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ABSTRACT

Our understanding of speciation has been greatly improved with advances in genomic

technology, but most of our knowledge of speciation is still built on research of diploid

systems. Polyploids, however, are found in many lineages across the tree of life and

exhibit considerably di↵erent evolutionary dynamics than diploids. Here, we investigate

patterns of population structure and divergence in a system of two allopolyploid species

of Mimulus (monkeyflower) that occur sympatrically in Chile: M. luteus and M. cupreus.

We find that while the two species have consistent phenotypic di↵erences across the range,

they are genetically clustered into a northern and southern population (rather than by

species), based on a STRUCTURE analysis of 48 whole-genome paired-end sequences of

the two species across six populations in Chile. Using LUMPY and DELLY2 to locate

chromosomal structural variants (SVs), we identify hundreds of SVs unique to one species

or the other both across the entire range and just within the north or south. We also

calculated metrics of divergence (FST and DXY ) in 10 kbp regions across the genome and

find that these metrics were not greater within SV regions than across the whole genome.

However, we did find that inversions occurred at 100–150X greater frequency within the

regions of top 1% of FST and DXY values compared to the across the entire genome,

indicating that inversions may promote divergence. Overall, we find evidence to suggest

that M. luteus and M. cupreus are currently undergoing sympatric speciation, and that

inversions may help promote divergence in this system while deletions and duplications

likely do not. Additionally, SV diversity is much higher than generally assumed, perhaps

due to increased genomic instability in these allopolyploids, warranting future studies

looking into the e↵ects of SVs on species divergence.



TABLE OF CONTENTS

Acknowledgments ii

Dedication iii

List of Tables iv

List of Figures v

Chapter

1 Polyploid speciation 2

1.1 Introduction 2

1.2 Methods 10

1.3 Results 17

1.4 Discussion 29

Bibliography 37

i



ACKNOWLEDGMENTS

I would like to sincerely thank Dr. Josh Puzey for all of his guidance during the course of
my degree, both as a student and as a person. He has been incredibly supportive of my
aspirations since the first day I arrived in Williamsburg, and his ability to stay grounded
through all the ups and downs of this project has been invaluable. I would also like to
thank Dr. Helen Murphy and Dr. John Swaddle for all of their advice and guidance
through this project. Dr. Matthias Leu has been a fantastic mentor to have in the
department, and I would like to thank him for the time and e↵ort he has put into helping
me grow. Dr. Arielle Cooley has also been a wonderful mentor with this project, and
without her help it could not have happened. I would also like to thank Cici Zheng and
Lizzie Davies for all their help in plant care.

Additionally, I would like to thank my parents and my sisters for all of their love and
support that’s gotten me to where I am today.

I would especially like to thank my wonderful boyfriend, Bob Galvin, for supporting me
and keeping me going throughout this process. His unflagging support has meant the
world to me.

Finally, I give thanks to my dog, Tots, for keeping me sane while I finished this thesis in
COVID19 lockdown.

NSF Award Number 1754080.

ii



I dedicate this thesis to the women who have come before me and paved the way for
future generations of women scientists.

iii



LIST OF TABLES

1.1 Origin and species identity of phenotyped samples. 11

1.2 Metrics of divergence between M. luteus and M. cupreus and diversity

within M. luteus and M. cupreus by region. 25

1.3 Structural variant diversity by species and region. 26

1.4 Structural variant frequency across the entire genome and in genomic re-

gions of highest divergence. 27

iv



LIST OF FIGURES

1.1 A hypothetical demonstration of how SV accumulation may prevent recom-

bination when di↵erent haplotypes come back into contact. 6

1.2 Hypothetical process of allopolyploid formation. 7

1.3 Study species. 9

1.4 Map of sampled populations. 12

1.5 Phenotypic di↵erences between M. luteus and M. cupreus. 18

1.6 Dimensionality reduction of phenotype traits using PCA. 19

1.7 Genetic map of newly constructed linkage groups. 20

1.8 Synteny of the constructed M. luteus genome to the M. guttatus genome. 21

1.9 Genome-wide population structure by species and region. 23

1.10 Distributions of Metrics of Divergence (FST and DXY ) and Diversity(⇡). 24

1.11 Population structure by SV type and comparison. 28

v



SPECIATION DYNAMICS OF DIVERGING ALLOPOLYPLOID MONKEYFLOWER

(MIMULUS )



Chapter 1

Polyploid speciation

1.1 Introduction

1.1.1 Speciation

The diversity of life has long been of fascination to biologists. Many famous early

biologists were concerned with just this, both documenting it – as in the case of Carl

Linnaeus and Alexander von Humboldt – and investigating the process of speciation itself

– as in the case of Charles Darwin and Alfred Russel Wallace. Countless studies have

since been conducted to better understand how species come to be, and with the advent of

large-scale, a↵ordable sequencing technology, studies have begun to address this process

from a genomic perspective as well (Marques et al., 2019; Mallet, 2007; Feder et al., 2012).

One key area of research opened up by these advances is understanding the dynamics of

sympatric speciation (Foote, 2018).

Sympatric speciation is a type of speciation where the diverging species remain in

contact with each other throughout the speciation process, and was dismissed as impos-

sible by several preeminent biologists such as Ernst Mayr (Mayr, 1963) and Theodosius

2
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Dobzhansky (Kastritsis & Dobzhansky, 1967). The prevailing biological species concept

(BSC; Mayr (1942)) stresses reproductive isolation as the indicator of species; allopatric

speciation, in which a geographic barrier prevents gene flow, was treated as the default

process. Indeed, as Mayr (1963) put it,

The mechanisms that isolate one species reproductively from others are perhaps the

most important set of attributes a species has, because they are, by definition, the

species criteria.

However, advances in our understanding of and ability to observe genetic processes

has led some scientists to suggest that sympatric speciation may be more common than

previously thought (Dieckmann & Doebeli, 1999; Foote, 2018). Moreover, researchers

are also questioning the basic tenet of BSC: that speciation happens at the level of the

genome. Wu (2001) argues that under the BSC, reproductive isolation must be complete

across the entire genome, since introgression in parts of the genome means, by definition,

that reproductive isolation is not complete. However, given that adaptation happens

at the level of genes, divergence may proceed through sustained selection on the genes

underlying the adaptive traits (Wu, 2001). Under this view, speciation may be considered

complete when populations will not lose their divergence, and will in fact continue to

diverge, when they come into contact (Wu, 2001). Wu summarizes this idea by describing

two hypothetical populations of a species inhabiting di↵erent slopes of a hill, with three

loci across the genome better suited to one or the other slope. The rest of the genome,

however, is equally fit across the populations, and very low levels of migration are su�cient

to prevent population di↵erentiation across the genome. Consequently, the genome would

vary in the extent of di↵erentiation, with regions near the three adaptive loci being highly

di↵erentiated while the rest of the genome is not.

