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ABSTRACT

Production software packages have become increasingly complex with millions of
lines of code, sophisticated control and data flow, and references to a hierarchy
of external libraries. This complexity often introduces performance inefficiencies
across software stacks, making it practically impossible for users to pinpoint
them manually. Performance profiling tools (a.k.a. profilers) abound in the
tools community to aid software developers in understanding program behavior.
Classical profiling techniques focus on identifying hotspots. The hotspot analysis
is indispensable; however, it can hardly diagnose whether a resource is being used
in a productive manner that contributes to the overall efficiency of a program.
Consequently, a significant burden is on developers to make a judgment call on
whether there is scope to optimize a hotspot. Derived metrics, e.g., cache miss
ratio, offer slightly better intuition into hotspots but are still not panaceas. Hence,
there is a need for profilers that investigate resource wastage instead of usage.
To overcome the critical missing pieces in prior work and complement existing
profilers, we propose novel fine- and coarse-grained profilers to pinpoint varieties
of performance inefficiencies and provide optimization guidance for a wide range
of software covering benchmarks, enterprise applications, and large-scale parallel
applications running on supercomputers and data centers.

Fine-grained profilers are indispensable to understand performance inefficien-
cies comprehensively. We propose a whole-program profiler called LoadSpy, which
works on binary executables to detect and quantify wasteful memory operations
in their context and scope. Our observation, which is justified by myriad case
studies, is that wasteful memory operations are often an indicator of various
forms of performance inefficiencies, such as suboptimal choices of algorithms
or data structures, missed compiler optimizations, and developers’ inattention
to performance. Guided by LoadSpy, we are able to optimize a large number
of well-known benchmarks and real-world applications, yielding significant speedups.

Despite deep performance insights offered by fine-grained profilers, the high
overhead keeps them away from widespread adoption, particularly in production.
By contrast, coarse-grained profilers introduce low overhead at the cost of poor
performance insights. Hence, another research topic is how we benefit from both,
that is, the combination of deep insights of fine-grained profilers and low overhead
of coarse-grained ones. The first effort to do so is proposing a lightweight profiler
called JXPerf. It abandons heavyweight instrumentation by combining hardware
performance monitoring units and debug registers available in commodity CPUs to
detect wasteful memory operations. Compared with LoadSpy, JXPerf reduces
the runtime overhead from 10× to 7% on average. The lightweight nature makes
it useful in production. Another effort is proposing a lightweight profiler called
FVSampler, the first nonintrusive profiler to study function execution variance.
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Chapter 1

Introduction

Performance inefficiencies exist everywhere in computer systems ranging from smartphones

to data centers. On the one hand, production software packages have become increasingly

complex. They are comprised of a large amount of source code, sophisticated control

and data flow, a hierarchy of external libraries, and growing levels of abstraction. This

complexity often introduces inefficiencies across software stacks, leading to performance

degradation. For example, Akamai studies [5] show that a 100-millisecond latency in web-

site generation drops conversion rates by 7% and 53 % of visitors will leave if a mobile

website fails to load within three seconds. On the other hand, the evolution of hard-

ware outpaces the performance improvement of software, increasingly leading to resource

wastage and energy dissipation in emerging architectures [17, 93]. Thus, with no careful

software design and implementation, developers can easily introduce performance ineffi-

ciencies embedded deep in a large code base that are difficult to identify; even worse such

inefficiencies further prevent software from enjoying full hardware capacity.

There is a long history of compiler optimizations aimed at statically analyzing and

eliminating performance efficiencies by techniques such as common subexpression elimi-

nation [32], value numbering [113], constant propagation [140], to name a few. However,

they have a myopic view of a program, which limits their analysis to a small scope —

individual functions or files. Layers of abstractions, dynamically loaded libraries, multi-

2



lingual components, aggregate types, aliasing, sophisticated control flow, input-specific

path-specific redundancies, and the combinatorial explosion of execution paths make it

practically impossible for compilers to obtain a holistic view of a program to eliminate

efficiencies comprehensively. Link-time optimization [43] can offer better visibility. How-

ever, the analysis is still conservative and may err on the side of being less exhaustive to

reduce prohibitive analysis costs. Whole-program link-time optimizations [65, 129] have

provided less than 5% average speedup although a lot more headroom exists as we show

in this dissertation. Moreover, static compiler analysis is well-known for its inaccuracy in

analyzing aliasing and pointers. Thus, despite their best efforts, compilers often fall short

of eliminating runtime inefficiencies.

Orthogonal to static analysis, profiling (a form of dynamic analysis) focuses on under-

standing runtime inefficiencies of a program, which mostly identifies execution hotspots

such as code regions suffering from excessive cache misses. The hotspot analysis can

hardly diagnose whether a resource is being used in a productive manner that contributes

to the overall efficiency of a program although derived metrics, e.g., Cycles-Per-Instruction

(CPI), cache miss ratio, offer slightly better intuition into hotspots. Hence, there is a need

for profilers that pinpoint resource wastage instead of usage.

Our observation, which is justified by myriad case studies, is that many kinds of

performance inefficiencies appearing across the software stacks are usually in the form of

wasteful memory operations, e.g., computations whose results may not be used [19, 117],

re-computation of already computed values [144], unnecessary data movement [24, 74, 81,

87, 142], excessive synchronization [22, 133], or in the form of function execution variance,

e.g., long-tail latency. Unfortunately, existing static and dynamic analysis techniques are

either inefficient or incompetent in addressing them.
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1.1 Thesis Statement

Profilers that leverage fine-grained code instrumentation or coarse-grained, nonintrusive

sampling triggered by hardware performance monitoring units can identify and quantify

wasteful memory operations and function execution variance in programs and associate

them with program execution contexts and source code to offer rich insights needed for

developer actions.

1.2 Contribution Highlights

To overcome the critical pieces left out in prior work and complement existing profiling

techniques, we propose several novel profiling techniques aimed at pinpointing wasteful

memory operation and function execution variance.

1.2.1 Wasteful Memory Operation Detection

Wasteful memory operations are those that produce/consume data to/from memory that

may have been avoided. We observe that a large fraction of wasteful memory opera-

tions in the same code region often correlate with some kind of inefficiency. For example,

performance inefficiencies such as suboptimal choices of algorithms or data structures,

developers’ inattention to performance, missed opportunities to optimize common cases,

and poor compiler code transformation can show up as substantial wasteful memory op-

erations. We address this problem with two distinct strategies: fine- and coarse-grained

profiling.

Fine-grained profiling is a means to monitor execution at microscopic details: it

monitors each binary instruction instance, including its operator, operands, and runtime

values in registers and memory. A key advantage of microscopic program-wide moni-

toring is that it can identify inefficiencies irrespective of user-level program abstractions.

Prior work [24, 144, 142, 100] has shown that fine-grained profiling techniques can iden-

tify many forms of software inefficiencies and offer detailed guidance to tune code. We
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propose LoadSpy, a whole-program fine-grained profiler for pinpointing wasteful memory

operations, which are often an indicator of resource wastage. The strength of LoadSpy

exists in providing valuable guidance to developers for code tuning — calling contexts

of the two parties involved in a wasteful operation, narrowed-down scopes to focus on

optimization, metrics to understand the relative significance of resource wastage, and a

GUI for the source code attribution. Guided by LoadSpy, we optimize several well-known

benchmarks, e.g., SPEC CPU benchmarks, and real-world applications, e.g., Apache Avro,

yielding significant speedups.

Despite deep insights offered by fine-grained profiling, the high overhead may keep

it away from widespread adoption, particularly in production where a strict service-level

agreement (SLA) needs to be complied with. By contrast, coarse-grained profiling

introduces low overhead at the cost of poor program insights. Coarse-grained profilers

such as Intel VTune [2], perf [78], gprof [52], OProfile [76], and CrayPAT [34] monitor

code execution to identify hot code regions, idle CPU cycles, arithmetic intensity, and

cache misses, etc. These tools, with low overhead, can recognize the utilization (saturation

or underutilization) of hardware resources, but they cannot inform whether resources are

being used efficiently. A hotspot need not mean inefficient code, and conversely, the lack of

a hotspot need not mean better code. To benefit from both (i.e., the deep insights of fine-

grained profiling and the low overhead of coarse-grained profiling), we propose JXPerf, a

lightweight profiler for pinpointing wasteful memory operations with no instrumentation

to memory accesses. JXPerf uses hardware performance monitoring units to sample

memory locations accessed by a program and uses hardware debug registers to monitor

subsequent accesses to the same memory. Two key differentiating aspects of JXPerf

when compared to a large class of coarse-grained profilers are its ability to (1) filter out

and show code regions that are definitely involved in some kind of inefficiency at runtime

(coarse-grained profilers cannot differentiate whether or not a code region is involved in

any inefficiency) and (2) pinpoint the two parties involved in wasteful work — the first

instance of a memory access and a subsequent, unnecessary access of the same memory
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— which offer actionable insights (coarse-grained profilers are limited to showing only a

single party). The result is a lightweight measurement with attribution of inefficiencies

to their provenance — machine and source code within full calling contexts (a.k.a. call

paths). JXPerf introduces only 7% runtime and memory overhead, making it useful

in production. Guided by JXPerf, we are able to optimize an array of benchmarks

and real-world applications (that are the subjects of study and optimization for decades)

by improving compiler code transformation and choosing superior algorithms or data

structures.

1.2.2 Function Execution Variance Detection

Execution variance among different invocation instances of the same function is a com-

mon symptom of performance losses. On the one hand, Instrumentation-based tools avail

themselves to function instance level metrics because the instrumentation can be placed at

the entry and exit of a function; in fact, even finer-grained placement such as statements

or instructions is also possible. They can count resources consumed by any invocation

instance of the same code region albeit the overhead can be nontrivial. Although most

instrumentation-based tools provide the selective instrumentation option to reduce over-

head, selective ones have systematic blind spots and yet incur relatively high overhead.

Even a 2× overhead via the selective instrumentation is problematic when profiles are

needed from large-scale execution in a production setting. On the other hand, sampling-

based tools insert no instrumentation and have low overhead. However, they provide

statistics, e.g., total execution time, for a function without distinguishing different invo-

cation instances of that function because they cannot synchronize samples with function

boundaries (i.e., entry and exit).

Measuring the variance across function instances requires starting and stopping mea-

surements at function entry and exit. This act of starting and stopping measurements

at every function entry and exit is equivalent to placing instrumentation, which defeats

the purpose of lightweight sampling. Hence, there is a dilemma, how can we enjoy the
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low overhead of sampling and yet collect meaningful measurements at function instance

boundaries so that we can compare execution variance across different invocations of the

same function? We would like to emphasize that we are interested in the variance of two or

more execution instances of the same function in a single execution1. However, we would

like to collect such variance for a large number of functions that a program executes and

we would like to do so in a single profiling session.

We propose FVSampler, a lightweight, sampling-based variance profiler. The

strength of FVSampler exists in abandoning heavyweight code instrumentation and re-

quiring no prior knowledge of a program for function-level variance monitoring. It employs

hardware performance monitoring units in conjunction with hardware debug registers to

sample and monitor whole function instances (call till return) and collect performance met-

rics, e.g., CPU cycles, retired instructions, cache misses, network packets, in each sampled

function instance. Also, FVSampler is capable of pinpointing both intra-thread and

inter-thread variance, which helps isolate performance problems in complex code bases.

FVSampler typically incurs only 6% runtime overhead and negligible memory overhead,

making it suitable for high-performance computing software. A thorough evaluation of

several parallel applications shows that quantifying variance on per sampled function in-

vocation opens up a new avenue for understanding performance losses; mitigating the

causes of variance enhances performance. Guided by FVSampler, we are able to tune

algorithms and data structures to obtain significant speedups.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 offers the background

knowledge necessary to understand the technical details. Chapters 3, 4, and 5 depict

the methodology and implementation of LoadSpy, JXPerf, and FVSampler, as well

as evaluate their accuracy, overhead, and effectiveness by applying them on a number of

1Comparing total samples taken by two different functions or functions from two different threads or
processes is straightforward and available in almost all profilers, sampling or otherwise.
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benchmarks and real-world applications. Finally, Chapter 6 presents our conclusions and

overviews several possible future directions.
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Chapter 2

Background

This chapter offers some background knowledge to facilitate the understanding of technical

details in the subsequent chapters.

2.1 Intel Pin

Intel Pin [84] is a dynamic binary instrumentation framework. It provides rich APIs

for users to build client tools (a.k.a. Pintools). A Pintool consists of two components:

instrumentation code and places where the code is inserted. The former can be arbitrary

C/C++ code and the latter can be arbitrary places in a binary executable. For instance,

we can insert the instrumentation code at the place where a memory load instruction

occurs to obtain its loaded value.

2.2 Hardware Performance Monitoring Unit

Modern CPUs expose programmable performance monitoring units (PMUs) that count

various hardware events such as memory accesses, retired instructions, CPU cycles, and

cache misses, to name a few. PMUs can be configured in two modes: counting and

sampling. In counting mode, users can read the number of occurrences of hardware events

from PMUs at any point during program execution. In sampling mode, when a threshold

9



number of hardware events elapse, PMUs trigger an overflow interrupt. A profiler is able

to capture the interrupt as a signal ( a.k.a. sample) and attribute the metrics collected

along with the sample to the execution context. PMUs are per CPU core and virtualized

by the OS for each thread.

Intel offers Precise Event-Based Sampling (PEBS) [28] in SandyBridge and following

generations. PEBS provides the effective address (EA) at the time of sample when the

sample is for a memory access instruction such as a load or store. This facility is often

referred to as address sampling. Also, PEBS can capture the precise instruction pointer

(IP) for the instruction resulting in counter overflow. AMD Instruction-Based Sampling

(IBS) [38] and PowerPC Marked Events (MRK) [128] offer similar capabilities.

2.3 Hardware Debug Register

Hardware debug registers [64, 88] trap the CPU execution for debugging when the program

counter (PC) reaches an address (breakpoint) or an instruction accesses a designated

address (watchpoint). One can program debug registers to trap on various conditions:

accessing addresses, accessing widths (1, 2, 4, and 8 bytes), and accessing types (trap-

on-store (W TRAP) and trap-on-load-or-store (RW TRAP)). The number of hardware debug

registers is limited; an x86 processor has four debug registers and a PowerPC processor

has one debug register.

2.4 Linux perf event

Linux offers a standard interface to program PMUs and debug registers via the

perf event open system call [77] and the associated ioctl system call. A PMU sam-

ple is an asynchronous CPU interrupt caused when an event counter overflows, while a

watchpoint exception is a synchronous CPU trap caused when an instruction accesses a

monitored address. Both PMU samples and watchpoint exceptions are handled via Linux

signals. The user code can mmap a circular buffer to which the kernel keeps appending the
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PMU data on each sample and extract the signal context on each watchpoint exception.

2.5 Java Virtual Machine Tool Interface

Java virtual machine tool interface (JVMTI) [31] is a native programming interface of the

JVM. A JVMTI client can develop a debugger/profiler (a.k.a. JVMTI agent) in C/C++

to inspect the state and control the execution of JVM-based programs. JVMTI provides

a number of event callbacks to capture JVM initialization and death, thread creation and

destruction, method loading and unloading, garbage collection start and end, to name

a few. User-defined functions are registered in these callbacks and invoked when the

associated events happen. In addition, JVMTI maintains a variety of information for

queries, such as the map from the machine code of each JIT-compiled (JITted) method

to byte code and source code, and the call path for any given point during the execution.

JVMTI is available in off-the-shelf Oracle HotSpot JVM.
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Chapter 3

Redundant Loads: A Software

Inefficiency Indicator

3.1 Introduction

Execution profiling aims to understand the runtime behavior of a program. Coarse-grained

profilers concentrate on execution hotpots and usually cannot distinguish efficient vs. in-

efficient code. For example, they cannot identify that repeated memory loads of the

same value or result-equivalent computations waste both memory bandwidth and pro-

cessor functional units. Fine-grained profilers can pinpoint inefficiencies by monitoring a

subset of individual operations such as operations with symbolic equivalence [144], dead

memory stores [24], and operations writing the same value to target registers or mem-

ory locations [142]. They have, however, overlooked an important category of wasteful

memory operations — temporal load redundancy — loading the same value from the same

memory location. The code on the left of Listing 3.1 shows redundant operations that

are invisible in existing fine-grained profilers. In this code, assume all the scalars are in

registers and vectors are in memory. Since there are no “dead store” operations (a store

followed by another store to the same location without an intervening load), DeadSpy [24]

does not identify any inefficiency. Since the values written in t and delta always change,
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RedSpy [142] does not report any “silent store” operations [74]. Finally, since there is no

symbolic equivalent computation, RVN [144] does not report any inefficiency. Further-

more, because the optimization involves the mathematically equivalent transformation, as

shown on the right of Listing 3.1, it is difficult to optimize with other compiler techniques

such as polyhedral optimization [110].

1 while (t < threshold) {

2 t = 0;

3 for(i = 0; i < N; i++)

4 I t += A[i] + B[i] * delta;

5 delta -= 0.1 * t;

6 }

1 for (i = 0; i < N; i++) {

2 a += A[i];

3 b += B[i];

4 }

5 while (t < threshold) {

6 t = a + b * delta;

7 delta -= 0.1 * t;

8 }

Listing 3.1: An example code (on the left) with temporal inefficiencies that cannot be
identified by existing fine-grained profilers. Because arrays A and B are immutable in the
loop nest, computing on these loop invariants introduces many redundancies. One can
hoist the redundant computation out of the loop (on the right) for optimization.

The code on the left of Listing 3.2 shows another kind of load redundancy, which loads

the same value from nearby memory locations. Even though each element of array A is

only loaded once, adjacent elements with the same value result in loading the same value

and the subsequent redundant computation. We refer to this type of redundancy as spatial

load redundancy.

1 int A[N] = {1, 1, 1, 15};

2 for(i = 0; i < N; i++) {

3 I t += func(A[i]);

4 }

1 int A[N] = {1, 1, 1, 15};

2 a = func(A[0]);

3 for(i = 0; i < N; i++) {

4 if (A[i] != A[i-1])

5 a = func(A[i]);

6 t += a;

7 }

Listing 3.2: An example code (on the left) with spatial inefficiencies that cannot be iden-
tified by existing fine-grained profilers. The load redundancy happens at line 3 where the
program loads the same value from nearby memory locations since some adjacent elements
of array A have the same value. Such redundancy further results in redundant computa-
tion involved in the function func(). Because func() always returns the same value for
the same input. One can compare if the adjacent elements in array A are equivalent to
eliminate redundant computation (on the right). If they are the same, one can reuse the
return value of func(), which is generated in the previous iteration.

Listing 3.1 and 3.2 show a tip of the iceberg of the inefficiencies we target in this

work. From our observation, a variety of inefficiencies exhibit substantial redundant loads;
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conversely, the presence of a large fraction of redundant loads in an execution is a symptom

of some kind of inefficiency in the code regions that exhibit such redundancy. Furthermore,

the subsequent operations based on redundant loads are potentially redundant.

3.1.1 Contribution Summary

We have designed and implemented a developer tool — LoadSpy — aimed at pinpointing

and quantifying load redundancy in native languages, such as C, C++, and Fortran.

LoadSpy highlights precise source code in its full calling contexts and the two parties

involved in a redundant load. Additionally, LoadSpy narrows down the investigation

scope to help developers focus on the provenance of inefficiencies. A thorough evaluation

of a suite of benchmarks and real-world applications shows that looking for redundant

loads in a program offers an easy avenue for performance enhancement.

In this work, we make the following contributions:

• Show that redundant loads are a common indicator of various forms of software

inefficiencies. This finding serves as the foundation of LoadSpy.

• Describe the design of LoadSpy — a whole-program fine-grained profiler for pin-

pointing redundant loads.

• Develop strategies for analyzing a large volume of profiling data by attributing re-

dundancy to runtime contexts, objects, and scopes.

• Enable rich visualization for profiling data coming from different threads/processes

with a user-friendly GUI, which improves the usability for non-experts.

