3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2021

Exploring Heterogeneous Architectures With Tools And
Applications

Du Shen
William & Mary - Arts & Sciences, shendu.nju@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Shen, Du, "Exploring Heterogeneous Architectures With Tools And Applications" (2021). Dissertations,
Theses, and Masters Projects. William & Mary. Paper 1616444361.
http://dx.doi.org/10.21220/s2-f8gh-0967

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1616444361&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1616444361&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-f8gh-0967
mailto:scholarworks@wm.edu

Exploring Heterogeneous Architectures with Tools and Applications

Du Shen

Williamsburg, VA, USA

Master of Science, College of William & Mary, 2013

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of
Doctor of Philosophy

Department of Computer Science

College of William & Mary
January 2021

© Copyright by Du Shen 2021

APPROVAL PAGE

This Dissertation is submitted in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

A

Du Shen

Approved by the Committee, January 2021

Kee L cie

Co-Chair
Xu Liu, Courtesy Assistant Professor, Computer Science
North Carolina State University
Co-Chair

Qun Li, Professor, Computer Science
College of William & Mary

Weizhen Mao, Professor, Computer Science
College of William & Mary

Bin Ren, Assistant Professor, Computer Science
College of William & Mary

Ny

Dr. Ang Li, HPC Group
Pacific Northwest National Laboratory

ABSTRACT

Heterogeneous architectures, including GPU accelerators and memory
subsystems consisting fast/slow components, have become popular due to
programming flexibility and energy efficiency. Achieving high performance
requires sophisticated tools and applications for heterogeneous architectures
because they either lack hardware support for fast memory component, or
provide complex programming model, which puts extra burdens on compilers
and programmers. However, existing tools either rely on simulators or lack
support across different GPU architectures, runtime or driver versions. Thus,
they only provide insufficient insights.

In the first project, we develop DataPlacer, a profiling tool to provide guidance
for data placement. We characterize a real heterogeneous system, the Tl
KeyStone Il, whose memory system consists of fast and slow component, and
the fast memory lacks hardware support. We develop a set of parallel
benchmarks to characterize the performance and power efficiency of
heterogeneous architectures. DataPlacer analyzes memory access patterns
and provides high-level feedback at the source-code level for optimization. We
apply the data placement optimization to our benchmarks and evaluate the
effectiveness of HM in boosting performance (11 x speedup) and saving energy
(50% reduction in energy consumption).

In the second project, we present CUDAAdVvisor, a profiling framework to guide
code optimization in modern NVIDIA GPUs. General-purpose GPUs have
been widely utilized to accelerate parallel applications. Given a relatively
complex programming model and fast architecture evolution, producing
efficient GPU code is nontrivial. CUDAAdvisor performs various fine-grained
analyses based on the profiling results from GPU kernels, such as
memory-level analysis (e.g., reuse distance and memory divergence), control
flow analysis (e.g., branch divergence) and code-/data-centric debugging.
CUDAAdvisor supports GPU profiling across different CUDA versions and
architectures. We demonstrate several case studies that derive significant
insights to guide GPU code optimization for performance improvement.

In the third project, we present Presponse, a GPU-based incremental graph
processing framework which reduces response latency for large-scale graph
queries. We first fill the gap that few incremental graph algorithms have been
tailored for GPUs. Then, based on the key observation that graph evolution
often follows certain patterns that can be accurately predicted, our framework
speculatively conducts preprocessing on the graph during the idle period
ahead of real graph update, significantly reducing response time. Experiments
show that Presponse can predict over 90% of future graph updates, yielding up
to a 25x speedup in graph query response latency.

TABLE OF CONTENTS

Acknowledgments

ist of Tables

List of Figures

fl Introduction

.1 Problem Statements
.2 Contributions

1.3 Dissertation Organization

P Characterizing Emerging Heterogeneous Memory

2.1 Introduction
P2 RelatedWork

P.3 Testbed Description and Motivation

P.4 Design and Implementation of HMBench . . .