Studies have since explored this genic view of speciation more thoroughly, both theo-
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retically and empirically (Xu et al., 2012; Doellman et al., 2018). One key area of interest

in this research is the role of genetic interactions during speciation. Many traits are

known to have complex genetic underpinnings [e.g. flower size (Galliot et al., 2006) and

self-pollination (Sicard et al., 2011)], and it is important to understand how these genetic

interactions influence the process of divergence (Feder et al., 2012). For example, if a

trait under divergent selection is controlled by multiple interacting genes, how are those

genes structured in the genome? Are they physically linked on a chromosome? Or do they

reside further apart in the genome? What are the implications of that for divergence at

those loci? While our understanding has grown substantially in animal systems such as

flies (Doellman et al., 2018), mosquitoes (Turner et al., 2005), and fish (Hohenlohe et al.,

2010), much less is known about speciation genomics in plants (Lexer & Widmer, 2008).

Furthermore, even within plant systems, these questions have largely been restricted to

diploid systems (Lexer & Widmer, 2008), with little known about how genic processes

a↵ect polyploid speciation.

1.1.2 Implications of Polyploidy

Polyploidy, the condition of having more than two sets of chromosomes, is widespread

throughout the tree of life. It is is found in animal lineages, such as fishes, insects, crabs

and amphibians (Kenny et al., 2016; Mable et al., 2011; Leggatt & Iwama, 2003; Otto

& Whitton, 2000), and is especially common in plant lineages. All seed and flowering

plants share an ancient whole genome duplication (WGD) event (Jiao et al., 2011), with

many lineage-specific events since (Alix et al., 2017). Polyploidy has been shown to have

benefits over diploids, such as increased resistance to pathogens (Burdon & Marshall,

1981; Hannweg et al., 2016)and increased emergence of novel phenotypes (Lynch & Conery,

2000). One potential contribution to speciation dynamics in polyploids is the accumulation
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of large structural variants (SVs), such as inversions, deletions, and duplications. SVs

can accumulate quickly in polyploids. In Brassica napus, large DNA fragment losses are

present after only a few generations and are widespread in induced polyploids (Gaeta

et al., 2007). A study of yeast found the same phenomenon occurred after several hundred

generations. Whereas diploid and haploid clones accumulated no copy number variants

in their chromosomes by after 250 generations, all clones of tetreploid yeast accumulated

multiple copy number variants, with chromosomes having anywhere between two and

six copies, and none of the clones had a consistent number of copies between all their

chromosomes (Selmecki et al., 2015). Polyploids are able to withstand such drastic changes

where diploids are not because their genetic material is duplicated. A large scale deletion

(or, at an extreme, the loss of an entire chromosome copy) would be fatal to a diploid, but

polyploids retain another copy of those lost genes and can thus maintain their function.

Given that these large scale SVs can accumulate so quickly, should populations from

newly forming polyploids be separated for even several dozen generations, when they come

back into contact homologous chromosomes may be so di↵erent that they can no longer

recombine (Fig. 1.1).

One can think of polyploidy itself as the biggest structural change a genome can

undergo. Not only is the entire genome duplicated, but there is instability in the genome

as a consequence, which can lead to a greater accumulation of smaller structural variants

as well. Despite these known e↵ects of polyploidization, we know very little about the

dynamics of speciation within polyploid systems. Most of what we know is in relation to the

immediate reproductive isolation of allopolyploids (recent hybrids which have undergone

a WGD) from their parents or the comparison of speciation rates between polyploid and

diploid lineages (Van de Peer et al., 2017). For example, species radiations in polyploid

lineages are associated with evolutionary times of extreme stress, such as the Cretaceous-

Paleogene mass extinction (Van de Peer et al., 2017; Vanneste et al., 2014). However,
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FIG. 1.1: A hypothetical demonstration of how SV accumulation may prevent recombination

when di↵erent haplotypes come back into contact. Focusing on one chromosome (shown in

black) which is separated in two isolated subpopulations (top and bottom), di↵erent SVs be-

gin to accumulate in the two subpopulations (colors correspond to di↵erent SV types). This

continues over time, with additional SVs accumulating on the chromosome. When the two

subpopulations come back into contact, the chromosome copies may look so di↵erent that re-

combination between the SV regions is suppressed, thus preventing gene flow and promoting

divergence in those regions.

polyploidy can also lead to di↵erent short-term speciation dynamics than in the diploid

paradigm. Genome duplication has been shown to slow (Levin, 1983) or increase (Stanley

et al., 1984) growth rates, change gene expression (Auger et al., 2005; Wang et al., 2006;

Gaeta et al., 2007), and change gene dosage (Shaked et al., 2001; Hegarty et al., 2006). In

allopolyploids, this may be particularly true.

Hybridization, the merger of two genomes within one nucleus, is an important mech-

anism for creating genetic diversity. Genome merger allows for novel genetic interactions

and allele combinations, which in turn can lead to new phenotypes for selection to act

upon. This potential for phenotypic novelty is enhanced in allopolyploids. Allopolyploids

are formed from a WGD in a recent hybrid, such that there are now two copies of each

parental contribution to the genome (Fig. 1.2). Since all genes exist in duplicate, there

is less purifying selection acting on each copy to select against changes (Lynch & Conery,
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2000). Consequently, mutations can accumulate more rapidly on one of the copies, since

the other copy can perform the original function (Lynch & Conery, 2000). In this way, the

functionality of gene copies may be lost, changed to a new function, or partially lost in

each copy such that both copies must now be inherited to perform the original function.

FIG. 1.2: Hypothetical process of allopolyploid formation. Here, two diploid (2n) species

hybridize with each other, creating a diploid hybrid which has inherited one copy of its chro-

mosomes from each parent. This recent hybrid then undergoes a WGD, whereby its entire

set of chromosomes are duplicated, resulting in an allopolyploid (4n) with two copies of its

chromosomes inherited from parent 1 (in red), and the other two inherited from. parent 2 (in

purple). In an allopolyploid, recombination between these two parental halves of the genome is

rare, resulting in two distinct subgenomes.

In addition, the two parental contributions to the hybrid genome become two distinct,

non-recombining subgenomes within the allopolyploid genome. Just like a diploid hybrid,

the allopolyploid inherits half of its genome from each parent. However, after the WGD,

each parental half (now called a subgenome) is doubled and then no longer recombines with

the other parental half. The inability of these two subgenomes to recombine e↵ectively
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with one another means the genetic diversity between them is protected from homoge-

nization. In other words, the each subgenome evolves somewhat independently from one

another. Moreover, changes in gene expression and fractionation (gene and regulatory

element loss) frequently a↵ect the two subgenomes di↵erently, such that one subgenome

tends to become dominant (Thomas et al., 2006; Schnable et al., 2011; Pophaly & Tellier,

2015). The dominant subgenome su↵ers less gene loss and and for duplicate copies of

genes found on both subgenomes, the copy found on the dominant subgenome tends to

be preferentially expressed. The sensitive (non-dominant) subgenome is subject to weaker

purifying selection, and mutations accumulate more rapidly. Subgenome dominance can

a↵ect evolution in many ways (Bird et al., 2018), such as biasing gene dosage (Wright

et al., 1998), reciprocal gene silencing (Werth & Windham, 1991), sequence elimination

and methylation changes (Shaked et al., 2001), and novel gene expression (Osborn et al.,

2003). All of these e↵ects are known to be consequences of genome duplication, yet the

e↵ects they may have on species divergence has not been investigated.

