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ABSTRACT 

 

Harmful algal blooms (HABs) are expanding globally and are anticipated to continue 

increasing with climate change. Two dinoflagellate species, Margalefidinium polykrikoides and 

Alexandrium monilatum, form extensive and dense blooms most summers in the lower 

Chesapeake Bay. Alexandrium monilatum, which produces the toxin goniodomin A, tends to 

bloom soon after M. polykrikoides, for which a toxin has not yet been identified. Previous 

laboratory studies and a more limited number of field studies indicate mortality and pathology in 

multiple shellfish species associated with exposure to M. polykrikoides and A. monilatum. 

However, the impacts of sequential exposure to both HAB species on marine organisms in the 

natural environment are less well understood.  

Local aquaculturists grow oysters under a variety of conditions that may be differentially 

impacted by HAB exposure. No extensive and controlled studies have been carried out in lower 

Chesapeake Bay assessing impacts of sequential exposure to M. polykrikoides and A. monilatum 

blooms on oysters cultured using different aquaculture strategies. The two main objectives of this 

study were to: 1) investigate M. polykrikoides and A. monilatum as a potential threat to cultured 

oysters, and 2) inform mitigation strategies to minimize HAB impacts based on current grow-out 

methods. To address these objectives, oysters were grown in 2017 and 2018 at sites characterized 

by differing water energetics and HAB dynamics. At all sites during both summers, oysters were 

grown intertidally and subtidally, and in 2018 were also grown in floating cages at one site. 

Water quality parameters were monitored, including cell concentrations of M. polykrikoides, A. 

monilatum, and two other local HAB species known to negatively impact oysters, Karlodinium 

veneficum and Prorocentrum minimum, along with oyster health and survival. 

Blooms of M. polykrikoides and A. monilatum occurred at the study sites, but not the 

reference site, in summer 2017 with cell concentrations that were lower than those quantified in 

some previous years. In summer 2018, neither species bloomed, providing the opportunity to 

assess oysters during both a bloom and a non-bloom year. Overall oyster mortality in both 

summers was relatively low compared to mortality often seen associated with other oyster 

stressors such as disease. Results indicated oyster health and survival were more impacted by 

factors indirectly related to HABs, specifically location factors (i.e. site and placement location), 

temperature, and DO. In both summers, mortality was significantly higher for intertidal oysters, 

compared to subtidal oysters, suggesting intertidal placement may incur stress in summer. It is 

unknown whether this intertidal stress may be further compounded during more HAB-intensive 

years.  

The results of this study suggest M. polykrikoides and A. monilatum had little impact on 

the health and survival of oysters cultured in the lower Chesapeake Bay in the summers of 2017 

and 2018. More than one year of bloom data is likely necessary, however, to fully evaluate the 

impacts of M. polykrikoides and A. monilatum as potential stressors to cultured oysters in the 

context of inter-annual variability and the expanding distribution of these two HABs in the 

Chesapeake Bay. 



 

 

Impacts of Margalefidinium polykrikoides and Alexandrium monilatum 

on Oysters Cultured in Lower Chesapeake Bay 
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INTRODUCTION 

 

Harmful Algal Blooms in the Chesapeake Bay 

Harmful algal blooms (HABs) occur when photosynthetic unicellular phytoplankton 

proliferate rapidly to densities that can cause adverse impacts on the aquatic environment and 

humans who consume bloom-exposed seafood (Sellner et al. 2003). Reports of HABs and their 

impacts have increased in frequency and distribution in recent decades (Hallegraeff 1993) and 

are predicted to increase further with ongoing climate change (Hallegraeff 2010, Glibert et al. 

2014). Environmental factors, such as temperature, salinity, and irradiance (Kim et al. 2004, Juhl 

2005), as well as biological factors, such as algal life stage (Brosnahan et al. 2015), can influence 

algal growth and potential bloom formation. Some HAB species form resting cysts, and factors 

such as irradiance, oxygen, and sediment resuspension can facilitate excystment (Anderson et al. 

1987, Keafer et al. 1992, Anderson et al. 2005), which can drive bloom formation. 

HABs can negatively impact the aquatic environment by reducing light penetration to 

benthic plants, clogging the gills of finfish and shellfish, and lowering the concentration of 

dissolved oxygen (DO) (Sellner et al. 2003). When blooms die, the algal organic matter sinks to 

the benthos and is broken down by heterotrophic bacteria. Bacterial metabolism lowers DO, 

which can create hypoxic or anoxic “dead zones” detrimental to marine life. In addition, some 

HAB-forming species are toxigenic, producing compounds that can directly harm aquatic 

organisms and may bioaccumulate in shellfish and finfish, posing health risks to higher trophic 

level consumers, including humans (Shumway 1990, Wang 2008). Some toxins can be 

aerosolized when cells lyse, potentiating respiratory impacts on terrestrial organisms. Thus, 
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animals can be exposed to toxins directly through physical contact with the aquatic environment 

or air, and indirectly through the consumption of intoxicated organisms. 

HAB-related illnesses that affect higher vertebrates include ciguatera fish poisoning, 

amnesic shellfish poisoning, azaspiracid shellfish poisoning, diarrhetic shellfish poisoning, 

neurotoxic shellfish poisoning, and paralytic shellfish poisoning. Most of these illnesses result 

from the consumption of fish or shellfish intoxicated by HAB toxins (Van Dolah 2000; Backer & 

McGillicuddy, Jr. 2006). Marine HABs are primarily caused by eukaryotic dinoflagellates or 

diatoms, which may produce hepatotoxins or, more commonly, neurotoxins (Wang 2008). Most 

dinoflagellates and diatoms with the ability to form harmful blooms and produce toxins are 

present at low concentrations in the marine environment throughout the year (Wang 2008).  

To date, at least 37 harmful algal species have been reported in Chesapeake Bay 

(Marshall et al. 2008), including several species known to produce toxins associated with higher 

vertebrate poisonings around the country and world. According to the Virginia Department of 

Health (VDH), no human poisonings have been reported following the consumption of seafood 

grown in the Chesapeake Bay in association with HABs or their toxins. However, research 

indicates that the frequency and extent of HABs are increasing in the Chesapeake Bay (Li et al. 

2015), and ongoing HAB monitoring is critical.  

HAB monitoring in the lower Chesapeake Bay is a collaborative and multi-pronged 

effort. In a National Aeronautics and Space Administration (NASA) Digital Earth Virtual 

Environment and Learning Outreach Project pilot study, satellite imagery collected by NASA 

hyperspectral sensors mounted on planes was used in conjunction with concurrent Chlorophyll a 

(Chl a) data to develop an algorithm to map blooms of Alexandrium monilatum, based on the 

idea that Chl a levels might serve as a proxy for algal cell biomass (Lubkin et al. 2017). The 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Backer%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=28966539
https://www.ncbi.nlm.nih.gov/pubmed/?term=McGillicuddy%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=28966539
https://www.ncbi.nlm.nih.gov/pubmed/?term=McGillicuddy%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=28966539
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National Oceanic and Atmospheric Administration (NOAA) Satellite Remote Sensing Group 

also contributes satellite data by producing images almost daily during the late summer bloom 

season. Water samples are collected by sources including, but not limited to, the Virginia 

Institute of Marine Science (VIMS), Old Dominion University, VDH, the Virginia Marine 

Resources Commission, the Chesapeake Bay National Estuarine Research Reserve System 

(CBNERRS), the Virginia Department of Environmental Quality (DEQ), private citizens, and 

oyster growers. The ongoing Lower York River Estuary Dataflow project, funded by the 

National Science Foundation, also collects regular and systematic water and sediment samples in 

the York River from West Point to the mouth. In the Reece Lab at VIMS, algal cells are 

quantified and identified both via light microscopy and using quantitative polymerase chain 

reaction (qPCR) targeting the DNA of particular HAB species that have historically bloomed in 

the lower Chesapeake Bay. These cell concentration data are documented in annual reports that 

have been submitted to VDH from 2007 to 2017 and these data are deposited in the Center for 

Disease Control (CDC) HAB Database. 

Two HAB-forming species of dinoflagellates, Margalefidinium (formerly Cochlodinium) 

polykrikoides and Alexandrium monilatum, form extensive blooms in lower Chesapeake Bay 

almost annually. Blooms of M. polykrikoides are usually initiated in mid- to late July, and 

usually transition within one to two weeks to A. monilatum blooms in most years. The 

mechanism or cause of this bloom progression is unknown. Both species form chains, although 

chains of A. monilatum tend to be much longer (up to approximately 80 cells) than those of M. 

polykrikoides (up to 4-6 cells) as expressed in lower Chesapeake Bay (W. M. Jones, VIMS, pers. 

comm.). Both species form resting cysts that can settle in benthic sediments (Mulholland et al. 

2009, Pease 2016).  
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Margalefidinium polykrikoides has bloomed along the coasts of North America and East 

Asia for decades, with bloom reports increasing since the 1990s (Kudela & Gobler 2012). In the 

Peconic Estuary and Shinnecock Bay, New York, USA, bloom densities exceeded 

1 × 106 cells mL-1, and Chl a levels exceeded 100 µg L-1 (Gobler et al. 2008). Blooms in North 

America appear to be ichthyotoxic (Whyte et al. 2001, Gobler et al. 2008), although a toxin has 

not been characterized for this species. Margalefidinium polykrikoides has bloomed in the York 

River for over 50 years (MacKiernan 1968). In 2015 and 2016, cell concentrations in the York 

River quantified using pPCR exceeded 2 × 104 cells mL-1 and 6 × 104 cells mL-1, respectively 

(Reece 2016-2017 VDH Reports). Although blooms in the lower Chesapeake Bay are not 

typically associated with mass mortality events of finfish or shellfish, blooms have been 

increasing in frequency, cell density, and spatial distribution over the past several decades 

(Marshall et al. 2005; Scott & Reece 2018), raising questions about impacts to the local 

ecosystem.   

Bloom concentrations of M. polykrikoides have been associated with adverse impacts to 

finfish and shellfish in the laboratory. Gobler et al. (2008) observed 100% mortality of multiple 

fish species, including larval Cyprinodon variegatus, adult Fundulus majalis, and adult Menidia 

menidia, and 80% mortality of adult Fundulus heteroclitus, exposed to NY bloom water 

consisting of >5 × 104 cells mL-1 of M. polykrikoides for 24 hr. Microscopic examination of 

fishes revealed significant damage to respiratory epithelia and focal fusion of gill lamellae. 

Elevated levels of mortality, as well as inflammation and damage in the gill and digestive tissues, 

were observed in juvenile bay scallops (Arcopecten irradians; ~11 mm) and eastern oysters 

(Crassostrea virginica; ~21 mm) exposed in the laboratory to bloom water containing 

~5 × 104 cells mL-1 of M. polykrikoides for 9 days (Gobler et al. 2008). Specifically, scallop 
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mortality reached 67%, while oyster mortality peaked at 16%, both of which exceeded mortality 

of control animals not exposed to M. polykrikoides cells. Surviving scallops exhibited 

significantly slower growth rates following M. polykrikoides exposure (Gobler et al. 2008).  

Alexandrium monilatum has long been associated with finfish kills in Florida (Howell 

1953) and finfish and invertebrate kills in the Gulf of Mexico (Connell & Cross 1950, Wardle et 

al. 1975, Perry et al. 1979). Alexandrium monilatum was first reported in Chesapeake Bay in the 

1940s (Morse 1947) and again in the 1960s (MacKiernan 1968). It was not until 2007, however, 

that A. monilatum re-emerged locally and began blooming almost annually in lower Chesapeake 

Bay, with maximum cell concentrations typically occurring in late August to early September 

(Marshall & Egerton 2009, 2013). Blooms tend to be observed first in the York River (Dauer et 

al. 2010). Since 2007, blooms have generally increased in spatial distribution, density, and 

duration in the lower Chesapeake Bay (Marshall et al. 2008; Marshall & Egerton 2009, 2013; 

Dauer et al. 2010; Scott & Reece 2018). Local York River bloom concentrations quantified using 

qPCR surpassed 2 × 105 cells mL-1 in 2015 and 1 × 105 cells mL-1 in 2016 (Reece 2016 VDH 

Report). Sediment data collected by Pease (2016) document cysts of A. monilatum in the benthos 

of the lower York River, although it is unknown whether these excyst to seed future blooms.   

Blooms of A. monilatum may be affiliated with toxic impacts to shellfish in the lower 

Chesapeake Bay. In 2007, veined rapa whelks (Rapana venosa; shell lengths 34-165 mm; 

n>200) held in flow-through tanks experienced total mortality during the peak of the 2007 A. 

monilatum bloom in the York River (Harding et al. 2009). A water sample collected near the 

tank intake on 9/7/07 contained around 4 × 104 A. monilatum cells mL-1 (Reece 2008 VDH 

Report), and all whelks were dead by 9/10/07. Oysters and northern quahogs (Mercenaria 

mercenaria) held in the same tanks experienced 0% mortality (Harding et al. 2009). In 2015, 
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mild erosion of mantle epithelium was observed in adult oysters planted in the York River during 

the peak of an A. monilatum bloom (Pease 2016). Also in 2015, VIMS scientists received several 

reports from local oyster farm owners describing unusually high oyster mortality concurrent with 

the A. monilatum bloom that year (K. Reece, VIMS, pers. comm.). However, the exact cause(s) 

of the elevated mortality and pathology found in these studies and reports is unknown. 

Alexandrium monilatum in Chesapeake Bay produces the toxin goniodomin A (GDA) 

(Hsia et al. 2006), which has been implicated in a range of cellular-level effects. Research by 

Bass et al. (1983) and Bass & Kuvshinoff (1983) demonstrated hemolytic and neurotoxic effects, 

respectively, associated with exposure to GDA isolated from Goniaulax monilata (Howell 1953), 

which was renamed A. monilatum by Balech (1985). GDA produced by other algal species has 

also been associated with cellular-level effects, including antibiotic (Sharma et al. 1968) and 

antifungal properties (Murakami et al. 1988). Murakami et al. (1988) reported that GDA 

disrupted the cell division of sea urchin eggs. Abe et al. (2002) found that GDA inhibits 

angiogenesis in aortic endothelial cells, in part by interfering with actin reorganization. Other 

research has indicated GDA is associated with an alteration in actin structure, disrupting the 

interaction between actin and myosin (Furukawa et al. 1993, Hsia et al. 2006, Espiña et al. 2016). 

Based on analyses of a Gulf Coast A. monilatum isolate by Hsia et al. (2006), GDA has a 

molecular weight of 768 Da. It is unknown whether GDA crosses through cell membranes to 

induce a toxic effect.  

GDA and A. monilatum cells have also been implicated in a range of whole-organism 

effects in both terrestrial and marine organisms in the laboratory. Crude extract exposure from A. 

monilatum has been associated with toxicity to a range of organisms, including cockroaches 

(Clemons et al. 1980), frogs (Bass & Kuvshinoff 1983), and mice (Erker et al. 1985). Laboratory 
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studies found that finfish and marine invertebrates, including oysters, exhibited significant 

mortality following exposure to living A. monilatum cells and purified GDA (Gates & Wilson 

1960, Aldrich et al. 1967, Sievers 1969, May et al. 2010, Reece et al. 2016, Pease 2016). 

Toxicity bioassays have resulted in dose-dependent gill erosion and mortality of adult oysters 

exposed to live York River-isolated A. monilatum cells after 96 hours (Pease 2016). However, it 

is unknown whether toxic impacts are related to toxin accumulation within these organisms.  

