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ABSTRACT

The question how aquatic populations persist in rivers when individuals are constantly lost
due to downstream drift has been termed the “drift paradox.” Reaction-diffusion-advection
models have been used to describe the spatial-temporal dynamics of stream population and
they provide some qualitative explanations to the paradox. Here random undirected
movement of individuals in the environment is described by passive diffusion, and an
advective term is used to describe the directed movement in a river caused by the flow. In
this work, the effect of spatially varying Allee effect growth rate on the dynamics of
reaction-diffusion-advection models for the stream population is studied.

In the first part, a reaction-diffusion-advection equation with strong Allee effect growth
rate is proposed to model a single species stream population in a unidirectional flow.
Under biologically reasonable boundary conditions, the existence of multiple positive
steady states is shown when both the diffusion coefficient and the advection rate are small,
which lead to different asymptotic behavior for different initial conditions. On the other
hand, when the advection rate is large, the population becomes extinct regardless of initial
condition under most boundary conditions. It is shown that the population persistence or
extinction depends on Allee threshold, advection rate, diffusion coefficient and initial
conditions, and there is also rich transient dynamical behavior before the eventual
population persistence or extinction.

The dynamical behavior of a reaction-diffusion-advection model of a stream population
with weak Allee effect type growth is studied in the second part. Under the open
environment, it is shown that the persistence or extinction of population depends on the
diffusion coefficient, advection rate and type of boundary condition, and the existence of
multiple positive steady states is proved for intermediate advection rate using bifurcation
theory. On the other hand, for closed environment, the stream population always persists
for all diffusion coefficients and advection rates.

In the last part, the dynamics of a reaction-diffusion-advection benthic-drift population
model that links changes in the flow regime and habitat availability with population
dynamics is studied. In the model, the stream is divided into drift zone and benthic zone,
and the population is divided into two interacting compartments, individuals residing in the
benthic zone and individuals dispersing in the drift zone. The benthic population growth is
assumed to be of strong Allee effect type. The influence of flow speed and individual
transfer rates between zones on the population persistence and extinction is considered,
and the criteria of population persistence or extinction are formulated and proved.

All results are proved rigorously using the theory of partial differential equation, dynamical
systems. Various mathematical tools such as bifurcation methods, variational methods,
and monotone methods are applied to show the existence of multiple steady state solutions
of models.
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Chapter 1

Introduction

Streams and rivers are characterized by a variety of physical, chemical and geomorpho-

logical features such as unidirectional flow, pools and riffles, bends and waterfalls, floodplains,

lateral inflow and network structure and many more. These complex structures provide a

wide range of qualitatively different habitat for aquatic species and organisms such as zoo-

plankton, invertebrates, aquatic plant and fish. In [71], Müller proposed an important issue

in stream ecology, termed the “drift paradox”, which asks how stream dwelling organisms

can persist in a river/stream environment when continuously subjected to a unidirectional

water flow. The growth of a biological population is affected by both the environmental fac-

tors and the population density. The spatial structure of the natural environment influences

the movement pattern of the individuals in the population, and that in turn affects the pop-

ulation dynamics. Individual movement can be undirected or directed. Random undirected

movement of individuals in the environment is often described by a passive diffusion of a

density function in continuum following the classical approach in physics. Combining with

the density-dependent growth of the population, we obtain reaction-diffusion models, which

have been widely used to describe spatiotemporal behavior in both chemical [25, 81] and

biological fields [9, 75, 76].

In some situations, in addition to the random dispersal, individuals in a population

also make advective movement which is from sensing and following the gradient of resource
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distribution (taxis) or a directional fluid/wind flow. Some examples are marine living species

flowing in rivers, lakes or oceans, benthic marine species along coastlines with dominant

long-shore currents, or phytoplankton species in water column experiencing gravitational

downward pull [38, 93]. The addition of advection to reaction-diffusion models may change

the long term outcome (persistence/extinction) of the population [34, 42, 54, 63, 65].

Mathematical models of populations can be used to accurately describe changes occur-

ring in a population and, importantly, to predict future changes. Population ecologists use

a variety of mathematical methods to model population dynamics (how populations change

in size and composition over time). Some of these models represent growth without envi-

ronmental constraints, while others include “ceilings” determined by limited resources. In

Charles Darwin’s description of “struggle for existence”, he recognized the fact that individ-

uals will compete (with members of their own or other species ) for limited resources. The

successful ones will survive to pass on their own characteristics and traits (which we know

now are transferred by genes) to the next generation at a greater rate: a process known as

natural selection. To model the reality of limited resources, population ecologists developed

the logistic growth model. In logistic growth, the growth rate decreases as the population

reaches carrying capacity. Carrying capacity is the maximum number of individuals in a pop-

ulation that the environment can support. When the population follows a typical logistic

growth, there often exists a critical parameter value (diffusion coefficient, advection coeffi-

cient, domain size, growth rate) for the population persistence or extinction [53, 59, 70], and

it is well known that the model has a unique positive steady state solution which is globally

asymptotically stable when population persists [9].

Despite the universal acceptance of logistic growth as the most reasonable one, since

Allee’s pioneer work [3] in 1931, ecologists have found that in many cases, the population

growth could depend on the density positively instead of negative dependence as in the

logistic one. When the population density is low, individual may have difficulty in finding

mates or defending against predators, which will lead to low birth rate and high death rate.

For high population density, population size is still restricted by the environment limits.
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Thus either excessive sparsity or excessive crowding can inhibit the population growth, which

means such species have an optimum intermediate range for the population growth. This

phenomenon has been frequently termed as the Allee effect. The Allee effect is strong

if the growth rate per capital is negative for low population density, and if the growth

rate per capital is positive and increasing at low population density, it is called weak Allee

effect. Allee effect has been the focus of increasing interest over the past three decades

[18, 57, 94]. For instance, due to the severe harvesting, the west Atlantic cod (Ganus morhus)

population stayed below the Allee threshold in the past few decades [22, 85]. Although many

management strategies have been implemented to reduce fishing mortality after a collapse,

the cod population does not show an increase of size and such a lack of recovery indicates a

reduced capacity to rebound from low densities. Another example is the case of Vancouver

Island marmot (Marmota vancouverensis) whose population has declined by 80% since the

1980s. The studies in [8] shows a growth rate of strong Allee effect type for the marmot due

to the longer distance traveled when finding mates and change of social behavior. Overall

more and more evidences of Allee effect in wild species populations have been found in recent

studies [18, 50], especially for marine species such as blue crab, oyster whose growth rate

strongly depends on the river/ocean flow [28, 29, 46].

Mathematical models, such as reaction-diffusion-advection equations and integro-differential

equations have been established to study the population dynamic in advective environment.

For species following logistic type growth, a “critical flow speed” has been identified, below

which can ensure the persistence of the stream population [42, 53, 54, 59, 63, 65, 70, 93]. On

the other hand, when the species following Allee effect type growth, population persistence

for all initial conditions becomes not possible as the extinction state is always a stable state,

and more delicate conditions are needed to ensure the population persistence [89, 107, 108].

The solution of stream population persistence/extinction not only leads to a better under-

standing of population dynamics in a stream environment, but also provides strategies for

how to keep a native species persistent.

Stream hydraulic characteristics is another important factor in the ecology of stream
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populations. Of great importance is the presence of storage zones (zones of zero or near-zero

flow) in stream channels. These zones are refuges for many organisms not adapted to high

water velocity. And for some aquatic species, the individuals spend a proportion of their time

immobile and a proportion of their time in an environment with a unidirectional current and

do not reproduce there. Following [7, 23], the river can be partitioned into two zones, drift

zone and benthic zone, and the population is also split into two interacting compartments:

individuals residing in the benthic zone and the ones dispersing in the drift zone. Assuming

that longitudinal movement occurs only in the drift zone, a system of coupled reaction-

diffusion-advection equation of drift population and equation of benthic population can be

used to model the dynamic evolution of aquatic species that reproduce on the bottom of the

river and release their larval stages into the water column, such as sedentary water plant,

oyster and coral [63, 78].

In this paper, reaction-diffusion-advection models for stream population in both single

channel setting and benthic-drift setting are established, and the dynamical behavior of

models are analyzed and simulated. In particular our focus is on the effect of Allee effect

growth rate on the population dynamics.

1.1 Mathematical models

1.1.1 Equation

Following [9, 59], we first consider a reaction-diffusion-advection equation on a one-

dimensional bounded habitat (0, L):

ut = duxx − qux + ug(x, u), 0 < x < L, t > 0. (1.1)

Here u(x, t) is the population density of a biological species at location x ∈ [0, L] and time

t ≥ 0, and the river environment is modeled by a one-dimensional interval [0, L] ⊂ R; the

upstream endpoint is x = 0, and the downstream endpoint is x = L, and L is the length
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of the river; the parameter d is the diffusion coefficient, q is the advection coefficient (flow

rate), and dux(x, t) − qu(x, t) is the flow flux at x; and the function g(x, u) is the growth

rate per capita which may depend on the location and population density. We assume that

the growth rate f(x, u) = ug(x, u) satisfies the following basic technical assumptions, which

are similar to the ones in [9, 89]:

(g1) For any u ≥ 0, g(·, u) ∈ C[0, L], and for any x ∈ [0, L], g(x, ·) ∈ C1[0, L].

(g2) For any x ∈ [0, L], there exists r(x) ≥ 0, where 0 < r(x) < M and M > 0 is a constant,

such that g(x, r(x)) = 0, and g(x, u) < 0 for u > r(x).

(g3) For any x ∈ [0, L], there exists s(x) ∈ [0, r(x)] such that g(x, ·) is increasing in [0, s(x)]

and non-increasing in [s(x),∞]; and there also exists N > 0 such that g(x, s(x)) ≤ N .

Here g(x, u) is the growth rate per capita at x; r(x) is a local carrying capacity at x which

has a uniform upper bound M ; u = s(x) is where g(x, ·) reaches the maximum value, and

the number N is a uniform bound for g(x, u) at all (x, u). Typically the behavior of g(x, ·)

defined in (g3) can be one of the following three cases: (see [89])

(g4a) Logistic: s(x) = 0, g(x, 0) > 0, and g(x, ·) is decreasing in [0,∞);

(g4b) Weak Allee effect: s(x) > 0, g(x, 0) > 0 and g(x, ·) is increasing in [0, s(x)], non-increasing

in [s(x),∞); or

(g4c) Strong Allee effect: s(x) > 0, g(x, 0) < 0, g(x, s(x)) > 0 and g(x, ·) is increasing in

[0, s(x)], non-increasing in [s(x),∞). Hence there exists a unique h(x) ∈ (0, s(x)) such

that g(x, h(x)) = 0 for all 0 < x < L.

In (g4c), the quantity h(x) is the local threshold value for the extinction/persistence of the

population, which is also known as the sparsity constant. Figure 1.1 shows typical graphs of

f(x, u) and g(x, u) for these three cases.

Typical examples of growth rate functions satisfying (g4a) is

f(x, u) = u(r(x)− u), (1.2)
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Figure 1.1: (a) logistic; (b) weak Allee effect; (c) strong Allee effect; the graphs on top
row are growth rate f(u), and the ones on lower row are growth rate per capita g(u).

while the one for Allee effect is

f(x, u) = u(u− h(x))(r(x)− u), (1.3)

where 0 < h(x) < r(x) represents the strong Allee effect case, and −r(x) < h(x) < 0 rep-

resents the weak Allee effect case. The nonlinear function f(x, u) with a strong Allee effect

growth rate is also called the bistable type as u = 0 and u = r(x) are both stable solutions

to the ordinary differential equation (ODE) u′ = f(x, u). Summarizing the above discus-

sions, we will consider the following reaction-diffusion-advection equation with a general
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Danckwerts boundary condition at the upstream (x = 0) and downstream (x = L) ends:



ut = duxx − qux + ug(x, u), 0 < x < L, t > 0,

dux(0, t)− qu(0, t) = buqu(0, t), t > 0,

dux(L, t)− qu(L, t) = −bdqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ (0, L),

(1.4)

where bu ≥ 0 and bd ≥ 0 indicate the severity of the population loss at the upstream end

x = 0 and the downstream end x = L, respectively. In chapter 2, we will investigate equation

(1.4) with strong Allee effect population growth, i.e., g(x, u) satisfies (g1)-(g3) and (g4c). In

chapter 3, we will investigate equation (1.4) with weak Allee effect population growth, i.e.,

g(x, u) satisfies (g1)-(g3) and (g4b).

1.1.2 Boundary conditions

The boundary condition at x = 0 or x = L can take one of the following forms (see [59]

for ecological interpretation of each boundary condition):

No Flux (NF) dux(x, t)− qu(x, t) = 0, (1.5)

Free Flow (FF) ux(x, t) = 0, (1.6)

Hostile (H) u(x, t) = 0. (1.7)

Often at the upstream end x = 0 a no flux boundary condition is imposed, and at the

downstream end x = L a free flow boundary condition is used to indicate that there is

a population loss due to the advective movement, or a hostile boundary condition is used

which means no individuals can return to the habitat after leaving. The no-flux boundary

condition can be interpreted as there is no loss of individuals at x = 0 or x = L. Following

7



[54, 59], we impose boundary conditions in a general form

dux(0, t)− qu(0, t) = buqu(0, t), dux(L, t)− qu(L, t) = −bdqu(L, t), (1.8)

where bu ≥ 0 and bd ≥ 0. Here the parameters bu and bd determine the magnitude of

population loss at the upstream end x = 0 and the downstream end x = L, respectively.

This form of boundary condition was proposed in [54]. Typically a no-flux boundary (NF)

condition with bu = 0 is imposed at the upstream end, and the downstream boundary

condition can be hostile (H) which is equivalent to bd = ∞, or free-flow one (FF) with

bd = 1, or no-flux one (NF) with bd = 0. More discussions and biological interpretations

of these boundary conditions were given in [59]. As discussed in [59], (1.4) can be used to

describe plankton growth in river flows, periphyton dynamics in the lake water column, or

biological species in water flow from stream to ocean or lake. Note that (1.8) with bu ≥ 0

and bd ≥ 0 implies that

[dux(x, t)− qu(x, t)]
∣∣∣L
0

= −q[bdu(L, t) + buu(0, t)] ≤ 0. (1.9)

When bu = bd = 0, we have a no-flux boundary condition at both ends of the stream:

(NF/NF) dux(0, t)− qu(0, t) = 0, dux(L, t)− qu(L, t) = 0, (1.10)

which represents a closed environment as there is no loss of the population due to the

movement. On the other hand, if bu > 0 or bd > 0, then the total population has a loss over

the region [0, L] due to the movement and (1.8) depicts an open flowing environment. For

example,

(NF/FF) dux(0, t)− qu(0, t) = 0, ux(L, t) = 0, (1.11)

In this paper, we consider the persistence and extinction of population u(x, t) under the

general boundary conditions (1.8) with bu ≥ 0 and bd ≥ 0. But hostile boundary condition
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will also be studied some time as a comparison, such as (H/H), (NF/H) or (H/NF). For

example,

(NF/H) dux(0, t)− qu(0, t) = 0, u(L, t) = 0. (1.12)

1.1.3 Benthic-drift model

Consider a population in which individuals live and reproduce in the storage zone, and

occasionally enter the water column to drift until they settle on the benthos again. We

assume that advective and diffusive transport occur only in the main flowing zone, not the

storage zone. So we neglect the movement in the benthic zone. While in the drifting water,

we consider the individual’s movement as a combination of passive diffusion movement and

advective movement which is from sensing and following the gradient of resource distribution

(taxis) or a directional fluid/wind flow. Let u(x, t) be the population density in the drift zone

and let v(x, t) be the population density in the benthic zone. And the river environment is

modeled by a one-dimensional interval [0, L] ⊂ R; the upstream endpoint is x = 0, and the

downstream endpoint is x = L, where L is the length of the river. A mathematical model

that describes the dynamics of the population in a river is given by [37, 63] (see Figure 1.2):



ut = duxx − qux +
Ab(x)

Ad(x)
µv − σu−m1u, 0 < x < L, t > 0,

vt = vg(x, v)−m2v − µv +
Ad(x)

Ab(x)
σu, 0 ≤ x ≤ L, t > 0,

dux(0, t)− qu(0, t) = buqu(0, t), t > 0,

dux(L, t)− qu(L, t) = −bdqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, L),

(1.13)

where d and q are the diffusion rate and advection rate of the population in the drifting

zone, respectively; Ab(x) and Ad(x) are the cross-sectional areas of the benthic zone and

drift zone, respectively; σ is the the transfer rate of the drift population to the benthic one

and µ is the transfer rate of the benthic population to the drifting one; m1 and m2 are the
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mortality rates of the drift and benthic population, respectively. The growth rate per capita

g(x, v) satisfies the general conditions in subsection 1.1.1. In chapter 4, we will investigate

the population persistence/extinction dynamics of system (1.13) with strong Allee effect type

growth function. 1

Drift Zone

𝑨𝒅 (𝐱)

𝑨𝒃 (𝐱)

µ σ

Figure 1.2: Illustration of drift-benthic habitat.

1.2 Related work

The question of dynamics of a spatially distributed species, moving passively in a stream

or river, have been proposed to explore population persistence and the so-called “drift para-

dox” [64, 78, 93]. The drift paradox asks how stream-dwelling organisms can persist, without

being washed out, when they are continuously subject to the unidirectional stream flow. With

assumption of logistic population growth, the existence/persistence of a stream population

in a constant environment have been considered in the framework of reaction-diffusion-

advection in [53, 54, 59, 62, 70, 93, 97], and the effect of seasonal variations in environmental

and climatic conditions on the stream population were considered in [41, 42, 43]. [54] studied

1Figure 1.2 modified from: https://midwestoutdoors.com/fishing/update-river-zones-creates-hydro-
zones/.
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the asymptotic profile of the steady state of a reaction-diffusion-advection model proposed

in [78]. They show the existence of one or more internal transition layers and determine their

locations. Such locations can be understood as the upstream invasion limits of the species.

It turns out that these invasion limits are connected to the upstream spreading speed of the

species and are sometimes subject to the effect of migration from upstream source patches.

In [62], the authors focused on the effect of boundary conditions on evolution of dispersal in

advective homogeneous environment. To assess the effect of water flow on population persis-

tence, [70] derive three measures of persistence, among which the net reproductive rate R0

can be used as a measure of global population persistence. [41] focused on how flow patterns

affect population survival. They presented a hybrid modeling approach to couple hydrody-

namic and biological processes, focusing on the combined impact of spatial heterogeneity

and temporal variability on population dynamics. They considered periodically alternating

pool-riffle rivers that are subjected to seasonally varying flows, established the existence of

spreading speeds and the invasion ratchet phenomenon. [42] addressed the critical domain

size problem for seasonally fluctuating stream environments and determine how large a reach

of suitable stream habitat is needed to ensure population persistence of a stream-dwelling

species. [42] established upstream and downstream spreading speeds under the assumption

of periodically fluctuating environments, and also showed the existence of periodic traveling

waves.

The competition of two species in stream environment have also been studied in [53, 59,

60, 99, 110, 112, 114]. [59] investigated a two-species competition model in a open advective

environment. In the case of non-advective environments, it is well known that lower diffusion

rates are favored by selection in spatially varying but temporally constant environments. In

[59], for homogeneous advective environments with free-flow and hostile boundary conditions,

they show that unidirectional flow can put slow dispersers at a disadvantage and higher

dispersal rate can evolve. In [53], they studied a two-species competition model in a closed

advective environment, and in contrast to the case without advection, slow dispersal is

generally selected against in closed advective environments. In [60], a two-species Lotka-
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Volterra competition model in an advective homogeneous environment has been investigated.

They show that if one competitor disperses by random diffusion only and the other assumes

both random and directed movements, then the one without advection prevails. This implies

that the movement without advection in homogeneous environment is evolutionary stable, as

advection tends to move more individuals to the boundary of the habitat and thus cause the

distribution of species mismatch with the resources which are evenly distributed in space.

To study the influence of the drift-benthic structure, the single reaction-diffusion-advection

equation has been extended into a benthic-drift model, which links changes in the flow regime

and habitat availability with population dynamics. Assuming logistic growth for the ben-

thic population, the population spreading, invasion and the propagation speed were studied

in [63, 78]; the population persistence criteria on a finite length river based on the net re-

productive rate was investigated in [37]; and the population dynamics of two competitive

species in the river was studied in [45]. All these works assume logistic growth for the benthic

population so the population persistence/extinction or spreading can be completely deter-

mined by a sharp threshold which is often expressed by a basic reproduction number or a

critical advection rate. Benthic-drift models of algae and nutrient population have also been

considered [30, 35, 36, 100].

Several extended studies also consider the effect of river network structure [84, 86]

and meandering structure [44]. On the other hand, integrodifferential and integrodiffer-

ence models equations have also been used to describe the diffusion and advection but

also long-distance dispersal, and comparable results with logistic growth on extinction,

persistence and spreading of population have been obtained [39, 40, 65, 78]. In most

of the literature mentioned above and also the present dissertation, advection is a con-

stant and unidirectional movement. Note that in other literature, the term “advection”

was used for movement towards gradient of resource function for better quality habitat

[6, 10, 11, 13, 14, 15, 17, 51, 52, 56, 113]. The role of the Allee effect in population spread-

ing and invasion in reaction-diffusion or integrodifferential models has been investigated in

[47, 49, 57, 66, 95, 103, 104], and the effect of Allee effect in population persistence on a
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bounded habitat has been considered in [58, 77, 89].

The rest of this dissertation is structured as follows. In Chapter 2, the dynamic be-

havior of (1.4) with a strong Allee effect growth rate is investigated. Compared to the

well-studied logistic growth rate, the extinction state in the strong Allee effect case is al-

ways locally stable. It is shown that when both the diffusion coefficient and the advection

rate are small, there exist multiple positive steady state solutions. Hence the dynamics is

bistable so that different initial conditions lead to different asymptotic behavior. On the

other hand, when the advection rate is large, the population becomes extinct regardless

of initial condition under most boundary conditions. Chapter 2 was accepted by Journal

of Mathematical Biology. In Chapter 3, we consider the dynamical behavior of the model

(1.4) with weak Allee effect growth and open or closed environment boundary conditions.

Its outcome is in between the one with logistic growth and the one with strong Allee effect

growth, so the extinction, bistable and monostable dynamics all can occur for some envi-

ronment parameters and boundary conditions. Chapter 3 was submitted. In Chapter 4, by

extending the single compartment reaction-diffusion-advection equation into a benthic-drift

model, we studied the aquatic species that reproduce on the bottom of the river and release

their larval stages into the water column. We assume that advective and diffusive transport

occur only in the main flowing zone, not the storage zone. So we neglect the movement

in the benthic zone. While in the drifting water, we consider the individual’s movement as

a combination of passive diffusion movement and advective movement. Unlike the single

compartment reaction-diffusion-advection equation with a strong Allee effect growth rate, in

which the advection rate q plays a important role in the persistence/extinction dynamics, the

benthic-drift model dynamics with strong Allee effect relies more critically on the strength

of interacting between zones, especially the transfer rate µ from the benthic zone to the drift

zone. With large transfer rate µ, extinction occurs regardless of the initial conditions, the

boundary condition, the diffusive and advective movement and the transfer rate from the

drift zone to the benthic zone. With small transfer rate µ, a bistable structure exists also in-

dependent of the boundary condition, the diffusive and advective movement and the transfer
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rate from the drift zone to the benthic zone. When the transfer rate µ is in the intermediate

range, the persistence or extinction depends on the diffusive and advective movement.
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Chapter 2

Reaction-diffusion-advection model

with strong Allee effect
1

2.1 Introduction

In this chapter, we study the dynamic behavior of a reaction-diffusion-advection model

of the density of a biological species in an open or closed river environment with a strong

Allee effect population growth rate. If the river population suffers a loss on the boundary

ends due to movement, then the river is an open environment and otherwise it is a closed

environment. Compared to the well-studied reaction-diffusion-advection model with logistic

growth rate [9, 53, 59], the model with strong Allee effect growth possesses multiple steady

state solutions, and the extinction state is always locally stable. Here we set up a framework

of reaction-diffusion-advection model in a one-dimensional habitat with general growth rate

functions and general boundary conditions, but focus on the strong Allee effect type growth

and open or closed environment boundary conditions.

Our main results on the dynamics of reaction-diffusion-advection model with strong

Allee effect type growth on a bounded habitat include:

1This part has been published as Wang, Yan; Shi, Junping; Wang, Jinfeng, Persistence and extinction
of population in reaction-diffusion-advection model with strong Allee effect growth. J. Math. Biol. (2019).
doi.org/10.1007/s00285-019-01334-7
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1. The solution asymptotically always converges to a nonnegative steady state solution, and

there is no temporal oscillatory behavior.

2. The population goes to extinction when the initial condition is small, or the advection

rate is large and under an open environment.

3. When the initial population is sufficiently large, the population persists if the advection

rate is small and the boundary condition is favorable. In that case, bistability exists in

the system so different outcomes can be reached with different initial settings.

4. In a closed environment river system, when the advection rate is large, the population

either becomes extinct or it only concentrates at the downstream end. Numerical results

indicate that extinction or concentration at downstream depends on the relative position

of the Allee effect threshold value.

5. The traveling wave speed of the associated problem is determined by the diffusion coeffi-

cient, advection rate, baseline growth rate and the Allee effect threshold, and the traveling-

wave-like transient dynamics facilitates the merging of population persistence/extinction

patches.

Most of the above results are rigorously proved using theory of dynamical systems, partial

differential equations, and upper-lower solution methods, and various numerical simulations

are also included to verify or demonstrate theoretical results. Our focus is on the influence

of various system parameters (diffusion coefficient, advection rate, Allee effect threshold,

boundary condition parameters) and initial conditions on the asymptotic and transient dy-

namical behavior.

This chapter is organized as follows: Some mathematical preliminaries regarding eigen-

value problem, comparison of the boundary conditions, previous results on the non-advective

case and the upper-lower methods are prepared in Section 2.2. Our main results on the dy-

namic properties of the model are stated and proved in Section 2.3. By using comparison

method and variational method, we investigate the existence and multiplicity of positive non-
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trivial steady states and derive various sufficient conditions for the population persistence

and extinction under an open or closed environment. We also use numerical simulation to

explore the rich transient and wave-like dynamical behaviors. Some concluding remarks are

made in Section 2.4.

2.2 Preliminaries

2.2.1 Eigenvalue problem and logistic model

In this section we first recall some results on the following eigenvalue problem:


dφ′′(x)− qφ′(x) + p(x)φ(x) = λφ(x), 0 < x < L,

dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L).

(2.1)

Here d > 0, q ≥ 0, p(x) ∈ L∞(0, L), and the boundary conditions are the ones introduced in

subsection 1.1.2. Then we have the following properties for the eigenvalues.

Proposition 2.1. Suppose that d > 0, L > 0, q ≥ 0, and p(x) ∈ L∞(0, L). Then

1. The eigenvalue problem (2.1) has a sequence of eigenvalues

λ1 > λ2 > · · · > λn → −∞, (2.2)

and the principal eigenvalue λ1 has the variational characterization

−λ1 = inf
ψ∈X1,ψ 6=0

R(ψ),
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where R(ψ) is the Rayleigh quotient

R(ψ) =

∫ L

0

eαx[d(ψ′)2(x)− p(x)ψ2(x)]dx+ qbuψ
2(0) + qbde

αLψ2(L)∫ L

0

eαxψ2(x)dx

, (2.3)

α = q/d and X1 = H1(0, L).

2. The principal eigenvalue λ1 = λ1(p, d, q, bu, bd) is continuously differentiable in d, q, bu, bd

and is decreasing with respect to bu and bd; if p1(x) ≥ p2(x), then λ1(p1) ≥ λ1(p2).

3. If bd > 0 and bu ≥ 0, then λ1(q)→ −∞ as q → +∞; moreover if bd > 1/2, then λ1(q) is

strictly decreasing in q.

4. If
∫ L

0
eαxp(x)dx > 0 and bd = bu = 0, then there always holds λ1(q) > 0, where α = q/d.

