Without their hard work, patience, and guidance it would not have been possible.
First, I would like to thank my advisor Dr. Haining Wang and Dr. Kun Sun
Next, I would like to thank my current and past research group members including Dr.
Zhenyu Wu, Dr. Zhichun Li, Dr. Kangkook Jee, Dr. Jungwan Rhee, Shengye Wan,
Jianhua Sun, and Luren Wang.
Lastly, I would like to thank our Computer Science Department Chair, Professor Robert
Michael Lewis, and the wonderful Computer Science administration team, Vanessa
Godwin, Jacqulyn Johnson, and Dale Hayes.

vii

I would like to dedicate this dissertation to my wife, Rachel Wei, and my parents Yan Li
and Yun Du, who provided endless support and love throughout my time at William &

Mary.

viii

LIST OF TABLES

2.1 Most Frequent Passwords. 10

2.2 Resistance to guessing 10

2.3 Most Frequent Password Structures. 11

2.4 Personal Information. 12

2.5 Most Frequent Password Structures. 15

2.6 Personal Information Usage. 15

2.7 Most Frequent Structures in Different Genders. 16

2.8 Most Frequent Personal Information in Different Genders. 16

2.9 Domain Information in Passwords. 17

2.10 NameSets 18

2.11 Matching Results 18

3.1 Server Side Data 43

3.2 Mobile Device Data 43

3.3 BluePass Scheme Evaluation 50

3.4 Delay Statistics 52

4.1 Recovery Primitive Distribution 65

4.2 Recovery Methods with Multiple Primitives 67

4.3 Websites Vulnerable to Account Recovery Attacks 70

4.4 Damage Estimation 72

4.5 Examining Major Email Providers 73

4.6 Password Policies 73

ix

5.1 Servers with the Most Network Connections 97

5.2 Classification Results 98

x

LIST OF FIGURES

2.1 An Example of Coverage Computing. 23

2.2 Coverage distribution - 12306. 24

2.3 PCFG vs. Personal-PCFG (Offline). 30

2.4 PCFG vs. Personal-PCFG (Online). 31

2.5 Representative Points – Online attacks. 31

2.6 Coverage distribution. 33

3.1 BluePass Authentication 40

3.2 BluePass Architecture 42

3.3 BluePass Latency 52

3.4 BluePass Power Consumption 53

3.5 Survey Results 55

4.1 Recovery Methods – Single-Primitive 66

4.2 Account Recovery Examples. 76

5.1 UTrack Overview 84

5.2 Session Root Isolation 86

5.3 Virtual Process 90

5.4 Data Modeling 95

5.5 Batches in Processes 99

5.6 Lifespan of Processes 99

5.7 Example User Profile 101

xi

Chapter 1

Introduction

Securing the user authentication process is a fundamental requirement in building an information

system. Password-based authentication remains the most dominant method ever since it was intro-

duced more than 30 years ago. Along with its popularity, many works have been done to study its

security, management, and usability. A long-plauged drawback of password is that users tend to

choose weak passwords (i.e., passwords that are easily remembered but also could be easily cracked),

mainly due to human limited memory. There are many previous works focusing on understanding

the composition of a user password. An early work shows that many passwords are merely dictionary

words [86]. Recent works also demonstrate that passwords are phonetically similar to a user’s native

language [87], and many passwords share common patterns [121], or semantic structures [114]. It

is also revealed that date or birthdate are prevalent in passwords and 4-digit PINs [23, 115]. Many

password crackers are also built to demonstrate that a large amount of user chosen passwords can

be easily cracked within a short period of time [29,56,86, 87,89,121].

Realizing that passwords are not secure, alternative authentication methods have been proposed,

such as biometrics-based [59] or graphics-based [37, 60]. However, none of these new techniques

can surpass text passwords in every aspect of security, usability, and deployment in practice. It is

believed that passwords will not be easily replaced in the near future [21]. As such, people also strive

to enhance the security of password authentication. A first challenge encountered is that it is hard to

measure the strength of a password, after showing that entropy is not an accurate indicator [26,120].

Nowadays, a commonly used measure is to estimate the password strength by how easy it can be

1

cracked by using modern crackers [67]. Furthermore, it is difficult for passwords to achieve high

security levels. Traditional wisdom suggests users to create strong passwords and not to re-use a

same password across different services. However, users seldom follow these security suggestions

due to usability considerations [22, 36]. Some researches aim to nudge the users to choose stronger

passwords, including setting strict password policy [120], providing strength feedback [43,67,112] and

password managers [77,85,97,105,119]. It is also common that people introduce more factors in user

authentication besides passwords, such as additional knowledge [25, 94] and hardware tokens [11].

Many websites now employ two factor authentication to provide better protections. However, due

to its usability problem, the adoption rate is still low [93]. It is estimated that only 6.4% of Google

users have used Google’s two factor authentication. To mitigate the usability issues, some works

attempt to make the second factor transparent to users [88,91].

The study of password has moved toward a multi-dimensional future. However, it is still a one-

time authentication method that serves as a gatekeeper for user access control. It is very possible

that user identity has changed during other steps. For instance, in an Advanced Persistent Threat

(APT) attack, an attacker may launch phishing attacks or exploit zero-day vulnerabilities to take

over other users’ privilege or escalate her own privilege. These security threats cannot be resolved

with passwords only. A potential way is to monitor user activities and achieve behavior-based user

identity audit. User behavior Analytics (UBA) describes a range of such techniques that capture

abnormal user behaviors [5, 101, 109, 111]. A foundation for UBA to be successful is to accurately

track a user’s activities inside the network. Without an accurate and complete user profile, UBA

will be much less effective, or even useless.

In this dissertation, we present four projects. The first three projects focus on password-based

authentication, including studying personal information in passwords, proposing a secure and usable

password manager, and analyzing password recovery protocols in the wild. The fourth project

explores continuous user behavior monitoring by tracking users’ activities inside a network. We

introduce each of the project in the following.

2

1.1 Personal Information in Passwords and Its Security Implica-

tions

Almost all past works related to password study try to understand the statistical pattern of pass-

words, and leverage this knowledge to launch statistical attacks on passwords [87,114,121]. Namely,

an adversary keeps trying password candidates from high probability to low probability based on

her constructed password model. However, passwords are usually highly personalized, and different

users create different passwords in a semantic sense, even if the same password creation method is

used. Personal information is believed to be frequently included in a user’s password. Thus, it is

important to understand its usage in password creation. Toward this end, we analyze the use of

personal information in passwords, and uncover what types of personal information are included

in passwords and how they are used. We quantitatively correlate the personal information and a

password by developing a novel metric—Coverage. Armed with this knowledge, we further develop a

new password cracker—Personal-PCFG—to efficiently generate personalized password guesses. Our

evaluation shows that Personal-PCFG is much faster than the state-of-art in password cracking. The

detailed analysis and experiments are presented in Chapter 2.

1.2 BluePass: A Secure Hand-free Password Manager

One way to enhance the usability and security of passwords is to use a password manager [65,102].

A password manager allows a user to create different strong passwords and store them in a password

vault. The user only needs to remember a single master password to access all her other passwords.

However, such a scheme introduces a single point of failure, as whoever can access the master

password is also able to access all other passwords. Furthermore, central storage of password

vaults on a cloud also makes massive data breach possible. To address these issues, we propose a

decentralized password manager, BluePass, that features both dual possession security and a hand-

free user experience. BluePass isolates the password vault and the decryption key, and leverages

the short-range Bluetooth to automate the log-in process to ensure the probity of a mobile device,

where the password vault resides. Through comprehensive evaluation, we show that BluePass has

3

low latency, incurs little power overhead, and has good usability. We elaborate the design and

evaluation of BluePass in Chapter 3.

1.3 Email as a Master Key: Analyzing Account Recovery in the

Wild

Although the security of password itself has been extensively studied, the recovery process is largely

overlooked and has yet to be analyzed. The password recovery process allows a user to reset a

password in case she forgets the original password. There are some previous works examining the

use of security questions as a way to recover passwords [63], and conclude that security questions

are very weak and should not be solely used to recover a user account [20, 99]. However, the

overview of password recovery implementations still remains unknown to the public. The following

questions still need to be answered: (1) Are there still many websites that rely on security questions?

(2) What other schemes are employed? (3) Are they secure? (4) What happens if they are not

secure? We believe that examining the password recovery implementation is very important since

attackers may leverage this mechanism to launch attacks to many other accounts. As such, we

examine the password recovery mechanisms in the wild, which helps the security communities to

gain an overview of contemporary password recovery implementations. Our analysis confirms that

most of the websites rely on a single user email account to reset a password. We find that multiple

online accounts would be easily compromised if an email account was compromised, and many email

providers fail to properly protect users’ email accounts. Finally, we propose a security enhancement

protocol based on the current emailing infrastructure in a secure and backward compatible fashion.

The details are presented in Chapter 4.

1.4 UTrack: Enterprise User Tracking Based on OS-Level Audit

Logs

We finally go beyond the password authentication and focus on a more fundamental level—user

identity. Authentication is essentially a way to ensure user legitimacy. However, a user’s identity

4

could be changed or hacked regarding to user accounts in a computer network. It is important to

continuously check the user identity of each real user inside a network for security purposes. In order

to do so, we develop a novel user tracking system based on OS-level logs. We track user activities

under both in-host and cross-host scenarios, and apply a variety of techniques to solve the “needle

in a haystack” problem that many log-based techniques faced. As a result, we are able to construct

concise and accurate user profiles within a reasonable period of time. The system is presented in

Chapter 5.

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 introduces a study on personal information in

passwords and its application in password cracking. Chapter 3 presents the novel password manager,

BluePass, that features a dual possession security and a hand-free user experience. Chapter 4

studies the contemporary password recovery protocols in the wild, and investigate the likelihood,

damage, and defense of a password reset attack. Chapter 5 explores beyond the one-time password

authentication, and focuses on continuous monitoring of user identity. We propose a novel enterprise-

level user tracking system based on OS-level logs. Chaptter 6 surveys related works, and finally,

Chapter 7 concludes this dissertation and discusses future works.

5

Chapter 2

Personal Information in Passwords and

Its Security Implications

2.1 Introduction

The text-based password is still believed to remain a dominating and irreplaceable authentication

method in the foreseeable future. Although researchers have proposed different authentication

mechanisms, no alternative can bring all the benefits of passwords without introducing extra burdens

to users [21]. However, passwords have long been criticized as being one of the weakest links in

authentication. Due to the human memorability limitation, user passwords are usually far from

truly random [19, 81, 87, 115, 123]. For instance, “secret” is more likely a human-chosen password

than “zjorqpe.” In other words, human users are prone to choose weak passwords simply because

they are easier to remember. As a result, most passwords are chosen within a small portion of the

entire password space, leaving them vulnerable to brute-force or dictionary attacks.

To increase password security, online authentication systems have started to enforce stricter

password policies. Meanwhile, many websites provide password strength meters to help users create

secure passwords. However, these meters are proven to be ad-hoc and inconsistent [38, 43]. To

better assess the strength of passwords, one needs to have a deeper understanding of how users

construct their passwords. Knowing the exact tactics to create passwords also helps an attacker to

crack passwords. Meanwhile, if a user is aware of the potential vulnerability induced by a commonly

6

used password creation method, the user can avoid using the same method for creating passwords.

Toward this end, researchers have made significant efforts to unveil the structures of passwords.

Traditional dictionary attacks on passwords have shown that users tend to use simple dictionary

words to construct their passwords [56, 86]. The first language of a user is also preferred when

constructing passwords [19]. Besides, passwords are commonly phonetically memorable [87] even

though they are not simple dictionary words. It is also indicated that users may use keyboard strings

such as “qwerty" and “qweasdzxc,” trivial strings such as “password" and “123456,” and date strings

such as “19951225" in their passwords [76, 100, 115]. However, most studies reveal only superficial

password patterns, and the semantic-rich composition of passwords remains to be fully uncovered.

Fortunately, an enlightening work investigates how users generate their passwords by learning the

semantic patterns [114].

This project studies password semantics from a different perspective: the use of personal infor-

mation. We utilize a leaked password dataset, which contains personal information, from a Chinese

website for this study. We first measure the usage of personal information in password creation and

present interesting observations. We are able to obtain the most popular password structures with

personal information embedded. It is also observed that males and females behave differently when

using personal information in password creation. In addition, we assess the usage of names in other

leaked password datasets that do not come with any personal information.

Next, we introduce a new metric called Coverage to accurately quantify the correlation between

personal information and user passwords. Since it considers both the length and continuation of

personal information, Coverage is a useful metric to measure the strength of a password. Our

quantification results using the Coverage metric confirm our direct measurement results on the

dataset, showing the efficacy of Coverage. Moreover, Coverage is easy to integrate with existing

tools, such as password strength meters. To demonstrate the security vulnerability induced by using

personal information in passwords, we propose a semantics-rich Probabilistic Context-Free Gram-

mars (PCFG) method called Personal-PCFG, which extends PCFG [121] by considering personal

information symbols in password structures. Personal-PCFG takes a user’s personal information

as another input vector and generates highly personalized guesses for a specific account. With the

7

assistance of such knowledge, Personal-PCFG is able to crack passwords much faster than original

PCFG. It also makes an online attack more feasible.

Finally, we present simple distortion functions to defend against these semantics-aware attacks

such as Personal-PCFG or [114]. Our evaluation results demonstrate that distortion functions can

effectively protect passwords by significantly reducing the unwanted correlation between personal

information and passwords.

Though our study is primarily based on a dataset collected from a Chinese website, we also try

to extend our measurement study to English-based websites. We conclude that as long as memo-

rability plays an important role in password creation, the correlation between personal information

and user passwords remains, regardless of the language. We believe that our work on personal

information quantification, password cracking, and password protection could be applicable to any

other text-based password datasets from different websites.

2.2 Personal Information in Passwords

Intuitively, people tend to create passwords based on their personal information because human

beings are limited by their memory capacities. We show that personal information plays an im-

portant role in a human-chosen password by dissecting passwords in a mid-sized password dataset.

Understanding the usage of personal information in passwords and its security implications can

help us further enhance password security. To start, we introduce the dataset used throughout this

study.

2.2.1 12306 Dataset

A number of password datasets have been exposed to the public in recent years, usually containing

several thousand to millions of real passwords. As a result, there are several password-cracking

studies based on analyzing these datasets [19,76]. In this project, a dataset called 12306 is used to

illustrate how personal information is involved in password creation.

8

2.2.1.1 Introduction to Dataset

At the end of 2014, a Chinese dataset was leaked to the public by anonymous attackers. It is reported

that the dataset was collected by trying passwords from other leaked passwords in an online attack.

hereafter, it is called 12306 dataset because all passwords are from a website www.12306.cn, which

is the official site of the online railway ticket booking system in China. There is no data available

on the exact number of users of the 12306 website; however, we infer at least tens of millions of

registered users in the system, since it is the official website for the entire Chinese railway system.

The 12306 dataset contains more than 130,000 Chinese passwords. Having witnessed so many

leaked large datasets, its size is considered medium. What makes it special is that together with

plaintext passwords, the dataset also includes several types of personal information, such as a user’s

name and the government-issued unique ID number (similar to the U.S. Social Security Number).

As the website requires a real ID number to register and people must provide accurate personal

information to book a ticket, the information in this dataset is considered reliable.

2.2.1.2 Basic Analysis

We first conduct a simple analysis to reveal general characteristics of the 12306 dataset. For data

consistency, users whose ID number is not 18-digit long are removed. These users may have used

other forms of ID (e.g., passport number) for registration and account for 0.2% of the dataset

size. The dataset contains 131,389 passwords for analysis after being cleansed. Note that different

websites may have different password creation policies. From the leaked dataset, we can infer that

the password policy is quite simple—all passwords cannot be shorter than six characters. Besides,

there is no restriction on types of characters used.

The average length of passwords in the dataset is 8.44. The most common passwords are listed

in Table 2.1. The dominating passwords are trivial passwords (e.g., 123456, a123456, etc.), key-

board passwords (e.g., 1qaz2wsx, 1q2w3e4r, etc.), and phrasal passwords (e.g., “I love youâĂŹâĂŹ).

Both “5201314" and “woaini1314" mean “I love you forever" in Chinese. The most commonly used

passwords in 12306 dataset are similar to those are found in a previous study [76]; however, popu-

lar 12306 passwords distribute more sparsely in the password space. The most popular password,

9

Table 2.1: Most Frequent Passwords.

Rank Password Amount Percentage
1 123456 389 0.296%
2 a123456 280 0.213%
3 123456a 165 0.125%
4 5201314 160 0.121%
5 111111 156 0.118%
6 woaini1314 134 0.101%
7 qq123456 98 0.074%
8 123123 97 0.073%
9 000000 96 0.073%
10 1qaz2wsx 92 0.070%

Table 2.2: Resistance to guessing

H1 G̃ �5 �10 G̃0.25 G̃0.5

8.4 16.85 0.25% 0.44% 16.65 16.8

“123456,” accounts for less than 0.3% of all passwords while the number being 2.17% in [76]. The

password sparsity may be due to the importance of the website service nature, where users are less

prone to use very trivial passwords like “123456" and there are fewer Sybil accounts as a real ID

number is mandatory for registration.

Similar to [76], the resistance to guessing of the 12306 dataset is measured in terms of several

useful metrics, including the worst-case security bit representation (H1), the guesswork bit repre-

sentation (G̃), the ↵-guesswork bit representations (G̃0.25 and G̃0.5), and the �-success rates (�5 and

�10). The results are listed in Table 2.2, showing that 12306 has a substantially higher worst-case

security and �-success rates than the previously studied datasets. This is mainly because the users

of 12306 avoid using extremely guessable passwords such as “123456.” It implies that users have

certain password security concerns when creating passwords for critical services like 12306. How-

ever, their security concern is limited to the avoidance of using extremely guessable passwords. As

indicated by the values of ↵-guesswork, the overall password sparsity of the 12306 dataset is not

higher than that of the previously studied datasets.

We also study the composition structures of passwords in 12306. The most popular password

structures are listed in Table 2.3. Similar to a previous study [76], our results again show that

Chinese users prefer digits in their passwords as opposed to letters that are favored by English-

10

speaking users. Specifically, the top five structures all have a significant portion of digits. The

reason behind this may be that Chinese characters are logogram-based, and digits seem to be the

best alternative when creating a password.

Table 2.3: Most Frequent Password Struc-
tures.

Rank Structure Amount Percentage
1 D7 10,893 8.290%
2 D8 9,442 7.186%
3 D6 9,084 6.913%
4 L2D7 5,065 3.854%
5 L3D6 4,820 3.668%
6 L1D7 4,770 3.630%
7 L2D6 4,261 3.243%
8 L3D7 3,883 2.955%
9 D9 3,590 2.732%
10 L2D8 3,362 2.558%
“D" represents digits and “L" represents En-
glish letters. The number indicates the seg-
ment length. For example, L2D7 means the
password contains 2 letters followed by 7 dig-
its.

In summary, the 12306 dataset is a Chinese password dataset that has general Chinese password

characteristics. Users have certain level of security concern by choosing less trivial passwords.

However, in terms of the overall sparsity, the 12306 dataset is no higher than previously studied

datasets.

2.2.2 Personal Information

Other than passwords, 12306 dataset also includes multiple types of personal information, as listed

in Table 2.4.

Note that the government-issued ID number is a unique 18-digit number, which intrinsically

includes the owner’s personal information. Specifically, digits 1-6 represent the birthplace, digits 7-14

represent the birthdate, and digit 17 represents the gender—odd being male and even being female.

We take out the 8-digit birthdate and treat it separately since birthdate is a critical piece of personal

information in password creation. Thereby, six types of personal information are considered: name,

birthdate, email address, cell phone number, account name, and ID number (birthdate excluded).

11

Table 2.4: Personal Information.

Type Description
Name User’s Chinese name
Email address User’s registered email address
Cell phone User’s registered cell phone number
Account name The username used to log in to the system
ID number Government-issued ID number

2.2.2.1 New Password Representation

To better illustrate how personal information correlates to user passwords, we develop a new rep-

resentation of a password by adding more semantic symbols besides the conventional “D,” “L,” and

“S" symbols, which stand for digit, letter, and special character, respectively.

The password is first matched to the six types of personal information under this new representa-

tion. For example, a password “alice1987abc" can be represented as [Name][Birthdate]L3, instead

of L3D4L3 as in the traditional representation. The matched personal information is denoted by

corresponding tags—[Name] and [Birthdate] in this example; for segments that are not matched,

we still use “D,” “L,” and “S" to describe the symbol types.

Representations like [Name][Birthdate]L3 are more accurate than L5D4L3 in describing the

composition of a user password by including more detailed semantic information. Using this repre-

sentation, the following matching method is applied to the entire 12306 dataset to uncover the way

personal information appears in password structures.

2.2.2.2 Matching Method

We propose a matching method to locate personal information in a user password, which is shown

in Algorithm 1. The high-level idea is that we first generate all substrings of the password and sort

them in descending-length order. Then we match these substrings, from the longest to the shortest,

to all types of personal information. If a match is found, the match function is recursively applied

over the remaining password segments until no further matches are found. The segments that are

not matched to any personal information will still be labeled using the traditional “LDS" tags.

In Algorithm 1, we first ensure that the length of a password segment is at least 2. Then we

12

Algorithm 1 Personal Information Matching.
1: procedure Match(pwd,infolist)
2: newform empty_string
3: if len(pwd) == 0 then
4: return empty_string
5: end if
6: substring get_all_substring(pwd)
7: reverse_length_sort(substring)
8: for eachstring 2 substring do
9: if len(eachstring) � 2 then

10: if matchbd(eachstring,infolist) then
11: tag “[BD]"
12: leftover pwd.split(eachstring)
13: break
14: end if
15: . . .
16: if matchID(eachstring,infolist) then
17: if tag != None then
18: tag tag + “&[ID]”
19: else
20: tag “[ID]"
21: end if
22: leftover pwd.split(eachstring)
23: break
24: end if
25: else
26: break
27: end if
28: end for
29: if leftover.size() � 2 then
30: for i 0 to leftover.size()-2 do
31: newform MATCH(leftover[i],infolist) + tag
32: end for
33: newform MATCH(leftover[leftover.size()� 1])+newform
34: else
35: newform seg(pwd)
36: end if
37: results extract_ambiguous_structures(newform)
38: return results
39: end procedure

try to match eligible segments to each kind of the personal information (line 10 and line 16). Note

that personal information may not always appear as it is. Instead people sometimes may mangle

them a bit or use abbreviations. As each case is different, we do not present the specific algorithms

13

used for each type of the personal information. Instead, we describe the methods as follows. For

the Chinese names, we convert them into Pinyin form, which is the alphabetic representation of

Chinese characters. Then we compare password segments to 10 possible permutations of a name,

such as lastname+firstname and last_initial+firstname. If the segment is exactly the same as one

of the permutations, we consider it a match. For birthdate, we list 17 possible permutations, such

as YYYYMMDD, and compare them with a password segment. If the segment is the same as any

permutation, we consider it a match. For account name, email address, cell phone number, and

ID number, we further constrain the length of a segment to be at least 3 to avoid mismatching by

coincidence.

Note that for one password segment, it may result in matches of multiple types of personal

information. In such cases, all matches are counted. Thus, the results of Algorithm 1 contain all

possible matches.

2.2.2.3 Matching Results

After applying Algorithm 1 to 12306 dataset, we find that 78,975 out of 131,389 (60.1%) of the

passwords contain at least one of the six types of personal information. Apparently, personal

information is frequently used in password creation. The ratio could be even higher if we know more

personal information about users. We present the top 10 password structures in Table 2.5 and the

usage of personal information in passwords in Table 2.6. As mentioned above, a password segment

may match multiple types of personal information, and we count all of these matches. Therefore, the

sum of the percentages is greater than 60.1%. Within 131,389 passwords, we obtain 1,895 password

structures. Based on Tables 2.5 and 2.6, we can see that people largely rely on personal information

when creating passwords. Among the 6 types of personal information, birthdate, account name,

and name are most popular with a more than 20% occurrence rate, and 12.66% of users include

email in their passwords. However, only small percentage of people include their cellphone and ID

number in their passwords (less than 3%).

14

Table 2.5: Most Frequent Password Structures.

Rank Structure Amount Percentage
1 [ACCT] 6,820 5.190%
2 D7 6,224 4.737%
3 [NAME][BD] 5,410 4.117%
4 [BD] 4,470 3.402%
5 D6 4,326 3.292%
6 [EMAIL] 3,807 2.897%
7 D8 3,745 2.850%
8 L1D7 2,829 2.153%
9 [NAME]D7 2,504 1.905%
10 [ACCT][BD] 2,191 1.667%

Table 2.6: Personal Information Usage.

Rank Information Type Amount Percentage
1 Birthdate 31,674 24.10%
2 Account Name 31,017 23.60%
3 Name 29,377 22.35%
4 Email 16,642 12.66%
5 ID Number 3,937 2.996%
6 Cell Phone 3,582 2.726%

2.2.2.4 Gender Password Preference

As the user ID number in our dataset actually contains gender information (i.e., the second-to-last

digit in the ID number representing gender), we compare the password structures between males

and females to see if there is any difference in password preference.