As of yet, no rigorous bioaccumulation or depuration study has been carried out in the 

laboratory for GDA. In 2018, Krock et al. described a method for quantifying GDA and the 

analogue goniodomin B (GDB), isolated from 17 strains of A. pseudogonyaulax, using LC-

MS/MS. All 17 strains produced GDA (5-35 pg cell-1), and many strains also contained GDB 

(0.01-0.07 pg cell-1). Research by Espiña et al. (2016) on rat hepatocytes suggested that GDB 

was less toxic than GDA. GDA was first isolated and purified from local York River A. 

monilatum by Drs. Thomas and Connie Harris at VIMS (Harris et al. In review). Concentrations 

of GDA ranging from 0.02-8.39 µg g-1 were detected in the foot tissue of whelks that died during 

the 2007 York River A. monilatum bloom (Harding et al. 2009). Many bivalve mollusc species 

are filter feeders that use gills to concentrate algal particles for consumption, and toxins often 

concentrate in the siphon, gills, and digestive gland of shellfish (Halstead & Shantz 1984). 

However, it is unknown whether GDA bioaccumulates in bivalve tissues and, if so, where it 

concentrates.  

Evaluating toxin exposure in bivalve species is made more complicated due to feeding 

inhibition. May et al. (2010) demonstrated reduced feeding of several bivalve species, including 

C. virginica, in response to A. monilatum exposure, and Hégaret et al. (2007) observed that C. 

virginica ceased feeding in the presence of toxigenic A. fundyense and two other toxigenic non-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5619670/#R30


9 
 

Alexandrium species. Recent laboratory challenges of adult oysters by Pease (2016) suggest that 

while C. virginica will feed on York River-isolated A. monilatum, oysters may remain closed for 

long periods and feeding can be inhibited at higher cell concentrations. Thus, oysters have the 

potential to experience not only nutritional and oxidative stress resulting from feeding inhibition, 

but also toxin exposure when feeding and otherwise interacting with Alexandrium cells. 

However, it is currently unknown whether GDA bioaccumulates in oysters.  

In the lower Chesapeake Bay, pathology and mortality of marine life have been reported 

more frequently during A. monilatum blooms than those of M. polykrikoides, and it is possible 

these adverse effects may be due in part to sequential exposure to both species. However, no 

extensive studies have been carried out in the lower Chesapeake Bay assessing the impacts of 

sequential M. polykrikoides and A. monilatum blooms on oysters cultured throughout the bloom 

season. 

 

Oysters in the Chesapeake Bay 

The eastern oyster (Crassostrea virginica; Gmelin 1791) has long played a critical 

ecologic and economic role in Chesapeake Bay (Wilberg et al. 2013). Oyster reefs provide 

habitat structure for a diverse community of organisms (Peterson et al. 2003), reduce turbidity 

through filtration (Haven & Morales-Alamo 1970), enhance nutrient cycling (Dame & Libes 

1993), and facilitate energy transfer between benthic and pelagic food webs (Baird & Ulanowicz 

1989). Over the past century, oyster abundance in Chesapeake Bay has been reduced to less than 

1% of historic levels (Newell 1988), due to several factors including overfishing and habitat 

destruction (Rothschild et al. 1994, Mackenzie 2007). Emergence of multinucleated sphere 

unknown (MSX) disease in 1959 (Wood & Andrews 1962) and the intensification of dermo 
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disease in the 1980s (Burreson & Andrews 1988) also contributed to oyster decline. These 

diseases are caused by the oyster parasites Haplosporidium nelsoni and Perkinsus marinus, 

respectively.  

Recently, Chesapeake Bay oyster stocks have begun to recover due in part to fishing 

restrictions, restoration, and disease adaptation (Carnegie & Burreson 2011, Schulte 2017). In the 

lower Chesapeake Bay, oyster abundance has also been bolstered by the rapidly developing 

aquaculture industry that primarily utilizes fast-growing, disease-resistant triploid (3N) oyster 

strains (Hudson & Murray 2016). The 2017 farm gate value of Virginia shellfish aquaculture was 

$53.4 million, and of that, oysters represented over $15 million (Hudson 2018). Continued efforts 

to restore oyster populations are critical to the health of coastal ecosystems like the Chesapeake 

Bay (Beck et al. 2011). Not only does aquaculture contribute to the local economy and create 

new jobs, but also harvesting farmed oysters may shift some of the demand away from wild 

populations, enhancing recovery of these populations. In addition to their economic value, 

cultured oysters provide many of the same ecosystem services as wild oysters, including water 

filtration and nutrient cycling.  

  

Significance of HAB-Oyster Dynamics to Aquaculture 

HABs represent a potential threat to the aquaculture industry, and members of the lower 

Chesapeake Bay oyster aquaculture industry have expressed concern regarding the potential 

impacts of HABs on cultured oysters. Blooms can be associated with lethal and sub-lethal effects 

in wild and farmed animals, as well as reduced marketability of seafood products (Shumway 

1990, Landsberg 2002). HABs have the potential to adversely impact oysters through multiple 

mechanisms. Oysters are herbivorous filter feeders and feed on phytoplankton for their nutrition. 
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This feeding method and diet make oysters more likely to consume HAB species and to 

experience feeding disruption via gill clogging. In the presence of certain species of toxigenic 

algae, some shellfish may practice avoidance behaviors, including reduced valve gape and 

clearance rate (Hégaret et al. 2007, May et al. 2010), burrowing, siphon retraction, and shell 

clapping (Gainey & Shumway 1988, Bricelj et al. 1990, Mons et al. 1998). May et al. (2010) 

demonstrated reduced feeding of several bivalve species, including C. virginica, in response to 

A. monilatum exposure. These feeding avoidance behaviors may incur metabolic costs. For 

instance, when shellfish species like oysters close their valves, feeding and respiration are 

inhibited.  

Many aspects of oyster aquaculture might influence the potential effects of HABs on 

oysters. Firstly, aquaculturists grow oysters of different families and ploidies and deploy oysters 

of different sizes. The majority of the local industry uses triploid (3N) animals bred for fast 

growth and disease resistance (Hudson 2018). The minimum oyster deployment size is at least 

partially limited by the mesh size of the bags oysters are placed in at the time of deployment, and 

many growers initially deploy spat oysters (shell height between 5-10 mm) in bags with a mesh 

size of ~ 0.6 cm for grow-out to marketable size (A. T. Leggett, Jr., Chessie Seafood and 

Aquafarms, pers. comm.). Smaller oysters are likely to have more limited energy reserves 

relative to larger, older oysters and as a result may not be able to cease feeding to avoid bloom 

exposure for as long as larger oysters. Physiological stress to oysters may be further compounded 

in intertidal locations, where animals are already subject to stress associated with lower DO and 

shorter feeding times (Crosby et al. 1991, Roegner & Mann 1995, Bishop & Peterson 2006).  

Toxicity bioassays by Mulholland et al. (2009) demonstrated 20% mortality of juvenile 

(~ 21 mm) C. virginica exposed to ~103 M. polykrikoides cells mL-1 for 72 hr. In contrast, May 
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et al. (2010) reported 0% mortality of two size classes of C. virginica (~29 mm and ~70 mm) 

exposed to 5.5 × 102 cells mL-1 of toxic A. monilatum for 24 hr. Bioassays at VIMS indicated 

both M. polykrikoides and A. monilatum exposure are associated with larval oyster mortality, but 

mortality of oyster spat (2-3 mm) only occurred during exposure to A. monilatum, not M. 

polykrikoides (Reece et al. 2016). Specifically, mortality of diploid and triploid spat oysters 

exposed to up to 4,000 M. polykrikoides cells mL-1 was 0% after 120 hr. Triploid spat 

experienced 80% mortality following exposure to 800 A. monilatum cells mL-1, and 100% 

mortality after being exposed to 2,000-8,000 A. monilatum cells mL-1 for 72 hr.  

Deployment location is another aspect of oyster culture that might affect the potential for 

HAB impacts on oysters. For instance, the relative water energy conditions and flushing rates of 

grow-out locations are relevant in terms of HAB impacts on oysters and aquaculture production. 

In the lower Chesapeake Bay, oyster aquaculture is conducted in both shallow low-energy, slow-

flushing systems (e.g. tidal creeks), as well as deeper, high-energy rapidly-flushing systems (e.g. 

the York River mainstem). Fast-flowing water replenishes DO, removes wastes, and increases 

food availability to oysters (Wilson-Ormond et al. 1997). However, fast-flowing water also 

promotes the growth of other filter-feeding organisms, such as tunicates and barnacles, which 

compete with oysters for food and can reduce oyster marketability, particularly for the half-shell 

market. In terms of bloom impacts, fast-flowing water and shorter flushing times promote bloom 

dispersal and patchiness, which may reduce the time that oysters are exposed to blooms. In 

quickly flushing bodies of water, algal cells may be removed from the system at a rate that 

equals or exceeds the doubling time of the species; this could inhibit cells from reaching high 

enough concentrations to form a bloom (Roelke & Pierce 2011).  
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Placement of oyster bags and cages within the grow-out site is another factor that may 

affect potential HAB impacts on oysters. Much of the local Virginia oyster aquaculture industry 

grows animals in mesh bags in mesh cages placed on the sediment surface (Hudson 2018). When 

submerged, these animals may directly experience hypoxia and anoxia resulting from HAB 

decomposition in the benthos. Industry members sometimes deploy oyster cages intertidally, 

where oysters are periodically exposed to air at low tide, or subtidally, where oysters are always 

covered by water. Many local aquaculturists favor intertidal oyster deployment with the resultant 

periodic aerial exposure to reduce biofouling on oysters and gear (Leggett, Jr., pers. comm.). 

However, intertidal oysters may experience stress due to significant changes in temperature and 

DO, as well as reduced feeding times, compared to subtidal oysters (Crosby et al. 1991, Roegner 

& Mann 1995, Bishop & Peterson 2006).  

VIMS scientists received several anecdotal reports from local oyster farm owners in 2015 

describing unusually high oyster mortality concurrent with the A. monilatum bloom that year 

(Reece, pers. comm.). One grower reported >50% mortality of his oysters cultured intertidally in 

the Perrin River, a low energy tributary branching off the York River in the lower Chesapeake 

Bay during the 2015 A. monilatum bloom. The cause of these mortality events is uncertain. In 

response to the 2015 grower reports, a NOAA-funded Event Response study was carried out 

during the 2016 A. monilatum bloom. Higher cumulative mortality (13.6%) was observed for 

oysters grown intertidally in the Perrin River, compared to oysters grown subtidally at the same 

site (3.6%), as well as intertidally and subtidally at both a high energy site in the York River 

where an A. monilatum bloom occurred (4.0% and 2.9%, respectively) and a low energy site 

where a bloom did not occur (4.0% and 6.3%, respectively) (Reece et al., unpublished data). 
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These reports suggest oysters may be more impacted by HABs when cultured intertidally in low-

energy environments. 

Some growers deploy oysters at the water surface in floating bags, a strategy that may 

also be associated with costs and benefits. These mesh bags, referred to as “cages,” are attached 

to a long-line, holding the oysters just below surface at all times. This method allows oysters 

ready access to food and DO. However, in the event of a HAB accumulating at the surface, 

floating oysters may receive higher and more consistent exposure to an on-going bloom, 

contributing to environmental stress. Griffith et al. (2018) found that first-year scallops 

(approximately 6 mm) cultured at the surface experienced significantly higher mortality (75-

100%), compared to those deployed at depth, during a 1-2 week bloom of M. polykrikoides of 

>1.5×104 cells mL-1. However, two size classes (approximately 5 and 32 mm) of juvenile diploid 

oysters cultured at the surface and at depth did not experience elevated mortality related to the 

bloom. 

Additional research is necessary to evaluate the impacts of sequential M. polykrikoides 

and A. monilatum blooms on oysters cultured using different strategies in the lower Chesapeake 

Bay throughout the bloom season. 

 

Purpose and Objectives  

Understanding the effects of emerging, potential stressors, such as HABs, on Chesapeake 

Bay oysters is critical to the continued success of the aquaculture industry. As HABs increase 

locally in terms of density, duration, and distribution, it may be necessary for aquaculture 

industry personnel to modify grow-out procedures at certain times to optimize oyster production. 

Clear trade-offs exist between different approaches to oyster grow-out as it is currently practiced, 
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and every method and hydrodynamic profile is associated with certain benefits, as well as 

potential costs. Emerging HABs may further complicate the optimization of grow-out procedures 

in the lower Chesapeake Bay.  

The two main objectives of this study were to 1) investigate M. polykrikoides and A. 

monilatum as a potential threat to cultured oysters in the lower Chesapeake Bay, and 2) inform 

mitigation strategies to minimize HAB impacts based on current grow-out methods used by the 

local oyster aquaculture industry. To address these questions, oysters were grown at multiple 

sites characterized by a range of water energetic and HAB dynamics in the summers of 2017 and 

2018. Oysters were grown intertidally and subtidally at all sites in both summers and were also 

grown in floating cages at one site in 2018. Water quality parameters, including cell 

concentrations of M. polykrikoides, A. monilatum, as well as those of two other HAB species 

known to negatively impact oysters, Karlodinium veneficum and Prorocentrum minimum, were 

measured along with assessment of oyster health and survival. 

  



16 
 

METHODS 

 

Field Study Overview 

Oysters were cultured in summers 2017 and 2018 at multiple sites in the lower 

Chesapeake Bay characterized by a range of water energetic and HAB dynamics. Independent 

variables investigated included oyster size at the time of blooms of M. polykrikoides and A. 

monilatum, oyster deployment site (high vs. low water energy and the presence or absence of 

HABs), placement location (intertidal, subtidal, and floating at the surface), water quality 

parameters not directly associated with HABs (temperature, salinity, pH, and DO), and water 

quality parameters more directly associated with HABs (Chl a and M. polykrikoides, A. 

monilatum, K. veneficum, and P. minimum cell concentrations). Oyster health and survival were 

also monitored. 

 

Oysters  

Triploid seed oysters (1-2 mm) were purchased from Oyster Seed Holdings in Gwynn, 

VA and grown in a land-based upweller system circulating water from the Perrin River, a 

tributary branching off the York River, until they reached deployment size (>5 mm). In a land-

based upweller, the amount of water flowing through the system is limited, which in turn limits 

oyster food delivery and waste removal. In contrast, oysters tend to experience greater water 

flow in the natural environment and, therefore, grow more quickly (Leggett, Jr., pers. comm.). 

Thus, it was anticipated that oysters deployed in the natural environment a month earlier would 

be larger at the time of M. polykrikoides and A. monilatum blooms compared to those grown in 

the upweller system for an additional month preceding bloom onset. In 2017, two sets of oyster 

spat (5-10 mm) were deployed one month apart (6/1/17-6/2/17 and 7/5/17-7/6/17, respectively) 
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in an attempt to evaluate HAB impacts to juvenile oysters of different size classes (Fig. 1). In 

2018, oysters were deployed only once, from 6/20/18-6/21/18 (Fig. 2). At the time of 

deployments in both summers, oysters were placed in bags with a mesh size of approximately 

5 mm; when the majority of oysters in a bag reached a sufficient size, the animals were 

transferred to bags with a mesh size of approximately 10 mm to facilitate more efficient water 

flow.  