5. If p(x) < 0 and bd, bu ≥ 0, for x ∈ [0, L], then λ1(q) < 0.

Proof. We use the transform φ = eαxψ. Then system (2.1) becomes


dψ′′(x) + qψ′(x) + p(x)ψ(x) = λψ(x), 0 < x < L,

dψ′(0) = buqψ(0), dψ′(L) = −bdqψ(L).

(2.4)

Part 1 is well-known as (2.4) can be written as a self-adjoint eigenvalue problem:


(Pψ′)′ + (Q− λS)ψ = 0, x ∈ (0, L),

P (0) sin βψ′(0)− cos βψ(0) = 0, P (L) sin γψ′(L)− cos γψ(L) = 0.

with

P (x) = deαx, Q(x) = p(x)eαx, S(x) = eαx, β = arccot(buq), γ = arccot(−bdqeαL).

Then the existence of eigenvalues follows from [16, Theorem 8.2.1]. From the definition of

Rayleigh quotient (2.3), it is clear that λ1 is decreasing in bd or bu and if p1(x) ≥ p2(x), then
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λ1(p1) ≥ λ1(p2), that proves part 2. For part 3, the result that λ1(q) is strictly decreasing

and lim
q→∞

λ1(q) = −∞ when bd > 1/2 and bu ≥ 0 are proved in [59, Lemma 4.8, Lemma 4.9,

Remark 4.10], and for 0 < bd ≤ 1/2 and bu ≥ 0, we still have lim
q→∞

λ1(q) = −∞ following [62,

Proposition 2.1] for the case of bu = 0 and that λ1(q) is decreasing with respect to bu in part

2. For part 4, since bd = bu = 0, then λ1(q) = − inf
ψ∈X1,ψ 6=0

R(ψ) ≥ −R(1) > 0, and from the

definition of Rayleigh quotient (2.3), we obtain part 5.

If g(x, u) satisfies (g1)-(g3) and (g4a), then the population has a logistic type growth

and the dynamics of system (1.4) in this case is well-known, see for example [9, 53, 59]. We

recall the following result:

Proposition 2.2. Suppose that f(x, u) = ug(x, u) satisfy (g1)-(g3) and (g4a), d > 0 and

q ≥ 0. Let λ1(q) be the principal eigenvalue of the eigenvalue problem (2.1) with p(x) =

g(x, 0).

1. If λ1(q) ≤ 0, then u = 0 is globally asymptotically stable for (1.4); if λ1(q) > 0, there

exists a unique positive steady state of (1.4) which is globally asymptotically stable.

2. If bd > 0 and bu ≥ 0, then there exists q1 > 0 such that for q > q1, λ1(q) < 0; moreover

if bd > 1/2 and bu ≥ 0, then λ1(q) < 0 for all q ≥ 0 if λ1(0) < 0, and if λ1(0) > 0, there

exists q2 > 0 such that λ1(q) > 0 for 0 < q < q2 and λ1(q) < 0 for q > q2.

3. If bu = bd = 0, then λ1(q) > 0 for all q > 0.

Proof. The proof of the uniqueness and global stability of positive steady state for diffusive

logistic type equation in part 1 is well known, see for example [9, Proposition 3.3]. Then

parts 2 and 3 follow from Proposition 2.1 as g(x, 0) > 0 from the condition (g4a).

Eq. (1.4) with f(x, u) = u(r(x)− u) has been considered in [53, 54, 59], and results in

Proposition 2.2 for that special case can be found in [54, Theorem 3.1, 3.2] and [59, Theorem

4.1]. Results in this section hold for bu, bd ≥ 0, and they can also be adapted to hostile

boundary condition by considering the limiting case when bu or bd →∞.
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2.2.2 Comparison of boundary conditions

The dynamics of reaction-diffusion-advection system (1.4) is highly dependent on the

boundary conditions. As shown in Propositions 2.1 and 2.2, since the principal eigenvalue

of system (1.4) decreases with respect to bu or bd, then the population with larger bu or bd is

more likely to be extinct. This monotone property for the principal eigenvalue actually also

holds for nonlinear system as shown in the following result:

Proposition 2.3. Suppose g(x, u) satisfies (g1)-(g2), 0 ≤ bu ≤ b′u ≤ ∞ and 0 ≤ bd ≤ b′d ≤

∞. Let u1(x, t) be the solution of (1.4), and let u2(x, t) be the solution of



ut = duxx − qux + f(x, u), 0 < x < L, t > 0,

dux(0, t)− qu(0, t) = b′uqu(0, t), t > 0,

dux(L, t)− qu(L, t) = −b′dqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(2.5)

Then u1(x, t) ≥ u2(x, t) ≥ 0 for t ∈ (0,∞), x ∈ Ω. In particular, if lim
t→∞

u1(x, t) = 0,

then lim
t→∞

u2(x, t) = 0; and if lim
t→∞

inf u2(x, t) ≥ δ > 0 for some positive constant δ > 0,

lim
t→∞

inf u1(x, t) ≥ δ > 0.

The proof of Proposition 2.3 follows from the maximum principle of nonlinear parabolic

equations (see for example, [92, Theorem 10.1]), and we omit the details here. Note that

here b′u = ∞ or b′d = ∞ is interpreted as the hostile boundary condition (H). The result

implies the following comparison between two boundary conditions: if b′u ≥ bu and b′d ≥ bd,

and with identical initial condition, then the extinction in the system with parameter (bu, bd)

implies the extinction of the system with parameter (b′u, b
′
d), and vice versa, the persistence

for the system with (b′u, b
′
d) would imply the persistence for the one with (bu, bd).

Among all the boundary conditions, the no-flux boundary condition at x = L (bd = 0)

is the most “friendly” for the population to persist, while the hostile boundary condition at

x = L (bd = ∞) is the most vulnerable environment for the population. And the free flow
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(bd = 1) is in between these two.

2.2.3 Non-advective case

For reaction-diffusion-advection equation (1.4) with the strong Allee effect growth rate

in a non-advective environment, there have been several earlier papers on the existence

and multiplicity of positive steady state solutions, and we recall these results here. In the

environment with a hostile boundary condition, the non-advection equation in a higher

dimensional domain Ω has the form
ut = d∆u+ u(u− h)(r − u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(2.6)

Proposition 2.4. Suppose that Ω is a bounded smooth domain in Rn with n ≥ 1, d > 0,

and the constants h, r satisfy 0 < h < r.

1. If h > r/2, then for any d > 0, the only nonnegative steady state solution of (2.6) is

u = 0.

2. If 0 < h < r/2, then there exists d0 > 0 such that (2.6) has at least two positive steady

state solutions for 0 < d < d0.

3. If 0 < h < r/2 and Ω is a unit ball, then (2.6) has exactly two positive steady state

solutions for 0 < d < d0, and has only the zero steady state when d > d0.

The nonexistence of positive steady state solution in part 1 is proven in [21], and the

existence of two positive steady state solutions in part 2 can be proven using variational

methods (see [58, 82]). The exact multiplicity of positive steady state solutions in part 3 is

proved in [77]. The conditions of h ≤ r/2 or h > r/2 in Proposition 2.4 are equivalent to

F (r) =

∫ r

0

u(u− h)(r − u)du ≤ 0 or > 0.

On the other hand, if the non-advective environment is with a free-flow (equivalent

to no-flux) boundary condition, then the boundary value problem in a higher dimensional
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domain Ω has the form
ut = d∆u+ u(u− h)(r − u), x ∈ Ω, t > 0,

∂u

∂n
(x, t) = 0, x ∈ ∂Ω, t > 0.

(2.7)

The following results are proved in [102, Theorem 3.3, 3.4]:

Proposition 2.5. Suppose that Ω is a bounded smooth domain in Rn with n ≥ 1, d > 0,

and the constants h, r satisfy 0 < h < r. Let µm be the eigenvalues of the operator −∆ under

Neumann boundary condition on Ω.

1. There exist three nonnegative constant steady state solutions u = 0, u = h, u = r of

(2.7), and all positive nonconstant steady solutions of (2.7) satisfy 0 < u(x) < r;

2. Let d∗ =
2(h+ r)

hµ1

. Then for d > d∗, the only nonnegative steady state solutions to (2.7)

are u = 0, u = h and u = r.

3. Let dm =
r − h
µm

with m ≥ 1, then d = dm is a bifurcation point for the positive steady state

solutions of (2.7), where a connected component Σm of the set of positive nonconstant

steady state solutions of (2.7) bifurcates from the line of constant steady state {(d, u =

h) : d > 0}.

4. If n = 1 and Ω = (0, L), then Σm = {(d, u±m(d, x)) : 0 < d < dm}, the solution u±m(d, ·)−h

changes sign exactly m times in (0, L), u+
m(d, 0) > h and u−m(d, 0) < h. In particular,

(2.7) has exactly 2m nonconstant positive steady state solutions if dm+1 < d < dm, and

all of them are unstable.

In particular Proposition 2.5 shows that when the diffusion coefficient d is large, the

equation (2.7) has only the constant steady states, while for the small diffusion coefficient d

case, (2.7) has a large number of positive steady states.
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2.2.4 Upper-lower solution method

In the following we frequently use the method of upper-lower solutions to construct

steady states or study the dynamics of (1.4). We review the method in this subsection.

Suppose that u(x) is a steady state solution of system (1.4), then u(x) satisfies


duxx(x)− qux(x) + f(x, u(x)) = 0, 0 < x < L,

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L),

(2.8)

where f(x, u) = ug(x, u) satisfies (g1)-(g3), and r(x) is defined in (g2). Using the transform

u = eαxv on system (2.8), we obtain the following system


dvxx + qvx + e−αxf(x, eαxv) = 0, 0 < x < L,

−dvx(0) + buqv(0) = 0,

dvx(L) + bdqv(L) = 0.

(2.9)

According to [79, Definition 3.2.1], ψ(x) is said to be an upper solution if it satisfies the

inequalities 
dψxx + qψx + e−αxf(x, eαxψ) ≤ 0, 0 < x < L,

−dψx(0) + buqψ(0) ≥ 0,

dψx(L) + bdqψ(L) ≥ 0.

(2.10)

Similarly ψ(x) is called a lower solution if it satisfies all the inequalities in (2.10) with the

direction of inequalities reversed. Moreover from [79, Theorem 3.2.1], if the upper and lower

solutions satisfy ψ ≥ ψ, then there exists a solution ψ(x) of (2.9) satisfying ψ(x) ≤ ψ(x) ≤

ψ(x). By [79, Theorem 3.2.2], system (2.9) has a maximal solution ψmax(x) and a minimal

solution ψmin(x). Similarly by using u(x, t) = eαxv(x, t), the parabolic system (1.4) can also
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be converted into

vt = dvxx + qvx + e−αxf(x, eαxv), 0 < x < L, t > 0,

−dvx(0) + buqv(0) = 0, t > 0,

dvx(L) + bdqv(L) = 0, t > 0,

v(x, 0) = v0(x) ≥ 0, x ∈ (0, L),

(2.11)

where v0(x) = e−αxu0(x). The upper and lower solutions of (2.11) can be defined in a similar

fashion (see [79, Definition 2.3.1]). In particular, if ψ and ψ is a pair of upper and lower

solutions of (2.9), and ψ(x) ≤ v0(x) ≤ ψ(x), then ψ and ψ is also a pair of upper and

lower solutions of (2.11). According to [79, Lemma 5.4.2], system (2.11) possesses a unique

solution v(x, t) satisfying

ψ(x) ≤ vψ(x, t) ≤ v(x, t) ≤ vψ(x, t) ≤ ψ(x), (2.12)

where vψ(x, t) (or vψ(x, t)) is the solution of (2.11) with the initial value ψ (or ψ), and from

[79, Theorem 5.4.2], vψ(x, t) is nonincreasing in t and lim
t→+∞

vψ(x, t) = ψmax(x); vψ(x, t) is

nondecreasing in t and lim
t→+∞

vψ(x, t) = ψmin(x).

2.3 Persistence/Extinction dynamics

In this section, we consider the dynamics of (1.4) with the growth function f(x, u) =

ug(x, u) satisfying (g1)-(g3) and (g4c), the strong Allee effect growth.

2.3.1 Basic dynamics

First we have the following bound for steady states of (1.4), which was proved in [53,

Lemma 2.3] for f(x, u) = r(x)− u. We include a proof here for convenience of readers.

Proposition 2.6. Suppose g(x, u) satisfies (g1)-(g2) and r(x) is defined in (g2). Let u(x) be
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a positive steady state solution of system (1.4), then u(x) ≤ eαx max
y∈[0,L]

(e−αyr(y)) for x ∈ [0, L].

Moreover, if bd ≥ 1, then u(x) ≤M = max
y∈[0,L]

r(y) for x ∈ [0, L].

Proof. Let u = eαxv. Then from (2.9), we have

eαx (dvxx + qvx) + f(x, eαxv(x)) = 0. (2.13)

Let v(x0) = max
x∈[0,L]

v(x) > 0 for x0 ∈ [0, L]. If x0 = 0, then v′(0) ≤ 0 as x = 0 is the maximum

point. The boundary condition implies that bqv(0) = dv′(0) ≤ 0 which contradicts with

v(x0) > 0. So x0 6= 0. Similarly we have x0 6= L. Then x0 ∈ (0, L), and we have v′(x0) = 0

and v′′(x0) ≤ 0. Therefore (2.13) implies that f(x0, e
αx0v(x0)) ≥ 0, and consequently,

g(x0, e
αx0v(x0)) ≥ 0. (2.14)

According to (g2), eαx0v(x0) ≤ r(x0), which implies that

e−αxu(x) = v(x) ≤ v(x0) ≤ e−αx0r(x0) ≤ max
y∈[0,L]

(e−αyr(y)), (2.15)

which implies the desired result.

Next we assume that bd ≥ 1. From the boundary conditions, we know that u′(0) > 0

and since bd ≥ 1, u′(L) ≤ 0. Then there exists x∗ ∈ (0, L] such that u′(x∗) = 0 and

u(x∗) = max
x∈[0,L]

u(x). If x∗ ∈ (0, L) (which is the case if bd > 1), then u′′(x∗) ≤ 0. According

to equation in (2.8), we have f(x∗, u(x∗)) ≥ 0. If x∗ = L, then bd = 1, we still have u′(x∗) = 0

then again we have f(x∗, u(x∗)) ≥ 0. From (g2), we have u(x) ≤ u(x∗) ≤ r(x∗) ≤M .

Now we show that the population dynamics defined by (1.4) is well-posed: the solution

of (1.4) exists globally for t ∈ (0,∞) and it converges to a non-negative steady state solution

when t→∞. Note here we only require (g1) and (g2), not (g3) and (g4), hence the results

hold for both logistic and (weak or strong) Allee effect cases.

Theorem 2.7. Suppose g(x, u) satisfies (g1)-(g2), then (1.4) has a unique positive solution
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u(x, t) defined for (x, t) ∈ [0, L] × (0,∞), and the solutions of (1.4) generates a dynamical

system in X2, where

X2 = {φ ∈ W 2,2(0, L) : φ(x) ≥ 0, dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L)}.
(2.16)

Moreover, for any u0 ∈ X2 and u0 6≡ 0, the ω-limit set ω(u0) ⊂ S, where S is the set of

non-negative steady state solutions.

Proof. Assume that u(x, t) is a solution of system (1.4), then v(x, t) = e−αxu(x, t) is a

solution of system (2.11). We choose

M1 = max

{
max
y∈[0,L]

e−αyr(y), max
y∈[0,L]

e−αyu0(y)

}
, (2.17)

then M1 is an upper solution of (2.11) and 0 is a lower solution of (2.11). Then from the

discussion in subsection 2.2.4, we obtain that

0 ≤ v(x, t) ≤ v1(x, t),

where v1(x, t) is the solution of (2.11) with initial condition v1(x, 0) = M1. Moreover the

solution v1(x, t) is nonincreasing in t and lim
t→+∞

v1(x, t) = vmax(x) which is maximal steady

state of (2.11) not larger than M1. From Proposition 2.6, we obtain that u(x, t) exists

globally for t ∈ (0,∞) and

u(x, t) ≥ 0, lim sup
t→∞

u(x, t) ≤ eαx max
y∈[0,L]

e−αyr(y). (2.18)

In particular, we may assume that for any initial value u0, the solution u(x, t) of (1.4) is

bounded by M2 := eαL max
y∈[0,L]

e−αyr(y) + ε for t > T and some small ε > 0. Next we prove

that the solution u(x, t) is always convergent. For that purpose, we construct a Lyapunov

26



function

E(u) =

∫ L

0

e−αx
[
d

2
(ux)

2 − F (x, u)

]
dx+

q

2
(1 + bu)u

2(0)− q

2
(1− bd)e−αLu2(L), (2.19)

for u ∈ X2, where F (x, u) =

∫ u

0

f(x, s)ds. Assume that u(x, t) is a solution of system (1.4),

we have

d

dt
E(u(·, t)) =

∫ L

0

e−αx(duxuxt − f(x, u)ut)dx

+ q(1 + bu)u(0, t)ut(0, t)− q(1− bd)e−αLu(L, t)ut(L, t)

=

∫ L

0

(de−αxux)dut −
∫ L

0

e−αxf(x, u)utdx

+ q(1 + bu)u(0, t)ut(0, t)− q(1− bd)e−αLu(L, t)ut(L, t)

= de−αxuxut

∣∣∣L
0
−
∫ L

0

[(e−αxdux)x + e−αxf(x, u)]utdx

+ q(1 + bu)u(0, t)ut(0, t)− q(1− bd)e−αLu(L, t)ut(L, t)

= ut(L, t)e
−αL(dux(L, t)− q(1− bd)u(L, t))+

ut(0, t)(−dux(0, t) + q(1 + bu)u(0, t))−
∫ L

0

e−αx(ut)
2dx

= −
∫ L

0

e−αx(ut)
2dx ≤ 0.

According to (g2), f(x, u) < 0 for u > r(x) and f(x, r(x)) = 0, we have F (x, u(x)) ≤

F (x, r(x)) for u ∈ X2 and 0 < r(x) ≤M . Hence when t > T ,

E(u(·, t)) ≥ −
∫ L

0

e−αxF (x, r(x))dx− q

2
e−αLu2(L, t) ≥ −M3L−

qM2
2

2
e−αL, (2.20)

where M3 = max
y∈[0,L]

F (y, r(y)). Therefore E(u(·, t) is bounded from below. Notice
d

dt
E(u) = 0

holds if and only if ut = 0, which means that u is a steady state solution of system (1.4).

Refer to [33, Theorem 4.3.4], the LaSalle’s Invariance Principle, we have that for any initial

condition u0(x) ≥ 0, the ω-limit set of u0 is contained in the largest invariant subset of S.

If every element in S is isolated, then the ω-limit set is a single steady state.
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In addition, if f(x, u) satisfies (g4a) (logistic case), then from part 1 in Proposition 2.2,

any solution of (1.4) either goes to zero steady state or converges to the unique positive

steady state. In the following, we will focus on the case when f(x, u) satisfies (g4c), for

which the solutions of (1.4) have more complicated behavior.

2.3.2 Extinction

In this subsection, we consider under what condition the population goes to extinction.

The zero steady state of (1.4) is always locally asymptotically stable from Proposition 2.1

part 5, and we provide some estimates of the basin of attraction of the zero steady state.

Recall that f(x, u) = ug(x, u) satisfies (g4c), then we have that h(x) satisfies f(x, 0) =

f(x, h(x)) = f(x, r(x)) = 0 with 0 < h(x) < r(x) for all x ∈ [0, L]. First we note the

following property of the steady state solution u(x).

Proposition 2.8. Suppose g(x, u) satisfies (g1)-(g3) and (g4c). Then there is no positive

solution u(x) of (2.8) satisfying u(x) < h(x) for all x ∈ [0, L].

Proof. Integrating both sides of (2.8), we get

[dux − qu]
∣∣∣L
0

+

∫ L

0

f(x, u)dx = 0. (2.21)

According to the boundary conditions in (2.8), the first part of (2.21) is

−bdqu(L)− buqu(0) ≤ 0. (2.22)

Thus, the second part of (2.21) is non-negative,

∫ L

0

f(x, u)dx ≥ 0. (2.23)

which does not hold if 0 < u(x) < h(x). Therefore, there is no positive solution u(x)

satisfying u(x) < h(x) for all x ∈ [0, L].
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In the following proposition, we describe the basin of attraction of the zero steady state

solution of system (1.4) for different boundary conditions.

Proposition 2.9. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), and let u(x, t) be the solution

of (1.4) with initial condition u0(x).

1. When bu ≥ 0 and bd ≥ 0, if 0 < u0(x) < eαx min
y∈[0,L]

e−αyh(y), then lim
t→+∞

u(x, t) = 0;

2. When bu ≥ 0 and bd ≥ 1, if 0 < u0(x) < min
y∈[0,L]

h(y), then lim
t→+∞

u(x, t) = 0.

Proof. 1. When bu ≥ 0 and bd ≥ 0, we set v1(x) = min
y∈[0,L]

e−αyh(y), which is a constant

function. Then according to (g4c), we have

d(v1)xx + q(v1)x + v1 · g(x, eαxv1) = min
y∈[0,L]

e−αyh(y) · g(x, eαx min
y∈[0,L]

e−αyh(y))

≤ min
y∈[0,L]

e−αyh(y) · g(x, eαxe−αxh(x)) = min
y∈[0,L]

e−αyh(y) · g(x, h(x)) = 0,

(2.24)

and the boundary conditions −dv1x(0) + buqv1(0) ≥ 0, dv1x(L) + bdqv1(L) ≥ 0. Thus,

v1(x) = min
y∈[0,L]

e−αyh(y) is an upper solution of system (2.9). Let v1(x) = 0 be the lower

solution of system (2.9). Now assume that 0 ≤ v0(x) ≤ min
y∈[0,L]

e−αyh(y), and let v(x, t) be

the solution of (2.11). From the discussion in subsection 2.2.4, there exist solutions V 1(x, t)

and V 1(x, t) of system (2.11),

V 1(x, t) ≤ v(x, t) ≤ V 1(x, t), (2.25)

where V 1(x, t) and V 1(x, t) are the solutions of system (2.11) with the initial condition

V 1(x, 0) = v1(x) and V 1(x, 0) = v1(x). Moreover, lim
t→+∞

V 1(x, t) = vmax(x) and lim
t→+∞

V 1(x, t) =

vmin(x), where vmax(x), vmin(x) are the maximal and minimal solutions of (2.9) between 0

and v1(x). From Proposition 2.8, there is no positive solution u(x) satisfying u(x) < h(x)

for all x ∈ [0, L], hence vmin(x) = vmax(x) = 0. Therefore, if the initial value satisfies

u0(x) < eαx min
y∈[0,L]

e−αyh(y), then lim
t→+∞

u(x, t) = 0.

2. When bu ≥ 0 and bd ≥ 1, we apply the upper and lower solution method directly
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to (1.4), and we choose u1(x) = min
y∈[0,L]

h(y) to be the upper solution and u1(x) = 0 be

the lower solution. We can follow the same argument in the above paragraph to reach the

conclusion.

Proposition 2.9 only gives a partial description of the basin of attraction of the zero

steady state (extinction initial values). This extinction region depends on the advection

coefficient q and the boundary condition. Using a constant initial value u0 = K > 0, Fig.

2.1 shows the threshold initial condition K = K0 between persistence and extinction under

the NF/H, NF/FF and NF/NF boundary conditions and varying advection coefficient q. The

left panel corresponds to the case when the threshold h is relatively small and the right panel

describes the case when threshold h is relatively large. For the NF/NF boundary conditions,

the behavior of the population changes significantly due to the threshold while the other two

exhibit almost the same tendency. For small threshold h and under the NF/NF boundary

condition, as advection q increases, the basin of attraction of the zero steady state solution

decreases. However, for large threshold h, there exists a critical q∗ > 0, such that when the

advection q > q∗, the population will go to extinction.
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Figure 2.1: Population extinction and persistence for varying advection coefficient q and the
initial condition u0 = K (constant). For each of NF/H, NF/FF and NF/NF boundary conditions,
a curve is plotted to show the threshold K0 between extinction and persistence. When u0 ≡
K > K0, the population persists; and when u0 ≡ K < K0, the population becomes extinct.
Persistence/extinction is determined by the solution at t = 3000. Here f(x, u) = au(1−u)(u−h),
a = 0.5, L = 10 and d = 0.1. Left: h = 0.3; Right: h = 0.4.

To provide another extinction criterion, we compare the solution of (1.4) with the strong
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Allee effect growth rate with the one with a comparable logistic growth rate. For that

purpose, we define a function f̃(x, u) = ug̃(x, u) as follows

g̃(x, u) =


g(x, s(x)), 0 < u < s(x),

g(x, u), u > s(x),

(2.26)

where for x ∈ Ω, s(x) is the maximum point of g(x, u) defined in (g3). Thus f̃(x, u) is of

logistic type and satisfies f̃(x, u) ≥ f(x, u). The function f̃(x, u) is also the smallest function

of logistic type which is greater than f(x, u). A comparison of f̃ , g̃ and f, g can be seen in

Fig. 2.2.

Now we can define a new system with this modified growth rate:



ut = duxx − qux + f̃(x, u), 0 < x < L, t > 0,

dux(0, t)− qu(0, t) = buqu(0, t), t > 0,

dux(L, t)− qu(L, t) = −bdqu(L, t), t > 0.

u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(2.27)

Then from the comparison principle of parabolic equations, we obtain the following compar-

ison of solutions of (1.4) and (2.27).

Proposition 2.10. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), and f̃(x, u) is defined as

in (2.26). Let u3(x, t) be the solution of (1.4), and let u4(x, t) be the solution of (2.27) with

the same initial value. Then 0 ≤ u3(x, t) < u4(x, t) for t ∈ (0,∞) and x ∈ Ω. In particular,

if lim
t→∞

u4(x, t) = 0, then lim
t→∞

u3(x, t) = 0; and if lim
t→∞

inf u3(x, t) ≥ δ > 0 for some positive

constant δ > 0, then lim
t→∞

inf u4(x, t) ≥ δ > 0.

Now by using the previously known results for the logistic equation, we have the follow-

ing result for population extinction with the strong Allee effect growth rate.

Theorem 2.11. Suppose that g(x, u) satisfies (g1)-(g3) and (g4c). If bu ≥ 0 and bd > 0, then
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there exists q1 > 0 such that when q > q1, there is no positive steady state solution of (1.4);

and for any initial condition u0(x) ≥ 0, the solution u(x, t) of (1.4) satisfies lim
t→+∞

u(x, t) = 0.

Proof. This is a direct consequence of Proposition 2.2 and Proposition 2.10.

Here it is shown that under an open river environment, when the advection rate q is

large and there is a population loss at the downstream, then the population becomes extinct

no matter what initial condition is, which is the same as the case of logistic growth [59].

This result confirms the numerical result shown in Fig. 2.1 for NF/H and NF/FF cases, but

it does not include the case of NF/NF boundary condition which corresponds to the case

bu = bd = 0.

h(x) s(x) r(x)
u

 

 
ug(x,u)
ug̃(x,u)

h(x) s(x) r(x)
u

 

 
g(x,u)
g̃(x,u)

Figure 2.2: Left: The graphs of f(·, u) and f̃(·, u) for fixed x ∈ [0, L]; Right: The graphs of g(·, u)
and g̃(·, u) for fixed x ∈ [0, L].

In Fig. 2.3, the solutions of (1.4) with the strong Allee effect growth f(x, u) = u(1 −

u)(u− h) and the ones of (2.27) with corresponding logistic growth rate

f̃(x, u) =


(1− h)2u

4
, 0 < u <

1 + h

2
,

u(1− u)(u− h), u >
1 + h

2
,

(2.28)

are shown. The results in Fig. 2.3 confirm the comparison stated in Proposition 2.10: the

solution of logistic growth model is an upper solution for the case with the strong Allee

effect growth. When the advection rate is small (Fig. 2.3 upper left), the two solutions are

32



0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Space x

P
op

ul
at

io
n

NF/NF

 

 
logistic
Allee

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Space x

P
op

ul
at

io
n

NF/NF

 

 
logistic
Allee

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Space x

P
op

ul
at

io
n

NF/NF

 

 
logistic
Allee

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Space x

P
op

ul
at

io
n

NF/NF

 

 
logistic
Allee

Figure 2.3: Comparison of solutions of (1.4) with strong Allee effect growth f(x, u) = u(1−u)(u−
h) and the one of (2.27) with corresponding logistic growth rate given in (2.28). Here d = 0.1,
h = 0.4, L = 10, NF/NF boundary condition is used, the initial condition is u0 = 0.6, and the
solutions at t = 3000 are shown. Upper left: q = 0.006; Upper right: q = 0.0068; Lower left:
q = 0.007; Lower right: q = 0.2.

almost identical despite of different growth rates; but for large advection rates, the strong

Allee effect growth rate leads to extinction while the logistic one supports persistence. This

clearly shows the importance of the growth rate at low population density as the two growth

rates are the same in high densities.