1.1.3 Study System

In this study, we look at the speciation dynamics of two currently diverging mon-

keyflower species in Chile. These two putative species, Mimulus luteus and Mimulus

cupreus (Fig. 1.3), are sister taxa formed from a relatively recent shared allopolyploidiza-

tion event in which the widely studied M. guttatus was one of the parents. The ranges

of the two putative species overlap, and both species prefer premontane stream habitats

(Grant, 1924; von Bohlen V., 1995). The two taxa have been described as separate species

for over a century (Grant, 1924) and are morphologically distinct from each other (von

Bohlen V., 1995; Cooley et al., 2008). Both are pollinated by bumblebees, but M. cupreus

receives far fewer visits and appears to be evolving a selfing life history strategy (Cooley
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et al., 2008). M. cupreus also has lower nectar sugar content and nectar volume, as well

as a di↵erent flower shape from M. luteus. However, the two species exhibit considerable

environmental plasticity and have low genetic divergence (Beardsley et al., 2004). The

taxa also readily hybridize in the greenhouse and in the field; hybrid swarms have been

found in their native populations (Cooley et al., 2008). Given this, these two taxa provide

a suitable model in which to investigate the e↵ect of polyploidy on ongoing speciation.

Moreover, Mimulus has been utilized as a model system for many di↵erent research areas

(Wu et al., 2008; Yuan, 2019), and a large bank of genomic resources now exist for the

genus.

FIG. 1.3: Study species. The focal species, M. cupreus and M. luteus, are shown here along

with their hybrid. M. cupreus has two morphs: (a) a yellow morph and (b) an orange morph.

(c) M. luteus is always yellow. (d) The hybrid between the orange morph of M. cupreus and

M. luteus has a gradient of pigment in its petals.

Here, we aim to elucidate the mechanism for morphological di↵erentiation in the

face of gene flow in a system of sympatric polyploids. Specifically, we are interested

in understanding: (1) what are patterns of population structure in these neo-speciating

Mimulus? (2) what is the diversity of SVs in these populations of diverging polyploids?
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(3) what are the patterns of SV sharing in these populations,?(4) what genes underly

outlier regions of divergence metrics in the genome? and (5) are those same outlier regions

localized to one of the two subgenomes shared between the taxa?

1.2 Methods

1.2.1 Phenotyping

Growth Conditions

All seeds were originally collected from wild plants in 6 populations in Chile (Fig. 1.4),

and the seeds used for phenotyping were inbred one to three generations prior to this

experiment. Seeds were planted for 15M. cupreus individuals and 17M. luteus individuals.

Ten pots were planted per individual, and all individuals with at least four germinated

plants were included in this study (Table 1.1).

All seeds were planted in Jolly Gardener Pro-line C/B Growing Mix soil in 3-in pots.

Plants were kept in trays filled with approximately 2 cm of water which was regularly

refilled. All plants were housed in a growth chamber held at 21 oC with 16-hour days.

Approximately three seeds were sown in each pot, and after germination plants were

thinned such that no more than one plant grew in each pot.

Measurements and Analysis

Measurements were taken on the first two flowers for each plant and included: flower

width, flower length, peduncle length, length of the upper calyx, length of the lower calyx,

pistil length, length of the upper two stamen, and length of the two lower stamen. All

measurements were taken with Neiko 0-150 mm digital calipers.

The mean was taken for the first two flowers of each plant, and then all of the replicate



11

TABLE 1.1: Origin and species identity of phenotyped samples.

Species Population Individual Number replicates Generations inbred

M. cupreus

Las Cayenas

LC11 5 1

LC22 9 1

LC24 8 1

LC39 4 3

Laguna de Laja
LL360 10 1

LL366 6 3

Laguna de Maule

LM418 8 2

LM444 9 2

LM473 10 1

Termas de Chillan

TC287 4 3

TC309 6 3

TC324 9 1

Termas del Flaco TF385 8 1

M. luteus

Laguna de Laja
LL340 6 1

LL349 10 1

Laguna de Maule

LM409 5 2

LM446 9 2

LM447 5 2

Los Queñes LQ97 6 1

Termas de Chillan

TC294 4 2

TC311 9 2

TC314 10 1

TC318 10 2

TC322 7 3

Termas del Flaco

TF260 10 1

TF262 10 1

TF267 7 2

TF269 10 1

TF270 4 1
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FIG. 1.4: Map of sampled populations. Seeds were collected from M. luteus and M. cupreus
individuals in six populations across a latitudinal gradient in Chile.

plants for each individual were averaged to give a single final measurement for each trait

for each individual. All values were then scaled and centered, and a principle component

analysis was then implemented using scikit-learn version 0.23.1 (Pedregosa et al., 2011)

in Python. Di↵erences in PC1 values and all individual traits between M. luteus and M.

cupreus were evaluated using a t-test.
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1.2.2 Constructing Linkage Map

To improve the quality of our reference genome, we anchored the existing sca↵olds of

theM. luteus genome onto a new linkage map. To generate SNP markers, we sequenced the

whole genomes of 373 F2 individuals produced from a cross between highly inbred lines of

M. l. variegatus (a subspecies of M. luteus) and M. cupreus. DNA was extracted using the

Qiagen DNeasy Plant Mini Kit (Germantown, MD, USA). For each plant, 0.09 - 0.10 g of

fresh leaf tissue were collected and snap frozen in liquid nitrogen. Once extracted, the DNA

was double-eluted in 30-35 uL of warm dH20, and checked for purity and concentration

using both a Nanodrop Lite (Thermo Fisher Scientific, Waltham, MA, U.S.A.) and a

Qubit 4 Fluorometer (Invitrogen, Carlsbad, CA, U.S.A.). Illumina genome sequencing

was performed by the Duke University Center for Genomic and Computational Biology.

Sequences were demultiplexed using Stacks version 2.1 (Catchen et al., 2011) and aligned

to the M. luteus genome (Edger et al., 2017) using bowtie2 version 2.3.4.2 (Langmead &

Salzberg, 2012). Sequences were sorted and read groups were added with Picard tools

version 2.18.11. GATK Unified Genotyper (DePristo et al., 2011) was used to call SNPs

with a minimum base quality score of 25.