 

Oyster Deployment Sites 

In the summers of 2017 and 2018, oysters were grown at multiple sites in the lower 

Chesapeake Bay characterized by different water energetics and HAB dynamics. The 

Chesapeake Bay is an estuary located on the East Coast of the United States that exchanges 

water with the Atlantic Ocean via an inlet located in the southern portion. The York River is a 

subestuary of Chesapeake Bay, located near the mouth. In summers 2017 and 2018, oysters were 

deployed at multiple sites in the lower Chesapeake Bay prior to the dates of the typical onset of 

local blooms of M. polykrikoides and A. monilatum – i.e. mid-late July to early September. In 

2017, oysters were deployed in the Perrin, York, and Ware Rivers, and in 2018, an additional site 

was added near Big Island in Guinea, VA proximal to the mouth of the York River (Fig. 3). 

Blooms of the HAB species M. polykrikoides and A. monilatum have been observed in the Perrin 

and York Rivers and near Big Island, while blooms of these species have not been observed at 

the upriver site in the Ware River, the reference location. The Perrin River, a small tributary off 

the north shore of the York River near its mouth, site was characterized by low water energy. 

The York River site, located on the north shore of the river near the mouth, was characterized by 

high water energy (Table 1). The site near Big Island and the site in the Ware River were both 
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characterized by intermediate water energy. Due to the fact oysters were in some cases grown on 

the leases belonging to collaborating oyster farm owners, the exact GPS locations of the sites are 

not disclosed out of sensitivity to the industry members. 

The relative flushing rate for each site was based on data from the VA DEQ Coastal 

Geospatial and Educational Mapping System (GEMS) website (www.coastalgems.org) and a 

report by Herman et al. (2007). In the report, tidal flushing in water bodies along the Virginia 

coastal zone was categorized as quick, intermediate, or slow based on factors including residence 

time and mean water depth. The relative energy condition, or “relative wave energy,” for each 

site was determined according to the nautical mileage of the average fetch exposure of the site 

(Hardaway et al. 1984). Substrate was characterized by Dr. William Reay (CBNERRS) at all 

sites based on field-collected sediment cores. 

 

Oyster Placement at Sites 

In the summers of 2017 and 2018, oysters were deployed in both intertidal and subtidal 

bottom cages at all sites. Intertidal and subtidal cages were approximately 7 m apart in the Perrin 

River, 100 m apart in the York River, 20 m apart at the Big Island site, and 50 m apart at the 

Ware River site. Intertidal cages were positioned closer to shore in an effort to obtain around 

20% aerial exposure of oysters, and subtidal cages were positioned farther from shore to obtain 

0% aerial exposure of oysters.  

Oysters were grown in three individual mesh bags in each cage to provide pseudo-

replication (n=3). A floating cage treatment was included at the Big Island site in 2018 to 

compare to oysters grown in bottom cages. Floating oysters were grown in three individual mesh 

bags, referred to as “cages,” attached immediately adjacent to each other on a long-line, to create 

http://www.coastalgems.org/
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pseudo-replicates (n=3). Throughout this thesis, “placement” refers to the location oysters were 

grown within a site – i.e. intertidal, subtidal, or surface deployment. 

 

Water Quality Monitoring 

Throughout oyster deployments in 2017 and 2018, water quality was monitored in an 

effort to characterize the independent variables impacting oyster health and survival. Water 

quality data (temperature, salinity, pH, DO, and Chl a) were monitored in two ways in both 

summers. These data were monitored in situ using a hand-held YSI multi-parameter meter 

(Xylem, Inc.) held as close to each cage (intertidal, subtidal, and floating) as possible at each 

site. Measurements were taken biweekly (every two weeks) at the time of oyster sampling and 

weekly during the time blooms of M. polykrikoides and A. monilatum typically occur – i.e. mid-

late July to early September. The YSI was calibrated at least monthly by CBNERRS staff using 

standard protocols. 

Water quality was also monitored near-continuously next to the subtidal cages at all sites 

throughout both summers by Reay and CBNERRS. A YSI 6600 series multi-parameter water 

quality sonde was deployed at depth and took in situ measurements every 15 min of water 

quality parameters, including temperature (resolution: 0.01°C, accuracy: ± 0.15°C), specific 

conductance (0.001 mS cm-1, ± 0.5% of reading), pH (0.01 SU, ± 0.2 SU), % DO saturation 

(0.1%, ± 1% of reading), turbidity (1 NTU, ± 0.2% of reading), and Chl a fluorescence 

(~0.1 µg L-1, 0.1% of RFU). Water depth (0.001 m; ± 0.01 m) was also measured, and the non-

vented pressure sensor was corrected for atmospheric pressure changes during the deployment 

period. Salinity (0.01, ± 1% of reading) and DO (0.01 mg L-1, ± 1% of reading) were calculated 

based on the relevant measured quantities.  
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Sondes were positioned next to the subtidal cages approximately 25 cm above the 

sediment in fixed PVC milled to maximize water circulation around the sensors. YSI instruments 

were configured and calibrated according to standard protocols by Reay and other members of 

the CBNERRS staff. To minimize biofouling, the sonde equipment was cleaned and monitored 

in short intervals (~1 week), self-cleaning optical sensors were implemented, and anti-fouling 

materials were used wherever possible. Quality assurance/quality control (QA/QC) was 

performed on all data by Reay. QA/QC identified time gaps, exceedance of sensor tolerances, 

out of water conditions, and single point spike conditions. During sonde deployments and 

retrievals, water samples were collected and analyzed for Chl a to facilitate post-adjustment of 

sonde Chl a fluorescence data to correct for phaeophytin according to Lorenzen (1967).  

 

HAB Sampling 

HAB species were monitored at all sites throughout summers 2017 and 2018. Water 

samples were collected biweekly at the time of oyster sampling and weekly during the time 

blooms of M. polykrikoides and A. monilatum typically occur – i.e. mid-late July to early 

September. At each sampling time, two 100-mL water samples, one for visual identification and 

quantification of algal species using light microscopy and the other for the identification and 

quantification of HAB species using qPCR, were collected at the surface as close to each cage 

(intertidal, subtidal, and floating) as possible at all sites. 

 Visual identification and enumeration of algal cells, including M. polykrikoides and A. 

monilatum as well as other algal species present, was performed by William M. Jones III in the 

Reece Laboratory at VIMS. Following analyses using light microscopy, 3 mL of one of the 

100-mL samples were preserved with Lugol’s iodine solution (Lugol’s; Fisher Scientific) in an 
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approximately 0.05:1 Lugol’s to sample dilution. The second 100-mL sample was vacuum 

filtered onto a 3-µm polycarbonate membrane filter, and filters were stored in 5-mL tubes 

at -20°C until DNA was extracted for qPCR. If the sample was particularly dense, a smaller 

volume (e.g. 25-50 mL) was filtered for DNA extraction and the subsequent qPCR cell 

concentration was adjusted accordingly. 

In this thesis, a bloom was defined as a cell concentration ≥500 cells mL-1 of the relevant 

species. A bloom period at a particular site was defined as the period between which the first and 

last samples containing ≥500 cells mL-1 were collected during the sampling season. Chl a data 

collected by the data sondes every 15 min at all sites were anticipated to serve as a high 

frequency proxy for HAB cell concentrations in light of the more limited number of water 

samples used for the direct enumeration of HAB cells. 

 

DNA Extraction    

DNA was extracted from filters using the QIAamp Fast DNA Stool Mini kit (Qiagen) 

according to manufacturer’s instructions with some modifications. After adding InhibitEX 

Buffer, tubes were placed in a 95°C water bath for 5 min. Samples were vortexed for 15 s 

following cell lysis. Rather than centrifuging the sample and using only 200 µL of the lysate, as 

per the manufacturer’s instructions, the entire sample was retained and carried through the 

extraction protocol. The reagent volumes were increased in the subsequent steps to maintain a 

ratio of sample to reagent consistent with that in the manufacturer’s instructions. Following cell 

lysis, 1 mL of Buffer AL was added to each 5-mL tube, and samples were vortexed for 15 s. 

Then, 75 µL of Proteinase K was added to each tube, and samples were vortexed for another 

15 s. Samples were then incubated in a 70°C water bath for 10 min. Following incubation, 1 mL 
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of 100% ethanol was added to each sample, and tubes were vortexed. The lysate was then 

applied to the QIAmp mini-spin DNA extraction column with silica resin in 600-µL increments 

and centrifuged at full speed (>20,000 xg). After most of the sample was applied to the column, 

sterile forceps were used to pull up the filter and clip it under the lid of the 5-mL tube. Samples 

were then centrifuged for 1 min at 1000 rpm to remove any remaining sample from the filter. 

The remaining volume was transferred onto the column and centrifuged at full speed for 1 min. 

Columns were then transferred into clean collection tubes, and Buffers AW1 and AW2 were 

added to each column. Columns were then placed in Axygen tubes (Corning, Incorporated), and 

100 µL ATE Buffer was placed on top of each column and incubated for 1 min at room 

temperature. Samples were centrifuged at full speed for 1 min, and the eluted DNA was stored at 

-20°C until qPCR was performed. 

 

Development of Positive Control Material  

Positive control material for the standard curve was developed using clonal cultures of M. 

polykrikoides and A. monilatum, both in the log growth phase. The M. polykrikoides isolate was 

originally obtained from a 2005 York River bloom, and the A. monilatum isolate was originally 

obtained from a 2007 York River bloom. Cell concentrations were determined using light 

microscopy. The concentrations were used to determine the appropriate volume of culture to 

filter onto a 3-μm polycarbonate membrane filter to represent a 100-mL sample with 

approximately 1,500 cells mL-1 for M. polykrikoides and 10,000 cells mL-1 for A. monilatum. 

Filters were then stored at -20°C until DNA extractions (as described above) were performed. 

The extracted DNA was used to generate the standard curves used in the qPCR analyses below.   
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Quantitative Real-time PCR  

  qPCR reactions were performed on all water samples for the identification and 

quantification of M. polykrikoides and A. monilatum, as well as two common toxigenic HAB 

species, K. veneficum and P. minimum. qPCR reactions were performed using the TaqMan Fast 

Advanced Master Mix (Thermo Fisher Scientific) in accordance with the manufacturer’s 

instructions using primers and probes targeting the small subunit (SSU) ribosomal RNA gene, 

the large subunit (LSU) ribosomal RNA gene, or the internal transcribed spacer region (ITS) for 

each species (Eurofins MWG Operon).  

The forward and reverse primer and probe sequences (5’-3’) used for M. polykrikoides 

reactions were as follows (Reece, unpublished data):  

 

Cpoly 730F: TCTTTCCGACCCGTCTTGAA 

Cpoly 875R: CCATCTTTCGGGTCCTAGCA 

CpLSU_828PR: FAM-TTGCGAGACGTTTGAGTGTG-MGBNFQ 

 

The forward and reverse primer and probe sequences (5’-3’) used for A. monilatum were 

as follows (Vandersea et al. 2017):  

 

Amon2_500F:  TGAAAGGTAAGGTGCCTGTG 

Amon2_658R:  GCAGAAACATGTTGCCAAAG 

Amon2_523PR:  FAM-TGCAAGCACAAGCAACCCAGC-QSY7 
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The forward and reverse primer and probe sequences (5’-3’) used for K. veneficum were 

as follows (VA DEQ 2014):  

 

KvITS_242F: TTCGTTGTGTAGTTGTTGACTCG 

KvITS_328R: TGCTGACCTAACTTCATGTCTTG 

Kv_266PR: FAM-AGCCTGCTCCAGCTCACGACTCCT-TAMRA 

 

The forward and reverse primer and probe sequences (5’-3’) used for P. minimum were 

as follows (Handy et al. 2008):  

 

Pmin 200F: TGTGTTTATTAGTTACAGAACCAGC 

Pmin 525R: AATTCTACTCATTCCAATTACAAGACAAT 

Pmin PR: FAM-CCGCCTGGTCCTTTGGTGATTCATAATAAC-MGBNFQ 

  

An internal control (IAC) was run on one assay for each sample to check for inhibition. 

The forward and reverse primer and probe sequences (5’-3’) used for the IAC were as follows 

(Nordstrom et al. 2007): 

 

IAC_F: GACATCGATATGGGTGCCG 

IAC_R: CGAGACGATGCAGCCATTC 

IAC_cy5PR: Cy5-TCTCATGCGTCTCCCTGGTGAATGTG-BHQ2a 
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The final volume of each qPCR reaction was 10 µL made up of the following: 4 mg mL-1 

bovine serum albumin (BSA), 1.0X TaqMan Fast Advanced Master Mix (diluted from the 

original 5X solution included in the kit), 0.9 µM of the forward primer, 0.9 µM of the reverse 

primer, 0.10 µM of the species probe, and 1 µl of template DNA. For assays in which the IAC 

was run, the 10-µL final volume also included final concentrations of 0.08 µM of the IAC 

forward primer, 0.08 µM of the IAC reverse primer, 0.15 µM of the IAC probe, and 1 µl of a 

1:1000 dilution of the IAC DNA (Bio-Gx product #760-0001). In all cases, nuclease-free H2O 

was used to bring the reaction volume up to 10 µL when necessary. Amplifications were 

performed in accordance with the kit manufacturer’s instructions, including initial denaturation 

at 95°C for 20 s, followed by 40 cycles of denaturing at 94°C for 3 s, and annealing/extension at 

60°C for 30 s.  

Each plate included a standard curve, consisting of seven ten-fold serial dilutions of the 

positive control material. The limits of detection are based on the standard curve ranges from the 

maximum cell concentration for each species, typically 1.5 × 103 cells mL-1 to 

1.5 × 10-3 cells mL-1 for M. polykrikoides and 1 × 104 cells mL-1 to 0.02 cells mL-1 for A. 

monilatum, K. veneficum, and P. minimum. All samples were run in duplicate using a 7500 Fast 

Real-Time PCR System (Applied Biosystems). The system software determined the threshold 

cycle values, and the values for cells mL-1 were interpolated for each reaction based on the 

standard curve.  

 

Six Dependent Oyster Variables 

 At regular intervals, oysters were monitored for six dependent variables, referred to in 

this thesis at the “dependent oyster variables.” The dependent oyster variables included interval 
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mortality, cumulative mortality, shell height, growth rate, condition index (CI), and 

histopathology. These variables were chosen to help quantify oyster survival and health during 

the bloom season.  

 

1. Interval Mortality 

Interval oyster mortality was quantified for each of the three bags at each placement 

location (intertidal, subtidal, and surface) biweekly, and dead oysters were removed. Gaping 

oysters unresponsive to touch, as well as empty whole or half-shells, were considered dead. A 

half-shell discovered in the bag without a matching half-shell was considered as a whole (n=1) 

dead oyster. 

Interval mortality was calculated according to the following equation, in which Tx refers 

to the time of sampling: 

 

IM =  
𝐷𝑒𝑎𝑑 𝑜𝑦𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑔 𝑎𝑡 𝑇𝑥

𝑇𝑜𝑡𝑎𝑙 𝑜𝑦𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑔 𝑎𝑡 𝑇𝑥
 

 

These data were calculated as a ratio and must be multiplied by 100 to be considered as a 

percent value. 