2.3.3 Persistence

In this subsection, we provide some criteria for the population persistence of (1.4) with

the strong Allee effect growth rate. Note that in the logistic case, the persistence and

extinction of population is completely determined by the stability of the extinction steady
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state u = 0 (see Proposition 2.2), but in the strong Allee effect case, the extinction state

u = 0 is always locally stable.

We first show some properties of the set of positive steady state solutions of (1.4) if

there exists any.

Proposition 2.12. Suppose g(x, u) satisfies (g1)-(g3). If there exists a positive steady state

solution of (1.4), then there exists a maximal steady state solution umax(x) such that for any

positive steady state u(x) of system (1.4), umax(x) ≥ u(x).

Proof. We consider the equivalent steady state equation (2.9).

Set v2(x) = max
y∈[0,L]

e−αyr(y), which is a constant function. From (g3), we have fu(x, u) ≤

0 for u ≥ r(x). Therefore,

f(x, eαxv2) = f(x, eαx max
y∈[0,L]

e−αyr(y)) ≤ f(x, eαxe−αxr(x)) = f(x, r(x)) = 0.

Substituting v2(x) into system (2.9), we have


dv′′2 + qv′2 + e−αxf(x, eαxv2) ≤ 0, 0 < x < L,

−dv′2(0) + buqv2(0) ≥ 0,

dv′2(L) + bdqv2(L) ≥ 0.

(2.29)

Thus v2(x) is an upper solution of system (2.9). Moreover from Proposition 2.6, any positive

steady state solution v of (2.9) satisfies v(x) ≤ v2(x). Since u(x) is a positive steady state of

(1.4), we can set the lower solution of (2.9) to be v2(x) = e−αxu(x). Then from the results in

subsection 3.4, there exists a maximal solution vmax(x) of (2.9) satisfying v2(x) ≤ vmax(x).

Since vmax(x) is obtained through the monotone iteration process (see [4, 79]) from the upper

solution v2(x) and any positive steady state solution v of (2.9) satisfying v(x) ≤ v2(x), we

conclude that vmax(x) is the maximal steady state solution of (2.9), which implies the desired

result.

Next we show a monotonicity result for the maximal steady state solution umax(x).
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Proposition 2.13. Suppose g(x, u) satisfies (g1)-(g3), and bu ≥ 0 and 0 ≤ bd ≤ 1. Then

the maximal steady state solution umax(x) of equation (1.4) is strictly increasing in [0, L] if

one of the following conditions is satisfied:

1. f(x, u) ≡ f(u), that is f is spatially homogeneous; or

2. g(x, u) is also differentiable in x, gu(x, u) ≤ 0 and gx(x, u) ≥ 0 for x ∈ [0, L] and u ≥ 0.

Proof. For part 1, we prove it by contradiction. Assuming that the maximal solution umax(x)

is not increasing for all x ∈ [0, L]. From boundary conditions in (1.4) and the condition

bu ≥ 0, 0 ≤ bd ≤ 1, we have

(umax)x(0) = α(bu + 1)umax(0) > 0,

(umax)x(L) = α(−bd + 1)umax(L) ≥ 0.

Then (umax)x(x) has at least two zero points in (0, L). We choose the two smallest zero

points x1, x2 ∈ (0, L) (x1 < x2) such that (umax)x(x1) = (umax)x(x2) = 0, (umax)x(x) < 0 on

(x1, x2). We claim that (umax)xx(x1) < 0 and (umax)xx(x2) > 0. Indeed differentiating the

equation in (2.8) with respect to x, we have

d(umax)xxx − q(umax)xx + fu(x, umax)(umax)x = 0. (2.30)

Since (umax)x(x) < 0 on (x1, x2), then (umax)xx(x1) ≤ 0 and (umax)xx(x2) ≥ 0. If (umax)xx(x1) =

0, then from (2.30) and (umax)x(x1) = 0, we conclude that (umax)x(x) ≡ 0 near x = x1 from

the uniqueness of solution of ordinary differential equation, which contradicts with the as-

sumption that (umax)x(x) < 0 on (x1, x2). Hence we have (umax)xx(x1) < 0, and similarly

we can show that (umax)xx(x2) > 0.

According to [87, Page 992], the maximal solution umax is semistable. The corresponding
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eigenvalue problem is (2.1) with p(x) = fu(umax(x)):


dφxx − qφx + fu(umax)φ = λφ, 0 < x < L,

dφx(0)− qφ(0) = buqφ(0),

dφx(L)− qφ(L) = −bdqφ(L),

(2.31)

and the corresponding principal eigenvalue λ1(fu(umax)) ≤ 0 with eigenfunction φ > 0.

Multiplying equation (2.30) by e−αxφ and multiplying the equation in (2.31) by e−αx(umax)x,

then subtracting, we obtain

de−αx((umax)xφxx − (umax)xxxφ) + qe−αx((umax)xxφ− (umax)xφx)

=λ1(fu(umax))e
−αxφ(umax)x.

(2.32)

Integrating the above equation on [x1, x2], the right hand side of (2.32) becomes

∫ x2

x1

e−αxλ1(fu(umax))φ(umax)xdx ≥ 0.

Since (umax)xx(x1) < 0 and (umax)xx(x2) > 0, the left hand side of (2.32) becomes

d

∫ x2

x1

[(e−αxφx)x(umax)x − (e−αx(umax)xx)xφ]dx

=de−αx(φx(umax)x − φ(umax)xx) |x2x1 −d
∫ x2

x1

e−αx(φx(umax)xx − φx(umax)xx)dx

=de−αx1φ(x1)(umax)xx(x1)− de−αx2φ(x2)(umax)xx(x2) < 0,

which is a contradiction. Thus, the maximal solution umax(x) of (2.8) is increasing on

x ∈ (0, L). Moreover the strong maximum principle implies that umax must be strictly

increasing.

For part 2, we employ some ideas from [61, Lemma 4.2] (thanks to an anonymous

reviewer for this suggestion). Let w(x) = (umax)x(x)/umax(x). Then by some straightforward
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computation, we find that w(x) satisfies


−dwxx + (q − 2dw)wx − umaxgu(x, umax)w = gx(x, umax), 0 < x < L,

dw(0) = (1 + bu)q > 0,

dw(L) = (1− bd)q ≥ 0.

(2.33)

From the assumptions that gu(x, u) ≤ 0 and gx(x, u) ≥ 0 for x ∈ [0, L] and u ≥ 0 and the

maximum principle, we conclude that w(x) > 0 for x ∈ (0, L), which implies that umax(x) is

strictly increasing for x ∈ (0, L).
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Figure 2.4: The maximal steady state solution umax(x) of system (1.4) with f(x, u) = u(1 −
u)(u−h) under different boundary conditions. Here d = 0.1, h = 0.3, L = 10, q = 0.03 (Left) and
q = 0.082 (Right). The solutions are simulated with initial condition u0 = eqx/d and the solution
at t = 3000 is shown.

The condition bu ≥ 0, 0 ≤ bd ≤ 1 in Proposition 2.13 is optimal as u′max(L) = α(1 −

bd)umax(L) < 0 if bd > 1. Fig. 2.4 shows the maximal positive steady solutions under

different boundary conditions. We can see that the maximal solution umax(x) is increasing

for the NF/FF and NF/NF cases and is decreasing near x = L for the NF/H case since

bd > 1 under this situation. Fig. 2.5 shows the dependence of the maximal solution umax(x)

on the advection coefficient q. It appears that the maximum value of the maximal solution

‖umax‖∞ decreases in q in the NF/FF and NF/H cases, and when q ≥ q1 for some q1 > 0,

‖umax‖∞ = 0 which implies there is no positive steady state for such q. This verifies the
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extinction result proved in Theorem 2.11 for bd > 0. However in the NF/NF case, ‖umax‖∞

is not monotone in q, and ‖umax‖∞ achieves the maximum at an intermediate qm > 0.

This suggests that an intermediate advection rate q may increase the maximum population

density. Indeed under intermediate advection, the river flow pushes the population to the

downstream so that the downstream end has a higher density and the upstream density is

lower; but when the advection rate is high, then the population will be washed out before

it can establish at the downstream. On the other hand, a larger advection always leads to a

lower total steady state population (see Fig. 2.7). It is not clear whether the population can

still persist for a large q under NF/NF boundary condition (see subsection 4.4), but from

Fig. 2.5, the persistence range of advection q for NF/NF boundary condition is much larger

than the ones for NF/FF and NF/H cases.
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Figure 2.5: The dependence of maximal steady state solution umax(x) of system (1.4) with
f(x, u) = u(1− u)(u− h) on the advection coefficient q. The horizontal axis is q and the vertical
axis is ‖umax‖∞. Here d = 0.02, h = 0.3, a = 0.5.

Next we prove the existence of positive steady state solutions of (1.4) for the NF/NF

boundary condition (bu = bd = 0) case.
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Theorem 2.14. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), and

max
y∈[0,L]

e−αyh(y) < min
y∈[0,L]

e−αyr(y). (2.34)

Then when bu = bd = 0, (1.4) has at least two positive steady state solutions. In particular

the condition (2.34) is satisfied if

0 <
q

d
<

1

L
ln

(
miny∈[0,L] r(y)

maxy∈[0,L] h(y)

)
. (2.35)

Proof. Using the transform u = eαxv, the steady state equation in this case is of the form


dvxx + qvx + e−αxf(x, eαxv) = 0, 0 < x < L,

vx(0) = 0, vx(L) = 0.

(2.36)

From Proposition 2.12, v2(x) = max
y∈[0,L]

e−αyr(y) is an upper solution of (2.36). Set v2(x) =

max
y∈[0,L]

e−αyh(y). Then from

e−αxf(x, eαxv2) = v2g(x, eαx max
y∈[0,L]

e−αyh(y)) ≥ v2g(x, eαxe−αxh(x)) = g(x, h(x)) = 0,

we obtain that 
dv′′2 + qv′2 + e−αxf(x, eαxv2) ≥ 0, 0 < x < L,

v′2(0) = 0, v′2(L) = 0.

So v2(x) is a lower solution of (2.36), and from (2.34), we have v2(x) < v2(x). Therefore

(2.36) has at least one positive solution between v2 and v2 by the results in subsection

3.4. Moreover v1(x) = 0 is a lower solution of (2.36), and from Proposition 2.9, v1 =

min
y∈[0,L]

e−αyh(y) is an upper solution of (2.36), hence we have two pairs of upper and lower

solutions which satisfy

v1 < v1 < v2 < v2.
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From [4, Theorem 14.2], (2.36) has at least three nonnegative solutions, which implies that

there exist at least two positive solutions. The condition (2.35) can be derived from (2.34)

since

max
y∈[0,L]

e−αyh(y) ≤ max
y∈[0,L]

h(y), e−αL min
y∈[0,L]

r(y) ≤ min
y∈[0,L]

e−αyr(y).

Note that if h(x) ≡ h and r(x) ≡ r, then (2.35) becomes 0 <
q

d
<

1

L
ln(

r

h
). Also

the maximal steady state solution obtained from Theorem 2.14 is the maximal steady state

solution defined in Proposition 2.12 as v2 is the bound for all positive steady states. The

second positive solution in Theorem 2.14 is a saddle-type solution in between two stable

solutions: the maximal one and the zero solution.

The existence result in Theorem 2.14 shows that the population is able to persist when

the relative advection rate q/d is relatively small. The existence of positive steady state

solution of (1.4) for other boundary conditions can also be proved along the approach in

the proof of Theorem 2.14 if proper upper and lower solutions can be constructed. The

numerically simulated persistence region Fig. 2.1 suggests that positive steady state solutions

of (1.4) for other boundary conditions only exist when the advection q is in a more restrictive

range than the one for no-flux case.

For the open environment, i.e. bu ≥ 0 and bd > 0, we can also obtain the existence

of multiple positive steady states, but with more restriction on the growth rate. Here we

establish a persistence result for H/H boundary condition. From Proposition 2.3, we know

that the persistence for the system with H/H type boundary condition would imply the

persistence for the one with other boundary conditions with bu ≥ 0 and bd ≥ 0. Indeed the

positive steady states under H/H type boundary condition can be used as the lower solution

to obtain the existence of the positive steady states under other boundary conditions.

Theorem 2.15. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), d > 0, q ≥ 0 and there exists
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an interval (x1, x4) ⊂ [0, L] and δ > 0 such that

F (x, r(x)) =

∫ r(x)

0

f(x, s)ds ≥ δ > 0, x ∈ (x1, x4), (2.37)

where r(x) is defined in (g2) and here we assume that r(x) is continuously differentiable for

x ∈ (x1, x4). Then for any k > 0, when
q

d
∈ [0, k], there exists d0(k) > 0, such that when

0 < d < d0(k), the following steady state problem


duxx − qux + f(x, u) = 0, 0 < x < L,

u(0) = u(L) = 0,

(2.38)

has at least two positive solutions.

Proof. We prove the result following a variational approach similar to [58], see also [82].

Define an energy functional

E(u) =

∫ L

0

e−αx
[
d

2
(ux)

2 − F (x, u)

]
dx,

where u ∈ X3 ≡ W 1,2
0 (0, L). Here we redefine f(x, u) to be

f̃(x, u) =


f(x, u), 0 ≤ u ≤M,

0, u < 0 and u > M,

(2.39)

where M = max
y∈[0,L]

r(y). From Proposition 2.6, all non-negative solutions of (2.38) satisfy

0 ≤ u(x) ≤ M , so this will not affect the solutions of (2.38). In the following we assume

f(x, u) to be f̃(x, u) as defined in (2.39).

Similar to [58], we can verify that E(u) satisfies the Palais-Smale condition, and similar

to (2.20), we can show that E(u) is bounded from below. Since any critical point of E(u) is

a classical solution of (2.38) and E(u) satisfies the Palais-Smale condition, inf E(u) can be

achieved and it is a critical value. In the following we prove that inf E(u) < 0 = E(0).
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Let [0, L] = [0, x1]∪(x1, x2]∪(x2, x3)∪[x3, x4)∪[x4, L] where 0 < x1 < x2 < x3 < x4 < L.

Here x2, x3 are to be chosen and x3 − x2 ≥ (x4 − x1)/2. We define a test function u0(x) as

follows:

u0(x) =



0, x ∈ [0, x1],

r(x2)

x2 − x1

(x− x1), x ∈ (x1, x2],

r(x), x ∈ (x2, x3),

r(x3)

x4 − x3

(x4 − x), x ∈ [x3, x4),

0, x ∈ [x4, L).

(2.40)

Then u0(x) ∈ X3. Let v0(x) = e−αx
[
d

2
(u′0(x))2 − F (x, u0(x))

]
. Then

E(u0) =

∫ x2

x1

v0(x)dx+

∫ x3

x2

v0(x)dx+

∫ x4

x3

v0(x)dx ≡ I1 + I2 + I3.

Since α =
q

d
∈ [0, k], we have

I2 =
d

2

∫ x3

x2

e−αx(rx)
2(x)dx−

∫ x3

x2

e−αxF (x, r(x))dx

≤ d

2
M2

4 (x3 − x2)− e−αx3δ(x3 − x2)

≤ d

2
M2

4 (x4 − x1)− 1

2
e−kLδ(x4 − x1),

(2.41)

where M4 = max
x2≤x≤x3

|rx(x)|. And

|I1|+ |I3| ≤
d

2

r(x2)2

x2 − x1

+M5(x2 − x1) +
d

2

r(x3)2

x4 − x3

+M5(x4 − x3)

≤d
2

M2

x2 − x1

+
d

2

M2

x4 − x3

+M5(x2 − x1 + x4 − x3),

(2.42)

where M5 = max
x1≤x≤x4

F (x, r(x)) and recall that in (g2), 0 < r(x) < M . Now choosing x2

sufficiently close to x1 and x3 sufficiently close to x4, we can have

M5(x2 − x1 + x4 − x3) <
δ(x4 − x1)

8
e−kL. (2.43)
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Next fixing x2, x3 as above, we can choose d0(k) > 0 such that for 0 < d < d0(k),

d

2
M2(

1

x2 − x1

+
1

x4 − x3

) <
δ(x4 − x1)

8
e−kL, (2.44)

and

d

2
M2

4 <
δ

8
e−kL. (2.45)

Now combining (2.41), (2.42), (2.43), (2.44) and (2.45), we have, for 0 < d < d0(k),

E(u0) ≤ |I1|+ I2 + |I3| < −
δ(x4 − x1)

8
e−kL < 0. (2.46)

Thus (2.38) has at least one positive solution u1(x) satisfying E(u1) = inf E(u) < 0 (u1 > 0

follows from the definition of f(x, u) in (2.39) and the strong maximum principle) from

standard minimization theory in calculus of variation [83, Theorem 2.7].

Next we apply the mountain pass theorem [5] to obtain another positive solution (2.38).

Note that

E ′′(u)[ϕ, ϕ] =

∫ L

0

de−αx(ϕx)
2dx−

∫ L

0

e−αxfu(x, u)ϕ2dx.

So we have

E ′′(0)[ϕ, ϕ] > e−αL
(
d

∫ L

0

(ϕx)
2dx+ A1

∫ L

0

ϕ2dx

)
≥ A2e

−αL||ϕ||2, (2.47)

where A1 = min
x∈[0,L]

−fu(x, 0) > 0 and A2 = min{d,A1}. Because E(0) = E ′(0) = 0, and E is

twice differentiable, then for any ε > 0, there exists ρ > 0 such that for ||ϕ|| ≤ ρ (here || · ||

is the norm of X3), we have

∣∣∣∣E(ϕ)− 1

2
E ′′(0)[ϕ, ϕ]

∣∣∣∣ ≤ ε||ϕ||2. (2.48)
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Now by choosing ε =
A2e

−αL

4
, and applying (2.47) and (2.48), we obtain that when ||ϕ|| = ρ,

E(ϕ) ≥ A2e
−αL

4
||ϕ||2 =

A2e
−αL

4
ρ2 > 0. (2.49)

Along with the result that there exists u0 ∈ X3 such that E(u0) < 0 and ‖ u ‖> ρ,

the mountain pass theorem [5] implies that E(u) has another critical point u2 such that

E(u2) ≥ A2e
−αL

4
ρ2 > 0 > E(u1). Therefore, u2 is a distinct positive solution of (2.38).

Now from the comparison of boundary condition in Proposition 2.3, under the assump-

tion of Theorem 2.15, (1.4) always has at least two positive steady state solutions as any

other boundary condition is more favorable than the H/H one in Theorem 2.15.

Theorem 2.16. Suppose g(x, u) satisfies (g1)-(g3)and (g4c), d > 0, q ≥ 0, bu, bd ≥ 0

and there exist an interval (x1, x4) ⊂ [0, L] and δ > 0 such that (2.37) holds, and r(x) is

continuously differentiable for x ∈ (x1, x4). Then for any k > 0, if
q

d
∈ [0, k], there exists

d0(k) > 0, such that when 0 < d < d0(k), (1.4) has at least two positive steady state solutions.

Proof. We use the upper-lower solution approach from subsection 3.4. From Proposition 2.6,

v2(x) = eαx max
y∈[0,L]

(e−αyr(y)) is an upper solution of (2.9), and the solution v2(x) of (2.38) is

a lower solution. Using the same v1 and v1, we can conclude the existence of at least two

positive solutions of (2.9).

Remark 2.17. 1. The growth rate condition (2.37) is clearly the local version of the one

used in Proposition 2.4, and this condition is sharp for the H/H boundary condition

(see Proposition 2.20 below for a nonexistence results). Note that for the most favorable

NF/NF boundary condition, Theorem 2.14 shows the existence without any restriction

on f(x, u), while for the most unfavorable H/H boundary condition, condition (2.37) is

needed to ensure the persistence state is a more stable than the extinction state in at least

some part of the habitat. Note that the potential function F (x, u) is a measurement of

stability, and (2.37) implies that 0 and r(x) are both local minimum points of F , but r(x)

is a global minimum point with smaller energy.
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2. The persistence result in Theorem 2.14 under NF/NF boundary condition requires q/d is

smaller than a given value, but q and d are not necessarily small. On the other hand, the

existence result in Theorems 2.15 and 2.16 for open environment allows q/d to be large

but d to be small. In general, it is difficult to determine the exact range of (d, q) which

supports population persistence.

Next we show that when the growth rate is in a special form, then multiple positive

steady state solutions of (1.4) exist when the diffusion coefficient d and advection rate q are

in certain range. Unlike Theorem 2.14, this result holds for any bu, bd ≥ 0 but not hostile

boundary condition.

Theorem 2.18. Consider the steady state solution for (1.4)


duxx − qux + u(r − u)(u− h) = 0, x ∈ (0, L),

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L).

(2.50)

Here 0 < h < r, d > 0, q ≥ 0, and bu, bd ≥ 0. Let dm = (r − h)L2/(mπ)2 be defined as

in Proposition 2.5 for m ∈ N and also define d0 = ∞. Suppose that dm+1 < d < dm for

m ∈ N ∪ {0}. Then there exists qm > 0 such that when q ∈ [−qm, qm], (2.50) has exactly

2m+ 2 nonconstant positive solutions.

Proof. We prove the result with a perturbation argument using implicit function theorem.

When q = 0, (2.50) becomes


duxx + u(r − u)(u− h) = 0, x ∈ (0, L),

ux(0) = ux(L) = 0.

(2.51)

From Proposition 2.5, when dm+1 < d < dm, we know that (2.51) has exactly 2m nontrivial

positive solutions u±k (d, x) (1 ≤ k ≤ m) and two trivial positive solutions u−m+1(x) ≡ h,
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u+
m+1(x) ≡ r. Moreover all these solutions except u+

m+1 are unstable, so each of them is non-

degenerate; and u+
m+1(x) = r is locally asymptotically stable. Here a solution u of (2.50) is

stable (or unstable) if the principal eigenvalue λ1 of the eigenvalue problem


dφxx − qφx + (−3u2 + 2(r + h)u− rh)φ = λφ, x ∈ (0, L),

dφx(0)− qφ(0) = buqφ(0),

dφx(L)− qφ(L) = −bdqφ(L),

(2.52)

is negative (or positive), and u is non-degenerate if λ = 0 is not an eigenvalue of (2.52).

We use the implicit function theorem to obtain the existence of positive solutions for

(2.50) when q is near 0. Define a mapping F : R ×W 2,p(0, L) → Lp(0, L) × R × R (where

p > 2) by

F (q, u) =


duxx − qux + u(r − u)(u− h)

dux(0)− qu(0)− buqu(0)

dux(L)− qu(L) + bdqu(L)

 .

Then F (0, u±k ) = 0 for 1 ≤ k ≤ m + 1. The Frechét derivative of F with respect to u at

(0, u±k ) is

Fu(0, u
±
k )[w] =


dwxx + (−3(u±k )2 + 2(r + h)u±k − rh)w

dwx(0)

dwx(L)

 , (2.53)

where w ∈ W 2,p(0, L). From the non-degeneracy of u±k , Fu(0, u
±
k ) is invertible, then from

the implicit function theorem, we obtain the existence of a positive solution u±k (q, x) of

(2.50) when q ∈ (−δk, δk) for some δk > 0 and each of 1 ≤ k ≤ m + 1. One can choose

qm = min
1≤k≤m+1

{δk} > 0 so (2.50) has 2m+2 positive solutions when q ∈ [−qm, qm]. Note that

each of these solutions is nonconstant when q 6= 0. By making qm possibly smaller, there

are exactly 2m + 2 such solutions when q ∈ [−qm, qm] as there are exactly 2m + 2 positive

solutions when q = 0.

Remark 2.19. 1. The solution u+
m+1(q, x) of (2.50) is locally asymptotically stable as it
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is perturbed from u+
m+1(x) = r which is locally asymptotically stable, and u+

m+1(q, x) is

also the maximal steady state solution in Proposition 2.12. All other positive solutions of

(2.50) are unstable. The trivial state u = 0 remains a locally asymptotically stable steady

state for all d > 0 and q ≥ 0.

2. The multiplicity of positive steady state solutions in Theorem 2.18 holds for all bd, bu ≥ 0,

but the critical advection rate qm is not explicitly defined and it is only for the special

form growth function f(u) = u(r − u)(u− h); while the result in Theorem 2.14 holds for

more general growth function only requiring (g1)-(g3) and (g4c) and an explicit bound of

the critical advection rate (2.35), but only for bd = bu = 0.

3. The multiplicity result in Theorem 2.18 does not include the NF/H or even H/H boundary

conditions. Indeed in the hostile boundary condition case, positive steady states of (2.50)

may not exist when h > r/2, see the following Proposition 2.20.

Finally we show a nonexistence of positive steady state solution result when the up-

stream boundary condition is hostile and the Allee threshold is high.

Proposition 2.20. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), and for r(x) ≡M defined

in (g2),

F (M) =

∫ M

0

f(s)ds < 0, (2.54)

Then the following steady state problem


duxx − qux + f(u) = 0, x ∈ (0, L),

u(0) = 0,

dux(L)− qu(L) = −bdqu(L),

(2.55)

has no positive solution if bd ≥ 1.

Proof. Suppose that u(x) is a positive solution of (2.55). From Proposition 2.6 and bd ≥ 1,

we have u(x) ≤ M . Multiplying the equation in (2.55) by ux, and integrating over an
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arbitrary interval [a, b] ⊆ [0, L], we obtain that

[
d

2
ux(x)2 + F (u(x))

] ∣∣∣∣∣
x=b

x=a

− q
∫ b

a

u2
x(x)dx = 0, (2.56)

as

∫ b

a

(duxxux + f(u)ux)dx =
d

2
u2
x(x)|x=b

x=a +

∫ u(b)

u(a)

f(u)du =

[
d

2
ux(x)2 + F (u(x))

] ∣∣∣∣∣
x=b

x=a

.

From the boundary condition of (2.55), ux(0) > 0 and dux(L) = (1 − bd)qu(L) ≤ 0. Hence

there exists x0 ∈ (0, L] such that ux(x0) = 0. Applying (2.56) to the interval [0, x0], we

obtain that

F (u(x0))− d

2
u2
x(0)− q

∫ x0

0

u2
x(x)dx = 0.

But (2.54) implies that F (u) < 0 for any u > 0. That is a contradiction. Therefore (2.55)

has no positive solution if bd ≥ 1.

The condition (2.54) is satisfied for f(u) = u(r − u)(u− h) with h > r/2, so the result

in Proposition 2.20 is partly similar to the nonexistence of solutions for Dirichlet boundary

value problem in Proposition 2.4. The nonexistence of positive steady state of (1.4) when the

upstream boundary is hostile and the Allee threshold is high also holds when the downstream

boundary is hostile, but is not proven here though it can be observed numerically (see Fig.

2.6 lower right panel).

Theorem 2.15 and Proposition 2.20 show that the Allee effect threshold h plays an

important role in the persistence/exitinction of population. In Fig. 2.6, the population

persistence/extinction behavior for (1.4) with f(u) = u(r − u)(u − h), varying advection

rate q and strong Allee threshold h is shown under the three boundary conditions: NF/NF,

NF/FF and NF/H, with an initial condition u0(x) = r = 1. For the NF/FF boundary

condition, the population persists under small q for all h ∈ (0, 1), and it goes to extinction

for large q. For the NF/H boundary condition, the persistence for small q only occurs for

0 < h < r/2, while the behavior is similar for NF/FF case for large q. It is interesting
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Figure 2.6: Population extinction and persistence for varying advection coefficient q (log scale)
and the Allee threshold h. Here f(x, u) = au(1 − u)(u − h), a = 0.5, d = 0.1, L = 10 and the
initial condition is u0(x) = 1. (Upper left): comparison of NF/NF, NF/FF and NF/H boundary
conditions; (Upper right): NF/NF; (Lower left): NF/FF; (Lower right): NF/H.

that for small positive q > 0, the threshold hc between persistence and extinction is actually

slightly higher than r/2.