The average password lengths for males and females are 8.41 and 8.51 characters, respectively,

which suggests that gender does not greatly affect the length of passwords. Applying the matching

method to each gender, we then observe that 61.0% of male passwords contain personal information

while only 54.1% of female passwords contain personal information. The top 10 structures for each

gender are listed in Table 2.7, and personal information usage is shown in Table 2.8. These results

demonstrate that male users are more likely to include personal information in their passwords than

female users.

Additionally, we have two other interesting observations. First, the total number of password

structures for females is 1,756, which is 10.3% more than that of males. Besides, 28.38% of males’

passwords fall into the top 10 structures while only 23.94% of females’ passwords fall into the

15

top 10 structures. Thus, passwords created by males seem denser and possibly more predictable.

Second, males and females vary significantly in the use of name information. While 23.32% of

males’ passwords contain their names, only 12.94% of females’ passwords contain their names. We

conclude that the use of name is the main difference in personal information usage between males

and females.

Table 2.7: Most Frequent Structures in Different Genders.

Rank Male Female
Structure Percentage Structure Percentage

1 [ACCT] 4.647% D6 3.909%
2 D7 4.325% [ACCT] 3.729%
3 [NAME][BD] 3.594% D7 3.172%
4 [BD] 3.080% D8 2.453%
5 D6 2.645% [EMAIL] 2.372%
6 [EMAIL] 2.541% [NAME][BD] 2.309%
7 D8 2.158% [BD] 1.968%
8 L1D7 2.088% L2D6 1.518%
9 [NAME]D7 1.749% L1D7 1.267%
10 [ACCT][BD] 1.557% L2D7 1.240%
NA TOTAL 28.384% TOTAL 23.937%

Table 2.8: Most Frequent Personal Information in Different Genders.

Rank Male Female
Information Type Percentage Information Type Percentage

1 [BD] 24.56% [ACCT] 22.59%
2 [ACCT] 23.70% [BD] 20.56%
3 [NAME] 23.31% [NAME] 12.94%
4 [EMAIL] 12.10% [EMAIL] 13.62%
5 [ID] 2.698% [CELL] 2.982%
6 [CELL] 2.506% [ID] 2.739%

In summary, passwords of males are generally composed of more personal information, espe-

cially the name of a user. In addition, the password diversity for males is lower. Our analysis

indicates that the passwords of males are more vulnerable to cracking than those of females. At

least from the perspective of personal-information-related attacks, our observations are different

from the conclusion drawn in [84] that males have slightly stronger passwords than females.

16

2.2.3 Domain Information

Cao et al. [27] proposed using domain information to crack user passwords. It draws our attention

because we have shown the involvement of personal information in a user’s password, so naturally

we are also interested in the involvement of the domain information as another aspect of semantic

information in password creation. By domain information, we mean the information of an In-

ternet domain (e.g., a web service). For example, the famous “Rockyou” dataset is leaked from

www.rockyou.com, and the domain information here is “rockyou.” In our personal information

study, the domain information is “12306.” It is reasonable for users to include domain information

in their passwords to keep their passwords different from site to site but still easy to remember. This

approach may be promising to balance password security and memorability; however, the idea has

not been validated with a large-scale experiment. Therefore, we attempt to verify whether domain

information is involved in password creation. In addition to the medium-sized 12306 dataset, we

study more password datasets, including Tianya, Rockyou, PHPBB, and MySpace datasets. In each

dataset, we search the domain information and its meaningful substrings in the passwords. The

results are shown in Table 2.9.

Table 2.9: Domain Information in Passwords.

Dataset Password Amount Domain Info Amount Percentage
Rockyou 14,344,391 44,025 0.3%
Tianya 26,832,592 29,430 1 0.11%
PHPBB 184,389 2,209 1.2%
12306 131,389 490 0.4%

MySpace 37,144 72 0.2%

From Table 2.9, we can see that some users indeed include domain information in their passwords.

Our results indicate that all the datasets examined have 0.11% to 1.2% of passwords that contain

domain information. However, the small percentage indicates that while the inclusion of domain

information in a password helps users to create different passwords for different websites, not many

users are currently using such a method.
1We find that 45,574 passwords in the Tianya dataset is “111222tiany." It does not make much sense that so
many users would have the same password, and it is highly likely that they are sybil accounts. Thus, these
duplications are removed from our analysis.

17

Table 2.10: NameSets

Set Name Total Number Unique Number Common LongCommon4 LongCommon5
Firstname 138,797,749 4,347,667 1,652 1,519 1,232
Lastname 138,797,749 5,369,437 1,497 1,390 1,179

“Common" means common names, where the name has more than 10,000 occurrences in the dataset,
“LongCommon4" means the common names with length no less than 4, and “LongCommon5" means
the common names with length no less than 5. We will use these filtered data in our experiments.

Table 2.11: Matching Results

Set Name Total Number Match4 Exact Match4 Match5 Exact Match5
Rockyou 14,344,391 3,540,629 (24.7%) 6,919 (0.05%) 1,750,702 (12.2%) 7,153 (0.05%)
PHPBB 184,389 32,180 (17.5%) 1,709 (0.9%) 14,418 (7.8%) 1,661 (0.9%)
MySpace 37,144 11,521 (31.0%) 221 (0.6%) 5,965 (16.1%) 206 (0.5%)

“Match4" means the name is at least 4-characters long. “Exact Match" indicates the password is exactly the
same as the password.

2.3 Personal Information in English-based Datasets

So far, we have only discussed personal information in 12306 dataset. However, due to cultural or

language differences, analyzing a single dataset may result in bias conclusions. To gain a better

understanding of how personal information generally resides in passwords, we try to extend the

analysis to English-based password datasets. Unfortunately, up to this point, there is no available

English-based password dataset that incorporates personal information. Due to the lack of personal

information, English-based datasets cannot provide us with an accurate correlation as we had in the

12306 dataset. However, we can still make use of some easily inferable personal information from the

password itself for a pilot study. One type of inferable information is the user’s name. Specifically,

we examine the name usage in user passwords by matching commonly used names to the passwords.

A name used in the password is a strong indicator that the user has included personal information

in the password. Though the name included in the password may have nothing to do with the

account owner, the probability of such cases should be fairly low.

2.3.1 Methodology

In this study, we use the three English-based leaked password datasets (Rockyou, Phpbb, and

Myspace) as in Section 2.2.3 and two name datasets (firstname set and lastname set) collected from

Facebook. While the three password datasets have been used extensively in many works, the two

18

name datasets are not as prevalent in the research. We show the basic statistics on these two sets

in Table 2.10.

For each of the leaked password datasets, we match the password to a first name or last name

from the name datasets. Specifically, we try to find exact occurrences of the name in the passwords.

For instance, “mary" can be matched to a password “maryspassword." However, this method in-

evitably results in wrong matches since some 2-grams or 3-grams are widely shared in English words,

and people are known to use words from their first language in their passwords. Thus, it may not

be clear whether the user is using a name or an English word that coincidentally contains the name.

To mitigate this problem, we deliberately ignore names that are less than 4 or 5 characters long

in 2 separate experiments. Furthermore, we only consider common names with more than 10,000

occurrences in the datasets to mitigate the effect of too many wrong matches from less commonly

used names. We show the filtered results in Table 2.11. A match is considered found when a first

name or a last name is in the password.

Note that there could be both under-matching and over-matching in this study. On the under-

matching side, short names such as “Mary" and “Dave" are ignored under “LongCommon5" criteria.

Furthermore, some users may use their name initials in passwords, which makes accurate matching

much harder. Our study does not consider such cases. On the over-matching side, the problem of

commonly shared n-grams still persists. With stricter filtering (ignoring short names), there should

be much fewer wrong matches, which in turn results in under-matching.

2.3.2 Results

From Table 2.11, we can see that websites in English-speaking cultures still have a significant use

of names in their passwords. For instance, the largest dataset “Rockyou" has more than 24.7%

of passwords containing a name of length at least 4, and 12.2% of passwords containing a name

of at least length 5. Furthermore, the exact match is not negligible. Exact matches are a strong

indication of the use of personal information. In the 12306 dataset, the exact match has lower than

a 1% probability, which is basically consistent with this study. Similarly, PHPBB and MySpace also

indicate a large name use in their password sets. Our findings are consistent with the expectation

19

that people from different cultures and language backgrounds tend to include their personal infor-

mation in their passwords. Furthermore, the extent of name use in their passwords does not largely

differ—while 12306 has roughly 23% name use in a passwords, the three English-based datasets

have 17.5% to 31.0% name use when only names of at least length 4 are considered.

Although our experiments shed light on general personal name use in English-based passwords,

we cannot use these datasets in our study on personal information correlation and password cracking

since all personal information is inferred from passwords.

2.4 Correlation Quantification

While the analysis above show the correlation between each type of personal information and pass-

words, they cannot accurately measure the degree of personal information involvement in an in-

dividual password. Thus, we introduce a novel metric—Coverage—to quantify the involvement

of personal information in the creation of an individual password in an accurate and systematic

fashion.

2.4.1 Coverage

The value of Coverage ranges from 0 to 1. A larger Coverage implies a stronger correlation. Cov-

erage “0" means no personal information is included in a password, and Coverage “1" means the

entire password is perfectly matched with one type of personal information. Though Coverage is

mainly used for measuring an individual password, the average Coverage also reflects the degree of

correlation in a set of passwords. In the following, we describe the algorithm to compute Coverage,

presents a detailed example to illustrate how Coverage works, and elaborates the key features of

Coverage.

2.4.1.1 Computation Method

To compute Coverage, we take the password and personal information in terms of strings as input

and adopt a sliding window approach. To conduct the computation, a dynamic-sized window sliding

from the beginning to the end of the password is maintained. The initial size of the window is 2. If

20

the segment behind the window matches to a certain type of personal information, the window size

grows by 1. Then we try again to match the new segment to the personal information. If a match

is found, the window size is further enlarged until a mismatch happens. At this point, the window

resets to the initial size and continues sliding from where the mismatch happens.

Meanwhile, an array called tag array with the same length as the password is used to record the

length of each matched password segment. For example, assuming a password with a length of 8,

and its tag array is [4,4,4,4,0,0,2,2]. The first four elements in the array (i.e., {4,4,4,4}), indicate

that the first 4 password symbols match a certain type of personal information. The following two

elements in the array ({0,0} indicate that the 5th and 6th symbols have no match. The last two

elements in the array ({2,2}) imply that the 7th and 8th symbols again match a certain type of

personal information. The personal information types matched with different password segments

may or may not be the same. After eventually sliding window through the entire password string,

the tag array is used to compute the value of Coverage—the sum of squares of the matched password

segment length divided by the square of the password length. Mathematically, we have

CV G =
nX

i=1

(
l2
i

L2
), (2.1)

where n denotes the number of matched password segments, l
i

denotes the length of the correspond-

ing matched password segment, and L is the length of the password. We show the algorithm of

computing Coverage in Algorithm 2. A match is found if at least a 2-symbol long password segment

matches to a substring of certain personal information.

To better illustrate how Coverage is computed, we show a simple example in Figure 2.1. Here we

assume a user named Alice, who was born on August 16, 1988. One password of Alice happens to

be “alice816." If applying the matching algorithm in Section 2.2.2.2, the structure of this password

will be [NAME][BD]. Apparently, her password is highly related to her personal information. To

quantify this correlation, we follow the Algorithm 2 to compute Coverage for her. The computation

steps are shown in Figure 2.1, and each step is detailed as follows. In step (a), the tag array

is initialized as [0,0,0,0,0,0,0,0]. Note the personal information includes “alice" as the name and

“19880816" as the birthdate. In step (b), the window size is initialized to 2 so that the first two

21

Algorithm 2 Compute Coverage.
1: procedure Cvg(pwd,infolist)
2: windowsize 2
3: pwdlen len(pwd)
4: matchtag [0]*pwdlen
5: matchmark 0
6: cvg 0
7: while windowsize len(pwd) do
8: passseg pwd[0 : windowsize]
9: if passseg = substring of anyinfo in infolist then

10: for j matchmark to matchmark+windowsize do
11: matchtag[j] windowsize
12: end for
13: if windowsize != len(pwd) then
14: windowsize windowsize+1
15: end if
16: else
17: matchmark matchmark+windowsize
18: pwd pwd[windowsize :]
19: windowsize 2
20: end if
21: end while
22: for eachitem in matchtag do
23: cvg cvg + eachitem
24: end for
25: return cvg/(pwdlen ⇤ pwdlen)
26: end procedure

symbols in the password are covered. As “al" is a substring of Alice’s name, a match is found.

Therefore, we extend the window size by 1, and the tag array is updated as [2,2,0,0,0,0,0,0]. From

step (c) to step (e), the window keeps growing since matches are continuously found. The tag array

also keeps being updated. Until step (f), the window now covers “alice8," which is not a match of

“alice" or “19880816." Therefore, the window size is reset to 2 and the window slides to the position

of the symbol of the previous window that causes the mismatch (i.e., the position of “8"). The tag

array remains unchanged. In step (g), the window of size 2 now covers “81," which is a substring

of her birthdate, so again we extend the window by 1 and update the tag array to [5,5,5,5,5,2,2,0].

After the window grows by 1 in step (h), “816" is again found as a match. The tag array is updated

to [5,5,5,5,5,3,3,3]. The window does not grow or slide anymore since it has reached the end of the

password. In the last step (i), the tag array is ready to be used in computing the Coverage value.

22

Figure 2.1: An Example of Coverage Computing.

Gray boxes hold unvisited password symbols. Yellow and red boxes denote that the symbols inside are
covered by the sliding window. White boxes denote that the symbols inside have been settled (i.e. the
window stops extending).

Based on Equation 2.1, the coverage is computed as

CV G =
2X

i=1

l2
i

L2
=

52 + 32

82
= 0.52.

Coverage is independent of password datasets. As long as we can build a complete string list of

personal information, Coverage can accurately quantify the correlation between a user’s password

and its personal information. For personal information segments with the same length, Coverage

stresses the continuation of matching. A continuous match is stronger than fragmented matches.

That is to say, for a given password of length L, a matched segment of length l (l L) has a

stronger correlation to personal information than two matched segments of length l1 and l2 with

l = l1 + l2. For example, a matched segment of length 6 is expected to have a stronger correlation

than 2 matched segments of length 3. This feature of Coverage is desirable because multiple shorter

segments (i.e., originated from different types of personal information) are usually harder to guess

and more likely to involve a wrong match due to coincidence. Since it is difficult to differentiate a

23

Figure 2.2: Coverage distribution - 12306.

real match from a coincidental match, we would like to minimize the effect of false matches by taking

squares of the matched segments to compute Coverage in favor of a continuous match. Coverage

is independent of password datasets. As long as we can build a complete string list of personal

information, Coverage can quantify the correlation between the password and these information.

2.4.2 Coverage Results on 12306

We compute the Coverage value for each user in the 12306 dataset and show the result as a cumula-

tive distribution function in Figure 2.2. To easily understand the value of Coverage, we discuss a few

examples to illustrate the implication of a roughly 0.2 Coverage. Suppose we have a 10-symbol-long

password. One matched segment with length 5 will yield 0.25 Coverage. Two matched segments

with length 3 (i.e., in total 6 symbols are matched to personal information) yield 0.18 Coverage.

Moreover, 5 matched segments with length 2 (i.e., all symbols are matched but in a fragmented

fashion) yield 0.2 Coverage. Apparently, Coverage of 0.2 indicates a fairly high correlation between

personal information and a password.

The median value for a user’s Coverage is 0.186, which implies that a significant portion of user

passwords have relatively high correlation to personal information. Furthermore, around 10.5% of

users have Coverage of 1, which means that 10.5% of passwords are perfectly matched to exactly

one type of personal information. However, around 9.9% of users have zero Coverage, implying no

use of personal information in their passwords.

24

The average Coverage for the entire 12306 dataset is 0.309. We also compute the average

Coverages for male and female groups, since we observe that male users are more likely to include

personal information in their passwords in Section 2.2.2.4. The average Coverage for the male

group is 0.314, and the average Coverage for the female group is 0.269. This complies with our

previous observation and indicates that the correlation for male users is higher than that of female

users. Conversely, it also shows that Coverage works very well to quantify the correlation between

passwords and personal information.

2.4.3 Coverage Usage

Coverage could be very useful for constructing password strength meters, which have been reported

as mostly ad-hoc [38]. Most meters give scores based on password structure and length or blacklist

commonly used passwords (e.g., the notorious “password"). There are also meters that perform

simple social profile analysis, such as that a password cannot contain the user’s names or the

password cannot be the same as the account name. However, these simple analysis mechanisms can

be easily manipulated by slightly mangling a password, while the password remains weak. Using

the metric of Coverage, password strength meters can be improved to more accurately measure the

strength of a password. Moreover, it is straightforward to implement Coverage as a part of the

strength measurement (only a few lines of Javascript should do). More importantly, since users

cannot easily defeat the Coverage measurement through simple mangling methods, they are forced

to select more secure passwords.

Coverage can also be integrated into existing tools to enhance their capabilities. There are sev-

eral Markov model-based tools that predict the next symbol when a user creates a password [71,120].

These tools rank the probability of the next symbol based on the Markov model learned from dic-

tionaries or leaked datasets, and then show the most probable predictions. Since most users would

be surprised to find that the next symbol in their mind matches the tool’s output exactly, they

may choose a less predictable symbol. Coverage helps to determine whether personal information

prediction ranks high enough in probability to remind a user of avoiding the use of personal infor-

mation in password creation.

25

2.5 Personal-PCFG

After investigating the correlation between personal information and user passwords through mea-

surement and quantification, we further study their potential usage to crack passwords from an

attacker’s point of view. Based on the PCFG approach [121], we develop Personal-PCFG as an

individual-oriented password cracker that can generate personalized guesses towards a targeted user

by exploiting the already known personal information.

2.5.1 Attack Scenarios

We assume that the attacker knows a certain amount of personal information about the targets.

The attacker can be an evil neighbor, a curious friend, a jealous husband, a blackmailer, or even a

company that buys personal information from other companies. Under these conditions, targeted

personal information is rather easy to obtain by knowing the victim personally or searching online,

especially on social networking sites (SNS) [50,72]. Personal-PCFG can be used in both offline and

online attacks.

In traditional offline password attacks, attackers usually steal hashed passwords from victim

systems and then try to find out the unhashed values of these passwords. As a secure hash function

cannot be simply reversed, the most popular attacking strategy is to guess and verify passwords by

brute force. Each guess is verified by hashing a password (salt needs to be added) from a password

dictionary and comparing the result to the hashed values in the leaked password database. High-

probability password guesses can usually match many hashed values in the password database and

thus are expected to be tried first for efficiency purpose. For offline attacks, Personal-PCFG is

much faster in guessing the correct password than conventional methods, since it can generate

high-probability personalized passwords and verify them first.

For an online attack, the attacker does not even have a hashed password database, so he or she

instead tries to log in directly to the real systems by guessing the passwords. It is more difficult

to succeed in online attacks than offline attacks because online service systems usually throttle

26

login attempts in a given period of time. If the attempt quota has been reached without inputting a

correct password, the account may be locked temporarily or even permanently unless certain actions

are taken (e.g., call the service provider). Therefore, online attacks require accurate guesses, which

can be achieved by integrating personal information. Personal-PCFG can crack around 1 out of 20

passwords within only 5 guesses.

2.5.2 A Revisit of PCFG

Personal-PCFG is based on the basic idea of PCFG method [121] and provides an extension to

further improve its efficiency. Before we introduce Personal-PCFG, we briefly revisit principles of

PCFG. PCFG pre-processes passwords and generates base password structures such as “L5D3S1”

for each of the passwords. Starting from high-probability structures, the PCFG method substi-

tutes the “D” and “S” segments using segments of the same length learned from the training set.

These substitute segments are ranked by probability of occurrence learned from the training set.

Therefore, high-probability segments will be tried first. One base structure may have a number of

substitutions; for example, “L5D3S1” can have “L5123!” and “L5691!” as its substitutions. These

new representations are called pre-terminal structures. No “L” segment is currently substituted

since the space of alpha strings is too large to learn from the training set. Next, these pre-terminals

are ranked from high probability to low probability. Finally “L” segments are substituted using a

dictionary to generate actual guesses. Besides, PCFG method also carries an efficient algorithm to

enumerate passwords from high probability to low probability on the fly. These guesses are hashed

to compare with the values in password databases. Since PCFG can generate statistically high-

probability passwords first, it can significantly reduce the guessing number of traditional dictionary

attacks.

2.5.3 Personal-PCFG

Personal-PCFG leverages the basic idea of PCFG. Besides “L,” “D,” and “S” symbols, it features

more semantic symbols, including “B” for birthdate, “N” for name, “E” for email address, “A” for

account name, “C” for cellphone number, and “I” for ID number. Richer semantics make Personal-

27

PCFG more accurate in guessing passwords. To make Personal-PCFG work, an additional personal

information matching phase and an adaptive-substitution phase are added to the original PCFG

method. Therefore, Personal-PCFG has 4 phases in total, and the output of each phase will be fed

to the next phase as input. The output of the last phase is the actual guesses. We now describe

each phase in detail along with simple examples.

2.5.3.1 Personal Information Matching

Given a password, we first match the entire password or a substring of the password to its personal

information. The detailed algorithm is similar to Algorithm 1. However, this time we also record the

length of the matching segment. We replace the matched segments in a password with corresponding

symbols and mark each symbol with its length. Unmatched segments remain unchanged. For

instance, we assume Alice was born on August 16, 1988, and her password is “helloalice816!.” The

matching phase will replace “alice” with “N5" and “816” with “B3." The leftover “hello” is kept

unchanged. Therefore the outcome of this phase is “helloN5B3!."

2.5.3.2 Password Pre-processing

This phase is similar to the pre-processing routine of the original PCFG; however, based on the

output of the personal information matching phase, the segments already matched to personal

information will not be processed. For instance, the sample structure “helloN5B3!" will be updated

to “L5N5B3S1" in this phase. Now the password is fully described by semantic symbols of Personal-

PCFG, and the output in this phase provides base structures for Personal-PCFG.

2.5.3.3 Guess Generation

Similar to the original PCFG, we replace “D” and “S” symbols with actual strings learned from the

training set in descending probability order. “L” symbols are replaced with words from a dictionary.

Similar to PCFG [121], we output the results on the fly, so we do not need to wait for all of

the possible guesses being calculated and sorted. The guesses keep being generated for next step.

Note that we have not replaced any symbols for personal information, so the guesses are still not

actual guesses. We do not handle personal information in this step, since personal information of

28

each user is different. Thus, the personal information symbols can only be substituted until the

target user is specified. Therefore, in this phase, the base structures only generate pre-terminals,

which are partial guesses that contain part of actual guesses and part of Personal-PCFG semantic

symbols. For instance, the example “L5N5B3S1" is instantiated to “helloN5B3!" if “hello” is the

first 5-symbol-long string in the input dictionary and “!” has the highest probability of occurrence

among 1-symbol special characters in the training set. Note that for “L” segments, each word of

the same length has the same probability. The probability of “hello” is simply 1
N

, in which N is the

total number of words of length 5 in the input dictionary.

2.5.3.4 Adaptive Substitution

In the original PCFG, the output of guess generation can be applied to any target user. However, in

Personal-PCFG, the guess will be further instantiated with personal information, which is specific

to only one target user. Each personal information symbol is replaced by corresponding personal

information of the same length. If there are multiple candidates of the same length, all of them

will be included for trial. In our example “helloN5B3!,” “N5" will be directly replaced by “alice.”

However, since “B3" has many candidate segments and any length 3 substring of “19880816” may

be a candidate, the guesses include all substrings, such as “helloalice198!,” “helloalice988!,” . . .,

“helloalice816!” We then try these candidate guesses one by one until we find one candidate that

matches exactly the password of Alice. Note that on the contrary of having multiple candidates, not

all personal information segments can be replaced because same-length segments may not always

be available. For instance, a pre-terminal structure “helloN6B3!” is not suitable for Alice since her

name contains only 5 characters. In this case, no guess from this structure should be generated for

Alice.

2.5.4 Cracking Results

We compare the performance of Personal-PCFG and the original PCFG using the 12306 dataset,

which has 131,389 users. We use half of the dataset as the training set, and the other half as the

testing set. For the “L" segments, both methods need to use a dictionary, which is a critical part

29

Figure 2.3: PCFG vs. Personal-PCFG (Offline).

of password cracking. To eliminate the effect of an unfair dictionary selection, we use “perfect”

dictionaries in both methods. Perfect dictionaries are dictionaries we collected directly from the

testing set, so that any string in the dictionary is useful and any letter segments in the passwords

must appear in the dictionary. Thus, a perfect dictionary is guaranteed to find correct string

segments efficiently. In our study, both the PCFG perfect dictionary and the Personal-PCFG

perfect dictionary contain 15,000 to 17,000 entries.