• Apply LoadSpy to pinpoint inefficiencies in well-known benchmarks and real-world

applications and eliminate LoadSpy-found inefficiencies by avoiding redundant

loads, which yield nontrivial speedups.
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3.2 Related Work

There exist many compiler techniques and static analysis techniques [27, 32, 85, 60] to

identify redundant computation. However, these static approaches suffer from limitations

related to the precision of alias information, optimization scope, and insensitivity to inputs

and execution contexts. To address these issues, recent approaches convert source code to

specific notations for redundancy detection and removal [37], or target specific algorithms

for optimization [36]. However, these approaches require substantial prior knowledge to

identify whether a program suffers from redundancies that are worthy of optimization. In

contrast, LoadSpy monitors execution, avoids inaccuracies associated with compile-time

analysis, and needs no prior knowledge of the monitored program.

There exist many hardware-assisted approaches [80, 79, 74, 75, 91, 90, 153, 19] that

optimize redundant operations. However, these approaches require hardware extension,

which is unavailable in commodity processors. Instead, LoadSpy is a pure software

approach and does not need any hardware changes. The remaining section reviews only

other profiling techniques.

3.2.1 Value Profiling

LoadSpy is a value-aware profiler; value profiling techniques are closely related to our

work. Calder et al. [20, 21, 42] propose probably the first value profiler on DEC Alpha

processors. They instrument the program code and record top N values to pinpoint

invariant or semi-invariant variables stored in registers or memory. A variant of this

value profiler is proposed in later research [139]. Burrows et al. [18] use PMUs to sample

values in Digital Continuous Profiling Infrastructure [7]. Wen et al. [143] combine PMUs

and debug registers available in x86 CPUs to identify wasteful memory operations. These

approaches do not explore whole-program load redundancy in depth. Moreover, none of

them detect spatial redundancy.

Some code specialization work depends on value profiling. However, these approaches
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limit themselves to only analyzing registers [95], static instructions [105], memory store

operations [142], or functions [26, 67, 56]. They omit many optimization opportunities

and require significant manual efforts to reason about the root causes of inefficiencies.

Unlike existing value profilers, LoadSpy has four distinct features. First, LoadSpy

is the first value profiler that tracks the history of loaded values from individual memory

locations, rather than the values produced by individual instructions. Second, LoadSpy

identifies both temporal and spatial redundancies in load operations. Third, LoadSpy

provides novel redundancy scope and metrics to guide optimization in both contexts and

semantics. Fourth, LoadSpy not only identifies redundancy arising due to the same value

but also identifies redundancy due to approximately equal values, which offers opportuni-

ties for approximate computing.

3.2.2 Value-agnostic Profiling

RVN [144] assigns symbolic values to dynamic instructions and identifies redundancy on

the fly. DeadSpy [24] tracks every memory operation to pinpoint a store operation that is

not loaded before a subsequent store to the same location. Travioli [108] detects redun-

dant data structure traversals. These approaches miss out on certain opportunities that

LoadSpy can detect by explicitly inspecting values generated at runtime.

Toddler [100] has to manually add loop events to instrument loops in a C code base

and only identifies repetitive memory loads across loop iterations. The follow-up work

LDoctor [121] reduces Toddler’s overhead using a combination of ad-hoc sampling and

static analysis techniques. However, LDoctor only instruments a small number of suspi-

cious loops at compile time, which can miss redundant loads occurring in unmonitored

loops. In contrast, LoadSpy works on fully optimized binaries, is independent of any

compiler, and performs whole-program profiling instead of limiting itself to loop profiling.
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3.3 Motivation

While there are several ways to identify inefficiencies, LoadSpy focuses on memory load

operations. If two consecutive load operations performed on the same memory location

load the same value, the second load operation can be deemed redundant. Thus, the

second load could potentially be elided. Our study aims to pinpoint redundant loads and

attribute them to the code regions that cause them. A single instance of a redundant

load is uninteresting; highly frequent redundant loads occurring in the same code location

demand attention.

It is easy to imagine how redundant loads happen: repeatedly accessing immutable

data structures or algorithms. It is equally easy to imagine how inefficient code sequences

show up as redundant loads: missed function inlining appears as repeatedly loading the

same values in a callee, imperfect alias information shows up as loading the same value

from the same location via two different pointers, redundant computations show up as the

same computations being performed by loading unchanged values, algorithmic defects, e.g.,

frequent linear searches or hash collisions, also appear as repeatedly loading unchanged

values from same locations.

Definition 1 (Temporal Load Redundancy). A memory load operation L2, loading a

value V2 from location M , is redundant iff the previous load operation L1, performed on

M , loaded a value V1 and V1 = V2. If V1 ≈ V2, we call it approximate temporal load

redundancy.

Definition 2 (Spatial Load Redundancy). A memory load operation L2, loading a value

V2 from location M2, is redundant iff the previous load operation L1, performed on loca-

tion M1, loaded a value V1 and V1 = V2, and M1 and M2 belong to the address span of

the same data object. If V1 ≈ V2, we call it approximate spatial load redundancy.

Definition 3 (Redundancy Fraction). We define the redundancy fraction F in an ex-

ecution as the ratio of bytes redundantly loaded to the total bytes loaded in the entire

execution.
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We emphasize the redundancy is defined for instruction instances, not static instruc-

tions. Deleting an instruction involved in an instance of a redundant load can be unsafe.

Observation 1. A large redundancy fraction (F) in the execution profile of a program is

a symptom of some kind of software inefficiency.

Redundant loads are neither a necessary condition nor a sufficient condition to capture

all kinds of software inefficiencies. However, we show, with many illustrative case studies,

that a large fraction of redundant loads in the same code region is often a symptom of a

serious inefficiency. We notice frequent redundant loads across the board in many pro-

grams irrespective of optimization levels, raising a warning alarm of potential inefficiency.

Although not all redundant loads demand optimization, in our experience, investigating

the top few contributors in a profile offers a high potential to tune and optimize code.

Looking for load redundancy opens up potentially an easy avenue for code optimization

— manual or automatic.

We measure the redundancy fraction in a number of benchmarks — SPEC

CPU2006 [124], PARSEC-2.1 [14], Rodinia-3.1 [25], and NERSC-8 [97]. We compile these

benchmarks with gcc-4.8.5 -O3, link-time optimization (LTO), and profile-guided op-

timization (PGO), which is one of the highest optimization levels. In practice, most

packages do not use this level of optimization. We classify the causes of redundant loads

according to their provenance: input-sensitive redundant loads, suboptimal algorithms

or data structures, and missed compiler optimizations. Different kinds of inefficiencies

require different optimization strategies.

3.3.1 Input-sensitive Redundant Loads

In this subsection, we classify the inefficiency due to inputs. Rodinia-3.1 backprop [25],

a supervised machine learning algorithm, trains the weights of connections in a neural

network. The redundancy fraction of this program is 64%. It is common knowledge

that as the training progresses, many weights stabilize and do not change. Hence, their
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gradients become and remain zero. Listing 3.3 shows the inefficiency at line 3, where the

majority of elements in arrays delta and oldw are both zeros. Computations at lines

3-5 can be bypassed when delta[j] and oldw[k][j] are zeros. Repeatedly loading the

zero value from adjacent locations within arrays delta and oldw shows up as spatial load

redundancy. It is easy to eliminate the input-sensitive redundant loads by predicating the

subsequent computation on the values of delta[j] and oldw[k][j] being non-zero.

1 for (j = 1; j <= ndelta; j++) {

2 for (k = 0; k <= nly; k++) {

3 I new_dw = ((ETA * delta[j] * ly[k]) + (MOMENTUM * oldw[k][j]));

4 w[k][j] += new_dw;

5 oldw[k][j] = new_dw;

6 }

7 }

Listing 3.3: Spatial load redundancy in Rodinia-3.1 backprop. Arrays delta and oldw

are repeatedly loaded from memory whereas most array elements are zero.

3.3.2 Redundant Loads due to Suboptimal Algorithms or Data Struc-

tures

Inefficiencies of this category require semantics to identify and optimize. These inefficien-

cies also incur a significant number of redundant loads. We illustrate some algorithms and

data structures that introduce inefficiencies in a few well-known benchmarks.

Linear search Rodinia-3.1 particlefilter [25] is used to estimate the location of a target

object in signal processing and neuroscience. The redundancy fraction of this program

is 99%. Listing 3.4 shows the inefficiency in function findIndex(), which performs a

linear search (line 3) over a sorted array CDF to determine the location of a given particle.

This linear search is invoked multiple times in a loop to become the bottleneck of the

program. The symptom of this inefficiency is many redundant loads, which is caused by

the repeated loads of immutable array CDF elements across different invocation instances

of findIndex(). To fix the problem, one can replace the linear search with a binary

search, which reduces the volume of redundant loads.
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1 int findIndex(double *CDF , int lengthCDF , double value) {

2 for(x = 0; x < lengthCDF; x++) {

3 I if (CDF[x] >= value) {

4 index = x; break;

5 }

6 }

7 ...

8 return index;

9 }

10 ...

11 for(j = 0; j < Nparticles; j++)

12 i = findIndex(CDF , Nparticles , u[j]);

Listing 3.4: Temporal load redundancy in Rodinia-3.1 particlefilter. A linear search loads
the same values from the same memory locations.

Hash table Parsec-2.1 dedup [14] compresses data via deduplication. The redundancy

fraction of this program is 75% and the inefficiency is shown in Listing 3.5. Function

hashtable search() is invoked in a hot loop (not shown) and in each invocation, it

searches for an item in a linked list associated with a hash table entry. We notice that

due to excessive hash collisions, only ∼2% of hash buckets are occupied and each occupied

bucket has a long linked list. As a result, hashtable search() frequently traverses the

same linked list, which appears as loading the same values from the same locations (line

8). One can improve the hash function to make hash keys uniformly distributed across

buckets, which will reduce the redundancy and hence the inefficiency.

1 struct hash_entry *hashtable_search(struct hashtable *h, void *k) {

2 struct hash_entry *e;

3 unsigned int hashvalue , index;

4 hashvalue = hash(h, k);

5 index = indexFor(h->tablelength , hashvalue);

6 e = h->table[index];

7 while (NULL != e) {

8 I if (( hashvalue == e->h) && (h->eqfn(k, e->k))) return e;

9 e = e->next;

10 }

11 ...

12 }

Listing 3.5: Temporal load redundancy in Parsec-2.1 dedup. Excessive hash collisions in
linear hashing result in long linked lists.

3.3.3 Redundant Loads due to Missed Compiler Optimizations

Inefficiencies of this category occur in small scope — loop nest or procedure call. One

needs to either curate the code or manually apply transformations to eliminate these
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inefficiencies. The following three examples illustrate our findings.

Missed scalar replacement Rodinia-3.1 hotspot 3D [25] is a thermal simulation pro-

gram that estimates processor temperature. The redundancy fraction of this program

is 95%. Listing 3.6 shows a loop nest that performs a stencil computation. At line 8,

tOut t[c] is updated with the values in nearby tIn t[]. Typically, w = c - 1 and e =

c + 1. As a result, the value of tIn t[e] in the current iteration equals the value of

tIn t[c] in the next iteration and further equals the value of tIn t[w] in the iteration

after next. However, the compiler does not perform register promotion of tln [e]. Hence,

many redundant loads occur in this loop nest. To fix this inefficiency, we employ scalar

replacement to eliminate inter-iteration redundant loads from memory. Specifically, we

store the value of tIn t[e] in a local variable in the current iteration to be reused by

tIn t[c] in the next iteration and by tIn t[w] in the iteration after next.

1 for(y = 0; y < ny; y++) {

2 for(x = 0; x < nx; x++) {

3 int c, w, e, n, s, b, t;

4 c = x + y * nx + z * nx * ny;

5 w = (x == 0) ? c : c - 1;

6 e = (x == nx - 1) ? c : c + 1;

7 ...

8 I tOut_t[c] = cc * tIn_t[c] + cw * tIn_t[w] + ce * tIn_t[e] + ...

9 }

10 }

Listing 3.6: Temporal load redundancy in Rodinia-3.1 hotspot3D. Array tIn t is
repeatedly loaded from memory while the values remain unchanged.

Missed constant propagation NERSC-8 msgrate [97] measures the message passing

rate via the MPI interface. The redundancy fraction of this program is 97%. List-

ing 3.7 shows a function cache invalidate(), which sets all the elements in array

cache buf to 1. This code adopts a suboptimal forward propagation that loads the value

of cache buf[i-1] and assigns it to cache buf[i]. Although there is no redundant load

in a single invocation, cache invalidate() is invoked in a loop (not shown), resulting

in excessive, redundant loads from array cache buf. The compiler does not replace the

assignment with a constant, possibly due to its inability to prove the safety of assigning
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to a global array in the presence of concurrent threads of execution.

1 int *cache_buf;

2 ...

3 static void cache_invalidate(void) {

4 int i;

5 cache_buf [0] = 1;

6 for (i = 1; i < cache_size; ++i)

7 I cache_buf[i] = cache_buf[i-1];

8 }

Listing 3.7: Temporal load redundancy in NERSC-8 msgrate. The program repeatedly
loads a constant “1” from array cache buf.

1 for (pos = 0; pos < max_pos; pos++) {

2 ...

3 if (abs_y >= 0 && abs_y <= max_height && ...) PelYline_11 = FastLine16Y_11;

4 else PelYline_11 = UMVLine16Y_11;

5 for (blky = 0; blky < 4; blky ++) {

6 for (y = 0; y < 4; y++) {

7 I refptr = PelYline_11(ref_pic , abs_y++, abs_x , img_height , img_width);

8 ...

9 }

10 ...

11 }

12 }

Listing 3.8: Temporal load redundancy in SPEC CPU2006 464.h264ref due to missed
function inlining.

Missed inline substitution SPEC CPU2006 464.h264ref [124] is a reference imple-

mentation of H.264, a standard of video compression. The redundancy fraction of this

program is 84%. The compiler fails to inline the frequently called function PelYline 11()

at line 7 shown in Listing 3.8. Because it is invoked via a function pointer and the callee

routines are not present in the same file. The parameters of PelYline 11() — abs x,

img height, and img width — are unmodified across multiple successive invocations. In

each function call, the caller pushes (stores) the same parameters on the stack and then in

each function return, the callee pops (loads) the same parameters from the stack, which

shows up as redundant loads. To fix it, one needs to manually inline the callee into its

caller [142].

Discussion We have explored other compiler flags that enable advanced optimization

such as polyhedral optimization [45] in GCC. Unfortunately, none of them were successful

in optimizing any of the aforementioned scenarios. Furthermore, we observed that using
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LTO, PGO, together with the polyhedral optimization made compilation time extremely

high for some cases. For example, it took over two hours to compile hotspot 3D, a 30,000×

slowdown compared to simply using -O3. As a result, our later evaluation section does

not use LTO and polyhedral optimization, but only uses -O3 with PGO.

3.4 LoadSpy Implementation

LoadSpy employs Intel Pin to instrument every memory load operation. The instrumen-

tation obtains the effective address M to be accessed in an instruction and the access

length δ, and offers the pair to a runtime analysis routine. In the rest of this section, we

discuss how LoadSpy identifies temporal and spatial load redundancies, respectively.

3.4.1 Detecting Temporal Load Redundancy

Detecting temporal load redundancy requires two pieces of information: the current value

vnew at the target location and the last-time loaded value vold from the same location.

The runtime analysis routine, run just before the execution of the original program’s load

instruction, fetches the current value vnew at the memory range [M : M + δ). LoadSpy

employs a shadow memory S for maintaining the last-time loaded value at the same

location. S[M ] maintains the value last loaded by the program at location M . LoadSpy

utilizes the page-table-based scheme [24] to efficiently manage its shadow memory. At

runtime, the analysis routine fetches vold from S[M : M + δ) and vnew from [M : M + δ).

LoadSpy records an instance of a redundant load if vold = vnew. All bytes must match

to qualify a load as redundant. Intuitively, sub-read-size redundancy is unactionable by

programmers. Note, however, that vold might have been generated by multiple shorter

reads, a single longer read, or more commonly a single read of the same size. If not

redundant, LoadSpy updates the shadow memory with the newly loaded value. Also,

LoadSpy records an instance of a non-redundant load if vold 6= vnew.

LoadSpy provisions for approximate computing by allowing the new value generated
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in a floating-point (FP) operation to approximately match the previously present value.

If the two values are within a threshold of difference, LoadSpy considers them approxi-

mately equal and records an instance of a redundant load. The threshold is tunable; we

use 1% in our experiments. Accordingly, LoadSpy decomposes the load redundancy into

precise and approximate.

LoadSpy attributes each instance of redundant loads (and non-redundant loads) to

two parties 〈Cold, Cnew〉, where Cold is the calling context of the previous load operation

on M and Cnew is the calling context of the current load operation on M .

The following equations compute the fraction of temporal load redundancy in an exe-

cution:

Fprecise
prog =

∑
i

∑
j Redundant non-FP bytes loaded in 〈Ci, Cj〉∑

i

∑
j non-FP bytes loaded in 〈Ci, Cj〉

Fapprox
prog =

∑
i

∑
j Redundant FP bytes loaded in 〈Ci, Cj〉∑

i

∑
j FP bytes loaded in 〈Ci, Cj〉

(3.1)

Load redundancy between a pair of calling contexts is given by the following equations:

Fprecise
〈Cold,Cnew〉 =

Redundant non-FP bytes loaded in 〈Cold, Cnew〉∑
i

∑
j non-FP bytes loaded in 〈Ci, Cj〉

Fapprox
〈Cold,Cnew〉 =

Redundant FP bytes loaded in 〈Cold, Cnew〉∑
i

∑
j FP bytes loaded in 〈Ci, Cj〉

(3.2)

The metrics help identify code regions (pairs of calling contexts) where the highest amount

of redundancy is observed.

Obtaining the Calling Context of an Instruction: Attributing runtime statis-

tics to a flat profile (just an instruction pointer) does not offer full insights to

developers. For example, attributing redundant loads to a common library func-

tion, e.g., strcmp(), offers little insight since strcmp() can be invoked from several

places in a large code base; some invocations may not even be obvious to the user

code. A detailed attribution demands associating profiles to the full calling context:

main():line→A():line→...→strcmp():line. LoadSpy requires obtaining the call-
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ing context on each load operation. LoadSpy employs CCTLib [23], which efficiently

maintains calling contexts as a calling context tree (CCT) [6] including complex control

flows through longjump, tail calls, and exceptions. The calling context, which is provided

as a unique 32-bit integer, is recorded (in addition to the last-time loaded value) in the

shadow memory.

… … a[i] a[j] … … Memory Access Sequence

Array a

Object Previous Load
Context Value

Array a Ca[i] a[i]
… …

Current Load

a[i] = a[j]?

Spatial Redundancy
Yes

Data Object Map

�

�

�

Figure 3.1: Detecting spatial load redundancy. 1○ LoadSpy monitors a load operation
and associates its effective address with the data object. In the data object map, each
data object associates itself with the value and context of the previous load belonging to
this data object. 2○ LoadSpy compares the previous and current loaded values; if they
are (approximately) the same, an instance of (approximate) spatial load redundancy is
reported. 3○ The value and context associated with the data object are updated with the
ones from the current load.

3.4.2 Detecting Spatial Load Redundancy

For arrays and aggregate objects, LoadSpy checks whether two consecutive loads from

different elements of the same object load (approximately) the same value. For example, if

two consecutive loads from an array a, say a[i] and a[j], load the same value, LoadSpy

flags it as an instance of spatial load redundancy and attributes it to the same data object,

as shown in Figure 3.1.

To facilitate spatial load redundancy detection, LoadSpy maintains a mapping from

address ranges to active data objects in the shadow memory. Associated with each data
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object O is two additional pieces of information: a singleton value vold loaded as a result

of the previous load operation performed on O and the calling context Cold associated

with the previous load operation performed on O. Upon each memory load, LoadSpy

uses its effective address to look up the data object it belongs to in the map. If the value

of the current load matches the one recorded with the previous load on the same object,

LoadSpy records an instance of spatial load redundancy. The redundancy is hierarchically

attributed first to the data object involved and then to the two calling contexts involved

in the redundancy.

LoadSpy provides the similar whole-program and per-redundancy-pair metrics for

spatial redundancy. Moreover, LoadSpy computes per-data-object metrics with the fol-

lowing equations where O is a data object.