2.3.4 Closed environment

Theorem 2.11 shows that when bd > 0, i.e. when the population has a loss at the

downstream, then a large advection rate q always drives the population to extinction. But

the restriction of bu ≥ 0 and bd > 0 in Theorem 2.11 excludes the NF/NF boundary condition

for which the population does not have a loss at the downstream end, so under the NF/NF

boundary condition, (1.4) could have a positive steady state solution for large advection rate

q. In the subsection, we discuss the asymptotic profile of positive steady state under closed
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advective environment, so we consider this special case of (1.4) and (2.8) with bu = bd = 0:



ut = duxx − qux + f(x, u), 0 < x < L, t > 0,

dux(0, t)− qu(0, t) = 0, t > 0,

dux(L, t)− qu(L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ (0, L),

(2.57)

and 
duxx − qux + f(x, u) = 0, x ∈ (0, L),

dux(0)− qu(0) = 0,

dux(L)− qu(L) = 0.

(2.58)

First we have the following maximum principle (see [20, Lemma 3.1]).

Lemma 2.21. Recall that N = max
y∈[0,L],u≥0

g(y, u) from (g3). Suppose that g(x, u) satisfies

(g1)-(g3), q, d satisfy q2/d ≥ 4N , and u(x) ∈ C2(0, L) ∩ C[0, L] satisfies


duxx − qux + g(x, u(x))u ≤ 0, 0 < x < L,

−dux(0) + qu(0) ≥ 0, u(L) ≥ 0,

(2.59)

then either u(x) ≡ 0 or u(x) > 0 in [0, L).

Proof. Using the change of variables v(x) = e−αx/2u(x), we obtain that v(x) satisfies


dvxx + vg̃(x, eαx/2v) ≤ 0, 0 < x < L,

−dvx(0) +
q

2
v(0) ≥ 0, v(L) ≥ 0,

(2.60)

where g̃(x, u) = g(x, u) − q2/4d ≤ 0. From the maximum principle, u(x) ≥ 0 in [0, L].

Moreover either u(x) ≡ 0 or u(x) > 0 in [0, L) according to the strong maximum principle.
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For some results below, we also assume that f(x, u) = ug(x, u) satisfies one of the

following:

(g5) there exists constants A,B > 0 such that, g(x, u) ≤ A−Bu for x ∈ [0, L] and u ≥ 0.

(g6) there exists P,Q > 0 such that g(x, u) ≥ −P for any x ∈ [0, L] and u ≥ 0, and g(x, u) ≤

−Q for any x ∈ [0, L] and u ≥ u1 where u1 > 2M and M = max
y∈[0,L]

r(y).

For the growth function satisfying (g5), the growth function per capita can be controlled by

a declining linear function. In (g6) the growth rate per capita is non-increasing but it has

a lower bound −P . We will prove our limiting profile result under the condition (g5), but

in the process of the proof, we first prove the result under the condition (g6). Note that

the cubic function f(u) = u(r − u)(u− h) satisfies (g5) but does not satisfy (g6), while the

function

f(x, u) =


u(r − u)(u− h), 0 ≤ u ≤ u1,

u(r − u1)(u1 − h), u > u1

(2.61)

satisfies (g6) but does not satisfy (g5), where u1 > r > h > 0.

Now we can obtain the following estimates for the positive solution u(x) of (2.58), which

is inspired by [20, Lemma 3.2].

Proposition 2.22. Suppose g(x, u) satisfies (g1)-(g3), and u(x) is a positive solution of

(2.58). Let C1 = 2 +N + P , and assume that q2/d ≥ C2
1 . Then we have:

1.

u(x) ≤ u+(x) := u(L) exp((−q
d

+
C1

q
)(L− x)), x ∈ [0, L]. (2.62)

2. If, in addition, we assume that f(x, u) = ug(x, u) also satisfies (f6), then

u(x) ≥ u−(x) := u(L) exp((−q
d
− C1

q
)(L− x)), x ∈ [0, L]. (2.63)
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Proof. We denote α = q/d and β = C1/q. Since q2/d ≥ C2
1 ≥ 4N , we have dβ2 ≤ 1 and

du+
xx − qu+

x + g(x, u(x))u+

=[d(α− β)2 − q(α− β) + g(x, u(x))]u+

≤[−C1 + dβ2 +N ]u+

≤[−1 + dβ2]u+ ≤ 0,

(2.64)

and

−du+
x (0) + qu+(0) = dβu+(0) ≥ 0, u+(L) = u(L). (2.65)

Applying Lemma 2.21 to u+(x)− u(x), we obtain the estimate in (2.62).

Similarly, we have

du−xx − qu−x + g(x, u(x))u−

=[d(α + β)2 − q(α + β) + g(x, u(x))]u−

≥[C1 + dβ2 − P ]u+ ≥ 0,

(2.66)

and

−du−x (0) + qu−(0) = −dβu−(0) ≤ 0, u−(L) = u(L). (2.67)

Now applying Lemma 2.21 to u(x)− u−(x), we obtain the estimate in (2.63).

We note that the estimates in Proposition 2.22 does not require (g4a), (g4b) or (g4c),

hence it holds not only for the Allee effect case but also for the logistic case. It shows that

when the advection rate q is large, the population density exhibits a spike layer profile: the

population concentrates at the downstream boundary end and the density elsewhere except

x = L tends to zero.

Theorem 2.23. Suppose g(x, u) satisfies (g1)-(g3), (g5) and gx(x, u) ≥ 0, and uq(x) is a

positive solution of (2.58). Recall C1 is the constant defined in Proposition 2.22. Then
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1. There exist positive constants C2 and C3, such that when q2/d ≥ C2
1 and

q

d
≥ C2, we have

uq(x) < C3
q

d
exp((−q

d
+
C1

q
)(L− x)). (2.68)

2. Let d > 0, L > 0 be fixed, then lim
q→+∞

∫ L

0

uq(x)dx = 0 and lim
q→+∞

uq(x) = 0 for any

x ∈ [0, L).

Proof. It is clear that if the conclusions hold for the maximal solution of (2.58), then the

conclusions also hold for any other positive solutions. So without loss of generality, we

assume that uq(x) is the maximal solution of (2.58). To prove (2.68) under the assumptions

(g1)-(g3) and (g5), we first prove (2.68) under the assumptions (g1)-(g3) and (g6). From

(g1)-(g3) and (g6), there exist positive constants A, B and Q, such that

g(x, u) ≤


A−Bu, x ∈ [0, L], 0 ≤ u ≤ u1,

−Q, x ∈ [0, L], u ≥ u1.

(2.69)

Integrating the first equation of (2.58) over (0, L) and applying the boundary condition, we

have ∫ L

0

uqg(x, uq)dx = 0. (2.70)

From Proposition 2.13, uq(x) is strictly increasing over x ∈ [0, L]. We assume that uq(L) > u1

(otherwise (2.68) obviously holds). Then there exists 0 < L1 < L, such that uq(L1) = u1,

recalling u1 is defined in (f6). Now (2.70) combined with (2.69) yields

B

∫ L1

0

u2
qdx+Q

∫ L

L1

uqdx ≤ A

∫ L1

0

uqdx ≤ ALu1. (2.71)

According to Proposition 2.22, when q2/d ≥ C2
1 , we have u−q (x) ≤ uq(x) ≤ u+

q (x), where

u±q = uq(L) exp ((−α∓ β)(L− x)), α = q/d and β = C1/q. Now substituting u−q into (2.71),
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we obtain
Bu2

q(L)

2(α + β)
[exp (−2(α + β)(L− L1))− exp (−2(α + β)L))

+
Quq(L)

α + β
(1− exp (−(α + β)L)] ≤ ALu1.

(2.72)

Claim: As α→∞, we have

exp (−(α + β)(L− L1)) =
u1

uq(L)
(1 +O(α−1)). (2.73)

Proof of Claim 2.3.4. Since u−q (x) ≤ uq(x) ≤ u+
q (x), there exist x1, x2 ∈ (0, L) satisfying

x1 < L1 < x2 such that u−q (x) = u+
q (x) = u1, that is

exp (−(α + β)(L− x1)) = exp (−(α− β)(L− x2)) =
u1

uq(L)
. (2.74)

Notice that for fixed d > 0 when α→∞, β = O(α−1). Thus,

exp
(
(−α +O(α−1))(L− x1)

)
= exp

(
(−α +O(α−1))(L− x2)

)
=

u1

uq(L)
. (2.75)

Since x1 ≤ L1 ≤ x2, we have

exp
(
(−α +O(α−1))(L− L1)

)
=

u1

uq(L)
, (2.76)

which implies the claim.

Substituting (2.73) into (2.72), we have (as α→∞)

1

α + β

[
Bu2

1 −Bu2
q(L) exp

(
−2(α +O(α−1))L

)
+Quq(L)−Qu1 +O(α−1)

]
≤ALu1.

(2.77)
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From Proposition 2.6, uq(L) ≤ C4e
αL, where C4 is a constant. Therefore (2.77) implies that

1

α + β
[Quq(L) +O(1)] ≤ ALu1, as α→∞. (2.78)

From (2.78), we conclude that there exist positive constants C2, C3 such that uq(L) ≤ C3α

whenever α ≥ C2 and q2/d ≥ C2
1 . Together with (2.62), we obtain (2.68). This proves (2.68)

when (g1)-(g3) and (g6) are satisfied.

Now suppose that f(x, u) = ug(x, u) satisfy (g1)-(g3) and (g5), then we can define a

f̃(x, u) = ug̃(x, u) satisfying (g1)-(g3) and (g6), and g(x, u) ≤ g̃(x, u). Then a comparison

argument implies that the solutions of (2.58) satisfy uq(x) ≤ ũq(x), where uq(x) is the

solution of (2.58) with f(x, u), and ũq(x) is a solution of (2.58) with f̃(x, u). Indeed this can

be shown using argument as in the proof of Theorem 2.14, as ũq(x) can be constructed with

uq(x) as the lower solution and eαx max
y∈[0,L]

e−αyr(y) as the upper solution. Now the estimate

(2.68) holds for ũq(x), then it also holds for uq(x) under the conditions (g1)-(g3) and (g5).

This completes the proof of part 1.

For part 2, we follow the proof of [53, Lemma 2.5]. From (g5), there exist constants

A,B > 0 such that g(x, u) ≤ A − Bu for x ∈ [0, L] and u ≥ 0. Then from comparison

method as in the last paragraph, it is sufficient to consider the solution uq(x) of


duxx − qux + u(A−Bu) = 0, x ∈ (0, L),

dux(0)− qu(0) = 0,

dux(L)− qu(L) = 0.

(2.79)

Integrating (2.79) on (0, L) and applying the boundary condition, we obtain

B

∫ L

0

u2
q(x)dx = A

∫ L

0

uq(x)dx ≤ A
√
L

√∫ L

0

u2
q(x)dx. (2.80)

In particular,

∫ L

0

u2
q(x)dx is bounded by a quantity independent of q. Choosing any function
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m(x) ∈ C2[0, L] with mx(0) = mx(L) = 0, multiplying the equation in (2.79) by m(x) and

integrating by parts, we obtain

d

∫ L

0

mxxuqdx+ q

∫ L

0

mxuqdx+

∫ L

0

muq(A−Buq)dx = 0. (2.81)

Since both

∫ L

0

uq(x)dx and

∫ L

0

u2
q(x)dx are bounded and q → +∞, then (2.81) implies that∫ L

0

mx(x)uq(x)dx → 0 and consequently

∫ L

0

uq(x)dx → 0 as q → +∞. For the pointwise

convergence, suppose it is not true. Then there exists a constant δ > 0 and a x∗ ∈ [0, L),

such that lim inf
q→+∞

uq(x
∗) ≥ δ > 0. Since uq(x) is strictly increasing, we have

∫ L

0

uqn(x)dx ≥
∫ L

x∗
uqn(x)dx ≥ δ(L− x∗) > 0,

for a sequence qn → ∞, which contradicts with

∫ L

0

uqdx → 0 as q → +∞. Therefore, we

have lim
q→+∞

uq(x) = 0 for any x ∈ [0, L).

We remark that the results of Theorem 2.23 hold under the assumption that such a

steady state solution uq(x) exists for (2.58) when the advection rate q is large, and the

results hold for logistic (g4a), weak Allee effect (g4b), and strong Allee effect (g4c) cases.

The existence of such steady state solutions for the logistic case and any q > 0 has been

proven in [53, Lemma 2.1], and the existence for the weak Allee effect case can also be

established (see our forthcoming work). So the results of Theorem 2.23 are relevant for these

two cases. However, the existence for the strong Allee effect case for large q remains an open

question. Nevertheless, the properties of the solution profile established in Theorem 2.23

indicates that when q is large, then the population concentrates at the downstream end but

the total biomass becomes very small regardless of the type of growth rate. In Fig. 2.7, the

time series of total biomass of (2.57) for different advection rate q are plotted. It can be

observed that the total biomass always decreases with respect to q. For small advection rate,

the population is close to carrying capacity; but for large advection rate, the total population
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tends to near zero (or indeed zero) when t→∞.
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Figure 2.7: The evolution of total biomass of (2.57) with respect to time under NF/NF boundary
condition and varying advection coefficient q. The horizontal axis is t and the vertical axis is

‖u(·, t)‖1 =
∫ L

0
u(x, t)dx. Here f(x, u) = u(1 − u)(u − h), d = 0.09, L = 10 and the initial

condition is u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for x ∈ [L/2, L]. Left: h = 0.4; Right:
h = 0.6.

2.3.5 Transient dynamics and traveling waves

From Fig. 2.7 left panel, the total biomass of the species increases in time t for small

advection rate q, but it decreases in time t for large q; while in the right panel, the total

biomass always decreases in time. Moreover, in all cases, the total biomass increases or

decreases in an almost linear fashion for a long time period until it is near the equilibrium

level, and the slope of linear change before the total biomass reaching the equilibrium level

decreases with respect to q.

Such wave-propagating-like transient dynamics of (2.57) is closely related to the travel-

ing wave solution of the reaction-diffusion-advection equation:

ut = duxx − qux + au(r − u)(u− h), t > 0, x ∈ (−∞,∞), (2.82)

where d > 0, a > 0, q ∈ R, and 0 < h < r. It is well-known [31, 57] that (2.82) has a unique

57



0 2 4 6 8 10
0

0.5

1

1.5
NF/NF

Space x

P
op

ul
at

io
n

 

 
t=1
t=50
t=100
t=250
t=550

0 2 4 6 8 10
0

0.5

1

1.5
NF/NF

Space x

P
op

ul
at

io
n

 

 
t=1
t=50
t=100
t=250
t=550

0 2 4 6 8 10
0

0.5

1

1.5
NF/NF

Space x

P
op

ul
at

io
n

 

 
t=1
t=50
t=100
t=250
t=550

0 2 4 6 8 10
0

0.5

1

1.5
NF/NF

Space x

P
op

ul
at

io
n

 

 
t=1
t=20
t=50
t=100
t=500

Figure 2.8: Propagation of interface and formation of boundary layer in (2.57). Here f(x, u) =
u(1− u)(u− h), h = 0.4, d = 0.09, L = 10 and the initial condition is u0(x) = 0 for x ∈ [0, L/2]
and u0(x) = 1 for x ∈ [L/2, L]. Upper left: q = 0.03; Upper right: q = 0.043; Lower left: q = 0.07;
Lower right: q = 0.1.

pair of traveling wave solutions U±(x− c±t) satisfying


dU ′′±(y)− (q − c±)U ′±(y) + aU±(y)(r − U±(y))(U±(y)− h) = 0, y ∈ (−∞,∞),

c− : U−(−∞) = 0, U−(∞) = r,

c+ : U+(−∞) = r, U+(∞) = 0,

(2.83)

with

c± = q ±
√

2ad
(r

2
− h
)
. (2.84)
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Indeed it can be explicitly computed that

U±(y) =
r

1 + e±ky
, where k =

√
a

2d
r. (2.85)
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Figure 2.9: Effect of advection rate q to the population propagation in (2.57). Left: The depen-
dence of traveling wave speed c with respect to the advection rate q; Right: The dependence of
maximal steady state solution on the advection rate q. Here f(x, u) = u(1− u)(u− h), d = 0.09,
h = 0.4 and the initial condition is u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for x ∈ [L/2, L].

Figure 2.10: Traveling-wave-like dynamics for different advection rate q. Here f(x, u) = u(1 −
u)(u − h), d = 0.09, h = 0.4, L = 10, and the initial condition is u0(x) = 0 for x ∈ [0, L/2] and
u0(x) = 1 for x ∈ [L/2, L]. The advection rate from left to right is q = 0.03, q = 0.043, q = 0.07
and q = 0.1.

The initial condition used in Fig. 2.7 and 2.8 is a step function, which represents that

the initial population only exists over the region [L/2, L]. The profile of this initial condition

resembles the shape of U−. The formula for c− in (2.84) shows that when h < r/2, the

wave speed c− is negative for small q, so the wave front moves upstream and the population

persists in the entire river (see Fig. 2.7 left panel and Fig. 2.8 upper left panel); for large

q, the wave speed is positive, the wave front moves downstream, and the population could

form a boundary layer steady state at downstream end (see Fig. 2.7 left panel and Fig. 2.8
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lower left panel), or the population could become extinct (see Fig. 2.7 left panel and Fig.

2.8 lower right panel). Between the waves of two opposite directions, there is a “break-even”

advection rate q0 (that is ≈ 0.042 for parameters in Fig. 2.7 and 2.8) such that the total

biomass is almost unchanged for all time, and the traveling wave is a standing one with

c− ≈ 0 (see Fig. 2.8 upper right panel). On the other hand, when h > r/2, the formula of c−

in (2.84) shows that the wave speed c− is always positive, hence for any advection rate q, the

population cannot invade the upstream region (see Fig. 2.7 right panel). Indeed, Fig. 2.7

right panel suggests that extinction always occurs in this case for any advection rate q when

the initial condition is a step function from 0 to 1. Note that positive steady states of (2.57)

still exist for small q even when h > r/2 (see Theorem 2.14). However, this phenomenon of

population is unable to persist in the upstream region when h > r/2 echoes the nonexistence

of positive steady states in Propositions 2.4 and 2.20 when the upstream end has Dirichlet

boundary condition.

The traveling-wave-like transient dynamics of (2.57) occurs when the diffusion coefficient

d and advection rate q are relatively small, the river length L is comparably large, and the

interface between extinction and persistence is far away from the boundary. Fig. 2.9 left

panel shows the comparison of the numerical wave speeds in Fig. 2.7 right panel and the

theoretical one in (2.84); Fig. 2.9 right panel shows that the maximal steady state solution

of (2.57) decreases in q, and the solution maintains a transition layer profile between the

extinction and persistence states. Fig. 2.10 shows the traveling-wave-like behavior of the

solutions for different q. The slope of the interface is approximately c−: it is negative when

q = 0.03, and it is positive when q = 0.07 and q = 0.1. It is almost zero when q = 0.043 (the

break-even advection rate).

Fig. 2.11 shows the evolution of population profile under different q when the initial

condition is a step function u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0 for x ∈ [L/2, L].

That is, the population initially is at upstream end, but not downstream end. Then in all

cases, the population can invade the downstream as c+ > 0 in this case. The invasion is

successful for small q case and the population is established in the entire river (see Fig. 2.11
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Figure 2.11: Formation of boundary layer. Here f(x, u) = u(1 − u)(u − h), h = 0.4, d = 0.09,
L = 10 and the initial condition is u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0 for x ∈ [L/2, L].
Upper left: q = 0.03; Upper right: q = 0.043; Lower left: q = 0.09; Lower right: q = 0.1.

upper left and upper right panels). But for large q, another wave is formed at the upstream

end and propagates at c− > 0 downstream. Hence for some time period, there are two

wave propagating: the front invasion wave with speed c+, and the back extinction wave with

speed c−. Although the back wave never catches up with the front wave as c+ > c−, the back

extinction wave eventually wipes out the entire population in the upstream region. Either

it ends at a boundary layer steady state at downstream end (see Fig. 2.11 lower left panel),

or the population becomes extinct (see Fig. 2.11 lower right panel).

In Fig. 2.12, the dynamics of (2.57) for small diffusion coefficient d = 0.0001 and various

q is shown with the initial condition u0(x) = h+ 0.1 sinx. It is known that when there is no

advection present, sharp interfaces between the two stable states are generated quickly, then
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Figure 2.12: Slow interface motion, persistence and extinction with advection in (2.57). Here
f(x, u) = u(1−u)(u−h), h = 0.4, d = 0.0001, L = 10 and the initial condition is u0 = h+0.1 sinx.
Upper left: q = 0.001; Upper right: q = 0.008; Lower left: q = 0.03; Lower right: q = 0.1.

the interfaces move slowly if the bistable nonlinearity is balanced (h = r/2) [12, 26], or the

interfaces move with traveling wave speed if it is unbalanced (h 6= r/2) [27]. Here we observe

that the sharp interfaces between the two stable states are still formed quickly in all cases of

advection rate q. Next a sufficiently small q = 0.001 can facilitate the slow movement of the

interfaces (see Fig. 2.12 upper left panel); or a larger q = 0.008 can speed up the transition

layer from 1 to 0 to catch the transition layer from 0 to 1, so the two transition layers merge

and the two patches of high density population collide into one (see Fig. 2.12 upper right

panel). However if the advection rate q increases further, then the strong flow will push all

population patches downstream before they can establish in the middle sections (see Fig.

2.12 lower panel). In the large q case (Fig. 2.12 lower panel), a very sharp boundary layer

62



appears to persist, which demonstrates that the boundary layer solution as in Theorem 2.23

exists for such q.

Figure 2.13: Interface merging, persistence and extinction with advection in (2.57). Here f(x, u) =
u(1 − u)(u − h), d = 0.0001, L = 10 and the initial condition is u0 = h + 0.1 sin 2x. Upper row:
h = 0.4; Lower row: h = 0.6; The advection rate from left to right: q = 0.001, q = 0.008, q = 0.03,
and q = 0.1.

The merging of the interfaces and the collision of persistence/extinction patches can be

clearly observed in Fig. 2.13. In the upper panel (h = 0.4), the persistence patches merge

through coarsening as c+ > c−; and in the lower panel (h = 0.6), the extinction patches

merge as c+ < c−. When the advection rate q is large, the extinction wave starting from

the upstream end point prevails so the extinction eventually occurs despite there being a

large merged persistence patch (Fig. 2.13 upper row q = 0.03 or q = 0.1). Also when the

advection rate q is sufficiently small, the steady state with multiple interfaces appears to be

metastable regardless of h = 0.4 or h = 0.6 (see Fig. 2.13 first column).

Figure 2.14: Bistable dynamics for different initial conditions. Here f(x, u) = u(1 − u)(u − h),
d = 0.09, h = 0.4, L = 10, and q = 0.043. The initial conditions from left to right are u0(x) = 0.36;
u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for x ∈ [L/2, L]; u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0
for x ∈ [L/2, L], and u0(x) = 0.43.
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Finally Fig. 2.14 and 2.15 demonstrate the bistable nature of (2.57) for different initial

conditions. In Fig. 2.14, the population becomes extinct when starting from an initial pop-

ulation which is entirely smaller than the Allee threshold (first panel); and the population

reaches the maximal steady state when starting from relatively large initial population (third

and fourth panels). Both of the extinction and maximal steady state solutions are locally

asymptotically stable (see Proposition 2.13), and we expect that there are the only stable

ones. But the second panel also shows a stable pattern with a transition layer. We con-

jecture that the transition layer solution is unstable and metastable (with a small positive

eigenvalue), so the pattern can be observed for a long time in numerical simulation. The

stability of such steady states will be a question for further studies.

Fig. 2.15 shows a well-known feature of the spreading/extinction bistable structure. For

bistable equation on unbounded domain (R) (2.82) with q = 0, it is known that when the

initial condition is a function uL(x) = 1 when |x| ≤ L and uL(x) = 0 otherwise, then there is

a sharp threshold L0 > 0, such that the corresponding solution converges to 0 if L < L0, and

the solution converges to a traveling wave if L > L0 [115], and such threshold phenomenon

hold for more general situations [24, 73]. Fig. 2.15 illustrates this phenomenon (bistability

between extinction and maximal steady state) with q > 0 and no-flux boundary condition.

It can be seen that here L0 ≈ 0.07L where L is the length of habitat, and the value of L0

appears to be independent of location of initial patch.

Figure 2.15: Minimal initial patch size for invasion. Here f(x, u) = u(1 − u)(u − h), d = 0.09,
h = 0.4, L = 10, q = 0.03, and the initial condition is u0(x) = 1 for x ∈ [C −W,C + W ] and
u0(x) = 0 otherwise. Values of (C,W ) from left to right: (C,W ) = (0.25L, 0.065L); (C,W ) =
(0.25L, 0.07L); (C,W ) = (0.75L, 0.065L); and (C,W ) = (0.75L, 0.07L).
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2.4 Conclusion

The persistence or extinction of a stream population can be modeled by a reaction-

diffusion-advection equation defined on a one-dimensional habitat (river environment). While

it is typical that the growth rate exhibits logistic type, it is also common that the growth rate

of the species exhibits a strong Allee effect so that the growth is negative at lower density.

It is shown that other than the extinction of population due to the small initial condition, a

strong advection can also drive the population to extinction in an open environment regard-

less of initial condition. On the other hand, in a closed environment, the population becomes

extinct in the upstream region but may concentrate near the downstream end under strong

flow rate. In general, a large increase of the advection rate makes the extinction more likely,

but there are a few numerical simulations indicating that an intermediate advection rate

may increase the population size or possibility of persistence (see Fig. 2.5 NF/NF case and

Fig. 2.6 NF/H case).

The logistic growth usually leads to an unconditional persistence of the population for

all initial condition, and the Allee effect growth rate causes a bistability in the population

dynamics. For a species with Allee effect type growth, multiple stable states are possible

and different initial conditions can lead to different asymptotic behavior, so the persistence is

always conditional. The question of persistence or extinction also depends on the boundary

conditions, advection rate, diffusion rate and the Allee threshold. From both analytical

and numerical approaches, we can see that in general, a higher Allee threshold or a higher

advection rate often lead to a wider range of the extinction region.

Our numerical results also suggest that when the Allee threshold satisfies certain con-

dition, a global extinction for all initial conditions is possible even in a closed environment.

For example, in Fig. 2.1 and Fig. 2.6, under NF/NF boundary condition and the growth

function f(x, u) = u(1−u)(u−h), a global extinction occurs if h = 0.4 for all large advection

rate q, but for h = 0.3, the population appears to at least survive at the downstream end

not in a total extinction. A theoretical verification of this phenomenon is an interesting
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open question. Similar global extinction when h > 0.5 has been observed and proved for a

two-patch ODE model with strong Allee effect growth function f(u) = u(1− u)(u− h) and

no loss due to dispersal [96].

Most of our results in this paper allow a spatially heterogeneous nonlinear growth func-

tion f(x, u) with a bistable structure. A multiplicity result for the steady state solutions with

a homogeneous growth function is obtained for small advection rate (see Theorem 2.18), and

the number of such solution can be large if the diffusion coefficient is sufficiently small. In the

absence of advection, the existence of steady state solutions with multiple transition layers

or spike layers has been proved in [1, 2, 32, 74] for one-dimensional case and many others for

higher dimensional case. The existence and profile of such solutions under small diffusion

and appropriate advection rate is another interesting question for future investigation.
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Chapter 3

Reaction-diffusion-advection model

with weak Allee effect

3.1 Introduction

In this chapter, we consider the dynamical behavior of the model (1.4) with weak Allee

effect growth and open or closed environment boundary conditions. Our main findings on

the dynamics of reaction-diffusion-advection model (1.4) with weak Allee effect type growth

are

1. In a closed river environment, the population always persists for all diffusion coefficients

and advection rates;

2. In an open river environment with non-hostile boundary condition, the population per-

sists for all diffusion coefficients if the advection rate is not large, and it becomes extinct

for large advection rate; in the intermediate advection rate, there exist multiple positive

steady state solutions; hence the system can tend to alternative stable states asymptoti-

cally;

3. In an open river environment with even partially hostile boundary condition, the popu-

lation persists when both the diffusion coefficient and advection rate are not large, and
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either a large diffusion coefficient or a large advection rate leads to population extinction;

the bistable dynamics occurs when both the diffusion coefficient and advection rate are

in the intermediate ranges.