P.4.1 Benchmark Description

P.4.2 Simple Benchmark Implementation . .

Work decomposition

Code adaptation for the DSP compiler

System /O

Summary: HMBench vs. Rodinid

P.4.3 Limitation of HMBench Implementation

Vi

Vii

viii

> 00 W N

P.5 Design and Implementation of DataPlacerd 20

R.5.1 Basic Methodology of DataPlacer 20
[Tracking array allocations 21

Collecting and attributing memory traces 21

Derivingmetricg 22

R.5.2 Refined Methodology of DataPlacer 22
Datalocality 23

Largearrays. 23

Private vs. shared HM 24

Static vs. dynamic placement 25

Hybrid memory subsystem 27

R.5.3 DataPlacerOutput 27

R.6 Evaluation 29
R.6.1 Optimizing HMBench on KeyStone Il 29
.......................... 30
............................ 30

AW o 30

brad . .. 31

Further analysis on speedups 31

R.6.2 Performance Characterization 32
R.6.3 Power Characterization 35
R.6.4 Takeaways from Experimenting KeyStone Il 37

R.7 Limitations with KeyStone Il 37
R.8 ChapterSummary 38
B CUDAAdVvisor: LLVM-Based Runtime Profiling for Modern GPUS 39
B.1 Introduction 39
B.2 Existing GPU Profilers and Limitations 42

B.3 CUDAAdvisor Methodologyl 43

B.3.1 CUDAAdvisor Instrumentation Engind 44

(1) Mandatory instrumentation 44

(11) Optional instrumentation 45

B.3.2 CUDAAdvisor Profilerl 46
B.3.2.1 Code-centric Profiling 46

B.3.2.2 Data-centric Profiling 47

B.3.2.3 Profiling Outputs 48

B.3.3 CUDAAdvisor Analyzer 48
B.3.4 Limitations of CUDAAdvisor 49

B.4 Evaluation 49
B.4.1 Evaluation Methodologyl 50
B4.2 CaseStudies 51

B.5 Tool's Overhead Analysis 64
B.6 RelatedWork 65
B.7 ChapterSummary 66

Presponse: Accelerating Incremental Large Graph Processing on GPU

via Speculative Preprocessing 67
4.1 Introduction 67
M2 Background 70
421 GraphEmbedding 70
4.2.2 GPUAcceleration 70
B.3 Methodologyl v o v v e 71
4.3.1 Workflow Overview 71
4.3.2 Presponse Prediction Engine 72
4.3.3 Presponse Graph Processing 75
4.3.4 Graph Algorithm Implementation 76

4.3.4.1 Breadth FirstSearch(BFSY 76

4.3.4.2 Connected Components (CC). 78
4.3.4.3 Triangle Counting (TC) 79
M4 Evaluation 82
441 ExperimentSetug 82
Evaluation Overview 82
Evaluation Platform/ 82
Evaluated Algorithms 82
4.4.2 Incremental Algorithms 83
4.4.3 Update Batch Prediction 87
4.4.4 Presponse Performance with Incremental Computation and
Link Prediction, 88
BES . o o 89
CC . . 90
TQ . 91
U5 Related Works 91
U6 ChapterSummary 94
6 _Conclusion 95
B graphy 97

ACKNOWLEDGMENTS

This dissertation is written with the support and help from many individuals. |
would like to thank all of them.

First and foremost, | would like to express my deepest appreciation to my
advisor and all my committee, Dr. Xu Liu, Professor Qun Li, Professor Weizhen
Mao, Dr. Bin Ren and Dr. Ang Li, for serving on my committee as well as
providing insightful comments.

| enjoyed working in the office also because of my fellow students: Shasha
Wen, Probir Roy, Qingsen Wang, Hao Xu, Pengfei Su, Bolun Li and Jialiang
Tan.