Fprecise
O =

Redundant non-FP bytes in object O∑
i non-FP bytes in object i

Fapprox
O =

Redundant FP bytes in object O∑
i FP bytes in object i

(3.3)

Obtaining Data-object Addresses at Runtime: LoadSpy monitors static and

dynamic data objects but ignores stack objects from spatial redundancy detection. Data

allocated in the .bss section in a load module are static objects. Each static object has a

named entry in the symbol table that identifies the memory range for the object with an

offset from the beginning of the load module. The lifetime of static objects begins when

the enclosing load module (executable or dynamic library) is loaded into memory and ends

when the load module is unloaded. LoadSpy intercepts the loading and unloading of load

modules to monitor the lifetime of static data objects and establishes a mapping from an

object’s address range to the corresponding data object. Dynamic objects are allocated via

one of malloc family of functions (malloc, calloc, realloc) or mmap [82], and reclaimed

via free or munmap. LoadSpy intercepts these functions to establish a mapping from an

object’s address range to the corresponding data object. Querying an address at runtime

obtains a handle to the corresponding static or dynamic object. The handle is a unique
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identifier representing the object name for a static object or the allocation calling context

for a dynamic object.

3.4.3 Identifying Redundancy Scope

When the redundancy happens in the same calling context, that is Cold = Cnew, there is

guaranteed to be a loop 1 around the redundancy location. However, in code with nested

loops, it is unclear whether the redundancy occurred between iterations of an inner loop

or between iterations of an outer loop or some other loop in-between. Hence, it becomes

necessary to point out the syntactic scope enclosing a redundancy pair.

We illustrate the need for scope using a real-world application MASNUM-2.2 [112] shown

on the left of Listing 3.9. LoadSpy identifies 91% of memory loads are redundant and

the top contributor is at line 6. It is tempting to infer that x(iii + 1) loaded in one

iteration of the inner do loop (line 5) is loaded again as x(iii) in the next iteration.

An obvious optimization is to perform scalar replacement to retain x(iii + 1) across

iterations of the inner do loop (on the right of Listing 3.9). However, this optimization

does not eliminate many redundant loads. Actually, the outer do loop (line 1) frequently

searches for different items xx, and the inner do loop performs a linear search. As a result,

the inner loop repeatedly loads the same set of elements across two trips of the outer loop.

Thus, the load redundancy exists not only between iterations of the inner loop but also

between iterations of the outer loop. The load redundancy at the outer loop highlights an

algorithmic-level inefficiency — repeated linear searches. With this knowledge, we replace

the linear search with a binary search to eliminate load redundancy. More details are

shown in Section 3.7.2.

To assist developers to focus on the scope where load redundancy occurs, we have

incorporated a redundancy scope feature in LoadSpy. We denote redundancy scope with

the symbol S. In Listing 3.9, the redundancy scope is the outer do loop. Below we detail

how redundancy scope is computed.

1We consider natural loops [136] only.
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1 do 500 k = 1, kl

2 ...

3 xx = x0 - deltt * (cgx + ux(ia, ic)) /

rslat(ic) * 180 / pi

4 ...

5 do iii = ixs , ixl -1

6 I if(xx >= x(iii) .and. xx <= x(iii +

1)) then

7 ixx = iii; exit

8 endif

9 enddo

10 ...

11 500 continue

1 do 500 k = 1, kl

2 scalar = x(ixs)

3 do iii = ixs , ixl -1

4 if(xx >= scalar) then

5 scalar = x(iii + 1)

6 if (xx <= scalar) then

7 ixx = iii; exit

8 endif

9 else scalar = x(iii + 1)

10 endif

11 enddo

12 ...

13 500 continue

Listing 3.9: A code example (on the left) from MASNUM-2.2 [112] that requires additional
information for disambiguating the scope of load redundancy. Many redundant loads
occur at line 6 where the array x is repeatedly loaded from memory. If we only focus
on the inner loop, we would be misled to believe the stencil computation, which loads
x(iii + 1) and x(iii), causes many redundant loads across iterations of the inner loop.
However, performing scalar replacement (on the right) does not yield much performance
improvement. Actually, an algorithmic-level redundancy happens in the outer do loop,
which repeatedly performs linear searches over a sorted array of elements.

We first extend calling contexts to incorporate loop information. Thus, the calling

context of a load operation looks as follows: main() → loop1 → f() → ... → loopn →

loadold. Additionally, LoadSpy maintains a 64-bit global timestamp counter T that is

incremented when passing through each loop header and also through each load operation.

Thus, the calling context snapshot may appear as follows: Cold = main() → loop1[T =

1] → f() → ... → loopn[T = 9] → loadold. We extend the calling context to be a tuple,

that is, Eold = 〈pointer to old context, Told〉 = 〈Cold, 10〉.

1 main () {

2 // loop1

3 for (i = 0; i < M; i++) {

4 // loop2

5 for (k = 0; k < N; k++) {

6 // load from B[i]

7 t += B[i];

8 }

9 }

10 }

Listing 3.10: Redundancy in the inner loop
scope.

1 main () {

2 // loop1

3 for (i = 0; i < M; i++) {

4 // loop2

5 for (k = 0; k < N; k++) {

6 // load from A[k]

7 t += A[k];

8 }

9 }

10 }

Listing 3.11: Redundancy in the outer loop
scope.

Listing 3.10 shows a simplified example, where the redundancy happens in the inner
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loop (scope is loop2). In this setting, consider the following pair of calling context snapshot:

Eold =〈main()→ loop1[T = 1]→ loop2[T = 2]→ loadold, Told = 3〉

Enew =〈main()→ loop1[T = 1]→ loop2[T = 4]→ loadnew, Tnew = 5〉

Notice that the counter associated with loop1 has remained unchanged whereas the

counter associated with loop2 has changed. Each load maintains a pointer to the calling

context, not the entire calling context snapshot. Hence, by the time the redundancy

is detected, that is, loadnew is executed, loop2[T = 2] would have gotten updated to

loop2[T = 4]; traversing Cold would find Tloop2 = 4. Observe that Told < Tloop2 < Tnew.

This invariant informs that loop2 is the scope inside which the redundancy is happening.

The same invariant does not hold for Tloop1 .

Now, consider a simplified example in Listing 3.11, where redundancy happens in the

outer loop (scope is loop1). In this setting, consider the following pair of calling context

snapshot:

Eold =〈main()→ loop1[T = 1]→ loop2[T = 2]→ loadold, Told = 3〉

Enew =〈main()→ loop1[T = 8]→ loop2[T = 9]→ loadnew, Tnew = 10〉

Notice that the counter associated with both loop1 and loop2 have changed. Hence, by

the time loadnew is executed, loop1[T = 1] and loop2[T = 2] would have gotten updated

to loop1[T = 8] and loop2[T = 9], respectively; traversing Cold would find Tloop1 = 8 and

Tloop2 = 9. Observe that Told < Tloop1 < Tloop2 < Tnew. The loop with the smallest T

value obeying this invariant, that is loop1, is the redundancy scope.

Claim 1. Given a redundancy context pair 〈〈C, Told〉, 〈C, Tnew〉〉, the redundancy scope S

is the outermost enclosing loop i in C such that Told < Tloopi < Tnew.

Proof: First, Tloopi must be in the range of (Told, Tnew) because loop i is the redundancy

scope; otherwise, loop i cannot enclose the redundant load instances. Next, assume there

exists another loop j in C such that Told < Tloopj < Tloopi < Tnew but loop j is not
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the redundancy scope. Loop i and j cannot be the peer loops because they are both in

the same context C. Then one loop must enclose the other. (1) If loop i encloses loop j,

Tloopi < Tloopj because loop j’s counter is incremented at least once after loop i’s counter is

incremented, which contradicts the assumption that Tloopj < Tloopi . Hence, loop j cannot

be nested inside loop i. (2) If loop j encloses loop i, then loop i is no longer the outermost

loop with Told < Tloopi < Tnew. Hence, loop j cannot enclose loop i. Since loop i and loop

j are neither peer loops, nor can they be nested within one another, the assumption is

void. Thus, Claim 1 holds.

Implementing Redundancy Scope: LoadSpy combines static and dynamic anal-

ysis to compute the redundancy scope S for each redundancy pair. First, LoadSpy

instruments each loop header in the binary (in addition to procedures) to produce calling

contexts with augmented loop information. It identifies an instruction as a loop header by

performing an interval analysis [55] on the binary code and integrates the information into

the procedure call path. We refer to the calling context with loop information as extended

calling context. A runtime analysis routine, run as a part of each loop header, increments

the 64-bit timestamp counter T ; another runtime analysis routine, run as a part of each

load instruction, also increments the counter T . Besides, the shadow memory for each

byte of the original program is extended to hold the counter T (in addition to the 32-bit

calling context handle and the 8-bit old value).

On each detected redundant load, where Cold = Cnew, LoadSpy searches the call

path from the root (main) toward the leaf (load instruction) to look for the first loop

node where the Claim 1 is found to be true. Such a loop is the redundancy scope S for

the current instance of load redundancy. Each redundancy instance records the triplet

〈Cold, Cnew,S〉. If Cold 6= Cnew, LoadSpy first finds the lowest common ancestor (LCA)

function or loop enclosing Cold and Cnew, and then searches their common call path from

the root toward the LCA to obtain S based on the Claim 1.

Computing the redundancy scope for each redundancy instance introduces heavy run-

time overhead. We compute the redundancy scope for a calling context pair only a thresh-
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old number of times (one in our experiments), which is good enough for most programs.

3.4.4 Handling Parallelism

LoadSpy maintains per-thread data structures: calling context tree, redundancy profile,

T , among others and hence needs no concurrency control for multi-threaded programs.

The runtime object map is maintained as a lock-free map allowing concurrent lookups.

LoadSpy detects only intra-thread redundancy and ignores inter-thread redundancy, if

any.

3.4.5 Reducing Profiling Overhead

LoadSpy can introduce relatively high runtime overhead, ∼40-150×. LoadSpy adopts a

bursty sampling mechanism to control its overhead [155]. Bursty sampling involves con-

tinuous monitoring for a certain number of instructions (WINDOW ENABLE) followed by not

monitoring for a certain (larger) number of instructions (WINDOW DISABLE) and repeating

it over time. These two thresholds are tunable. In our experiments, 1% sampling rate

with WINDOW ENABLE=1 million and WINDOW DISABLE=99 million yields a good tradeoff

between overhead and accuracy.

3.5 LoadSpy Workflow

LoadSpy consists of three components: a runtime profiler (detailed previously in Sec-

tion 3.4), an analyzer, and a GUI. LoadSpy accepts fully optimized binary executables

and collects runtime profiles via its profiler. The analyzer and GUI, run in a postmortem

fashion, consume the runtime profiles and associate them with the application source code.

The rest of this section discusses the analyzer and GUI.
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3.5.1 Analyzer

LoadSpy’s analyzer associates the runtime profiles with source code based on the

DWARF [1] information produced by compilers. As the profiler produces per-thread

profiles, the analyzer needs to coalesce the profiles for the whole execution. The calling

context profiles can scale the analysis of program execution to a large number of CPU

cores. The coalescing procedure follows the rule: two redundancy pairs from different

threads are merged iff they have the same redundant load in the same calling context

with the same redundancy scope. All the metrics are also merged to compute unified ones

across threads. The scheme is similar for profiles from different processes.

It is worth noting that the profile coalescing overhead grows linearly with the number of

threads and processes used by the monitored program. LoadSpy leverages the reduction

tree technique [131] to parallelize the merging process. Typically, LoadSpy takes less

than one minute to produce the aggregate profiles in all of our case studies.

3.5.2 GUI

LoadSpy’s GUI inherits the design of an existing Java-based graphical interface [3], which

enables navigating the calling contexts and the corresponding source code ordered by the

monitored metrics. A top-down view shows a call path C starting from function main() to

a leaf function with the breakdown of metrics at each level. Merely attributing a metric to

two independent contexts loses the association between two related contexts during post-

mortem inspection. To correlate the source with the target, LoadSpy allows appending

a copy of the target calling context to the source calling context. For example, if a load in

context main()→A()→B() is redundant with another load in context main()→C()→D(),

LoadSpy constructs a synthetic calling context: main→A()→B()→main()→C()→D().

The redundancy metrics will be attributed to the leaf of this call chain. These synthetic

call chains make it easy to visually navigate profiles and focus on top redundancy pairs.

Figure 3.4 in Section 3.7.1 shows an example of the GUI, and we postpone the explanation
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of the GUI details to that section.

3.6 Evaluation

We evaluate LoadSpy on a 12-core Intel Xeon E5-2650 v4 CPU of 2.20GHz frequency

running Linux 4.8.0. The machine has 256GB main memory. We evaluate LoadSpy with

benchmarks, such as SPEC CPU2006 [124], SPEC OMP2012 [126], SPEC CPU2017 [127],

Parsec-2.1 [14], Rodinia-3.1 [25], NERSC-8 [97], and Stamp-0.9.10 [92], as well as sev-

eral real-world applications, such as Apache Avro-1.8.2 [8], Hoard-3.12 [13], MASNUM-

2.2 [112], Shogun-6.0 [122], USQCD Chroma-3.43 [39], Stack RNN [66], Binutils-2.27 [50],

and Kallisto-0.43 [89]. All the programs are compiled with gcc-4.8.5 -O3 PGO ex-

cept Hoard-3.12 and MASNUM-2.2. For Hoard-3.12, we use clang-5.0.0 -O3 PGO and

for MASNUM-2.2, we use icc-17.0.4 -O3 PGO. We apply the ref inputs for SPEC

CPU2006, OMP2012 and CPU2017 benchmarks, the native inputs for Parsec-2.1 bench-

marks, and the default inputs released with the remaining benchmarks and applications

if not specified. We run all the parallel programs with four threads with simultaneous

multi-threading (SMT) disabled.

In the rest of this section, we first show the fraction of temporal and spatial redundan-

cies on SPEC CPU2006. We then evaluate the accuracy and overhead of LoadSpy with

bursty sampling enabled. We exclude three benchmarks — gobmk, sjeng, and xalancbmk

— from monitoring because they have deep call recursion causing LoadSpy to run out of

memory.

3.6.1 Load Redundancy in Macro Benchmarks

Figure 3.2 shows the fraction of temporal and spatial load redundancies on SPEC CPU2006

benchmarks. We can see (1) load redundancy, especially the temporal one, pervasively ex-

ists and (2) integer benchmarks show a high proportion of precise redundant loads whereas

FP benchmarks show a high proportion of approximate redundant loads, as expected.
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(a) Temporal redundancies.
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(b) Spatial redundancies.

Figure 3.2: Fraction of temporal and spatial load redundancies on SPEC CPU2006.

3.6.2 Accuracy

LoadSpy offers bursty sampling as an optional feature for users willing to tradeoff mea-

surement accuracy with performance. Figure 3.3 evaluates the accuracy of LoadSpy

with bursty sampling enabled. The geometric means of spatial load redundancy fractions

LoadSpy measures with sampling enabled and disabled are nearly the same — 10%.

The geometric means of temporal load redundancy fractions LoadSpy measures with

sampling enabled and disabled are similar — 76% and 82%. However, libquantum is an

outlier, whose temporal redundancy fractions are 15% and 68% with sampling enabled
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(b) Spatial redundancies.

Figure 3.3: Comparing temporal and spatial load redundancies with bursty sampling
disabled and enabled. The sampling rate is 1%.

and disabled. With further investigation, we find that the number of instructions exe-

cuted between the source and target load operations of most redundancy pairs is more

than 10 million, which is greater than the default WINDOW ENABLE (= 1 million). In such a

case, one can enlarge WINDOW ENABLE to improve the accuracy. For instance, when we set

WINDOW ENABLE = 10 million and 50 million (WINDOW DISABLE remains unchanged), the

temporal load redundancy fraction of libquantum increases to 30% and 60%, respectively.
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Table 3.1: LoadSpy’s runtime and memory overhead on SPEC CPU2006.

Benchmark
Temporal redundancy detection Spatial redundancy detection

Runtime overhead Memory overhead Runtime overhead Memory overhead

perlbench 38× 11× 51× 7×
bzip2 13× 2× 13× 1.09×
gcc 19× 26× 19× 25×
mcf 6× 14× 6× 1.04×

hmmer 12× 35× 11× 20×
libquantum 12× 18× 13× 2×

h264ref 21× 20× 21× 2×
omnetpp 10× 16× 14× 25×

astar 11× 13× 11× 18×
bwaves 17× 14× 15× 1.16×
gamess 24× 25× 24× 24×

milc 4× 10× 4× 1.18×
zeusmp 8× 14× 7× 1.42×
gromacs 10× 23× 9× 15×

cactusADM 7× 10× 7× 1.36×
leslie3d 9× 10× 8× 2×
named 10× 11× 10× 9×
dealII 21× 30× 22× 19×
soplex 13× 13× 13× 2×
povray 29× 216× 28× 70×
calculix 21× 18× 20× 19×

GemsFDTD 8× 14× 8× 1.42×
tonto 22× 49× 24× 30×
lbm 4× 14× 3× 1.15×
wrf 15× 10× 16× 3×

sphinx3 13× 16× 13× 7×
Median 12.5× 14× 13× 5×

GeoMean 13× 17× 13× 5×

3.6.3 Overhead

Table 3.1 shows the runtime and memory overhead of LoadSpy on SPEC CPU2006 bench-

marks. The runtime (memory) overhead is measured as the ratio of the runtime (peak

memory usage) of a benchmark with LoadSpy enabled to the runtime (peak memory

usage) of its native execution. The geometric means of runtime overheads for detecting

temporal and spatial redundancies are both 13×, and the geometric means of memory

overheads for detecting temporal and spatial redundancies are 17× and 5×, respectively.

A few benchmarks such as tonto and povray show excessive memory overhead due to

the following reasons: (1) tonto has a deep call stack, which demands excessive space to

maintain its calling context tree and (2) povray has a small memory footprint (∼6MB),

whereas some preallocated data structures in LoadSpy overshadow this baseline memory

footprint.
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Table 3.2: Overview of performance improvement guided by LoadSpy.

Program information LoadSpy Optimization
Program Problematic code Redundancy type Inefficiency Approach Speedup

M
a
cr

o
b

en
ch

m
a
rk

359.botsspar sparselu.c:loop (191) Temporal Inefficient register usage Scalar replacement 1.77×
453.povray csg.cpp (250) Temporal Missed inline substitution Function inlining 1.05×
464.h264ref mv-search.c:loop (394) Temporal Missed inline substitution Function inlining 1.28×
3470.lbm lbm.c:LBM performStreamCollide Spatial Redundant computation Approximate computing 1.25×

3538.imagick r morphology.c:loop (2982) Spatial Redundant computation Conditional computation 1.25×
3backprop backprop.c:loop (322) Spatial Input-sensitive redundancy Conditional computation 1.13×

3hotspot3D 3D.c:loop (98, 166) Temporal Inefficient register usage Scalar replacement 1.13×
3lavaMD kernel cpu.c (175) Temporal Redundant function calls Reusing the previous result 1.39×
3srad v1 main.c:loop (256) Temporal Inefficient register usage Scalar replacement 1.11×
3srad v2 srad.cpp:loop (131) Temporal Inefficient register usage Scalar replacement 1.12×

3particlefilter ex particle OPENMP seq.c:findIndex Temporal Linear search Binary search 9.8×
vacation client.c:loop (198) Temporal Redundant function calls Reusing the previous result 1.23×
dedup hashtable.c:hashtable search Temporal Poor hashing Reducing hash collisions 1.11×

msgrate msgrate.c:cache invalidate Temporal Missed constant propagation Copy propagation 3.03×

R
ea

l
a
p

p
li

ca
ti

o
n

3Apache Avro-1.8.2 Specific.hh (110, 117) Temporal Missed inline substitution Function inlining 1.19×
3Hoard-3.12 libhoard.cpp:xxmalloc Temporal Redundant computation Reusing the previous result 1.14×

3MASNUM-2.2 propagat.inc:loop (130, 140) Temporal Linear search Locality-friendly search 1.79×
3USQCD Chroma-3.43 qdp random.h (56) Temporal Missed inline substitution Function inlining 1.06×

3Shogun-6.0
DenseFeatures.cpp (505)

Distance.cpp (185)
Temporal Missed inline substitution Function inlining 1.06×

3Stack RNN StackRNN.h:loop (350, 355, 363, 367)
Temporal

Spatial
Poor choice of algorithm
Redundant computation

Loop fusion
Conditional computation

1.09×

Kallisto-0.43 KmerHashTable.h (131) Temporal Poor hashing Reducing hash collisions 4.1×
Binutils-2.27 dwarf2.c:loop (2166) Temporal Linear search Binary search 3.29×

3: newfound performance bugs via LoadSpy.