Note that if the river population has a loss on the boundary ends due to movement, then

the river is an open environment and otherwise it is a closed environment. These results

are rigorously proved by using the theory of dynamical systems, comparison methods, and

bifurcation theory. Global bifurcation diagrams of (1.4) with the advection rate q as the

bifurcation parameter are obtained for different types of boundary conditions. Bifurcation

theory is applied in this paper for the weak Allee effect and also logistic cases, while it is not

applicable to the strong Allee effect case since the extinction state is always stable in that

case.

Our study for the weak Allee effect case of the dynamical behavior of the system (1.4)

in this chaper complements the one in chaper 3 for the strong Allee effect case, and the ones

in [53, 59] for the logistic case. It reveals that in open environment, for different parameter

regimes (diffusion coefficient or advection rate), the dynamical behavior of the system (1.4)

with weak Allee effect growth rate can be one of “extinction” (all solutions converge to

zero), “bistable” (multiple stable steady states) or “monostable” (all solutions converge to

a positive steady state), see Fig. 3.9 for a numerical demonstration. Note that in the

“monostable” case, the uniqueness of positive steady state is not proved as the logistic case,

as the usual sub-homogeneous or sublinear algebraic condition implying uniqueness does not

hold here. But numerical simulation indicates that the all solutions converge to the same

positive steady state. In comparison, the dynamical behavior of the system (1.4) with strong

Allee effect growth rate can only be “extinction” or “bistable”, while the one for logistic case

can only be “extinction” or “monostable” (here the uniqueness of positive steady state is

well-known) [53, 59]. Similar to the analytical or numerical findings in [53, 59, 108], the

transition from one dynamical behavior to another is often monotonic in the advection rate

q, but not so in the diffusion coefficient d (see Fig. 3.9 lower panel). The weak Allee effect

case is the most complex one with all three dynamical behavior, and the bistable regime is
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always in between the extinction and monostable regimes.

Dynamics of reaction-diffusion population models with weak Allee effect growth rate

and without the effect of advection has been considered in [48, 89]; in [55, 72], the role of

weak Allee effect in the ideal free dispersal was considered; and the effect of weak Allee effect

on the population spreading/invasion has been investigated in [103].

This chapter is organized as follows: In Section 3.2, we recall the reaction-diffusion-

advection model with various growth rate functions and the boundary conditions, as well as

some basic results from chapter 2. The main results on the persistence/extinction dynamics

are presented in Section 3.3. Some concluding remarks are given in Section 3.4.

3.2 Preliminaries

3.2.1 Basic dynamics

We recall the following results from chapter 2 (see Proposition 4.1, Theorem 4.2 and

Propositions 4.7, 4.8), which show that the long time dynamic behavior of solutions of (1.4)

is determined by the non-negative steady state solutions of (1.4), and some properties of

positive steady state solutions hold regardless of assumption (g4a,b,c).

Theorem 3.1. Suppose that g(x, u) satisfies (g1)-(g2).

1. (1.4) has a unique positive solution u(x, t) defined for (x, t) ∈ [0, L] × (0,∞), and the

solutions of (1.4) generates a dynamical system in X2, where

X2 = {φ ∈ W 2,2(0, L) : φ(x) ≥ 0, dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L)}.
(3.1)

2. For any u0 ∈ X2 and u0 6≡ 0, the ω-limit set ω(u0) ⊂ S, where S is the set of non-negative

steady state solutions.

3. Let u(x) be a positive steady state solution of (1.4), then u(x) ≤ eαx max
y∈[0,L]

(e−αyr(y))
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for x ∈ [0, L], where r(x) is defined in (g2) and α =
q

d
. Moreover, if bd ≥ 1, then

u(x) ≤M = max
y∈[0,L]

r(y) for x ∈ [0, L].

4. If in addition g(x, u) also satisfies (g3), and there exists a positive steady state solution of

(1.4), then there exists a maximal steady state solution umax(x) such that for any positive

steady state u(x) of (1.4), we have umax(x) ≥ u(x). Moreover if bu ≥ 0 and 0 ≤ bd < 1,

then umax(x) is strictly increasing in [0, L].

For (1.4), there is always an extinction steady state u = 0 for any d > 0 and q ≥ 0.

The local asymptotical stability of the extinction state can be determined by the principal

eigenvalue of an associated eigenvalue problem as follows:

Proposition 3.2. Suppose that g(x, u) satisfy (g1)-(g3), d > 0 and q ≥ 0. Let λ1(q) be the

principal eigenvalue of the eigenvalue problem:


dφ′′ − qφ′ + g(x, 0)φ = λφ, 0 < x < L,

dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L).

(3.2)

1. If λ1(q) < 0, then u = 0 is locally asymptotically stable for (1.4); and if λ1(q) > 0, then

u = 0 is unstable and there exists a positive steady state of (1.4).

2. If in addition g(x, u) also satisfies (g4a) or (g4b), then

(a) (open environment) when bd > 0 and bu ≥ 0, there exist q2 ≥ q1 > 0 such that

λ1(q) > 0 for 0 ≤ q < q1, λ1(q1) = λ1(q2) = 0, and λ1(q) < 0 for q > q2; moreover if

bd > 1/2, then λ1(q) is strictly decreasing and q1 = q2.

(b) (closed environment) when bu = bd = 0, then λ1(q) > 0 for all q > 0.

3. If in addition g(x, u) also satisfies (g4a), then u = 0 is globally asymptotically stable for

(1.4) when u = 0 is locally asymptotically stable, and when u = 0 is unstable, then there
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exists a unique positive steady state of (1.4) that is globally asymptotically stable.

Proof. For part 1, the stability/instability of the extinction state follows from standard the-

ory of semilinear parabolic equations [33]. For part 2, from the variational characterization

of λ1 in part 1 of [108, Proposition 3.1], λ1(q) > 0 for 0 ≤ q < q1 in the open environment

case, and λ1(q) > 0 for any q ≥ 0 in the close environment case. Also from part 3 of [108,

Proposition 3.1], λ(q)→ −∞ as q →∞ in the open environment case, so there exists q2 > q1

such that λ1(q) < 0 for q > q2. We can choose q2 ≥ q1 > 0 so that q1 is the smallest positive

root of λ1(q) = 0 and q2 is the largest. The strict decreasing property of λ1(q) when bd > 1/2

is proved in Theorem 2.1 of [62]. Part 3 is from [108, Proposition 3.2].

Proposition 3.2 shows that for the logistic or weak Allee effect case, the stability of the

extinction state is similar, but the global dynamics for the two cases may be different as the

positive steady state may not be unique for the weak Allee effect case (see Theorem 3.9).

3.2.2 Non-advective case

For reaction-diffusion-advection equation (1.4) with no advection, there have been sev-

eral previous works on the existence and multiplicity of positive steady state solutions, and

we recall these results here. Here the dispersal and evolution of a species are on a bounded

heterogeneous habitat Ω in Rn with n ≥ 1, and the inhomogeneous growth rate g(x, u) is

either logistic or of weak Allee effect type. In this subsection, we assume that the conditions

(g1)-(g3) and (g4a)-(g4c) are defined for x ∈ Ω instead of x ∈ [0, L]. If the environment is

with a hostile boundary condition, then the equation is in form of


ut = d∆u+ ug(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(3.3)
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The steady state solution satisfies


d∆u+ ug(x, u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(3.4)

Let X = W 2,p(Ω) ∩W 1,p
0 (Ω), and Y = Lp(Ω) where p > n. Then F : R × X → Y defined

by F (d, u) = d∆u + ug(x, u) is a continuously differentiable mapping. Denote the set of

non-negative solutions of (3.4) by Γ = {(d, u) ∈ R+ ×X : u ≥ 0, F (d, u) = 0}. Then from

the strong maximum principle, Γ = Γ0 ∪Γ+, where Γ0 = {(d, 0) : d > 0} is the line of trivial

solutions, and Γ+ = {(d, u) ∈ Γ : u > 0} is the set of positive solutions. Define

d1(g,Ω) = inf
φ∈W 1,2

0 (Ω)

{∫
Ω

g(x, 0)φ2(x)dx :

∫
Ω

|∇φ(x)|2dx = 1

}
. (3.5)

then d1 = d1(g,Ω) is a bifurcation point where nontrivial solutions of system (3.4) bifurcate

from the line of trivial solutions Γ0. Refer to [89, Theorem 1-3], we have the following result

when g(x, u) is of weak Allee effect type.

Theorem 3.3. Suppose that g(x, u) satisfies (g1)-(g3) and (g4b). Then

1. The extinction state u = 0 is locally asymptotically stable with respect to (3.3) when

d > d1, and it is unstable when 0 < d < d1;

2. d = d1 is a bifurcation point for system (3.4) and there is a connected component Γ1
+

of Γ+ whose closure includes the point (d, u) = (d1, 0) and the bifurcation at (d1, 0) is

subcritical; Near (d1, 0), Γ1
+ can be written as a curve (d(s), u(s)) with s ∈ (0, δ), d(s)→ d1

and u(s) = sφ1 + o(s) as s → 0+, where φ1(x) is the positive eigenfunction satisfying

d1∆φ1 + g(x, 0)φ1 = 0 in Ω and φ1 = 0 on ∂Ω;

3. There exists d∗ ≡ d∗(g,Ω) satisfying d∗ > d1 > 0 such that (3.4) has no positive solution

when d > d∗, and when d ≤ d∗, (3.4) has a maximal solution um(d, x) such that for any

solution u(d, x) of (3.4), um(d, x) ≥ u(d, x) for x ∈ Ω, and um(d, x) is semi-stable;
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4. For d < d∗, um(d, x) is decreasing with respect to d, the map d 7→ um(d, ·) is left continuous

for d ∈ (0, d∗), i.e. lim
η→d−

|um(η, ·)−um(d, ·)|X = 0, and all um(d, ·) are on the global branch

Γ1
+;

5. (3.4) has at least two positive solutions when d ∈ (d1, d∗).

Note that when g(x, u) satisfies (g4a) instead of (g4b), then d = d1 is still a bifurcation

point and the bifurcation is supercritical, and for any 0 < d < d1, there is a unique positive

solution of (3.4), and for d ≥ d1, there is no positive solution of (3.4). So a main distinction

of weak Allee effect growth rate is to allow an intermediate range of diffusion coefficient

(d1, d∗) so that the model possesses a bistability of two nonnegative locally asymptotically

stable states (one of them is zero).

On the other hand, if the habitat is a closed environment and there is no advection

effect, then the population is described by the following model with a no-flux boundary

condition: 
∂u

∂t
= d4u+ ug(x, u), x ∈ Ω, t > 0,

∂

∂n
u(x, t) = 0, x ∈ ∂Ω, t > 0.

(3.6)

We have the following results regarding the dynamics of (3.6) when the growth rate is of

weak Allee effect.

Theorem 3.4. Suppose that g(x, u) satisfies (g1)-(g3) and (g4b).

1. The extinction state u = 0 is unstable for any d > 0, and for any d > 0, (3.6) has

a maximal steady state solution um(d, x) such that for any solution u(d, x) of (3.6),

um(d, x) ≥ u(d, x) for x ∈ Ω, and um(d, x) is semi-stable;

2. For d > 0, um(d, x) is decreasing with respect to d, the map d 7→ um(d, ·) is left continuous

for d ∈ (0,∞), i.e. lim
η→d−

|um(η, ·)−um(d, ·)|X′ = 0, and all um(d, ·) are on a global branch

Γ1
+, where X ′ = {u ∈ W 2,p(Ω) : ∂u/∂n = 0 on ∂Ω}.

Proof. When the advection is absent, Proposition 3.2 part 1 and part 3(b) still hold true for

Ω ⊂ Rn with n ≥ 1. So the instability of u = 0 in part 1 follows from Proposition 3.2. The
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existence of a positive steady state follows from the upper-lower solution method, with the

upper solution u(x) = M , where M is defined in (g2), and the lower solution u(x) = εϕ1(x)

where ϕ1(x) is the positive eigenfunction corresponding to


d∆φ+ g(x, 0)φ = λ1φ, x ∈ Ω,

∂φ

∂n
= 0, x ∈ ∂Ω.

(3.7)

Here ε > 0 is sufficiently small so that v(x) < v(x). And there is a maximal steady state

in this case as u is an upper bound of all nonnegative steady states (similar to Theorem

3.1 part 3). For part 2, let d1 > d2 and assume that um(d1, x) and um(d2, x) are the

maximal steady state solutions of (3.6) with diffusion coefficients d1 and d2 respectively.

Then we have ∆um(d2, x) + d−1
1 ug(x, um(d2, x)) ≥ ∆um(d2, x) + d−1

2 ug(x, um(d2, x)) = 0.

Therefore um(d2, x) is a lower solution of (3.6) with diffusion coefficient d1, which implies

um(d1, x) ≥ um(d2, x) as um are the maximal solutions. So for d > 0, um(d, x) is decreasing

with respect to d. Other conclusions in part 2 follow from similar arguments in [89, Theorem

3].

3.3 Persistence/Extinction dynamics

From subsection 3.2.2, we know that the persistence or extinction of a diffusive popu-

lation with weak Allee effect growth rate is determined by the boundary condition and the

diffusion coefficient d. Under Neumann boundary (no-flux) condition, there always exists

a semi-stable positive steady state solution so the population always persists if the initial

population is large enough. Under zero Dirichlet (hostile) boundary condition, there are

three possible scenarios: unconditional persistence when 0 < d < d1, conditional persistence

and bistability when d1 < d < d∗, and extinction when d > d∗. In this section, we consider

the effect of advection on the persistence or extinction of population through comparison

method and bifurcation approach.
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3.3.1 Comparison with logistic models

If g(x, u) satisfies (g1)-(g3) and (g4a) (logistic growth), then the persistence or extinction

of population in (1.4) is completely determined by the stability of the extinction state as

shown in Proposition 3.2. When g(x, u) satisfies (g1)-(g3) and (g4b) (weak Allee effect), the

persistence or extinction could depend on the initial condition. But here we show that the

solutions of (3.6) with weak Allee effect growth rate can be compared with the ones of two

related equations with comparable logistic growth rates. For that purpose, we define the

“upper growth function” ḡ(x, u) and the “lower growth function” g(x, u) as follows

g(x, u) =


g(x, s(x)), 0 < u < s(x),

g(x, u), u > s(x),

(3.8)

where s(x) is defined in (g3) to be the maximum point of g(x, ·); and

g(x, u) =


g(x, 0), 0 < u < ξ(x),

g(x, u), u > ξ(x),

(3.9)

where, for x ∈ Ω, ξ(x) > s(x) satisfies g(x, ξ(x)) = g(x, 0) (see Fig.3.1). Thus g(x, u) and

g(x, u) are both continuous functions of logistic type and satisfy g(x, u) ≥ g(x, u) ≥ g(x, u).

Then we have the following results regarding persistence/extinction of population in (1.4)

by comparing with the ones with the two logistic growth rates g(x, u) and g(x, u), as the

persistence/extinction of population under logistic growth rate is known (Proposition 3.2).

Theorem 3.5. Suppose that g(x, u) satisfies (g1)-(g3) and (g4b), and g(x, u) and g(x, u) are

defined as in (3.8) and (3.9). Let u(x, t) be the solution of (1.4), and let um(x) and um(x)

be the maximal nonnegative steady state solution of (1.4) with growth function g(x, u) and

g(x, u), respectively.

1. (open environment) when bd > 0 and bu ≥ 0, then there exists constants q
1

and q1

satisfying 0 < q
1
< q1 such that
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u

grow
th rate per capita

Figure 3.1: The graphs of g(x, u), ḡ(x, u) and g(x, u) for fixed x ∈ Ω.

(a) if 0 ≤ q < q
1
, (1.4) has at least one positive steady state solution, and

um(x) ≥ lim sup
t→∞

u(x, t) ≥ lim inf
t→∞

u(x, t) ≥ um(x) > 0; (3.10)

(b) if q > q1, (1.4) has no positive steady state solution, and lim
t→∞

u(x, t) = 0.

2. (closed environment) when bu = bd = 0, then for all q ≥ 0, (1.4) has a positive steady

state solution and (3.10) holds.

Proof. First we consider the open environment case (bd > 0 and bu ≥ 0). From Proposition

3.2 part 3(a), for (1.4) with g(x, u), we define q
1

to be the value such that λ1(q
1
, g(x, 0)) = 0

and λ1(q, g(x, 0)) > 0 for 0 < q < q
1
, and for (1.4) with g(x, u), we define q1 to be the value

such that λ1(q1, g(x, 0)) = 0 and λ1(q, g(x, 0)) < 0 for q > q1. Since g(x, u) ≥ g(x, u) ≥

g(x, u), from the comparison principle of parabolic equations, we have u(x, t) ≥ u(x, t) ≥

u(x, t) for any x ∈ Ω and t > 0, where u(x, t) and u(x, t) are the solutions of (1.4) with

growth rates g(x, u) and g(x, u) and same initial condition as in (1.4). From Proposition 3.2,

if 0 ≤ q < q
1
, we obtain (3.10) as lim

t→∞
u(x, t) = um(x) and lim

t→∞
u(x, t) = um(x). In this case,
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(1.4) has at leats one positive steady state solution, as u(x, t) converges to a nonnegative

steady state from Theorem 3.1, and the steady state is positive from (3.10). If q > q1, then

lim
t→∞

u(x, t) = 0 as lim
t→∞

u(x, t) = 0 and lim
t→∞

u(x, t) = 0. The close environment case can be

proved in a similar way.
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Figure 3.2: Comparison of maximal steady state solutions of (1.4) with growth rates g(x, u),
g(x, u) = (1 − u)(u + h) and g(x, u). Here the horizontal axis is the advection rate q, and the
vertical axis is the maximum value of the maximal steady state solutions; the parameters used
are d = 4, h = 0.3, L = 10, bu = 0 and bd = 1.

Theorem 3.5 shows that the stream population model (1.4) with weak Allee effect growth

rate is similar to the one with logistic growth rate in small (0 ≤ q < q
1
) or large (q > q1)

advection cases, but it does not provide any information for the intermediate (q
1
< q < q1)

advection rate. In the next subsection, we use bifurcation theory to explore the dynamic

behavior of (1.4) in that case. In Fig. 3.2, solutions of (1.4) with weak Allee effect growth

g(x, u) = (1 − u)(u + h) and the ones with corresponding upper and lower logistic growth

rates

ḡ(x, u) =


(1 + h)2

4
, 0 < u <

1− h
2

,

(1− u)(u+ h), u ≥ 1− h
2

,
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and

g(x, u) =


h, 0 < u < 1− h,

(1− u)(u+ h), u ≥ 1− h,

are shown. One can observe that when the advection rate is smaller than q
1
, the three

solutions are almost identical in their maximum values, which is due to the fact that the

three functions g(x, u), g(x, u) and g(x, u) have same values for large population density u.

But the growth rates for small population density u are more important when the advection

rate q is in an intermediate range. Fig. 3.3 shows a comparison of profiles of maximal steady

state solutions of three growth rates g(x, u), g(x, u) and g(x, u).
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Figure 3.3: Comparison of the maximal steady state solutions to (1.4) of different growth rates.
Here g(x, u) = (r − u)(u + h), r = 1, d = 4, h = 0.3, L = 10, bu = 0 and bd = 1. Upper left:
q = 0.9; Upper right: q = 1.65; Lower left: q = 1.9; Lower right: q = 2.1.
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3.3.2 Bifurcation: open environment

In this subsection, we consider the structure of the set of positive steady state solutions

of (1.4) using the advection rate q as a bifurcation parameter. The steady state equation of

system (1.4) is


duxx(x)− qux(x) + u(x)g(x, u(x)) = 0, 0 < x < L,

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L).

(3.11)

Define X3 = W 2,2(0, L) and Y = L2(0, L) and a nonlinear mapping G : R+ ×X3 → Y × R2

as

G(q, u) :=


duxx − qux + ug(x, u)

dux(0)− (1 + bu)qu(0)

dux(L)− (1− bd)qu(L)

 . (3.12)

We denote the set of non-negative solutions of the equation by Γ = {(q, u) ∈ R+ × X3 :

u ≥ 0, G(q, u) = 0}. Then from the strong maximum principle, Γ = Γ0 ∪ Γ+, where

Γ0 = {(q, 0) : q > 0} is the set of trivial solutions, and Γ+ = {(q, u) ∈ Γ : u > 0}. We

consider the bifurcation of non-trivial solutions of (1.4) from the zero steady state at some

bifurcation point q = q1 which is identified in Proposition 3.2 part 3(a).

Theorem 3.6. Suppose that g(x, u) satisfies (g1)-(g3) and (g4a) or (g4b), g is twice differ-

entiable in u, bu ≥ 0, bd ≥
1

2
, and Ω+ = {x ∈ [0, L] : g(x, 0) > 0} is a set with positive

Lebesgue measure. Recall q1 is the unique positive number such that the principal eigenvalue

of (3.2) λ1(q) = 0. Then

1. q = q1 is a bifurcation point for (3.11) and there is a connected component Γ1
+ of the set

Γ+ of positive solutions to (3.11) whose closure includes the point (q, u) = (q1, 0) and the

projection of Γ1
+ onto R+ via (q, u) 7→ q contains the interval [0, q1);

2. Near (q1, 0), Γ1
+ = {(q(s), u(s)) : 0 < s < δ}, q(0) = q1, u(0) = 0 and u(s) = sφ + sz(s),
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z(0) = 0, z : [0, δ) → X4, q(s), z(s) are differentiable functions, where φ is the positive

eigenfunction of (3.2) with q = q1 and λ = λ1(q1) = 0, and X4 = {ϕ ∈ X3 :
∫ L

0
φϕdx = 0}

is a subspace of X3 complement to Span{φ};

3. When g(x, u) satisfies (g4a) (logistic growth), then the bifurcation at (q1, 0) is forward,

i.e. q(s) < q1 for s ∈ (0, δ);

4. When g(x, u) satisfies (g4b) (weak Allee effect growth), then the bifurcation at (q1, 0) is

backward, i.e. q(s) > q1 for s ∈ (0, δ).

Proof. We apply a local bifurcation theorem [19, Theorem 1.7] and a global version in [90].

The nonlinear map G defined in (3.12) is differentiable and twice differentiable in u, and

G(q, 0) = 0 for all q ≥ 0. At the bifurcation point (q, u) = (q1, 0),

Gu(q1, 0)[φ] :=


dφxx − q1φx + g(x, 0)φ

dφx(0)− (1 + bu)q1φ(0)

dφx(L)− (1− bd)q1φ(L)

 =


0

0

0

 , (3.13)

from Proposition 3.2, Gu(q1, 0) has a one-dimensional kernel spanned by φ as λ1(q1) = 0 is

the principal eigenvalue of (3.2), and the codimension of the range of Gu(q1, 0) is also one

from [90]. Here we make the range R(Gu(q1, 0)) of Gu(q1, 0) more specific. Suppose there

exists a ϕ ∈ X3 such that

Gu(q1, 0)[ϕ] :=


dϕxx − q1ϕx + g(x, 0)ϕ

dϕx(0)− (1 + bu)q1ϕ(0)

dϕx(L)− (1− bd)q1ϕ(L)

 =


h(x)

a

b

 , (3.14)

where (h(x), a, b) ∈ Y × R2. Notice that the first equation in (3.13) can be written as

d(e−α1xφx)x + g(x, 0)e−α1xφ = 0, (3.15)
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where α1 =
q1

d
. Similarly, from (3.14), we have

d(e−α1xϕx)x + g(x, 0)e−α1xϕ = e−α1xh(x). (3.16)

Then multiplying (3.15) by ϕ and (3.16) by φ, subtracting each other and integrating from

0 to L, we have

−e−α1Lbφ(L) + aφ(0) = −
∫ L

0

e−α1xφ(x)h(x)dx. (3.17)

Therefore we have

R(Gu(q1, 0)) = {(h(x), a, b) ∈ Y × R2 : l(h(x), a, b) = 0},

where l : Y × R2 → R is a linear functional in (Y × R2)∗ defined by

l(h(x), a, b) =

∫ L

0

e−α1xφ(x)h(x)dx+ aφ(0)− e−α1Lbφ(L). (3.18)

Therefore dimN(Gu(q1, 0)) = codimR(Gu(q1, 0)) = 1.

Next we prove that Gqu(q1, 0)[φ] 6∈ R(Gu(q1, 0)), where φ ∈ N(Gu(q1, 0)) and φ 6= 0. We

have

Gqu(q1, 0)[φ] :=


−φx

−(1 + bu)φ(0)

−(1− bd)φ(L)

 . (3.19)
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By using bd ≥
1

2
and Gu(q1, 0)[φ] = 0, we have

l(Gqu(q1, 0)[φ]) =−
∫ L

0

e−α1xφ(x)φx(x)dx− (1 + bu)φ
2(0) + e−α1L(1− bd)φ2(L)

=− 1

2
e−α1xφ2(x)|L0 −

∫ L

0

α1

2
e−α1xφ2(x)dx− (1 + bu)φ

2(0)

+ e−α1L(1− bd)φ2(L)

=−
∫ L

0

α1

2
e−α1xφ2(x)dx− (

1

2
+ bu)φ

2(0) + e−α1L(
1

2
− bd)φ2(L)

<0,

(3.20)

hence Gqu(q1, 0)[φ] 6∈ R(Gu(q1, 0)).

Now from [19, Theorem 1.7], the set of positive solutions of (3.11) near the bifurcation

point (q1, 0) is Γ1
+ = {(q(s), u(s)) : 0 < s < δ}, q(0) = q1, u(0) = 0 and u(s) = sφ + sz(s),

z(0) = 0, z : [0, δ) → X4, q(s), z(s) are continuous functions, where X4 = {ϕ ∈ X3 :∫ L
0
φϕdx = 0} is a subspace of X3 complement to Span{φ}. Since

Guu(q1, 0)[ϕ1, ϕ2] :=


2gu(x, 0)ϕ1ϕ2

0

0

 , (3.21)

where ϕ1, ϕ2 ∈ X3, we also obtain that (see [88])

q′(0) = −〈l, Guu(q1, 0)[φ, φ]〉
2〈l, Gqu(q1, 0)[φ]〉

=
2
∫ L

0
e−α1xgu(x, 0)φ3(x)dx

α1

∫ L
0
e−α1xφ2(x)dx+ (2bu + 1)φ2(0) + (2bd − 1)e−α1xφ2(L)

.

(3.22)

Therefore, if gu(x, 0) < 0 for all x ∈ Ω, which is the logistic type growth rate, we have

q′(0) < 0 and the bifurcation occurring at (q1, 0) is forward. And if gu(x, 0) > 0 for all

x ∈ Ω, which is the weak Allee type growth rate, we have q′(0) > 0 and the bifurcation

occurring at (q1, 0) is backward.