We then used these SNPs to construct a linkage map for M. luteus using the R/qtl

package implemented in R (R Core Team, 2013; Broman et al., 2003). SNPs were filtered

to exclude any sites with less than 25% genotyped individuals, and individuals were filtered

to exclude individuals with more than 25% missing data. Duplicate individuals were then

dropped, as were markers with distorted segregation patterns using an alpha value of

1 ⇥ 10�10. This left 1226 markers to use in the linkage map. Markers were ordered into

linkage groups using a maximum recombination fraction of 0.35 and a minimum LOD

score of 6, resulting in 24 linkage groups. For each linkage group produced, the ripple

function was then applied in windows of 6 markers to refine the marker order, and the
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genetic distance was calculated using the Kosambi function. New orders with a positive

delta LOD score compared to the original LOD score with an error probability of 0.01 were

retained for the final linkage map. All markers on the 24 linkage groups were matched to

locations on the M. luteus genome assembly to create pseudochromsomes using AllMaps

(Tang et al., 2015), and annotations were lifted over using the LiftOver tool from the

UCSC Genome Browser.

1.2.3 Broad Scale Genetic Structure Analysis

Extraction and Sequencing

DNA was extracted from 24 M. luteus and 24 M. cupreus plants using the Qiagen

DNeasy Plant Mini Kit (Germantown, MD, USA) for whole genome sequencing. DNA

was extracted using the same protocol as in 1.2.2. The samples were made into Illumina

libraries using Nextera DNA Flex (Illumina, San Diego, CA, USA) and sequenced using

an Illumina Novaseq 6000 with paired-end 150 basepair reads. The paired-end reads were

then aligned to the constructed M. luteus reference genome using bowtie2 version 2.3.4.2

(Langmead & Salzberg, 2012). Mate-pairs were validated and fixed, duplicate reads were

removed, and read groups were added using Picard tools version 2.18.11. GATK unified

genotyper (DePristo et al., 2011) was used to call SNPs with a minimum base quality score

of 25.

Genetic Clustering

We examined genetic clustering of our samples using a maximum-likelihood approach

implemented in STRUCTURE version 2.3.2 (Pritchard et al., 2000). STRUCTURE runs

were informed by a priori assumptions about origin from LOCPRIOR and using correlated

allele frequency. Each run had a burn-in period of 100,000 generations and 1,000,000
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generations of data collection. We ran STRUCTURE for K 1 to 8 with 10 iterations per

K. CLUMPP version 1.1.2 (Jakobsson & Rosenberg, 2007) was used to align clusters

across runs and Structure Harvester (Earl et al., 2012) was used to determine to optimal

number of clusters using the second order rate of change of the log probabilities of the

data.

Divergence

Using the clustering results from the STRUCTURE analysis, M. luteus and M.

cupreus samples were grouped into a north and south population. For northern and

southern M. luteus and M. cupreus, genetic diversity (⇡) was measured within each of the

four populations (northern M. luteus, southern M. luteus, northern M. cupreus, and south-

ern M. cupreus), and genetic divergence (DXY ) was measured between each north-south

comparison for each species and between each species within the northern or southern

grouping. These analyses were performed using custom scripts implemented in Python

and were calculated at each position along the genome. Weir and Cockerham’s FST (Weir

& Cockerham, 1984) was also measured for each DXY comparison using VCFtools version

0.1.16 (Danecek et al., 2011). In addition to a by-site measure, these statistics were also

calculated in 10 kbp windows. All of these statistics were calculated for only variant sites

across the genome.

To identify genes within the most divergent regions, the 10 kbp windows of the top

1% of FST and DXY values between M. luteus and M. cupreus in the north and south

were expanded by 10 kbp on each side, and these expanded regions were then annotated

with genes which overlapped at least 50% with those windows. Gene annotations were

taken from the M. luteus genome (Edger et al., 2017). This was implemented using custom

scripts written in Python. All genes were compared to Arabidopsis thaliana genes using

the NCBI BLAST tool to find the best match, and the functions of theM. luteus genes
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were then inferred from the functions of the best match A. thaliana genes.

1.2.4 Structural Variant Analysis

We detected structural variants (SVs) using two softwares, LUMPY (Layer et al.,

2014) and DELLY2 (Rausch et al., 2012). To prepare samples for LUMPY analysis, the

paired-end reads were aligned to the M. luteus reference genome using the BWA-MEM

algorithm (BWA 0.7.17-r1188: Li & Durbin (2009)). Discordant and split reads were iden-

tified and written into separate files using samtools version 1.9 (Li, 2011) and samblaster

version 0.1.24 (Faust & Hall, 2014). Size statistics were calculated for each sample using

a LUMPY script. The full reads were sorted using samtools. We then ran LUMPY ac-

cording to Layer et al. (2014). To prepare samples for DELLY2 analysis, samples were

sorted using samtools and duplicates were marked using Picard tools. DELLY2 was then

run using the default parameters.

LUMPY and DELLY2 outputs were then grouped into the same four groups as above

(see 1.2.3). The LUMPY analysis produced a separate output file for each individual,

which were then grouped using svtools v0.5.1. The DELLY2 analysis was run for each

group separately, producing an output for each group. The LUMPY outputs from svtools

were filtered such that all SVs are supported by at least half of the samples in that group

and breakend (BND) SVs were excluded. The DELLY2 outputs were filtered to exclude

any SVs that did not meet the overall pass (PASS) filter, and were subsequently filtered

such that at least half of the samples in the group met the pass filter for samples and BND

SVs were excluded. BND SVs were excluded since it could not be confidently determined

whether these were accurate or due to linkage map construction.

SVs were then further filtered and retained according to Lucek et al. (2019). Specifi-

cally, only SVs between 10kbp and 10Mbp in length that were supported by both programs



17

with at least 80% reciprocal coordinate overlap were retained. SVs from M. luteus and

M. cupreus were then merged into a northern dataset and a southern dataset, and from

these combined outputs, only SVs unique to either M. luteus or M. cupreus were kept in

each of the northern and southern datasets. These datasets were compared to find unique

SVs shared by northern and southern M. luteus and M. cupreus, creating datasets for SVs

unique to M. luteus or M. cupreus across the entire range.

To test for genetic divergence within SV regions, a STRUCTURE analysis using

K = 2 populations was performed for deletions, duplications, and inversions separately

in the northern, southern, M. luteus, and M. cupreus datasets. SVs of each type were

combined between the northern and southern datasets and between the M. luteus,and M.

cupreus datasets. Only bi-allelic sites were included and sites were thinned to 10 kbp

except in the case of inversions found in the combined M. luteus, and M. cupreus datasets,

where this left very few sites and sites with more than 25% missing data were filtered

out instead. These runs were performed with a burn-in period of 100,000 iterations and

1,000,000 iterations of data collection using an admixture model with no prior population

assumptions, and 8 runs were performed per analysis.