3.7 Case Studies

Table 3.2 summarizes the load redundancies found in some benchmarks and real-world ap-

plications, and the speedups obtained by eliminating them. We quantify the performance

improvement in execution time except for Hoard, which is in throughput. In the rest of

this section, we exhaustively analyze all the newfound performance bugs.

3.7.1 Apache Avro-1.8.2

Avro [8] is a remote procedure call and data serialization processing system. We ap-

ply LoadSpy to evaluate the C++ version of Avro with benchmarks developed by

Sorokin [123]. LoadSpy reports a temporal redundancy fraction of 79% for the entire

program. Figure 3.4 shows the full calling contexts of the top redundancy pair visualized

through LoadSpy’s GUI. The GUI consists of three panes: the top pane shows the pro-

gram source code, the bottom left pane shows the full calling contexts of each redundancy

pair, and the bottom right pane shows the metrics associated with each redundancy pair.

In this figure, the GUI shows two metrics: the number of redundant loads for each re-

dundancy pair and percentage of redundant instances for each pair, which if 100%, means

every instance of this pair is redundant.
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We can see that the redundant loads in function doEncodeLong() account for 25%

of the total redundant loads in the program. Moreover, all instances of this pair are re-

dundant and the redundancy scope is the loop at lines 229-233 in the file Specific.hh

enclosing the call site of function encode(). encode() is the caller of doEncodeLong().

With further analysis, we find that the epilog of doEncodeLong() consistently pops the

same value from the same stack location to restore the register value. To eliminate re-

dundant loads in the function epilog, we inline doEncodeLong() into its caller. LoadSpy

also identifies another problematic function (not shown) and guides the same inlining op-

timization. Together, these optimizations eliminate 31% of the memory loads and 37% of

the redundant memory loads, yielding a 1.19× speedup for the whole program.

Old Calling Context (C
old )

New Calling Context (C
new )

Missing Inline Substitution

Redundancy Scope

Figure 3.4: The top redundancy pair in Apache Avro-1.8.2 with full calling contexts
reported by LoadSpy. Along the calling contexts shown in the bottom left pane, a pro-
cedure name following a symbol [I] means it is inlined. We can see that most procedures
on the path are inlined except doEncodeLong(). Many redundant loads are from calling
doEncodeLong(), which can be removed by function inlining.
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3.7.2 MASNUM-2.2

MASNUM [112], one of the 2016 ACM Gordon Bell Prize finalists, forecasts ocean surface

waves and climate change. It is written in Fortran and parallelized with MPI. LoadSpy

identifies 91% of memory loads are redundant, of which 15% are attributed to array x at

line 6 on the left of Listing 3.9. LoadSpy also pinpoints the redundancy scope as the

outer loop at line 1. We find that the inner loop (line 5) performs a linear search over the

non-decreasing array x for a given input xx. With multiple iterations, elements of array x

are frequently loaded from memory for comparison, leading to the redundancy. Changing

the linear search to a binary search reduces redundant loads and yields a 1.32× speedup

for the entire program. It is worth noting that the binary search still incurs high load

redundancy fraction because of the intensive search requests in the program. To further

improve the search algorithm, we analyze the values of xx across iterations. We find that

xx has good value locality, that is, the values are similar in adjacent iterations of the outer

loop. Thus, we replace the binary search with a locality-friendly search. We memoize the

location index iii when the current search finishes; in the next search, we begin at the

recorded iii and alternate the linear search in both directions to the array start and end.

This optimization eliminates 33% of the memory loads and 36% of the redundant memory

loads, yielding a 1.79× speedup for the entire program.

3.7.3 Hoard-3.12

Hoard [13], a high-performance cross-platform C++ based memory allocator, has been

integrated into an array of applications and programming languages such as GNU Bay-

onne and Cilk programming language. It has 20K lines of code and is parallelized with

the PThreads library. LoadSpy identifies that 58% of memory loads are redundant on

profiling Hoard’s built-in benchmark larson. The top redundancy pair is associated with

lines 4 and 7 shown in Listing 3.12, which accounts for 11% of the total redundant loads.

The cause of such redundancy is that the program repeatedly checks whether theTLAB is a

39



1 static __thread TheCustomHeapType *theTLAB INITIAL_EXEC_ATTR = nullptr;

2 ...

3 bool isCustomHeapInitialized () {

4 I return (theTLAB != nullptr);

5 }

6 TheCustomHeapType *getCustomHeap () {

7 I auto tlab = theTLAB;

8 if (tlab == nullptr) {

9 tlab = initializeCustomHeap ();

10 theTLAB = tlab;

11 }

12 return tlab;

13 }

14 void *xxmalloc (size_t sz) {

15 if (isCustomHeapInitialized ()) {

16 void *ptr = getCustomHeap ()->malloc(sz);

17 ...

18 }

19 }

Listing 3.12: Temporal load redundancy in Hoard-3.12. The program repeatedly checks
whether the pointer variable theTLAB is null.

null pointer. More specifically, function isCustomHeapInitialized() invoked at line 15

and function getCustomHeap() invoked at line 16 both include the code to check whether

theTLAB is equal to nullptr. Hence, the second check at lines 8-11 is redundant.

To eliminate such redundant loads, we inline these two functions into their caller

xxmalloc() and remove the redundant check. This optimization eliminates 3% of the

memory loads and 2% of the redundant memory loads, which improves the throughput

(i.e., the number of memory operations per second) of Hoard by 1.14×.

3.7.4 USQCD Chroma-3.43

Chroma [39] is a complex toolbox for performing quantum chromodynamics lattice com-

putations, which has more than 200K lines of code. We evaluate it using the built-in

benchmark t mesplq. LoadSpy reports a temporal redundancy fraction of 61%. The

top redundancy pair is attributed to the function sranf() at line 3 shown in Listing 3.13.

With further investigation, we notice that Chroma has a similar performance bug to the

one in Apache Avro: the epilog of sranf() repeatedly pops the same values from the

same stack locations to restore register values.

To eliminate such redundant loads, we manually inline sranf() into its caller. This
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1 template <class T1, class T2>

2 inline void fill_random(float &d, T1 &seed , T2 &skewed_seed , const T1 &seed_mult) {

3 I d = float(RNG::sranf(seed , skewed_seed , seed_mult));

4 }

Listing 3.13: Temporal load redundancy in USQCD Chroma-3.43. The epilog of function
sranf() often pops the same values from the same stack locations to restore register
values.

optimization eliminates 6% of the memory loads and 7% of the redundant memory loads,

yielding a 1.06× speedup for the whole program.

3.7.5 Shogun-6.0

Shogun [122] is an efficient machine learning toolbox. LoadSpy reports a temporal redun-

dancy fraction of 71% on profiling its built-in benchmark kernel matrix sum benchmark.

Listing 3.14 shows one of the top redundancy pairs at line 6. The cause of such redundancy

is similar to Apache Avro: the epilog of function get feature vector() repeatedly pops

the same values from the same stack locations to restore register values. We manually

inline the callee into its caller to eliminate the redundant loads. Additionally, We perform

the same optimization for other function invocations that have the same performance is-

sue. These optimizations eliminate 7% of the memory loads and 2% of the redundant

memory loads, yielding a 1.06× speedup for the whole program.

1 template <class ST> float64_t CDenseFeatures <ST >::dot(int32_t vec_idx1 , CDotFeatures

*df , int32_t vec_idx2) {

2 ...

3 CDenseFeatures <ST > *sf = (CDenseFeatures <ST> *)df;

4 int32_t len1 , len2;

5 bool free1 , free2;

6 I ST *vec1 = get_feature_vector(vec_idx1 , len1 , free1);

7 ...

8 }

Listing 3.14: Temporal load redundancy in Shogun-6.0. The epilog of function
get feature vector() often pops the same values from the same stack locations to restore
register values.
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1 for (my_int i = _TOP_OF_STACK; i < _TOP_OF_STACK + _STACK_SIZE - 1; i++) {

2 I _pred_err_stack[s][i+1] += _err_stack[s][i] * _act[s][itm][pop];

3 }

4 for (my_int i = _TOP_OF_STACK; i < _TOP_OF_STACK + _STACK_SIZE - 1; i++) {

5 I _err_act[s][pop] += _err_stack[s][i] * _stack[s][ old_it ][i+1];

6 }

7 _err_act[s][pop] += _err_stack[s][ _TOP_OF_STACK + _STACK_SIZE - 1] *

EMPTY_STACK_VALUE;

8 for (my_int i = _TOP_OF_STACK + 1; i < _TOP_OF_STACK + _STACK_SIZE; i++) {

9 I _pred_err_stack[s][i-1] += _err_stack[s][i] * _act[s][itm][push];

10 }

11 for (my_int i = _TOP_OF_STACK + 1; i < _TOP_OF_STACK + _STACK_SIZE; i++) {

12 I _err_act[s][push] += _err_stack[s][i] * _stack[s][ old_it ][i-1];

13 }

Listing 3.15: Temporal and spatial load redundancies in Stack RNN. Array err stack

is loaded from memory by each of the four loops, resulting in temporal load redundancy.
Besides, most elements of array err stack equal zero, resulting in spatial load
redundancy.

3.7.6 Stack RNN

Stack RNN [66] is a C++ based project originating from Facebook AI research, which

applies the memory stack to optimize and extend a recurrent neural network. We evaluate

Stack RNN by profiling its built-in application train add with LoadSpy. LoadSpy

quantifies a redundancy fraction of 81%, and pinpoints that the top temporal and spatial

load redundancy pairs are associated with four loops shown in Listing 3.15.

The cause of the temporal load redundancy is that each of the four loops accesses array

err stack. However, the compiler cannot keep all elements of array err stack in CPU

registers across these loops. Thus, the elements of array err stack are repeatedly loaded

from memory into registers. We eliminate the temporal redundant loads by loop fusion,

which fuses the four loops into one such that array err stack is only loaded once.

The cause of the spatial load redundancy is that most elements of array err stack

are zeros, resulting in identity computation at lines 2, 5, 9, and 12 shown in Listing 3.15.

We employ a conditional check to avoid the computation on identities. These two opti-

mizations together eliminate 10% of the memory loads and 15% of the redundant memory

loads, yielding a 1.09× speedup for the whole program.
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1 for (i = 0; i < Nr; i++) {

2 iN[i] = i-1;

3 iS[i] = i+1;

4 }

5 ...

6 iN[0] = 0;

7 iS[Nr -1] = Nr -1;

8 ...

9 for (j = 0; j < Nc; j++) {

10 for (i = 0; i < Nr; i++) {

11 k = i + Nr*j;

12 I Jc = image[k];

13 I dN[k] = image[iN[i] + Nr*j] - Jc;

14 I dS[k] = image[iS[i] + Nr*j] - Jc;

15 }

16 }

Listing 3.16: Temporal load redundancy in Rodinia-3.1 srad v1. Array image is repeatedly
loaded from memory while the values remain unchanged.

3.7.7 Rodinia-3.1 Srad

Srad [25] applies partial differential equations to filter noise in images, which is widely used

in ultrasonic and radar imaging applications. We profile the OpenMP version of srad v1.

LoadSpy reports a temporal redundancy fraction of 99%, of which 8% is attributed to

array image at lines 12-14 shown in Listing 3.16. We notice when 0 < i < Nr - 1, the

value of image[iS[i] + Nr * j] in one iteration equals the value of image[k] in the

next iteration and further equals the value of image[iN[i] + Nr * j] in the iteration

after next.

To fix this problem, we adopt scalar replacement to avoid redundant loads across

iterations, which eliminates 33% of the memory loads and yields a 1.11× speedup for the

whole program. It is worth noting that the indirect accesses in this inefficient code snippet

introduce challenges in compiler’s static analysis and optimization.

Additionally, LoadSpy also identifies the same inefficiency occurring in srad v2. With

the same optimization, srad v2 achieves a 1.12× speedup.

3.7.8 Rodinia-3.1 LavaMD

LavaMD [25] calculates particle potential and relocation among particles. We apply

LoadSpy to evaluate its OpenMP version. LoadSpy reports that 87% of memory loads
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are redundant, and the top contributor is the glibc function exp() at line 7 shown in

Listing 3.17. We notice that the value of u2 often remains unchanged across iterations.

As a result, a number of redundant loads and computations occur inside exp() due to

redundant function calls. With further analysis, we find that a2 is a loop invariant, and

u2 is derived from a2 and r2. Thus, we infer that r2 often has the same value across

iterations.

To optimize this inefficiency, we introduce a conditional check on r2 such that the

program can reuse the return value of exp() from the previous iteration if the value of r2

has not changed. This optimization eliminates 76% of the memory loads and 93% of the

redundant memory loads, yielding a 1.39× speedup for the entire program.

1 for (k = 0; k < (1 + box[l].nn); k++) {

2 ...

3 for (i = 0; i < NUMBER_PAR_PER_BOX; i = i + 1) {

4 for (j = 0; j < NUMBER_PAR_PER_BOX; j = j + 1) {

5 r2 = rA[i].v + rB[j].v - DOT(rA[i], rB[j]);

6 u2 = a2 * r2;

7 I vij = exp(-u2);

8 fs = 2. * vij;

9 ...

10 }

11 }

12 }

Listing 3.17: Temporal load redundancy in Rodinia-3.1 lavaMD due to redundant function
calls.

3.7.9 SPEC CPU2017 538.imagick r

538.imagick r [127] is applied to create, edit, compose, or convert bitmap images.

LoadSpy reports that spatial redundant loads account for 13% of the total memory

loads, of which 24% are attributed to the variable k at lines 6-9 shown in Listing 3.18. k is

a pointer to the FP array values at line 2 and decremented by one in each loop iteration.

We find most array elements are zeros, causing *k to equal zero in most loop iterations.

To remove the identity computation on *k, we introduce a conditional check to filter

out zero values. With this optimization, the memory loads and redundant memory loads

are reduced by 19% and 51% respectively, and the whole program gains a 1.25× speedup.
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1 register const double *restrict k;

2 k = &kernel ->values[kernel ->width * kernel ->height -1]

3 ...

4 for (u = 0; u < (ssize_t) kernel ->width; u++, k--) {

5 if (IsNaN(*k)) continue;

6 I result.red += (*k) * k_pixels[u].red;

7 I result.green += (*k) * k_pixels[u].green;

8 I result.blue += (*k) * k_pixels[u].blue;

9 I result.opacity += (*k) * k_pixels[u]. opacity;

10 ...

11 }

Listing 3.18: Spatial load redundancy in SPEC CPU2017 538.imagick r. Array values is
frequently loaded from memory whereas most array elements equal zero.

1 #define SWEEP_START(x1 , y1, z1, x2, y2, z2) \

2 for(i = CALC_INDEX(x1, y1 , z1 , 0); \

3 i < CALC_INDEX(x2, y2, z2 , 0); \

4 i += N_CELL_ENTRIES) {

5 #define SWEEP_END }

6 ...

7 static double srcGrid[SIZE_Z * SIZE_Y * SIZE_X * N_CELL_ENTRIES ];

8 ...

9 SWEEP_START (0, 0, 0, 0, 0, SIZE_Z) // loop entry

10 ...

11 I rho = + SRC_C(srcGrid) + SRC_N(srcGrid)

12 I + SRC_S(srcGrid) + SRC_E(srcGrid)

13 I + SRC_W(srcGrid) + SRC_T(srcGrid)

14 I + SRC_B(srcGrid) + SRC_NE(srcGrid)

15 I + SRC_NW(srcGrid) + ...

16 I ux = + SRC_E(srcGrid) - SRC_W(srcGrid)

17 I + SRC_NE(srcGrid) - SRC_NW(srcGrid)

18 I + SRC_SE(srcGrid) - SRC_SW(srcGrid)

19 I + SRC_ET(srcGrid) + SRC_EB(srcGrid)

20 I -SRC_WT(srcGrid) - SRC_WB(srcGrid);

21 I uy = + SRC_N(srcGrid) - SRC_S(srcGrid)

22 I + SRC_NE(srcGrid) + SRC_NW(srcGrid)

23 I - SRC_SE(srcGrid) - SRC_SW(srcGrid)

24 I + SRC_NT(srcGrid) + SRC_NB(srcGrid)

25 I - SRC_ST(srcGrid) - SRC_SB(srcGrid);

26 I uz = + SRC_T(srcGrid) - SRC_B(srcGrid)

27 I + SRC_NT(srcGrid) - SRC_NB(srcGrid)

28 I + SRC_ST(srcGrid) - SRC_SB(srcGrid)

29 I + SRC_ET(srcGrid) - SRC_EB(srcGrid)

30 I + SRC_WT(srcGrid) - SRC_WB(srcGrid);

31 ...

32 I DST_WT(dstGrid) = (1.0 - OMEGA) * SRC_WT(srcGrid) + ...

33 I DST_WB(dstGrid) = (1.0 - OMEGA) * SRC_WB(srcGrid) + ...

34 ...

35 SWEEP_END // loop exit

Listing 3.19: Spatial load redundancy in SPEC CPU2006 470.lbm. Array srcGrid is
frequently loaded from memory while most array elements have same values.

3.7.10 SPEC CPU2006 470.lbm

470.lbm [124] employs the Lattice Boltzmann Method (LBM) to simulate incompressible

fluids in three-dimensional space. LoadSpy reports that spatial redundant loads account
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for 55% of the memory loads, of which more than 30% are attributed to array srcGrid

at lines 11-33 shown in Listing 3.19. With code study, we find array srcGrid is traversed

across loop iterations and most of its elements are identical, resulting in many redundant

loads.

To optimize this inefficiency, we apply loop perforation [120] to reduce the number of

iterations at the cost of accuracy. With this optimization, the memory loads and redundant

memory loads are reduced by 26% and 60% respectively, and the whole program gains a

1.25× with trivial accuracy loss (7.7e-5%).

3.8 Summary

In this chapter, we present a study of identifying program inefficiencies by focusing on

whole-program load redundancy. We demonstrate that redundant loads are often a symp-

tom of various inefficiencies arising from inputs, suboptimal algorithms or data structures,

and missed compiler optimizations. To pinpoint these inefficiencies in complex software

code bases, we have developed LoadSpy, a fine-grained profiler that profiles load redun-

dancy. LoadSpy works on fully optimized binary executables, adopts various optimization

techniques (e.g., bursty sampling, lock-free data structures, reduction trees) to reduce the

online profiling and offline data coalescing overhead, and provides a rich GUI, which make

it a complete developer tool. We evaluate LoadSpy using benchmarks and real-world

applications. Guided by LoadSpy, we are able to optimize prior-known and newfound

inefficiencies in these programs, yielding nontrivial speedups.
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Chapter 4

Pinpointing Performance

Inefficiencies in Java

4.1 Introduction

Managed languages, such as Java, have become increasingly popular in various domains,

including web services, graphical interfaces, and mobile computing. Although managed

languages significantly improve development velocity, they often suffer from worse per-

formance compared with native languages. Being a step removed from the underlying

hardware is one of the performance handicaps of programming in managed languages.

Despite their best efforts, programmers, compilers, runtimes, and layers of libraries can

easily introduce various subtleties to find performance inefficiencies in managed program

executions. Such inefficiencies can easily go unnoticed (if not carefully and periodically

monitored) or remain hard to diagnose (due to layers of abstraction and detachment from

the underlying code generation, libraries, and runtimes).

Performance profiling abounds in the Java world to aid developers to understand their

program behavior. Profiling for execution hotspots is the most popular one [78, 76, 41,

49, 30, 29]. Hotspot analysis tools identify code regions that are frequently executed

disregarding whether the execution is efficient or inefficient (useful or wasteful) and hence
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a significant burden is on developers to make a judgment call on whether there is scope

to optimize a hotspot.

There is a need for tools that specifically pinpoint wasteful work and guide developers

to focus on code regions where the optimizations are demanded. Based on numerous case

studies investigated in this chapter, we find that many inefficiencies show up as wasteful

operations when inspected at the machine code level, and those which involve the memory

subsystem are particularly egregious. The following inefficiencies often show up as wasteful

memory operations.

Algorithmic inefficiencies: frequently performing a linear search shows up as fre-

quently loading the same value from the same memory location.