Next we apply [90, Theorem 4.3, 4.4] to obtain a global connected component Γ+
1 con-
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taining the local bifurcation curve which we obtain above. The conditions in [90, Theorem

4.3, 4.4] can all be verified using standard ways, see [90, 106]. Then we conclude that there

exists a connected component Γ1
+ of Γ+ such that its closure contains (q1, 0), and there are

three possibilities: (i) Γ1
+ is unbounded in R × X3; (ii) the closure of Γ1

+ contains another

(qi, 0) where qi is another eigenvalue satisfying the kernel of Gu(qi, 0) is nontrivial and qi 6= q1;

or (iii) Γ1
+ contains a point (q, z) where z ∈ X4. Case (ii) cannot happen since according to

Lemma 3.5 because all solutions on Γ1
+ are positive, but the solutions bifurcating from (qi, 0)

with qi 6= q1 are sign-changing near the bifurcation point, as 0 is a non-principal eigenvalue

of (3.2) with q = qi. Case (iii) cannot occur either as z ∈ X4 implying that z is sign-

changing but all solutions on Γ1
+ are positive. Therefore case (i) must occur and Γ1

+ must be

unbounded in R ×X3. And from Proposition 3.1, we have u(x) ≤ eq∗x/d max
y∈[0,L]

(e−q∗y/dr(y)),

where r(x) is defined in (g2), which gives that Γ1
+ is bounded in R+ × X3. Thus, the pro-

jection of Γ+ on R+ is bounded. On the other hand, from Lemma 3.5, we know that there

exist a q1 > 0 such that positive solutions of system (3.11) only exist when q < q1. Therefore

(−∞, q1) ⊃ ProjqΓ
1
+ ⊃ (−∞, q1) ⊃ [0, q1).

Remark 3.7. 1. When bu = bd = 0 (closed environment), the trivial steady state is always

unstable and there exists a stable positive steady state solution (see Theorem 3.5 part 2).

Then, no bifurcation occurs from the branch of the trivial steady state solution.

2. Theorem 3.6 is proved under the assumptions of bu ≥ 0 and bd ≥ 1/2. For the case of

bu ≥ 0, 0 < bd < 1/2, there always exists a critical advection rate q1 that destabilizes the

zero steady state solution, but it is not known whether it is unique in general situation.

If the environment is spatially homogeneous, then such q1 is unique for all bu ≥ 0 and

bd > 0 ([62, Theorem 2.1]). The bifurcation structure of positive solutions of (3.11) for

0 < bd < 1/2 is an interesting open question.

For more specific types of growth rate function: logistic or weak Allee effect, more

detailed information on the global bifurcation of solutions of (3.11) can be obtained.
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Theorem 3.8. Suppose that g(x, u) satisfies (g1)-(g3) and (g4a) (logistic growth), bu ≥ 0,

bd ≥
1

2
. Then in addition to Theorem 3.6,

1. For each 0 ≤ q < q1, there exists a unique positive solution uq(x) of (3.11) and it is

linearly stable; moreover for any initial value u0(x) ≥ (6≡)0, lim
t→∞

u(x, t) = uq(x) in X3,

where u(x, t) is the solution of (1.4) with initial condition u0;

2. Γ1
+ can be parameterized as Γ1

+ = {(q, uq(x)) : 0 ≤ q < q1}, lim
q→q1

uq(·) = 0, and the map

q 7→ uq(q, ·) is continuously differentiable.

The proof of this result is omitted, as the uniqueness of the positive solution uq(x) is

well-known (see [9, 59]), and the rest parts follow from similar results about logistic type

growth functions (see [9]). Figure 3.4 left panel shows a bifurcation diagram in this case.

0 q
1 q

logistic

0 q
1 qq

*

Weak Allee Effect

Figure 3.4: Illustrative bifurcation diagrams of nonnegative solutions to (3.11). Left: g(x, u)
follows logistic type growth; Right: g(x, u) follows weak Allee effect type growth. Here the
horizontal axis is q, and the vertical axis is ||u||∞.

Theorem 3.9. Suppose that g(x, u) satisfies (g1)-(g3) and (g4b) (weak Allee effect growth),

bu ≥ 0, bd ≥
1

2
. Then in addition to Theorem 3.6,

1. There exists q∗ > q1 > 0 such that (3.11) when q ≤ q∗, (3.11) has a maximal solution

um(q, x) such that for any positive solution u(q, x) of (3.11), um(q, x) ≥ u(q, x) for x ∈

[0, L];

2. (3.11) has at least two positive solutions when q ∈ (q1, q∗).
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Figure 3.5: Numerical bifurcation diagrams of nonnegative solutions to (3.11) when g(x, u) =
u(1 − u)(u + h), and only the trivial solutions and maximal solutions are plotted. Left: the
NF/FF boundary condition; Right: the NF/H boundary condition. Here d = 4, h = 0.3 and
L = 10. Here the horizontal axis is q, and the vertical axis is ||u||∞.

Proof. From Theorem 3.5, we know that there exists a q1 > 0, such that (3.11) has no

positive solution when q > q1. For any q ≥ 0, using the transform u = eαxv (α = q/d) on

(3.11), we obtain the following boundary value problem for v:


dvxx + qvx + vg(x, eαxv) = 0, 0 < x < L,

−dvx(0) + buqv(0) = 0,

dvx(L) + bdqv(L) = 0.

(3.23)

Set v(x) = max
y∈[0,L]

e−αyr(y). From (g3), we have g(x, u) ≤ 0 for u ≥ r(x) which implies that

g(x, eαxv) = g(x, eαx max
y∈[0,L]

e−αyr(y)) ≤ g(x, eαxe−αxr(x)) = g(x, r(x)) = 0.

Hence v(x) satisfies


dv′′ + qv′ + vg(x, eαxv) ≤ 0, 0 < x < L,

−dv′(0) + buqv(0) ≥ 0,

dv′(L) + bdqv(L) ≥ 0,

(3.24)
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which shows that v(x) is an upper solution of (3.23) for any q ≥ 0. For a given 0 ≤ q ≤ q∗,

if there exists a positive solution v(x) of (3.23), then it satisfies v(x) ≤ v(x) from Theorem

3.1 part 2. We can set the lower solution of (3.23) to be v(x) = v(x). Then there exists a

maximal solution vm(x) of (3.23) satisfying v(x) ≤ vm(x). Since vm(x) is obtained through

iteration from v(x) and any positive solution v of (3.23) satisfies v(x) ≤ v(x), then vm(x) is

the maximal solution of (3.23). Hence the maximal solution vm(x) always exists as long as

a positive solution v(x) of (3.23) exists. From Theorem 3.6, under the conditions (g1)-(g3)

and (g4b), (3.23) has a positive solution v(x) for q ∈ (q1, q1 + δ) with some δ > 0, and these

solutions are on a connected component Γ1
+ which emerges from the bifurcation point q = q1.

Define q∗ = sup{q > 0 : there exists a positive solution (q, u) ∈ Γ1
+ of (3.11)}. Then q∗ is

well-defined and q1 < q∗ ≤ q1. Because of the continuity of Γ1
+ and Theorem 3.6, (3.23) (or

(3.11)) has a positive solution (q, v) (or (q, u)) for all q ∈ [0, q∗). Then from above argument,

(3.23) has a maximal solution vm(q, x) for q ∈ [0, q∗), and consequently (3.11) has a maximal

solution um(q, x) for q ∈ [0, q∗).

From Theorem 3.1, the solutions {um(q, x) : 0 ≤ q < q∗} are uniformly bounded, and

thus they are also bounded in X3 from elliptic estimates. By taking a subsequence, we

may assume that um(q∗, x) = lim
q→(q∗)−

um(q, x) ≥ 0 exists, and it is a solution of (3.11).

From the maximum principle, either um(q∗, x) > 0 or um(q∗, x) ≡ 0. If um(q∗, x) ≡ 0, then

q = q∗ is also a bifurcation point for (3.11) from the trivial branch Γ0, but q = q1 is the

only bifurcation point where positive solutions of (3.11) can bifurcate from Γ0. So this is

impossible as q∗ > q1. Therefore um(q∗, x) > 0 so (3.11) has a maximal solution um(q, x) for

q ∈ [0, q∗]. Finally the existence of two positive solutions of (3.11) when q ∈ (q1, q∗) follows

from the same argument of [89, Theorem 3] but using the energy functional

E(u) =

∫ L

0

e−αx
[
d

2
(u′)2 − F (x, u)

]
dx+

q

2
(1 + bu)u

2(0)− q

2
(1− bd)e−αLu2(L), (3.25)

for u ∈ X2, where F (x, u) =

∫ u

0

ug(x, s)ds.

Fig 3.4 and Fig. 3.5 show the numerical bifurcation diagrams of maximal solutions
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for (3.11) under the NF/F and NF/H boundary conditions, which also reveals that the

bifurcation points q1 and q∗ are smaller for NF/H boundary condition than the ones for

NF/F boundary condition. In general the bifurcation points appear to be decreasing in bu

and bd. Note that NF/H is not covered by Theorem 3.9 but a similar proof also holds in

that case (see the next subsection).

3.3.3 Hostile boundary conditions

In the boundary condition of (1.4), when bu → ∞, bd → ∞, all the individuals of the

species die on the boundary so the boundary is hostile and it can be written as u(0) =

u(L) = 0. The dynamical behavior of the system (1.4) can still be described by Theorem 3.1

with some small modification. In particular the dynamics is determined by the nonnegative

steady state solutions. In subsection 3.2, it is shown that bifurcation of positive solutions of

(3.11) with respect to q follows Fig. 3.5 for any diffusion coefficient d > 0. Here we show

that for the hostile boundary condition, the bifurcation diagrams are different for different

range of d > 0. The steady state equation of system (1.4) with hostile boundary condition

becomes 
duxx(x)− qux(x) + u(x)g(x, u(x)) = 0, 0 < x < L,

u(0) = u(L) = 0.

(3.26)

Theorem 3.10. Suppose that g(x, u) satisfies (g1)-(g3) and (g4b) (weak Allee effect growth).

Recall the critical diffusion coefficients d1 and d∗ when q = 0 in Theorem 3.3.

1. If 0 < d < d1, there is a connected component Γ1
+ of the set of positive solutions to (3.26)

in the space R+ ×X5 which connects (q, u) = (0, um) and (q, u) = (q1, 0), where q1 > 0 is

the bifurcation point for (3.26) on the branch Γ0 of trivial solutions, and X5 = W 2,2(0, L)∩

W 1,2
0 (0, L); there exists q∗ > q1 such that (3.26) has at least two positive solutions on Γ1

+

for any q1 < q < q∗, at least one positive solution on Γ1
+ for any 0 ≤ q ≤ q1, and any

0 ≤ q < q∗ one of the solutions is the maximal solution um(q, x). (see Fig. 3.6 and 3.7

Left)
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2. If d1 < d < d∗, there is a connected component Γ1
+ of the set of positive solutions to

(3.26) in R+×X5 which connects (q, u) = (0, um) and (q, u) = (0, u2), um is the maximal

solution of (3.26) when q = 0, and u2 is another positive solution of (3.26) when q = 0;

there exists q∗ > 0 such that (3.26) has at least two positive solutions on Γ1
+ for any

0 ≤ q < q∗, and one of these two solutions is the maximal solution um(q, x). (see Fig.

3.6 and 3.7 Right)

Proof. For the case that 0 < d < d1, when q = 0, the trivial solution u = 0 of (3.26) is

unstable and according to Theorem 3.3, (3.4) has a maximal solution um. Then we can

follow the same proof of Theorems 3.6 and 3.9 to prove that there is a unique bifurcation

point q1 > 0 for (3.26) on the branch Γ0 of trivial solutions, the bifurcation is backward so

the bifurcating branch Γ1
+ can be extended to some q∗ > q1, and Γ+

1 connects to (0, um).

Other parts can also be obtained using the same proof as the ones of Theorems 3.6 and 3.9.

For the case that d1 < d < d∗, when q = 0, the trivial solution u = 0 of (3.26) is stable.

From Theorem 3.3, (3.4) has a maximal solution um and at least another positive solution

u2. Let Γ1
+ be the connected component of the set of positive solutions to (3.26) in R+×X3

containing (0, um). Then from [111, Theorem 4.2], the following alternatives hold: (i) Γ1
+ is

unbounded in R+ ×X5, or (ii) Γ1
+ contains another (0, u2) ∈ R ×X5 with u2 6= um, or (iii)

Γ1
+ ∩ ∂(R+ ×X5) 6= ∅ where ∂(R+ ×X5) is the boundary of R+ ×X5. Since the zero steady

state is always stable, (iii) is not possible. From Theorem 3.5, Γ1
+ is bounded hence (i) is

also not possible. Therefore, Γ1
+ contains another (0, u2) ∈ {0} ×X5 with u2 6= um. Other

parts can also be obtained using the same proof as the ones of Theorems 3.6 and 3.9.

Fig. 3.6 and Fig. 3.7 show the numerical bifurcation diagrams of maximal steady state

solutions for (3.26) in the cases of 0 < d < d1 and d1 < d < d∗.

Remark 3.11. 1. The results in Theorem 3.10 also hold when only one of the boundary

condition is hostile, for example NF/H boundary condition. In these cases, there exists a

critical diffusion coefficient d1 > 0 so that the bifurcation diagrams with parameter q are

different when d < d1 and d > d1 as Fig. 3.6 and 3.7. As shown in Theorem 3.9, the
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Figure 3.6: Illustrative bifurcation diagrams of nonnegative solutions to (3.26). Left: 0 < d < d1;
Right: d1 < d < d∗. Here the horizontal axis is q, and the vertical axis is ||u||∞.
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Figure 3.7: Numerical bifurcation diagrams of nonnegative solutions to (3.26) when g(x, u) =
u(1− u)(u + h), and only the trivial solutions and maximal solutions are plotted. Here h = 0.3,
L = 10, the horizontal axis is q, and the vertical axis is ||u||∞. Left: d = 3; Right: d = 4.

qualitative bifurcation diagrams for all d > 0 are same for the boundary open environment

boundary conditions with bu ∈ [0,∞) and bd ∈ (0,∞).

2. If d > d∗ (defined in Theorem 3.3), (3.26) has no positive solutions when q = 0 from

Theorem 3.3. But it is not known whether (3.26) has positive solutions for some positive

q > 0. Since it is known that there is no solutions for large q > 0, the set Γ+
1 of positive

solutions will be an isola which is not connected to q = 0 or u = 0 if it is not empty.

3. The critical advection rate q∗ defined in Theorems 3.9 or 3.10 is the largest advection rate

for the existence of positive steady states of (1.4) on the connected component Γ+
1 which
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either emerges from a bifurcation point (q, u) = (q1, 0) or (q, u) = (0, um). Theoretically

we do not exclude the possibility of another connected component Γ̃+
1 which is an isola

for larger q. But numerical simulations in Fig. 3.5 and 3.7 show that the set of positive

solutions of (3.11) or (3.26) is connected.

Finally we compare the effect of different boundary conditions on the dynamics of (1.4).

Especially we compare the different ranges of advection rate q and diffusion coefficient d that

generate extinction, bistable or monostable dynamics under different boundary conditions.

Theorems 3.9 and 3.10 identify two critical advection rates q1 and q∗ which separate the

ranges of advection rates of these three dynamical regimes: when 0 ≤ q ≤ q1, the solutions

tend to the maximal steady state um as t → ∞; when q1 < q < q∗, the dynamic outcome

depends on the initial conditions, most solutions either tend to the stable extinction state

u = 0 or the stable maximal steady state um as t→∞, and there are also solutions on the

threshold manifold which separates the basin of attractions of the two state states and they

converge to unstable steady states on the threshold manifold; and when q > q∗, all solutions

tend to the extinction state u = 0. In Fig. 3.8, we compare bifurcation points q1, q∗ and

maximal solutions um(q, x) of (1.4) for 0 ≤ q ≤ q∗ under different boundary conditions.

Here we impose the upstream boundary condition to be NF (bu = 0). For open environment

(bd ∈ (0,∞]), there always exist two bifurcation points satisfying 0 < q1(bd) < q∗(bd). And

as bd decreases, q1(bd) and q∗(bd) both increase. For closed environment (bd = 0), there exists

a (possibly unique) positive steady state solution for any q ≥ 0 and there are no bifurcation

points. One can observe from Fig. 3.8 left panel that the maximum value of um(q, ·) increases

for small q and decreases for large q when 0 ≤ bd < 1, while the maximum value always

decreases when bd > 1. On the other hand, for all boundary conditions, the total population

||um(q, ·)||1 decreases in q.

In Fig. 3.9, the parameter regions for the three dynamical behavior (monostable,

bistable and extinction) are plotted in the (d, q)-plane. For the boundary conditions that

has NF on the upstream end and bd = 0.25, bd = 0.5, or bd = 1 on the downstream end

(upper panel and middle left panel), the bifurcation curves q1(d) and q∗(d) increase as the
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Figure 3.8: Comparison of bifurcation points q1, q∗ and maximal steady state solutions of (1.4)
under different boundary conditions. Here g(x, u) = (r − u)(u + h), r = 1, h = 0.3, bu = 0 (NF
boundary condition on the upstream end), d = 4, L = 10, and the horizontal axis is q. Left:
comparison of ||u||∞; Right: comparison of ||u||1.

diffusion coefficient d increases, and it appears that each of q1(d) and q∗(d) approaches a

limit as d→∞. Note that the case bd = 0.25 is not included in the results of Theorem 3.9,

but the behavior is similar to the one for bd > 0.5. For the boundary conditions that has NF

on the upstream end and bd = 2, the bifurcation curves q1(d) and q∗(d) are not monotone

increasing but has a local maximum point in an intermediate advection rate. The curves

still have asymptotic limits when d→∞. For the NF/H and H/H type boundary conditions

(lower panel), not only the shape of graphs of q1(d) and q∗(d) are one-hump type, each of

q1(d) and q∗(d) drops to zero at some d > 0. Indeed the value d1 > 0 such that q1(d) = 0

and the value d∗ > 0 such that q∗(d) = 0 are exactly the critical diffusion coefficients de-

fined in Theorem 3.3. The vanishing of the bifurcation point q1(d) and q∗(d) under hostile

boundary condition is shown in Theorem 3.10. When 0 < d < d1, the dynamics changes as

“monostable-bistable-extinction” as q increases across q1 and q∗ (see Fig. 3.6 left), and when

d1 < d < d∗, it changes to “bistable-extinction” (see Fig. 3.6 right). The numerical result

here also suggests that when d > d∗, the population does to extinction for all q ≥ 0. Also

for the NF/H and H/H type boundary conditions, if one fixes the advection rate q to be in

an intermediate range, and increases the diffusion coefficient d, then the dynamics varies in

the sequence “extinction-bistable-monostable-bistable-extinction” (see Fig. 3.9 lower panel).
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Note that for the logistic growth case, it is known that the dynamics changes in the sequence

“extinction-monostable-extinction” [59, 93], and it was concluded that intermediate diffusion

coefficient is favourable for the persistence. Here we get similar conclusion for weak Allee

effect type growth rate, but there are bistable regime between the transition from extinction

to persistence.

3.4 Conclusion

The persistence or extinction of a stream population with diffusive and advective move-

ment is modeled by a reaction-diffusion-advection equation on an interval with boundary

conditions depicting different flowing patterns at the endpoints. When the growth rate of

the species is of logistic type, it is well-known that the dynamics is either population extinc-

tion or convergence to a positive steady state (monostable), depending on the environment

parameters (diffusion, advection, stream length) and boundary conditions [9, 53, 59, 70].

On the other hand, if the growth rate is of strong Allee effect, it was shown that either

population extinction or alternative stable states (bistable) occurs, still depending on the

environment parameters and boundary conditions. In this chapter, the dynamics of the

reaction-diffusion-advection equation with weak Allee effect growth rate is considered. Its

outcome is in between the one with logistic growth and the one with strong Allee effect

growth, so the extinction, bistable and monostable dynamics all can occur for some environ-

ment parameters and boundary conditions.

For a closed advective environment, the dynamic behavior of the stream population

with weak Allee effect growth is similar to the one with logistic growth, and the population

persists for all diffusion coefficients and advection rates. For the open environment with

non-hostile boundary condition, still similar to the logistic growth case, the trivial steady

state in the weak Allee effect case is destabilized at a critical advection rate so it is stable

for large advection and unstable for small advection. However, at the critical advection

rate, unlike the logistic case, a backward bifurcation occurs so there is a range of advection
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rates for which the dynamics of stream population is bistable. Hence the model with weak

Allee effect growth has features of the logistic model in some parameter ranges, but it also

possesses the bistable dynamics that is characteristic for strong Allee effect growth in other

parameter ranges. We use bifurcation theory to identify the range of advection rate for these

three dynamic regimes: extinction, bistable and monostable, and the diffusion coefficient

does not affect the qualitative dynamics in this case.

For the open environment with hostile boundary condition, it is shown that both of the

diffusion coefficient and the advection rate affect the dynamic outcomes. For an intermediate

advection rate, when increasing the diffusion coefficient, the dynamics changes from extinc-

tion to bistable, then to monostable, then to bistable again and back to extinction. This is

more complicated than the logistic growth case, but also shows that intermediate diffusion

coefficient is favourable for population persistence even when the growth rate has a weak

Allee effect. This extends the previous explanation of the “drift paradox” in [64, 78, 93] to

the weak Allee effect growth case but with an additional possibility of bistable dynamics in

two windows of diffusion coefficients.

93



−4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16

ln(d)

q

monostable

bistable

extinction

b
d
=1/4

 

 
q

1

q
*

−4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

ln(d)

q

monostable

bistable

extinction

b
d
=1/2

 

 
q

1

q
*

−4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ln(d)

q

monostable

bistable

extinction

NF/FF

 

 
q

1

q
*

−4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

ln(d)

q

monostable

bistable

extinction

b
d
=2

 

 
q

1

q
*

−4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ln(d)

q

monostable

bistableextinction

NF/H

 

 
q

1

q
*

−4 −3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

1

1.2

ln(d)

q

monostable

bistable

extinction

H/H

 

 
q

1

q
*

Figure 3.9: Population dynamical behavior of (1.4) for varying advection rate q and diffusion
coefficient d. Here g(x, u) = (r− u)(u+ h), r = 1, h = 0.3, d = 4, and L = 10. In each graph, the
horizontal axis is d in log scale, and the vertical axis is q. In all except lower right, bu = 0 (NF).
Upper left: bd = 0.25; Upper right: bd = 0.5; Middle left: bd = 1 (F); Middle right: bd = 2; Lower
left: hostile boundary at x = L (H); Lower right: hostile boundary at x = 0 and x = L (H/H).
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Chapter 4

Benthic-drift model with strong Allee

effect

4.1 Introduction

In this chapter, we investigate how interactions between the benthic zone and the drift

zone affect the population dynamics of a benthic-drift model, when the species follows a

strong Allee effect population growth in the benthic zone. Our main findings on the dynamics

of benthic-drift model with strong Allee effect type growth in the benthic population are

1. If the benthic population release rate is large, then for all the boundary conditions, ex-

tinction will always occur regardless of the initial conditions, the diffusive and advective

movement and the transfer rate from the drift zone to the benthic zone;

2. If the benthic population release rate is small (but not zero), then for all the boundary

conditions, the population persists for large initial conditions and becomes extinct for

small initial conditions. Such a bistability in the system exists also independent of the

diffusive and advective movement and the transfer rate from the drift zone to the benthic

zone;

3. If the benthic population release rate is in the intermediate range, the persistence or
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extinction depends on the diffusive and advective movement. It is shown that for the

closed environment, the population can persist under small advection rate and large

initial condition.

These results are rigorously proved by using the theory of dynamical systems, partial dif-

ferential equations, upper-lower solution methods, and numerical simulations are also in-

cluded to verify or demonstrate theoretical results. Compared with the single compartment

reaction-diffusion-advection equation with a strong Allee effect growth rate [108], in which

the advection rate q plays an important role in the persistence/extinction dynamics, the

benthic-drift model dynamics with strong Allee effect relies more critically on the strength

of interacting between zones.

The dynamic behavior of the single compartment reaction-diffusion-advection equation

modeling a stream population with a strong Allee effect growth rate was investigated in [108].

Compared to the well-studied logistic growth rate, the extinction state in the strong Allee

effect case is always locally stable. It is shown that when both the diffusion coefficient and

the advection rate are small, there exist multiple positive steady state solutions hence the

dynamics is bistable so that different initial conditions lead to different asymptotic behavior.

On the other hand, when the advection rate is large, the population becomes extinct regard-

less of initial condition under most boundary conditions. Corresponding dynamic behavior

for weak Allee effect growth rate has been considered in [107].

The benthic-drift model has the feature of a coupled partial differential equation (PDE)

for the drift population and an “ordinary differential equation” (ODE) for the benthic popu-

lation. Note that the benthic population equation is not really an ODE but an ODE at each

point of the spatial domain, or a reaction-diffusion equation with zero diffusion coefficient.

Such degeneracy causes a noncompactness of the solution orbits in the function space, which

brings an extra difficulty in analyzing the dynamics. Such PDE-ODE coupled systems have

been also studied in the case of population that has a quiescent phase [109], or some species

are immobile [68, 101].
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In Section 1.1.3, the benthic-drift model of stream population is established, and all

model parameters and growth rate conditions are set up in a general setting. Some pre-

liminary results are stated and proved in Section 4.2: the basic dynamics, global attractor,

and linear stability problem. The main results on the population persistence and extinction

are proved in Section 4.3, and some numerical simulations are shown in Section 4.4 to pro-

vide some more quantitative information of the dynamics. A few concluding remarks are in

Section 4.5.

4.2 Basic properties of solutions

This section is devoted to establishing some basic properties of (1.13). Throughout the

paper, we assume that the functions Ab(x) and Ad(x) and parameters satisfy the following

conditions:

(A1) Ab(x), Ad(x) ∈ C[0, L], Ab(x) > 0 and Ad(x) > 0 on x ∈ [0, L].

(A2) d > 0, q ≥ 0, µ > 0, σ > 0, m1 ≥ 0 and m2 ≥ 0.

The boundary conditions for the drift population in (1.13) is given in a flux form following

[59, 108] (see also [37] for slightly different setting). Here the parameters bu ≥ 0 and bd ≥ 0

determine the magnitude of population loss at the upstream end x = 0 and the downstream

end x = L, respectively. At the boundary ends x = 0 and x = L, if bu = 0 and bd = 0,

that is the no-flux (NF) boundary condition dux(x, t) − qu(x, t) = 0, for instance, can be

effectively used to study the sinking, self-shading phytoplankton model (see, e.g., [34, 38]);

bd = 1 gives the free-flow (FF) boundary condition ux(x, t) = 0, referred as the Danckwerts

condition, can be applied to the situation like stream to lake (see [98]); and when bd becomes

sufficiently large, i.e. bd →∞, we have the hostile (H) boundary condition u(x, t) = 0, which

can be used in the scenario of stream to ocean (see [93]).
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For later applications, we also define

gmax = max
x∈[0,L]

g(x, s(x)) = max
x∈[0,L]

max
v≥0

g(x, v),

gmin = min
x∈[0,L]

g(x, s(x)) = min
x∈[0,L]

max
v≥0

g(x, v).

(4.1)

The growth rate of the population is f(x, v) = vg(x, v), and we also define

fv = max
x∈[0,L]

max
v≥0

fv(x, v). (4.2)

One can observe that gmax ≤ fv as maxv≥0 fv(x, v) = maxv≥0(g + vgv) ≥ g(x, s(x)) +

s(x)gv(x, s(x)) = g(x, s(x)) = maxv≥0 g(x, v) for x ∈ [0, L].

In the following we will study the dynamics of system (1.13) under the conditions (A1)-

(A2), (g1)-(g3) and (g4c) (strong Allee effect growth). In particular, we are interested in

the existence, multiplictity and stability of non-negative steady state solutions (u(x), v(x))

which satisfy the following steady state system:



duxx − qux +
Ab(x)

Ad(x)
µv − σu−m1u = 0, 0 < x < L,

vg(x, v)−m2v − µv +
Ad(x)

Ab(x)
σu = 0, 0 ≤ x ≤ L,

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L).