We use individual number of guesses to measure the effectiveness of Personal-PCFG compared

with PCFG. The individual number of guesses is defined as the number of password guesses gener-

ated for cracking each individual account (e.g., 10 guess trials for each individual account), which

is independent of the password dataset size. In Personal-PCFG, the aggregated individual number

of guesses (i.e., the total number of guesses) is linearly dependent on the password dataset size. By

contrast, in a conventional cracking strategies like PCFG, each guess is applied to the entire user

base, and thus the individual number of guesses equals the total number of guesses. Regardless

of such discrepancies between Personal-PCFG and conventional cracking methods, the bottleneck

of password cracking lies in the number of hashing operations. Due to the salting mechanism, the

total number of hashes is bounded by G ·N for both Personal-PCFG and other password crackers,

where G is the individual number of guesses and N is the size of the dataset.

Given the different number of guesses, we compute the percentage of those cracked passwords

in the entire password trial set. Figure 2.3 shows the comparison result of the original PCFG and

Personal-PCFG in an offline attack. Both methods have a quick start because they always try

30

Figure 2.4: PCFG vs. Personal-PCFG (Online).

Figure 2.5: Representative Points – Online attacks.

high probability guesses first. Figure 2.3 clearly indicates that Personal-PCFG can crack passwords

much faster than PCFG does. For example, with a moderate size of 500,000 guesses, Personal-

PCFG achieves a similar success rate that can be reached with more than 200 million guesses

by the original PCFG. Moreover, Personal-PCFG is able to cover a larger password space than

PCFG because personal information provides rich personalized strings that may not appear in the

dictionaries or training set.

Personal-PCFG not only improves the cracking efficiency in offline attacks but also increases the

guessing success rate in online attacks. Online attacks are only able to try a small number of guesses

in a certain time period due to the system constraint on the login attempts. Thus, we limit the

31

number of guesses to be at most 100 for each target account. We present the results in Figure 2.4,

from which it can be seen that Personal-PCFG is able to crack 309% to 634% more passwords than

the original PCFG. We then show several representative guessing numbers in Figure 2.5. For a

typical system that allows 5 attempts to input the correct passwords, Personal-PCFG is able to

crack 4.8% of passwords within only 5 guesses. Meanwhile, the percentage is just 0.9% for the

original PCFG, and it takes around 2,000 more guesses for PCFG to reach a success rate of 4.8%.

Thus, Personal-PCFG is more efficient to crack the passwords within a small number of guesses.

Therefore, Personal-PCFG substantially outperforms PCFG in both online and offline attacks,

due to the integration of personal information into password guessing. The extra requirement

of Personal-PCFG on personal information can be satisfied by knowing the victim personally or

searching on social networking sites (SNS).

2.6 Password Protection

In almost all systems, users are able to choose and update their passwords. However, they may

sacrifice password security for usability since a long and random secure password is less memorable.

As user passwords are easier to be compromised when their personal information is available to the

attacker, we investigate how users can protect their passwords against such attacks.

To increase the password security while retaining good memorability, we suggest the Distortion

Function, which performs a transformation on user passwords. A distortion function converts user

passwords to be more secure by breaking password semantics. Therefore, the user only needs to

remember the original password and apply a simple function on it to create a stronger password.

This distortion function can be chosen by users, so it could be either linear or non-linear.

We conduct a proof-of-concept study to show the effectiveness of a distortion function on pass-

word security. In this study, two types of distortion functions are introduced. The first type maps

each password character to another character. For instance, add1 function simply replaces each letter

with the one 1 letter later in the alphabet and replaces a single digital number i with (i+1) mod 10.

It is similar to the Caesar Cipher [66]. In another example, add
pi

is a non-linear function that shifts

password letters by a corresponding position specified by ⇡, which is 314159 · · · . It shifts a letter

32

Figure 2.6: Coverage distribution.

to N positions later in the alphabet with wraparound, where N is the corresponding digit of ⇡. For

instance, “abc" becomes “dcg" after applying this distortion function. The second type of distortion

function adds an extra fixed character between any pair of characters in passwords. The length of a

password becomes 2l�1, where l is the length of the original password. We call this distortion func-

tion gap
x

, in which “x" represents the extra symbol. For example, when x = “a”, Alice’s password

“alice816" will be extended to “aalaiacaea8a1a6" after the distortion function is applied.

The distortion function must be simple enough for users to remember and generate the pass-

words. We apply a number of easy-to-remember distortion functions on each of the passwords in the

12306 dataset individually and calculate the Coverage for the converted passwords. As Figure 2.6

shows, the distortion functions are effective in increasing password security by greatly reducing the

correlation between user passwords and personal information. Moreover, we notice that the impacts

of various distortion functions are also different. For example, add! performs the best (Coverage is

0 for all users, so it is not shown in Figure 2.6) since users rarely have special characters in their

personal information. Surprisingly, the non-linear add
pi

function does not produce a better result

than other linear functions such as add1 because digits preferred by Chinese users are more likely

to have coincidentally wrong matches due to its low entropy.

We conclude that distortion functions can mitigate the problem of including personal information

in user passwords without significantly sacrificing password usability. Moreover, distortion functions

are also a cure for semantics-aware password cracking methods [114], which leverage semantic pat-

33

terns in passwords to crack other passwords. After applying a distortion function, the semantic

pattern is no longer available. Distortion functions are also effective against PCFG [121], since

it generates unrecognizable letter segments, which are not likely to be covered in commonly-used

password dictionaries.

What differentiates the use of a distortion function from using an extra piece of user-chosen secret

is that it breaks password semantics, which makes it much harder for an attacker to interpret since

there could be many possible (password, function) pairs that produce the same final password. Thus,

it becomes increasingly difficult for an attacker to learn how users construct their passwords, and the

inaccurate training cripples the efficiency of training-based attack. Furthermore, we do not claim

that a distortion function is able to eliminate the trade-off between security and usability. Instead,

the distortion function is only used to effectively mitigate the problem of personal information

residing in passwords.

2.7 Discussion

2.7.1 Limitation

In most of our study, only a single dataset is used. Most users of the 12306 website are Chinese, and

the number of males and females is not balanced. Consequently, there might be cultural, language,

and gender biases on the analytical results. Moreover, the effectiveness of the Coverage metric and

Personal-PCFG is only validated on a single website. Publicly available password datasets leaked

with personal information are very rare. We have done an estimation on English-based datasets,

which shows that no matter the language or culture, people include personal information in their

passwords, though to slightly different extents. However, although we have tried to extend the

analytical work to more datasets, it is infeasible to test the effectiveness of Coverage and Personal-

PCFG since personal information is directly derived from passwords.

2.7.2 Ethical Considerations

Though using leaked password datasets for more accurate and convincing study has been a main-

stream method on password studies, we do realize that studying leaked datasets involves ethical

34

concerns. We only use the datasets for researching purpose. All data are carefully stored and used.

We will not expose any personal information or password or use this information in any way other

than for research use.

2.8 Conclusion

In this work, we conduct a comprehensive quantitative study on how user personal information

resides in human-chosen passwords. To the best of our knowledge, we are the first to systematically

analyze personal information in passwords. We have some interesting and quantitative discover-

ies such as 3.42% of the users in the 12306 dataset use their birthdate as a password, and male

users are more likely than female users to include their name in passwords. We then introduce a

new metric, Coverage, to accurately quantify the correlation between personal information and a

password. Our coverage-based quantification results further confirm our disclosure on the serious

involvement of personal information in password creation, which makes a user password more vul-

nerable to a targeted password cracking. We develop Personal-PCFG based on PCFG but consider

more semantic symbols for cracking a password. Personal-PCFG generates personalized password

guesses by integrating personal information in the guesses. Our experimental results demonstrate

that Personal-PCFG is significantly faster than PCFG in password cracking and eases the feasi-

bility of mounting online attacks. Finally, we propose using distortion functions to protect weak

passwords that include personal information. Through a proof-of-concept study, we confirm that

distortion functions are effective in defending against personal-information-related and semantics-

aware attacks.

35

Chapter 3

BluePass: A Secure Hand-free Password

Manager

3.1 Introduction

Text-based password still dominates online authentication despite that it has long been plagued by

a well-known and long-standing problem: the wide use of weak password. Due to limited human

memory, users tend to choose weak passwords [18, 22]. However, weak passwords are easy to guess

and thus are vulnerable to a variety of attacks [19, 81, 87, 115, 123]. Today’s increasing number of

accounts a user possesses even worsen the problem since the user poorly manage their passwords.

For example, on average users may reuse one password for as many as 3.9 online accounts [44]. As

such, instead of impractically expecting users to select a strong password for each account, password

managers are developed as built-in or standalone gadgets to help users manage their credentials.

A password manager includes a vault that stores all encrypted passwords of a user, and the user

only needs to remember one master password, which is used to generate the decryption key to the

vault, to access all the passwords in the vault. To support user authentication on different devices,

password managers usually synchronize the vaults to their own servers and provide a downloading

service to their users. However, a password manager has its own security and usability problem.

For example, password managers usually synchronize the local vault to the remote server, which

makes data breach possible [5]. Furthermore, to enhance usability, many browser built-in password

36

managers do not necessarily need a master password, which makes it vulnerable to unauthorized use

and meanwhile sacrifices portability. Even being used, a master password becomes a single point of

failure. Usability issues of a password manager may even lead to reduced security, stemming from

incomplete user mental models [31].

For critical online services, users may desire more secure authentication than merely password.

Toward this end, two-factor authentication (2FA) is proposed to include another layer of protec-

tion to user accounts. Nowadays many leading service providers such as Google and Microsoft,

have integrated 2FA into their online systems. However, 2FA suffers from limited adoption due to

undesired extra burden on users. It is estimated that in 2015, only around 6.4% of Google users

are using 2FA [93]. In order to improve usability, transparent 2FA has been proposed [34, 88] by

leveraging additional devices (mainly user smartphones) to automatically complete the enhanced

authentication procedure without user involvement. However, these approaches are hard to deploy

because of imperative modifications at both the web server and the client sides.

In this project, we propose BluePass, an enhanced password manager that partially inherits

the security benefit of 2FA to improve the security and usability of existing password managers.

One of the key features of BluePass is to isolate the storage of the password vault from that of the

decryption key. Here the password vault is the set of all the encrypted site passwords of a user.

Specifically, the password vault is stored locally in a mobile device (e.g., a user’s smartphone) and

the decryption key is stored in the BluePass server, which can be accessed and downloaded only once

to a computer after authentication through a master password. The mobile device communicates

with the computer using Bluetooth in a transparent manner. When a user needs to log in a website,

the computer will automatically request the site password from the mobile device. The encrypted

site password will then be delivered through Bluetooth. Afterwards, the computer is able to decrypt

the site password using the local decryption key and auto-fill the web forms for the user. BluePass

relies on Bluetooth for communication rather than other channels, because Bluetooth can be both

transparent to users and a subtle indicator of co-location of the user mobile device.

BluePass is secure since it does not store password vaults on a server and is not vulnerable to

massive password breach. Furthermore, a server data breach is likely to leak both password vaults

37

and hashed master passwords. By cracking the master password table offline, it is almost guaranteed

that most master passwords can be craked out, given today’s computing power and the weakness

of user-selected passwords. Attackers are given direct access to password vaults under such a case,

since the vault decryption key is generated from the master password. By contrast, in BluePass, the

password vault and its decryption key are stored separately, and decryption key is not generated

from master passwords, losing one of them will not practically leak any password.

While BluePass itself uses 2FA, it does not require any modifications on the website servers.

Thus, the underlying password framework remains unaltered, i.e., logging into a website still only

needs one site password. BluePass is also usable since it demands little effort to configure on the

computer and no extra effort from a user to authenticate afterwards. .

We implement a BluePass prototype in Android and Google Chrome and evaluate its efficacy in

terms of security, overhead, and usability. First, we conduct a comprehensive security analysis to

demonstrate that BluePass can defend against various attacks. Then we evaluate the auto-fill time

latency of BluePass by recording the time between login forms being detected and the forms being

automatically filled. We also run a series of experiments, in which we retrieve passwords under

different frequencies, to measure the energy overhead of BluePass. Based on our experimental re-

sults, BluePass is energy efficient while automatically filling in the login forms with user-unperceived

latency. Afterwards, we conduct a user study including 31 volunteers to examine the usability of

BluePass. The results show the test subjects regard BluePass as both secure and usable. Moreover,

the majority of testers report that they are willing to use BluePass to manage their passwords.

3.2 System Overview and Threat Model

Before presenting the BluePass system, we first introduce important BluePass notations for clarifi-

cation purposes.

• BluePass server : a server that is mainly responsible for registering users and distributing keys

to user computers.

• Key pair (K1,K2): a pair of RSA keys that are used by the mobile device and the computer

38

to encrypt/decrypt site passwords. K1 is only stored in the mobile phone while K2 is stored

in the BluePass server for re-distribution. We manage to use only one pair of keys to protect

bi-directional communication, and the details can be found in Section 3.8.1.

• Master password (MP): a user uses its master password to authenticate itself to the BluePass

server and retrieve its own decryption key K2. A master password is the only password a user

needs to remember.

• Site password (SP): passwords to access online services, which will be encrypted by K1 and

then stored in the BluePass mobile application .

• Trusted computer : a computer that the user trusts, such as the user’s personal computer. It

stores the decryption key K2 for a long term.

• Untrusted computer : a computer that the user does not trust, such as a library computer.

The decryption key K2 must be retrieved from the BluePass server every time a browser is

opened in the untrusted computer. K2 is only temporarily stored in a browser instance, and

is removed when the browser instance is terminated.

• Client-side (computer/browser) application: the user installs it on the computer, which is in

charge of detecting and auto-filling login forms, communicating with the mobile device, and

decrypting the received site passwords.

• Mobile application: the user installs the app on its mobile device. The app stores the encrypted

site passwords and delivers the encrypted site passwords to the user computer through Blue-

tooth.

3.2.1 System Overview

BluePass works on two premises. First, a site password can only be recovered by having both the

encrypted site password E
K1(SP) that is only stored in the mobile device and the corresponding

decryption key K2 that is distributed through the BluePass server. Second, the encrypted site

password E
K1(SP) can only be retrieved from the mobile device to the user computer through

39

Figure 3.1: BluePass Authentication

BluePass
Server

Computer
Browser Site Password

Mobile
Device

(2) K2

(4) EK1(SP)

(5) DK2(EK1(SP))

(3) Site Domain

(1) MP

Bluetooth
 Internet

Solid lines indicate that the process needs to be run whenever a site password is requested. Dashed lines indicate
that it does not necessarily run when a site password is requested. In a trusted computer, it runs only once for a long
term while in a untrusted computer, it runs once in each browser instance.

Bluetooth, which requires the proximity of the two devices. The flow chart of BluePass password

authentication is shown in Figure 3.1.

The working mechanism of BluePass mainly includes three phases, which are detailed as follows.

Phase 1: Registration is a once-in-a-lifecycle operation, in which a user needs to register for

the BluePass service. The user installs the BluePass mobile app on its mobile device and uses its

master password to log into the BluePass account. The mobile device is then initialized with an

empty password vault.

Phase 2: Configuration is to install and configure the user devices. First, a client-side

application needs to be installed on the user computer. Then, the user will log into the BluePass

server and download the decryption key K2 into the computer. The user will store the key either

for a long term or temporarily, depending on whether the computer is trusted or untrusted. Note

that the installation of the client-side application on a computer is also a one-time operation. The

retrieval of K2 from the BluePass server is needed each time opening a browser only when the user

is on a untrusted computer.

Phase 3: Authentication is almost transparent to the user. In a trusted device, the user only

needs to carry the registered mobile phone and wait for the passwords being automatically filled.

In a untrusted device, the user needs to re-enter the master password every time a new browser

instance is opened since the key K2 is deleted when a browser instance is closed.

40

3.2.2 Threat Model

Attackers aim at stealing one or (preferably) all site passwords in the password vault. In the design

of BluePass, all the site passwords of a user are encrypted and stored in the user’s mobile device.

We assume that the attacker cannot access the encrypted site passwords in the mobile device and

knows the decryption key from the computer at the same time.

All attacks can be classified into two categories: co-located attacks and remote attacks. A co-

located attack can only happen within the Bluetooth communication range of the user mobile device,

while a remote attack can be launched from anywhere. In a co-located attack, since the attacker

could access the encrypted site passwords through sniffing, we must prevent the decryption key

from falling into the hand of the attacker. Therefore, both the BluePass server and the master

password cannot be compromised. Moreover, the communications for key distribution must be

protected. By contrast, in a remote attack, since the attacker cannot access the mobile device

through Bluetooth, either the BluePass server or the master password could be compromised. Also,

no secure communication is required for key distribution. As the Bluetooth reachability is very

limited (33 feet for class 2 Bluetooth devices), a co-located attack is much more difficult to launch

than a remote attack.

3.3 System Architecture

3.3.1 Core Functions

As mentioned in Section 3.2.1, BluePass mainly consists of three phases. The first two phases,

registration and configuration of BluePass, are mostly one-time effort; however, the third phase,

authentication, will be triggered each time a user needs to log in a website. Figure 3.2 illustrates

BluePass architecture and the data flow of these three phases.

Registration. The black dotted lines in Figure 3.2 show the registration process. To register

a BluePass service, the user only needs to download a BluePass application to the mobile phone

and create a master account on the BluePass server. The creation of the master account is similar

to the creation of an account in any website. Upon logging into the master account on the mobile

41

Figure 3.2: BluePass Architecture

BluePass Server

Phone Browser

External Storage Website Servers

(1) Site Domain (4) SP

(1) (MAC, MP, PN)(2) K1

(2) Import
 Vault

(1) Export
 Vault

(2) Site Domain/ Ek2(SP)
(MAC)

(3) Ek1(SP)

(1) (MP) (2) (MAC,K2)

 Registration Configuration
 Authentication Recovery

app, the user can choose to bind the mobile device. The binding process should follow a traditional

2FA mechanism. Namely, the user re-authenticate herself with another authentication factor, for

example, a sms. Afterward, the device information, specifically, the MAC address of the device

Bluetooth, will be uploaded to the BluePass server. The MAC address is used for the client-side

application to automatically locate the associated mobile device without user involvement. For a

newly associated device, the BluePass Server generates a pair of asymmetric keys (K1,K2). It then

distributes K1 to the mobile phone and keeps only K2 on the server side. We list the database of

the BluePass server in Table 3.1 and that of the mobile device in Table 3.2 populated with made-

up data. The registration should only be done once on the mobile device. After registration, the

mobile device is initialized as a password vault. Note that the key pair of (K1,K2) is not used as

a conventional public-key pair, where the public key is known to all and the private key is kept in

secret. Instead, the key pair is used for a two-way communication channel and both of them should

42

be kept in secret.

After registration, the user has initialize a password vault in its own mobile device and associated

the BluePass account with this device.

Table 3.1: Server Side Data

Username Salt H(MP + Salt) K2 Device MAC address
Alice ifu92@fb a4f3b3c9e61b838f8cda07 . . . V DSnrzjqFBy9 . . . BC:F5:AC:9D:9A:57
Bob 01dm.a<w daa4a403bfec911a3ef199 . . . yKhTC3dNAkE . . . BC:F5:AC:9D:9A:58

Table 3.2: Mobile Device Data

Domain username K1 E
K1(Password)

.yahoo.com/ aliceweb1 AoGAKooOHMT . . . Encrypted_Password1
.yahoo.com/ aliceweb2 V N9SdOeFbo4w . . . Encrypted_Password2
.google.com/ aliceweb2 B1FUeDXiqv4j . . . Encrypted_Password3

Configuration. The computer needs to be configured to run BluePass, which is shown in the

dashed black lines in Figure 3.2. The user installs and runs a client-side application, and then logs

into the BluePass server to fetch the Bluetooth MAC address of the mobile device and K2 generated

during the registration. At this point, the user can choose whether the computer is trusted or not. If

the computer is trusted, the Bluetooth MAC address and K2 will be stored in the browser for a long

term. Otherwise, they will be deleted after the user closes the current browser instance. Knowing

the device Bluetooth MAC address enables the computer to pair with the device automatically by

using RFCOMM insecure mode, in which the Bluetooth data is broadcasted and the target MAC

address is specified in the data. BluePass does not rely on secure Bluetooth communication. Using

RFCOMM insecure mode enhances usability while not degrading security.

Authentication. The authentication phase is the only phase that a user will constantly ex-

perience during use of Bluepass. The solid lines in Figure 3.2 show the data flow of BluePass

authentication process. First, the user directs the browser to a website it wants to login. The

BluePass client-side application will examine the Document Object Model (DOM, which is a tree

structure representing the webpages) of the returned page and check the existence of a login form.

If a login form is present, the application requests the corresponding credentials from the mobile

phone using Bluetooth. After receiving the request, the mobile application returns the encrypted

credentials. If no related credential exists, BluePass will instead respond with a “NO_PASSWORD"

43

flag. We realize that auto-filling in a non-HTTPS environment is vulnerable to JavaScript injection

attacks [102], so we only do auto-filling for websites that are based on HTTPS. For other websites,

BluePass will pop up a window for a user’s consent before filling the login form. Note that none

of the above steps require any user interactions. This fully automated authentication enables users

to login a website in a hand-free manner. When there exists more than one account for a specific

website, the browser will let the user choose an account to be decrypted and automatically filled in

the forms since there is no way to predict which account will be used.

3.3.2 Account Management

Account management is essential to a password manager. Users should be able to add, edit, or

delete the credentials in BluePass. These functions must be correctly designed to guarantee the

security of BluePass.

The addition of an online account into BluePass can be done when a user has manually inputted

the login credentials into a new website. BluePass adopts a similar approach just as current browser

built-in password managers. If the “NO_PASSWORD" flag is sent back, the browser knows that no

login credentials are associated to this particular website. If the user manually inputs the credentials,

the browser will capture the value in the form before submission and prompt a non-intrusive dialog

window, asking whether the user wishes to store the login information into BluePass. Specifically,

there are three options: “yes", “not this time", and “never". If “yes” is chosen, the browser will

encrypt the credentials using key K2 and send it to the mobile device (see Figure 3.2). The mobile

device will decrypt the information using K1 and encrypt it again using K1. Mathematically the

process is denoted as E
K1(DK1(C)), in which C = E

K2(SP). Then the encrypted credentials are

stored in the BluePass database.

The edition of an online account is similar to the addition process. The browser monitors if the

user has modified the value in the login form when being submitted. If the password is changed,

the browser will prompt a dialog that asks for user permission to update the login credentials

in BluePass. Upon user consent, the browser will send the updated values in an encryption and

decryption procedure similar to that of adding a new account. Note that the chosen option of

44

“never" should also be recorded in the password vault, which prevents the dialog from prompting

repeatedly. In this case, the password vault records the domain name and the username without

storing a password. When an empty password is passed back, the application is acknowledged that

the user does not wish to store the login credentials. The revocation of the “never" status can be

done in the administration page in the mobile applications.

The deletion of login credentials can also be done on the mobile application’s administration

page. The mobile application shows a list of websites whose site passwords are stored in the mobile

phone. The user can choose to delete one of the websites’ login credentials. However, the user needs

to manually input the website’s URL and login credentials. Before the deletion is granted, the user

must input the correct master password. This will prevent an attacker from manipulating the user’s

online accounts.

3.3.3 Recovery

When using a cloud-based password manager, users can backup their password vaults on the server

side. On the contrary, BluePass is de-centralized and stores local copies on mobile devices. Though

users usually do not lose their mobile devices quite often, it is essential for BluePass to back up and

recover the password vault when the mobile devices are lost, which is illustrated with red lines in

Figure 3.2.

Users can choose to back up their vaults to an external storage including a portable hard disk, a

USB, or a cloud storage. If a user loses the mobile device, it can recover the vault from the external

storage. Backing up the vault to a user-owned physical device may require the user to periodically

back up and synchronize the password vault to the external storage device. Alternatively, BluePass

allows users to synchronize their password vaults to a cloud drive provider. Nowadays many large

drive providers, such as Google Drive or Dropbox, have published APIs to facilitate data synchro-

nization. Note such design still ensures the 2FA design of BluePass – an attacker needs to breach

both the BluePass Server and the cloud provider server to collect the two necessary pieces of secret.

45

3.4 Security Analysis

BluePass is secure in a sense that as long as a user does not lose two factors at the same time, the

user’s login information is safe. We conduct a security analysis on BluePass to verify the robustness

of BluePass against various attack vectors.

3.4.1 Two-Factor Security

We have introduced that BluePass relies on the premise that two factors need to be possessed to

derive a site password. The two factors are user mobile device and a master password. Now we

discuss the security of BluePass when one of the factors is compromised.

Master password. An attacker may be able to compromise the master password of a user,

which can be done through different ways such as guessing, phishing, shoulder-surfing, etc. The

compromisation of a trusted computer is also equivalent to losing the master password because the

only purpose of having the master password is to retrieve K2 from BluePass server, which can be

directly extract K2 from a trusted computer. In such scenarios, the attacker is able to obtain key K2.