Data structural inefficiencies: using a dense array to store sparse data where the array

is repeatedly reinitialized to store different data items shows up as frequent store-

followed-by-store operations to the same memory location without an intervening

load operation.

Suboptimal code generation: missed inlining can show up as storing the same value

to the same stack location; missed scalar replacement can show up as loading the

same value from the same, unmodified, memory location.

Developers’ inattention to performance: recomputing the same method in succes-

sive loop iterations can show up as silent stores (consecutive writes of the same

value to the same memory). For example, the Java implementation of NPB-3.0

benchmark IS [12] performs the expensive power method inside a loop and in each

iteration, the power method pushes the same parameters on the same stack loca-

tions. Interestingly, this inefficiency is absent in the C version of the code due to a

careful implementation where the developer hoisted the power function out of the

loop.

This list suffices to provide an intuition about the class of inefficiencies detectable

48



by observing certain patterns of memory operations at runtime. Some recent Java profil-

ers [146, 99, 35, 100, 121] identify inefficiencies of this form. However, these tools are based

on exhaustive Java byte code instrumentation, which suffers from two drawbacks: (1) high

(up to 200×) runtime overhead, which prevents them from being used in production and

(2) missing insights into lower-level layers, e.g., inefficiencies in machine code.

142 for (int bit = 0,dual = 1; bit < logn; bit++, dual *= 2) {

143 ...

144 for (int a = 1; a < dual; a++) {

145 ...

146 for (int b = 0; b < n; b += 2 * dual) {

147 int i = 2 * b ;

148 int j = 2 * (b + dual);

149 double z1_real = data[j];

150 double z1_imag = data[j + 1];

151 double wd_real = w_real * z1_real - w_imag * z1_imag;

152 double wd_imag = w_real * z1_imag + w_imag * z1_real;

153 I data[j] = data[i] - wd_real;

154 data[j + 1] = data[i + 1] - wd_imag;

155 I data[i] += wd_real;

156 data[i + 1] += wd_imag;

157 }

158 }

159 }

Listing 4.1: Redundant memory loads in SPECjvm2008 scimark.fft. data[i] is loaded
from memory twice in a single iteration whereas it is unmodified between these two loads.

4.1.1 Motivating Example

Listing 4.1 shows a hot loop in a JITted method (compiled with Oracle HotSpot JIT com-

piler) in SPECjvm2008 scimark.fft [125], a standard implementation of Fast Fourier Trans-

forms (FFT). The JITted assembly code of the source code at lines 153 and 155 is shown in

Figure 4.1. Notice the two loads from the memory location data[i] (0x10(%r9,%r8,8))

— once into register xmm2 at line 153 and then into register xmm0 at line 155. data[i] is

unmodified between these two loads. Moreover, i and j differ by at least 2 and never alias

to the same memory location (see lines 147 and 148). Unfortunately, the code generation

fails to exploit this aspect and trashes xmm2 at line 153, which results in reloading data[i]

at line 155.

With the knowledge of never-alias, we performed scalar replacement — placed data[i]

in a temporary that eliminated the redundant loads, yielding a 1.13× speedup for the en-
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; data[j] = data[i] - wd_real
vmovsd 0x10(%r9,%r8,8),%xmm2
vsubsd %xmm0,%xmm2,%xmm2
…
; data[i] += wd_real ;
vaddsd 0x10(%r9,%r8,8),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r9,%r8,8)

Figure 4.1: The assembly code (at&t style) of lines 153 and 155 in Listing 4.1.

tire program. Without access to the source code of the commercial Java runtime, we

cannot definitively know whether the alias analysis missed the opportunity or the regis-

ter allocator caused the suboptimal code generation, most likely the former. However,

it suffices to highlight the fact that observing the patterns of wasteful memory opera-

tions at the machine code level at runtime, divulges the inefficiencies left out at various

phases of transformation and allows us to peek into what ultimately executes. A more

detailed analysis of this benchmark with the optimization guided by JXPerf follows in

Section 4.6.1.

4.1.2 Contribution Summary

We propose JXPerf to complement existing Java profilers; JXPerf samples PMUs and

employs debug registers available in commodity CPUs to identify program inefficiencies

that exhibit as wasteful memory operations at runtime. In this work, we make the following

contributions:

• Show the design and implementation of a lightweight Java inefficiency profiler work-

ing on off-the-shelf Java virtual machine (JVM) with no byte code instrumentation

to memory accesses.

• Demonstrate that JXPerf identifies inefficiencies at machine code, which can be

introduced by poor code generation, inappropriate data structures, or suboptimal
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algorithms.

• Perform a thorough evaluation of JXPerf and show that JXPerf, with 7% runtime

overhead and 7% memory overhead, is able to pinpoint inefficiencies in well-known

Java benchmarks and real-world applications, yielding significant speedups after

eliminating such inefficiencies.

4.2 Related Work

There are a number of commercial and research Java profilers, most of which fall into the

two categories: hotspot profilers and inefficiency profilers.

4.2.1 Hotspot Profilers

Profilers such as Async-profiler [109], Jprofiler [41], YourKit [49], VisualVM [30], Ora-

cle Developer Studio Performance Analyzer [29], and IBM Health Center [61] pinpoint

hotspots in Java programs. Most hotspot profilers incur low overhead because they use

interrupt-based sampling techniques supported by PMUs or OS timers. Hotspot profilers

can identify code sections that account for a large number of resources such as CPU cycles,

cache misses, heap memory usage, and floating-point operations. However, they cannot

tell whether the resources are used efficiently.

4.2.2 Inefficiency Profilers

Glider [35] generates tests that expose redundant operations in Java collection traversals.

MemoizeIt [33] detects redundant computations by identifying methods that repeatedly

perform identical computations and output identical results. Xu et al. employ various

static and dynamic analysis techniques (e.g., points-to analysis, dynamic slicing) to detect

memory bloat by identifying useless data copying [147], inefficiently-used containers [149],

low-utility data structures [148], reusable data structures [146], and cacheable data struc-

tures [99]. Unlike hotspot ones, these profilers can pinpoint redundant operations that
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lead to resource wastage.

JXPerf is also an inefficiency profiler. Unlike prior work that uses exhaustive byte

code instrumentation, JXPerf exploits features available in hardware (PMUs and debug

registers) that eliminates instrumentation and dramatically reduces overhead. Section 4.5

details the comparison between JXPerf and the profilers based on exhaustive byte code

instrumentation.

Remix [40], similar to JXPerf, also utilizes PMUs; while JXPerf identifies intra-

thread inefficiencies, e.g., wasteful operations, Remix identifies false sharing across threads.

4.3 Methodology

We define the following three kinds of wasteful memory access patterns.

Definition 4 (Dead store). S1 and S2 are two successive memory stores to location M

(S1 occurs before S2). S1 is a dead store iff there is no intervening memory load from M

between S1 and S2. In such a case, we call 〈S1, S2〉 a dead store pair.

Definition 5 (Slient store). A memory store S2, storing a value V2 to location M , is

a silent store iff the previous memory store S1, performed on M , stored a value V1 and

V1 = V2. In such a case, we call 〈S1, S2〉 a silent store pair.

Definition 6 (Silent load1). A memory load L2, loading a value V2 from location M , is

a silent load iff the previous memory load L1, performed on M , loaded a value V1 and

V1 = V2. In such a case, we call 〈L1, L2〉 a silent load pair.

Silent stores and silent loads are value-aware inefficiencies whereas dead stores are

value-agnostic ones. We perform precise equality check on integer values, and approximate

equality check on FP values within a user-specified threshold of difference (1% by default).

For memory operations involved in inefficiencies, we use their calling contexts instead of

their effective addresses to represent them, which can facilitate optimization efforts.

1In this dissertation, “redundant load” and “silent load” are interchangeable terms.
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Figure 4.2 highlights the idea of JXPerf in detecting inefficiencies at runtime, exem-

plified with silent stores. PMUs drive JXPerf by sampling precise memory stores. On

a sampled memory store, JXPerf records the effective address captured by the PMU,

reads the value stored at this address, and sets a W TRAP watchpoint at this address via a

debug register. The subsequent store to the same address traps the execution. JXPerf

captures the trap and checks the value stored at the effective address of the trap. If the

value remains unchanged between the two consecutive accesses, JXPerf reports a pair of

silent stores. The watchpoint is disabled and the execution continues as usual to detect

more such instances.

… M … M …

Debug 
register

Store S1 (PMU sample)

A watchpoint is armed A watchpoint exception

Memory access 
sequence

Store S2 

①

② ③

Figure 4.2: JXPerf’s scheme for silent store detection. 1○ The PMU samples a memory
store S1 that touches location M . 2○ In the PMU sample handler, a debug register is
armed to monitor the subsequent access to M . 3○ The debug register traps on the next
store S2 to M . 4○ If S1 and S2 write the same value to M , JXPerf labels S2 as a silent
store and 〈S1, S2〉 as a silent store pair.

4.4 Design and Implementation

JXPerf, similar to LoadSpy, also produces per-thread profiles at runtime and merges

them to into a single profile in a postmortem fashion to minimize thread synchronization

overhead. Figure 4.3 overviews JXPerf in the entire system stack. JXPerf requires no

modification to hardware (x86), OS (Linux), JVM (Oracle HotSpot), and monitored Java

applications. In this section, we first describe the implementation details of JXPerf in

identifying wasteful memory operations, then show how JXPerf addresses the challenges,

and finally depict how JXPerf provides extra information to guide code optimization.
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JXPerf

JVMTI

Figure 4.3: Overview of JXPerf in the system stack.

4.4.1 Lightweight Inefficiency Detection

Silent store detection

1. JXPerf subscribes to the precise PMU store event at the JVM initialization callback

and sets up PMUs and debug registers for each thread via the perf event API at

the thread creation callback.

2. When a PMU counter overflows during program execution, it triggers an interrupt.

JXPerf captures the interrupt, constructs the calling context C1 of the interrupt,

and extracts the effective address M and the value V1 stored at M .

3. JXPerf sets a W TRAP watchpoint at M via a debug register and resumes the exe-

cution.

4. A subsequent store to M triggers a watchpoint trap. JXPerf handles the trap

signal, constructs the calling context C2 of the trap, and inspects the value V2 stored

at M .
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5. JXPerf compares V1 and V2. If V1 = V2, a silent store is detected, and JXPerf

labels the context pair 〈C1, C2〉 as an instance of a silent store.

6. JXPerf disarms the debug register and resumes the execution.

Dead store detection JXPerf subscribes to the precise PMU store event for dead

store detection. When a PMU counter overflows, JXPerf constructs the calling context

C1 of the interrupt, extracts the effective address M , sets a RW TRAP watchpoint at M , and

resumes program execution. When the subsequent access to M traps, JXPerf examines

the access type (store or load). If it is a store, JXPerf constructs the calling context C2

of the trap and records the pair 〈C1, C2〉 as an instance of a dead store. Otherwise, it is

not a dead store.

Silent load detection The detection is similar to the silent store detection, except that

JXPerf subscribes to the precise PMU load event and sets a RW TRAP watchpoint 2 to

trap the subsequent access to the same memory address. If the watchpoint triggers on

a load that reads the same value as the previous load from the same location, JXPerf

reports an instance of a silent load.

The following metrics compute the fraction of wasteful memory operations in an exe-

cution:

FDeadStore
prog =

∑
i

∑
j Dead bytes stored in 〈Ci, Cj〉∑

i

∑
j Bytes stored in 〈Ci, Cj〉

FSilentStore
prog =

∑
i

∑
j Silent bytes stored in 〈Ci, Cj〉∑

i

∑
j Bytes stored in 〈Ci, Cj〉

FSilentLoad
prog =

∑
i

∑
j Silent bytes loaded from 〈Ci, Cj〉∑
i

∑
j Bytes loaded from 〈Ci, Cj〉

(4.1)

2x86 debug registers do not offer the trap-only-on-load facility.
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The fraction of wasteful memory operations in a calling context pair is given as follows:

FDeadStore
〈Cwatch,Ctrap〉 =

Dead bytes stored in 〈Cwatch, Ctrap〉∑
i

∑
j Bytes stored in 〈Ci, Cj〉

FSilentStore
〈Cwatch,Ctrap〉 =

Silent bytes stored in 〈Cwatch, Ctrap〉∑
i

∑
j Bytes stored in 〈Ci, Cj〉

FSilentLoad
〈Cwatch,Ctrap〉 =

Silent bytes loaded from 〈Cwatch, Ctrap〉∑
i

∑
j Bytes loaded from 〈Ci, Cj〉

(4.2)

1 for (int i = 1; i <= 10K; i++) sum1 += array[i];

2 for (int j = 1; j <= 10K; j++) sum2 += array[j]; // silent loads

Listing 4.2: Long-distance silent loads. All four watchpoints are armed in the first four
samples taken in loop i at the sampling period of 1K memory loads. Naively replacing
the oldest watchpoint will not trigger a single watchpoint owing to many samples taken in
loop i before reaching loop j. JXPerf employs reservoir sampling to ensure each sample
equal probability to survive.

4.4.2 Limited Number of Debug Registers

Hardware offers a small number of debug registers, which becomes a limitation if the PMU

delivers a new sample before a previously set watchpoint traps. To better understand

the problem, consider the silent load example in Listing 4.2. Assume the loop indices

i and j, and the scalars sum1 and sum2 are in registers. Further assume the PMU is

configured to deliver a sample every 1K memory loads and the number of debug registers

is only one. The first sample occurs in loop i when accessing array[1K], which results

in setting a watchpoint to monitor the address of array[1K]. The second sample occurs

when accessing array[2K]. Since the watchpoint armed at array[1K] is still active, we

should either forgo monitoring it in favor of array[2K] or ignore the new sample. The

former choice allows us to detect a pair of silent loads separated by only a few intervening

loads, and the latter choice allows us to potentially detect a pair of silent loads separated

by many intervening loads. The option is not obvious without looking into the future. A

naive “replace the oldest policy” is futile as it will not detect a single silent load in the

above example. Even a slightly smart exponential decay strategy will not work because

the survival probability of an old watchpoint will be minuscule over many samples.
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JXPerf employs reservoir sampling [137, 143, 138], which uniformly chooses between

old and new samples with no temporal bias. The first sampled address M1, occupies

the debug register with 1.0 probability. The second sampled address M2, occupies the

previously armed watchpoint with 1/2 probability and retains M1 with 1/2 probability.

The third sampled address M3, either occupies the previously armed watchpoint with 1/3

probability or retains it (M1 or M2) with 2/3 probability. The ith sampled address Mi since

the last time a debug register was available, occupies the previously armed watchpoint with

1/i probability. The probability Pk of monitoring any sampled address Mk, 1 ≤ k ≤ i, is

the same (1/i), ensuring uniform sampling over time. When a watchpoint exception occurs,

JXPerf disarms that watchpoint and resets its reservoir (replacement) probability to 1.0.

Obviously, with this scheme JXPerf does not miss any sample if every watchpoint traps

before being replaced.

The scheme trivially extends to more number of debug registers, say N ≥ 1. JXPerf

maintains an independent reservoir probability Pα for each debug register α, (1 ≤ α ≤ N).

On a PMU sample, if there is an available debug register, JXPerf arms it and decreases

the reservoir probability of other already-armed debug registers; otherwise JXPerf visits

each debug register α and attempts to replace it with the probability Pα. The process may

succeed or fail in arming a debug register for a new sample, but it gives a new sample N

chances to remain in a system with N watchpoints. Whether success or failure, Pα of each

in-use debug register is updated after a sample. The order of visiting the debug registers

is randomized for each sample to ensure fairness. Notice that this scheme maintains only

a count of previous samples (not an access log), which consumes O(1) memory.

4.4.3 Interference of the Garbage Collector

Garbage collection (GC) can move live objects from one memory location to another.

Without paying heed to GC events, JXPerf can introduce two kinds of errors: (1) it

may erroneously attribute an instance of inefficiency (e.g., dead store) to a location that

is in reality occupied by two different objects between two consecutive accesses by the
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same thread; (2) it may miss attributing an inefficiency metric to an object because it

was moved from one memory location to another between two consecutive accesses by the

same thread.

If JXPerf were able to query the garbage collector for moved objects or addresses, it

could have avoided such errors, however, no such facility exists to the best of our knowl-

edge in commercial JVMs. JXPerf’s solution is to monitor accesses only between GC

epochs. JXPerf captures the start and end points of GC by registering the JVMTI call-

backs GarbageCollectionStart and GarbageCollectionFinish to demarcate epochs.

Watchpoints armed in an older epoch are not carried over to a new epoch: the first PMU

sample or watchpoint trap that happens in a thread in a new epoch disarms all active

watchpoints in that thread and begins afresh with a reservoir sampling probability of 1.0

for all debug registers in that thread. Notice that GC threads are never monitored. Typ-

ically, two consecutive accesses separated by a GC is infrequent; for example, the ratio of

# of GCs
# of PMU samples is 4.4e-5 in Dacapo-9.12-MR1-bach eclipse [15].

4.4.4 Attributing Measurement to Binary

JXPerf uses Intel XED library [62] for on-the-fly disassembly of JITed methods. JXPerf

retains the disassembly for post-mortem inspection if desired. It also uses XED to deter-

mine whether a watchpoint trap was caused by a load or a store instruction.

A subtle implementation issue is in extracting the instruction that causes the watch-

point trap. JXPerf uses the perf event API to register a HW BREAKPOINT perf event

(watchpoint event) for a monitored address. Although the watchpoint causes a trap im-

mediately after the instruction execution, the instruction pointer (IP) seen in the signal

handler context (contextIP) is one ahead of the actual IP (trapIP) that triggers the trap.

In the x86 variable-length instruction set, it is nontrivial to derive the trapIP, even though

it is just one instruction before the contextIP. The HW BREAKPOINT event in perf event

is not a PMU event; hence, the Intel PEBS support, which otherwise provides the precise

register state, is unavailable for a watchpoint. JXPerf disassembles every instruction
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from the method beginning till it reaches the IP just before the contextIP. The expensive

disassembly is amortized by caching results for subsequent traps that often happen at the

same IP. The caching is particularly important in methods with a large body; for example,

when detecting silent loads in Dacapo-9.12-MR1-bach eclipse, without caching JXPerf

introduces 4× runtime overhead.

4.4.5 Attributing Measurement to Calling Context

Oracle JDK offers users two APIs to obtain the calling context of an instruction: officially

documented GetStackTrace() and undocumented AsyncGetCallTrace(). Profilers that

use GetStackTrace() suffer from the safepoint bias since JVM requires the program

to reach a safepoint before collecting any calling context [96, 57]. To avoid the bias,

JXPerf employs AsyncGetCallTrace() to facilitate non-safepoint collection of calling

contexts [102]. AsyncGetCallTrace() accepts u context obtained from a PMU interrupt

or watchpoint trap as the input, and returns the method ID and byte code index (BCI)

for each stack frame in the calling context of this interrupt or trap. Method ID uniquely

identifies distinct methods and distinct JITted instances of the same method (a single

method may be JITted multiple times). With the method ID, JXPerf is able to obtain

the associated class name and method name by querying JVM via JVMTI. To obtain the

line number, JXPerf maintains a “BCI→line number” mapping table for each method

instance by querying JVM via JVMTI API GetLineNumberTable(). As a result, for any

given BCI, JXPerf returns its line number by looking up the mapping table.

4.5 Evaluation

We evaluate JXPerf on an 18-core Intel Xeon E5-2699 v3 CPU of 2.30GHz frequency

running Linux 4.8.0. The machine has 128GB main memory. JXPerf is built with Oracle

JDK11 and complied with gcc-5.4.1 -O3. The Oracle HotSpot JVM is run in the server

mode. JXPerf samples the PMU event MEM UOPS RETIRED:ALL STORES to detect dead
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stores and silent stores, and MEM UOPS RETIRED:ALL LOADS to detect silent loads.

We evaluate JXPerf on three well-known benchmark suites — DaCapo 2006 [15],

Dacapo-9.12-MR1-bach [15], and ScalaBench [118] as well as on two real-world perfor-

mance bug datasets [4, 94]. All the programs are built with Oracle JDK11 except DaCapo

2006 bloat, Dacapo-9.12-MR1-bach batik and eclipse, and ScalaBench actors, which are

built with Oracle JDK8 due to the incompatibility. We apply the large input for DaCapo

2006, Dacapo-9.12-MR1-bach and ScalaBench, and the default inputs released with the

remaining programs if not specified. The parallel programs, excluding threads used for

the JIT compilation and GC, are run with four threads if allowed to specify the number

of threads.