 

2. Cumulative Mortality 

Cumulative oyster mortality was also calculated biweekly for each of the three bags at 

each placement location (intertidal, subtidal, and surface) according to the following equation, in 

which T0 is the time when oysters were deployed and Tx refers to the time of sampling: 
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CM =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑎𝑑 𝑜𝑦𝑠𝑡𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑇0 𝑢𝑛𝑡𝑖𝑙 𝑇𝑥

𝑇𝑜𝑡𝑎𝑙 𝑜𝑦𝑠𝑡𝑒𝑟𝑠 𝑖𝑛 𝑏𝑎𝑔 𝑎𝑡 𝑇0
 

 

These data were calculated as a ratio and must be multiplied by 100 to be considered as a 

percent value. 

 

3. Shell Height  

Concurrent with mortality quantification, a random sample of live oysters (n=25) from 

each of the three bags at each placement location (intertidal, subtidal, and surface) was measured 

using calipers. Shell height was considered as the maximum length from hinge to bill. 

 

4. Growth Rate 

Using the oyster shell height measurements, interval oyster growth rate was calculated in 

mm day-1 for each of the three bags at each placement location (intertidal, subtidal, and surface) 

according to the following equation, in which Tf refers to the last day of the sampling interval 

and Ti refers to the first day of the sampling interval: 

 

GR =  
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠ℎ𝑒𝑙𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑇𝑓 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠ℎ𝑒𝑙𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑇𝑖)

𝑇𝑓 −  𝑇𝑖
 

 

5. Condition Index 

CI is one metric for assessing oyster health, in which the ratio between oyster tissue, or 

viscera, and oyster shell is quantified. A random sample of live oysters (n=3) was collected from 

each of the three bags at each placement location (intertidal, subtidal, and surface) approximately 
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once a month for CI determination. Oysters were shucked, and all tissue was removed. Shells 

and tissue were dried separately in individual pans in a drying oven and subsequently weighed. A 

CI was then calculated for each oyster according to the following equation (Walne & Mann 

1975, Rainer & Mann 1992):  

 

CI =  
(𝐷𝑟𝑦 𝑣𝑖𝑠𝑐𝑒𝑟𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 × 100) 

𝐷𝑟𝑦 𝑠ℎ𝑒𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
 

 

6. Histopathology        

Histopathology is another metric for assessing oyster health, in which tissues are 

examined for the presence of pathogens and pathology. A random sample of live oysters (n=3) 

was collected from each of the three bags at each placement location (intertidal, subtidal, and 

surface) for routine paraffin histology approximately once a month in 2017 and 2018. Much of 

the histological preparation was done by the VIMS Shellfish Pathology Lab. Oyster tissues were 

fixed with Davidson’s solution (Shaw & Battle 1957) and processed using standard methods, 

with 6-μm transverse sections that included gills, mantle, and organs of the visceral mass stained 

with hematoxylin and eosin (H&E) and evaluated using light microscopy (100-400X). The 

sections were examined for any signs of infection or disease, including infection and tissue 

disruption caused by the major pathogens P. marinus and H. nelsoni. Attention was also paid to 

the potential presence of dinoflagellates possibly associated with blooms, including A. 

monilatum-like cells. For the 207 total samples from 2017 and 2018, prevalence data is reported 

for gill erosion, hemocytosis in the gills and mantle, and P. marinus and H. nelsoni. 
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Data Analysis: Graphs 

Results were analyzed in two consecutive ways. First, the raw data from individual years 

were graphed. Cell concentrations of M. polykrikoides and A. monilatum, as determined by 

qPCR, were graphed alongside Chl a values to provide a visual idea of how well Chl a 

concentration served as a proxy for HAB concentration. Oyster data were also graphed to aid in 

the visualization of the relative differences in five of the six dependent oyster variables (interval 

mortality, cumulative mortality, shell height, growth rate, and CI) and to guide subsequent 

modeling efforts. Histopathology data were not graphed due to the low prevalence of pathogens 

and pathology. In all graphs, error bars represent the 95% confidence intervals. Confidence 

intervals were calculated using the three pseudo-replicate bags associated with each placement 

location (intertidal, subtidal, and surface). In terms of the graphs, significant differences between 

treatments within years were defined as non-overlapping confidence intervals. 

 

Data Analysis: Modeling Overview 

Following a visual analysis of the raw data using the graphs, general linear models 

(McCullagh & Nelder 1989) were designed using R version 3.5.1 software (www.r-project.org) 

to investigate more deeply the independent variables (site, placement location, temperature, HAB 

concentration, etc.) that influenced differences in five of the dependent oyster variables – interval 

mortality, cumulative mortality, shell height, growth rate, and CI. Surface/floating cage data 

were not included in the modeling, as surface cages were only utilized at the Big Island, and only 

in 2018, when blooms were not observed at any of the experimental sites; intertidal and subtidal 

bottom cage data from Big Island were included in 2018 modeling, however. Due to limited 

sampling for CI in 2018 (oysters were only sampled for CI twice in 2018), CI data were only 

http://www.r-project.org/
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modeled for 2017. Histopathology data from 2017 and 2018 were not included in statistical 

analyses due to the low prevalence of pathogens and pathology in both summers. A link function 

designates the relationship between the expected value of the response variable and the 

explanatory variables. This function must be differentiable and monotonic. 

Because blooms of M. polykrikoides and A. monilatum only occurred at the study sites in 

2017, data from 2017 and 2018 were modeled separately. For each of the two years, dependent 

oyster variables were evaluated for the assumption of normality and log transformed if 

transformation made data appear more normal. All independent variables were then analyzed for 

collinearity. The units of all continuous independent variables (temperature, salinity, HAB 

concentration, etc.) were then standardized to facilitate ease of comparison. A suite of models 

was then created for each of the dependent oyster variables, and the most supported model was 

selected and used for analysis.   

   

Model Development: Independent Variables 

Independent variables considered during model development included site, placement 

location, temperature, salinity, pH, DO, Chl a, A. monilatum concentration, and M. polykrikoides 

concentration. All models utilized water quality data based on the measurements collected using 

the hand-held YSI concurrent with oyster monitoring (e.g. for mortality and shell height 

quantification). The relationship between intertidal YSI data and subtidal YSI data was modeled 

and used to generate predicted values for intertidal water quality data, allowing YSI and sonde 

data to be compared directly. The resultant water quality data represent data collected at the time 

of oyster monitoring/sampling. Because HAB concentrations were never quantified more than 
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once a week, all HAB data used in the model were taken at the time of oyster sampling. Models 

utilized HAB cell concentrations determined via qPCR.  

The units of all continuous covariates (temperature, salinity, pH, DO, Chl a, A. 

monilatum concentration, and M. polykrikoides concentration) were standardized to place all 

explanatory variables on the same scale to facilitate comparisons. The independent variables 

were investigated for collinearity by comparing the calculated variance inflation factors (VIFs). 

In cases of collinearity between two independent variables, one of the two variables was 

removed from the relevant models.  

The independent variables were grouped into three different categories. The first category 

was referred to as “HAB factors,” or factors directly related to HABs (A. monilatum, M. 

polykrikoides, and Chl a concentrations). The second category was referred to as “non-HAB 

factors,” or factors not directly related to HABs (temperature, salinity, pH, and DO). The final 

category was labeled “location factors,” or factors related to oyster aquaculture methods (site and 

placement location). The intertidal and subtidal bottom cage placement location data were used 

from all sites both years. However, surface/floating cage data were not included in the models, as 

surface cages were only included at one site, and only in 2018, when blooms were not observed 

at any of the experimental sites.  

 

Model Development: Dependent Variables  

Dependent variables investigated using modeling included 2017 and 2018 interval 

mortality, cumulative mortality, shell height, and growth rate data, as well as 2017 CI data. CI 

data from 2018 were not modeled due to low sample size. Histopathology data were not included 

in statistical analyses due to the low prevalence of pathogens and pathology in both summers.  
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Due to notable differences in water quality between the two summers, including HAB 

occurrence, data from 2017 and 2018 were modeled separately. As mentioned above, the three 

pseudo-replicate bags were used for statistical comparisons between treatments within each year 

for the graphs. However, the models were created using a more rigorous definition of replication, 

pooling the three bags within a placement location (intertidal and subtidal) and considering the 

cage itself as the unit of replication. After a cursory investigation of the raw 2017 data revealed 

only an approximately 15 mm difference in oyster shell height between the two deployments by 

the time of bloom onset, data from the two deployments were combined for the 2017 statistical 

analyses. Thus, oyster size class was not evaluated as an independent variable in either year.  

Diagnostic plots (Normal Q-Q and Residuals vs. Fitted) were used to assess the variance 

estimation and the assumption of normality for each of the dependent oyster variables in 2017 

and 2018. When appropriate, the data sets were log transformed to make the data appear more 

normal. For data sets that benefited from log transformation but contained zeros, a constant of 

0.1 was added to all values in the data set to permit log transformation. Preliminary model 

exploration for 2017 oyster data supported the assumption of normality for the cumulative 

mortality, shell height, and growth rate data sets. Diagnostic plots supported the assumption of 

log normality for the 2017 interval mortality and CI data sets, and these data were log 

transformed. Preliminary model exploration for 2018 oyster data supported the assumption of 

normality for the shell height and growth rate data sets. Diagnostic plots supported the 

assumption of log normality for the 2018 interval mortality and cumulative mortality data sets, 

and these data were log transformed.  
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Model Development 

The purpose of this thesis was to investigate the impacts of HABs in the context of oyster 

aquaculture. To address the biological hypothesis that oysters would be impacted by HAB 

factors and location factors, a suite of models was created for each of the five 2017 dependent 

oyster variables (interval mortality, cumulative mortality, shell height, growth rate, and CI) 

considered and for each of the four 2018 dependent oyster variables (interval mortality, 

cumulative mortality, shell height, and growth rate) considered. Each model in the suite of 

models contained a different combination of the independent variables. Due to the fact that the 

potential impacts of HABs were being assessed within the context of oyster aquaculture, the two 

location factors (site and placement location) were included in all models created for each of the 

2017 and 2018 dependent oyster variables.  

In 2017, a suite of four models was created for each of the five dependent oyster 

variables considered. In addition to the location factors, the first model contained non-HAB 

factors and HAB factors. The second model contained the location factors and only the non-

HAB factors. The third model contained the location factors, the non-HAB factors, and added 

Chl a back in; this model was included in case Chl a did not serve as an effective a proxy for 

HAB concentration as anticipated. Finally, the fourth model contained the location factors and 

the HAB factors only. For 2017 data, the suite of models created for each of the five dependent 

oyster variables (interval mortality, cumulative mortality, shell height, growth rate, and CI) were 

as follows: 

 

1. Dependent oyster variable ~ location factors + non-HAB factors + HAB factors 

2. Dependent oyster variable ~ location factors + non-HAB factors 

3. Dependent oyster variable ~ location factors + non-HAB factors + Chl a 

4. Dependent oyster variable ~ location factors + HAB factors 
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For 2018 data, the suite of models created for each of the four dependent oyster variables 

(interval mortality, cumulative mortality, shell height, and growth rate) did not include 

concentrations of A. monilatum and M. polykrikoides, as blooms were not detected at any of the 

sites. Instead the suite of models sought to evaluate in particular the importance of Chl a in 

relation to the other water quality parameters and contained the following two models: 

 

1. Dependent oyster variable ~ location factors + non-HAB factors + Chl a 

2. Dependent oyster variable ~ location factors + non-HAB factors 

 

 

Model Selection 

Fits of the potential models within each suite were evaluated based on diagnostic plots, 

including the Normal Q-Q and Residuals vs. Fitted. Model selection was achieved using 

Akaike’s Information Criterion (AIC), which balances model complexity with model fit (Akaike 

1973). The model with the lowest ΔAIC is that which receives the most empirical support. Based 

on these investigations, one model was selected to evaluate each of the dependent oyster 

variables from 2017 and 2018. A linear regression table was then generated for each selected 

model, and the relative explanatory power of each independent variable included in the model 

was investigated based on its parameter estimate, standard error, and the traditional measure of 

statistical significance, the p-value.  

When operating under the AIC mode of inference, the model with the most empirical 

support – i.e. the lowest ΔAIC – in a suite of models is that which retains the covariates that best 

explain the response variable, compared to the other models in the suite. Thus, the parameters 
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retained in the selected model are thought to be associated to some degree with the response 

variable. However, when considering the output table of the selected model, it is also important 

to consider the magnitude of the parameter estimate for each covariate compared to that of its 

standard error. A high standard error in relation to a parameter estimate can indicate that the 

estimate is a less accurate representation of the true population mean. High standard error can be 

caused by low sample size. In contrast, a parameter estimate that is at least one order of 

magnitude greater than its corresponding standard error indicates that the independent variable in 

question has a strong relationship with the dependent variable being investigated by the model. 

The direction of the estimate (positive or negative) indicates whether the relationship between 

the independent and dependent variables is direct or inverse.  

Consider an example linear regression table generated for 2017 interval oyster mortality 

data, in which site, placement location, temperature, salinity, pH, and DO are evaluated as 

predictor variables (Table 2). The table provides a parameter estimate for each independent 

variable included in the model and the standard error for that estimate. Oyster mortality was 

inversely related to pH, meaning that mortality was higher at lower pH values. Two of the 

independent variables considered in these models are categorical variables with different levels. 

First, site is a categorical variable with multiple levels. In 2017, site contained three different 

levels – the Perrin River (PR, in the figure), York River (YR, in the figure), and Ware River 

sites; in 2018, site contains four levels – the Perrin River, York River, Ware River, and Big 

Island sites. In both years, placement location was a categorical variable containing two levels – 

intertidal and subtidal (ST, in the figure). In a linear regression table, the first row is the 

“intercept,” which collapses the first level of each categorical variable. For all models evaluated 

in this thesis, the intercept represented the intertidal placement location and the Ware site, the 
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reference location where blooms of M. polykrikoides and A. monilatum have not typically been 

reported. Thus, the direction of all subsequent parameter estimates for all categorical variables 

represents a comparison with the intercept – i.e. the intertidal placement location at the Ware 

River site. For example, Table 2 data indicate oyster mortality was higher in the York River 

compared to the Ware River, and mortality was higher for oysters placed in subtidal locations 

compared to oysters placed in intertidal locations. 

To simplify evaluation of the model outputs, the traditional measure of significance, the 

p-value, was also considered for each independent variable. The significance codes for the 

p-values in the linear regression tables were as follows: 

 

p < 0.001  *** 

p < 0.01    ** 

p < 0.05    * 
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RESULTS 

 

 Considering 2017 and 2018 data were both graphed and modeled independently, the 

results summarize 2017 data first, followed by 2018 data.  

 

2017 

Water Quality Monitoring 

 Based on summary statistics of water quality data collected near-continuously next to the 

subtidal cages in the summer of 2017, average temperature was slightly lower at the York River 

site compared to the Perrin and Ware River sites, while average salinity was the lowest at the 

Ware River site (Table 3). Average pH, DO, and Chl a levels were similar across sites in 2017. 

The highest average DO, and the widest range of DO measurements, were observed at the York 

River site, the highest energy site. Average subtidal Chl a levels were highest at the Ware River 

site (12.9 µg L-1), the reference location. However, the ranges of Chl a values were much wider, 

and the maxima were much higher, at the Perrin and York River sites. Chl a levels ranged from 

0.3-461.9 µg L-1 next to the subtidal cages in the Perrin River, from 0.2-483.9 µg L-1 next to the 

subtidal cages in the York River, and from 0.1-106.7 µg L-1 next to the subtidal cages in the 

Ware River. 