However, if the attacker does not have the password vault of the user, K2 is merely a meaningless

token and the security of BluePass holds. Besides, the user is able to change the master password

and re-generate a new key pair.

Mobile device. If an attacker gains access to the mobile device by either compromising the device

or stealing the device, it may be able to access the encrypted password vault and the encryption

key K1. However, without the decryption key K2, the attacker cannot decrypt the site passwords

from the encrypted password vault. Unlike cloud-based password managers, BluePass does not keep

master password and the vault on the same storage, thus obtaining K2 together with the password

vault is not practical. Moreover, the mobile phone itself may have its own protection, such as an

unlock code or fingerprint verification, and remote data erasal.

3.4.2 Data Breach and Brute-force Attacks

A serious threat to a password manager is data breach. Under this scenario, the attacker may be

able to mount a brute force attack against the master password of a user. In a normal password

46

manager such as LastPass or 1Password, the loss of a master password also means the loss of an

entire password vault, namely, when an attacker successfully mounts a brute force attack against

the master password, it can also retrieve all the passwords from the password vault since the key

used to encrypt the vault is derived from the master password. Again, BluePass does not centralize

the password vault storage. Instead, the password vault of a user is stored locally in its own mobile

device. A server data breach would at most leak the user master passwords and then further leak

the decryption keys. However, as the password vault of each user is not stored at the BluePass

server, a data breach at the BluePass server cannot break BluePass.

On the other hand, assuming that a password vault is lost from a user’s mobile device, we

believe that brute-force cracking such an encrypted password vault is impractical given the current

computing power. We emphasize that the password vault is protected by K1, which is 2048-bit long

randomly generated RSA key. Cracking K1 is much harder than cracking a master password, which

is generated by a human user within limited and predictable password space.

3.4.3 Broken HTTPS or Bluetooth

If an attacker compromises the HTTPS communication, it will be able to steal the encryption/de-

cryption key pair (K1,K2) of a user. However, K1 and K2 are only transmitted through the web

when a user installs BluePass on its mobile device (K1) or when the user log on BluePass from a new

computer (K2), which makes the attack strictly time sensitive. Even though, having the key pair

does not help the attacker to identify any of the user’s site password, unless the attacker can also

eavesdrop on the Bluetooth connection (i.e., co-located attack) to capture the encrypted password

in transmission. On the other hand, eavesdropping Bluetooth alone does not compromise BluePass

either, since the content is encrypted.

To succeed, the attacker needs to compromise both HTTPS and Bluetooth communications to

steal site passwords from users. However, such a successful attack is very difficult to launch, due

to time (to steal the keys) and location (to eavesdrop the Bluetooth) constraints. Furthermore, a

large scale attack is infeasible since Bluetooth signals can only be sniffed within a short range.

47

3.5 Implementation

BluePass consists of three major components that cooperate with each other on user authentication,

namely, a BluePass server for user registration and key distribution, a BluePass client application on

the laptop for detecting and auto-filling the website login forms, and a BluePass app on the mobile

phone serving as the password vault and administration console. We build the BluePass client

application in a Macbook Air running OS X 10.10.4 and Chrome 46.0.2490.80. We implement the

BluePass app on a Nexus 5 running Android version 4.4.2.

3.5.1 BluePass Server

We implement a BluePass server using Cherrypy [45], a python web framework. We use self-signed

certificate in https to protect communication. The key pair (K1,K2) is generated using Pycrypto1

on the server side. Sqlite database is used to store user data (see Table 3.1 for detail). When

registering to the service, we do not use the standard 2FA to verify the phone number since it is

not necessary for evaluation and user study. After registration, the user needs to log in BluePass

on both mobile application to upload mobile phone Bluetooth MAC address and download K1 and

client-side application to download K2 and Mobile phone Bluetooth MAC address.

3.5.2 BluePass Client-side Application

We build the BluePass client-side application on Chrome platform, which consists of 2 modules: one

Chrome application for Bluetooth communication and one Chrome extension for password auto-

filling. We use two modules because currently Chrome extension does not support Bluetooth API

while Chrome application does. However, only Chrome extensions allow reading and modifying the

DOM of web pages, which unavoidably makes us separate client-side application functionality into

2 modules. Chrome application is more like a native application, but it is built on Chrome platform

to deliver content in HTML, CSS and Javascript (e.g., Google Doc, Google Drive). It uses the

chrome.Bluetooth API to connect to the Bluetooth device and then communicate with the smart
1https://www.dlitz.net/software/pycrypto/

48

phone through Bluetooth. The Chrome extension is responsible for detecting the authentication

form and automatically fill the form after decrypting the site password from the mobile application.

The communication between the Chrome application and the chrome extension is implemented

through Chrome External Messaging2. Specifically, this extension specifies the Application ID,

which is a unique identifier for the Chrome application. After Chrome extension delivers the data

to the application that is binded to the ID and has a pre-added listener, the listener can extract the

data. The communication from Chrome application to Chrome extension works similarly.

Our prototype implements the BluePass client on the Chrome platform to simplify the commu-

nications among different modules; however, the framework of BluePass can be widely deployed on

more platforms as long as both the computer and the mobile device have Bluetooth support and the

browser extension is able to communicate with local applications on the computer. First, Bluetooth

has become a standard device on modern computers and smartphones. Second, communication

between browser extensions and native applications has been supported by most modern browsers,

including Internet Explorer, Chrome, Firefox, Safari, Opera, etc.

3.5.3 BluePass Mobile Application

The BluePass mobile application starts a BluePass service, which runs in the background of Android

and has a dedicated thread to listen to the incoming Bluetooth connection, which helps transparently

authenticate a user to a registered website. The BluePass service inherits from the Service class in

Android and keeps running until the user explicitly stops the service.

BluePass mobile application has a simple and clear user interface, which shows the status of

the background BluePass service, either “running” or “suspended”. The user can easily change the

service status by clicking “Start BluePass Service" or “Stop BluePass Service" buttons. When the

service status is running, the Bluetooth listener starts listening and remains active even the mobile

device turns off the screen and goes to sleep. Whenever users would like to stop the service, they

just need to open the application and click the “Stop BluePass Service" button.

We use RFCOMM Bluetooth protocol to establish communication between the mobile phone

and the computer, since RFCOMM is widely supported and provides public APIs in most mod-
2https://developer.chrome.com/extensions/messaging

49

Table 3.3: BluePass Scheme Evaluation

Scheme Usability Deployability Security

M
em

or
yw

is
e-

E
ffo

rt
le

ss

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-t
o-

C
ar

ry

P
hy

si
ca

lly
-E

ffo
rt

le
ss

E
as

y-
to

-L
ea

rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s

E
as

y-
R

ec
ov

er
y-

fr
om

-L
os

s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r

Se
rv

er
-C

om
pa

ti
bl

e

B
ro

w
se

r-
C

om
pa

ti
bl

e

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-O
bs

er
va

ti
on

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tl

ed
-G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tl
ed

-G
ue

ss
in

g

R
es

ili
en

t-
to

-I
nt

er
na

l-O
bs

er
va

ti
on

R
es

ili
en

t-
to

-L
ea

ks
-f
ro

m
-O

th
er

-V
er

ifi
er

s

R
es

ili
en

t-
to

-P
hi

sh
in

g

R
es

ili
en

t-
to

-T
he

ft

N
o-

T
ru

st
ed

-T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it
-C

on
se

nt

U
nl

in
ka

bl
e

Password l l l m l l l l l l l m l l l l
Firefox (with MP) m l m m l l l l l l l l m m l l l l l

LastPass m l m m l l l m l m l l m m m m m l l l l
Tapas l l m m l m l m l l l l m l l l l l

BluePass m l m l l l l m l l l l l m m m m l l l l l
Sound-Proof m l l m m l l l l m l l l l l l l

l indicates that the scheme fully carry the characteristic and m indicates that the scheme partially carry the characteristic (the Quasi prefix).
We take rows 1-3 from [21], row 4 from [85], and row 6 from [88].

ern operating systems. Android supports two modes of RFCOMM connections, secure mode and

insecure mode. The secure mode requires successful pairing before any RFCOMM channel can be

established while the insecure mode allows connection without pairing two devices. Secure mode

RFCOMM adds another layer of encryption. However, as BluePass communication is secured by

(K1,K2) so that it does not rely on Bluetooth security. While insecure mode may fit better since

it saves a pairing step from the user, Chrome application does not support insecure RFCOMM

communication due to security concern. Therefore, we use the secure RFCOMM connection mode.

Consequently, in the registration phase, the user also needs to pair the mobile phone and the com-

puter first if they have never been paird before. Note that pairing only needs to be done once in a

computer unless the user manually deletes paird devices on the mobile phone or computer.

3.6 Evaluation

3.6.1 Comparative Evaluation Framework

We use the comparative authentication scheme evaluation framework [21] to compare BluePass

with other related authentication schemes. The results are summarized in Table 3.3. We can

see that BluePass is physically-effortless since the entire authentication process is transparent to

the user and Quasi-Nothing-to-Carry since users still need to carry their mobile phones though

50

they carry them anyway. BluePass is accessible since it does not require the cellphone to have

signal or cellular data. BluePass is Quasi-Resilient-to-Throttled-Guessing and Quasi-Resilient-to-

Unthrottled-Guessing. Although BluePass itself does not enhance the security of the underlying

password mechanisms, it can help defend throttled and unthrottled guessing by generating long

random passwords for users and motivating users to use more secure passwords since they do not

need to remember the passwords.

Bonneau et al. [21] points out that the framework does not describe all possible properties of an

authentication scheme. Besides these factors, BluePass also keeps a simple and clean user mental

model, which is highly suggested since wrong mental models easily make user passwords weaker [31].

Furthermore, BluePass strengthen usability by not requiring users to delete their password traces

after use on a untrusted computer as other password manager (e.g., log out master account or delete

local password vault).

3.6.2 Password Auto-fill Latency

For a usable password manager, the time required to fill the password field should be short. We

record the delay between the time that the password input form is detected and the time that the

form is automatically filled (denoted as T
bp

). Since the delays on different websites may be different

due to the specific website design, we choose 20 major providers from Alexa Top 100 website [107].

For each site, we make up a username/password pair and test the pair of credentials for at least 50

times. The password of each site is a randomly generated 16 byte string composed of all 4 characters

types (Uppercase character, lower case character, digit, and special character).

Besides the Bluetooth communication latency, we also measure the loading time (denoted as

T
load

) for a website since page rendering (bottleneck to load a page) and Bluetooth communication

tasks are running in parallel, indicating that the actual latency a user is experiencing is roughly

T
bp

�T
load

, which is the time difference between BluePass running time and page loading time. T
load

is measured by injecting a piece of javascript code, which measures the time when all javascripts on

the webpage that need to run immediately are being executed subtracting the time that the browser

is ready to send the HTTP request.

51

Figure 3.3: BluePass Latency

Table 3.4: Delay Statistics

Median Mean SD Skewness
T
bp

778.0 814.6 158.3 1.6
T
load

599.5 837.6 691.3 2.6
T
bp

(removed) 775.0 812.5 155.2 1.6
T
load

(removed) 570.0 631.4 259.8 2.6

The results for all 20 sites are shown in Figure 3.3. Figure 3.3 does not show the T
load

results

for two web services, Tumblr and mail.ru, that have much higher T
load

(averaged 2,700-2,800 ms).

Generally the BluePass delay time (T
bp

) is slightly higher than the page loading time (T
load

). To

illustrate the extent of the time gap, we show statistical analysis in Table 3.4. In the last two rows,

we do not include Tumblr and mail.ru in our analysis since they have significantly higher T
load

that

are not representative for normal cases. With the two sites excluded, the average T
bp

is 814.6 ms,

which is short enough to be acceptable by most users. Furthermore, the actual delay that a user

experiences is T
bp

� T
load

, which is only 181.1 ms in average. The standard deviation for T
load

is

higher than T
bp

. The loading time T
load

could be different under various factors, such as network

condition, website implementation, etc. Since T
load

highly depends on the website implementation,

heavy javascript use in a site could largely contribute to a high T
load

.

On contrast, T
bp

is relatively stable since Bluetooth communication and mobile device computing

are almost the same in each login attempt. Since the delay caused by BluePass is bounded by

T
bp

�T
load

, BluePass imposes a very low latency on the password auto-filling process. According to

our user study, users can hardly notice the latency.

52

Figure 3.4: BluePass Power Consumption

3.6.3 Power Consumption

One major concern of BluePass usage is the power consumption overhead on the mobile device, since

BluePass requires the mobile device serve as a Bluetooth server that keeps listening to incoming

connections. We measure the extra power consumption imposed by BluePass through monitoring

the power levels of the mobile device when running BluePass password retrieval process in different

frequencies. For comparison, we also record the power level of the device when Bluetooth is turned

off (we call it a clean state).

To monitor the current battery level of the mobile device, we register a broadcast receiver in a

simple battery monitoring application on the mobile device to listen to battery level changing event,

upon which the current battery level and the timestamp are recorded. We tune the login frequency

in the browser side (by refreshing a webpage in different frequency) to evaluate different use cases.

Except for the login frequency and BluePass on/off status, we keep all other settings exactly the

same, such as installed and running application on the device as well as the network status (e.g.,

Wifi connection is turned off). We use a Nexus 5 mobile phone for evaluation, which has 2100 mAh

battery capacity. As it takes a long time to use up the battery that has been fully charged, we run

each experiment for 10 hours before charing the phone and running the next experiment. Though

the granularity of battery usage broadcasting is in percentage level that may not be highly accurate,

it is sufficient to evaluate the power efficiency of BluePass in a 10-hour test period.

53

Figure 3.4 illustrates the battery level dynamics through time under different experiment setups.

“On" means the Bluetooth is turned on and “off" means the Bluetooth is turned off. Other lines

represent the Bluepass log-in frequency. A reasonable frequency of login attempted by a normal

user should not exceed 100 times a day, which means that the login frequency should lie around

0-10 times per hour. With 10 logins per hour, the power consumption is only 1% more than a clean

state. We believe it is an unnoticeable overhead for users, given that almost 90% of users charge

their phone more frequently than once per 2 days [90]. Besides, we can see that a significant power

overhead is only incurred when the user tries to log in very frequently (17% when trying to log in

every 2 seconds). However, normal users would not try logging in at such a high frequency.

In our experiments, the mobile phone is in a state that does not receive cellular or wifi signal, so

the battery drains very slowly. When the mobile phone is in normal daily usage, the battery usage

becomes much higher. However, the BluePass power consumption remains the level of 1% of total

power with 10 hours use.

3.7 User Study

To verify how real users rate the security and usability of BluePass, we conduct a user study to

gather feedback and comments from normal users. Upon approval of IRB of our institution, we

recruit 31 volunteers to use and comment on BluePass. The volunteers include 16 males and 15

females. As the study is only in a school scale, most of them age 20 - 30 years old. Besides, most

of them have a bachelor degree. In order to spread our study of different computer expertise, we

deliberately recruit volunteers from 10 fields of study.

We ask each of the volunteer to finish a series of tasks. They are (1) register to BluePass server

and configure BluePass, (2) create a new account in our self-deployed test site, (3) log in the test

site (Migrate password), (4) try using BluePass to log in again (Log in from a primary computer),

(5) change the current password and try using BluePass to log in (Change Password), (6) configure

BluePass in another computer and log in (Log in from another computer), (7) turn off BluePass

and try logging in, and (8) turn on BluePass and try logging in. We also create a test website that

has only login and changing password functions for the volunteers to operate on.

54

(a) Understandable (b) Easy to set up (c) More secure than other
PM

(d) More usable than
other PM

(e) Motivate more secure
password

(f) Motivate less re-use
password

(g) Willingness to use (h) Rate other PMs (i) Rate BluePass

Figure 3.5: Survey Results

After finishing the tasks, the testers take a post-study questionnaire. The questionnaire mainly

uses 6-point scale rating where 1 point means strongly disagree and 6 point means strongly agree.

The results are shown in Figure 3.5. Testers generally think the concept of BluePass is understand-

able and it is fairly easy to set up. 87% of testers (27 out of 31) agree that BluePass is more usable

than any other password manager they have used before.

BluePass motivates the testers to increase password security. More than 70% (22 out of 31)

of the testers state they are motivated to choose more secure passwords and less likely to re-use

existing passwords, thus making their passwords stronger. However, though the testers report they

are motivated to use more secure passwords, we notice that only 4 testers have tried using random

passwords generated by BluePass to create/change their passwords, which may result from the fact

that users feel “unsafe" to use a non-memorable password.

The majority of testers (94%) expresses willingness to use BluePass to manager their passwords.

55

We also ask the testers to compare BluePass to other favorite password managers they have used,

and testers show large preference to BluePass over existing password managers. To summarize,

BluePass is generally considered more secure and usable than existing password managers by the

testers. Most of them show preference to BluePass and willingness to use it. Thus, it is reasonable

to conclude that BluePass does help users secure their passwords.

3.8 Discussion

3.8.1 RSA Key Pair

BluePass can use only one RSA key pair (K1,K2) to achieve bi-directional communication between

the mobile phone and the computer. We must guarantee that the compromise of K1 will not lead to

the compromise of K2, and vice versa. We know that all public key cryptography algorithms ensure

that it is hard to derive the private key from the public key, but not vice versa. For instance, given

an ECC private key, it is easy to derive the ECC public key, since public_key = private_key ⇤G.

However, for RSA, in theory, it is hard to derive either e or d from knowing the other one. Therefore,

we can use only one pair of RSA keys with careful parameter settings.

There are two minor things to notice in the detailed RSA implementation. First, in practice e

is usually chosen a small/fixed number, but this should be avoided. Second, RSA private keys are

often stored in their “Chinese Remainder Theorem" form, which includes the two secret numbers

often denoted p and q, from which the totient is computed. With totient and the private exponent,

the public exponent is quickly computed. Therefore, BluePass cannot use the Chinese Reminder

Theorem to speed up the calculation.

3.8.2 BluePass Limitations

BluePass has several limitations. First, a user has to carry a powered-on mobile phone to make

BluePass work; otherwise, BluePass falls back to conventional ways that users remember and input

passwords. Second, BluePass cannot work well when the mobile device or the computer does

not support Bluetooth communication. In those cases, the hand-free benefit cannot be offered by

56

BluePass. Instead, the users have to use their phones to display their site passwords after inputting

their master passwords.

3.9 Conclusion

This chapter introduces a hand-free password manager called BluePass for achieving both strong se-

curity and high usability. BluePass attains the security level of two-factor authentication by storing

password vaults in a mobile device and the decryption key in the user computer separately. Exploit-

ing the automatic bluetooth communication between the mobile device and the computer, BluePass

enables a hand-free password retrieval process for users. BluePass also places the decryption keys to

remote servers to support password portability while de-centralizing the storage of password vaults

to prevent a single point of failure. We implement a BluePass prototype on Android and Google

Chrome platforms. Through system evaluation, we show that the password retrieval latency a user

experiences is less than 200 milliseconds on average, and BluePass only consumes a negligible 1%

battery power with 10 hours normal use on a mobile device. Through a user study comprising of 31

testers, we demonstrate that BluePass does motivate users to choose stronger passwords and less

likely to reuse existing passwords.

57

Chapter 4

Email as a Master Key: Analyzing

Account Recovery in the Wild

4.1 Introduction

Text-based passwords have been used as a dominating solution of user authentication for many

decades [86], due to their favorable usability and the fact that they cannot be entirely replaced by

other authentication approaches in the foreseeable future [21, 22]. Since text-based passwords are

vulnerable to cracking and theft attacks [87, 121], significant research efforts have been made to-

ward enhancing password security from different aspects, including measurement [67,120], password

policy [18], password meters [38,43], and password managers [77].

Whereas it is critical to secure a password at its creation and input procedures, account recovery

as an important component in the entire framework of password-based authentication has been

largely overlooked. Account recovery is an irreplaceable link in the password authentication chain.

Not being able to provide an easy way to recover the password can cause user frustration, human

labor waste, or even user loss. Meanwhile, the account recovery process should also be carefully

designed to avoid backdoor threats. Today, most websites rely on accessibility of a registered

email of a user to recover or reset forgotten passwords. Though email-based recovery is deployable,

compatible, and easy to use, its security implication is understudied. A compromised email account

could inevitably become a single-point-of-failure, since an attacker can easily reset the passwords of a

58

victim’s other online accounts. Note that such an account recovery attack can naturally circumvent

security enhancements on passwords and directly compromise a large number of user accounts by

resetting their passwords.

A simple and effective idea is to keep the email account safe. However, this does not happen

in a practical world. There is a large number of email accounts leaking to malicious attackers. For

example, it was suggested by a security firm in May 2016 [4] that more than 200 million email user-

name/password combinations are in possession of hackers. Major email service providers including

Gmail, Hotmail, Yahoo, and Mail.ru are all affected, and millions of email account credentials are

compromised. Thus, it is important to understand the security implications of email-based account

recovery. A systematic study on its vulnerability, potential damage, and defense has yet to be

conducted.

In this project, we first quantitatively measure the vulnerability of most websites to an account

recovery attack. In particular, we manually investigate the account recovery protocols and authen-

tication schemes adopted by the Alexa top 500 websites. We observe that 92.5% of the web services

we examined rely on emails to reset user passwords, and in 81.1% of websites, their user accounts can

be compromised by solely accessing the registered emails. The difference of 11.4% is due to the lack

of username knowledge (i.e., the username/password credential is incomplete) or classifier-based

authentication, where abnormal login attempts will be blocked. Afterward, we demonstrate the

damage that can be caused by password resets through case studies on four categories of websites,

in which we show that significant privacy and financial losses are possible to incur. Then, we exam

security policies of eight major email providers. We conclude that a significant portion of leading

email service providers fail to take deserved effort to provide user email account protection, leaving

them vulnerable to a variety of attack vectors.

Finally, we propose an account recovery protocol named Secure Email Account Recovery (SEAR)

as a preliminary solution to address the single-point-of-failure problem of user email accounts.

Specifically, the email provider adds an extra layer of protection, which can be in the form of an

SMS authentication when a password reset email is intended to be opened. Thereby, the attacker

cannot spread the attack by compromising an email account. We demonstrate that SEAR can be

59

easily implemented under the current network infrastructure with full backward-compatibility, and

it can strengthen account security with an all-rounded usability consideration (i.e., similar user

experience, no need for providing the phone number to all websites that one intended to protect,

etc.).

Overall, the major contributions of this work are summarized as follows.

1. We identify the de facto account recovery protocols in the wild by examining the Alexa

top 500 websites. In the measurement study, we build taxonomies on websites and account

recovery credentials, which enable us to explore the account recovery problem from different

perspectives and dimensions.

2. We systematically investigate the email-based account recovery vulnerability that widely exists

in today’s web services. Our assessment reveals that the security risk is high and could cause

severe damage to users.

3. We propose SEAR as a preliminary solution that can be seamlessly integrated into modern

email infrastructures in a fully backward-compatible manner. The prototype of SEAR is

implemented on open-source mail servers.

4.2 Terminology and Definitions

With the development of new schemes and years of advances in multiple dimensions, the account

recovery process cannot be easily elaborated. In order to help understand and organize the het-

erogeneous makeup of the account recovery process, we first perform a classification on account

recovery credentials and websites.

4.2.1 Recovery Primitive, Method, and Protocol

Account recovery is essentially another authentication process, which needs one or multiple legit-

imacy validations. Each validation is usually done on the server side by matching a mutually

agreed-upon piece of credential " to the one supplied by the login attempter. While an " can be

60

represented by a series of symbols, we categorize " into six types based on their sources, as listed

below, and we call each type a recovery primitive (�).

• Email (�
em

). Email primitive is the accessibility to a registered email. The validation process

may be of various manners, such as sending a hyperlink to reset a password, sending a one-time

code for inputting a password reset form, or even directly sending back the original password.

Nevertheless, accessibility to the registered email is the only prerequisite.

• Phone (�
ph

). Similar to email, phone primitive demands accessibility to a phone that is

associated with a pre-registered phone number. The website may choose to call the phone

number or send a text message.

• Security question (�
sq

). Security question is a kind of knowledge-based authentication,

which allows a password reset if questions are answered correctly. Normally, the answers to

security questions are intrinsic to users, and hence no extra memory burden is introduced. An

example is, “What is your favorite food?"

• Private information (�
pi

). Private Information is also knowledge-based authentication in

a personally identifiable and thus not massively predictable sense, the answer to which is

relatively unique among different users. Although users may or may not intrinsically remem-

ber it, they usually have access to the information from other channels. Examples of such

information include a credit card number and Social Security Number.

• Activity Information (�
ai

). Activity information involves account activity traces. Some

service providers believe that a user is expected to be able to recall some of the most basic

activities of its account, such as the nickname/username, most login locations, and other users

with whom they usually interact. It may even require assistance from acquaintances on the

same website.