To deal with the impact of the non-deterministic execution (e.g., non-deterministic

GC) of Java programs on experimental results, we refer to Georges et al.’s work [47]

to use a confidence interval for the mean to report results. The confidence interval for

the mean is computed by the following formula where n is the number of samples, x is

the mean, σ is the standard deviation, and z is a statistic determined by the confidence

interval. In our experiments, we run each benchmark 30 times (i.e., n = 30) and use a

95% confidence interval (i.e., z = 1.96).

x± z× σ√
n

(4.3)

In the rest of this section, we first show the fraction of wasteful memory operations

— dead stores, silent stores, and silents loads — on DaCapo 2006, Dacapo-9.12-MR1-

bach, and ScalaBench benchmark suites at different sampling periods and different num-

bers of debug registers. We then evaluate the overhead of JXPerf on them. We ex-

clude three benchmarks — Dacapo-9.12-MR1-bach tradesoap, tradebeans, and tomcat

— from monitoring because of the huge variance in execution time of the native run

(tradesoap and tradebeans) or runtime errors of the native run (tomcat). Finally, we

evaluate the effectiveness of JXPerf on the known performance bug datasets reported by
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Figure 4.4: Fraction of wasteful memory operations on DaCapo 2006, Dacapo-9.12-MR1-
bach, and ScalaBench benchmark suites at the sampling periods of 500K, 1M, 5M, and
10M. The error bars are for different sampling periods.

existing tools.

4.5.1 Fraction of Wasteful Memory Operations

Figure 4.4 shows the fraction of dead stores, silent stores, and silent loads on DaCapo

2006, Dacapo-9.12-MR1-bach, and ScalaBench benchmark suites at the sampling periods

of 500K, 1M, 5M, and 10M. The following two takeaways are obvious:

• The inefficiencies, i.e., dead stores, silent stores, and silent loads, pervasively exist in

Java programs.

• The sampling period does not significantly impact the fraction of inefficiencies in Java

programs.

We further vary the number of debug registers from one to four to observe the variance

in results at the same sampling period — 5M, as shown in Figure 4.5. We find the

number of debug registers has minuscule impacts on the results except for a couple of

short-running (e.g., < 2s) benchmarks such as luindex and kiama, which validates the

strength of reservoir sampling. We check the top five inefficiency pairs and their percentage

contributions and find negligible variance across different sampling periods and different

numbers of debug registers.
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Figure 4.5: Fraction of wasteful memory operations on DaCapo 2006, Dacapo-9.12-MR1-
bach, and ScalaBench benchmark suites by using different numbers of debug registers at
the 5M sampling period. The error bars are for different number of debug registers.

Table 4.1: Geometric mean and median of runtime and memory overhead (×) of JXPerf
at different sampling periods on DaCapo 2006, Dacapo-9.12-MR1-bach, and ScalaBench
benchmark suites (DS: dead store, SS: silent store, SL: silent load).

500K 1M 5M 10M
Runtime overhead 1.18/1.18 1.11/1.1 1.07/1.05 1.04/1.03
Memory overhead 1.06/1.08 1.06/1.08 1.05/1.06 1.04/1.05
Runtime overhead 1.16/1.14 1.1/1.1 1.06/1.04 1.05/1.04
Memory overhead 1.06/1.07 1.06/1.06 1.04/1.05 1.05/1.05
Runtime overhead 1.35/1.34 1.24/1.21 1.1/1.07 1.07/1.05
Memory overhead 1.19/1.17 1.11/1.1 1.05/1.07 1.06/1.06

Sampling period

DS detection

SS detection

SL detection

GeoMean/Median

4.5.2 Overhead

Runtime (memory) overhead is measured as the ratio of the runtime (peak memory usage)

of a benchmark with JXPerf enabled to the runtime (peak memory usage) of its native

execution. Table 4.1 shows the geometric mean and median of runtime and memory

overhead at different sampling periods. As the sampling period increases (i.e., the sampling

rate decreases), the overhead drops as expected. We empirically find that the 5M sampling

period yields a good tradeoff between overhead and accuracy, which typically incurs 7%
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(b) Memory overhead.

Figure 4.6: JXPerf’s runtime and memory overhead (×) at the 5M sampling period on
DaCapo 2006, Dacapo-9.12-MR1-bach and ScalaBench benchmark suites.

runtime overhead and 7% memory overhead.

Figure 4.6 further quantifies the overhead of JXPerf on each benchmark at the 5M

sampling period. Silent load detection typically has a higher overhead than the other two

because loads are more common than stores in program execution. Moreover, JXPerf

sets the RW TRAP (trap-only-on-load watchpoints are unavailable in x86 processors), which

triggers an exception on both stores (ignored) and loads. From the program perspective,

silent load detection for eclipse incurs higher runtime overhead than the others because

it executes more load operations and has more methods of large size that require JXPerf

to take more efforts to correct the off-by-one error at each watchpoint trap. Due to the

non-deterministic behavior of GC, the peak memory usage for a couple of benchmarks with

JXPerf enabled is less than the native run (e.g., eclipse, xalan) or varies significantly
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among different runs (e.g., factorie).

4.5.3 Effectiveness

We investigate the performance bugs reported by several state-of-the-art tools such as

Toddler [100], Clarity [106], Glider [35], and LDoctor [121]. Among them, the developers of

Toddler and Glider share their bug datasets and test cases that expose the bugs online [4,

94]. Therefore, we validate the effectiveness of JXPerf by checking whether the bugs

reported by Toddler and Glider can also be identified by JXPerf. Toddler and Glider are

both built atop Soot [135] to identify a restricted class of performance issues: redundant

operations involved in Java collection traversals, of which the symptom is silent loads. It

is worth noting that the runtime overheads of Toddler and Glider are ∼16× and ∼150×,

respectively.

Table 4.2: Effectiveness of JXPerf. Toddler and Glider report 33 and 46 performance
bugs from eight real-world applications, among which JXPerf succeeds in reproducing
31 and 44 bugs, respectively.

Application # of bugs reported by Toddler/Glider # of bugs reproduced by JXPerf
Apache Ant 5/6 4/5

Apache Collections 21/16 20/16
Apache Groovy 1/6 1/6
Apache Lucene 0/1 0/1
Google Guava 4/9 4/9

JFreeChart 1/3 1/2
JDK 1/0 1/0

PDFBox 0/5 0/5
Sum 33/46 31/44

Table 4.2 shows the comparison results. Toddler reports 33 bugs (we exclude the bugs

whose source code or test cases are no longer available), among which JXPerf misses

only two bugs: Apache Ant#53637 and Apache Collections#409. Glider reports 46

bugs, among which JXPerf misses only two bugs: Apache Ant#53637 and JFreeChart

(unknown bug ID). Take Apache Collections#588, one of the reported bugs, as an example
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1 public boolean retainAll(final Collection <?> coll) {

2 if (coll != null) {

3 boolean modified = false;

4 final Iterator <E> e = iterator ();

5 while (e.hasNext ()) {

6 I if (!coll.contains(e.next())) {

7 e.remove ();

8 modified = true;

9 }

10 }

11 return modified;

12 } else return decorated ().retainAll(null);

13 }

Listing 4.3: Inefficient implementation of method retainAll() in Apache Collec-
tions#588. JXPerf reports that 49% of silent loads are associated with method
contains() at line 6 when the parameter coll is of type list.

to illustrate how JXPerf identifies it. Listing 4.3 shows the inefficient implementation

of method retainAll() in Apache Collections#588. JXPerf reports that 49% of silent

loads are associated with method contains() at line 6 when the parameter Collection

coll is of type list. For each element in Iterator e, contains() performs a linear search

over coll to check whether coll contains this element. Consequently, elements in coll

are repeatedly traversed whereas their values remain unchanged, which shows up as silent

loads. Converting coll to a hash set is a superior choice of data structure that enables

O(1) search algorithm and dramatically reduces the number of loads and also the fraction

of silent loads.

All the missed performance bugs fall into the same category: inefficiency ob-

served in adjacent memory locations rather than the same memory location. We take

Apache Ant#53637 as an example to illustrate why JXPerf misses it. The method

“A.addAll(int index, Collection B)” in Ant#53637 requires inserting elements of

Collection A one by one into the location “index” of Collection B. In each insertion, ele-

ments at and behind the location “index” of B have to be shifted. Consequently, elements

in B suffer from the repeated shifts. The symptom of such inefficiency is that the same

value is repeatedly loaded from adjacent memory locations. JXPerf only identifies silent

loads that repeatedly load the same value from the same memory location. JXPerf can

be extended with a heuristic to record values at adjacent locations at the sample point
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and compare them at the watchpoint trap. It is worth noting that inefficiencies identified

by Toddler, Clarity, Glider, and LDoctor are mostly related to load operations, whereas

JXPerf also identifies significant store-related inefficiencies.

Table 4.3: Overview of performance improvement guided by JXPerf.

Program
Inefficiency Optimization

Code Type Root cause Approach Speedup

M
a
cr

o
b

en
ch

m
a
rk 3

SPECjvm2008
scimark.fft

FFT.java:loop (153-156) SL Poor machine code generation Scalar replacement (1.13±0.02)×

3NPB-3.0 IS Random.java: randlc SS Redundant method invocations Reusing the previous result (1.89±0.04)×

3Grande-2.0 Euler
Tunnel.java:calculateR

Tunnel.java:calculateDamping
DS Poor machine code generation Scalar replacement (1.1±0.02)×

R
ea

l
a
p

p
li
ca

ti
o
n 3SableCC-3.7

Grammar.java (15,16,64,65)
LR0Collection.java (16,57,82,112)

LR1Collection.java (16,17,27,28,33,34)
LR0ItemSet.java (15,20,26)

LR1ItemSet.java (15,20,26,124)

SL Poor data structure Replacing TreeMap with LinkedHashMap (3.08±0.32)×

3FindBugs-3.0.1 Frame.java:copyFrom DS Inefficiently-used ArrayList Improving ArrayList usage (1.02±0.01)×
3Dacapo 2006 bloat RegisterAllocator.java:loop (283) DS Useless value assignment in JDK Removing the overpopulated containers (1.35±0.05)×
JFreeChart-1.0.19 SegmentedTimeline.java:loop (1026) SL Poor linear search Linear search with a break check (1.64±0.04)×

3: newfound performance bugs via JXPerf.
SS: silent store, DS: dead store, SL: silent load.

4.6 Case Studies

In addition to confirming the performance bugs reported by the existing tools, we apply

JXPerf on more benchmark suites — DaCapo 2006 [15], SPECjvm2008 [125], NPB-

3.0 [12] and Grande-2.0 [103], and real-world applications — SableCC-3.7 [44], FindBugs-

3.0.1 [111], and JFreeChart-1.0.19 [48] to identify varieties of inefficiencies.

Table 4.3 summarizes the newly found performance bugs via JXPerf as well as pre-

viously found ones but with different insights provided by JXPerf. All the programs

are built with Oracle JDK11 except Dacapo 2006 bloat and FindBugs-3.0.1, which are

built with Oracle JDK8. We quantify the performance improvement in execution time

except for SPECjvm2008 scimark.fft, which is in throughput. We run each program 30

times and use a 95% confidence interval for the mean speedup to report the performance

improvement. In the rest of this section, we study each program shown in Table 4.3.

4.6.1 SPECjvm2008 Scimark.fft: Silent Loads

With the large input and four threads, JXPerf reports 33% of memory loads are silent.

The top two silent load pairs are attributed to lines 153 and 155, and lines 154 and 156
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--------------------------------------------------------------------------------

spec.harness.BenchmarkThread.run(BenchmarkThread.java:59)

spec.harness.BenchmarkThread.executeIteration(BenchmarkThread.java:82)

spec.harness.BenchmarkThread.runLoop(BenchmarkThread.java:170)

spec.benchmarks.scimark.fft.Main.harnessMain(Main.java:36)

spec.benchmarks.scimark.fft.Main.runBenchmark(Main.java:27)

spec.benchmarks.scimark.fft.FFT.main(FFT.java:89)

spec.benchmarks.scimark.fft.FFT.run(FFT.java:246)

spec.benchmarks.scimark.fft.FFT.measureFFT(FFT.java:231)

spec.benchmarks.scimark.fft.FFT.test(FFT.java:70)

spec.benchmarks.scimark.fft.FFT.inverse(FFT.java:52)

vmovsd 0x10(%r9,%r8,8),%xmm2:...transform_internal(FFT.java:153)

*********************************REDUNDANT WITH*********************************

spec.harness.BenchmarkThread.run(BenchmarkThread.java:59)

spec.harness.BenchmarkThread.executeIteration(BenchmarkThread.java:82)

spec.harness.BenchmarkThread.runLoop(BenchmarkThread.java:170)

spec.benchmarks.scimark.fft.Main.harnessMain(Main.java:36)

spec.benchmarks.scimark.fft.Main.runBenchmark(Main.java:27)

spec.benchmarks.scimark.fft.FFT.main(FFT.java:89)

spec.benchmarks.scimark.fft.FFT.run(FFT.java:246)

spec.benchmarks.scimark.fft.FFT.measureFFT(FFT.java:231)

spec.benchmarks.scimark.fft.FFT.test(FFT.java:70)

spec.benchmarks.scimark.fft.FFT.inverse(FFT.java:52)

vaddsd 0x10(%r9,%r8,8),%xmm0,%xmm0:...transform_internal(FFT.java:155)

--------------------------------------------------------------------------------

Figure 4.7: A silent load pair with full calling contexts reported by JXPerf in
SPECjvm2008 scimark.fft.

in Listing 4.1, which account for 27% of the total silent loads. They both suffer from the

same performance issue: poor code generation detailed in Section 4.1.1. We take lines 153

and 155 as an example to illustrate our optimization, of which the culprit calling contexts

are shown in Figure 4.7. We employ scalar replacement to eliminate such intra-iteration

silent loads. In each iteration, we store the value of data[i] in a temporary before

performing line 153, which enables data[i] to be loaded only once in a single iteration.

We also eliminate the silent loads between lines 154 and 156 using the same approach.

They together eliminate 15% of the memory loads and yield a (1.13±0.02)× speedup for

the entire program.
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1 private void calculateDamping(double localpg [][], Statevector localug [][]) {

2 Statevector temp2 = new Statevector ();

3 if (j > 1 && j < jmax -1) {

4 temp = localug[i][j + 2]. svect(localug[i][j - 1]);

5 I temp2.a = 3.0 * (localug[i][j].a - localug[i][j + 1].a);

6 ...

7 scrap4.a = tempdouble * (temp.a + temp2.a);

8 }

9 ...

10 if (j > 1 && j < jmax - 1) {

11 temp = localug[i][j + 1]. svect(localug[i][j - 2]);

12 I temp2.a = 3.0 * (localug[i][j - 1].a - localug[i][j].a);

13 ...

14 }

15 ...

16 }

Listing 4.4: Dead stores in Grande-2.0 Euler. Successive memory stores to temp2.a

without an intervening memory load.

; temp2.a = 3.0*(localug[i][j].a-localug[i][j+1].a)
vsubsd %xmm1,%xmm0,%xmm0
vmulsd -0x1a76(%rip),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r8)
…
; scrap4.a = tempdouble*(temp.a+temp2.a)
vaddsd %xmm0,%xmm5,%xmm5
vmulsd %xmm4,%xmm5,%xmm5
vmovsd %xmm5,0x10(%r9)
…
; temp2.a = 3.0*(localug[i][j-1].a-localug[i][j].a)
vsubsd %xmm1,%xmm0,%xmm0
vmulsd -0x2077(%rip),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r8)                    

Figure 4.8: The assembly code (at&t style) of lines 5, 7 and 12 in Listing 4.4.

4.6.2 Grande-2.0 Euler: Dead Stores

Euler [103] employs a structured mesh to solve the time-dependent Euler equations.

JXPerf identifies 46% of memory stores are dead. One of the top dead store pairs

is associated with the variable temp2.a at lines 5 and 12 in Listing 4.4, which appears in

a loop nest (not shown). By inspecting the JITted assembly code shown in Figure 4.8,

we find the value of temp2.a computed at line 5 is held in a register, which is reused at
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line 7. However, the memory store to temp2.a at line 5 is not eliminated. As a result,

the memory store to temp2.a at line 12 overwrites the previous memory store to temp2.a

at line 5. Although CPUs buffer stores, workloads with many store operations, such as

Euler, can cause CPU stalls due to store buffers filling up [152].

To eliminate the dead stores, we use a temporary to replace temp2.a at lines 5, 7,

and 12. JXPerf also identifies other dead store pairs with the same issue and guides the

same optimization. This optimization eliminates 59% of the memory stores and yields a

(1.1±0.02)× speedup. Our optimization is safe because temp2 is a local object defined

in method calculateDamping() (line 2) to store the intermediate results; the object it

refers to is never referenced by any other variable.

4.6.3 SableCC-3.7: Silent Loads

SableCC [44] is a lexer and parser framework for compilers and interpreters. JXPerf

profiles the latest stable version of SableCC using the JDK7 grammar file as the input.

JXPerf identifies that silent loads account for 94% of the memory loads and more than

80% of silent loads are associated with method put() of the JDK TreeMap class. One of

such top inefficiency pairs with calling contexts is shown in Figure 4.9. The silent loads

occur at line 568 in TreeMap.java, whose source code is shown in Listing 4.5. TreeMap is

a red-black-tree-based map where a put operation requires O(log n) comparisons to insert

an element. put() is frequently invoked to update the TreeMap during program execution.

Consequently, previously loaded elements in the TreeMap are often re-loaded to compare

with new elements being inserted in different invocation instances of put(), which shows

up as silent loads.

By consulting the SableCC developers, we choose an alternative data structure. We

substitute LinkedHashMap for TreeMap because (1) the linked list preserves ordering

from one execution to another and (2) the hash table offers O(1) time complexity and

significantly reduces the number of loads as well as the fraction of silent loads. We

employ this transformation in five classes: LR0ItemSet, LR1ItemSet, LR0Collection,
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-------------------------------------------------------------------

org.sablecc.sablecc.SableCC.main(SableCC.java:136)

org.sablecc.sablecc.SableCC.processGrammar(SableCC.java:170)

...

mov 0x20(%rbp),%r10d: java.util.TreeMap.put(TreeMap.java:568)

***************************REDUNDANT WITH***************************

org.sablecc.sablecc.SableCC.main(SableCC.java:136)

org.sablecc.sablecc.SableCC.processGrammar(SableCC.java:170)

...

mov 0x20(%rbp),%r10d: java.util.TreeMap.put(TreeMap.java:568)

--------------------------------------------------------------------

Figure 4.9: A silent load pair reported by JXPerf in SableCC-3.7.

LR1Collection, and Grammar. This optimization reduces the memory loads by 43% and

delivers a (3.08±0.32)× speedup to the entire program.

561 public V put(K key , V value) {

562 Entry <K,V> t = root;

563 ...

564 do {

565 parent = t;

566 cmp = k.compareTo(t.key);

567 if (cmp < 0)

568 I t = t.left;

569 else if (cmp > 0)

570 t = t.right;

571 ...

572 } while (t != null);

573 ...

574 }

Listing 4.5: Method put() of the JDK TreeMap class. A put operation requires O(log n)
comparisons to insert an element.

4.6.4 NPB-3.0 IS: Silent Stores

IS [12] sorts integers using the bucket sort. With the class B input and four threads,

JXPerf pinpoints that 70% of memory stores are silent, of which more than 50% are

associated with method pow() at lines 3-6 in Listing 4.6. We notice method randlc() is

invoked in a hot loop (not shown) and the arguments passed to pow() are loop invariants.

Across loop iterations, pow() pushes the same parameters on the same stack locations,

which shows up as silent stores.

To eliminate such wasteful operations, we hoist the four calls to pow() out of randlc()

70



and memoize their return values in private class variables. JXPerf further identifies

other code snippets having the same issue and guides the same optimization. These

optimizations eliminate 96% of the memory stores and yield a (1.89±0.04)× speedup for

the entire program.