  

HAB Species Sampling  

All water samples collected in 2017 were analyzed both visually and via qPCR; however, 

all cell concentration data reported in this section were quantified by qPCR. Based on an analysis 

of correlation using Pearson’s correlation coefficient, neither M. polykrikoides nor A. monilatum 

concentrations, quantified by qPCR, were strongly correlated with Chl a. 
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At the Perrin River site, the low-energy HAB-endemic location, the maximum M. 

polykrikoides concentration detected from weekly HAB sampling next to the intertidal cages was 

421 cells mL-1 on 7/31/17. The maximum concentration measured next to the subtidal cages was 

431 cells mL-1 on 8/15/17 (Fig. 4A). In this thesis, a bloom was defined as a cell concentration 

≥500 cells mL-1 of the relevant species. A bloom period at a particular site was defined as the 

period between which the first and last samples containing ≥500 cells mL-1 were collected during 

the sampling season. Based on these definitions, when intertidal and subtidal HAB collection 

data were pooled, a M. polykrikoides bloom was not detected at the Perrin River site in 2017. 

The maximum A. monilatum concentration detected from weekly HAB sampling next to 

the intertidal cages at the Perrin River site was 319 cells mL-1 on 8/15/17. The maximum 

concentration measured next to the subtidal cages was 3,425 cells mL-1 on 8/28/17 (Fig. 4A). 

When intertidal and subtidal HAB collection data were pooled, an A. monilatum bloom was 

detected on only one day, 8/28/17, at the Perrin River site in 2017.  

Samples from the Perrin River site never contained >25 cells mL-1 of K. veneficum, and 

P. minimum concentrations remained below 10 cells mL-1, except on 10/4/17, when both the 

intertidal and subtidal samples contained between 300-400 cells mL-1 of P. minimum.  

At the York River site, the high-energy HAB-endemic location, the maximum M. 

polykrikoides concentration detected from weekly HAB sampling next to the intertidal cages was 

375 cells mL-1 on 8/8/17. The maximum concentration measured next to the subtidal cages was 

16,842 cells mL-1 on 7/27/17 (Fig. 4B). When intertidal and subtidal HAB collection data were 

pooled, a M. polykrikoides bloom was detected on only one day, 7/27/17, at the York River site. 

However, a sample collected on 8/8/17 in the channel of the York River offshore of the sampling 

site contained 116,580 M. polykrikoides cells mL-1 (Reece et al., unpublished data). 
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The maximum A. monilatum concentration detected from weekly HAB sampling next to 

the intertidal cages at the York River site was 92,529 cells mL-1 on 8/22/17. The maximum 

concentration measured next to the subtidal cages was 69,051 cells mL-1 on 8/22/17 (Fig. 4B). 

When intertidal and subtidal HAB collection data were pooled, an A. monilatum bloom was 

detected from 8/22/17-9/4/17, a period of approximately two weeks at the York River site.  

Concentrations of K. veneficum never exceeded 1 cell mL-1 in samples collected at the 

York River site in 2017, and P. minimum concentrations remained below 70 cells mL-1. 

Blooms of M. polykrikoides were not detected at the Ware River site, the intermediate-

energy reference location, in 2017. Margalefidinium polykrikoides concentrations detected from 

weekly HAB sampling next to the intertidal cages never exceeded 1 cell mL-1. The maximum 

concentration measured next to the subtidal cages was 4 cells mL-1  on 7/24/17 (Fig. 4C).  

Blooms of A. monilatum also were not detected at the Ware River site in 2017. The 

maximum A. monilatum concentration detected from weekly HAB sampling next to the intertidal 

cages was 36 cells mL-1 on 8/23/17. The maximum concentration measured next to the subtidal 

cages was 65 cells mL-1 on 9/5/17 (Fig. 4C).  

Concentrations of K. veneficum never exceeded 60 cells mL-1 in samples from the Ware 

River site, and P. minimum concentrations never exceeded 70 cells mL-1. 

 

Interval Oyster Mortality 

Based on the graphs of the interval oyster mortality data for the June and July 

deployments in 2017, interval mortality (calculated as the ratio of dead oysters to the total 

number of oysters in the bag at the time of sampling) never exceeded 0.04, or 4% (Figs. 5, 6). 
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Model selection for 2017 interval mortality data favored the generalized linear model 

containing site (Perrin River, York River, and Ware River), placement location (intertidal and 

subtidal), temperature, salinity, pH, and DO (Table 4). Based on this model, interval oyster 

mortality was significantly higher at the Perrin River site, compared to the Ware River site, the 

reference location (p<0.05) (Table 5). A significant, direct relationship was also found between 

interval mortality and temperature (p<0.001). 

 

Cumulative Oyster Mortality  

Based on the graphs of the cumulative oyster mortality data for the June and July 

deployments in 2017, cumulative mortality (calculated as the ratio of the total number of oysters 

that had died up to the time of sampling to the original number of oysters deployed in the bag) 

never exceeded 0.12, or 12% (Figs. 7, 8). Cumulative oyster mortality was relatively higher at 

the two HAB-endemic sites compared to cumulative mortality in the Ware River, the reference 

location. Mortality of intertidal oysters deployed in the June was significantly higher in the 

Perrin River compared to mortality in the Ware River intertidal in early and late August (Fig. 7). 

(As described in the Methods, significance for the graphs was determined by the 95% confidence 

intervals, which were calculated using the three pseudo-replicate bags at each placement 

location.) Mortality of intertidal and subtidal oysters deployed in June at both HAB-endemic 

sites was significantly higher than intertidal mortality in the Ware River in early and late 

September (Fig. 7). Mortality of intertidal oysters deployed in July in the York River was 

significantly higher than mortality of intertidal oysters in the Ware River in late September (Fig. 

8). 
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Model selection for 2017 cumulative mortality data favored the generalized linear model 

containing site (Perrin River, York River, and Ware River), placement location (intertidal and 

subtidal), temperature, salinity, pH, and DO (Table 4). Based on this model, cumulative oyster 

mortality was significantly higher at the Perrin River site, compared to the Ware River site, the 

reference location (p<0.001) (Table 5). Cumulative mortality was significantly lower for oysters 

grown subtidally compared to those grown intertidally (p<0.05). A significant, inverse 

relationship was also found between cumulative mortality and temperature (p<0.001). 

 

Oyster Shell Height 

Based on the graphs of the oyster shell height data for the June and July deployments in 

2017, by the end of the sampling season, the oysters deployed one month later reached similar 

sizes (~50-60mm) as the oysters deployed earlier in the summer (~55-65 mm) (Figs. 9, 10). For 

oysters deployed in June 2017, shell height was significantly larger for oysters deployed 

intertidally at the Ware River site, the reference location, compared to those deployed in the two 

HAB-endemic locations, in early and late August (Fig. 9). For oysters deployed in July 2017, 

shell height was larger for oysters deployed both intertidally and subtidally at the Ware River 

site, compared to oysters deployed at both placement locations at the two HAB-endemic sites, 

beginning in early August and continuing throughout the rest of the sampling season (Fig. 10).  

Model selection for 2017 shell height data favored the generalized linear model 

containing site (Perrin River, York River, and Ware River), placement location (intertidal and 

subtidal), temperature, salinity, pH, and DO (Table 4). Because oysters from the two 

deployments were similar heights around the time peak concentrations of M. polykrikoides and 

A. monilatum occurred at the Perrin and York River sites, shell height data for the two 
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deployments at all sites were pooled for modeling. Based on this model, oyster shell height was 

significantly smaller at the York River site, compared to the Ware River site, the reference 

location (p<0.05) (Table 5). A significant, inverse relationship was found between shell height 

and temperature (p<0.001). 

 

Oyster Growth Rate 

Based on the graphs of the oyster growth rate data for the June and July deployments in 

2017, intertidal and subtidal growth rate was significantly slower at the York River site in early 

August, following the peak concentration of M. polykrikoides (16,842 cells mL-1 next to the 

subtidal cage on 7/27/17) at that site, compared to both placement locations at the Ware River 

site, where blooms of M. polykrikoides and A. monilatum were not detected (Figs. 11, 12).  

Model selection for 2017 growth rate data favored the generalized linear model 

containing site (Perrin River, York River, and Ware River), placement location (intertidal and 

subtidal), temperature, salinity, pH, DO, Chl a, M. polykrikoides concentration, and A. 

monilatum concentration (Table 4). Based on this model, oyster growth rate was significantly 

faster at higher temperatures (p<0.01) and at lower DOs, (p<0.05) (Table 5). A significant, direct 

relationship was found between oyster growth rate and M. polykrikoides concentration (p<0.01). 

 

Oyster Condition Index 

Based on the graphs of CI data for the June and July deployments in 2017, CI was 

significantly higher for oysters grown intertidally at the York River site, the high-energy HAB-

endemic location, compared to those grown subtidally at the same site and at both placement 

locations at the other two sites, in late August (Figs. 13, 14).  
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Model selection for 2017 condition index data favored the generalized linear model 

containing site (Perrin River, York River, and Ware River), placement location (intertidal and 

subtidal), temperature, salinity, pH, DO, and Chl a (Table 4). Based on this model, CI was 

significantly higher at higher temperatures (p<0.01) (Table 5).  

 

Oyster Histopathology           

Based on histology data, oysters did not show considerable adverse health impacts in 

2017, and as such, these data were not graphed or modeled. Of the oysters collected throughout 

the summer of 2017 (n=126), no oysters displayed notable gill erosion or significant loss of 

epithelial structure, and <1% exhibited hemocytosis in the gills or mantle. In terms of pathogens, 

7.9% of oysters contained an unidentified microsporidian species, commonly associated with 

erosion, in the gut epithelium. No H. nelsoni infections were identified, and only 2.4% of oysters 

were infected with P. marinus cells. All P. marinus infections (n=3) were rare, consisting of 

<10 cells. No other significant pathology or pathogens were observed in oysters collected in 

2017. 

  

 

2018 

Water Quality Monitoring 

 Based on summary statistics of water quality data collected near-continuously next to the 

subtidal cages in the summer of 2018, average temperature was slightly lower at the York River 

and Big Island sites compared to the Perrin and Ware River sites (Table 6). Average salinity was 

lowest at the Ware River site, the reference location, and the minimum salinity was also lowest at 
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this site (7.2) compared to the minima at the other sites (minima ranged from 9.1-11.8). Near-

continuous salinity data collected next to the subtidal cage at the Ware River site in 2018 

indicated a rapid decrease in salinity beginning on 7/25/17 and a gradual return to early-summer 

levels throughout the rest of the summer (Fig. 15). Average pH and DO were similar across sites 

in 2018. The highest average DO, and the widest range of DO measurements, were observed at 

the York River site, the highest energy location. Average subtidal Chl a was highest at the Ware 

River site (15.1 µg L-1), the reference location, and concentrations ranged from 1.9-68.1 µg L-1. 

The average Chl a was similar at the Big Island site (9.5 µg L-1), and concentrations ranged from 

1.2-72.8 µg L-1. The Chl a range was widest in the York River, with concentrations ranging from 

0.1-115.1 µg L-1. Average Chl a was lowest in the Perrin River (8.9 µg L-1), and the range was 

the narrowest, from 7.8-10.2 µg L-1.   

  

HAB Species Sampling  

All water samples collected in 2018 were analyzed both visually and via qPCR; however, 

all cell concentration data reported in this section were quantified by qPCR. 

At the Perrin River site, the low-energy HAB-endemic location, neither M. polykrikoides 

nor A. monilatum concentrations reached 1 cell mL-1 in water samples collected weekly next to 

the intertidal and subtidal cages in 2018 (Fig. 16A). Concentrations of K. veneficum were less 

than 500 cells mL-1 in all samples, except on 7/8/18, when the intertidal and subtidal samples 

contained between 900-1000 K. veneficum cells mL-1. Concentrations of P. minimum were less 

than 500 cells mL-1 in all samples collected intertidally, and below 300 cells mL-1 in all samples 

collected subtidally. 
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At the York River site, the high-energy HAB-endemic location, neither M. polykrikoides 

nor A. monilatum concentrations reached 1 cell mL-1 in water samples collected weekly next to 

the intertidal and subtidal cages in 2018 (Fig. 16B). Concentrations of K. veneficum were less 

than 70 cells mL-1 in all samples, except on 8/13/18, when the intertidal and subtidal samples 

both contained between 90-200 K. veneficum cells mL-1. Concentrations of P. minimum were less 

than 50 cells mL-1 in all samples collected intertidally and subtidally. 

At the Big Island site, the intermediate-energy HAB-endemic location, neither M. 

polykrikoides nor A. monilatum concentrations reached 1 cell mL-1 in water samples collected 

weekly next to the floating, intertidal, or subtidal cages in 2018 (Fig. 16C). Concentrations of K. 

veneficum peaked at 185 cells mL-1 next to the floating cages on 9/6/18, but otherwise 

concentrations were <100 cells mL-1. Concentrations of K. veneficum never exceeded 60 cells 

mL-1 in intertidal samples and remained below 300 cells mL-1 in subtidal samples. 

Concentrations of P. minimum were less than 200 cells mL-1  in all samples collected next to the 

floating cages. Concentrations of P. minimum were less than 100 cells mL-1 in all samples 

collected intertidally, and the maximum concentration quantified in a subtidal sample was 133 P. 

minimum cells mL-1 on 10/1/18. 

At the Ware River site, the intermediate-energy reference location, neither M. 

polykrikoides nor A. monilatum concentrations reached 1 cell mL-1 in water samples collected 

weekly next to the intertidal or subtidal cages in 2018 (Fig. 16D). Concentrations of K. 

veneficum peaked in intertidal samples at 852 cells mL-1 on 9/27/18, but otherwise 

concentrations were <300 cells mL-1. Concentrations of K. veneficum peaked in subtidal samples 

at 758 cells mL-1 on 9/27/18, but otherwise remained <600 cells mL-1. Concentrations of P. 

minimum were <300 cells mL-1 in intertidal and subtidal samples.  
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Interval Oyster Mortality 

Based on the graph of the interval oyster mortality data from 2018, interval mortality 

never exceeded 0.12, or 12% (Fig. 17). Interval oyster mortality was highest for oysters grown 

intertidally at the Ware River site, the reference location, compared to the other placement 

locations and sites. This difference was significant, based on the 95% confidence intervals, at the 

sampling time in mid-July, preceding the rapid drop in salinity in the Ware River beginning on 

7/25/18 (Fig. 15).  

Model selection for 2018 interval mortality data favored the generalized linear model 

containing site (Perrin River, York River, Big Island, and Ware River), placement location 

(intertidal and subtidal), temperature, salinity, pH, and DO (Table 7). As stated in the Methods 

section, floating cage data were not included in the modeling, as these data were only collected at 

one site. Based on this model, interval oyster mortality was significantly lower at the Big Island 

site (p<0.05) and the Perrin River site (p<0.01), compared to the Ware River site, the reference 

location (Table 8). Interval mortality was significantly lower for oysters grown subtidally 

compared to those grown intertidally (p<0.01). A significant, inverse relationship was also found 

between interval mortality and DO (p<0.01). 

 

Cumulative Oyster Mortality  

Based on the graph of the cumulative oyster mortality data from 2018, cumulative 

mortality remained <0.15, or 15%, throughout the sampling season at all sites and placement 

locations other than the Ware River intertidal (Fig. 18). At the mid-July sampling time preceding 

the rapid drop in salinity in the Ware River beginning on 7/25/18 (Fig. 15), cumulative mortality 

was significantly higher for oysters grown intertidally at the Ware River site, relative to the other 
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placement locations at the Ware and other sites. Cumulative mortality continued to be highest at 

this location throughout the rest of the sampling season, reaching 0.26, or 26%, at the end of the 

sampling season. 