In addition, | would like to express my gratitude to my friends here in the ’burg:
Mi, Zhen, Han, Shasha, Hongyang. The time we spent together means a lot!

Last but not least, special thanks to Taro for making the world a happier place!
Your companionship and comfort helped me through the hard times. Keep on
wagging!

This dissertation is dedicated to my beloved parents, for their endless and
selfless love and support.

Vi

LIST OF TABLES

R.1 Bandwidth comparison of MSMC and DDR with a single thread. . 15
R.2 Benchmark descriptions) 16
R.3 DataPlacer’s optimization decisions based on two metrics| 27
R.4 The analysis and optimization guidance provided by DataPlacer]

[The speedups are measured for all benchmarks running with eight

threadsin KeyStone Il] 34
B.1 GPU architectures for evaluation. 49
B.2 Benchmarks for showcasing CUDAAdvisor, 50
B.3 Results of Branch DivergenceonPascal) 58
4.1 Graph Datasets for Algorithm Evaluations, 83
4.2 Description of Real-world Datasets, 87

Vii

LIST OF FIGURES

R.1

The architecture and memory hierarchy of the KeyStone Il. Part of

L2 cache in DSP and the whole MSMC shared by DSP and ARM

are configured as HM by default! 13

R.2

The functionality of DataPlacer. DataPlacer monitors program ex

cution on x86 and generates pure software-based profiles to quide

program optimization when porting the code to an HM-based ar-

............................... 21

R.3

Creating a CCT for a program and pruning it by discarding nodes

Wwith small numbers of memory accesses. The blue nodes are in4

ternal functions, while the red nodes are leaf functions. 26

R.4

An output example of DataPlacer when monitoring srad) 28

R.5 Comparison of whole-system energy consumption between base-
line and optimized benchmarks running with eight threads. The
Vertical axis indicates the energy consumption, measured in Joules., 35
R.6 Comparison of dynamic energy consumption between baseline and
pptimized benchmarks running with eight threads. The vertical
xis indicates the energy consumption, measured in Joules. . . . 36
B.1 Workflow of CUDAAdvVisOr. 43
B.2 The workflow of the engine inserting instrumentation] 45
B.3 CUDAAdVvisor’s data-centric profiling) 48

viii

B.4

Reuse distance analysis through CUDAAdvisor. oo is defined ag

data is never reused again during the program execution or before

the next write to the address (e.q., write-evict L1 on NVIDIA GPUs)| 53

B.5

Profiled memory divergence distribution of unique touched cache

lines by instructions of an entire application on Kepler. X-axis rep-

resents number of unique cache lines touched (min is one and max
is 32). (a) Kepler architecture with 128 Byte cache line; (b) NVIDIA
Tesla P100 (Pascal) with 32 Byte cache line

B.6

Normalized execution time of different applications on NVIDIA Ke-

pler architecture when using the predicted optimal number of warps

per CTA for bypassing. Baseline case is using all the warps (no by-

passing). Oracle exhaustively searches the optimal solution. Pre-

diction represents our model.

B.7

Normalized execution time of different applications on NVIDIA Pas-

kcal architecture when using the predicted optimal number of warps

per CTA for bypassing. Baseline case is using all the warps (no by-

passing). Oracle exhaustively searches the optimal solution. Pre-

diction represents our model.

8.8

Code-centric view shows concatenated calling context from both

hostanddevice.

8.9

Data-centric view shows the interesting data objects, where it is

allocated on host and device and where it is transferred.