Finally, to test for subgenome di↵erences in SV location on the genome, gene anno-

tations were mapped to the unique SVs identified in the northern and southern datasets

where they existed, and genes were identified as belonging to either the A (M. guttatus-like)

or the B (other) subgenome where possible.
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1.3 Results

1.3.1 Phenotyping

A total of 17 M. luteus and 13 M. cupreus individuals were included in the phenotype

analysis. Each individual had between four and ten replicates measured. M. luteus is

larger than M. cupreus in all measured phenotypes (t-test: p < 0.01 for all, Fig. 1.5). This

reinforces the findings of Cooley et al. (2008), who also found M. luteus to have longer,

wider, and taller corollas than M. cupreus. Here, we’ve also found other floral traits, like

stamen and pistil length, to be larger in M. luteus than M. cupreus. Cooley et al. (2008)

also found M. cupreus to have developed a self-pollinating life history, which is typically

accompanied by smaller flower size (Orndu↵, 1969), as we see here.

FIG. 1.5: Phenotypic di↵erences between M. luteus and M. cupreus. Boxplots show the distri-

bution of phenotype values for the two putative species, with the median denotes by the middle

black line, the whiskers showing the interquartile range, and diamonds depicting outliers. As-

terisks denote significance based on a t-test between the values of M. luteus and M. cupreus
(p < 0.01*, p < 0.001**, p < 1⇥ 10

�10
***).

M. luteus and M. cupreus di↵ered significantly in their first principal component

(PC) values (t-test: p < 0.001, Fig. 1.6a). Almost 80% of the variance in phenotypes was
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explained by the first PC, indicating a high amount of collinearity among the variables.

This first PC explained the variance for five of the eight measured phenotypes, with greater

PC values indicating larger measurements. The second PC explained 9.3% of the variance

in phenotypes, and those values were significantly di↵erent between individuals from the

northern and southern populations defined by the results of the STRUCTURE analysis

(see 1.3.3; t-test: p < 0.01, Fig. 1.6b). The three traits whose variance was most greatly

explained by the second PC were peduncle length and the lengths of the upper and lower

calyx, with northern populations tending to have longer calyces and shorter peduncles.

FIG. 1.6: Dimensionality reduction of phenotype traits using PCA. (a) The first two principle

components (PC1 and PC2) are plotted against one another, with each point corresponding

to the averaged values of an individual and the color of each point corresponding to species.

The shapes show di↵erences between northern and southern individuals, and the inset at the

bottom right shows the loadings. (b) For PC1 and PC2, boxplots split by species and colored

by location (north or south) show the distribution of values along the principle component. The

central black bar shows the median, and the whiskers show the interquartile range. Diamonds

depict outliers.
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1.3.2 Linkage Map

The final linkage map consists of 24 linkage groups with a total length of 13,000 cM

(Fig. 1.7). While this genome length is quite large, it was the best possible arrangement

of markers to minimize overall LOD scores of marker order. However, it does suggest

that homoeologous sca↵olds from the two subgenomes were collapsed into a single linkage

group. Of the markers used to create the linkage groups, the average inter-marker spacing

is 11 cM. The largest linkage group contained 214 markers and spanned 2000 cM, while

the three smallest contain just one marker. After assembling the linkage groups into

pseudochromosomes using AllMaps, one linkage group was collapsed into another, leaving

a total of 23 pseudochromosomes spanning 185 Mbp. This is relatively close to, but less

than, the estimated number of chromosomes in M. luteus (2n = 4x = 60–62, (Vallejo-

Marin, 2012)). The largest pseudochromosome is 27 Mbp long, while the smallest is 163

kbp long.

Of the 6439 sca↵olds in the existing reference genome, 621 sca↵olds are included in

the 23 linkage groups. This accounts for 185 Mbp in the new genome compared to the

410 Mbp in the previous assembly. This new assembly also captures about half (23,318 of

46,855) of the genes in the previous assembly, which is believed to have captured nearly

the entire gene space of the M. luteus genome (Edger et al., 2017). The median size of

the excluded sca↵olds is 2500 kbp. The new assembly is also largely syntenic with the M.

guttatus genome (one of the parents of the initial allopolyploidization event; Fig. 1.8).

1.3.3 Genetic Clustering

The optimal number of clusters in the STRUCTURE analysis is K = 2. These two

clusters separate out a northern and southern group (Fig. 1.9) and do not appear to be

related to species identity (Fig. 1.9); M. luteus and M. cupreus individuals belong both
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FIG. 1.7: Genetic map of newly constructed linkage groups. The markers used to create the

linkage groups are shown here as horizontal bars. Linkage groups are on the x-axis, and genetic

distance in cM is shown on the y-axis.

primarily to cluster one and cluster two. Most individuals belonged primarily to one

cluster or the other, with relatively few individuals split roughly evenly between the two

clusters. From these results, we defined a northern and a southern group, determined by

the majority identity of each population with cluster one (southern) or cluster two (north-

ern). Las Cayenas (LC) and Termas del Flaco (TF) make up the northern populations;

Laguna de Maule (LM), Termas de Chillan (TC), and Laguna de Laja (LL) make up the

southern populations; and Los Queñes (LQ), which is located between these two groups

geographically, is split with one individual in each group. Interestingly, the only other

populations which contained individuals belonging multiple groups were Las Cayenas, the

northernmost population, which had one individual primarily belonging to cluster two,

and Laguna de Laja, the southernmost population, which had one individual belonging
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FIG. 1.8: Synteny of the constructed M. luteus genome to the M. guttatus genome. (a) The

synteny between the 23 pseudochromosomes of the reconstructued M. luteus genome assembly

and the sca↵olds of the M. guttatus genome assembly is shown, with each color corresponding to

a M. luteus pseudochromosome. Darker regions indicate duplications or overlapping matches.

(b) The synteny between M. luteus linkage group 1 and M. guttatus sca↵old 4 is highlighted,

emphasizing the synteny between the same region on M. guttatus with multiple regions on M.
luteus. The dark blue bars indicate the presence of genes in that region.

primarily to cluster one. There are six sequenced M. luteus individuals and seven se-

quenced M. cupreus individuals in the northern group, and sixteen sequenced M. luteus

individuals and thirteen sequenced M. cupreus individuals in the southern group.