Model selection for 2018 cumulative mortality data favored the generalized linear model 

containing site (Perrin River, York River, Big Island, and Ware River), placement location 

(intertidal and subtidal), temperature, salinity, pH, and DO (Table 7). Based on this model, 

cumulative oyster mortality was significantly lower at the Big Island site (p<0.01), the York 

River site (p<0.001), and the Perrin River site (p<0.001), compared to the Ware River site, the 

reference location (Table 8). Cumulative mortality was significantly lower for oysters grown 

subtidally compared to those grown intertidally (p<0.001). A significant, inverse relationship 

was also found between cumulative mortality and temperature (p<0.05). 

 

Shell Height 

Based on the graph of the oyster shell height data from 2018, floating cage oysters were 

significantly larger than oysters at the other placement locations and sites beginning in mid-

August and continuing throughout the majority of the sampling season (Fig. 19).  

Model selection for 2018 shell height data favored the generalized linear model 

containing site (Perrin River, York River, Big Island, and Ware River), placement location 

(intertidal and subtidal), temperature, salinity, pH, and DO (Table 7). Based on this model, 

oyster shell height was significantly smaller at the York River site, compared to the Ware River 

site, the reference location (p<0.05) (Table 8). A significant, inverse relationship was also found 

between shell height and both temperature (p<0.001) and DO (p<0.001). 
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Oyster Growth Rate 

Few patterns are apparent in the graph of oyster growth rate data from 2018 (Fig. 20). 

However, in early August, floating cage oysters grew significantly faster than oysters deployed 

at all other placement locations and sites, except for the York River subtidal.  

Model selection for 2018 growth rate data favored the generalized linear model 

containing site (Perrin River, York River, Big Island, and Ware River), placement location 

(intertidal and subtidal), temperature, salinity, pH, and DO (Table 7). However, based on the 

p-values, none of the independent variables were significantly related to oyster growth rate 

(Table 8).  

 

Oyster Condition Index 

Based on the graph of oyster CI data from 2018, CI was significantly higher for oysters 

grown intertidally at the York River site, the high-energy HAB-endemic location, at the late 

August sampling point (Fig. 21). 

As stated in the Methods, CI data from 2018 were not modeled due to low sample size. 

  

Oyster Histopathology           

Based on histology data, oysters did not show considerable adverse health impacts in 

2018, and as such, these data were not graphed or modeled. Of the oysters collected throughout 

the summer of 2018 (n=81), 1.2% displayed notable gill erosion, and 4.9% exhibited 

hemocytosis in the gills or mantle. In terms of pathogens, 2.5% of oysters contained an 

unidentified microsporidian species in the gut epithelium. No H. nelsoni or P. marinus infections 
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were identified, and no other significant pathology or pathogens were observed in oysters 

collected in 2018. 
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DISCUSSION 

 

Reports of HABs and their impacts are expanding globally (Hallegraeff 1993, 2010; 

Glibert et al. 2014), including in the Chesapeake Bay (Li et al. 2015). Margalefidinium 

polykrikoides and Alexandrium monilatum form sequential blooms most summers in the lower 

Chesapeake Bay, and both species are generally increasing in terms of bloom density, 

distribution, and duration in the region (Marshall et al. 2005; Marshall et al. 2008; Marshall & 

Egerton 2009, 2013; Dauer et al. 2010; Scott & Reece 2018). Both species have been associated 

with mortality and pathology in finfish and shellfish, including oysters, in laboratory settings 

(Gobler et al. 2008, Harding et al. 2009, May et al. 2010, Pease 2016, Reece et al. 2016), and 

several studies suggest that blooms of M. polykrikoides and A. monilatum may be associated with 

adverse impacts to shellfish cultured on the east coast of the U.S. (Pease 2016, 2016 NOAA 

Event Response study by Reece et al., unpublished data; Griffith et al. 2018). However, the 

potential impacts of sequential blooms of M. polykrikoides and A. monilatum to shellfish in the 

lower Chesapeake Bay are not well understood, particularly in the context of the oyster 

aquaculture industry. 

The two main objectives of this study were to 1) investigate M. polykrikoides and A. 

monilatum as a potential threat to cultured oysters in the lower Chesapeake Bay, and 2) inform 

mitigation strategies to minimize HAB impacts based on current grow-out methods used by local 

oyster culturists. To address the first objective, oysters were grown at HAB-endemic sites 

characterized by high and low energies in 2017 in the York and the Perrin Rivers, respectively. 

In 2018, the intermediate-energy HAB-endemic site near Big Island was added. In both years, 

the intermediate-energy site in the Ware River was used as a reference; the HABs that were the 
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focus of this study are not typically observed at that site in the Ware River. Oysters were grown 

both intertidally and subtidally at all sites in summers 2017 and 2018 and were also grown in 

cages floating just below the surface at the Big Island site in 2018. Water quality parameters 

were monitored, including cell concentrations of M. polykrikoides, A. monilatum, and two other 

local HAB species known to negatively impact oysters, Karlodinium veneficum and 

Prorocentrum minimum, along with oyster health and survival.  

Blooms of M. polykrikoides and A. monilatum were only detected in 2017, and then only 

at the HAB-endemic sites. Margalefidinium polykrikoides was not detected at bloom levels (i.e. 

<500 cells mL-1) at the low-energy site in the Perrin River, and a bloom concentration of A. 

monilatum (i.e. 3,425 cells mL-1) was detected on only one day. Higher cell concentrations were 

observed at the high-energy site in the York River with a maximum M. polykrikoides 

concentration of 16,842 cells mL-1 and a maximum A. monilatum concentration of 

92,529 cells mL-1. A bloom concentration of M. polykrikoides was detected on only one day at 

the York River site, whereas A. monilatum cell concentrations were above bloom levels for 

approximately two weeks. However, with the patchiness of blooms and intermittent water 

sampling that may have missed some bloom peaks, it is challenging to determine how long 

during those two weeks oysters were actually exposed to HAB cells. It was not possible to use 

the Chl a data collected near-continuously at all sites to approximate the timing of the blooms, as 

no correlation was found between these data and concentrations of either M. polykrikoides or A. 

monilatum.  

The lack of correlation between Chl a and either M. polykrikoides or A. monilatum may 

have been related to limited water sampling during blooms and/or the biology of the HAB 

species. Compared to the Chl a data, which was collected every 15 min at all sites, water samples 
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were never collected more than once a week in 2017. This relatively small number of water 

samples containing non-zero HAB cell concentrations provided limited data with which to 

accurately characterize a potential relationship with Chl a. Another potential reason for the lack 

of correlation is the mode of nutrient acquisition utilized by the algal cells at different times. 

Many dinoflagellate species are mixotrophic (Jeong et al. 2004, Burkholder et al. 2008, 

Anderson et al. 2012), and at times when algal cells are relying more on heterotrophy, Chl a may 

be a less reliable proxy for cell density.  

Based on modeling of the 2017 data, oyster health and survival were impacted more by 

factors not directly related to HABs, specifically location factors (site and placement location), 

temperature, and DO. Overall mortality was never high (interval mortality <4% and cumulative 

mortality <12%) compared to mortality levels that are often observed in association with other 

oyster stressors, such as the oyster parasite P. marinus, which was reported in a study by Ford & 

Smolowitz (2007) to be associated with 60-80% mortality of field animals. These results are 

similar to those found by Griffith et al. (2018), when two size classes of cultured diploid oysters 

(approximately 5 and 32 mm) were exposed to a 1-2 week bloom of M. polykrikoides 

>1.5×104 cells mL-1 in eastern Long Island, NY. In contrast to first-year scallops (approximately 

6 mm), neither size class of oysters experienced a significant increase in mortality following 

exposure to the bloom. 

Although overall oyster mortality levels were not high in 2017, the relative differences 

between the different sites and treatments are still informative. Cumulative mortality was 

significantly higher for oysters grown intertidally. Intertidal oysters may experience stress related 

to fluctuating environmental conditions, including intermittent aerial exposure, limited feeding 

times, and high summer temperatures (Roegner & Mann 1995, Bishop & Peterson 2006). It is 
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unknown whether the physiological stress related to intertidal planting may be further 

compounded during HAB-intensive years. 

Impacts of M. polykrikoides and A. monilatum on oysters may differ based on the cell 

concentrations of the blooms in different years. Cell concentration data collected by the Reece 

Lab at VIMS in the lower Chesapeake Bay in previous years allows maximum cell 

concentrations and bloom dates to be compared between years; these data are documented in 

annual reports submitted to VDH from 2007-2017 and deposited in the CDC HAB Database. 

The findings in this thesis indicate that M. polykrikoides and A. monilatum had minimal adverse 

impacts on experimental oysters in 2017. However, M. polykrikoides and A. monilatum 

concentrations never exceeded 431 cells mL-1  and 3,425 cells mL-1, respectively, at the Perrin 

River site, in water samples collected for this study. In 2015, when VIMS scientists received an 

anecdotal report of >50% mortality of intertidal oysters at the Perrin River site, the maximum 

concentration of A. monilatum detected in a water sample at that site was 25,006 cells mL-1, and 

a water sample collected at the mouth of the Perrin River contained 75,600 A. monilatum cells 

mL-1. No bloom of M. polykrikoides was detected in the Perrin River in 2015. In 2016, when the 

NOAA-funded Event Response study found slightly elevated mortality of intertidal oysters 

(13.6%) grown at the Perrin River site compared to other depths and sites (2016 NOAA Event 

Response study by Reece et al., unpublished data), no M. polykrikoides bloom was detected. 

However, the maximum A. monilatum concentration measured at that site in 2016 was 

7,772 cells mL-1, over twice as high as the maximum concentration detected in 2017. In 2017, 

the maximum concentrations of M. polykrikoides and A. monilatum detected at the York River 

site were 16,842 cells mL-1 and 92,529 cells mL-1, respectively. In 2015, the maximum M. 

polykrikoides concentration detected in the York River was 22,600 cells mL-1, and the maximum 
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concentration of A. monilatum detected was 220,100 cells mL-1. When interpreting the biological 

impacts of M. polykrikoides and A. monilatum on oyster health, it is important to consider the 

cell concentrations of the two species, as well as the bloom durations and locations. It is possible, 

but unknown whether, the minimal oyster health impacts seen in 2017 were related to lower 

bloom concentrations. 

Characterizing the toxic impacts of HABs to oysters can be more challenging in the field 

compared to in controlled laboratory experiments. In laboratory bioassays, oysters can be 

exposed to specific cell concentrations for specific time periods. In contrast, natural blooms tend 

to be patchy and fluctuate in terms of cell density. This may be especially true in high-energy 

systems, such as the York River, where fast-flowing water can contribute to the dispersal of algal 

cells, reducing oyster exposure to HAB species. Blooms may occur at one location for hours, 

days, or weeks, making high-frequency monitoring of cell concentrations challenging. Previous 

research also suggests both M. polykrikoides and A. monilatum vertically migrate in the water 

column (Park et al. 2001, Pease 2016, Griffith et al. 2018), which could impact the time oysters 

deployed at the surface and at depth are exposed to HAB cells. Oyster feeding behavior is 

another important consideration when evaluating HAB impacts. Previous laboratory studies have 

reported feeding inhibition of oysters in the presence of toxigenic algal species (Hégaret et al. 

2007), including A. monilatum (May et al. 2010). Feeding inhibition could induce respiratory and 

oxidative stress; however, it could also reduce oyster exposure to toxins produced by HABs. 

Future field studies might collect oyster samples for the quantification of GDA, the toxin 

produced by A. monilatum, to help characterize oyster exposure to A. monilatum and its toxin. 

It is possible there is a time lag between the occurrence of HABs and the observation of 

toxic impacts in oysters. In this study, measurements of the oyster dependent variables (e.g. 
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mortality, growth rate, and CI) were modeled with water quality variables (e.g. temperature, 

salinity, and HAB cell concentrations) collected at the time of oyster sampling. Thus, the models 

evaluated the relationship between oyster health and survival and concurrent measures of water 

quality. This method of modeling might fail to capture delayed expression of adverse health 

impacts of HABs to oysters. For instance, modeling of the 2017 data indicated that growth rate 

was higher at higher concentrations of M. polykrikoides. However, the graphs of growth rate data 

show a significant decrease in oyster growth rate at the York River site in early August 2017, 

following the peak concentration of M. polykrikoides (16,842 cells mL-1 on 7/27/17). Griffith et 

al. (2018) found that cultured first-year oysters (diploid; approximately 5 mm) that survived a 

1-2 week bloom of M. polykrikoides of >1.5×104 cells mL-1 exhibited significantly slower 

growth rates following the bloom. However, second-year oysters (diploid; approximately 

32 mm) did not display reductions in growth. Future modeling efforts might explore the 

possibility of delayed impacts to triploid juvenile oysters following sequential exposure to both 

M. polykrikoides and A. monilatum by building in a lag between measures of water quality and 

those of oyster health and survival.  

The conclusions related to 2017 data may be somewhat limited given the relatively low 

number of water samples collected during the blooms. For example, in this study, the 2017 

oyster interval mortality data set is comprised of 160 observations; each observation represents 

the average interval mortality calculated for the three bags at a particular placement location at a 

particular site at a particular time. HAB concentration data were collected for each of these 

oyster observations. However, of the 160 water samples collected, only 58 samples (~36%) 

contained a non-zero concentration of A. monilatum, and only eight samples (5%) contained a 

bloom concentration of A. monilatum. The ratio of the number of bloom concentrations of both 
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M. polykrikoides and A. monilatum to the total number of observations is similar for the rest of 

the data sets, including cumulative oyster mortality, shell height, growth rate, and CI. These may 

be insufficient data with which to accurately characterize a relationship between two variables – 

i.e. blooms of M. polykrikoides and A. monilatum and metrics of oyster health. 

In 2018, blooms of neither M. polykrikoides nor A. monilatum were detected at any of the 

four sites, providing the opportunity to assess oyster health and survival during both a bloom and 

a non-bloom year. Heavy rainfall during summer 2018 resulted in high water flow in the York 

River region with retention times often less than 2 days (M. Brush, VIMS, pers. comm.). Salinity 

in summer 2018 was significantly lower (± 2 SD) than the long-term annual cycle, based on 

almost 30 years of water quality data (CBNERRS and Chesapeake Bay Program data analyzed 

by Brush). These environmental conditions likely did not favor bloom formation for M. 

polykrikoides and A. monilatum. These species typically bloom at higher salinities (i.e. >18-20) 

than those observed in the York River Region in 2018 (Kim et al. 2004, Juhl 2005). In addition, 

flushing rates may have exceeded the doubling times of the species, which is reported for 

Alexandrium species to be generally >48 hr (Juhl 2005, Brosnahan et al. 2015), inhibiting cells 

from reaching high enough concentrations to form blooms (Roelke & Pierce 2011).  