(4.3)

4.2.1 The well-posedness

We first study the well-posedness of the initial-boundary-value problem (1.13). Using

the transform u = eαxw, v = eαxz on the system (1.13), where α =
q

d
, we obtain the following

98



system of new variables (w, z):



wt = dwxx + qwx +
Ab(x)

Ad(x)
µz − σw −m1w, 0 < x < L, t > 0,

zt = zg(x, eαxz)−m2z − µz +
Ad(x)

Ab(x)
σw, 0 ≤ x ≤ L, t > 0,

−dwx(0, t) + buqw(0, t) = 0, t > 0,

dwx(L, t) + bdqw(L, t) = 0, t > 0,

w(x, 0) = e−αxu0(x) := w0(x) ≥ 0, x ∈ (0, L),

z(x, 0) = e−αxv0(x) := z0(x) ≥ 0, x ∈ (0, L),

(4.4)

The boundary conditions of system (4.4) are either no-flux (bu = bd = 0), hostile (bu, bd →∞

) or Robin (bu, bd > 0) types. With bu ≥ 0 and bd ≥ 0, we have the following settings following

similar ones in [36, 37]. Let X = C([0, L],R) be the Banach space with the usual supremum

norm ‖u‖∞ = max
x∈[0,L]

|u(x)| for u ∈ X. Then the set of non-negative functions forms a solid

cone X+ in the Banach space X. Suppose that T1(t) is the C0 semi-group associated with

the following linear initial value problem



wt = dwxx + qwx −m1w, 0 < x < L, t > 0,

−dwx(0, t) + buqw(0, t) = 0, t > 0,

dwx(L, t) + bdqw(L, t) = 0, t > 0,

w(x, 0) = w0(x) ≥ 0, x ∈ (0, L).

(4.5)

From [91, Chapter 7], it follows that the solution of (4.5) is given by w(x, t) = T1(t)w0 and

T1(t) : X → X is compact, strongly positive and analytic for any t > 0. We also define

(T2(t)ϕ)(x) = e−m2tϕ,
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for any ϕ ∈ X, t ≥ 0. Then T (t) := (T1(t), T2(t)) : X × X → X × X, t ≥ 0, defines a C0

semigroup. Define the nonlinear operator B = (B1, B2) : X+ ×X+ → X ×X by

B1(φ)(x) =
Ab(x)µ

Ad(x)
φ2 − σφ1,

B2(φ)(x) = φ2g(x, eαxφ2) +
Ad(x)σ

Ab(x)
φ1 − µφ2,

(4.6)

for x ∈ [0, L] and φ = (φ1, φ2) ∈ X+ × X+. Then system (4.4) can be rewritten as the

following integral equation

U(t) = T (t)φ+

∫ t

0

T (t− s)B(U(s))ds, (4.7)

where U(t) = (w(t), z(t)) and φ = (φ1, φ2) ∈ X+ × X+. By [69, Theorem 1 and Re-

mark 1.1], it follows that for any (w0, z0) ∈ X+ × X+, system (4.4) has a unique non-

negative mild solution (w(x, t;w0, z0), z(x, t;w0, z0)) with initial condition (w0, z0). More-

over, (w(x, t;w0, z0), z(x, t;w0, z0)) is a classical solution of system (4.4) for t > 0. Then, we

can have the local existence and positivity of solutions of system (4.4) and (1.13).

Lemma 4.1. Suppose that Ab(x) and Ad(x) and parameters satisfy (A1)-(A2), g(x, u) sat-

isfies (g1)-(g2), then system (1.13) has a unique solution for any initial value in X+ ×X+

and the solutions to (1.13) remain non-negative on their interval of existence.

Next we discuss the global existence of the solutions of system (1.13). To achieve that,

we start with the boundedness of the steady state solutions of system (1.13).

Proposition 4.2. Suppose that g(x, u) satisfies (g1)-(g2) and r(x) is defined in (g2). Let

(u(x), v(x)) be a positive steady state solution of system (1.13), then for x ∈ [0, L],

u(x) ≤ eαxMθ1, v(x) ≤ eαxM max{1, θ1θ2}, (4.8)

where

M = max
y∈[0,L]

r(y), α =
q

d
, (4.9)
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and

θ1 = max
y∈[0,L]

Ab(y)

Ad(y)

µ

σ +m1

, θ2 = max
y∈[0,L]

Ad(y)

Ab(y)

σ

µ+m2

. (4.10)

Proof. Using the transform u = eαxw and v = eαxz on system (4.3), we obtain the following

system 

dwxx + qwx +
Ab(x)

Ad(x)
µz − σw −m1w = 0, 0 < x < L,

zg(x, eαxz)−m2z − µz +
Ad(x)

Ab(x)
σw = 0, 0 ≤ x ≤ L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(4.11)

Multiplying the second equation of (4.11) by
Ab(x)

Ad(x)
and adding to the first equation of

(4.11), we have

dwxx + qwx −m1w +
Ab(x)

Ad(x)
zg(x, eαxz)− Ab(x)

Ad(x)
m2z = 0. (4.12)

Let w(x0) = max
x∈[0,L]

w(x) for x0 ∈ [0, L]. If x0 ∈ (0, L), then wxx(x0) ≤ 0 and wx(x0) = 0.

Consequently, from (4.12)

Ab(x0)

Ad(x0)
z(x0)g(x, eαxz(x0)) > 0. (4.13)

Now from (g2) and z(x0) > 0 , eαx0z(x0) < r(x0), which implies that z(x0) < M0, where

M0 = max
y∈[0,L]

e−αyr(y) ≤ M . Using the first equation of system (4.11), and the fact that

wxx(x0) ≤ 0, wx(x0) = 0, we have that for x ∈ [0, L],

max
y∈[0,L]

Ab(y)

Ad(y)
µM ≥ Ab(x0)

Ad(x0)
µz(x0) > (σ +m1)w(x0) ≥ (σ +m1)w(x),

which implies the estimate for u(x) in (4.8).

Now for the bound of z(x), if eαxz(x) ≤M , then we can obtain z(x) ≤Me−αx ≤M ; or

if eαxz(x) > M , from which we have g(x, eαxz(x)) ≤ 0. Then from the second equation of
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system (4.11), we know that

(µ+m2)z(x) ≤ [µ+m2 − g(x, eαxz(x))]z(x) =
Ad(x)

Ab(x)
σw(x),

which implies that z(x) ≤ θ1θ2M where θ1, θ2 are defined in (4.10). Combining the two

cases, we obtain the estimate for u(x) in (4.8).

Now we have the following result on the global dynamics of (1.13).

Theorem 4.3. Suppose that g(x, u) satisfies (g1)-(g2), then (1.13) has a unique positive

solution (u(x, t), v(x, t)) defined on t ∈ [0,∞), and the solutions of (1.13) generates a dy-

namical system in X1, where

X1 ={(φ, ψ) ∈ W 2,2(0, L)× C(0, L) : φ(x) ≥ 0, ψ(x) ≥ 0,

dφ′(0)− qφ(0) = buqφ(0), dφ′(L)− qφ(L) = −bdqφ(L)}.
(4.14)

Furthermore, (1.13) is a point dissipative system.

Proof. We consider the equivalent system (4.4) of (1.13). Assume that (u(x, t), v(x, t)) is a

solution of system (1.13), then (w(x, t), z(x, t)) is a solution of system (4.4). We choose

M1 = max

{
M max{1, θ1, θ1θ2}, max

y∈[0,L]
e−αyu0(y), max

y∈[0,L]
e−αyv0(y)

}
, (4.15)

where θ1, θ2 are defined in (4.10). Then (M1,M1) is an upper solution of (4.4) and (0, 0) is

a lower solution of (4.4). According to [80, Theorem 4.1], we obtain that

0 ≤ w(x, t) ≤ w1(x, t), 0 ≤ z(x, t) ≤ z1(x, t),

where (w1(x, t), z1(x, t)) is the solution of (4.4) with initial condition w1(x, 0) = M1 and

z1(x, 0) = M1. Moreover the solution (w1(x, t), z1(x, t)) is non-increasing in t and lim
t→+∞

(w1(x, t), z1(x, t)) =

(wmax(x), zmax(x)) which is maximum steady state of (4.4) not larger than (M1,M1). From

Proposition 4.2, we obtain that (u(x, t), v(x, t)) exists globally for t ∈ (0,∞), stays positive
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and

lim sup
t→∞

u(x, t) ≤ eαxMθ1, lim sup
t→∞

v(x, t) ≤ eαxM max{1, θ1θ2}. (4.16)

4.2.2 Global attractor

From Proposition 4.3, it follows that solutions of system (1.13) are uniformly bounded.

Thus, we can define a solution semiflow of (1.13) on X+ ×X+ by

Σ(t)φ =

u(t, ·, φ1(x))

v(t, ·, φ2(x))

 ∀φ = (φ1, φ2) ∈ X+ ×X+, t ≥ 0. (4.17)

Σ(t)φ is the solution of (1.13) with initial condition (φ1, φ2) and Σ(t) is a positive semigroup

for all t ≥ 0. Notice that Σ(t) is not compact since the second equation in (1.13) has no

diffusion term. Due to the lack of compactness, we need to impose the following condition

fv < m2 + µ, (4.18)

where fv is defined in (4.2), and recall that f(x, v) = vg(x, v). Recall that the Kuratowski

measure of noncompactness (see [105, Chapter 1]), which is defined by the formula

α(K) := inf{r : K has a finite cover of diameter < r}, (4.19)

on any bounded set K ⊂ X+. And the diameter of the set is defined by the relation

diamK = sup{dist(x, y) : x, y ∈ K}. We set α(K) = ∞ whenever K is bounded. From

the definition of α-contracting, we know that α(K) ≤ diamK, α(K) = 0 if and only if the

closure K of K is compact and the set K is bounded if and only if α(K) <∞.

Lemma 4.4. Suppose that g(x, u) satisfies (g1)-(g2) and (4.18), then Σ(t) is α-contracting
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in the sense that

lim
t→∞

α(Σ(t)K) = 0, (4.20)

for any bounded set K ⊂ X+.

Proof. The right hand side of the v-equation in (1.13) is represented by

H(u, v) = vg(x, v)−m2v − µv +
Ad(x)

Ab(x)
σu. (4.21)

Then from (4.18), there exists a real number r > 0 satisfies

∂H(u, v)

∂v
= fv(x, v)−m2 − µ < −r < 0. (4.22)

With this inequality, the rest of the proof is similar to the one in Lemmas 3.2 and 4.1 in

[35].

Now we are ready to show that solutions of system (1.13) converge to a compact attractor

on X+ ×X+ when t→∞ under the condition (4.18).

Theorem 4.5. Suppose that g(x, u) satisfies (g1)-(g2), then Σ(t) admits a global attractor

on X+ ×X+ provided that (4.18) holds.

Proof. From Lemma 4.4 and Theorem 4.3, it follows that Σ(t) is α-contracting on X+ and

system (1.13) is point dissipative. By Proposition 4.2, we also know that the positive orbits

of bounded subsets of X+ for Σ(t) are uniformly bounded. Then according to [67, Theorem

2.6], Σ(t) has a global attractor that attracts every bounded set in X+.

From the discussion above, we can obtain the convergence of the solutions to equilibria

of system (1.13) by constructing a Lyapunov function.

Theorem 4.6. Suppose that g(x, u) satisfies (g1)-(g2) and (4.18), then for any (u0, v0) ∈ X1

and u0 6≡ 0, v0 6≡ 0, the ω-limit set ω((u0, v0)) ⊂ S, where S is the set of non-negative steady

state solutions of (1.13).
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Proof. We prove that the solution (u(x, t), v(x, t)) is always convergent. For that purpose,

we define a function

E(u, v) =

∫ L

0

e−αx
[
d

2
(ux)

2 − Ab(x)

Ad(x)
µuv +

σ +m1

2
u2

]
dx

− µ

σ

∫ L

0

e−αx
A2
b(x)

A2
d(x)

[
F (x, v)− µ+m2

2
v2

]
dx+

q

2
(1 + bu)u

2(0, t)

− q

2
(1− bd)e−αLu2(L, t),

(4.23)

for (u, v) ∈ X1, where F (x, v) =

∫ v

0

f(x, s)ds. Assume that (u(x, t), v(x, t)) is a solution of

system (1.13), we have

d

dt
E(u(·, t), v(·, t)) =

∫ L

0

e−αx(duxuxt −
Ab(x)

Ad(x)
µ(utv + uvt) + (σ +m1)uut)dx

− µ

σ

∫ L

0

e−αx
A2
b(x)

A2
d(x)

(fvt − (µ+m2)vvt)dx

+ q(1 + bu)u(0, t)ut(0, t)− q(1− bd)e−αLu(L, t)ut(L, t)

=[de−αxuxut] |L0 +q(1 + bu)u(0, t)ut(0, t)

− q(1− bd)e−αLu(L, t)ut(L, t)−
∫ L

0

(de−αxux)xutdx

−
∫ L

0

e−αx(
Ab(x)

Ad(x)
µ(utv + uvt)− (σ +m1)uutdx

− µ

σ

∫ L

0

e−αx
A2
b(x)

A2
d(x)

(fvt − (µ+m2)vvt)dx

=−
∫ L

0

e−αxut(duxx − qux +
Ab(x)

Ad(x)
µv − σu−m1u)dx

−
∫ L

0

e−αxvt
µA2

b(x)

σA2
d(x)

(f +
Ad(x)

Ab(x)
σu− µv −m2v)dx

=−
∫ L

0

e−αx(ut)
2dx− µ

σ

∫ L

0

e−αx
A2
b(x)

A2
d(x)

(vt)
2dx

≤0.

According to (g2), we have F (x, v) ≤ F (x, r(x)) and r(x) ≤M . Hence when t > T for some
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T > 0 large, from (4.16),

E(u(·, t), v(·, t))

≥− µ
∫ L

0

e−αx
Ab(x)

Ad(x)
uvdx− µ

σ

∫ L

0

e−αx
A2
b(x)

A2
d(x)

F (x, r(x))dx− q

2
e−αLu2(L, t)

≥− max
y∈[0,L]

µAb(x)

Ad(x)
e2αLM2Lθ1 max{1, θ1θ2} − max

y∈[0,L]

µA2
b(x)

σA2
d(x)

M2L−
qM2θ

2

1

2
eαL,

where M2 = max
y∈[0,L]

F (y, r(y)). Therefore E(u(·, t), v(·, t)) is bounded from below. Notice

d

dt
E(u, v) = 0 holds if and only if ut = 0 and vt = 0, which also means that (u, v) is a

steady state solution of system (1.13). From Lemma 4.4, the solutions of orbits or (1.13) are

pre-compact, then from the LaSalle’s Invariance Principle [33, Theorem 4.3.4], we have that

for any initial condition u0(x) ≥ 0 and v0(x) ≥ 0, the ω-limit set of (u0, v0) is contained in

the largest invariant subset of S. If every element in S is isolated, then the ω-limit set is a

single steady state.

4.2.3 Eigenvalue problem

We consider the eigenvalue problem of system (1.13). Suppose that (u∗, v∗) is a non-

negative steady state solution of system (1.13). Substituting u = eλtφ1 and v = eλtφ2, where

φ = (φ1, φ2) ∈ X1, into system (1.13), we get the following associated eigenvalue problem:



λφ1 = d(φ1)xx − q(φ1)x +
Ab(x)

Ad(x)
µφ2 − σφ1 −m1φ1, 0 < x < L,

λφ2 = fv(x, v
∗)φ2 −m2φ2 − µφ2 +

Ad(x)

Ab(x)
σφ1, 0 ≤ x ≤ L,

d(φ1)x(0)− qφ1(0) = buqφ1(0),

d(φ1)x(L)− qφ1(L) = −bdqφ1(L),

(4.24)
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where fv(x, v
∗) = g(x, v∗) + v∗gv(x, v

∗). Let Y = C([0, L]) × C([0, L]) and denote the

linearized operator L : X1 → Y of system (4.3) by

L =

d ∂
2

∂x2
− q ∂

∂x

0

+

−σ −m1
Ab(x)µ

Ad(x)
Ad(x)σ

Ab(x)
fv(x, v

∗)− µ−m2

 . (4.25)

The following proposition provides the information of the spectral set σ(L) of the lin-

earized operator L, especially the principal eigenvalue of (4.24).

Proposition 4.7. Suppose that g(x, u) satisfies (g1)-(g3), d > 0 and q, bu, bd ≥ 0. Let

(u∗(x), v∗(x)) be a non-negative steady state solution. Then

1. The eigenvalue problem (4.24) has a simple principal eigenvalue λ1 = λ(q) with a positive

eigenfunction. Moreover, the principal eigenvalue λ1 has the variational characterization

−λ1 = inf
ψ∈X2,ψ 6=0

E1(ψ1, ψ2)

κ(ψ1, ψ2)
, (4.26)

where

E1(ψ1, ψ2) =

∫ L

0

eαx
[
d(ψ1)2

x − 2
Ab(x)

Ad(x)
µψ1ψ2 + (σ +m1)ψ2

1

]
dx

−µ
σ

∫ L

0

eαx
A2
b(x)

A2
d(x)

(fv(x, v
∗)− µ−m2)ψ2

2dx+ qbuψ
2
1(0) + qbde

αLψ2
1(L),

(4.27)

and

κ(ψ1, ψ2) =

∫ L

0

eαx
(
ψ2

1 +
A2
b(x)µ

A2
d(x)σ

ψ2
2

)
dx, (4.28)

α = q/d and X2 = H1(0, L)× C(0, L).

2. The spectral set σ(L) of the linearized operator L consists of isolated eigenvalues and the

set [ min
x∈[0,L]

fv(x, v
∗(x))−m2−µ, max

x∈[0,L]
fv(x, v

∗(x))−m2−µ]. In particular, if (u∗(x), v∗(x))

is a non-negative steady state solution of (1.13), and there exists x0 ∈ Ω such that

fv(x0, v(x0)) > m2 + µ, then (u∗(x), v∗(x)) is unstable.
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3. If max
x∈[0,L]

fv(x, v
∗(x)) < m2 +

µm1

m1 + σ
, then (u∗(x), v∗(x)) is locally asymptotically stable.

In particular, when g also satisfies (g4c), the zero steady state solution is always locally

asymptotically stable.

Proof. 1. The existence of the simple eigenvalue λ1 with positive eigenfunction follows from

[105, Lemma 4.1] (see also [37, Theorem 3]). Using the transform φ = eαxψ, system (4.24)

becomes

λψ1 = d(ψ1)xx + q(ψ1)x +
Ab(x)

Ad(x)
µψ2 − σψ1 −m1ψ1, 0 < x < L,

λψ2 = fv(x, v
∗)ψ2 −m2ψ2 − µψ2 +

Ad(x)

Ab(x)
σψ1, 0 ≤ x ≤ L,

−d(ψ1)x(0) + buqψ1(0) = 0,

d(ψ1)x(L) + bdqψ1(L) = 0.

(4.29)

A direct calculation shows that the variational minimizer defined in (4.26) satisfies (4.29).

2. To consider the spectral set of L, we analyze the following resolvent equation for

λ ∈ C and (p1, p2) ∈ Y ,



dφ′′1 − qφ′1 − (σ +m1 + λ)φ1 +
Ab(x)µ

Ad(x)
φ2 = p1, 0 < x < L,

Ad(x)σ

Ab(x)
φ1 + (fv(x, v

∗)−m2 − µ− λ)φ2 = p2, 0 ≤ x ≤ L,

dφ1(0)− qφ1(0) = buqφ1(0),

dφ1(L)− qφ1(L) = −bdqφ1(L).

(4.30)

Let A = minx∈[0,L] fv(x, v
∗(x)) and A = maxx∈[0,L] fv(x, v

∗(x)). If λ 6∈ [A−m2−µ,A−m2−µ],

then from the second equation in (4.30), we have

φ2 =
p2Ab(x)− Ad(x)σφ1

Ab(x)(fv(x, v∗)−m2 − µ− λ)
, (4.31)
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and hence the first equation of (4.30) becomes

dφ′′1 − qφ′1 − (σ +m1 + λ)φ1 −
σµ

fv(x, v∗)−m2 − µ− λ
φ1

=p1 −
µAb(x)p2

Ad(x)(fv(x, v∗)−m2 − µ− λ)
.

(4.32)

It is well-known that the eigenvalue problem


dφ′′(x)− qφ′(x) = lφ(x), 0 < x < L,

dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L),

(4.33)

has a sequence of eigenvalues l = l1 > l2 > · · · > ln → −∞. Therefore from the Fredholm

alternative, (4.32) has a unique solution if and only if

σ +m1 + λ+
σµ

fv(x, v∗)−m2 − µ− λ
6∈ {li}∞i=1. (4.34)

Moreover, if (4.34) holds, (4.31) determines φ2 uniquely and L− λI has a bounded inverse.

On the other hand, if (4.34) is not satisfied, which means λ satisfies the characteristic

equation

λ2− (fv(x, v
∗)−m2−µ−σ−m1 + li)λ− (σ+m1− li)(fv(x, v∗)−m2−µ)−σµ = 0, (4.35)

for some i ≥ 1. This equation has two roots λ1,j and λ2,j:

λ1,j =
1

2
(fv −m2 − µ− σ −m1 + li −

√
(fv(x, v∗)−m2 − µ+ σ +m1 − li)2 + 4σµ),

λ2,j =
1

2
(fv −m2 − µ− σ −m1 + li +

√
(fv(x, v∗)−m2 − µ+ σ +m1 − li)2 + 4σµ),

and λ1,j and λ2,j are also the eigenvalues of L. This determines all eigenvalues of L. By

following the same proof as [68, Theorem 4.5], we can show that each point in [A −m2 −

µ,A−m2− µ] is in the continuous spectrum of L. If (u∗(x), v∗(x)) is a non-negative steady
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state solution of (1.13), and there exists x0 ∈ Ω such that fv(x0, v(x0)) > m2 + µ, then

[A−m2 − µ,A−m2 − µ] ∩ (0,∞) 6= ∅, so (u∗(x), v∗(x)) must be unstable.

3. Since fv(x, v
∗(x)) < µ+m2 −

µσ

m1 + σ
, then

E1(ψ1, ψ2)

=

∫ L

0

eαx[d(ψ1)2
x(x)− 2

Ab(x)

Ad(x)
µψ1ψ2 + (σ +m1)ψ2

1]dx

− µ

σ

∫ L

0

eαx
A2
b(x)

A2
d(x)

(fv(x, v
∗)− µ−m2)ψ2

2dx+ qbuψ
2
1(0) + qbde

αLψ2
1(L)

>

∫ L

0

eαx[−2
Ab(x)

Ad(x)
µψ1ψ2 + (σ +m1)ψ2

1 +
A2
b(x)µ

A2
d(x)σ

(µ+m2 − fv(x, v∗))ψ2
2]dx

=

∫ L

0

eαx(
Ab(x)µ

Ad(x)
√
σ +m1

ψ2 −
√
σ +m1ψ1)2dx

+

∫ L

0

eαx
A2
b(x)µ[(m1 + σ)(µ+m2)− µσ − (m1 + σ)fv]

A2
d(x)σ(σ +m1)

ψ2
2dx > 0.

Then from (4.26) and κ(ψ1, ψ2) > 0, the principal eigenvalue λ1 < 0. On the other hand,

since max
x∈[0,L]

fv(x, v
∗(x)) − m2 − µ < 0, then all continuous spectrum point is also negtive.

Hence the non-negative steady state solution (u∗(x), v∗(x)) is locally asymptotically stable.

Since fv(x, 0) = g(x, 0) < 0, we have max
x∈[0,L]

g(x, 0) < µ+m2 −
µσ

m1 + σ
, therefore the extinct

state (0, 0) is always locally asymptotically stable.

4.3 Persistence/Extinction dynamics

In this section, we consider the dynamical behavior of system (1.13) with the strong

Allee effect growth rate in the bethic population. Assume that (u(x), v(x)) is a positive

solution of system (4.3), then from the second equation of system (4.3), we have

u(x) =
Ab(x)v(x)

Ad(x)σ
(µ+m2 − g(x, v(x))), (4.36)

which implies that g(x, v(x)) < m2 + µ for every x ∈ [0, L]. This implies that the transfer

rate µ from benthos to drift zone needs to be large to ensure the existence of positive steady
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state solutions. Notice that we consider the following three possible scenarios: (see Fig. 4.1)

(H1) µ > (gmax −m2)
σ +m1

m1

:= µ1,

(H2) µ3 := gmin −m2 < µ < (gmin −m2)
σ +m1

m1

:= µ2,

(H3) µ < gmin −m2 := µ3.

H3

H1

H2

Figure 4.1: Parameter regions on µ− σ plane satisfying (H1), (H2) or (H3).

In the following, we will discuss the dynamical behavior of system (1.13) under (H1),

(H2) or (H3), respectively. When (H1) is satisfied, we show in subsection 4.3.1 that sys-

tem (1.13) has no positive steady state solutions, which indicates a global extinction of the

population for all initial conditions. And in subsection 4.3.2, under the condition (H3), we

prove the existence of multiple positive steady state solutions for any diffusion coefficient d

and advection rate q, and the persistence of population for all large initial conditions. Fi-

nally under the condition (H2), which is in between (H1) and (H3), we show the existence

of multiple positive steady state solutions in closed environment when the advection rate

q is small. This indicates that the extinction/persistence of benthic-drift population in the

intermediate parameter range (H2) is more complicated, and it depends on the movement

parameters q, d and also boundary conditions. Note that when g(x, v) ≡ g(v) (spatially
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homogeneous), the conditions (H1), (H2) and (H3) completely partitions the positive pa-

rameter quadrant {(µ, σ) : µ, σ > 0}, but there is a gap between (H1) and (H2) when g(x, v)

is spatially heterogeneous.

4.3.1 Extinction

First we prove the following nonexistence results of steady state solution (u(x), v(x)) to

(1.13).

Theorem 4.8. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), d > 0 and q, bu, bd ≥ 0.

1. If (H1) is satisfied, then the system (1.13) has no positive steady state solutions.

2. The system (1.13) has no positive steady state solutions satisfying v(x) < h(x) for all

x ∈ [0, L], where h(x) is defined in (g4c).

Proof. 1. Suppose that (u(x), v(x)) is a positive solution of (4.3). Substituting (4.36) into

the first equation of (4.3), we obtain



duxx − qux +
Ab(x)

Ad(x)
v

[
µ− σ +m1

σ
(m2 + µ− g(x, v))

]
= 0, 0 < x < L,

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L).

(4.37)

Integrating (4.37), we get

−bdqu(L)− buqu(0) +

∫ L

0

Ab(x)

Ad(x)
v(x)

[
µ− σ +m1

σ
(µ+m2 − g(x, v(x)))

]
dx = 0. (4.38)

Note that (H1) implies that the function

ṽ(x) = µ− σ +m1

σ
(µ+m2 − g(x, v(x))) (4.39)

is strictly negative. Since v(x) > 0 and bu, bd ≥ 0, we reach a contradiction with (4.38).

Hence there is no positive steady state solutions of (1.13) when (H1) is satisfied.
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2. Suppose that (u(x), v(x)) is a positive solution of (4.3). If 0 < v(x) < h(x), then

g(x, v(x)) < 0 for all x ∈ [0, L] and consequently ṽ(x) < µ − σ +m1

σ
(µ + m2) < 0. This

again leads to a contradiction. Therefore, there is no positive solution (u(x), v(x)) of (4.3)

satisfying v(x) < h(x) for all x ∈ [0, L].

A direct corollary of Theorem 4.8 and Theorem 4.6 is the global extinction of population

when the transfer rate µ of the benthic population to the drift population is too large.

Corollary 4.9. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), d > 0 and q, bu, bd ≥ 0. If

µ > max

{
(gmax −m2)

σ +m1

m1

, fv −m2

}
, (4.40)

then for any initial condition (u0(x), v0(x)) ≥ 0, the solution (u(x, t), v(x, t) of (1.13) satisfies

lim
t→+∞

u(x, t) = 0 and lim
t→+∞

v(x, t) = 0.

Proof. The condition (4.40) implies both (H1) and (3.10). Then from Theorem 4.6, the

solution converges to a nonnegative steady state as t → ∞, and from Theorem 4.8, the

trivial steady state is the only nonnegative steady state. Therefore lim
t→+∞

u(x, t) = 0 and

lim
t→+∞

v(x, t) = 0.

The global extinction shown in Corollary 4.9 indicates that when the the transfer rate µ

of the benthic population to the drift population is too high, the benthic population becomes

too low and the Allee effect drives it to extinction when the benthic population is below the

threshold level. We conjecture that the global extinction described in Corollary 4.9 holds

when (H1) is satisfied, and the condition (3.10) is not necessary. But it is not known whether

the solution flow has sufficient compactness without (3.10).