1.3.4 Patterns of Divergence

Standing nucleotide diversity (⇡) is greater in the northern populations than in the

south (Fig. 1.10b, Table 1.2). In the north, the average value of ⇡ is 0.40 for both M.

luteus and M. cupreus, while in the south the average value of ⇡ is 0.31 and 0.25 for

M. luteus and M. cupreus, respectively. The northern and southern populations of each

species are also more diverged from each other than the two species are from each other

within either the north or south by both metrics of divergence (Fig. 1.10a). FST and



23

FIG. 1.9: Genome-wide population structure by species and region. (a–b) STRUCTURE plots

are shown for the optimal number of clusters (K = 2), with individuals depicted as vertical

bars. The colors correspond to the two clusters, with the relative height of each color depicting

proportion cluster identity within an individual. The plots contrast cluster identity for (a)

all M. cupreus and all M. luteus individuals and (b) cluster identity within the northern and

southern groupings of the two putative species. (c) Map of the study region in Chile showing

the locations of the sampled individuals across the sampled range. Percent cluster identity is

shown for each individual in a pieplot. The longitudes of the sampled individuals have been

jittered for easier comparison.

DXY both measure the divergence of the species, but FST reflects di↵erences in allele

frequencies between populations and thus can be thought of as a relative measure of

divergence, whereas DXY shows absolute divergence between populations. The average

FST value is 0.23 between the north and south populations of M. luteus and 0.36 between

the two M. cupreus populations, while the average FST value is 0.05 and 0.09 between M.

luteus and M. cupreus in the north and south, respectively. The average DXY value show

similar trends, with an average value of 0.40 and 0.44 between the northern and southern

populations of M. luteus and M. cupreus, respectively. The average DXY values between
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M. luteus and M. cupreus in the north and south are 0.27 and 0.24, respectively.

FIG. 1.10: Distributions of Metrics of Divergence (FST and DXY ) and Diversity (⇡). The

distributions of FST and DXY (a) are shown for M. luteus and M. cupreus in the north and

south, and within each putative species between the north and south. In general, divergence

is higher within each species between the north and south than it is between the two species

within the north or south. The distributions of ⇡ (b) are shown for M. luteus and M. cupreus in

the north and south. In general, the northern populations tend to have higher levels of genetic

diversity than the southern populations for both putative species.

There were many genes found in the most divergent regions of the genome. In the

expanded windows containing the top 1% ofDXY values betweenM. luteus andM. cupreus

in the north and south, there were 372 unique genes, and in the windows containing the

top 1% of FST values there were 1022 unique genes. Of these genes, several are likely

to regulate floral organ size based on the closest A. thaliana gene match. For example,

the genes Mlu 05771 and Mlu 17264 are among the top 1% FST regions in the north and

match to AT1G59640.1 (acts to control petal size) and AT4G04885.1 (acts to regulate

flower development), respectively. Many other identified genes act to control flowering
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TABLE 1.2: Metrics of divergence between M. luteus and M. cupreus and diversity within M.
luteus and M. cupreus by region.

Comparison FST DXY Group ⇡

M. cupreus (north) vs. M. cupreus (south) 0.36 0.45 M. cupreus (north) 0.40

M. cupreus (north) vs. M. luteus (north) 0.05 0.27 M. luteus (north) 0.40

M. cupreus (south) vs. M. luteus (south) 0.09 0.24 M. cupreus (south) 0.25

M. luteus (north) vs. M. luteus (south) 0.23 0.40 M. luteus (south) 0.31

time. Mlu 16286, Mlu 41093, and Mlu 39112 best match AT1G77300.1, AT2G06210.1,

and AT3G33520.1, respectively – all of which act to regulate flowering time.

1.3.5 Structural Variants

In general, there were more SVs found in M. cupreus than M. luteus, and more SVs

found in the north than the south. The di↵erence in SVs found between M. luteus and M.

cupreus may be due to M. luteus being used as the reference genome. Within the northern

group, there are 141 SVs unique to M. luteus and 143 SVs unique to M. cupreus (Table

1.3. Within the southern group, there are 83 SVs unique to M. luteus and 185 SVs unique

to M. cupreus. For each species in each group, the most common type of SV is deletions,

followed by duplications, with least common being inversions. Northern M. luteus has the

most inversions, numbering nine across the genome. There are 87 total SVs unique to M.

luteus across the entire sampled range, and 116 total SVs unique to M. cupreus across the

entire sampled range.

Divergence

We were interested in looking at the relationship between divergence and SVs unique

to each species in two ways: (1) are SVs su�cient for divergence (i.e. is divergence greater
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TABLE 1.3: Structural variant diversity by species and region.

Region Species Deletions Duplications Inversions Total

North
M. luteus 82 53 6 141

M. cupreus 92 45 6 143

South
M. luteus 48 31 4 83

M. cupreus 98 77 10 185

Entire Range
M. luteus 47 39 1 87

M. cupreus 73 41 2 116

in regions with SVs than without), and (2) do SVs promote divergence (i.e. do regions of

divergence disproportionately occur in SV regions). In looking at the first relationship, we

do not find evidence divergence is greater in regions of the genome containing SVs unique

to one of the two putative species. For both species in the north and south, DXY or FST

values are not greater in regions of the genome which contained SVs compared to those

that did not contain any SVs (t-test, p > 0.05). This is true overall and for deletions,

duplications, and inversions separately.

For the second relationship, we do not find that unique deletions or duplications

promote divergence, but we do see that unique inversions may promote divergence. Of the

regions of the genome which contain the greatest values of DXY or FST (top 1% and 5%

of values), the frequency at which deletions and duplications occur is generally the same

as their frequency across the whole genome. The frequency of deletions and duplications

is slightly higher in regions with the highest DXY or FST values, but the di↵erence is not

great (Table 1.4). In the south, though, the frequency of deletions in regions of high DXY

does appear to be higher than across the entire genome. The di↵erence in frequencies for

inversions in regions of divergence versus overall, however, is much more clear, especially
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when looking at SVs unique to either species across the entire range. For this comparison,

inversions occur at 100–150x greater frequency in regions of high DXY and FST than across

the entire genome. Despite this, a chi-square test shows no significant di↵erences by group

in any of these comparisons, including inversions (p > 0.05 for all).

TABLE 1.4: Structural variant frequency across the entire genome and in genomic regions of

highest divergence.

Region SV Type Overall FST (1%) FST (5%) DXY (1%) DXY (5%)

North

Deletions 56% 66% 60% 62% 61%

Duplications 53% 66% 60% 57% 58%

Inversions 8% 16% 16% 14% 17%

South

Deletions 49% 61% 62% 76% 73%

Duplications 42% 61% 61% 52% 63%

Inversions 14% 18% 17% 18% 22%

Entire Range

Deletions 31% 36% 36% 36% 36%

Duplications 27% 36% 35% 31% 33%

Inversions 0.009% 1.2% 1.5% 0.9% 1.3%

We also do not see evidence for increased population structure by species in SV regions

in the genome. The STRUCTURE analysis of SV regions showed no distinction in cluster

identity between species for all three types of SVs. This was true for SVs unique to

M. luteus or M. cupreus in the north and south and in SVs unique to M. luteus or M.

cupreus across the range sampled (Fig. 1.11). For each analysis, this was confirmed using

a Mann-Whitney U Test ( p > 0.05).
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FIG. 1.11: Population structure by SV type and comparison. Population structure results from

a STRUCTURE analysis with K = 2 are shown for deletions, duplications, and inversions

unique to one of the two putative species in either the north or south (left) or the entire range

sampled (right). The input loci for each analysis were taken from the regions of the genome in

which an SV type of interest resided. Each vertical bar represents one individual, with the two

colors showing percent identity of cluster one (pink) and cluster two (blue). These two clusters

are unique to these analyses and do not correspond to either species or region. M. cupreus and

M. luteus individuals are separated by a black line. For all SV types across the two comparison

types, population structure does not di↵erentiate M. luteus from M. cupreus (Mann-Whitney

U Test: p > 0.05).