The results of the 2018 oyster data evaluations were similar to those of 2017. Based on 

modeling of 2018 data, oyster health and survival were most impacted by location factors (site 

and placement location), temperature, and DO. Just as in 2017, overall interval mortality was low 

(<12%) in 2018, especially when compared to typical mortality associated with other oyster 

stressors, such as the oyster parasite P. marinus. However, the relative differences between the 

different sites and treatments provide valuable information. As in 2017, oyster mortality was 

lower at the subtidal planting location compared to the intertidal planting location, suggesting 
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that intertidal planting may have incurred additional stress to oysters in 2018, in the absence of 

the two HABs of interest. Both interval and cumulative mortality were highest for intertidal 

oysters at the Ware River site in July 2018, compared to subtidal Ware River oysters and those at 

other depths and sites. Interval mortality at the Ware River intertidal peaked in Mid-July at just 

under 12%. Cumulative mortality at the Ware intertidal was significantly higher than that in 

other placement locations and sites beginning in Mid-July. This trend continued throughout the 

rest of the sampling season, and by the final sampling point in early October, cumulative 

mortality was >25%.  

The reason for the relatively higher oyster mortality in the Ware River intertidal is 

unknown, although it may have been related to salinity and/or HAB species other than M. 

polykrikoides and A. monilatum. Salinity alone can strongly influence oyster physiology; adult 

oysters are typically found in salinities between 10-30, but can tolerate salinities ranging from 

0-42 for limited periods of time (Gunter 1955). Physiologically, oysters function best at salinities 

from 15-18 and grow most efficiently at salinities from 12-28 (Newell 1985). The minimum 

salinity (7.2) at the 2017 sites was observed in the Ware River site compared to the other three 

sites (minima ranging from 9.1-11.8). Although these values fall within the range oysters can 

tolerate, research indicates rapid changes in salinity can cause significant effects (Hand & Stickle 

1977), and the adverse impacts of low salinity may be compounded by high temperatures (La 

Peyre et al. 2013). A rapid decrease in salinity occurred in the Ware River in 2018, dropping 

from >15 to <8 in one day (Fig. 15). However, this sharp drop began on 7/25/18, following the 

mid-July increase in oyster mortality. High-frequency water quality sampling (temperature, 

salinity, pH, DO) next to the subtidal cage did not detect harmful water quality conditions 

concurrent with the start of this mortality. However, a small spike in Chl a occurred in early July 
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(Fig. 16D), which could indicate higher levels of phytoplankton cells. Water sampling did not 

detect high concentrations of the other two HAB species, K. veneficum and P. minimum, 

quantified using qPCR; however, it is possible that water sampling failed to capture a spike in 

one of these two species, both of which can be harmful to shellfish (Luckenbach et al. 1993, 

Stoecker et al. 2008). It is possible HAB exposure or another unknown stressor may have 

initiated a mortality event, and that the rapid decrease in salinity later in July may have 

contributed to continued oyster mortality at the reference site in 2018; however, the actual cause 

of the high intertidal mortality at the Ware River site is unknown. 

In contrast to previous research, modeling of the 2017 and 2018 data did not indicate a 

significant relationship between oyster growth rate and placement location (intertidal vs. 

subtidal). Multiple studies have reported higher growth rates in subtidal oysters compared to 

intertidal oysters (Loosanoff 1932; Ingle & Dawson, Jr. 1952; Burrell, Jr. 1982; Roegner & 

Mann 1995; Bartol et al. 1999). The difference in growth observed in some studies may be 

associated with the longer feeding times of subtidal oysters compared to intertidal oysters, which 

spend part of each tidal cycle out of the water (Crosby et al. 1991). In addition, rapidly cycling 

DO, such as that experienced by intertidal animals, has been shown to temporarily retard the 

growth of juvenile oysters (Keppel et al. 2016). The growth of oysters may be negatively 

impacted by exposure to high temperatures (>30°C) (Rybovich et al. 2016), such as those 

experienced by oysters grown intertidally in the Chesapeake Bay in the summer. In accordance 

with these findings, modeling of the 2017 data indicated a significant relationship between oyster 

growth rate and both DO (p<0.05) and temperature (p<0.01). However, no significant 

relationships were found between 2018 oyster growth rates and any of the water quality 

parameters evaluated. 
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The second objective of this study was to make recommendations of culture strategies 

that minimize HAB impacts and maximize oyster production. The results of this study suggest 

neither M. polykrikoides nor A. monilatum had strong impacts on oyster health and survival in 

2017; however, location factors (site and placement location) were significantly associated with 

metrics of oyster health and survival in both 2017 and 2018. For instance, mortality was 

significantly lower for oysters grown subtidally compared to those grown intertidally in both 

summers (p<0.05). Based on these findings, intertidal deployment may be more stressful to 

oysters in the summer. Thus, subtidal placement might be beneficial to oysters cultured during 

stressful environmental conditions. Recommendations cannot be made regarding oyster size 

class with respect to HABs, as oysters were all similar sizes at the time of bloom onset in 2017. 

In addition, recommendations cannot be made about bottom vs. surface deployment with regard 

to HAB impacts, as blooms did not occur the year surface cages were included.   

More than one season of bloom data is likely necessary to characterize the relationship 

between cultured oysters and the HAB species M. polykrikoides and A. monilatum. Increasing 

the frequency of water sampling during the time of blooms would be beneficial in future studies. 

Higher-frequency HAB concentration data would help characterize the progression of the 

blooms and the length of time oysters were actually exposed to blooms. This may be particularly 

important at high-energy sites, such as the York River location, where the fast-flowing water 

promotes bloom dispersal and patchiness. From a statistical perspective, having larger sample 

sizes also increases the precision of parameter estimates, reduces the standard errors, and 

increases the likelihood of detecting a statistically significant relationship, if such a relationship 

exists. Thus, higher-frequency water sampling would provide more data to inform the potential 

relationship between the HAB species and oyster metrics of health and survival. Future studies 
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might also include a short-term vertical migration study of M. polykrikoides and A. monilatum, 

considering both species are reported to vertically migrate (Park et al. 2001, Pease 2016, Griffith 

et al. 2018). These data would also inform the amount of time oysters at different placement 

locations are exposed to M. polykrikoides and A. monilatum.   

More replication in terms of placement locations and study sites would likely be 

informative in future studies. For instance, studies might incorporate a floating cage treatment, in 

addition to bottom cages, at multiple sites to evaluate the potential relationship between oysters 

cultured at this placement location and exposure to M. polykrikoides and A. monilatum. This 

project attempted to investigate the impacts of M. polykrikoides and A. monilatum at sites with 

and without blooms of the two species, as well as at sites with a range of energetics. In 2017, the 

three study sites included the Perrin River at a low-energy HAB-endemic location, the York 

River at high-energy HAB-endemic location, and the Ware River at an intermediate-energy 

location where blooms of M. polykrikoides and A. monilatum had not been reported. Although 

the Ware River site provided a valuable reference in terms of HAB presence/absence, future 

studies might incorporate both a low- and a high-energy reference site to allow the HAB variable 

to be isolated from the water energy variable.  

In addition to exploring the potential for a lag time between HAB occurrence and oyster 

impacts via modeling, future studies might also monitor oyster metrics likely to respond more 

quickly to fluctuating HAB concentrations. For instance, oysters could be collected regularly for 

the quantification of GDA, the toxin produced by A. monilatum. Quantifying GDA would inform 

whether oysters bioaccumulate GDA, which is currently not well understood. Quantifying the 

toxin in oyster tissues would also give some indication of whether the oyster is actually feeding 

on the HAB cells. Considering that previous studies have reported feeding inhibition in the 
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presence of toxigenic algal species (Hégaret et al. 2007), including A. monilatum (May et al. 

2010), it is important to know not only how long oysters were exposed to HAB cells, but also 

whether the animals actually fed on the cells. Feeding inhibition may be particularly problematic 

for younger, smaller oysters as they likely have smaller energy reserves. Future studies might 

evaluate the impacts of M. polykrikoides and A. monilatum on smaller oysters by deploying spat 

oysters (~5 mm) at field sites immediately prior to blooms. 

 Results of this study provide valuable information about the factors that influence the 

health and survival of oysters cultured using different methods during a summer when M. 

polykrikoides and A. monilatum blooms occurred, as well as a summer when blooms did not 

occur. Based on 2017 and 2018 data, this study suggests that factors not directly related to 

HABs, including site, placement location, and other water quality parameters, were more 

significantly related to oyster health and survival. However, more than one year of bloom data is 

likely necessary to fully evaluate the impacts of M. polykrikoides and A. monilatum as potential 

stressors to the oyster aquaculture industry, particularly in light of the fact that blooms of both 

species are generally expanding in the Chesapeake Bay (Marshall et al. 2008; Marshall & 

Egerton 2009, 2013; Dauer et al. 2010), and the distribution and severity of HABs are expected 

to increase with climate change (Hallegraeff 2010). In addition, the increasing temperatures, 

increasing ocean acidity, and other factors associated with climate change may increase oyster 

stress and increase their susceptibility to additional stressors, such as HABs. For all of these 

reasons, it is necessary to continue gathering information on the impacts of M. polykrikoides and 

A. monilatum to the oyster aquaculture industry. 
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Table 1. Physical characteristics of oyster deployment sites in the Perrin River (HAB-endemic 

location; blue shading), York River (HAB-endemic location; orange shading), Big Island (HAB-

endemic location; purple shading), and the Ware River (reference location; grey shading). 

Oysters were grown at the Perrin, York, and Ware River sites in summers 2017 and 2018, and at 

the Big Island site in summer 2018 only.  

 
Parameter Perrin River York River Big Island Ware River 

Substrate Mud Sand Mud-Sand mix Mud-Sand mix 

Relative energy condition Low High Low-Moderate Moderate 

Relative flushing rate Intermediate Fast Fast Slow 
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Table 2. Example of a linear regression table generated for 2017 interval oyster mortality data, 

in which site (YR refers to the York River site, and PR refers to the Perrin River site), placement 

location (ST refers to subtidal), temperature, salinity, pH, and DO are evaluated as predictor 

variables. Parameters with p<0.001 are marked with ***,  p<0.01 with **, and p<0.05 with *.  
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Table 3. Summary statistics of select water quality parameters at the oyster deployment sites in 

the Perrin River (HAB-endemic location; blue shading), York River (HAB-endemic location; 

orange shading), and Ware River (reference location; grey shading) in summer 2017. Water 

quality parameters are based on measurements quantified in 15-min intervals by a data sonde 

positioned adjacent to the subtidal cages at each site. 
 

Parameter Perrin River 

IT             ST 

York River 

IT             ST 

Ware River 

IT             ST 

Monitoring interval  

(Total days) 

6/9/17 - 10/9/17 

(122) 

6/6/17 - 10/10/17 

(126) 

6/8/17 - 10/9/17 

(123) 

% Time aerial exposed 21.5 0.1 20.7 0 16.8 0.4 

Temperature (°C) 

     Average 

     Range 

 

27.1 

21.0 - 34.8 

 

25.9 

20.4 - 32.0 

 

27.2 

20.9 - 33.5 

Salinity 

     Average 

     Range 

 

19.8 

14.4 - 22.2 

 

20.2 

16.3 - 22.5 

 

18.5 

14.2 - 20.3 

pH 

     Average 

     Range 

 

7.8 

7.1 - 8.4 

 

7.9 

7.3 - 8.8 

 

7.9 

7.3 - 8.5 

DO (mg L-1) 

     Average 

     Range 

 

6.2 

2.9 - 12.2 

 

7.4 

2.0 - 22.0 

 

6.9 

3.6 - 13.1 

Chl a (µg L-1) 

     Average 

     Range 

 

11.8 

0.3 - 461.9 

 

10.3 

0.2 - 483.9 

 

12.9 

0.1 - 106.7 
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Table 4. AIC model comparison tables for 2017 oyster data. The model with the most empirical 

support, i.e. the lowest ΔAIC, in each suite is bolded and was used to generate the subsequent 

linear regression table for each dependent oyster variable. 

 

Model -2log(L) 
Number of 
Parameters 

AIC AIC 

Interval Mortality 

M1 -253.9 12 -229.9 3.6 
M2 -251.5 9 -233.5 0.0 
M3 -253.2 10 -233.2 0.3 
M4 -233.2 8 -217.2 16.3 

Cumulative Mortality 

M1 -438.6 12 -414.6 4.1 
M2 -436.7 9 -418.7 0.0 
M3 -437.8 10 -417.8 0.9 
M4 -420.0 8 -404.0 14.6 

Shell Height 

M1 704.8 12 728.8 2.3 
M2 708.4 9 726.4 0.0 
M3 708.0 10 728.0 1.6 
M4 745.4 8 761.4 34.9 

Growth Rate 

M1 -84.1 12 -60.1 0.0 
M2 -72.4 9 -54.4 5.7 
M3 -73.2 10 -53.2 6.8 
M4 -67.1 8 -51.1 9.0 

Condition Index 

M1 -36.8 12 -12.8 2.1 
M2 -31.5 9 -13.5 1.4 
M3 -34.9 10 -14.9 0.0 
M4 -21.2 8 -5.2 9.7 
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Table 5. Linear regression tables for 2017 oyster data. Independent variables investigated 

included site, placement location, and water quality parameters. Sites included the Ware River 

reference site (represented by the Intercept), the Perrin River (PR), and the York River (YR). 

Placement locations included intertidal (represented by the Intercept) and subtidal (ST). Water 

quality parameters included standardized temperature (temp.std), salinity (salt.std), pH (pH.std), 

dissolved oxygen (DO.std), Chlorophyll a (chl.std), Alexandrium monilatum cell concentration 

(A.monilatum.std), and Margalefidinium polykrikoides cell concentration (M.polykrikoides.std). 

All independent variables determined to be significant based on the p-value are bolded. 

Parameters with p<0.001 are marked with ***,  p<0.01 with **, and p<0.05 with *.  
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Indep. Var. Parameter Estimate Standard Error 

 Interval Mortality  

(Intercept) -2.237*** 0.016 
YR 0.038 0.025 
PR 0.040* 0.018 
ST 0.004 0.014 
temp.std 0.027*** 0.008 
salt.std 0.017 0.010 
pH.std -0.014 0.010 
DO.std 0.017 0.010 

 Cumulative Mortality  

(Intercept) 0.051*** 0.006 
YR -0.001 0.009 
PR 0.022*** 0.007 
ST -0.011* 0.005 
temp.std -0.011*** 0.003 
salt.std 0.001 0.004 
pH.std -0.001 0.004 
DO.std 0.004 0.004 

 Shell Height  

(Intercept) 45.688*** 2.883 
YR -10.247* 4.554 
PR -6.279 3.347 
ST 0.411 2.607 
temp.std -8.233*** 1.502 
salt.std 0.097 1.925 
pH.std -1.883 1.850 
DO.std 1.634 1.900 

 Growth Rate  

(Intercept) 0.442*** 0.040 
YR -0.023 0.069 
PR -0.067 0.046 
ST -0.032 0.037 
temp.std 0.068** 0.021 
salt.std -0.011 0.029 
pH.std 0.014 0.027 
DO.std -0.059* 0.026 
chl.std -0.020 0.017 
A.monilatum.std 0.034 0.018 
M. polykrikoides.std 0.053** 0.017 

 Condition Index  

(Intercept) 1.754*** 0.075 
YR 0.231 0.123 
PR -0.092 0.090 
ST -0.087 0.055 
temp.std 0.102** 0.038 
salt.std 0.015 0.047 
pH.std 0.017 0.038 
DO.std 0.032 0.036 
chl.std -0.056 0.030 
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Table 6. Summary statistics of select water quality parameters at the oyster deployment sites in 

the Perrin River (HAB-endemic location; blue shading), York River (HAB-endemic location; 

orange shading), Big Island (HAB-endemic location; purple shading), Ware River (reference 

location; grey shading), in summer 2018. Water quality parameters were quantified in 15-min 

intervals by a data sonde positioned adjacent to the subtidal cage at each site. 