From part 5 of Proposition 4.7, we know that the zero steady state solution is locally

asymptotically stable. In the following proposition, we describe the basin of attraction of

the zero steady state solution of system (1.13) for different boundary conditions.
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Proposition 4.10. Suppose g(x, u) satisfies (g1)-(g3) and (g4c), d > 0 and q, bu, bd ≥ 0.

Assume that the cross-section Ab(x) and Ad(x) are homogeneous. Let (u(x, t), v(x, t)) be the

solution of (1.13) with initial condition (u0(x), v0(x)). Then

1. When bu ≥ 0 and bd ≥ 0, if 0 < u0(x) < θ1e
αx min

y∈[0,L]
e−αyh(y) and 0 < v0(x) <

eαx min
y∈[0,L]

e−αyh(y), then lim
t→+∞

u(x, t) = 0 and lim
t→+∞

v(x, t) = 0;

2. When bu ≥ 0 and bd ≥ 1, if 0 < u0(x) < θ1 min
y∈[0,L]

h(y) and 0 < v0(x) < min
y∈[0,L]

h(y), then

lim
t→+∞

u(x, t) = 0 and lim
t→+∞

v(x, t) = 0.

Proof. 1. When bu ≥ 0 and bd ≥ 0, we set w1 = θ1 min
y∈[0,L]

e−αyh(y) and z1 = min
y∈[0,L]

e−αyh(y).

Then we have

d(w1)xx + q(w1)x +
Ab
Ad
µz1 − σw1 −m1w1 = 0,

and

z1g(x, eαxz1)−m2z1 − µz1 +
Adσ

Ab
w1

≤z1g(x, eαxz1)− (m2 + µ− σµ

σ +m1

)z1 ≤ min
y∈[0,L]

e−αyh(y)g(x, eαx min
y∈[0,L]

e−αyh(y))

≤ min
y∈[0,L]

e−αyh(y)g(x, eαxe−αxh(x)) = min
y∈[0,L]

e−αyh(y)g(x, h(x)) = 0,

and the boundary conditions −d(w1)x(0) + buqw1(0) ≥ 0, d(w1)x(L) + bdqw1(L) ≥ 0.

Thus, (w1, z1) is an upper solution of system (4.11). Let (w1, z1) = (0, 0) to be the

lower solution of system (4.11). Now assume that 0 < w0(x) < θ1 min
y∈[0,L]

e−αyh(y) and

0 ≤ z0(x) ≤ min
y∈[0,L]

e−αyh(y), and let (w(x, t), v(x, t)) be the solution of (4.4). Then there

exist solutions (W 1(x, t), Z1(x, t)) and (W 1(x, t), Z1(x, t)) of system (4.4),

W 1(x, t) ≤ w(x, t) ≤ W 1(x, t), Z1(x, t) ≤ z(x, t) ≤ Z1(x, t), (4.41)

where (W 1(x, t), Z1(x, t)) and (W 1(x, t), Z1(x, t)) are the solutions of system (4.4) with the

initial condition (W 1(x, 0), Z1(x, 0)) = (w1, z1) and (W 1(x, 0), Z1(x, 0)) = (w1, z1). More-
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over,

lim
t→+∞

(W 1(x, t), Z1(x, t)) = (wmax(x), zmax(x)),

lim
t→+∞

(W 1(x, t), Z1(x, t)) = (wmin(x), zmin(x)),

(4.42)

where (wmax(x), zmax(x)), (wmin(x), zmin(x)) are the maximal and minimal solution of (4.11)

between (0, 0) and (w1, z1). From Proposition 4.8, there is no positive solution (u(x), v(x))

satisfying v(x) < h(x) for all x ∈ [0, L], hence zmin(x) = zmax(x) = 0. And consequently

wmin(x) = wmax(x) = 0. This implies that lim
t→+∞

u(x, t) = 0 and lim
t→+∞

v(x, t) = 0;.

2. When bu ≥ 0 and bd ≥ 1, we apply the upper and lower solution method directly

to (1.13), and we choose (u1(x), v1(x)) = (θ1 min
y∈[0,L]

h(y), min
y∈[0,L]

h(y)) to be the upper solution

and (u1(x), v1(x)) = (0, 0) be the lower solution. We can follow the same argument in the

above paragraph to reach the conclusion.

4.3.2 Persistence

In this section, we provide some criteria for the population persistence of system (1.13)

with the strong Allee effect growth rate in the benthic population. We first show some

properties of the set of positive steady state solutions of (4.3) if there exists any.

Proposition 4.11. Suppose g(x, u) satisfies (g1)-(g3), d > 0, q, bu, bd ≥ 0, and the cross-

section Ab(x) and Ad(x) are homogeneous. If there exists a positive steady state solution of

(1.13), then there exists a maximal steady state solution (umax(x), vmax(x)) such that for any

positive steady state (u(x), v(x)) of system (1.13), (umax(x), vmax(x)) ≥ (u(x), v(x)).

Proof. We consider the equivalent steady state equation (4.11). Set

w2 = θ1 max
y∈[0,L]

e−αyr(y), z2 = max
y∈[0,L]

e−αyr(y).

From (g3), we have gv(x, v) ≤ 0 for v ≥ r(x). Hence

g(x, eαxz2) = g(x, eαx max
y∈[0,L]

e−αyr(y)) ≤ g(x, eαxe−αxr(x)) = g(x, r(x)) = 0.
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Substituting (w2, z2) into system (4.11), we have



d(w2)xx + q(w2)x +
Ab
Ad
µz2 − σw2 −m1w2 = 0, 0 < x < L,

z2g(x, eαxz2)−m2z2 − µz2 +
Adσ

Ab
w2 ≤ 0, 0 ≤ x ≤ L,

−dw′2(0) + buqw2(0) ≥ 0,

dw′2(L) + bdqw2(L) ≥ 0.

(4.43)

Thus (w2, z2) is an upper solution of system (4.11). Moreover from Proposition 4.2, any

positive steady state solution (w(x), z(x)) of (4.11) satisfies (w(x), z(x)) ≤ (w2, z2). Since

(u(x), v(x)) is a positive steady state of (1.13), we can set the lower solution of (4.11) to be

(w2(x), z2(x)) = (e−αxu(x), e−αxv(x)). Then there exists a maximal solution (wmax(x), zmax(x))

of (4.11) satisfying (w2(x), z2(x)) ≤ (wmax(x), zmax(x)). Since (wmax(x), zmax(x)) is obtained

through the monotone iteration process (see [4, 79]) from the upper solution (w2, z2(x)) and

any positive steady state solution (w(x), z(x)) of (4.11) satisfies (w(x), z(x)) ≤ (w2, z2(x)),

we conclude that (wmax(x), zmax(x)) is the maximal steady state solution of (4.11).

Next we show a monotonicity result for the maximal steady state solution.

Proposition 4.12. Suppose g(x, u) satisfies (g1)-(g3), g(x, v) ≡ g(v), that is g is spatially

homogeneous and the cross-section Ab(x) and Ad(x) are also homogeneous. Then if bu ≥ 0

and 0 ≤ bd ≤ 1, the maximal steady state solution (umax(x), vmax(x)) of equation (1.13) is

strictly increasing in [0, L].

Proof. We prove that (umax)x > 0 and (vmax)x > 0 for x ∈ (0, L). From [87, Page 992],

the maximal solution (umax, vmax) is semistable, and the corresponding eigenvalue problem

is (4.24). From Proposition 4.7, the eigenvalue problem (4.24) has a principal eigenvalue

λ1 ≤ 0 with positive eigenfunction φ = (φ1, φ2) > 0.

We first prove that umax and vmax always have the same sign for x ∈ [0, L]. Differenti-
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ating (4.3) with respect to x, we have

d(umax)xxx − q(umax)xx − (m1 + σ)(umax)x +
Abµ

Ad
(vmax)x = 0, (4.44)

fv(vmax)(vmax)x − (m2 + µ)(vmax)x +
Adσ

Ab
(umax)x = 0, (4.45)

where f(v) = vg(v). Multiplying equation (4.45) by φ2 and multiplying the first equation in

(4.24) by (vmax)x, then subtracting, we obtain

Adσ

Ab
φ2(umax)x =

(
Adσ

Ab
φ1 − λ1φ2

)
(vmax)x. (4.46)

Then umax and vmax always have the same sign as φ1 > 0, φ2 > 0 and λ1 ≤ 0.

We prove the proposition by contradiction. Assuming that the maximal solution (umax, vmax)

is not increasing for all x ∈ [0, L]. From boundary conditions in (1.13) and the condition

bu ≥ 0, 0 ≤ bd ≤ 1, we have

(umax)x(0) = α(bu + 1)umax(0) > 0,

(umax)x(L) = α(−bd + 1)umax(L) ≥ 0.

Then (umax)x(x) has at least two zero points in (0, L]. We choose the two smallest zero points

x1, x2 ∈ (0, L] (x1 < x2) such that (umax)x(x1) = (umax)x(x2) = 0, (umax)x(x) < 0 on (x1, x2).

We claim that (umax)xx(x1) < 0 and (umax)xx(x2) > 0. Since (umax)x(x) < 0 on (x1, x2), then

(umax)xx(x1) ≤ 0 and (umax)xx(x2) ≥ 0. If (umax)xx(x1) = 0, then from (umax)x(x1) = 0,

we conclude that (umax)x(x) ≡ 0 near x = x1 from the uniqueness of solution of ordinary

differential equation, which contradicts with the assumption that (umax)x(x) < 0 on (x1, x2).

Hence we have (umax)xx(x1) < 0, and similarly we can show that (umax)xx(x2) > 0. Since

umax and vmax have the same sign, then we also have (vmax)x(x) < 0 on (x1, x2).

Multiplying equation (4.44) by e−αxφ1 and multiplying the first equation in (4.24) by
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e−αx(umax)x, then subtracting, we obtain

de−αx(−(umax)xφ1xx + (umax)xxxφ1) + qe−αx(−(umax)xxφ1 + (umax)xφ1x)

+ e−αx
Abµ

Ad
((vmax)xφ1 − φ2(umax)x) = −λ1e

−αxφ1(umax)x.
(4.47)

Then solving (umax)xφ2 − (vmax)xφ1 from (4.46), substituting into (4.47), we have

de−αx(−(umax)xφ1xx + (umax)xxxφ1) + qe−αx(−(umax)xxφ1 + (umax)xφ1x)

=− λ1e
−αxφ1(umax)x −

A2
bµ

A2
dσ
λ1e

−αxφ2(vmax)x.
(4.48)

Integrating (4.48) on [x1, x2], the right hand side becomes

−λ1

∫ x2

x1

e−αx
[
φ1(umax)x +

A2
bµ

A2
dσ
e−αxφ2(vmax)x

]
dx < 0, (4.49)

as (umax)x(x) < 0 and (vmax)x(x) < 0 on (x1, x2), φ1 > 0, φ2 > 0 and λ1 ≤ 0. On the other

hand, the left hand side becomes

− d
∫ x2

x1

[(e−αxφ1x)x(umax)x − (e−αx(umax)xx)xφ1]dx

=− de−αx(φ1x(umax)x − φ1(umax)xx)
∣∣∣x2
x1

=− de−αx1φ1(x1)(umax)xx(x1) + de−αx2φ1(x2)(umax)xx(x2) > 0,

(4.50)

as (umax)xx(x1) < 0 and (umax)xx(x2) > 0. So (4.49) and (4.50) are in contradiction. Thus

the maximal solution (umax(x), vmax(x)) of (4.3) is increasing for x ∈ [0, L]. Moreover the

strong maximum principle implies that (u,max (x), vmax(x)) must be strictly increasing.

Next we assume that the condition (H3) holds, i.e. gmin > m2 + µ. Then for every

x ∈ [0, L], from (g3) and (g4c), there exist v1(x) and v2(x) such that v1(x) < v2(x) and

g(x, vi(x)) = m2 + µ, i = 1, 2. Moreover there also exist v3(x) and v4(x) such that v3(x) <

v4(x), g(x, vi(x)) = m2 +
m1µ

σ +m1

, i = 3, 4. It is clear that h(x) < v3(x) < v1(x) < v2(x) <

v4(x) < r(x). When (H2) is satisfied but (H3) is not, v3(x) and v4(x) still exist but not
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v1(x) and v2(x). When (H1) is satisfied, then all vi(x) (i = 1, 2, 3, 4) do not exist (see Fig.

4.2).

g(x,v)

vh(x) r(x)

g(x,v)

vh(x) r(x)v3(x) v4(x)

g(x,v)

vh(x) r(x)v1(x) v2(x)v3(x) v4(x)

Figure 4.2: Graph of g(x, v) under conditions (H1), (H2) or (H3). Upper left: (H1); Upper right:
(H2); Lower: (H3).

We first prove the following lemma which will used to construct a lower solution of the

system (4.11).

Lemma 4.13. Let p(x) ∈ C[0, L] and d > 0, q ≥ 0. Then the system


dwxx + qwx + p(x)− (σ +m1)w = 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0,

(4.51)

has a unique positive solution wp(x).
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Proof. Consider the following eigenvalue problem


dφxx + qφx − (σ +m1)φ = λφ, 0 < x < L,

−dφx(0) + buqφ(0) = 0,

dφx(L) + bdqφ(L) = 0,

(4.52)

Then (4.52) has a principal eigenvalue λ1 satisfying

−λ1 = inf
φ∈H1(0,L),φ 6=0

∫ L
0
eαx(dφ2

x + (σ +m1)φ2)dx∫ L
0
eαxφ2dx

(4.53)

Then λ1 < 0 and the corresponding eigenfunction φ1 > 0. We use the upper-lower so-

lution method to prove the existence of a positive steady state solution. Let W (x) =

1

σ +m1

max
x∈[0,L]

p(x), and W (x) = εφ1(x) where ε > 0 is small so that W (x) < W (x) and

φ1 is the positive eigenfunction corresponding to λ1 of (4.52). Then it is easy to verify that

W (x) and W (x) is a pair of upper-lower solution. From [80, Theorem 4.1], there exists a

solution wp(x) of system (4.51) satisfying W (x) ≤ wp(x) ≤ W (x). The uniqueness follows

from the maximum principle: if w1(x) and w2(x) are two solutions of system (4.51), then

w1(x)− w2(x) satisfies a boundary value problem of linear ODE, and w1(x)− w2(x) = 0 is

the unique solution. Hence the solution of (4.51) is unique.

Now we show that under condition (H3), the benthic-drift population system is always

persistent for large initial condition for any diffusion coefficient d > 0 and advection rate

q ≥ 0, despite of strong Allee growth rate.

Theorem 4.14. Suppose that g(x, v) satisfies (g1)-(g3) and (g4c), d > 0 and q ≥ 0, bu ≥ 0

and bd ≥ 0. Assume that (H3) holds. Define

Σ1 = {(u(x), v(x)) ∈ X1 : u(x) ≥ eαxw1(x), v(x) ≥ v1(x)}, (4.54)

where v1(x) is the smaller root of g(x, v) = µ+m2 and w1(x) is the unique positive solution
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of the system



dwxx + qwx +
Ab(x)µ

Ad(x)
e−αxv1(x)− (σ +m1)w = 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(4.55)

Then Σ1 is a positive invariant set for system (1.13). Moreover, system (1.13) has a maxi-

mum steady state (umax(x), vmax(x)) ∈ Σ1, and at least another positive steady state.

Proof. Assume that (H3) is satisfied, we consider the equivalent system (4.4) of (1.13).

From Lemma 4.13, system (4.55) has a unique solution w1(x). We set (w(x), z(x)) =

(w1(x), e−αxv1(x)). Then



dwxx + qwx +
Ab(x)µ

Ad(x)
z(x)− (σ +m1)w = 0, 0 < x < L,

zg(x, eαxz)− (m2 + µ)z +
Ad(x)σ

Ab(x)
w ≥ 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(4.56)

So (w(x), z(x)) is a lower solution of (4.11). On the other hand, from Proposition 4.11,

(w(x), z(x)) = (θ1 max
x∈[0,L]

e−αxr(x), max
x∈[0,L]

e−αxr(x)) is an upper solution of (4.11). It is easy to

check that z(x) = max
x∈[0,L]

e−αxr(x)) > e−αxv1(x) = z(x) and w(x) = θ1 max
x∈[0,L]

e−αxr(x) > w(x)

from the construction of w(x) in Lemma 4.13. So from [80, Theorem 4.1], there exists a

positive solution (w(x), z(x)) of system (4.11) satisfying w(x) < w(x) < w(x) and z(x) <

z(x) < z(x). From Proposition 4.11, there exists a maximal solution (umax(x), vmax(x)) ∈

Σ1. Since the solution of (4.4) with initial condition (w(x), z(x)) is increasing, then Σ1 is

positively invariant for the dynamics of (1.13). The existence of another positive steady state

follows from [4, Theorem 14.2] and the existence of another pair of upper-lower solutions in

the proof of Proposition 4.10 part 1.
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In the last we show that the persistence of population in the intermediate µ range

(satisfying (H2)) may depend on the diffusion coefficient d and advection rate q. The

following result on the existence of positive steady state solutions only holds for the closed

environment (NF/NF bu = bd = 0) case.

Theorem 4.15. Suppose that g(x, u) satisfies (g1)-(g3) and (g4c), d > 0 and q ≥ 0. Assume

that (H2) holds, and the cross-section Ab(x) and Ad(x) are spatially homogeneous. Let v3(x)

and v4(x) be the roots of g(x, v) = m2 +
m1µ

σ +m1

satisfying v3(x) < v4(x), and assume that

max
y∈[0,L]

e−αyv3(y) < min
y∈[0,L]

e−αyv4(y). (4.57)

Then when bu = 0 and bd = 0, (1.13) has at least two positive steady state solutions. In

particular the condition (4.57) is satisfied if

0 <
q

d
<

1

L
ln

(
miny∈[0,L] v4(y)

maxy∈[0,L] v3(y)

)
. (4.58)

Proof. Using transform u = eαxw and v = eαxz, the steady state equation in this case is of

the form 

dwxx + qwx +
Ab
Ad
µz − σw −m1w = 0, 0 < x < L,

zg(x, eαxz)−m2z − µz +
Ad
Ab
σw = 0, 0 ≤ x ≤ L,

wx(0) = 0, wx(L) = 0.

(4.59)

From Proposition 4.11, (w2, z2) = (θ1 max
y∈[0,L]

e−αyr(y), max
y∈[0,L]

e−αyr(y)) is an upper solution of

(4.59). Set

w2 = θ1 max
y∈[0,L]

e−αyv3(y), z2 = max
y∈[0,L]

e−αyv3(y).

Then from (4.57),

g(x, eαxz2) =g(x, eαx max
y∈[0,L]

e−αyv3(y))

≥g(x, eαxe−αxv3(x)) = g(x, v3(x)) = m2 + µ− µσ

σ +m1

,
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we obtain that

dw′′2 + qw′2 +
Ab
Ad
µz2 − σw2 −m1w2 = 0, 0 < x < L,

z2g(x, eαxz2)−m2z2 − µz2 +
Ad
Ab
σw2 ≥ 0, 0 ≤ x ≤ L,

w′2(0) = 0, w′2(L) = 0.

So (w2, z2) is a lower solution of (4.59), and we have w2 < w2, z2 < z2. Therefore (4.59) has

at least one positive solution between (w2, z2) and (w2, z2). Moreover (w1, z1) = (0, 0) is a

lower solution of (4.59), and from Proposition 4.10, (w1, z1) is an upper solution of (4.59),

hence we have two pairs of upper and lower solutions which satisfy

(w1, z1) < (w1, z1) < (w2, z2) < (w2, z2).

From [4, Theorem 14.2], (4.59) has at least three nonnegative solutions, which implies that

there exist at least two positive solutions. The condition (4.58) can be derived from (4.57)

since

max
y∈[0,L]

e−αyv3(y) ≤ max
y∈[0,L]

v3(y), e−αL min
y∈[0,L]

v4(y) ≤ min
y∈[0,L]

e−αyv4(y).

4.4 Numerical simulations

In this section we show some numerical simulation results to demonstrate our theoritical

results proved above and also provide some further quantitative information on the dynamical

behavior of the system (1.13). In particular we show the effect of the tranfer rate µ and

advection q on the maximal steady states. In this section we always assume that

f(x, v) = vg(x, v) = v(1− v)(v − 0.4), d = 0.02, L = 10,

m1 = m2 = 0.02, σ = 0.2, Ad(x) = Ab(x) = 1.

(4.60)
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and we consider the special case of (1.13):



ut = duxx − qux +
Ab
Ad
µv −m1u, 0 < x < L, t > 0,

vt = v(1− v)(v − h)−m2v − µv +
Ad
Ab
σu, 0 ≤ x ≤ L, t > 0,

dux(0, t)− qu(0, t) = 0, t > 0,

dux(L, t)− qu(L, t) = −bdqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, L).

(4.61)
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Figure 4.3: The total biomass of the maximal steady state solution of (4.61) with respect to the
transfer rate µ under different boundary conditions. The horizontal axis is µ, the vertical axis are

‖u(·, t)‖1 =
∫ L

0
u(x, t)dx (Left) and ‖v(·, t)‖1 =

∫ L

0
v(x, t)dx (Right). Here the parameters satisfy

(4.60), q = 0.2 and the initial condition is u0 = 0.2, v0 = 0.2.

Figure 4.3 shows the variation of total biomass of the maximal steady states for different

bd and varying transfer rate µ from the benthic zone to the drift zone. It can be observed from

the right panel that The total biomass of the benthic population is always decreasing with

respect to µ since it can be regarded as a loss of the benthic population. When µ = 0, the

drift population does not have the source of growing and it cannot live. At the lower µ level,

with the increase of transfer rate µ, the drift population becomes larger, but after an optimal

intermediate µ value (about µ∗ ≈ 0.05) , the drift population starts to decline with respect

to µ for the drift population. We can calculate the two threshold values µ1 = µ2 = 0.77

and µ3 = 0.07, defined in the conditions (H1)-(H3). One can observe that in (H3) regime
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(0 < µ < µ3), the population persists robustly for all boundary conditions (see Theorem

4.14); and in (H2) regime (µ3 < µ < µ2), the biomass is nearly zero for open environment

and is larger than zero for closed environment (see Theorem 4.15 for a partial justification).

Figure 4.3 only shows the biomass up to µ = 0.4, and for 0.4 < µ < µ2, the biomass for even

the NF/NF boundary condition becomes so small which cannot be distinguished from zero.

For µ > µ2 ((H1) regime), the extinction of population is ensured in Theorem 2.8.

In Figure 4.4, the maximal steady state solutions under three types boundary conditions

(NF/H, NF/FF, NF/FF) and for varying transfer rate µ are plotted. For all boundary

conditions, the benthic population is decreasing in µ. The drift population is increasing in µ

for 0 < µ < µ∗ (µ∗ is the peak transfer rate where the drift biomass reachs the maximum),

and for µ∗ < µ < µ3, the drift population is decreasing in downstream part but increasing in

upstream part. Similarly in Figure 4.5, the maximal steady state solutions under three types

boundary conditions (NF/H, NF/FF, NF/FF) and for varying advection rate q. One can

observe that a larger advection rate leads to a larger benthic population for every point in the

river, but for drift population, a larger advection rate decreases the downstream population

and increases the upstream population.

Finally Figure 4.6 demonstrates the bistable nature of system (4.61) under NF/FF

(bu = 0 and bd = 1) boundary condition and (H3) is satisfied, and Figure 4.7 describes the

bistable phenomenon under NF/NF (bu = bd = 0) boundary condition and (H2) is satisfied.

And when the cross-sectional areas of the benthic zone Ab(x) and drift zone Ab(x) are

spatially heterogeneous, then the bistable structure is shown in Figure 4.8. The population

becomes extinct when starting from small initial population (first panel in Figure 4.6, 4.7 and

4.8); and the population reaches the maximal steady state when starting from relatively large

initial population (third panel in Figure 4.6, 4.7 and 4.8). And the second panel in Figure

4.6, 4.7 and 4.8 also shows a “stable” pattern with a transition layer. We conjecture that

the transition layer solution is unstable and metastable (with a small positive eigenvalue),

so the pattern can be observed for a long time in numerical simulation.
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4.5 Conclusion

For a aquatic species that reproduce on the bottom of the river and release their larval

stages into the water column, the longitudinal movement occurs only in the drift zone and

individuals in the benthic zone in stream channel stays immobile. Through a benthic-drift

model, we investigated the population persistence and extinction regarding the strength of

interacting between zones. Moreover, this benthic-drift model has the feature of a coupled

partial differential equation (PDE) for the drift population and an “ordinary differential

equation” (ODE) for the benthic population. This degenerate model causes a lack of the

compactness of the solution orbits, which brings extra obstacles in the analysis. To overcome

these difficulties, we turn to the Kuratowski measure of noncompactness in order to use the

Lyapunov function.

For single compartment reaction-diffusion-advection equation, when the growth rate

exhibits logistic type, it is well-known that the dynamics is either the population extinction

or convergence to a positive steady state (monostable). If the species follows the strong

Allee effect growth, when both the diffusion coefficient and the advection rate are small,

there exist multiple positive steady state solutions hence the dynamics is bistable so that

different initial conditions lead to different asymptotic behavior. On the other hand, when

the advection rate is large, the population becomes extinct regardless of initial condition

under most boundary conditions [108].

Unlike the single compartment reaction-diffusion-advection equation with a strong Allee

effect growth rate, in which the advection rate q plays a important role in the persis-

tence/extinction dynamics, the benthic-drift model dynamics with strong Allee effect relies

more critically on the strength of interacting between zones, especially the transfer rate from

the benthic zone to the drift zone µ. In this paper, we show that how the transfer rates

between benthic zone to the drift zone influence the population dynamics. We divided the

µ (transfer rate from benthic zone to drift zone) and σ (transfer rate from drift zone to

benthic zone) phase plane into regions and studied the dynamical behavior on these param-
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eter regions. When we have a relatively large µ (in H1), population extinction will happen

independent of the initial conditions, the boundary condition, the diffusive and advective

movement and the transfer rate from the drift zone to the benthic zone σ. For small µ

(in (H3)), for large initial conditions, population persistence will happen regardless of the

boundary condition, the diffusive and advective movement and the transfer rate from the

drift zone to the benthic zone σ. Along with the locally stability of the zero steady state

solution, bistable dynamical behavior can be confirmed. When the transfer rate µ is in the

intermediate range (in (H2)), the persistence or extinction depends on the diffusive and ad-

vective movement. And under closed environment, a multiplicity result for the steady state

solutions is also obtained for small advection rate.
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Figure 4.4: The dependence of maximal steady state solution of (4.61) on the varying transfer rate
µ under three types boundary conditions. Here the parameters satisfy (4.60), q = 0.2, and the
initial condition is u0 = 0.2, v0 = 0.2. Left: The drift population; Right: The benthic population.
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Figure 4.5: The dependence of maximal steady state solution of (4.61) on the varying advection
rate q under three types boundary conditions. Here the parameters satisfy (4.60), µ = 0.04,
and the initial condition is u0 = 0.2, v0 = 0.2. Left: The drift population; Right: The benthic
population.
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Figure 4.6: Bistable dynamics for different initial conditions. Here the parameters satisfy (4.60),
q = 0.11, µ = 0.04, bu = 0, bd = 1. The initial conditions from first row to thrid row are u0(x) = 0,
v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.04 for x ∈ [L/2, L]; u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2]
and v0(x) = 0.1 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.1 for
x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: the drift population; Right: the benthic population.
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Figure 4.7: Bistable dynamics for different initial conditions. Here the parameters satisfy (4.60),
q = 0.025, µ = 0.1, bu = bd = 0. The initial conditions from first row to third row are u0(x) = 0,
v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.08 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0 for x ∈ [0, L/2]
and v0(x) = 0.4 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: the drift population; Right: the
benthic population.
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Figure 4.8: Bistable dynamics for different initial conditions. Here the parameters satisfy (4.60)
(except Ab(x) and Ad(x)), q = 0.025, µ = 0.1, Ad(x) = sin 2x + 2, Ad(x) = sin(2x − 10) + 2.
The initial conditions from first row to third row are u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2] and
v0(x) = 0.1 for x ∈ [L/2, L]; u0(x) = 0.08, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.4 for
x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: the drift population; Right: the benthic population.
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