Subgenome Analysis

Structural variants did not reside preferentially on one subgenome or the other. Of

the genes assigned to one subgenome or the other, 670 mapped to subgenome A and 596 to

subgenome B in the SVs unique to M. cupreus across the sampled range, and 497 mapped

to subgenome A and 435 to subgenome B in the SVs unique toM. luteus across the sampled

range. While this indicates a slightly higher number of genes assigned to subgenome A

across the SVs, most SVs contained both subgenome A and B genes, often in roughly equal
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proportions. This may indicate that our linkage map collapsed homoeologous chromosomes

together. Moreover, the vast majority of genes mapped to the SVs could not be assigned

to one subgenome or the other. More than 99% of genes located on the SVs in both

M. cupreus and M. luteus could not be assigned to a subgenome. Consequently, broader

trends about subgenome dominance cannot be assessed.

1.4 Discussion

1.4.1 Population Structure

Here, we found no clear population structure distinguishingM. luteus fromM. cupreus,

and instead found genetic structuring di↵erentiating a northern and southern population.

However, there are clear phenotypic di↵erences between the two putative species, with

very little phenotypic variance explained by the northern and southern divide, indicat-

ing consistent genetic di↵erentiation between M. luteus and M. cupreus at some scale.

These phenotypic di↵erences confirm and expand on previously observed di↵erences be-

tween the two taxa (Cooley et al., 2008), and support the assertion that M. cupreus is

moving toward a selfing habit. Consequently, this system is also a promising candidate

for a case of sympatric speciation – an exciting finding in itself, as there have been few

documented cases of sympatric speciation (Bolnick & Fitzpatrick, 2007). The four crite-

ria for sympatric speciation (modified in Bolnick & Fitzpatrick (2007) from Coyne et al.

(2004)) are: (1) overlapping ranges at the scale of dispersal distance for the two species,

(2) speciation is complete, (3) the two species must be sister species, and (4) allopatric

speciation is very unlikely. M. luteus and M. cupreus certainly have overlapping ranges

in the areas sampled for this research, and their species descriptions also describe overlap-

ping ranges (von Bohlen V., 1995). However, their ranges are not identical; M. luteus can
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occupy a greater range of altitudes as M. cupreus, and its range extends slightly further

to the north and south (von Bohlen V., 1995). Despite this, the large majority of their

ranges overlap, suggesting the first criterion is met. As for the third condition, the two

species are at least in the same species complex as each other within the Simiolus group

of Mimulus (Vickery, 1966). Only one other species (M. tigrinus) is also a part of this

complex, indicating they share at least a recent speciation event, if not the most recent.

The lack of genome-wide divergence and the genetic structuring at the population-level

found here, however, suggests that it is unlikely an additional speciation event separates

the two species and thus this system likely meets the third criterion. This would need to be

more rigorously tested before it can be confirmed, however. It also appears unlikely that

these two species have experienced allopatric speciation and are now in secondary contact,

indicating the fourth condition is met. Were this a case of secondary contact, we would

expect that genetic clustering would be evident at the species level, since the genomes of

the two species would have had a chance to evolve in isolation from one another. Instead,

we see no evidence of genome-wide structuring by species. This brings us to the second

criterion: is the speciation process complete?

By the standard BSC, the answer is no. The two species still hybridize, demonstrating

a lack of reproductive isolation between them, and at a genome level they are not genet-

ically distinct. However, the answer is less certain when considering the more recently

proposed genic view of speciation. This view states that complete reproductive isolation is

not necessary to demarcate species, but rather the condition that two species will not lose

their divergence when they come into contact and will instead continue to diverge (Wu,

2001). Given the clear and consistent phenotypic di↵erences between the two putative

species, there must be some fraction of the genome which is di↵erentiated between M.

luteus and M. cupreus. This shows that while mating may be random with respect to

most loci in the genome (demonstrated by the lack of species-level structuring across the
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genome), it is necessarily nonrandom at the loci responsible for the observed phenotypic

di↵erences. By the genic species definition, whether or not M. luteus and M. cupreus are

species depends on whether the divergence in these di↵erentiated regions is broken down

by hybridization.

Determining this is a necessary next step to understanding whether this is a case

of sympatric speciation. The consistency of the phenotypic di↵erences across the range

suggest that these di↵erences arose before the northern and southern groups di↵erentiated,

but despite this, we see much higher levels of divergence between the north and south

than between species. To understand whether this is due to current gene flow breaking

down genome di↵erentiation or whether this is a result of past gene flow (which has since

decreased) requires subsequent studies looking at current levels of gene flow between the

two taxa. Since we have observed that M. cupreus is evolving a selfing habit and is visited

less by its bumblebee pollinator than M. luteus (Cooley et al., 2008), one such study could

look at gene flow at a pollinator-level by collecting pollen samples from bumblebees. It

would also be interesting to observe the fitness of the hybrids between the two taxa, since

they have been observed in the wild, to see if divergence is reinforced by decreased fitness

in the hybrids. Additionally, we found here that several genes in the most divergent regions

of the genome may be related to flowering time. It would thus be interesting to look at

phenological di↵erences between the two taxa to see if gene flow is reduced by mismatched

phenologies. These questions must be answered before it can be determined if these two

taxa are species or are on their way to becoming species, since it is possible that they are

not on the path to speciation and are instead in equilibrium as di↵erent races of the same

species (Matessi et al., 2002).
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1.4.2 Structural Variant Diversity

We found a very high number of SVs present in this system; there were roughly 200

SVs unique to either M. luteus or M. cupreus across the sampled range and even more

within just the northern or southern populations. Some of the deletions or duplications

in particular may be an artifact of the linkage map assembly; the high cM length of the

map (reflecting high recombination rates), in conjunction with the subgenome analysis

showing genes assigned to both subgenomes residing on the same SV, indicate a high

likelihood of homoeologous chromosomes (the comparable chromosome copies from the

two subgenomes) getting collapsed within the same psuedochromosome in our assembly.