 
Parameter Perrin River 

IT            ST 

York River 

IT            ST 

Big Island 

IT            ST 

Ware River 

IT            ST 

Monitoring interval  

(Total days) 

6/19/18 - 10/8/18 

(111) 

6/21/18 - 10/8/18 

(109) 

6/20/18 - 10/9/18 

(111) 

6/19/18 - 10/10/18 

(113) 

% Time aerial 

exposed 
14.1 0 18.6 0 29.1 0 21.7 0 

Temperature (°C) 

     Average 

     Range 

 

28.6 

23.9 - 33.6 

 

27.7 

24.3 - 31.7 

 

27.9 

22.9 - 32.9 

 

28.7 

23.9 - 34.0 

Salinity 

     Average 

     Range 

 

14.9 

11.7 - 17.3 

 

15.0 

9.1 - 18.1 

 

15.4 

11.8 - 18.8 

 

14.2 

7.2 - 16.2 

pH 

     Average 

     Range 

 

7.7 

7.0 - 8.6 

 

7.9 

7.5 - 8.7 

 

7.9 

6.9 - 8.6 

 

7.8 

7.3 - 8.3 

DO (mg L-1) 

     Average 

     Range 

 

5.9 

2.0 - 11.0 

 

7.2 

4.3 - 14.7 

 

6.8 

2.8 - 11.6 

 

6.8 

1.2 - 11.3 

Chl a (µg L-1) 

     Average 

     Range 

 

8.9 

7.8 - 10.2 

 

11.2 

0.1 - 115.1 

 

9.5 

1.2 - 72.8 

 

15.1 

1.9 - 68.1 
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Table 7. AIC model comparison tables for 2018 oyster data. The model with the most empirical 

support, i.e. the lowest ΔAIC, in each suite is bolded and was used to generate the subsequent 

linear regression table for each dependent oyster variable. 

 

Model -2log(L) 
Number of 
Parameters 

AIC AIC 

Interval Mortality 

M1 -95.1 11 -73.1 0.7 
M2 -93.8 10 -73.8 0.0 

Cumulative Mortality 

M1 -24.8 11 -2.8 1.5 
M2 -24.3 10 -4.3 0.0 

Height 

M1 437.2 11 459.2 1.1 
M2 438.1 10 458.1 0.0 

Growth Rate 

M1 -55.4 11 -33.4 1.7 
M2 -55.0 10 -35.0 0.0 
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Table 8. Linear regression tables for 2018 oyster data. Independent variables investigated 

included site, placement location, and water quality parameters. Sites included the Ware River 

reference site (represented by the Intercept), the Big Island site (BI), the Perrin River (PR), and 

the York River (YR). Placement locations included intertidal (represented by the Intercept) and 

subtidal (ST). Water quality parameters included standardized temperature (temp.std), salinity 

(salt.std), pH (pH.std), dissolved oxygen (DO.std), and Chlorophyll a (chl.std). All independent 

variables determined to be significant based on the p-value are bolded. Parameters with p<0.001 

are marked with ***,  p<0.01 with **, and p<0.05 with *.   

 
Indep. Var. Parameter Estimate Standard Error 

 Interval Mortality  

(Intercept) -2.076*** 0.034 
BI -0.088* 0.043 
YR -0.048 0.046 
PR -0.133** 0.043 
ST -0.084** 0.030 
temp.std 0.021 0.017 
salt.std 0.018 0.017 
pH.std 0.029 0.021 
DO.std -0.063** 0.021 

 Cumulative Mortality  

(Intercept) -1.444*** 0.061 
BI -0.236** 0.077 
YR -0.301*** 0.082 
PR -0.345*** 0.076 
ST -0.290*** 0.053 
temp.std -0.074* 0.029 
salt.std 0.021 0.029 
pH.std -0.016 0.038 
DO.std 0.038 0.038 

 Height  

(Intercept) 40.773*** 2.657 
BI -2.552 3.388 
YR -7.353* 3.610 
PR 0.061 3.360 
ST 3.613 2.346 
temp.std -5.304*** 1.291 
salt.std 1.951 1.291 
pH.std -3.201 1.673 
DO.std 7.297*** 1.667 

 Growth Rate  

(Intercept) 0.332 0.059 
BI -0.016 0.072 
YR 0.070 0.078 
PR -0.011 0.068 
ST -0.005 0.045 
temp.std 0.045 0.024 
salt.std 0.025 0.029 
pH.std -0.008 0.036 
DO.std -0.042 0.037 
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Figure 1. Oyster cage (grey rectangles) deployment at each of the three sites, the Perrin River, 

York River, and Ware River, in summer 2017. Each cage contained oysters in three pseudo-

replicate bags. Cages were deployed intertidally and subtidally twice, between 6/1/17-6/2/17 and 

between 7/5/17-7/6/17. A sonde (white star) was deployed alongside all subtidal cages. 
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Figure 2. Oyster cage (grey rectangles) deployment at each of the four sites, the Perrin River, 

York River, Big Island, and Ware River, in summer 2018. Each cage contained oysters in three 

pseudo-replicate bags. At all sites, cages were deployed intertidally and subtidally between 

6/20/18-6/21/18. A sonde (white star) was deployed alongside all subtidal cages. 
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Figure 3. Map of the four sites of oyster deployment in the lower Chesapeake Bay in summers 

2017 and 2018. The low-energy Perrin River site (blue star), high-energy York River site (orange 

star), and intermediate-energy Big Island site (purple star) represent HAB-endemic locations, 

while blooms of Alexandrium monilatum and Margalefidinium polykrikoides do not typically 

occur at the intermediate-energy Ware River site (grey star). Note: oysters were deployed at Big 

Island in summer 2018 only. 

 

 

 

 

 

 

 

  



84 
 

 

 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

H
A

B
 C

o
n

ce
n

tr
at

io
n

 (c
e

lls
 m

L-1
)

C
h

l a
C

o
n

ce
n

tr
at

io
n

 (µ
g 

L-1
)

Jun                Jul Aug               Sept               Oct

A

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

H
A

B
 C

o
n

ce
n

tr
at

io
n

 (c
e

lls
 m

L-1
)

C
h

l a
C

o
n

ce
n

tr
at

io
n

 (µ
g 

L-1
)

Jun                Jul Aug               Sept               Oct

B

0

10

20

30

40

50

60

70

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

H
A

B
 C

o
n

ce
n

tr
at

io
n

 (c
e

lls
 m

L-1
)

C
h

l a
C

o
n

ce
n

tr
at

io
n

 (µ
g 

L-1
)

Jun                Jul Aug               Sept               Oct

C



85 
 

Figure 4. Cell concentrations of harmful algal bloom (HAB) species Margalefidinium 

polykrikoides (black squares) and Alexandrium monilatum (red diamonds) sampled next to the 

subtidal cages at the Perrin River (HAB-endemic location; A), York River (HAB-endemic 

location; B), and Ware River (reference location; C) sites in 2017. HAB cell concentrations were 

determined using qPCR. Chlorophyll a (Chl a; pale green) was measured every 15 min via a data 

sonde next to the subtidal cages at all sites. 
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Figure 5. Average interval mortality of oysters deployed in June 2017. Oysters were deployed at 

the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid blue), the York 

River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the Ware River 

(WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent the 95% 

confidence intervals. The approximate time of the peak cell concentration of M. polykrikoides 

(black square) and A. monilatum (red diamond) at each depth at the PR and YR sites is noted 

below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at the PR site, 

and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus marked between 

the early and late August sampling points.  
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Figure 6. Average interval mortality of oysters deployed in July 2017. Oysters were deployed at 

the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid blue), the York 

River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the Ware River 

(WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent the 95% 

confidence intervals. The approximate time of the peak cell concentration of M. polykrikoides 

(black square) and A. monilatum (red diamond) at each depth at the PR and YR sites is noted 

below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at the PR site, 

and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus marked between 

the early and late August sampling points. 
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Figure 7. Average cumulative mortality of oysters deployed in June 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent 

the 95% confidence intervals. The approximate time of the peak cell concentration of M. 

polykrikoides (black square) and A. monilatum (red diamond) at each depth at the PR and YR 

sites is noted below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at 

the PR site, and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus 

marked between the early and late August sampling points. 

  

0

0.04

0.08

0.12

0.16
A

ve
ra

ge
 C

u
m

u
la

ti
ve

 M
o

rt
al

it
y

PR IT

PR ST

YR IT

YR ST

WR IT

WR ST

blM.
blpolykrikoides 
blpeak
blA. monilatum 
blpeak



89 
 

 

 
 

Figure 8. Average cumulative mortality of oysters deployed in July 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent 

the 95% confidence intervals. The approximate time of the peak cell concentration of M. 

polykrikoides (black square) and A. monilatum (red diamond) at each depth at the PR and YR 

sites is noted below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at 

the PR site, and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus 

marked between the early and late August sampling points. 
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Figure 9. Average shell height (mm) of oysters deployed in June 2017. Oysters were deployed at 

the Perrin River (PR) site intertidally (IT; blue triangle and dashed line) and subtidally (ST; blue 

circle and solid line), the York River (YR) site intertidally (orange triangle and dashed line) and 

subtidally (orange circle and solid line), and the Ware River (WR) site intertidally (grey triangle 

and dashed line) and subtidally (grey circle and solid line). Error bars represent the 95% 

confidence intervals.  
 
  

0

10

20

30

40

50

60

70
A

ve
ra

ge
 S

h
el

l H
ei

gh
t 

(m
m

)

PR IT

PR ST

YR IT

YR ST

WR IT

WR ST



91 
 

 
 

Figure 10. Average shell height (mm) of oysters deployed in July 2017. Oysters were deployed 

at the Perrin River (PR) site intertidally (IT; blue triangle and dashed line) and subtidally (ST; 

blue circle and solid line), the York River (YR) site intertidally (orange triangle and dashed line) 

and subtidally (orange circle and solid line), and the Ware River (WR) site intertidally (grey 

triangle and dashed line) and subtidally (grey circle and solid line). Error bars represent the 95% 

confidence intervals.  
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Figure 11. Average growth rate (mm day-1) of oysters deployed in June 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent 

the 95% confidence intervals. The approximate time of the peak cell concentration of M. 

polykrikoides (black square) and A. monilatum (red diamond) at each depth at the PR and YR 

sites is noted below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at 

the PR site, and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus 

marked between the early and late August sampling points. 
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Figure 12. Average growth rate (mm day-1) of oysters deployed in July 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). Error bars represent 

the 95% confidence intervals. The approximate time of the peak cell concentration of M. 

polykrikoides (black square) and A. monilatum (red diamond) at each depth at the PR and YR 

sites is noted below the appropriate bar. The peak concentrations of M. polykrikoides at the ST at 

the PR site, and A. monilatum at the IT at the PR site, occurred in mid-August, and are thus 

marked between the early and late August sampling points. 
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Figure 13. Average condition index (CI) of oysters deployed in June 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). CI was calculated 

according to Rainer & Mann 1992. Error bars represent the 95% confidence intervals. The 

approximate time of the peak cell concentration of M. polykrikoides (black square) and A. 

monilatum (red diamond) at each depth at the PR and YR sites is noted below the appropriate 

bar. The peak concentration of M. polykrikoides occurred at the IT at the YR site in early August 

and is marked immediately to the right of the late July sampling. The peak concentrations of M. 

polykrikoides at the ST at the PR site, and A. monilatum at the IT at the PR site, occurred in mid-

August, and are thus marked immediately to the left of the late August sampling point.  
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Figure 14. Average condition index (CI) of oysters deployed in July 2017. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), and the 

Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). CI was calculated 

according to Rainer & Mann 1992. Error bars represent the 95% confidence intervals. The 

approximate time of the peak cell concentration of M. polykrikoides (black square) and A. 

monilatum (red diamond) at each depth at the PR and YR sites is noted below the appropriate 

bar. The peak concentration of M. polykrikoides occurred at the IT at the YR site in early August 

and is marked immediately to the right of the late July sampling. The peak concentrations of M. 

polykrikoides at the ST at the PR site, and A. monilatum at the IT at the PR site, occurred in mid-

August, and are thus marked immediately to the left of the late August sampling point. 
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Figure 15. Salinity data collected every 15 min next to the subtidal cage in the Ware River in 

2018. Salinity values decreased from >15 to <8 on 7/25/18. 
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Figure 16. Cell concentrations of harmful algal bloom (HAB) species Margalefidinium 

polykrikoides (black squares) and Alexandrium monilatum (red diamonds) sampled next to the 

subtidal cages at the Perrin River (HAB-endemic location; A), York River (HAB-endemic 

location; B), Big Island (HAB-endemic location; C), and Ware River (reference location; D) 

sites in 2018. HAB cell concentrations were determined using qPCR. Chlorophyll a (Chl a; pale 

green) was measured every 15 min via a data sonde next to the subtidal cages at all sites. 
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Figure 17. Average interval mortality of oysters deployed in July 2018. Oysters were deployed 

at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid blue), the 

York River (YR) site intertidally (dotted orange) and subtidally (solid orange), the Big Island 

(BI) site intertidally (dotted purple) and subtidally (solid purple) and at the surface (horizontal 

purple lines), and the Ware River (WR) site intertidally (dotted grey) and subtidally (solid grey). 

Error bars represent the 95% confidence intervals. 
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Figure 18. Average cumulative mortality of oysters deployed in July 2018. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), the Big 

Island (BI) site intertidally (dotted purple) and subtidally (solid purple) and at the surface 

(horizontal purple lines), and the Ware River (WR) site intertidally (dotted grey) and subtidally 

(solid grey). Error bars represent the 95% confidence intervals. 
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Figure 19. Average shell height (mm) of oysters deployed in July 2018. Oysters were deployed 

at the Perrin River (PR) site intertidally (IT; blue triangle and dashed line) and subtidally (ST 

blue circle and solid line), the York River (YR) site intertidally (orange triangle and dashed line) 

and subtidally (orange circle and solid line), the Big Island (BI) site intertidally (purple triangle 

and dashed line) and subtidally (purple circle and solid line) and at the surface (purple square and 

dotted line), and the Ware River (WR) site intertidally (grey triangle and dashed line) and 

subtidally (grey circle and solid line). Error bars represent the 95% confidence intervals. 
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Figure 20. Average growth rate (mm day-1) of oysters deployed in July 2018. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), the Big 

Island (BI) site intertidally (dotted purple) and subtidally (solid purple) and at the surface 

(horizontal purple lines), and the Ware River (WR) site intertidally (dotted grey) and subtidally 

(solid grey). Error bars represent the 95% confidence intervals. 
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Figure 21. Average condition index (CI) of oysters deployed in July 2018. Oysters were 

deployed at the Perrin River (PR) site intertidally (IT; dotted blue) and subtidally (ST; solid 

blue), the York River (YR) site intertidally (dotted orange) and subtidally (solid orange), the Big 

Island (BI) site intertidally (dotted purple) and subtidally (solid purple) and at the surface 

(horizontal purple lines), and the Ware River (WR) site intertidally (dotted grey) and subtidally 

(solid grey). Error bars represent the 95% confidence intervals. 
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