• Recovery Token (�
rt

). A recovery token is usually a non-memorizable piece of information

that users possess. Examples are randomly generated tokens at registration or one-time codes

generated by mobile applications (authenticators or website-designated apps).

61

In some cases, websites may ask for a combination of multiple � for stronger authentication

and provide multiple such combinations for users to choose from for increased flexibility. To set

boundaries among these similar concepts, we define one way to recover a password as a recovery

method. Fundamentally, a recovery method could consist of one or multiple recovery primitives, and

all primitives should be supplied by a user correctly in order to recover its account. For example,

on a website !, one way to recover a user password may be m
!,1 = {�

em

, �
sq

}, meaning that

the password can be reset by whomever is in possession of the registered email and answers to

the security questions. A recovery method is the most basic unit of a successful account recovery.

Similarly, we define the set of all m that a website provides as the recovery protocol (p) of the website.

For instance, for the website !, its recovery protocol is p
!

= {m
!,1,m!,2, . . . ,m!,i

}, indicating that

there are i recovery methods and that any recovery method can be used alone to successfully recover

an account.

4.2.2 Website Classification

We categorize websites into several groups, helping us look deeper into how different websites handle

account recovery in a finer granularity, as well as conduct the damage assessment. Grosse and

Upadhyay [51] have done a user account classification based on the values of the accounts. However,

their classification is user-oriented, which heavily relies on user-subjective perspective and activity.

Namely, different users may have different types of accounts on the same website, depending on

the user’s purpose for using the websites. By contrast, we take a website-oriented approach by

classifying websites based on their service nature. We define the following six website groups with

some terminologies acquired from [51].

1. Routine. A routine website is one in which users passively receive information. Most of its

users produce zero or little long-residing content. Examples of routine accounts are online

newspapers, those used for online education, and gaming or music websites.

2. Spokesman. Spokesman website accounts usually represent a user’s opinion or identity.

Users rely on spokesman websites to deliver and exchange information with other real users.

62

Examples of spokesman websites are online social networks, such as Facebook, Yelp, and

LinkedIn.

3. E-commerce. E-commerce websites mainly involve trading. A business website could be

an online retailer, such as Amazon and Ebay, or paid service providers, such as insurance

companies. It is common to find addresses, shopping histories, phone numbers, and even

payment information in user accounts on these websites.

4. Financial. A financial website usually concentrates on financial activities, such as deposits,

withdrawals, and online transactions. Examples of financial websites are banking, brokerage,

or wallet-type websites, such as Paypal.

5. Tool. A tool website does not usually produce a final product. Instead, it provides a tool or

platform for helping build or shape the final product. Examples of tool websites are search

engines, website builders, online graph drawers, and web traffic analyzers.

6. Email. Email websites provide online accounts that are associated with user email addresses,

which can send and receive emails, such as Gmail or Outlook.

Nowadays, it is common for websites to have a heterogeneous service nature. It is sometimes hard

to classify a website into a single type. For example, Google is a tool website since it offers a search

engine. Meanwhile, it is also a spokesman website (Google+) and an email website (Gmail). As such,

we sometimes classify a website as multiple types. While allowing such cases, we primarily categorize

a website based on its main services and user recognition. For example, an online newspaper may

have a review section under an article where users can express and discuss their opinions. However,

most users may only browse the news without writing any comment. Thus, the online newspaper

is categorized solely as a routine website, instead of a spokesman website.

4.3 Account Recovery in the Wild

We manually investigate the account recovery protocols adopted by the Alexa top 500 websites

to help understand the protocol composition of modern websites. Since the top 500 websites are

63

ranked by their global web traffic, each of them has a large number of users (or visitors), and thus

reflects the de facto techniques adopted for account recovery.

4.3.1 Demographics

Within the 500 most traffic-heavy websites, we identify 245 websites in which we are able to create

an account. Among them, 239 (97.5%) websites have enabled an account recovery protocol (p).

Since we are only interested in recovery protocols, we consider our dataset to contain only the 239

websites thereafter. There are fewer protocols than websites due to multiple reasons. First, we

count the same protocols that share the same database only once, such as all regional Google sites

and subsidiaries of Google, like Youtube. This type includes 99 websites. Google alone contributes

55 of them. Second, there are 40 websites that do not have login functionality. For example, some

online newsletters do not need user logins. In addition, some recorded sites are just advertisement

network referrer links or content delivery networks in which not even an accessible homepage is

available. Examples are adnetworkperformance.com and www.t.co. Third, we fail to examine 51

websites with less commonly used languages. It is challenging to recognize and input CAPTCHA in

these languages, which is a required process in order to register an account. Finally, on the rest of

the websites, a local phone number or membership is mandatory for registration. Examples include

most online banking systems. These websites are not open to an outsider, and thus we are unable

to access them.

The websites being successfully examined bear a similar distribution on visitor origins in the

Alexa top 500 list. Though only a limited number of websites are examined, these popular websites

attract most web traffic. For instance, Google alone is reported to account for up to 40% of web

traffic [3]. Therefore, we believe that our analysis is representative and can genuinely cover the

mainstream of modern website account recovery protocols used by most online users.

Overall, our dataset contains 239 websites that enable account recovery, naturally including 239

password protocols. In these protocols, we identify 324 recovery methods. Then we identify 364

recovery primitives in these recovery methods. On average a website has 1.36 recovery methods,

and each method involves 1.12 recovery primitives. This implies that most of the websites provide

64

Table 4.1: Recovery Primitive Distribution

Primitive Number Percentage Self-sufficient Percentage
Email 232 97.1% 213 89.1%
Phone 46 19.3% 40 16.7%

Security Question 22 9.2% 11 4.6%
Private Information 7 2.9% 0 0.0%
Activity Information 12 5.0% 10 4.2%

Recovery Token 3 1.3% 3 1.3%
“Self-sufficient" implies that the recovery primitive is the sole ingredient
in a recovery method (i.e., |m| = 1, for example, m = {�

em

}).

only one recovery method, and recovery primitives in a recovery method are mostly homogeneous.

Note that nowadays, many websites have used Single Sign On (SSO) for logging in. SSO enables

a user to use the account of an identity provider, such as Facebook, to log into other websites. In

our dataset, 136 websites feature at least one SSO identity provider. The top three are Facebook

(103 occurrences), Google (67 occurrences), and Twitter (35 occurrences). Regarding SSO, users

should recover their accounts from the SSO identity provider website, such as Facebook.

4.3.2 Primitive and Method Usage

To illustrate the major composition of recovery protocols, we examine the usage of recovery prim-

itives and list the overall occurrence of each primitive in Table 4.1. As shown in the table, using

email to recover a password is prevailing: 97.1% of websites include email (�
em

) in their recovery

protocols. Furthermore, among 89.1% of websites, email itself is sufficient to recover a password

(namely, at least one of their recovery methods contains the element of email primitive only). It

is evident that most of the top websites delegate the security responsibility of account recovery to

email service providers, instead of extending and relying on their own security infrastructures.

The second most popular method is using a mobile phone, which is seen in a notable portion

(19.3%) of websites. Surprisingly, 4.6% of websites still rely exclusively on security questions to

recover passwords, which are suggested against by many previous researches [20,46,99]. Meanwhile,

private information, activity information, and recovery tokens are much less used since they may

involve more deployment costs and have privacy concerns. However, these primitives are commonly

used in sensitive online services, such as financial institutes.

65

Figure 4.1: Recovery Methods – Single-Primitive

10

1

10

2

Percentage in the type

Routine

Tool

Spokesman

E-commerce

Email

Financial

Email

Phone

Security Question

Private Information

Activity Information

Recovery Token

Log scale is used for a clearer presentation of small percentages. The sum of percentage can be more than 100 (with
multiple recovery methods in a recovery protocol), or less than 100 (we show only single-primitive recovery methods)

From Table 4.1, we can also easily infer that most recovery methods contain only one recovery

primitive. In fact, recovery protocols in 95% of the websites we examined include at least a single-

primitive recovery method. As recovery methods with multiple recovery primitives are rarely found,

scattered, and hardly organizable, we focus more on unveiling the structure of a single-primitive

recovery method. Following the annotations introduced in Section 4.2.2, we identify 127 routine

websites, 82 e-commerce websites, 52 spokesman websites, 36 tool websites, 6 financial websites,

and 11 email websites. Their single-primitive recovery methods are portrayed in Figure 4.1. It is

not surprising to see that different genres of websites use different single-primitive recovery methods

to balance their own security and usability trade-off.

From the figure, we can also see that financial websites are quite different from the other five

— only one website uses a single-primitive method for account recovery (private information).

Financial websites are the only type of website that usually has multiple recovery primitives in a

66

recovery method. The other five types of websites all heavily rely on email (more than 80% for

email sites and more than 90% for the other four) for account recovery. Using a phone follows as

the second most commonly seen account recovery method. Interestingly, email websites themselves

heavily rely on a mobile phone to recover passwords and are significantly more prone to use account

recovery primitives other than email services. One possible explanation is that the email is already

the end point of an account recovery chain and that email service providers prefer not to lead their

users to their competitors’ email services. Thus, they attempt to offer other remedies, such as a

mobile phone.

The usage of multiple-primitive recovery methods is not very common, given the fact that on

average a recovery method consists only 1.12 recovery primitives. Due to the sparsity, we list

the total number of two-primitive and three-primitive methods used in each website category in

Table 4.2. None of recovery methods we identified has more than three primitives. Financial and e-

commerce websites deploy such multi-primitive recovery methods more than other websites, possibly

due to their critical service nature. However, with equal importance, email websites do not have a

single recovery method that has more than one primitive.

Table 4.2: Recovery Methods with Multiple Primitives

Primitive Number Routine Tool Spokesman E-commerce Email Financial
2 primitives 6 3 3 8 0 6
3 primitives 0 1 0 1 0 5

Overall, it can be inferred that most of the top websites delegate the security responsibility of

account recovery to email service providers, instead of extending their own security infrastructures.

There could be several reasons for this. First, it keeps high usability, as the registered email address

becomes a centralized master key through which users can conveniently manage almost all of their

online accounts. In other words, users incur almost no more cost when the number of online

accounts increases. Second, email recovery mechanisms can be easily deployed at both sever and

client sides. Third, the security obligation of account recovery is delegated to other online services,

which significantly reduces the security responsibility of the website. Accordingly, the email of a

user ends up as essentially another password manager and thus a potential single point of failure.

The illegal access to an email account can pose a serious security threat on most websites, with

67

the only exception being financial websites. As a result, an attacker can easily compromise user

accounts by mounting an account recovery attack, especially nowadays when email accounts are at

a massive loss [4].

4.4 Attack Assessment

Since emails play a critical role in account recovery, it is necessary to evaluate the vulnerability that

may be introduced by emails, especially when user email accounts are at risk.

Although we have observed that most websites rely on emails to recover user passwords, the

assumption that possessing a password will compromise a user account may no longer hold under

today’s multi-dimensional authentication context, where a password may not always be the sole

gatekeeper. In fact, an account recovery attack should be considered successful only if an attacker

can actually log in to the target website and impersonate the victim user, which rules out cases

where the attacker steals a password but fails to access the account due to a lack of other credentials.

We first define the capabilities of an attacker and then discuss the possibility of a successful attack.

4.4.1 Threat Model

We assume that an attacker has access to the victim’s primary email account and attempts to log

in to a user account by exploiting the information included in the recovery email. Specifically, the

attacker has no knowledge about the victim’s personal information and makes no attempt to obtain

the information that is believed discoverable or guessable yet hardly quantitatively assessable, such

as user-chosen usernames (when it is neither the email address nor included in the recovery email) or

security question answers. We also assume that the attacker does not make extra efforts to bypass

additional classifier-based authentication schemes, such as IP address or OS/browser fingerprinting.

Note that we aim to set a baseline for the success rate of an account recovery attack so that we keep

our attack model simple and clean. In the real world, attackers may try to use more sophisticated

tactics to break into even more user accounts [10].

68

4.4.2 Possibility to Break-in

As suggested by Table 4.1, 213 out of the 239 websites solely rely on emails to recover user pass-

words, making 89.12% of the examined websites potentially vulnerable to account recovery attacks.

However, an attack may not be successful for two reasons: the lack of other credentials and addi-

tional classifier-based authentication. Thus, these factors should also be taken into consideration

for estimating the success rate of mounting account recovery attacks on these 213 websites. We

discuss the impact of each factor as follows.

4.4.2.1 Lack of Credentials

The first factor is the lack of other credentials, and a user’s password is not the only credential

needed to log in to a system. We investigate the use of a username, as it is also a required piece of

information for successful authentication. A website needs to know a username or an email address

first to locate an account so that the corresponding recovery methods, such as security questions for

the designated user account, can be retrieved. We identify that 80.3% (192 out of 239) of websites

allow the use of email addresses as usernames, and 178 of them can use emails to recover their

passwords. On the other hand, 23 websites that do not treat email address as a type of username

(i.e., a username is freely selected by its user) provide email-based username recovery or directly send

a username in the account recovery email, meaning that the username itself can be accessible from

the email account. Thus, in total, 84.1% (201 out of 239) of the examined websites are potentially

vulnerable to account recovery attacks. In other words, among the 213 websites that allow emails

to recover passwords, 12 of them are immune to account recovery attacks because attackers cannot

know usernames through emails. Another lack-of-credential scenario is the two-factor authentication

(2FA) in which an attacker has no access to the other authentication factor. In this case, the login

will also fail. We found that 35 websites feature 2FA options. However, the general adoption rate

is still believed to be quite low. By analyzing more than 100,000 Google accounts, Petsas et al. [93]

estimated that Google 2FA is adopted by no more than 6.4% of its users in 2015. It is also unlikely

for other websites to have a much higher adoption rate than Google. Furthermore, 2FA is an option

disabled by default in all of the websites we have identified. Therefore, a 2FA-available website

69

Table 4.3: Websites Vulnerable to Account Recovery Attacks

All R1 R1&R2 R1&R2&R3

239 213 (89.12%) 201 (84.1%) 194(81.1%)
R1: Allows email as an account recovery method.
R2: Username is directly obtainable. R3: No clas-
sifier is enabled.

should still be considered vulnerable to account recovery attacks since more than 90% of the users

are not really protected.

4.4.2.2 Classification-based Authentication

The other factor taken into account is classification-based authentication. Leveraging more or

de-centralized credentials may incur significant usability hassles and thus repel users. Therefore,

many websites start to use a classifier to automatically verify a legitimate login attempt to balance

usability with security, where a correct password is not sufficient for login. The classifier aims to

detect anomalous login behaviors by taking many signals into the classification decision, such as

the IP address, cookies, and OS/browser fingerprints. Alaca et al. [10] identified and evaluated 29

fingerprinting mechanisms, and each of them may produce multiple signals. If a login attempt is

classified as suspicious, the system is likely to trigger a standard 2FA. Authentication classification

is reported by Google [8] to effectively reduce 99.7% of account compromises using more than 120

features. However, the classification is a black-box that is hard to comprehend, especially when

the features are numerous. To determine whether a website has enabled a classifier, we adopt an

attacker-centric approach, where we probe all 239 websites by using the Tor network and VPN1,

which enables us to emulate an attacker. Specifically, we first train each website by manually logging

in to the website on the same computer once per day for a period of one week. The computer has

a fixed fingerprint and IP address. Then, we camouflage ourselves as a user in a different country

with different operating systems and browsers (all cookies cleared) to log in to the same website

three weeks after the training stage. Note that we have provided necessary information, which

includes a backup email, phone, and security question, for the use of the 2FA to the website when

the classifier has low confidence. Our methodology cannot guarantee 100% accuracy of the results
1The Tor network is known for having abnormal login issues in some websites, so we use both Tor and VPN
to obtain most accurate information.

70

since the classification systems of these websites are still unknown. However, we believe that our

results are sufficiently close to the ground truth since a useful classifier should capture such obvious

anomalies. Our results indicate that only 14 (5.9%) out of the 239 websites are using a classifier, as

we are either required to complete a standard 2FA or blocked from logging in. Furthermore, 8 of the

14 websites rank top 30 in web traffic, and the others are mainly financial websites. Clearly, though

useful, classification-based authentication has not been widely used, and thus account recovery

vulnerabilities still remain, at least at the current stage.

After considering the above two factors, we are able to answer the question of how many websites

are vulnerable under such an attack model. We concisely summarize the results in Table 4.3, which

shows that overall, 81.1% of the websites we examined are vulnerable under our threat model.

In addition, if an attacker is sophisticated and could emulate enough login signals to deceive the

classifier, 84.1% of the websites would be vulnerable to account recovery attacks.

4.5 Damage Estimation and Email Security

As a large portion of websites are vulnerable to account recovery attacks when a registered email is

compromised, we evaluate possible damages that could be caused and the security policies of major

email providers, which are essential to throttle attacks on user email accounts.

4.5.1 Damage

The damage can be multi-fold. First, attackers are able to steal private information, such as

home address and activity history of users. In fact, this is the main reason why an attacker is

interested in user passwords. Second, the attacker may also actively impersonate legitimate users

to post information, such as sending spam messages on the user’s behalf [8]. Third, they may cause

financial loss by purchasing products and stealing credit card or bank information. Measuring the

extent of the damage can be complex and error-prone since even the same type of websites could

have very different user data and security policies.

We estimate the possible losses by examining typical websites from four major website groups,

which are routine, tool, spokesman, and e-commerce. We do not examine the email group as

71

Egelman et al. [42] have already done a thorough investigation on how much sensitive information

resides in one’s primary email account, reporting that a substantial amount of sensitive information

can be found in the email archive, such as credit card numbers (16%) and SSN (20%). We also

exclude the financial group due to the fact that all of the financial websites we examined in the Alexa

top 500 websites are immune to the account recovery attack, as the email is insufficient to reset a

password. In our examination, we select those websites with a single service type. In addition, we

also try to select these websites that are likely used by normal users. A counter-example is a paid

advertisement publisher, which has a high volume of web traffic, but few normal users would use it.

Table 4.4: Damage Estimation

Site Sensitive Information Activity Financial

R
ou

ti
ne

netflix.com Phone Number, Watch History, Credit Card Number, Credit Card Info Subscribe/Update Service
nytimes.com Name, Location, Purchase History, Occupation, Income, Gender
weather.com Name, Birthday, Gender, Phone Number, Home Address, Work Address
wikia.com Location, Birthday, Name, Gender, Occupation, Posts

To
ol

github.com Company, Location, Credit Card Number, Credit Card Info Sabotage Purchase Service/Data
dropbox.com All Files Stored, Access History Sabotage
skype.com Phone Number, Birthday, Location, Connection’s Phone Number, Birthday, Location, Gender
ebates.com Name, Address, Shopping History Spamming

Sp
ok

es
m

an

facebook.com Name, Address, Birthday, Gender, Work, Education, Phone Number,
Contact’s Information, Posts, Messages Spamming, Sabotage

instagram.com Name, Phone, Gender Spamming, Sabotage
reddit.com Private Messages Spamming, Sabotage
quora.com Private Messages Spamming

livejournal.com Birthday, Location, Private Messages, School, Posts Spamming

E
-c

om
m

er
ce amazon.com Shopping History, Files on Cloud, Name, Address, Phone Number, Private Messages,

Reviews, Browsing History, Credit Card Number, Credit Card Info Purchase Products/Services

ebay.com Name, Gender, Address, Buying History, Selling History, Private Messages, Phone Number, Credit Card Number, Credit Card Info Sabotage Purchase Products*
walmart.com Name, Address, Phone, Shopping History, Credit Card Number, Credit Card Info

gap.com Name, Gender, Address, Phone Number, Shopping History, Credit Card Number Credit Card Info

Red color indicates that the information is fully obtainable while Blue color indicates that the information is only partially obtainable.
* When purchasing a product on Ebay, the user can modify the shipping address without re-inputting payment information.

We show the damage assessment in Table 4.4. It is evident that all of the websites we exam-

ined, to various extents, expose user private information, such as phone numbers, birthdates, and

addresses, to attackers. In addition to private information, an attacker is able to actively mount sub-

sequent attacks, such as sabotaging or spamming. Sabotaging may not be appealing to the attacker

since it does not bring many benefits. However, using a real account for spamming is a common

practice among spammers [8]. Furthermore, attackers may even purchase products in online stores

with stolen payment information. For the attacker to receive the ordered package or intercept the

delivery process, it may need to change the shipping address. We observe that many e-commerce

websites require payment authentication, in terms of the credit card security code (Walmart and

GAP), to post an order. Amazon requires to re-input the complete payment information if the

shipping address is new. However, surprisingly, Ebay allows a user to change the shipping address

freely without additional authentication, which makes financial losses largely possible if the account

72

is compromised by attackers.

Table 4.5: Examining Major Email Providers

Provider Region Length Composition 2FA Classifier
Gmail.com USA 8 1

p p

Yahoo.com USA 7-10* 4-1*
p p

Outlook.com USA 8 2
p p

AOL.com USA 8 1
p

QQ.com China 6 1
p

163.com China 6 1
p

Sina.com.cn China 6 1
p̄

**
China.com China 6 1

China.com.cn China 6 1
Rediff.com India 6 1
Yandex.com Russia 8 1

p

* Minimum password length and composition can vary depending on
each other. For example, a password of length 7 must have 4 types of
characters to be accepted by Yahoo. However, a password of length 10
can have only 1 type of character.
** The on/off of the classifier is configurable, and the default is off.

Table 4.6: Password Policies

Routine Spokesman E-commerce Financial Tool Email Overall
Length 5.74 5.54 6.35 7.33 5.91 7.0 5.92

Composition 1.20 1.19 1.57 1.67 1.36 1.18 1.33
For Yahoo.com, we choose a minimum length of 8 and a composition of 2 since this setting may
fit well with more typical passwords.

4.5.2 Assessing Email Security

Since email is pivotal to account recovery, the security of user accounts in a website is heavily

dependent on the email security. A more secure email service can certainly help to thwart account

recovery attacks in the first place.

To this end, we evaluate the security policies of all 11 major email service providers in our

dataset, which span different geo-locations, including North America, Asia, and Europe. The fields

examined involve several authentication policies, including minimum password length, minimum

password composition (uppercase letters, lowercase letters, digits, and special characters), whether

2FA is provided, and whether a classifier is used to filter out abnormal login attempts. The list of

providers we examined and results are shown in Table 4.5.

73

We also list the password policies of all six types of websites in Table 4.6, with respect to

minimum password length and minimum types of characters required (on average). We can see that

the minimum length of passwords in email websites is seven, which is only less than that of financial

websites. However, email websites have the weakest composition complexity policy, since most of

them do not require more than one type of character in a password, and users are more likely to

create predictable passwords under such a policy.

We also notice that a significant portion of email providers include 2FA functionalities in their

authentication systems. Compared to the overall rate of 2FA-enabled websites, email providers show

a much higher security concerns and offer 2FA enhancement to secure user accounts. However, the

number of users that actually use 2FA is likely to be small [93]. A more effective solution might be

using a classifier to verify a legitimate authentication attempt. Although some of the classification

signals can be easily spoofed [10], it is still difficult for an attacker to correctly spoof all signals

considered by the classifier, especially when the adopted signals are unknown [22]. Unfortunately,

only 4 out of the 11 email providers have integrated such a protection mechanism. One of them

(sina.com.cn) requires a user to turn on the classifier, but most users probably do not enable it

as the default setting is off. The other 7 email providers are much easier to be compromised by

phishing attacks and password guessing/cracking attacks. Under such a condition, those accounts

that are associated with a weak email account are vulnerable to account recovery attacks.

Generally speaking, a large portion of major email service providers fail to provide adequate

security protection on user email accounts. It makes an account recovery attack more likely to

happen, and thus jeopardizes the security of the online accounts that rely on emails for account

recovery.

4.6 Securing Email-based Account Recovery

It is not an uncommon scenario that an email provider and its users fail to adequately protect

their email accounts. Thus, an email account compromise could trigger massive compromises of

other accounts that use emails for recovery. To mitigate account recovery attacks, we propose a

lightweight Secure Email Account Recovery (SEAR) protocol that can be seamlessly integrated into

74

current network infrastructures. SEAR does not attempt to change the current email-based account

recovery model, but instead, it aims to prevent attackers from recovering other account passwords

if an email account is compromised. SEAR requires little effort from a website and its users. In

short, SEAR requires a 2FA only when an account recovery email needs to be opened. Meanwhile,

the normal email checking experience remains unchanged.

4.6.1 SEAR Specification

The core of SEAR is to add a header in an email to indicate that the email is for account recovery

purposes. This method is transparent to existing email infrastructures since Simple Mail Transfer

Protocol (SMTP) allows users to customize headers. The basic workflow of SEAR is simple. The

account provider (i.e., the website where an account recovery is undergoing) will add a header

“tag:value" pair (we choose “Recover:1") in the recovery email, and upon receiving an email with

the recovery header, the email provider will require the recipient to re-authenticate itself via a

second channel in order to access the recovery email’s content.