.10 Overhead of memory and control flow instrumentation, on Kepler

and Pascal Architectures,

56

59

60

63

64

4.1

Comparison of three approaches to evolving graph: (a) static re

computation, (b) incremental processing, (c) proposed approach

[The horizontal bottom arrow indicates time. The vertical dashed

lines indicate batch emit times. The length of blue arrows indicatel

the processing time).

h.2

Workflow of Presponse. The rectangles represents components of

Presponse. Given the original graph, static processing obtains ini4

tial property and prediction engine generates prediction updates)

Incremental processing takes updates as input and computes in4

termediate properties. When an update batch is emitted, incre-

mental processing takes correction as input and computes up-

dated property. Orange shaded area represents procedures which

run repeatedly foreach batch)

h.3

Details of training a classifier for Presponse’s prediction engine. .

h.4

Speedup of incremental BFS. Horizontal axes are log-scaled. HorA

izontal axes represent the size of update batches. Vertical axes

represent incremental BFS’s speedup against static BFS)

h.5

Relation between speedup and fraction of impacted vertices. The

horizontal axis represents the fraction of non-impacted vertices in

percentage. The vertical axis represents the ratio of elapsed time

bf incremental BFS computation to static BFS computation. Thel

blue scattered points are data points, while the red dashed line

represents linear fitting.

“.6

Speedup of incremental CC. Horizontal axes are log-scaled. For

deletion cases, both axes are log-scaled. Horizontal axes repre-

sent the size of update batches. Vertical axes represent incremen-

tal CC’s speedup against staticCCJ

68

72
74

83

84

4.7 Speedup of incremental TC. Both axes are log-scaled. Horizontal

axes represent the size of update batches. Vertical axes represent

incremental TC’s speedup against static TC.|

4.8 Relation between speedup and fraction of impacted vertices. Hor-

izontal axis represents the percentage of impacted vertices. Vertid

cal axis represents speedup. The blue scattered circles represent

each data point, and the red dashed line represents theoretical

speedup obtained viaregression.

4.9 Prediction accuracy. Horizontal axis represents the time. Vertical

axis represents prediction accuracy in percentage.,

4.10 Prediction accuracy when re-training enabled. (a) for apple, and

(b) for android. Horizontal axis represents the time. Vertical axis

represents prediction accuracy, in percentage. Original setup withd

but re-training is shown as baseline. Red triangle markers indicatel

points of re-training)

Xi

85

87

89

90

Exploring Heterogeneous Architectures with Tools and
Applications

Chapter 1

Introduction

In modern computer systems, emerging parallel architectures offer heterogeneous mem-
ory systems to bridge the huge gap between processors and memory. Due to the com-
putation efficiency and programming flexibility, heterogeneous architectures have be-
come increasingly popular and they are widely adopted in computing domains such as
accelerating scientific computing applications, deep learning and graph workloads.

A heterogeneous memory system consists of a fast memory component in comple-
tion to traditional memory systems. There are various types of heterogeneous architec-
tures, such as Intel Xeon Phi, Texas Instruments KeyStone and Graphics Processing
Units (GPUs). Their fast memory component has a higher bandwidth and lower latency.
For example, Knights Mill, the latest model of Intel Xeon Phi, has an on-package memory
that has 4x bandwidth as the off-package memory. In addition to that, unlike traditional
hardware-managed cache, fast memory component may allow software management
where one can control when to hoist or evict data. With this flexibility in programming,
one can explicitly control data placement and replacement to further reduce latencies
and energy consumption incurred by inappropriate date movement.

However, higher flexibility comes with higher programming requirements. First, het-
erogeneous architectures require using certain low-level programming models, such as
CUDA [1] and OpenCL [2]. Second, without deep insights of the specific architecture,

one can suffer from inappropriate usage of the precious resources of fast memory, re-

sulting in higher overhead and energy consumption. For example, the cached data may
be evicted without being fully utilized due to an eviction. Similarly for SIMT programming
models, such as GPU, control flow divergence or memory divergence can significantly
hurt performance. Thus, it is non-trivial to design efficient programs for heterogeneous
architectures to fully utilize the computation power.