1 public double randlc(double a) {

2 double y[], r23 , r46 , t23 , t46 , ...;

3 I r23 = Math.pow(0.5, 23);

4 I r46 = Math.pow(r23 , 2);

5 I t23 = Math.pow(2.0, 23);

6 I t46 = Math.pow(t23 , 2);

7 ...

8 }

Listing 4.6: Silent stores in NPB-3.0 IS. Method pow() repeatedly pushes the same pa-
rameters on the same stack locations across loop iterations.

4.6.5 Dacapo 2006 Bloat: Dead Stores

Bloat [15] is a toolkit for analyzing and optimizing Java byte code. With the large input,

JXPerf reports 78% dead stores. More than 30% of the dead stores are attributed to the

call site of method addAll() at lines 4 and 5 in Listing 4.7, where the program computes

the union of HashSet ig.succs(copy[0]) and HashSet ig.succs(copy[1]), and stores

the result in HashSet “union”. Guided by the culprit calling contexts, we notice that the

root cause of such dead stores is related to the field current of the JDK HashMap class, as

shown in Listing 4.8. Method addAll() frequently invokes the method nextNode() of the

HashMap class in a loop (not shown). In each iteration, the field current is overwritten

with a newly inserted value, but never gets used during the execution, which shows up as

dead stores.

With further code investigation, we find that HashSet “union” is created for only

computing the size of the union of ig.succs(copy[0]) and ig.succs(copy[1]), and

elements in “union” are never used. Therefore, we can eliminate the dead stores by

avoiding creating “union”. We declare a counter variable to record the size of the union

of ig.succs(copy[0]) and ig.succs(copy[1]). The counter is initialized to the size
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of the larger one in ig.succs(copy[0]) and ig.succs(copy[1]). Then we visit each

element of the smaller one and check whether that element is already in the larger one.

If not, the counter increments by 1. This optimization reduces 32% of the memory stores

and delivers a (1.35±0.05)× speedup to the entire program.

Yang et al. [151] also identify the same optimization opportunity via the high-level

container usage analysis, which is different from JXPerf’s binary-level inefficiency anal-

ysis.

1 union = new HashSet ();

2 for (int i = 1; i < copies.size(); i++) {

3 ...

4 I union.addAll(ig.succs(copy [0]));

5 I union.addAll(ig.succs(copy [1]));

6 weight /= union.size();

7 ...

8 }

Listing 4.7: Dead stores in Dacapo 2006 bloat. Useless value assignment in the JDK
HashMap class leads to dead stores.

1 final Node <K, V> nextNode () {

2 Node <K, V>[] t;

3 Node <K, V> e = next;

4 ...

5 Iif ((next = (current = e).next) == null && (t = table) != null) {

6 do {} while (index < t.length && (next = t[index ++]) == null);

7 }

8 return e;

9 }

Listing 4.8: Method nextNode() of the JDK HashMap class.

4.6.6 FindBugs-3.0.1: Dead Stores

FindBugs [111] is a static analysis tool for detecting security and performance bugs. We

profile it using the JDK rt.jar as the input. JXPerf reports 47% dead stores. One of

the top dead store pairs is attributed to the instance variable ArrayList slotList at

lines 9 and 11 in Listing 4.9. With an investigation into the implementation of the JDK

ArrayList class, we find that the method clear() assigns the null value to all elements

in slotList and sets its size to zero instead of reclaiming the occupied space. When an

element is inserted into slotList later by invoking the method add(), the null value
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at the given location of slotList, without any usage, is overwritten, which shows up as

dead stores.

We redesign the code to eliminate the dead stores, as shown in Listing 4.10. We

first compare the size of ArrayList slotList, say a, with the size of ArrayList

other.slotList, say b, to obtain the size of the smaller, say min. We then replace

the first min elements in slotList with the first min elements in other.slotList (line

6) by invoking method set(). Finally, if a > min, we invoke clear() to clear only the

remaining elements in slotList (line 7); otherwise, we invoke add() to append the re-

maining elements in other.slotList to slotList (line 10). With this optimization, the

memory stores are reduced by 6% and the entire program gains a (1.02±0.01)× speedup.

1 private final ArrayList <ValueType > slotList;

2 ...

3 public void copyFrom(Frame <ValueType > other) {

4 int size = slotList.size();

5 if (size == other.slotList.size()) {

6 for (int i = 0; i < size; i++)

7 slotList.set(i, other.slotList.get(i));

8 } else {

9 I slotList.clear();

10 for (ValueType v: other.slotList)

11 I slotList.add(v);

12 }

13 ...

14 }

Listing 4.9: Dead stores in FindBugs-3.0.1. Inefficiently-used ArrayList leads to dead
stores.

1 public void copyFrom(Frame <ValueType > other) {

2 int a = slotList.size();

3 int b = other.slotList.size();

4 int min = a > b ? b : a;

5 for (int i = 0; i < min; i++)

6 I slotList.set(i, other.slotList.get(i));

7 I if (a > min) slotList.subList(b,a).clear ();

8 else

9 for (int i = a; i < b; i++)

10 I slotList.add(other.slotList.get(i));

11 }

Listing 4.10: Optimizing the code in Listing 4.9 to eliminate dead stores.

73



4.6.7 JFreeChart-1.0.19: Silent Loads

JFreeChart [48] is a chart library. JXPerf reports 90% of memory loads are silent on pro-

filing the built-in test case SegmentedTimelineTest and 30% of silent loads are attributed

to method getExceptionSegmentCount(), as shown in Listing 4.11. It performs a lin-

ear search (line 7) over ArrayList exceptionSegments to count the number of segments

that intersect a given segment [fromMillisecond, toMillisecond]. This linear search is

called many times in a loop to become the performance bottleneck. The symptom of such

inefficiency is silent loads, which is caused by the repeated loads of immutable ArrayList

elements in different invocation instances of getExceptionSegmentCount().

We notice that segments in exceptionSegments are stored in ascending order, that

is, the end point of the segment exceptionSegments.get(i) < the start point of the

segment exceptionSegments.get(j) iff i < j. Therefore, there is no need to traverse

the remaining segments in exceptionSegments if the start point of the current segment

is already greater than toMillisecond. With this optimization, we reduce the memory

loads by 23% and the entire program achieves a (1.64±0.04)× speedup.

Nistor et al. [100] also identify the same performance issue with Toddler. However,

their optimization [101] guided by Toddler benefits the program only in two extreme

situations: toMillisecond < the start point of the first segment in exceptionSegments

or fromMillisecond > the end point of the last segment in exceptionSegments.

1 private List exceptionSegments = new ArrayList ();

2 ...

3 public long getExceptionSegmentCount(long fromMillisecond , long toMillisecond) {

4 int n = 0;

5 for (Iterator iter = this.exceptionSegments.iterator (); iter.hasNext ();) {

6 Segment segment = (Segment)iter.next();

7 I Segment intersection = segment.intersect(fromMillisecond , toMillisecond);

8 if (intersection != null) {

9 n += intersection.getSegmentCount ();

10 }

11 }

12 return (n);

13 }

Listing 4.11: Silent loads in JFreeChart-1.0.19. Immutable ArrayList ele-
ments are repeatedly loaded from memory across invocation instances of method
getExceptionSegmentCount().
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4.7 Summary

In this chapter, we present JXPerf, a Java profiler that pinpoints performance ineffi-

ciencies arising from wasteful memory operations. JXPerf samples PMUs for addresses

accessed by a program and uses debug registers to monitor these addresses. This hardware-

assisted profiling avoids exhaustive byte code instrumentation and delivers a lightweight,

effective tool, which does not compromise its ability to detect performance bugs. JXPerf

runs on off-the-shelf JVM, OS, and CPU, works on unmodified Java applications, and in-

troduces only 7% runtime and memory overhead. Guided by JXPerf, we are able to

optimize several benchmarks and real-world applications, yielding significant speedups.
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Chapter 5

Pinpointing Performance

Inefficiencies via Lightweight

Variance Profiling

5.1 Introduction

Software developers primarily think of code in terms of functions (a.k.a. procedures) which

form mental boundaries of functionality. It is natural that when developers investigate

performance problems, they often want to see execution metrics at function level gran-

ularity. Almost all performance tools facilitate function level attribution; in fact, most

tools offer finer-grained attribution such as loops or statements with call path attribution.

A recent line of work has investigated procedure instance level variance as a major cause

for performance problems such as long-tail latency [54, 53, 63, 58, 73] in enterprise cloud

systems.

This chapter targets the procedure instance level execution variance in the high-

performance computing (HPC) domain. Variance is a concern in the HPC domain as

well, as we show with a motivating example in Section 5.1.1 and several case studies in

our evaluation section. A prerequisite of profiling for variance among procedure instances
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is the ability to place monitoring calipers around procedure entry and exit. This allows

comparing the metrics from two or more invocation instances of the same procedure within

the same execution.

Instrumentation-based tools [84, 59, 46, 16, 98, 104, 119] can insert calipers around

functions to identify execution variance; however, they introduce high overhead. Sampling-

based tools [78, 52, 3, 119, 34, 2, 150], on the other hand, use the interrupt-based mecha-

nism supported by PMUs or OS timers, attribute samples to code regions, and highlight

hotspots based on the number of samples taken in the same code region. Expecting a

PMU sample to be delivered precisely at the entry of a procedure instance and the imme-

diate next sample to be delivered precisely at the exit of that procedure instance is wishful

thinking but impractical for almost any PMU- or timer-based sampling tool. Each sample

is a point in time, one sample cannot be compared with another sample quantitatively.

Hence, identifying execution variance of the same procedure across different invocation in-

stances is seemingly impossible1. There is little variance between two samples since each

one is delivered after the same number of preconfigured events. Furthermore, variance

among procedure instances is not statistically significant in a sampling-based profiler if

the sampling interval is larger than the execution time of the procedure itself. In summary,

sampling-based tools, until now, have not been able to synchronize samples with procedure

boundaries.

We address the aforementioned problem in FVSampler, a lightweight sampling-based

variance profiler with the ability to show procedure instance level execution variance.

FVSampler employs PMUs to sample function call (entry) and then uses debugs registers

to intercept the return (exit) from the same function invocation and measures metrics

between these two points. The metrics can be any of the supported PMU events, e.g.,

CPU cycles, cache misses, energy consumption, to name a few. The key differentiating

1One may be able to approximately infer procedure boundaries by looking at consecutive samples taken
in the same procedure, however, this method is inaccurate for a small procedure called in a loop when
consecutive samples across multiple invocations of the same procedure are not interleaved by a sample in
another procedure.
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aspect of FVSampler when compared to prior work is its ability to intercept function

call and return with no instrumentation (source or binary) and prior knowledge of a

program, which makes it useful in production. We evaluate FVSampler with several

parallel applications and demonstrate its effectiveness in pinpointing execution variance.

In the rest of this section, we first describe a motivating example, showing that identi-

fying execution variance in HPC code bases yields unique optimization opportunities. We

then summarize the contributions of this work.

5.1.1 Motivating Example

NERSC-8 GTC [97], a particle-in-cell code, is used for Gyrokinetic Particle Simulation

of Turbulent Transport in Burning Plasmas. A previous study [86] on GTC shows that

cache misses in different invocation instances of the procedure that accesses an array of

particles in sequential order varies significantly and increases as the execution progresses.

With the source code analysis, we notice that at the program start, all particles are stored

in cell order, which exactly matches access order, as shown in Figure 5.1a. However, as

the program continues, particles move from one cell to another, resulting in the mismatch

between access order and storage order (loss of data locality), as shown in Figure 5.1b and

5.1c. Periodically sorting particles in cell order can avoid the loss of data locality and im-

prove the program performance by more than 20%. However, no existing sampling-based

tools can identify procedure instance execution variance since they cannot distinguish

whether two samples from the same procedure belong to the same instance of that proce-

dure. As a result, they offer little help in optimizing this problematic procedure in GTC.

Instrumentation-based tools can show procedure instance execution variance by instru-

menting function call and return albeit the overhead is quite high. For example, when we

employ Intel Pin to capture each procedure instance in GTC by instrumenting call and

return instructions, a 5× runtime overhead is introduced and even worse an 8× runtime

overhead is introduced with call path collection enabled. Compile-time instrumentation

can result in lower overhead but will not be able to instrument the library code.
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Figure 5.1: Access order and storage order of an array of particles (p[]) in GTC. (a) At
the program start, particles are stored in cell order, which exactly matches access order.
(b) and (c) As the execution progresses, particles move from one cell to another, resulting
in the mismatch between access order and storage order.

5.1.2 Contribution Summary

In this work, we make the following contributions:

• Develop a technique to overcome a critical missing piece in sampling-based tools —

synchronize samples with procedure boundaries to monitor whole procedure instances.

• Develop a lightweight sampling-based variance profiler — FVSampler — that combines

PMUs and debug registers available in commodity CPUs to quantify variance across

different invocations of the same function without requiring code instrumentation.

• Address the challenges raising due to combining the usage of PMUs and the limited

number of debug registers.

• Show that FVSampler monitors fully optimized, unmodified binary executables and

provides rich information to guide code optimization, such as calling contexts, variance

metrics and their distributions, and source code attribution.

• Demonstrate the effectiveness of FVSampler by optimizing several parallel applications

under the guidance of FVSampler, yielding significant speedups.
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5.2 Related Work

5.2.1 Tracing Tools

HPCToolkit [3], perf [78], gprof [52], CrayPAT [34], Oracle Solaris Studio [107], Open-

SpeedShop [116], and PGPROF [134] use interrupt-based sampling techniques supported

by PMUs or OS timers to sample performance events and present them in chronological

order. Unlike FVSampler, these tools do not capture function entry and exit to pinpoint

function execution variance. TAU [119], Scalasca [46], DynamoRio [16], Valgrind [98],

and Dyninst [104] show function execution variance via exhaustive or selective code in-

strumentation. Compared to the exhaustive instrumentation, FVSampler incurs much

lower overhead in both runtime and memory; compared to the selective instrumentation,

which needs to know the interesting functions for study, FVSampler does not require

any prior knowledge of the monitored program.

5.2.2 Variance Diagnosis Tools

X-Ray [11] pinpoints performance inefficiencies by employing dynamic binary instrumen-

tation to identify basic block level performance variance. Spectroscope [115] diagnoses

performance changes in distributed systems by comparing request flows between two

time periods (the period before the change and the period after the change). Yoon et

al. [154] combine outlier detection and causality analysis to detect performance anomalies

on individual transactions in online transaction processing systems. VarianceFinder [114]

identifies the performance variance of requests under the same call path. Unlike these

approaches, FVSampler focuses on identifying function-level variance.

Szebenyi et al. [130] use instrumentation to intercept MPI routines and use sampling

to profile the remaining code during program execution. Unlike it, FVSampler only uses

sampling to profile function invocation instances and does not distinguish libraries from

the main executable. Any function called via a call instruction is a potential candidate

to be monitored. VProfiler [59], an instrumentation-based tool, also identifies function-
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level variance. However, users have to manually annotate code regions of interest before

applying VProfiler to the target program. Moreover, VProfiler only identifies latency

variance. In contrast, FVSampler is able to identify the variance of any PMU event,

such as CPU cycles and cache misses.

To the best of our knowledge, FVSampler is the first nonintrusive sampling-based

tool to study the function level variance of HPC workloads.

5.2.3 Software-based Return Address Interception

Kasikci et al. [69] trace cold code by dynamically rewriting the first instruction of every ba-

sic block with the int 3 breakpoint instruction, which causes a trap. This approach can be

extended to rewrite return instructions to intercept function exits. However, such binary

rewriting does not offer per-thread breakpoints and maintaining local breakpoints with

code caches incurs high overhead. Arnold and Sweeney [10] perform call stack unwinding

by replacing the function return address with a trampoline (the address of a handcrafted

code snippet). When the modified function returns, the control is first transferred to the

trampoline and then transferred back to the program. This software approach is also

able to intercept the return from the same function invocation. Unlike these approaches,

FVSampler uses hardware debug registers to intercept the return from the same function

invocation and targets a completely different problem — variance profiling.

5.3 Methodology

PMUs provide precise events to sample call and return instructions, however, that is not

sufficient — PMU samples cannot be configured to deliver one sample at the function

entry and another at the return from the same function instance. Our solution is to use

PMUs to sample only the call instructions and use debug registers to intercept the returns

from the functions matching the sampled call instructions.

The point where the PMU delivers an interrupt is at the function entry, that is, right

81



Stack grow
th

…

Parameters

Return addressrsp

funA()

funB()

Read

(a) Function call (b) Function return
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Figure 5.2: Actions on function call and return. (a) The call instruction in funA() (the
caller) pushes the parameters and return address of funB() (the callee) on the stack; after
the call instruction execution, the return address is on the top of the stack. We set a
watchpoint at the stack location (marked in blue) that holds the return address. (b) The
return instruction in funB() fetches the return address from the stack, which triggers a
watchpoint trap.

after the call instruction execution in the caller. At this point, the stack pointer (register

rsp in x86) points to the top of the stack (M [rsp]), which holds the return address for

the caller to continue (Figure 5.2a). The callee accesses this return address stored on

the stack just when it is about to return. We can intercept the return from the callee by

protecting the access to this memory location (M [rsp]). We use debug registers to protect

the subsequent access to M [rsp]. When the callee fetches the return address from M [rsp],

it triggers a watchpoint trap (RW TRAP), as shown in Figure 5.2b. Furthermore, the signal

handlers invoked at these two points (PMU sample at a call and watchpoint trap at the

return) allow us to record the metrics of interest and the difference in metrics between

these two points can be attributed to the function invocation instance. In summary, we can

now synchronize samples with function entry and exit and since we rely on PMU samples,

we have not introduced any source or binary instrumentation; statistically significant

functions (i.e., functions with a high invocation frequency) appear in our samples with a

high probability.
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Before arriving at the final design, we explored two other strategies in capturing func-

tion exits. These two approaches used debug registers as breakpoints (trapping on in-

struction execution) instead of watchpoints (trapping on memory accesses). In the first

approach, we used debug registers to directly monitor return instructions, e.g., retq in the

body of the callee; the return instructions were obtained via an on-the-fly binary analysis

technique. However, it is common that a function has many return instructions but this

approach could only monitor four return instructions in a function body with the four

available debug registers. This approach would fail to capture the exit of a function if

the unmonitored return instruction is executed. In the second approach, we used debug

registers to monitor the return address — the address of the instruction in the caller that

is executed right after the callee returns. This approach, however, failed for recursive func-

tions because different invocation instances of a recursively called function all share the

same return address. Consequently, we arrived at the final, correct approach of monitoring

the stack location holding the return address of a function invocation.

Unmodified binary executables 

CPU
perf_event interface 

FVSampler

…
Parameters

Return address Watchpoint
Read

① ② ③ ④

⑤

Function call

Function return

Watchpoint 
exception

…
Parameters

Return address

Return instruction

rsp

Figure 5.3: FVSampler’s actions in steps to collect variance metrics.
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5.4 Implementation

Figure 5.3 shows the implementation of how FVSampler uses PMUs to sample function

call and uses debug registers to intercept the return from the same function instance. 1○

FVSampler subscribes to the precise PMU call event in sampling mode and configures

debug registers as watchpoints for each thread via the perf event API. FVSampler also

configures other PMUs in counting mode to monitor user-specified performance events

(e.g., CPU cycles, cache misses) as for variance metrics. 2○ When the PMU counter

overflows on sampling function calls, it triggers an interrupt. FVSampler handles the in-

terrupt signal, constructs the calling context at the interrupt via unwinding the execution

call stack, and reads the user-specified PMU counters to obtain their current values (Vcall).

3○ FVSampler obtains the stack address M [rsp] recorded in register rsp, sets a RW TRAP

watchpoint at M [rsp], and resumes the program execution. 4○ When the return instruc-

tion reads the return address from M [rsp] 2, it triggers a watchpoint trap. FVSampler

handles the trap signal and reads the user-specified PMU counters to obtain their current

values (Vret). 5○ FVSampler records the difference between Vret and Vcall, which is the

count of the user-specified performance events occurring in the current function instance.

FVSampler disarms the watchpoint and resumes the program execution until the next

PMU overflow. When the signal handler code is executing, we stop all PMU counters so

that FVSampler’s overhead is not counted towards the metrics collected for the function

under investigation.

This scheme assumes flat function calls — we capture each function instance’s call and

return before monitoring the next. In reality, however, we need to handle the code with

deep call chains.