While our solution is straightforward in principle, there are practical challenges that should be

carefully addressed. In particular, the current email-fetching protocols (IMAP or POP3) do not

protect any specific emails. In other words, the user’s mail user agent (MUA), such as Thunderbird,

Outlook, and Yahoo! Mail, will fetch whatever emails belonging to the recipient from the Mail

Delivery Agent (MDA) of the email provider, without supporting any additional authentication

process. Under this emailing infrastructure, it is infeasible to protect any specific emails. To

address this challenge, we attempt to protect the recovery email content, instead of the email itself,

through the use of an “intermediate token." Specifically, the email provider intercepts the recovery

email content and replaces it with an intermediate token. Thus, the recipient will only receive the

token. Then, when the recipient opens the recovery email, the intermediate token should be sent

back to the email provider by the recipient to initiate the re-authentication. The token submission

can be done in different ways, e.g., clicking a URL that embeds the token as in our implementation

(see Figure 4.2a). The email provider will release the content of the original recovery email only

if the re-authentication is successful. Furthermore, to ensure the legitimacy of recovery emails, we

75

Figure 4.2: Account Recovery Examples.

(a) Actual recovery email

(b) Email content from the account provider

enforce the use of the Domain Keys Identified Mail (DKIM) [33] protocol, which uses public-key

cryptography to ensure the legitimacy of the sender and has already been deployed on more than

80% emails as reported by Google [41].

Overall, SEAR incurs little user experience change since it only requires a second authentication

factor in the rare case when a user needs to reset or recover a password. More importantly, it

can be seamlessly integrated into today’s emailing infrastructures and MDAs. Moreover, it is fully

backward-compatible. When one or both email parties do not comply with SEAR, a recovery email

will be treated as a normal email.

4.6.2 Implementation

We implement SEAR on well-known open-source projects to demonstrate its simplicity and com-

patibility. SEAR requires minor modifications on the account provider and email provider sides to

meet its specification. We use two Amazon EC2 Ubuntu server instances [1] to act as the account

provider and email provider, respectively. They both run Postfix [7], a widely adopted open-source

Mail Transfer Agent (MTA). We use Mutt [80], a text-based email agent to generate recovery emails.

The legitimacy of emails is protected via openDKIM [6]. On the email provider side, we modify

76

the “clean-up" procedure in Postfix source code to feature recovery header checking and subsequent

actions. We use a URL to embed the intermediate token, such that the user can directly click the

URL to submit the token to the email provider. A sample of email received by the user is shown in

Figure 4.2a. The page pointed to by the URL requires a second authentication. If successful, the

recovery email content is displayed on the webpage, as shown in Figure 4.2b. The user can then

directly reset a password through the URL on this protected page in a conventional manner.

SEAR induces little overhead for two reasons. First, only a small fraction of emails are account

recovery emails. By examining different everyday email accounts, we roughly estimate that account

recovery emails make up 0.4% of all emails. All other emails are processed normally. Second,

its implementation does not introduce any expensive operations. Even in major email providers’

distributed systems, it will not introduce any bottleneck. All modules used by SEAR are mature

techniques, which have been extensively tested and used for other purposes. The storage overhead

is also negligible since the extra data stored are just the intermediate tokens, which can be as small

as 20 bytes in our implementation.

4.7 Conclusion

In this chapter, we investigate account recovery at popular websites by examining their recovery

protocols. Through extensive analysis of the security features of those websites, we observe that

92.5% of them rely on emails to reset user passwords. Even worse, the user accounts in a significant

portion (81.1%) of the websites we reviewed can be easily compromised by mounting an email recov-

ery attack. However, many email service providers fail to realize such security threats and have not

yet taken serious actions to protect recovery emails, leading to a single point of failure of using email

for account recovery. To mitigate this problem, we introduce a lightweight Secure Email Account

Recovery (SEAR) mechanism to provide extra protection on account recovery emails. SEAR can

be seamlessly integrated into modern email infrastructures with a full backward-compatibility.

77

Chapter 5

UTrack: Enterprise User Tracking Based

on OS-Level Audit Logs

5.1 Introduction

Nowadays, cyber-attacks have been becoming more sophisticated and stealthy. In an Advanced

Persistent Threat (APT) attack, on average an attacker may lurk in the target network for more

than half a year, escalating and maintaining the access privilege without being caught [110]. As

a result, there is an increasing demand of user tracking inside an enterprise network, in order to

improve the visibility for the network monitoring, and help security analysts to make informed

decisions on the detection of insider, targeted, or APT attacks. A recently enabled paradigm in

the security industry, called User Behavior Analytics (UBA) [5,109], is built upon this foundation.

UBA categorizes a range of techniques that keep monitoring user activities and identifying those

that deviate from normal user sessions. While UBA is a rather broad concept that can be applied

to many scenarios on a different level, granularity, and scope, its fundamental building block is to

accurately identify and model user activities. Capturing user activities inaccurately or incompletely

could result in incorrect detection or analysis, and even render a UBA system useless.

Towards more accurate user modeling and verification, contemporary UBA approaches attempt

to fuse data from different data sources for creating a more comprehensive risk profile [101, 111].

Though useful in many scenarios [101,109,111], an inherent limitation is that they all lack a holistic

78

view on systems since data are collected from only a couple of security-sensitive applications, such

as firewalls and proxies. Under such a setting, many meaningful events could be missed, not to

mention the difficulties of correlating data with different syntax and semantics from a variety of

sources. A natural approach would be to leverage log data at the operating system (OS) level, which

can record data for all applications under homogeneous syntax and comprehensible semantics. Such

an audit log system is widely deployed in many security infrastructures [69, 70, 74, 78, 79], mainly

for forensics purposes.

In this project, we develop a novel user tracking system named UTrack by leveraging the rich

system log data to universally monitor user session activities. Our ultimate goal is to present a

user session profile that is accurate in tracking user activities and concise in the output report.

We identify and tackle two major challenges. The first is to bridge the semantic gap between user

accounts and human users in both in-host and cross-host scenarios. This is done by tracking causal

relationship among processes through the user session root and correlating network events to identify

network control channels. The second challenge is to address the “needle in a haystack” problem

stemmed from the huge volume of log data through a variety of data reduction techniques. Unlike

many previous works on log data reduction [75, 122] that target at information-lossless reduction,

our data pruning approach is to prune data that may carry meaningful information but are out of

the scope of user activity tracking.

We deploy UTrack in an enterprise network that comprises more than 100 hosts running either

Windows or Linux operating systems with real users. We manage to process log data from all the

hosts on a single machine, and demonstrate that UTrack is able to accurately identify and concisely

present the events that represent activities of a real user inside the network in a human-consumable

fashion.

In summary, we make the following contributions.

1. We develop a new universal user tracking mechanism (UTrack) based on OS-level audit logs.

UTrack aims to bridge the semantic gap between human users and computer user accounts by

identifying and associating system events that appear in different user accounts and different

hosts but belong to a single user session.

79

2. We apply effective data reduction methods on user session profiles to achieve a scalable and

salient presentation. The reduction mainly involves detecting interactive processes and mod-

eling common data patterns.

3. We implement UTrack in a real enterprise environment, with data collected from more than

100 hosts. Our evaluation results show that UTrack is accurate and concise in presenting user

activities. UTrack scales well with a low resource consumption.

5.2 Motivations and Challenges

5.2.1 Motivations

Contemporary user behavior monitoring is mostly done on disparate applications and services.

However, such a methodology has drawbacks that limit the usability of the monitoring system. The

first drawback is the lack of completeness. In these systems, only a small portion of user activities

are recorded and analyzed, since the logs are only generated from applications that are usually

perceived to be of strong security indication, for instance, a firewall, a web proxy, or a sensitive

database service. All other user activities are not actively monitored. However, a successful attack,

especially an APT attack, usually comprises many individual steps. The traces of each step may

be buried in seemingly less interesting events that are not recorded by applications. By connecting

these dots, one may detect an intrusion that cannot be identified by conventional user behavior

analytics. In contemporary user tracking schemes, the auditor lacks this holistic view on the entire

system.

The other limitation is the difficulty of correlating log data. Data collected from different

services and applications may be of different formats, granularity, and semantic levels. Parsing

and correlating data from different sources is very challenging. As a result, data from individual

sources are independently handled and analyzed in many cases. Shashanka et al. [101] attempted

to associate subjects from different data sources, such as different IP addresses and user accounts.

However, the capability of such an association is limited to a small scope, where the subjects are

tightly bounded. Therefore, the inspector lacks view on the connections among critical pieces of

80

puzzle from all data sources.

System Opportunities: A universal user activity tracking system, which monitors activities

of all users inside an enterprise network, is very useful to resolve or mitigate the aforementioned

problems. However, recording all activities of individual users in the entire network may incur

significant system overhead. To balance the trade-off between system overhead and data granularity,

we leverage an OS level log system to collect data from each host inside a network. The OS level

log system collects low level system objects, such as processes, files, and network connections,

which largely preserve the running states of a computer at a certain time. Thus, it can be used

to accurately reconstruct the causality among objects with clean semantics. Meanwhile, the data

volume is at a manageable level. Nowadays, many enterprises have deployed such a log system for

forensics purposes [69,70,74, 78, 79].

5.2.2 Challenges

5.2.2.1 Accurate Modeling of User Behaviors

When processing audit logs, a user account is often considered equivalent to the user itself. This is

mostly true in some high-level network applications, such as Facebook and Twitter. However, this

assumption no longer holds when it comes to low-level OS events.

Unlike application-specific logging that is clearly defined and has much higher semantic aware-

ness, a generic OS-level log system monitors events with respect to individual user accounts. In an

enterprise network, a user may have multiple user accounts, and a user account could be accessible

by multiple users. For instance, a network administrator could access both its personal account

and the root account on a web server. The web server may also be managed by several system

administrators. As observed in our network, the discrepancy mainly comes from the following three

scenarios.

Account Transition: Managing account privilege and ensuring proper isolation among differ-

ent privilege levels are essential to an operating system. However, user accounts with lower privileges

sometimes need higher privileges to accomplish certain tasks, and it is mainly accomplished in two

ways, namely, setting the UID of a process (e.g., “ping” command) or having a higher privilege ac-

81

count to do the task (e.g., through “sudo” or “su” commands). Thus, a simple task done by a single

user may involve several user accounts, and the same account may also be involved in activities

performed by multiple users. Furthermore, one user account granted the root privilege is able to

interact with the system on any other account’s behalf. Though this does not usually happen in

normal operations, it is possible when an attacker exploits this system trait to mask its malicious

behaviors.

System Service: In a typical operating system, there are many applications and services run-

ning in the background. Meanwhile, many system accounts are created to achieve a finer granularity

of access control for those services. Although these accounts do not represent any individual user,

they are delegated to perform certain tasks by other users. For example, when the PostgreSQL

database server receives a request to access the database, the server daemon creates a child process

to process the request. Therefore, all access activities at the database server are recorded as from

the account “postgres”, regardless of the real user that is in fact accessing the database.

Credential Sharing: It is possible that the same account is shared among multiple real users.

A typical scenario is the “root” account on a server, which may be managed and shared by several

developers or administrators.

In general, there exists a semantic gap between user accounts and human users. It is no reliable

to solely rely on the user accounts to track the behavior of a user, due to the lack of proper linkage of

user account transition and service account delegation. After realizing this semantic gap, we develop

our user tracking system by clearly setting boundaries between the two concepts - the term “user”

always indicates a real human user, and the term “account” always indicates a user (or system)

account in a computer system.

5.2.2.2 Identifying Data Triggered by Users

The other challenge we face is to sift out data that are directly related to user behaviors. We

observe that only a small portion of log data are triggered by direct user interactions with the

computer, and others are spontaneous or scheduled system events, such as automatic updater and

cron jobs. Since human interactions are the natural target of a user tracking system, we attempt

82

to identify system events that are triggered by users’ actual interactions in order to achieve a much

higher scalability and remove unnecessary distractions from security auditors. However, OS level

log systems usually only record the causal relationships among primitive system objects, such as

processes, files, and sockets, to gain clean data semantics and conserve system resource. They do

not usually keep track of the operations on I/O devices, such as a click on the mouse or a tap on

the keyboard. Without such information, it becomes non-trivial to identify events stemmed from

users’ interactions. To achieve our goal, we follow the lineage of the UI management components to

identify possible processes that have an open interface to the users and rely on many useful features

to determine interactive processes.

We also need to address the semantic gap between the actual high-level user behaviors and low-

level system interpretations. In many cases, a simple operation from a user may result in a large

number of system events; however, most system events are highly repetitive and predictable, and

thus carry little information. To eliminate this redundancy, we model the file sets that are frequently

accessed by processes, and only record the events that do not fit in the model. In addition, we model

repetitive execution “branches” of a process and compress the repetitive ones.

5.3 System Overview

Nowadays, many organizations have started to deploy an agent on each host in their enterprise

networks. UTrack works under the same context of these forensics-purposed OS level log systems.

Three types of system objects (process, files, and network sockets) and their interaction events

(e.g., a process creating a child process or reading from a file) are recorded. Each event also carries

attributes that describe the activity, such as the event time, user account, file pathnames, and socket

IP addresses, etc.

UTrack aims to help a system auditor to understand the activities of users inside an inter-

connected enterprise network by associating both in-host and cross-host activities performed by the

same user in a specific user session. The input to UTrack is a data stream collected from all hosts,

and it can be either a real-time stream or an offline history database. Generally, it consumes the

data from a start time (T
s

) to an end time (T
e

), and outputs user session profiles to describe the

83

Aggregator

Interactiveness
Detection

Session Profile

Session Profile

Inhost Tracking

Network Matching

Crosshost Tracking

Data Pruning Data Modeling

Presentation
Abstraction

UTrack

Data Pruning

Figure 5.1: UTrack Overview

activities of a user session within the time period. If the data is an online stream, the end time T
e

is set to a distant future time. The user session profile is represented in a forest structure, and the

time is usually set in terms of weeks, days, or hours in different use cases.

Most forensics techniques consider a system object, such as an identified trojan process, as a

Point of Interest (POI), and aim at understanding the provenance or impact of POIs. In con-

trast, UTrack attempts to understand the behavior of a user in a session. In other words, the user

itself is the POI. In most cases, the behavior of a user is much more complex to describe than

a single attack incidence in the system. Similarly or even worse, UTrack suffers from the same

data explosion problem, which makes it difficult to focus on the real interesting events. Thus, it is

imperative for UTrack to identify and keep the most relevant data, which can also help save system

resource.

84

Figure 5.1 illustrates an overview of UTrack. UTrack consumes a data stream of log events from

the aggregator, which receives, sorts, and sends out the data from the agent-enabled hosts. The

first task of UTrack is to construct user session profiles by correlating both in-host and cross-host

activities, mainly relying on the process lineage and network event matching. However, this session

profile contains a large amount of system-generated data that may not be directly related to the

user’s operations, but can easily overwhelm other interesting events. To mitigate this issue, we

apply interactiveness detection on the user session profile to identify the processes that have actual

interaction with the user. This step directs us to the events that are more relevant to user tracking.

We also model the files, network connections, and “sub-branches” of the interactive processes to

further compress the low-entropy events. The output of this step is a more salient session profile,

which can be directly construed by human auditors or be inputted to further security measures.

UTrack works in an online fashion. It gradually builds the user session profiles while consuming

system events on the fly. It is important for a UBA system to promptly analyze the data, so that

anomalies can be identified in their early stage and triaged to prevent further damages. On the

other hand, UTrack can also work offline in forensics analysis by reconstructing the data stream

from the log database. In order to facilitate this feature, we build a data replayer to replay the

history data from the database, which is detailed in Section 5.6. This data replaying tool is also

useful on implementing, debugging, and evaluating our user tracking system.

Note that UTrack does not aim to replace conventional forensics techniques, such as backtracking

or forward tracking. Instead, it is indeed complementary to those techniques to better secure an

enterprise network. Nowadays, it is a common case that people do not really make good use of big

data, and a large amount of collected data remain in the warehouse without generating any useful

insights. UTrack demonstrates a new perspective to better leverage the collected rich system data

for system security and management purposes.

5.4 UTrack Event Association

UTrack is capable of tracking users across an enterprise network by linking events from different

hosts. Note that we no longer depend on the owner of the process (i.e. the user account) to determine

85

m

s1 s2

a1 a2 a3

init

d1 d2 m

init

d1 d2

s2

a3

s1

a1 a2

(a)

(After)

m

d

s

a

Display
manager

Daemon

Session

Application

User

(b)

Figure 5.2: Session Root Isolation

the real performer of an event. Instead, the process owner is only used as side information to give

a hint of who the performer might be. In the following, we first introduce the tracking mechanism

on a single host and then extend it to the cross-host scenarios.

5.4.1 Tracking In-host User Activities

5.4.1.1 Process Lineage

Modern operating systems usually maintain all alive processes in a tree structure. For example,

in Linux, every process, except the init process, is forked by a parent process. This parent-child

relationship widely exists among processes and is useful to determine the performer of most system

activities. Specifically, we consider the user of the child processes to be the same as that of the

parent process, unless we have a special reason to cut the lineage and attribute the parent and

children to different sessions. For instance, a user might open a Bash terminal and run the “ls”

command in the terminal. Since the “ls” command is executed by a child process forked by the bash

process, UTrack considers both processes to be performed by a single user.

This parent-child relationship is a fundamental building block of many forensics analysis tech-

niques [69, 70, 74, 79], which usually expand the investigation from POI, i.e., the detected point of

an attack. Timing is also considered to mitigate the possible dependency explosion and find the

most relevant events. In contrast, UTrack tracks all the parent-child relationships among processes

for constructing a more complete user session model.

86

We do not keep track of file data control flows, which are usually considered in forensics tech-

niques. This is because when a process has written to a file, the file has a causal relationship

with all the processes that read the file afterwards; however, this causal relationship is out of the

scope of user tracking where the user activities are the target. Furthermore, it introduces too many

dependencies that may unnecessarily complicate the analysis.

5.4.1.2 User Log-on Sessions

Since one OS usually structures all its processes in a tree (or forest in Windows), when activities

from multiple users are recorded in a host, it is far from adequate to solely rely on the process

lineage for tracking each user. Thus, we must find a way to attribute related nodes to different

users. A critical observation is that a user must have an interface to interact with the computer,

and usually the first step is to log on the computer for user authentication. In addition, the OS

usually organizes the processes under one user log-on session in a tree structure, and normally there

is a root node as the ancestor of all processes created in the user session. We call this node a

session root. Figure 5.2 shows an example of Linux instance. Each user logging in the system has a

corresponding session root (i.e., node s1 and node s2), which is usually a child process of a running

service. Their activities (for instance, open an application) are reflected in the subtrees under the

session root. UTrack utilizes session roots to identify the activities of each user. It brings us two

benefits. First, it helps to separate processes and activities triggered by users from those generated

by the OS or system services. Second, it can differentiate activities among multiple users who have

logged on the host simultaneously.

UTrack identifies session roots from several known patterns. For a normal user, the most common

way to interact with the computer is via a Graphic User Interface (GUI). Even command line

interactions are included since the terminal window itself is created in the desktop environment.

For example, in Linux, the X display manager (a process usually named *dm) manages the login

screen and organizes a user session in child process. In our experimental environment, the most

common display manager is lightdm, and thus the session root in this case is a lightdm session child

with a session ID. When users log on a server through virtual consoles or no X server is available on

87

the server, the session root is /sbin/login, which is a child of the system init process. It is even easier

for Windows, as it is a GUI-based OS and the user interaction with the OS is usually through the

GUI. We determine the windows process “winlogon” as the session root, since it initiates the user

authentication process and becomes the root of the desktop environment when the login succeeds.

Remote logins, such as through ssh and telnet, are envisioned as user cross-host activities since

events from multiple hosts need to be correlated to track the relations. We elaborate how we handle

cross-host activities in Section 5.4.2. When logins are from hosts that do not have an agent installed

or the login happens before the tracking start time T
s

, we identify session roots based on the service

pattern. For example, the ssh daemon creates a dedicated shell for whoever has successfully logged

on the computer via ssh. As such, the dedicated shell is considered as the session root.

5.4.2 Tracking Cross-host User Activities

In an enterprise network with many inter-connected hosts, one user may need to work on other hosts

or request resources and services from servers. It is critical to track the cross-host user activities

in order to achieve a better coverage than local-only tracking. A number of previous works have

been done to help understand how a request is processed in a complex distributed system using

middleware or application level instrumentation [16, 108], statistical inference [12, 96], or system

call log and analysis techniques [98, 106]. However, they all cannot accurately work under generic-

purposed OS logs.

We propose to track cross-host user activities based on one key observation that after receiving

remote requests, a server will act on behalf of the requester. Most servers have a daemon listening to

incoming requests and processing the requests accordingly. There are two types of server architec-

tures, namely, event-driven servers and worker-based servers. For the event-driven servers, since a

thread could handle multiple incoming requests in a non-blocking, interleaving manner, it is hard to

correlate a remote request with the corresponding activities of the server without specific assistance

from the server. Therefore, our main focus is on the worker-based servers, where a network request

is solely handled by a worker. Worker-based servers are popularly used in enterprise networks with

a moderate number of users due to the ease of coding and maintenance. A worker-based server may

88

support two working modes, namely, on-demand worker creation and a pre-allocated worker pool.

As an example of the first mode, sshd daemon accepts a remote network connection, and creates an

interactive command language interpreter process, such as a bash terminal. Thereafter, the newly

created command interpreter process is controlled by the requester, and any activities performed

by the process should be attributed to the requester, regardless of the user account that owns it on

the server. We call this process a delegate of the remote user.

It is more tricky to handle the worker pool mode. In UTrack, one process node in a user session

completely belongs to the user. However, it does not fit well with the mode of a worker pool, where

multiple long-living workers are pre-created and each worker only dedicates a partial of its lifetime

for a network request. In order to accommodate such a case, we introduce a new notation – virtual

process – to model a span of the worker’s lifetime. When a worker begins to work on a requester,

we create a new node (i.e., the virtual process) in the user’s model, and the new node records all

the activities of the worker during this time. We illustrate this process in Figure 5.3, where two

users make requests to a server at different times. The server dispatches the same worker to access

two different files, f1 and f2. A virtual node is created to represent the time lapse that a worker is

processing each request. Eventually, the user model is constructed with each user associated with

its own virtual process, which carries all data during the time when the real worker handles the

individual request.

To track cross-host user activities, the first step is to find the communication channel between

the server application (i.e., responder) and the user-controlled application (i.e., requester). Next,

we try to identify a worker for the request using a rule-based method. In both worker modes, we

observe that after establishing a network channel as a connection acceptor, a child process or a

sibling (when the listener and workers are siblings) of the server process immediately accesses the

same network channel and generates a number of events. Based on this pattern, we can determine

the worker and attribute all the activities of the worker to the remote requester.

89

bashbash

server

Worker

[5]
[2]

f1 f2
[6] [3]

bash

w

bash

w

f1 f2

server worker

[4] [1]

[0]

(a) (b)
Figure 5.3: Virtual Process

5.4.3 System Cold Start

UTrack consumes data from agents during a pre-set time period to help understand the user sessions;

however, it may encounter the cold start problem, namely, the history data is not available and the

agents report events on scattered processes. If so, the linkage among processes may be missing. Since

UTrack relies on the causal relations to identify user sessions, it requires to reconstruct these relations

between processes. To address this problem, the agent periodically collects a system snapshot

that stores the child-parent relationship among them. We use this information to reconstruct the

causality relations among stand-alone processes and further extract user sessions in the reconstructed

process tree. Note that the parent-child relationship recorded in the snapshot may not be coherent

with that generated by UTrack, due to possible process delegation, user session identification and

isolation, or the adoption of orphaned processes, etc. This discrepancy is in fact beneficial to our

user tracking scheme. For instance, if a user starts a system service during the tracking period, the

system service is regarded spawned by the user, and the activities of the service can be attributed

to the user. However, if the tracking period is after the system start time and the service daemon is

adopted by the “init” process, then the service becomes a part of the operating system and cannot

represent any user. As such, we only reconstruct the parent-child relationship when the child process

90

has no existing parent in the UTrack model.

5.4.4 Scope

UTrack aims to connect events that are cross-host and cross-accounts. However, there are cases

where UTrack cannot handle. For instance, it could fail to identify causality among processes due

to inability to track IPC mechanisms, such as shared memory and shared files. It also cannot

handle the event-driven servers, like those run NGINX. Similar limitations can be found in previous

works [17,98,106].

5.5 Pinpointing User Activities

After correlating activities of users regardless of the process owner, UTrack collects user session

profiles that keep track of all processes, files, and sockets in the memory during the entire tracking

period. As a result, the generated data can become very large, and interesting events may be buried

in piles of less-relevant data. Therefore, it is essential for UTrack to identify and keep only relevant

and useful events. Redundant data must be pruned to release the pressure of huge system resource

demand and to keep the security auditor from unnecessary distractions.