This collapse would likely result in false deletions or duplications, though false inversions

are less likely to be due to homoeologous chromosome collapse. Despite this, our SV

filtering was performed such that all SVs must be shared by a majority of individuals in

each species and that the SVs must be found in only one of the two species. This means

that while all SVs may not reflect biologically accurate chromosomal rearrangements, they

are all found in the majority of the individuals of one species and not the other. Moreover,

our linkage map only accounted for roughly half of the estimated genome size of M. luteus

and half of its genes. Consequently, there may be many more SVs across the genome that

we were unable to detect.

Additionally, these findings give merit to the idea that chromosomal structural re-

arrangements should be explicitly taken into account when studying divergence. While

numerous studies have reflected on the transition from small regions of divergence in the

genome to larger genomic islands of divergence (Turner et al., 2005; Riesch et al., 2017),

some even explicitly acknowledging the roles that chromosomal rearrangements may play

(Ort́ız-Barrientos et al., 2002), few speciation studies have directly address the role that

SVs play in this process (Wellenreuther et al., 2019). Indeed, one review of plant specia-
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tion makes the direct assumption that chromosomal rearrangements play a negligible role

in the process (Lexer & Widmer, 2008). However, even in diploid systems, such as walking

sticks (Lucek et al., 2019) and sunflowers (Rieseberg et al., 1995), structural variants have

been shown to be quite common and likely involved in divergence. As genomic technologies

continue to advance, scientists will be able to more directly consider the diversity of SVs

and their role in speciation (Wellenreuther et al., 2019).

1.4.3 Structural Variant Divergence

Here, we found some evidence of increased divergence in inversion loci, but not in

deletion or duplication loci. FST and DXY values were not greater in regions containing

unique deletions or duplications, nor were the genomic regions with the greatest FST

and DXY values enriched for deletions or duplications. For unique inversions, FST and

DXY values were also not greater, but we did observe an enrichment of inversions in the

genomic regions with the greatest FST and DXY values. This largely corroborates what

Lucek et al. (2019) found in SV di↵erentiation in two ecotypes of walking sticks (Timema),

where there was no observed di↵erence in FST values was found between SV regions and

the null distribution across the genome for deletions, duplications, and inversions.

The lack of di↵erentiation in SV regions could be due to the fact that there are so

many of them. Given that the SVs number in the hundreds, it is not surprising that

divergence is not necessarily increased in SVs. It is also perhaps unsurprising that regions

of the genome with the top 1% of FST and DXY values are enriched for inversions, but not

deletions or duplications. Inversions are e↵ective mechanisms for reducing recombination

in inverted loci, and have been shown to capture genes related to adaptation in several

cases of the closely related Mimulus guttatus (Twyford & Friedman, 2015; Lee et al.,

2016), as well as in other systems (e.g. Ullastres et al., 2014; Kapun & Flatt, 2019). With



34

reduced recombination, and thus less gene flow, these regions then have a greater chance

of di↵erentiation. Ultimately, though, a better-resolved genome assembly for M. luteus

will allow us to better understand its genome structure and assess with greater accuracy

the distribution and diversity of SVs. With this information, we will also be better able

to identify regions of divergence and their associations with SVs.

1.4.4 Genes of Divergence

In the regions of divergence identified here, we found several genes related to the

phenotypic di↵erences we measured in this study. The closest A. thaliana matches for two

M. luteus genes found in these regions, Mlu 05771 and Mlu 17264, are AT1G59640.1 and

AT4G04885.1, regulate flower size, which we found to be significantly di↵erent between M.

luteus and M. cupreus. Interestingly, many of the genes in these regions of divergence also

regulate flowering time. For example, AT1G77300.1, AT2G06210.1, and AT3G33520.1 are

the closest A. thaliana matches for Mlu 16286, Mlu 41093, and Mlu 39112, respectively,

and have been shown to regulate flowering time in di↵erent ways. While flowering time was

not measured here and would need to be studied further to confirm that it varies between

M. luteus and M. cupreus, flowering time divergence has been shown to rapidly develop

in Brassica rapa allopolyploids (Pires et al., 2004) and M. guttatus populations (Hall &

Willis, 2006). The genes found here which relate to flowering time suggest that this may

be a mechanism by which gene flow is reduced between the two species, in addition to the

shift towards selfing in M. cupreus shown previously (Cooley et al., 2008). However, all

of these inferences are based on the closest A. thaliana genes, which is not a close relative

of Mimulus. Consequently, the function of genes within regions of divergence should be

tested either within Mimulus or a more closely related relative before making conclusions

about their true functions. Regardless, the functions of the A. thaliana matches found
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here give us a good starting point for further exploration of the di↵erences of M. luteus

and M. cupreus.

1.4.5 Patterns of Subgenome Divergence

Finally, we did not find evidence of subgenome dominance in this study, but it is likely

that this is grounded in the incomplete linkage map than in biological reality. Subgenome

dominance has been shown to rapidly develop in resynthesized allopolyploids (Edger et al.,

2017) and is documented in many older allopolyploid genomes (Flagel et al., 2008; Cheng

et al., 2012; Doyle et al., 2008). Consequently, it is likely that there is some level of

subgenome dominance in this system, but we are unable to observe it because of an incor-

rectly assembled genome. As mentioned previously, it is likely that homoeologous chro-

mosomes were collapsed in this constructed genome assembly, meaning that the related

regions on the chromosome copy belonging to subgenome A and B were likely condensed

into a single region or consecutive regions on the created linkage map and resulting genome

assembly. Because of this, the two subgenomes cannot be evaluated separately, as we ob-

served with genes belonging to both subgenomes, often in roughly equal numbers, located

on a single SV. Even beyond this genome assembly, however, most genes annotated for

M. luteus have yet to be assigned to a subgenome. Of the genes included here, less than

1% were mapped to a subgenome. Therefore, to properly evaluate subgenome dominance,

a better genome assembly must be created, and more genes must be mapped to their

respective subgenomes.

1.4.6 Conclusions

Overall, we found substantial evidence that M. luteus and M. cupreus are phenotyp-

ically di↵erentiated but not genomically di↵erentiated. Further studies looking at current
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levels of gene flow and mechanisms of divergence, such as pollinator or phenology di↵er-

ences, must be done before we can conclude whether or not these species are in the process

of sympatric speciation. Our results show that structural variants are numerous in this

system and suggest that it may be important to explicitly study their role in divergence

in other systems. In this system, our results indicate that inversions may contribute to

divergence, but this should be more thoroughly tested with a more complete and better

annotated reference genome for M. luteus. We identified several genes in regions of ele-

vated FST which controlled flower size, which we measured to di↵er between the species,

as well as many which controlled flowering time, which could contribute to limiting gene

flow between the species. Future work to improve the reference genome will allow for a

more thorough search for the genes which are being divergently selected upon in the two

species, as well as allow for an analysis of subgenome dominance.
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