2In a function’s execution, only return instructions read the return address from M [rsp] and no in-
structions write values to M [rsp]. We do not consider buffer overflows in the security domain.
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5.4.1 Addressing Deep Call Chains

As we mentioned in Section 4.4.2, hardware exposes only a very small number of debug

registers, which limits the number of PMU samples that can be monitored simultane-

ously. To better illustrate the problem, consider a call chain consisting of three functions:

main()→funA()→funB(). Assume the PMU is able to sample both funA() and funB(),

and there is only one available debug register. The first sample occurs when funA() is

being called by main(), which results in setting a watchpoint at the stack address holding

the return address of funA(). The second sample occurs when funA() is calling funB().

However, there is no room to monitor the stack address holding the return address of

funB() since the previously set watchpoint is still active. With this scheme, in a system

with N debug registers, at most N function instances can be monitored simultaneously.

FVSampler addresses this problem based on an observation: a callee always returns

before its caller returns 3. Thus, FVSampler maintains a stack S to save active stack

addresses being monitored by watchpoints. We use the same call chain as an example

to illustrate our idea, as shown in Figure 5.4. Upon the sample that captures the call

instruction to funA(), FVSampler sets a watchpoint at the stack address holding the

return address of funA() since a debug register is available, as shown in Figure 5.4a.

Upon the next sample that captures the call instruction to funB(), FVSampler disarms

the watchpoint, pushes the address that the watchpoint is monitoring for funA() on

S, and reconfigures the debug register to monitor the stack address holding the return

address of funB(), as shown in Figure 5.4b. When funB() returns later, it triggers a

watchpoint trap. FVSampler handles the trap as normal for variance metrics, disarms

the watchpoint, pops the stack address holding the return address of funA() from S, and

reconfigures the watchpoint to monitor this stack address, as shown in Figure 5.4c.

With this scheme, only one debug register is needed to handle the deep call chain,

which makes our technique widely applicable to both x86 and PowerPC architectures.

3longjmp() is an exception, which is discussed in Section 5.4.5.
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Figure 5.4: Using one debug register to monitor all sampled function instances.
FVSampler maintains a stack S to save active stack addresses being monitored by
watchpoints. (a) When main() is calling funA(), FVSampler sets a watchpoint at the
stack address holding the return address of funA(). (b) When funA() is calling funB(),
FVSampler pushes the address the watchpoint is monitoring for funA() on S, disarms
the watchpoint, and sets it at the stack address holding the return address of funB(). (c)
When funB() is returning to funA(), FVSampler pops the address holding the return
address of funA() from S and resets the watchpoint at it.

5.4.2 Obtaining the Calling Context of a Function Instance

To provide rich insights for developer actions, FVSampler need record the calling context

where a function call occurs. Since a PMU interrupt happens immediately after the

function call, the calling context of the interrupt is at the function entry. At the function

return, FVSampler need not determine the calling context as it is the same as the one

obtained at the function call. FVSampler constructs calling contexts with an on-the-fly

binary analysis technique [132], which efficiently maintains calling contexts as a compact

calling context tree [6] by merging common prefixes.

5.4.3 Obtaining Variance Metrics

FVSampler provides two options to present variance metrics. One is to plot the metrics

collected from all the sampled instances for a given function in a given calling context.

This plot provides the most straightforward view of variance and is able to expose vari-

ance patterns (e.g., the increase of cache misses in GTC described in Section 5.1.1) for

optimization actions. The other is to provide a compact view, which computes the mean,

standard deviation, and coefficient of variation across the metrics collected from the sam-
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pled instances for any function in any calling context. Such a compact view can help users

quickly locate the problematic functions for further investigation. To avoid recording met-

rics of every sampled function instance, we leverage Welford’s online algorithm [145]. In

this section, we briefly describe this algorithm; details about the rigorous proofs can be

found in the related paper [141].

When the ith sample of a function occurs, the mean (V {1,...,i}), standard deviation

(SDV{1,...,i}), and coefficient of variation (CVV{1,...,i}) of the variance metric (V{1,...,i}) across

the first i samples are calculated by the following equations:

V {1,...,i} =
(i− 1)V {1,...,i−1} + Vi

i

SDV{1,...,i} =

√
(Vi − V {1,...,i−1})(Vi − V {1,...,i}) + (i− 2)SD2

V{1,...,i−1}

i− 1

CVV{1,...,i} =
SDV{1,...,i}

V {1,...,i}

(5.1)

From these equations, we can see that computation on these metrics enjoys an incremental

fashion, with no need to record all samples. In this work, we employ the coefficient of

variation metric to quantify procedure instance execution variance.

5.4.4 Handling Parallelism

FVSampler works for MPI programs as it monitors each MPI process independently

and also works for multi-threaded programs as PMUs and debug registers are virtualized

by the OS for each thread. FVSampler does not handle user-level threading where a

function call and its corresponding return are executed on two different OS threads. A

solution to the user-level threading would require minimal support from the runtime —

the user-level thread switching should save and restore the debug register state.
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Table 5.1: Optimization decisions based on execution time and variance. Our optimiza-
tion efforts are focused on functions with both high execution time and variance.

Execution time Variance Guidance

High High
Actions should be taken to

reduce variance for performance

High Low Performance is unrelated to variance

Low High
Reducing variance yields little
benefit to the entire program

Low Low No action on variance optimization

5.4.5 Handling longjmp()

setjmp()/longjmp() provide inter-procedure jumps, which deviates from the typical call-

ing conventions. FVSampler intercepts them by overloading their calls. When the

longjmp() executes, FVSampler disarms the active watchpoint and clears the watch-

point stack S because we do not know which stack frame the longjmp() will jump to.

5.4.6 Optimization Guidance

Our optimization decision on a function is based on its execution time and variance (i.e.,

coefficient of variation metrics), as shown in Table 5.1. Only functions with both high

execution time and variance are worthy of efforts for further performance analysis. In

all of our case studies, we investigate a function iff it accounts for more than 10% CPU

cycles over the entire program and has larger than 20% intra-thread variance or 10%

inter-thread variance. Once FVSampler pinpoints a problematic function, it plots the

metrics collected from all its sampled instances in the timeline. The variance pattern can

effectively guide unique code optimization.

5.4.7 Understanding the Limitation of Sampling

Like any sampling-based tool, FVSampler captures statistically significant functions (i.e.,

high invocation frequency) and misses out on some insignificant ones. It satisfies the needs

88



for studying variance because variance is meaningful only on functions with high invocation

frequency. Seldom called functions (e.g., main()) are less interesting. Also, FVSampler

misses out on functions that are not invoked via a call instruction, e.g., functions that are

inlined or called via a tail call.

5.5 Overhead Evaluation

We evaluate FVSampler on a machine with two 18-core Intel Xeon E5-2699 v3 CPUs

of 2.30GHz frequency running Linux 4.8.0. The machine has 128GB main memory.

FVSampler subscribes to the precise PMU event BR INST RETIRED.NEAR CALL to sample

call instructions. Runtime overhead is measured as the ratio of the runtime of a bench-

mark monitored with FVSampler to the runtime of its native execution. Table 5.2 shows

the runtime overhead of FVSampler on two HPC benchmark suites — NERSC-8 [97]

and CORAL-2 [72] as well as five HPC benchmarks — LULESH-2 [68], Sweep3D [70],

MASNUM-2.2 [112], Sequoia AMG2006 [71], and PARSEC-2.1 dedup [14]. All the pro-

grams are compiled with gcc-5.4.1 -O3 except MASNUM-2.2 that is compiled with

icc-18.0.2 -O3. The MPI programs are run with 36 processes and OpenMP programs

are run with 36 threads, which are pinned to cores. We tune the sampling period to

ensure that at least 30 samples are collected per second per thread. We use the PMU

event PERF COUNT HW INSTRUCTIONS in counting mode to count the number of instruc-

tions executed by each sampled function instance. We run each program five times and

report the average runtime overhead. In Table 5.2, we can see that FVSampler typi-

cally incurs 6% runtime overhead. FVSampler can incur more overhead when profiling

short-running programs due to the fixed overhead of setting up PMUs and debug regis-

ters. Table 5.3 shows per-sample overhead and per-watchpoint-trap overhead, respectively.

We can see that FVSampler typically incurs 44 microseconds overhead per sample and

11 microseconds overhead per watchpoint trap. In addition, FVSampler incurs aver-

age 7MB memory overhead per thread in all these programs. Such low overhead makes
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FVSampler appropriate for production runs.

Table 5.2: FVSampler’s runtime overhead.

AMG C MPI + OpenMP 42.14 1.07ｘ
GTC Fortran MPI + OpenMP 50.29 1.04ｘ
MILC C MPI + OpenMP 81.63 1.05ｘ

MiniFE C++ MPI + OpenMP 53.17 1.08ｘ
PSNAP C MPI 49.66 1.05ｘ
SMB C MPI 113.43 1ｘ
SNAP Fortran MPI + OpenMP 43.91 1.06ｘ

STREAM C/Fortran MPI + OpenMP 35.33 1.06ｘ
CLOMP C MPI + OpenMP 21.21 1.06ｘ
MDTest C MPI 55.49 1.04ｘ

PENNANT C++ MPI + OpenMP 24.76 1.09ｘ
Quicksilver C++ MPI + OpenMP 27.61 1.08ｘ

C++ MPI + OpenMP 36.59 1.08ｘ
Fortran MPI 34.78 1.06ｘ
Fortran MPI 67.12 1.12ｘ

C MPI + OpenMP 44.13 1.05ｘ
C Pthreads 20.42 1.11ｘ
– – – 1.06ｘ
– – – 1.06ｘ

Language

Sweep3D
MASNUM-2.2

Sequoia AMG2006

OverheadNative runtime (sec)

CO
RA

L-
2

Programming model

Median
GeoMean

LULESH-2

PARSEC-2.1 dedup

N
ER

SC
-8

Benchmark

5.6 Case Studies

Table 5.4 summarizes the performance inefficiencies found by FVSampler via function-

level execution variance analysis. All the programs are compiled with gcc-5.4.1 -O3 and

run with 36 threads except MASNUM-2.2 that is compiled with icc-18.0.2 -O3 and run

with 36 MPI processes. We quantify the performance improvement in execution time. It

is worth noting that the inefficiencies found in MASNUM-2.2 and PARSEC-2.1 dedup by

FVSampler are also found by LoadSpy() via redundancy analysis (see Sections 3.3.2
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Table 5.3: FVSampler’s per-sample and per-watchpoint-trap runtime overhead.

Per sample Per watchpoint trap
AMG 24 8
GTC 50 9
MILC 44 11

MiniFE 16 7
PSNAP 13 7
SMB 54 9
SNAP 52 14

STREAM 43 12
CLOMP 154 27
MDTest 71 12

PENNANT 60 13
Quicksilver 26 9

59 11
102 11
13 8
24 13
14 8
44 11
45 11

Sweep3D
MASNUM-2.2

Sequoia AMG2006

GeoMean

Overhead (microsecond)Benchmark
N

ER
SC

-8
CO

RA
L-

2

LULESH-2

PARSEC-2.1 dedup
Median

Table 5.4: Overview of performance improvement guided by FVSampler.

Program
Inefficiency Optimization

Call site of the problematic function Root cause Approach Speedup

MASNUM-2.2 propagat.inc (96, 103) Linear search Locality-friendly search 1.74×

Sequoia AMG2006 par relax.c (1654, 1658) Load imbalance
Reducing the granularity

of parallel work
1.08×

NERSC-8 MiniFE SparseMatrix functions.hpp (465, 474) Poor data structure
Replacing C++ set

with unordered set
1.96×

PARSEC-2.1 dedup encoder.c (120, 226, 840, 891, 1003) Poor hashing algorithm Reducing hash collisions 1.08×

and 3.7.2). Thus, we only analyze the problematic functions detected in Sequoia AMG2006

and NERSC-8 MiniFE in this section.

91



Callee Caller

# of CPU cycles # of invocations

Figure 5.5: Inter-thread variance in Sequoia AMG2006. The number of instruc-
tions executed in hypre BoomerAMGTraverse() varies significantly on different threads.
hypre BoomerAMGTraverse() takes different branches, resulting in execution variance.

5.6.1 Sequoia AMG2006

Sequoia AMG2006 [71] is a parallel algebraic multigrid solver for linear systems arising

from problems on unstructured grids. We study an optimized version from Liu and Mellor-

Crummey [83]. The code is written in C and parallelized with MPI and OpenMP. We run

AMG2006 on a 30× 30× 30 grid.

FVSampler reports that function hypre BoomerAMGTraverse() consumes 10% of

the total CPU cycles and accounts for 36% of the total function invocations, as shown

in Figure 5.5. FVSampler further identifies that the number of instructions executed

in hypre BoomerAMGTraverse() varies significantly on different threads, as shown in Fig-

ure 5.6. With the source code study, we find that hypre BoomerAMGTraverse() is invoked

in a loop nest and the outer loop is a statically scheduled OpenMP loop, which divides

the iterations into equal-sized chunks and assigns them to each thread. It appears that
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Figure 5.7: Variance of the number of instructions executed in different invocation in-
stances of hypre BoomerAMGTraverse() on each thread.

each thread has an equal amount of work because each chunk consists of an equal number

of iterations.

When investigating the function body, we find hypre BoomerAMGTraverse() employs

branches, which results in execution variance depending on the taken branch. This exe-
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cution variance across threads is a symptom of load imbalance. The most straightforward

optimization is to redistribute the iterations to different threads. However, as Figure 5.7

shows, the execution variance of hypre BoomerAMGTraverse() inside each thread is also

high. Thus, it is difficult to assess the workload of each iteration and achieve load balance

via static scheduling.

To mitigate the load imbalance, we reduce the chunk size to 1
5 of the original chunk size

and employ dynamic scheduling to balance the work across threads. With this optimiza-

tion, the variance of the work (number of instructions) assigned to each thread is reduced

from 14% to 3%. FVSampler also identifies other functions with the similar issue and

guides the similar optimization. Finally, the entire program gains a 1.08× speedup.

1 void impose_dirichlet (..., const std::set <typename MatrixType :: GlobalOrdinalType > &

bc_rows) {

2 ...

3 for(size_t i = 0; i < A.rows.size(); ++i) {

4 ...

5 A.get_row_pointers(row , row_length , cols , coefs);

6 Scalar sum = 0;

7 for(size_t j = 0; j < row_length; ++j) {

8 I if (bc_rows.find(cols[j]) != bc_rows.end()) {

9 sum += coefs[j];

10 coefs[j] = 0;

11 }

12 }

13 }

14 }

Listing 5.1: Call site of std::set::find() in NERSC-8 MiniFE, which accounts for 22%
of the total CPU cycles.

5.6.2 NERSC-8 MiniFE

NERSC-8 MiniFE [97] employs the implicit finite-element method (FEM) to solve prob-

lems of engineering and mathematical physics. The code is written in C++ and par-

allelized with MPI and OpenMP. We apply FVSampler to evaluate it with the default

input. Listing 5.1 highlights a hot function — std::set::find() at line 8, which accounts

for 22% of the total CPU cycles and is executed only on the master thread. FVSampler

further reports the number of instructions executed in different invocation instances of
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Figure 5.8: Variance of the number of instructions executed in different invocation in-
stances of std::set::find() in NERSC-8 MiniFE. std::set is implemented as a red-
black tree where a lookup operation requires one comparison in the best case and O(log n)
comparisons in the worst case. Consequently, the number of instructions executed in dif-
ferent invocation instances of std::set::find() varies from one to O(log n).

std::set::find(), as shown in Figure 5.8. We can see that the work (number of instruc-

tions) performed by different instances varies significantly. The underlying implementation

of std::set in C++ is a red-black tree where a lookup operation requires one compar-

ison in the best case and O(log n) comparisons in the worst case. Hence, the number of

comparisons involved in std::set::find() varies from one to O(log n), which shows up

as the large execution variance.

To improve the lookup operation, we replace std::set with std::unordered set.

The latter uses a hash table to store elements, which requires expected O(1) comparisons

to look up an element. With this optimization, the execution variance reduces significantly,

yielding a 1.96× speedup for the entire program.
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5.7 Summary

In this chapter, we present FVSampler, a lightweight variance profiler for HPC appli-

cations. FVSampler adopts PMUs to sample function call and uses debug registers to

intercept the return from the sample function invocation instance to synchronize samples

with function boundaries, which abandons heavyweight code instrumentation for variance

analysis. FVSampler further collects the performance events, e.g., CPU cycles, instruc-

tion instances, cache misses, occurring in each sampled function instance and computes

the variance metrics across different instances of the same function. FVSampler incurs

low runtime and memory overhead, which makes it attractive for production. Guided by

FVSampler, we are able to optimize several parallel applications, yielding up to a 1.96×

speedup.
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Chapter 6

Conclusions and Future Directions

This chapter concludes the dissertation and overviews future directions.

6.1 Conclusions

In the course of software development, wasteful memory operations and function execu-

tion variance are common indicators of performance inefficiencies arising from user in-

puts, suboptimal algorithms or data structures, and missed compiler optimizations. This

dissertation demonstrates that one can identify such inefficiencies and obtain insightful

optimization guidance by leveraging fine-grained code instrumentation or coarse-grained,

hardware-assisted sampling.

In this dissertation, we draw the following conclusions:

6.1.1 Profiling for Wasteful Memory Operations

This dissertation defines three kinds of wasteful memory operations: dead stores, silent

stores, and silent loads (a.k.a. redundant loads). A memory store is dead if it is followed

by another store to the same memory location without an intervening load. A memory

store is silent if the previous store performed on the same memory location stores the

same value. A memory load is silent if the previous load performed on the same memory

location loads the same value.
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The microscopic observation of whole execution at a fine-granularity level (instructions

and operands) breaks abstractions and helps recognize resource wastage that masquerades

in complex code bases. We propose LoadSpy, a fine-grained profiler that studies wasteful

memory operations in native languages. It automates important use cases to help devel-

opers investigate performance inefficiencies, opens up a new avenue for tuning software for

high performance, and receives broad interests in industry (e.g., Uber) and national labs

(e.g., Jefferson Lab). This work got accepted to ICSE’19 and won the ACM SIGSOFT

Distinguished Paper Award.

In contrast to rich insights and high overhead of fine-grained profiling, coarse-grained

profiling introduces low overhead by sacrificing performance insights it can offer. To make

the best of both, we propose JXPerf, a profiler that studies wasteful memory operations

in managed languages. It abandons exhaustive byte code instrumentation by combining

PMUs with debug registers to sample and monitor memory accesses, which offers insightful

optimization guidance as well as enjoys negligible overhead. JXPerf’s ability to operate

at the machine code level allows it to detect low-level code generation inefficiencies that

are not apparent via byte code instrumentation. This work got accepted to ESEC/FSE’19.

6.1.2 Profiling for Function Execution Variance

Variance profiling is a vital means to identify performance anomalies, especially in latency-

sensitive applications such as long-tail latency in cloud services. We propose FVSampler,

the first nonintrusive profiler that studies function execution variance. It advances the

state-of-the-art in sampling-based profilers by employing PMUs in conjunction with debug

registers to deliver profiling samples precisely at function boundaries. Our case studies

show that investigating function execution variance via FVSampler can easily bubble up

an erratic function hidden due to the good average performance of its different invocation

instances. This work got accepted to SC’19.
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6.2 Future Directions

Performance profiling beyond x86 The Arm architecture prevails in the mobile

market and has been making significant progress in the PC market. For instance, Apple

Inc. is migrating from Intel processors to ARM processors for MacBook laptops. LoadSpy

is built atop Intel Pin, which only works for the x86 architecture. We will extend LoadSpy

to the ARM architecture by leveraging DynamoRio [16], which is a cross-platform (e.g.,

x86, AMD, ARM) binary instrumentation framework.

Performance profiling beyond Java One future direction is to extend JXPerf to

other popular managed languages, such as Python and JavaScript, which recently employ

JITters — PyPy [9] for Python and V8 [51] for JavaScript.

Variance profiling beyond functions In the future, we will investigate variance at

a finer granularity (e.g., basic blocks) to pinpoint low-level code transformation variance

and also at a coarser granularity (e.g., a series of functions for a semantic interval) to

pinpoint high-level algorithmic or data structural variance.
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