When conducting data pruning, we stick to the user-centric mentality by sifting out the events

that are directly related to the user’s interaction with the computer system. This is because that a

user session profile contains a collection of processes that are only used to facilitate user or system

operations. For example, Ubuntu provides a number of tools and services, such as GNOME Virtual

File System(gvfs) for I/O abstraction, update-notifier for newer version checking, zeitgeist for logging

user activities, etc., which are less relevant to user’s actual behaviors. In contrast, interactive

processes are the processes that a user interact with, such as a Bash shell or UI-based programs

like Firefox, Notepad, etc. The behavior of interactive processes is likely a genuine reflection of the

user operations. However, it is a challenge to identify those interactive processes from our OS level

logging information, which does not include any user actions, such as mouse clicking or keyboard

input. We relies on passive observation and prediction to find interactive processes, and multiple

features have been identified to help distinguish interactive processes from other processes.

91

In addition to the interaction-oriented sifting, the data can be further compressed due to the

highly repetitive patterns found in processes and files. We observe that the interactive processes are

prune to generate sub-processes “branches” for different tasks. These branches could be similar to

each other, regarding to the executable names, arguments, and files that are read. In many cases,

these monotonous data can easily dominate a session profile and occupy over 90% data of the user

profile. To address this issue, we model both the activities of an interactive process and the common

files that are read by each executable, which significantly reduce the complexity of the user session

profile.

5.5.1 Interactiveness Detection

The purpose of interactiveness detection is to find user-triggered events. We consider user-triggered

events to be events directly resulting from a user action, such as opening a file using Notepad, etc.

It should be noted that technically, all events are results of human user activities, since background

procedures and processes, even the operating systems are installed by the user. However, since

these processes are mostly regulated and expose behaviors dual to bots, we consider them to be

non-user-triggered. Conceptually, we envision this procedure being similar to find bots/crawlers

in a network, where the bots are essentially programmed by human users, but they expose very

different behaviors and have little relation to active genuine users.

The interactiveness detection relies on passive observation of the OS events, so it faces several

noteworthy challenges. First, passive observation is believed to be less accurate than active detection

solutions, such as Catpcha [103,117]. Second, we do not have a specially tailored log system as those

used in bot detection [48,118], or any side information such as social graph [28,35,48,116]. Lastly,

system level events are low-level data whose semantic meanings are harder to derive. Sometimes,

we need to associate other related events to truly understand the actual user operations.

To categorize unknown processes, we develop a machine learning approach that uses a number

of useful features to distinguish an interactive process from other processes. Note that we need to

keep the actual activities that are usually represented by child processes of an interactive process.

For example, an interactive shell may run many commands, which is executed transiently. These

92

commands are not considered interactive processes. However, they represent the user’s activities

and should be studied.

We introduce to use a new feature on the entropy of activity batches. A fundamental observation

is that the interactive processes have irregular activities due to human involvement, so a process

performing tasks at a fixed time interval is unlikely to be controlled by a real human user. However,

treating each individual event as a task is problematic since a single task usually constitutes many

steps and events. As a solution, we preprocess all events that are generated by the process to form

a group of event batches, in which each batch represents a high-level task or operation. A batch

consists of a group of events where each pair of adjacent events has an inter-arrival time of less

than a threshold T . T should be carefully selected since it may result in putting all events into a

single huge batch when it is too large, or losing the causality among events that are generated from

a single task when it is too small.

We envision the time interval between two consecutive activity batches as a random process and

decide if a random process is regular by computing the entropy rate based on empirically learned

probability distribution [32,47]. UTrack computes only the first order and second order entropy. It

is expensive to calculate even higher order entropy, which may need prior knowledge to determine

a probability distribution. Also, we observe that the first and second order entropy can achieve a

satisfactory result.

5.5.2 Non-interactive Process Pruning

Instead of targeting at information-lossless pruning [75,122], we can afford to remove less interesting

data points when coping with our specific goal of user activity tracking. However, it does not mean

we do not track other processes. Actually, we keep track of all alive processes that have any

interaction with interactive processes or become interactive processes. The processes we pruned are

those that do not have any lineage with an interactive process. In general, most processes that are

not in a user session are pruned since they are system-triggered events.

For the processes in a user session, if they are not related to any user interactions, they are also

pruned. We develop an online algorithm to prune those processes using a bottom up, and backward

93

propagation method. The pruning starts from the leaf process when the process is ended. If the

leaf process can be pruned, it is removed from the child list of the parent process, and the parent

process will be further checked to see if it can be pruned after the removal of its child process.

5.5.3 Data Modeling

The essence of identifying interactive processes is to find the activities of processes, since they are

likely the direct results of the user’s operations. Therefore, all activities of the interactive processes

are preserved in our user session profile. Due to its long-living and interactive nature, an interactive

process usually has many sub-process branches representing user activities. However, these branches

could be highly repetitive due to multiple reasons. First, even interactive processes may have

periodic routines for updating, synchronization, etc. Second, user activities can be repeated. For

instance, a user may run “ls” command many times in a terminal, and many commands intrinsically

invokes “ls”. Third, there is a large gap between user operations and the interpretations of the

computer system. Therefore, a single, seemingly atomic user operation may result in a large amount

of low-level events. For example, when opening a Firefox browser, we observe that a significant

portion of events are repetitive to serve the same low-level purpose, such as checking the system

time or OS version.

There is a large room for the improvement on salience of a user session profile by modeling and

compressing the files accessed by processes and the branches of interactive processes, respectively.

Based on the observation that many processes with the same executable name and same arguments

(e.g., Chrome.exe type=renderer . . . , we call them “mainexec”) may access a similar set of files, we

are able to model commonly accessed files under a mainexec, and record only the difference. An

example is shown in Figures 5.4(a) and 5.4(b). We notice that both mainexecs e1 and e2 access

a common set of files ({f1, f2, f3}), which can be abstracted by a model (m1). This model-based

technique has also been used in Arnold [40] to reduce instrumentation overhead.

Figures 5.4(c) and 5.4(d) show that the session profile can be further compressed if some branches

are identical. Interactive processes often have identical branches that could easily overwhelm the au-

ditor. Therefore, we can compress these identical branches by only recording the timing information

94

IP

e1 e1

f1

f2

f3
f1

f2

f3

f4 IP

e1 e1

f4

IP

e1

e2 IP

e1
e2

[2]

m1 m1

(a) (b)

e1
e2

e: mainexec
f: files
m: model

m1

m1

(c) (d)

m1

Figure 5.4: Data Modeling

and the number of occurrences.

5.6 Implementation and Evaluation

5.6.1 Experiment Environment

We deploy UTrack on 111 hosts of a real enterprise environment, 21 Linux hosts and 90 Windows

hosts. An agent is installed in each host to collect and report system events. UTrack itself is written

in Java and contains 8.3K LoC. We evaluate the performance of UTrack based on one month of

data. Within this period, more than 4 billion events are generated, where 1.65 billion events come

from Windows hosts and 2.41 billion events come from Linux hosts. To facilitate the use of history

data, we implement a data replayer to replay the data recorded and stored in the database with

their original timestamps. With the assistance of the replayer, we are able to replay the one-month

data within 30 hours.

95

5.6.2 User Tracking

In our one month experiment, we identify 507 user sessions across 111 hosts. Note that the login

screen itself is counted as a user session and excluded from our data. Among the total 507 user

sessions, only 61 of them are Linux sessions. One reason is that Linux users are less likely to log

off or restart their computers than Windows users. Besides, there exist 4 Linux hosts that do not

have any user sessions, which means that they are used as servers and no one logs on the hosts

through the Linux desktop environment. However, the activities in those servers may be correlated

to user sessions in other hosts. On average, each user session lasts 4.6 day. We also observe that

Linux sessions are significantly longer (9.1 days) than Windows sessions (3.9 days). More than 100

sessions last beyond the one month period, so they are excluded when we compute the average

session lifespans.

For cross-host tracking, we first identify the communication channels. We correlate network

events from all hosts by matching 5-tuple attributes, which include local IP, remote IP, local port,

remote port, and the network protocol. However, due to port or IP recycling, two network events

might be wrongly matched. To avoid such a situation, we add a constraint that two matching

events should happen within a small time window. This small window should consider the possible

errors caused by asynchronous clocks on different hosts and network resource recycling. In our

implementation, we set the time window to 60 seconds, and we recycle the unpaired events after

this time window.

In our environment, the number of all ready-to-pair network events stabilizes at around 20,000

to 25,000. We observe that only around 12.3% of network events can be eventually paired, and

most of the matched network events (82.4%) are localhost channels. This is reasonable because

any communication to the outside world cannot be paired as the other side does not have an agent.

Even the internal communication may not be identified, since not all computers host an agent in our

environment. Another case is the broadcast network events, which have multiple receivers. When

the server is working in the worker-pool mode, it may take a non-negligible time to determine the

delegated worker, since it needs to go through a network channel matching process. If a worker

is found, a virtual process will be created for the requester. However, before the virtual process

96

Table 5.1: Servers with the Most Network Connections

ranking Program Name Number of Instances User Instance Mode Host Type
1 sshd 134,492 671 Create New Linux
2 smbd 8,120 428 Create New Linux
3 Postgres 5,152 559 Create New Windows&Linux
4 sendmail 1,218 17 Create New Linux
5 httpd 874 841 Worker Pool Linux

is created, the network request may have already been partially or entirely handled, because most

requests are handled very quickly. Thus, one should record the mapping between the virtual node

and the actual node, and migrate the stand-out events to the virtual node once the delegation

relation is established.

During the one-month experiment, we observe more than 186 programs that accept network

connections, and the top 5 programs are listed in Table 5.1. The “Number of Instances” column

shows the total number of request processing instances we observed. In our environment, since a

server frequently runs ”ss” to localhost for system backup, we observe a large number of ssh events.

We also find a Postgres database that constantly stores new data from network connections. An

Apache server runs the default pre-fork Multi-Processing Module (MPM) to support a worker pool.

The “User Instance” column indicates the instances that belong to a user session. It shows only

a small portion of the cross-host activities can be seen in a user session, since most of the virtual

process nodes are pruned due to their irrelevance to user activities.

5.6.3 User-centric Activity Tracking

To detect interactive processes, we employ an important feature, the “regularity” of activities, which

is measured by the first and second order entropy rates on the inter-arrival time of activity batches

in a process. In our implementation, we empirically set the threshold of batching (T) as 350 ms.

Figure 5.5 illustrates the CDF of the number of batches a process have when doing the interaction

detection, and the number of events a batch has. Both of them are heavily tailed. For clarity,

we limit the x axis to be within 100. We observe that 70.7% processes have only one batch, and

99.1% processes have fewer than 100 batches. Similarly, more than 78% of batches have fewer than

5 events, and 97% of batches have fewer than 100 events. When computing the entropy of the

process, we round the interval to second-granularity to mitigate noise.

97

Table 5.2: Classification Results

Interactive Non-interactive Total
Classified as Interactive 447 (TP) 181 (FP) 628

Classified as Non-Interactive 5 (FN) 25,746 (TN) 25,751
Total 452 25,927

Another important feature we use is the lifespan of a process, which describes the time duration

from the time the process is created to the time it is ended (or the current time if it is still alive at

the time of decision making). The lifespan is a strong indicator of an interactive process. Due to

the communicative nature, interactive processes tend to live longer than other processes. Therefore,

a large amount of transient processes, especially in Linux hosts, could be filtered out by inspecting

their lifespan of milliseconds. Figure 5.6 illustrates the CDF of process lifespan, which indicates

that around 90% of processes have a short life time less than 20 ms.

Our model also considers the context of a process, including the parent process, the number

of child processes, and the nature of the parent, as a set of important features. If a process is

created by a window manager (e.g., compiz is the default window manager in Ubuntu 16.04), the

process is more likely to be an interactive process. We also blacklist 16 types of commonly seen non-

interactive processes (e.g., “/etc/update” periodically runs on Ubuntu OSes) to remove unnecessary

distractions. It is hard to maintain a white-list since a process could be sometimes interactive and

sometimes non-interactive depending on user operations.

In total, we extract 11 features to build a random forest model based on Weka [53] to predict if

a process is interactive. In the training stage, we manually examine and label processes in 50 user

sessions (20 Linux sessions and 30 Windows sessions) in a one-day period. An advantage with manual

effort is that we can deliberately search the mainexec of a process online and better understand

what the process is used for. The machine learning module is triggered when a process’s ending

event is observed or the process has too many activities, including batches, network connections,

and child processes.

More than 26,000 processes are labeled after filtering out the processes on the blacklist. We apply

10-fold cross-validation on all the processes, and the evaluation results are shown in Table 5.2. Our

machine learning module has a high accuracy and recall of 99.3%. However, the module has a fairly

98

Figure 5.5: Batches in Processes Figure 5.6: Lifespan of Processes

low precision, which is only 71.1%. Therefore, in a user profile, there are a non-negligible portion

of processes that do not really interact with the user. However, even with those false positives,

the user profile has been largely reduced since the dominant factors of non-interactive processes are

mostly identified and pruned off. We argue that having some wrongly classified processes in the

profile is acceptable since the amount of noise created is limited and can be easily identified by the

security auditors.

5.6.4 Data Modeling

We model files accessed by both processes and sub-process branches, and compress them by only

recording the deviations from the model. This modeling process is done when the process is ended.

In most cases, the interaction detection module also kicks in at this moment. It produces the same

results no matter which module runs first, since the modeled processes will be pruned if they or

their ancestors are later decided to be non-interactive. On the other hand, pruned processes do not

go through the interaction detection stage. In fact, most processes do not live more than 20 ms (as

shown in Figure 5.6), and will be immediately pruned or modeled. In our implementation, we apply

data pruning, if applicable, before modeling for higher efficiency. As such, the evaluation results are

only applied on the interactive processes and their offspring. In contrast, non-interactive processes

are pruned off before any modeling can be done.

We build an FP-Tree [54] to model the commonly accessed files of the same mainexec on each

99

host. The FP-Tree is frequently used to mine association rules from a growing data. We set the

Minimum Support Threshold (MST) to 0.3, so that files with frequency less than 0.3 are discarded

from the tree. To identify the common models, we record 100 instances or the number of instances

when UTrack has processed all events within the requested time period. The FP-Tree no longer

changes after the training period. At this stage, new processes with the same mainexec can be

modeled using the Tree.

Since many processes may have the same process branches that exhibit exactly the same system

behaviors, we compress the same branches into one and record the number of occurrences. Some

processes may have a random token in the mainexec, such as the Chrome renderer processes. We

handle them in a case-by-case manner. Similar to data pruning, our online branch modeling algo-

rithm adopts a bottom up approach, which starts modeling from the leaf processes and propagates

back to the parent process if no leaf process is alive. When a parent process notices that multiple

child processes have the same model, it merges these child processes and records the occurrence of

the model. The model of each process is represented in an XML-styled structure, which stores the

information of files, remote IPs, and mainexec of itself and its offspring. Note that the backward

propagation in our user session model stops at the interactive processes. This is because the model

becomes increasingly large in lower-depth process nodes due to the large number of child processes.

Also, it does not provide any help on compressing the data, because the process models at these

levels are rarely identical and thus hardly compressible.

In the 507 user sessions, 8,382 interactive processes and 176,822 other processes (i.e. the child

processes of the interactive processes) are identified. After modeling the branches, more than 71%

of the processes are compressed, leaving us 8,382 interactive processes and 50,394 of their child

processes. All 58,776 processes access more than 1.2 million files. After data modeling, the number

of files reduces to 502,446 (around 60% reduction), where a file model is counted as one file.

On average, each user session has about 116 processes, which is not a large number considering

that a user session can last for several days. However, the number of accessed files is large, almost

1,000 files per session profile. We observe that the majority of files come from process initialization,

since a new process can easily read hundreds of files during initialization. Although this initialization

100

Windowsxplorer.exe
(3/3)

outlook.exe
(5/19)

chrome.exe
7/129

chrome.exe type=renderer

Dropbox.exe
(1/12)

[29]

*.cloudfront.net

*.canonical.com

103.235.X.X/16

*.facebook.com

putty.exe

sshd

bash
ls

vi X.py

X.py
w

[4]

putty.exe

sshd

bash

python X.py
(9/75)

sh c ls
ls

[689]

*.akamaitechnologies.com

*.SMTP.com

162.125.X.X/16

Path1/* (6)
C:/Users/desktop.ini

Path2/OLK* (8)
File1

Path3/* (3)

clear

python X.py
(9/75) sh c ls

ls

[72]

Figure 5.7: Example User Profile
Path1:C:/Users/X/appdata/local/microsoft/windows/temporaryInternetfiles/content.IE5

Path2: C:/Users/X/appdata/local/microsoft/outlook

Path3: C:/Users/X/appdata/local/TEMP

File1: C;/program files/common files/system/ado/msadox.dll

process can usually be modeled, our experiment period may not cover enough instances of the

processes, so all the files are preserved. When UTrack runs for a sufficiently long time, these

processes can also be modeled to reduce the number of files that a profile has.

5.6.5 Graph Presentation

A graph presentation of a user session profile visualizes the activities of a user, and it can provide

security auditors with system insight to make informed decision. However, it is challenging to

101

present the session profile on a single graph, since the graph could be very large due to processes

accessing a large number of files or network connections in a long session. To alleviate this issue,

we abstract similar files and network connections when visualizing the session profile graph. The

abstraction is applied to files and network events. For files, we build a trie (a.k.a prefix tree) to

abstract the prefix of a set of files. Due to loss of information, we should carefully gauge the

degree of abstraction in different scenarios. In our case, the gain is the number of files that can be

abstracted when folding all nodes under a single node in the trie, and the cost is the loss on the

file path levels and filename characters. For network events, remote IP addresses are abstracted

by using the top-level and secondary-level domain names, e.g., “*.google.com”. When the domain

names cannot be found through a reverse DNS lookup, we adopt a network mask approach similar

to [55]. Specifically, class B and class C subnets are abstracted in a similar manner to that of file

abstraction.

Figure 5.7 depicts a simplified user session profile identified from our network environment. Two

different colors indicate two hosts. Processes, files, and remote IPs are represented by ovals, squares,

and diamonds, respectively. The complete graph has a total of 323 nodes. For simplicity, we omit

most unimportant files from the graph. We illustrate the 5 abstracted files read by “outlook.exe”

in the graph to give a basic idea of how the files look like after the abstraction step. For other

processes, we put the number of abstracted files and the number of total files inside the process

node. The case of a process without a number indicates that the files are completely modeled.

Meaningful files are preserved as nodes on the graph. The number of abstracted branches is shown

in brackets on edges.

From the figure, we can easily find the user’s activities in the network. The user logs in the

system on a Windows host and the session lasts for six hours. The session spans two hosts through

interactive ssh connections using “putty.exe.” On the Windows host, the user browses the Internet

via Chrome and uses Outlook for emailing. The user then logs on a remote Linux host to edit and

run a python program “X.py” (the file name is anonymized), which further runs the “ls” program a

couple of times. In general, a graph-based session profile presentation can be easily understood by

a human auditor, and provides insightful visibility on the activities of a user.

102

5.6.6 Use Cases

Many more UBA features can be directly applied to UTrack for anomaly detection. For example,

one can audit the roles (user accounts) that a user has been playing in the network from the user

profiles and identify higher-level inconsistencies. For instance, one cannot be both “Alice” and “Bob”

in the same session profile. Besides providing a foundation of UBA systems, there are many other

use cases that can be built on top of UTrack. For example, it can be used in forensics analysis to

study the behavior of attackers (such that the attacker becomes the POI) and reveal more seemingly

benign behaviors which are in fact part of the cyber kill chain. UTrack can also be used to determine

the value of files (by the amount of time an employee spent on a file) for backing up digital asset.

This is particularly useful in fighting ransomware.

5.7 Conclusion

This chapter presents UTrack, a novel user tracking system that connects events under different

user accounts and from different hosts to form a more holistic user session profile. With the help

of UTrack, a system auditor can easily find out the activities of users inside enterprise networks.

UTrack works by identifying a session root and then following both the local process lineage and the

network control flow of the session root to associate other activities of a user. For scalability and

salient description, UTrack employs an interaction detection module to sift out the most relevant

events that result from users’ interactions, and models common file and activity patterns. We deploy

UTrack in a real enterprise environment that contains 111 hosts for a period of one month. Our

evaluation shows that UTrack is capable of producing accurate and concise user session profiles for

system auditors to use.

103

Chapter 6

Related Work

6.1 Password Study

Many works on password have been done through decades of password-based authentication. In one

of the earliest works [86], Morris and Thompson found that passwords are quite simple and thus are

vulnerable to guessing attacks. Nowadays, passwords studies are done on a much larger scale, and

thus they reveal more insightful and accurate characteristics of passwords. For example, Mazurek et

al. [84] measured 25,000 passwords from a university and revealed correlation between demographics

or other factors, such as gender and field of study. Li et al. [76] conducted a large-scale measurement

study on Chinese passwords, in which more than 100 million real-life passwords are studied and

differences between passwords in Chinese and other languages are presented. Bonneau [19] studied

the language effect on user passwords from more than 70 million passwords. Bonneau et al. also

found that a user’s birthdate appears extensively in 4-digit PINs [23]. Malone et al. [81] studied

the distribution of passwords on several large leaked datasets and found that user passwords fit Zipf

distribution well.

There are also many works investigating more specific aspects of passwords. For instance, Yan

et al. [123] and Kuo et al. [73] investigated the mnemonic passwords. Veras et al. [115] showed

the importance of a date in passwords. Das et al. [36] studied how users mangle one password for

different sites. Schweitzer et al. [100] studied the keyboard pattern in passwords. Apart from the

password itself, human habits and psychology toward password security are also being extensively

104

investigated [44,57].

6.2 Password Strength Measurement

Password Strength measurement still remains a challenge. It has been shown that Shannon entropy

can hardly accurately describe the security level of passwords [26, 67, 95, 120]. Thus, a number of

metrics to measure passwords is introduced. Massey [82] proposed guessing entropy, which shows

the expected number of guesses needed to make a correct guess. Several other most commonly used

metrics include marginal guesswork µ
↵

[95], which measures the number of expected guess needed

to succeed with probability ↵, and the marginal success rate �
�

[24], which is the probability to

succeed in � guesses.

6.3 Password Cracking

Password-cracking methods have been discussed for more than 30 years. Attackers usually try to

recover plain-text passwords from a hashed password database. While reverse hashing function

is infeasible, dictionary attacks are found effective [86]. Reducing time-memory trade-off in pass-

words [56] even made dictionary attacks much more efficient. Rainbow table [89] further reduces the

table number in [56] using multiple reduction functions. However, in recent years as the password

policy has become strict, simple dictionary passwords are less common. More powerful attacks are

then created. Narayanan and Shmatikov [87] used the Markov model to generate guesses based on

the fact that passwords are phonetically similar to users’ native languages. OMEN [29] improves [87]

to crack passwords by using a more optimal guessing order. Another advanced attack is by using

PCFG [121], on which Personal-PCFG is built. Veras et al. [114] tried to leverage semantic patterns

in passwords. Besides, while attacking a hashed password database remains the main attacking

scenario, there are other attacks on different scenarios, such as video eavesdropping [15].

105

6.4 Password Manager

Facing the dilemma of not being able to replace passwords, many works focus on helping users man-

age and remember their passwords, which indirectly enhance password strength due to decreased

memorability requirement. In consequence, password manager earns its prosperity. Despite ubiqui-

tous “memorize and fetch" type of password managers such as browser built-in password managers

or LastPass, researchers also proposed password managers that can enhance password security in

addition to usability [52,85, 97,119].

Password manager significantly reduce the memory burden on users. However, it has its own

usability and security problems [77]. Severe security issues may also be introduced due to the fact

that users failed to capture the correct mental model [31]. Silver et al. [102] demonstrated that

careless auto-filling policy on non-https websites could make passwords be extracted directly from

the web form by an attacker.

6.5 Enhancing Password Security

Facing the fact that passwords are a vulnerable authentication scheme, alternatives such as graphics-

based [37,60] or biometrics-based [59] authentication methods have been proposed. However, text-

based passwords are expected to continue to dominate [21].

Instead of trying to replacing passwords, there are many works focusing on enhancing password

security, including password strength feedback [30,71,120], multiple factor authentication [25,94,99],

and security enhancement tools [85, 97, 105, 119]. However, an ideal solution to enhance password

security without sacrificing usability, if existed, is yet to be found.

6.6 Multi-factor Authentication

Multi-Factor Authentication enhances authentication security by requiring two or even more factors.

Although there are cases that many factors are considered, such as Bank of America account recov-

ery [2], two-factor authentication (2FA) is generally considered as achieving a satisfactory security

level. Despite password as one factor, the other factor ranges from additional knowledges [25, 94],

106

biometrics [61], to hardware tokens [11]. However, enabling 2FA sacrifices usability since it takes

considerably more time and effort to complete user authentication. Thus, 2FA has a limited adoption

rate [93].

6.7 Password Recovery

As an important component of password authentication, account recovery is increasingly important,

especially when users own increasing number of online accounts. Garfinkel [46] proposed Email-

based Identification and Authentication (EBIA), which authenticates a user based on the ability

to access a certain email address. Although it cannot universally replace password authentication,

EBIA has been a primary way for account recovery. Similarly, receiving calls or SMS on cell phones

is another de facto recovery scheme. One more previously popular recovery scheme is through

security question [63]. However, it has been shown that secret questions are weak [20, 99] because

the entropy is low and hence can be easily cracked through guessing or social engineering. Based

on large datasets from Google, Bonneau et al. [20] also demonstrated that secret questions have a

low recall rate and an easily constructible distribution. They also found that users try to supply

fake answers to make the questions harder to answer, which however, yields the opposite outcome.

6.8 User Tracking and UBA

User or user activity tracking has been extensively studied in different contexts and various tech-

niques have been proposed. One typical scenario is web user tracking through different mea-

sures [9, 13, 83]. User behavior tracking for the purpose of security drives UBA, where user ac-

counts are no longer the single indicator of who an incident is performed by. Nowadays, many

security companies have announced UBA tool integration or plan to develop UBA in their sys-

tems [14,58, 62,104,113].

UBA consists of two steps. The first is to model normal user behaviors, and the second is to

detect abnormal users by examining how deviated they are from normal users. There can be many

metrics, algorithms, or machine learning models being used to identify an abnormal user [101,104].

107

Contemporary UBA mostly models users based on basic patterns or statistics, for example, several

basic statistics, such as total upload bytes and total download bytes of a user [101].

However, to detect more sophisticated attacks, it is vital to ensure high accuracy and descrip-

tiveness of user activities.

6.9 Log Audit

Log audit has been used in many fields of security research, such as forensics analysis [69, 70, 79],

intrusion recovery [49, 68], and intrusion detection [39]. One of the most widely adopted log levels

is the OS level, where the basic units are process, files, sockets, etc. The reason is that the OS

level maintains high fidelity of states of the entire system, as well as incurring acceptable CPU and

storage overhead [69]. There are previous works focusing on the reduction of the storage overhead

while not losing much information [75,122]. Besides, there are also previous works that attempt to

increase data granularity based on OS level logs [74,78].

One important use of log audit is to understand an attack, especially more sophisticated attacks

(APT attacks) or unknown attacks. Security experts rely on the logs to determine how an attack

happens [69, 74, 79], as well as its impact on the system [70]. They capture the causal relationship

among processes, files, or sockets, and reconstruct the provenance of an attack and its ramification.

Another broad genre of attack provenance is to use tainting techniques [64,124]. However, they all

rely on an detected attack as its start point so that backtracking and forward tracking are possible

to apply from the point. By contrast, our scheme has a different goal. We aim to build the input

used as part of the detection system.

HERCULE [92] leverages community discovery algorithms to identify an attack based on the

fact that the attack activities belong to the same community in a graph. [17] logs events at the

proxy and mainly focuses on parsing traffic from common application protocols, such as SQL and

SOAP.

108

6.10 User Interaction Detection

The detection of bot generated data (system-triggered) from human-generated data (user-triggered)

is a long-studied subject that has applications in many fields. Generally there are two types of

detection. One is the active detection, such as CAPTCHA [117], which is easy to implement,

(arguably) more accurate, but intrusive. The other type is the passive detection. The passive de-

tection relies on processing log events to detect abnormal behaviors. The related previous works

include detecting game cheaters through Human Observational Proof [48], bots in online social net-

works [28,32,35,116], detecting malicious web bots/crawlers, Google reCaptcha [103], and malicious

crawler detection [118]. There are some significant differences between these techniques and ours. A

major one is that they have specially tailored data input. For example, user agent, cookie lifetime in

Google’s reCaptcha [103], a user account favored access log system in [48,118], or side information

such as social graph [28, 35, 48, 116]. However, in our setting, there is only a generic-purposed log

system, and the events are harder to interpret.

109

Chapter 7

Conclusion and Future Work

In this dissertation, we present four research projects on enhancing the security of user authenti-

cation, particularly, the password-based authentication. In the first project, we perform a study

on the use of personal information in passwords, aiming to understand how users create their pass-

words with their personal information. We develop a novel metric — Coverage — to quantify the

correlation between a password and the personal information of a user. Then, we build an efficient

password cracker that is capable of generating personalized guesses. Our evaluation shows that our

password cracker is much faster than the state-of-the-art crackers with the knowledge of personal

information. The password study in this project is fueled up by the availability of numerous large-

sized leaked datasets. Although the structure of passwords has been well understood, the study on

password semantics still falls short. It is well-known that people from different culture and/or with

different native languages behave differently when constructing a password. One future research

direction is to collect more data that cover more users from different regions, so that we can better

understand how those users differ in choosing passwords. On the other hand, using leaked datasets

for research study raises ethical and privacy concerns, no matter how carefully researchers process

the data. Therefore, a future research topic could target at how to release password datasets with

minimum privacy leakage under different data sharing constraints.

The second project designs and develops BluePass, a distributed password manager that empha-

sizes to achieve both security and usability. On the security side, it requires a dual possession (i.e., a

master password and a mobile device) to access all site passwords with a two-factor authentication.

110

On the usability side, it requires no user involvement for the authentication via the mobile device,

since it is done automatically using the short-ranged Bluetooth communication. In the future, we

envision user authentication could become more heterogeneous to compensate the security limits

of text-based passwords, especially with the rise of mobile devices that are equipped with a variety

of biometric input sources, such as fingerprints, iris, and facial recognition. Biometric-based user

authentication has been replacing passwords in certain applications, such as unlocking the smart-

phone with fingerprints. Thus, mobile-assisted authentication may be a promising direction on

user authentication in the future. The powerful mobile devices also provide a template to support

continuous user authentication and behavior monitoring.

The third project examines hundreds of top websites to unveil the contemporary implementation

of password recovery protocols. One critical observation is that most websites rely on emails to reset

the user passwords, which could lead to a potential single point of failure — if an email account

is compromised, all other accounts are also likely to be compromised by recovering the account

passwords through the email account. We estimate the likelihood and potential damage of such

an account recovery attack, and find that password recovery attacks are real and can cause serious

damages. Furthermore, many major email providers fail to properly protect users’ email accounts.

Finally, we propose a security enhancement protocol to secure the password recovery process in a

compatible and deployable fashion.

The password serves as a token to pass a gatekeeper, but it cannot guarantee an authenticated

user will not perform malicious activities after entering the system. Therefore, it is critical to keep

monitoring the user behaviors in order to identify malicious users that manage to conduct certain

levels of system breaches. In the fourth project, we design a user tracking system called UTrack

that tracks user behaviors with associated identities in an enterprise network system. It is based

on OS-level logs to construct complete and concise user profiles inside a network. Beyond one-time

password authentication, behavior-based user authenticity monitoring is an important trend. Many

security companies start to use UBA to identify suspicious users. The ability to continuously track

user behaviors largely complement the one-time nature of password-based authentication. Based

on UTrack, a number of end-solutions could be developed. For instance, it can empower intrusion

111

detection systems on accurately detecting and identifying intruders based on a complete user profile.

A user tracking system could also be useful on determining the value of digital assets, which can be

done by assessing the amount of time spent on a file by employees. This is particularly useful for

fighting ransomware. Furthermore, it can be used to ensure that an employee follows the security

policy while operating on sensitive data.

UBA has been introduced only for several years, and it has become a very hot topic in both

academia and industry. We believe that there would be more accurate user modeling and more

effective detection techniques on various layers. Meanwhile, many questions arise to be answered.

For instance, for log-based UBA, it is challenging to collect and fuse data from different sources,

since they may have very diverse syntax and semantics. It is also non-trivial to instrument existing

software without significant performance degradation. Furthermore, the “needle in a haystack”

problem that widely exists in many log systems also needs to be addressed.

112

Bibliography

[1] Amazon web service. https://aws.amazon.com/.

[2] Bank of america forgot passcode. https://secure.bankofamerica.com/login/reset/-
entry/forgotPwdScreen.go.

[3] GoogleâĂŹs downtime caused a 40% drop in global traffic.
https://engineering.gosquared.com/googles-downtime-40-drop-in-traffic.

[4] Hold security recovers 272 million stolen credentials from a collector.
http://holdsecurity.com/news/the_collector_breach/.

[5] Lastpass suffers data breach again. http://www.csoonline.com/article/2936105/data-
breach/lastpass-suffers-data-breach-again.html.

[6] opendkim. http://www.opendkim.org/.

[7] Postfix. http://www.postfix.org/.

[8] An update on our war against account hijackers. https://googleblog.blogspot.com/2013/02/an-
update-on-our-war-against-account.html.

[9] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking mechanisms
in the wild. In Proceedings of the 2014 ACM CCS, 2014.

[10] Furkan Alaca and PC van Oorschot. Device fingerprinting for augmenting web authen-
tication: classification and analysis of methods. In Proceedings of the 32nd Annual Conference
on Computer Security Applications, pages 289–301. ACM, 2016.

[11] Fadi Aloul, Syed Zahidi, and Wassim El-Hajj. Two factor authentication using mobile
phones. In AICCSA 2009. IEEE, 2009.

[12] Animashree Anandkumar, Chatschik Bisdikian, and Dakshi Agrawal. Tracking in
a spaghetti bowl: monitoring transactions using footprints. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 36, pages 133–144. ACM, 2008.

[13] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. Knowing the user’s every
move: user activity tracking for website usability evaluation and implicit interaction. In
WWW, 2006.

113

[14] BALABIT. Privileged account analytics - user behavior analytics security solution.
https://www.balabit.com/privileged-account-analytics, 2015.

[15] Davide Balzarotti, Marco Cova, and Giovanni Vigna. Clearshot: Eavesdropping on
keyboard input from video. In IEEE Security & Privacy, 2008.

[16] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
magpie for request extraction and workload modelling. In OSDI, 2004.

[17] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Dobra, Bradley Reaves,
Patrick Cable, Thomas Moyer, and Nabil Schear. Transparent web service auditing
via network provenance functions. In Proceedings of the 26th International Conference on
World Wide Web, pages 887–895, 2017.

[18] Adam Beautement, M Angela Sasse, and Mike Wonham. The compliance budget:
managing security behaviour in organisations. In NSPW. ACM, 2008.

[19] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In IEEE Security & Privacy, 2012.

[20] Joseph Bonneau, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike
Williamson. Secrets, lies, and account recovery: Lessons from the use of personal knowledge
questions at google. In WWW, 2015.

[21] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano.
The quest to replace passwords: A framework for comparative evaluation of web authentica-
tion schemes. In IEEE Security & Privacy, 2012.

[22] Joseph Bonneau, Cormac Herley, Paul C van Oorschot, and Frank Stajano.
Passwords and the evolution of imperfect authentication. Communications of the ACM, 2015.

[23] Joseph Bonneau, Sören Preibusch, and Ross Anderson. A birthday present every
eleven wallets? the security of customer-chosen banking pins. In Financial Cryptography and
Data Security. Springer, 2012.

[24] S Boztas. Entropies, guessing, and cryptography. Department of Mathematics, Royal Mel-
bourne Institute of Technology, Tech. Rep, 1999.

[25] John Brainard, Ari Juels, Ronald L Rivest, Michael Szydlo, and Moti Yung.
Fourth-factor authentication: somebody you know. In Proceedings of the 13th ACM conference
on Computer and communications security, pages 168–178. ACM, 2006.

[26] Christian Cachin. Entropy measures and unconditional security in cryptography. PhD
thesis, Swiss Federal Institute of Technology Zurich, 1997.

[27] Phuong Cao, Hongyang Li, Klara Nahrstedt, Zbigniew Kalbarczyk, Ravis-
hankar Iyer, and Adam J Slagell. Personalized password guessing: a new security
threat. In ACM Proceedings of the 2014 Symposium and Bootcamp on the Science of Security,
2014.

114

[28] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding
the detection of fake accounts in large scale social online services. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 15–15. USENIX
Association, 2012.

[29] Claude Castelluccia, Abdelberi Chaabane, Markus Dürmuth, and Daniele
Perito. When privacy meets security: Leveraging personal information for password crack-
ing. arXiv preprint arXiv:1304.6584, 2013.

[30] Claude Castelluccia, Markus Dürmuth, and Daniele Perito. Adaptive password-
strength meters from markov models. In NDSS, 2012.

[31] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. A usability study and
critique of two password managers. In Usenix Security, 2006.

[32] Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. Who is tweeting
on twitter: human, bot, or cyborg? In Proceedings of the 26th annual computer security
applications conference, pages 21–30. ACM, 2010.

[33] Dave Crocker, Tony Hansen, and Murray Kucherawy. Domainkeys identified mail
(dkim) signatures. no. rfc 6376. Technical report, 2011.

[34] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan Wallach, and Dirk Bal-
fanz. Strengthening user authentication through opportunistic cryptographic identity asser-
tions. In ACM CCS, 2012.

[35] George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil nodes using social
networks. In NDSS. San Diego, CA, 2009.

[36] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. The tangled web of password reuse. In NDSS, 2014.

[37] Darren Davis, Fabian Monrose, and Michael K Reiter. On user choice in graphical
password schemes. In USENIX Security, 2004.

[38] X de Carné de Carnavalet and Mohammad Mannan. From very weak to very strong:
Analyzing password-strength meters. In NDSS, 2014.

[39] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on software engi-
neering, (2):222–232, 1987.

[40] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M
Chen. Eidetic systems. In USENIX OSDI, pages 525–540, 2014.

[41] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie Bursztein,
Nicolas Lidzborski, Kurt Thomas, Vijay Eranti, Michael Bailey, and J Alex
Halderman. Neither snow nor rain nor mitm...: An empirical analysis of email delivery
security. In ACM IMC, 2015.

[42] Serge Egelman, Sakshi Jain, Rebecca S Portnoff, Kerwell Liao, Sunny Con-
solvo, and David Wagner. Are you ready to lock? In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 750–761. ACM, 2014.

115

[43] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin
Beznosov, and Cormac Herley. Does my password go up to eleven?: the impact of
password meters on password selection. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2379–2388. ACM, 2013.

[44] Dinei Florencio and Cormac Herley. A large-scale study of web password habits. In
ACM WWW, 2007.

[45] CherryPy. A Minimalist Python Web Framework. http://www.cherrypy.org/, 2016.

[46] Simson L Garfinkel. Email-based identification and authentication: An alternative to pki?
IEEE Security & Privacy Magazine, 2003.

[47] Steven Gianvecchio and Haining Wang. Detecting covert timing channels: an entropy-
based approach. In Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security, pages 307–316, 2007.

[48] Steven Gianvecchio, Zhenyu Wu, Mengjun Xie, and Haining Wang. Battle of
botcraft: fighting bots in online games with human observational proofs. In Proceedings of
the 16th ACM conference on Computer and communications security, pages 256–268. ACM,
2009.

[49] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal De Lara. The
taser intrusion recovery system. In SOSP, volume 39, pages 163–176. ACM, 2005.

[50] Ralph Gross and Alessandro Acquisti. Information revelation and privacy in online
social networks. In ACM WPES, 2005.

[51] Eric Grosse and Mayank Upadhyay. Authentication at scale. IEEE Security & Privacy
Magazine, 11(1):15–22, 2013.

[52] J Alex Halderman, Brent Waters, and Edward W Felten. A convenient method
for securely managing passwords. In WWW. ACM, 2005.

[53] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 2009.

[54] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In ACM SIGMOD record, volume 29, pages 1–12, 2000.

[55] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
Towards scalable cluster auditing through grammatical inference over provenance graphs. In
NDSS, 2018.

[56] Martin E Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory, 1980.

[57] Adele E Howe, Indrajit Ray, Mark Roberts, Malgorzata Urbanska, and Zinta
Byrne. The psychology of security for the home computer user. In IEEE Security & Privacy,
2012.

116

[58] IBM. Ibm qradar user behavior analytics. https://www.ibm.com/cz-en/marketplace/qradar-
user-behavior-analytics, 2016.

[59] Anil K Jain, Arun Ross, and Sharath Pankanti. Biometrics: a tool for information
security. IEEE Transactions on Information Forensics and Security, 2006.

[60] Ian Jermyn, Alain J Mayer, Fabian Monrose, Michael K Reiter, Aviel D Rubin,
et al. The design and analysis of graphical passwords. In Usenix Security, 1999.

[61] Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. Biohashing: two
factor authentication featuring fingerprint data and tokenised random number. Pattern recog-
nition, 2004.

[62] Johna Till Johnsons. User behavioral analytics tools can thwart security attacks, 2015.

[63] Mike Just. Designing and evaluating challenge-question systems. IEEE Security & Privacy
Magazine, (5):32–39, 2004.

[64] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
Dta++: dynamic taint analysis with targeted control-flow propagation. In NDSS, 2011.

[65] Ambarish Karole, Nitesh Saxena, and Nicolas Christin. A comparative usability
evaluation of traditional password managers. In ICISC 2010. Springer, 2010.

[66] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: Private
Communication in a Public World. Prentice-Hall, Inc., 1995.

[67] Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek, Richard Shay,
Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio
Lopez. Guess again (and again and again): Measuring password strength by simulating
password-cracking algorithms. In IEEE Security & Privacy, 2012.

[68] Taesoo Kim, Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, et al. Intrusion
recovery using selective re-execution. In OSDI, pages 89–104, 2010.

[69] Samuel T King and Peter M Chen. Backtracking intrusions. SOSP, 37(5):223–236,
2003.

[70] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M
Chen. Enriching intrusion alerts through multi-host causality. In NDSS, 2005.

[71] Saranga Komanduri, Richard Shay, Lorrie Faith Cranor, Cormac Herley, and
Stuart Schechter. Telepathwords: Preventing weak passwords by reading users’ minds.
In USENIX Security, 2014.

[72] Balachander Krishnamurthy and Craig E Wills. On the leakage of personally iden-
tifiable information via online social networks. In ACM COSN, 2009.

[73] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of
mnemonic phrase-based passwords. In ACM SOUPS, 2006.

117

[74] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack provenance
via binary-based execution partition. In NDSS, 2013.

[75] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting audit
log. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 1005–1016. ACM, 2013.

[76] Zhigong Li, Weili Han, and Wenyuan Xu. A large-scale empirical analysis of chinese
web passwords. In Proc. USENIX Security, 2014.

[77] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The emperor’s new
password manager: Security analysis of web-based password managers. In USENIX Security,
2014.

[78] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. Accurate, low cost and instrumentation-free security audit logging for
windows. In Proceedings of the 31st Annual Computer Security Applications Conference, pages
401–410. ACM, 2015.

[79] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: towards practical prove-
nance tracing by alternating between logging and tainting. In Proceedings of NDSS, volume 16,
2016.

[80] The Mutt E mail Client. http://www.mutt.org/, 2019.

[81] David Malone and Kevin Maher. Investigating the distribution of password choices. In
ACM WWW, 2012.

[82] James L Massey. Guessing and entropy. In IEEE International Symposium on Information
Theory, 1994.

[83] Jonathan R Mayer and John C Mitchell. Third-party web tracking: Policy and tech-
nology. In IEEE S&P 2012, pages 413–427, 2012.

[84] Michelle L Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase
Ur. Measuring password guessability for an entire university. In ACM CCS, 2013.

[85] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C
van Oorschot. Tapas: design, implementation, and usability evaluation of a password
manager. In ACSAC. ACM, 2012.

[86] Robert Morris and Ken Thompson. Password security: A case history. Communications
of the ACM, 1979.

[87] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using
time-space tradeoff. In ACM CCS, 2005.

[88] Claudio Soriente Nikolaos Karapanos, Claudio Marforio and Srdjan Capkun.
Sound-proof: Usable two-factor authentication based on ambient sound. In Proc. USENIX
Security, 2015.

118

[89] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Advances in
Cryptology-CRYPTO 2003. 2003.

[90] How often do you need to charge your smartphone? http://lifehacker.com/how-
often-do-you-need-to-charge-your-smartphone-1441051270, 2016.

[91] Bryan Parno, Cynthia Kuo, and Adrian Perrig. Phoolproof phishing prevention.
Springer, 2006.

[92] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhi-
wei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. Hercule: Attack story recon-
struction via community discovery on correlated log graph. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 583–595. ACM, 2016.

[93] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris
Ioannidis. Two-factor authentication: is the world ready?: quantifying 2fa adoption. In
Proceedings of the Eighth European Workshop on System Security, page 4. ACM, 2015.

[94] Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In
ACM CCS, 2002.

[95] John O Pliam. On the incomparability of entropy and marginal guesswork in brute-force
attacks. In Progress in Cryptology-INDOCRYPT. 2000.

[96] Patrick Reynolds, Janet L Wiener, Jeffrey C Mogul, Marcos K Aguilera,
and Amin Vahdat. Wap5: black-box performance debugging for wide-area systems. In
Proceedings of the 15th international conference on World Wide Web, pages 347–356. ACM,
2006.

[97] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C Mitchell.
Stronger password authentication using browser extensions. In Usenix security, 2005.

[98] Bo Sang, Jianfeng Zhan, Gang Lu, Haining Wang, Dongyan Xu, Lei Wang, Zhi-
hong Zhang, and Zhen Jia. Precise, scalable, and online request tracing for multitier
services of black boxes. IEEE Transactions on Parallel and Distributed Systems, 23(6):1159–
1167, 2012.

[99] Stuart Schechter, Serge Egelman, et al. It’s no secret. measuring the security and
reliability of authentication via âĂĲsecretâĂİ questions. In IEEE Security & Privacy, 2009.

[100] Dino Schweitzer, Jeff Boleng, Colin Hughes, and Louis Murphy. Visualizing
keyboard pattern passwords. In IEEE VizSec, 2009.

[101] Madhu Shashanka, Min-Yi Shen, and Jisheng Wang. User and entity behavior ana-
lytics for enterprise security. In 2016 IEEE Big Data, pages 1867–1874, 2016.

[102] David Silver, Suman Jana, Eric Chen, Collin Jackson, and Dan Boneh. Password
managers: Attacks and defenses. In Usenix Security, 2014.

[103] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. IâĂŹm not a
human: Breaking the google recaptcha. Black Hat,(i), pages 1–12, 2016.

119

[104] Splunk. Splunk user behavior analytics, 2015.

[105] Benjamin Strahs, Chuan Yue, and Haining Wang. Secure passwords through enhanced
hashing. In USENIX LISA, 2009.

[106] Byung-Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan, Bhuvan Ur-
gaonkar, and Rong N Chang. vpath: Precise discovery of request processing paths from
black-box observations of thread and network activities. In USENIX ATC, 2009.

[107] Alexa the top 500 sites on the web. http://www.alexa.com/topsites, 2016.

[108] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-
El-Malek, Julio Lopez, and Gregory R Ganger. Stardust: tracking activity in a dis-
tributed storage system. In ACM SIGMETRICS Performance Evaluation Review, volume 34,
pages 3–14. ACM, 2006.

[109] Roy Hodgman Tod Beardsley. Rapid 7 research report: Understanding user behavior
analytics, 2015.

[110] Trustwave. Trustwave global security report. https://www2.trustwave.com/rs/815-RFM-
693/images/2015_TrustwaveGlobalSecurityReport.pdf, 2015.

[111] Melissa Turcotte and Juston Shane Moore. Technical report la-ur-17-21663: User
behavior analytics, 2017.

[112] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo
Bauer, et al. How does your password measure up? the effect of strength meters on
password creation. In The 21st USENIX Security Symposium, pages 65–80, 2012.

[113] VARONIS. User behavior analytics. https://www.varonis.com/user-behavior-analytics/,
2016.

[114] Rafael Veras, Christopher Collins, and Julie Thorpe. On the semantic patterns
of passwords and their security impact. In NDSS, 2014.

[115] Rafael Veras, Julie Thorpe, and Christopher Collins. Visualizing semantics in
passwords: The role of dates. In IEEE VizSec, 2012.

[116] Bimal Viswanath, Ansley Post, Krishna P Gummadi, and Alan Mislove. An
analysis of social network-based sybil defenses. ACM SIGCOMM Computer Communication
Review, 40(4):363–374, 2010.

[117] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. recaptcha: Human-based character recognition via web security measures. Science,
321(5895):1465–1468, 2008.

[118] Shengye Wan, Yue Li, and Kun Sun. Protecting web contents against persistent dis-
tributed crawlers. In IEEE ICC, 2017.

[119] Luren Wang, Yue Li, and Kun Sun. Amnesia: A bilateral generative password manager.
In ICDCS, 2016.

120

[120] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics
for password creation policies by attacking large sets of revealed passwords. In ACM CCS,
2010.

[121] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. Password
cracking using probabilistic context-free grammars. In IEEE Security & Privacy, 2009.

[122] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity data reduction for
big data security dependency analyses. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 504–516. ACM, 2016.

[123] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password mem-
orability and security: Empirical results. IEEE Security & Privacy Magazine, 2004.

[124] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and analysis. In
Proceedings of the 14th ACM conference on Computer and communications security, pages
116–127. ACM, 2007.

121

	On Enhancing Security of Password-Based Authentication
	Recommended Citation

	tmp.1564057447.pdf.qwTXt