It is tedious, error-prone and sometimes impossible for large codebases to manually
analyzing programs for heterogeneous architectures. Characterizing the performance
and energy consumption is important to aid programmers to pinpoint performance bot-
tlenecks. Existing tools like profilers may only provide coarse-grained analysis and the
output can barely be helpful to aid programmers directly. On the other hand, simula-
tors and emulators usually incur undesirable overhead and have a limited support for
emerging hardware features. Therefore, sophisticated profiling tools and tailored appli-
cations are in demanded to achieve high performance on heterogeneous architectures.
Thus, in this dissertation, we tackles these problems from two aspects: characterizing
heterogeneous architectures with aid find-grained profiling tools and designing tailored

applications.

1.1 Problem Statements

Characterizing heterogeneous memory subsystems. Nowadays, CPU employs mul-
tiple levels of caches to bridge the gap between processor and memory. Accessing
memory incurs high latency. However, cache is precious resource due to the lim-
ited space. Cache is transparent to programmers and provides only hardware control.
That being said, one can not explicitly conduct data placement in cache. Alternatively,
emerging parallel architectures offer heterogeneous memory subsystems to comple-
ment hardware-managed caches. A typical heterogeneous memory subsystem consists
fast and slow memory component and fast memory requires software management.

Therefore, without guidance of a tool, inappropriate data placement and movement can

result in unsatisfactory memory performance. Prior work mainly employs simulators to
study the data placement. However, it is difficult to simulate every feature of the complex
architecture of heterogeneous memory subsystems. In addition, it is time-consuming to
evaluate real parallel applications due to the high overhead of simulation. To tackle

these two issues, we study real hardware in this dissertation.

Monitoring program execution and guiding optimization for GPUs. General-purpose
GPUs are widely adopted in various application domains, including scientific comput-
ing, deep learning and graph workloads. Unlike CPUs, GPUs offer a more complex
programming and architectural scenario. Thus, efficiently designing a GPU kernel is
difficult. For example, designing a GPU kernel usually requires low-level programming
languages, such as CUDA and OpenCL. Since GPUs employs SIMT (Single-Instruction
Multiple-Threads) programming model, control flow divergence and memory divergence
can hurt performance. Moreover, thousands of threads may compete for the precious
cache resources. Prior work relies on simulators or emulators to perform fine-grained
analysis of GPU programs. However, simulator and emulators do not support every fea-
ture of complex architectures. Some other tools may provide fine-grained analysis but
have their limitations in terms of portability and coverage. In order to address all these
challenges, we present a framework that provides insight of GPU program, covers the

interaction between GPU and GPU, and guides optimization.

Accelerating incremental large graph processing on GPU. Large-scale graphs are
pervasive nowadays. Meanwhile, enormous queries on certain graph properties impose
increasing restrictions on response latency. This demands huge computation power
such that GPU is frequently leveraged and incremental processing is adopted for accel-
eration. However, adopting GPU and incremental processing does not always provide
fast responses. It is desired that we further shrink the graph query latencies. Existing
works have focused on CPU or Intel Xeon Phi style architectures. However, GPUs in-
troduces different design principles and performance concerns in the parallel execution.

Moreover, existing works do not seek approaches other than optimizing algorithms. To

4

tackle this, we propose an approach that boosts graph processing via link prediction.

1.2 Contributions

Characterizing heterogeneous memory subsystems. We characterize the fast and
slow component of heterogeneous memory subsystems and apply data placement op-
timization and evaluate the effectiveness in boosting performance and saving energy.

Specifically, we make three contributions.

* We develop a benchmark suite, HMBench. HMBench is coded in OpenMP and
runs on heterogeneous memory architectures. To the best of our knowledge, it is

the first benchmark suite based on OpenMP 4.0 standard.

* We design a performance tool, DataPlacer, to guide data placement in heteroge-
neous memory. DataPlacer guides programmers to port their code to a hetero-
geneous memory system and provides rich information to intuitively present the

analysis results.

» We optimize HMBench guided by DataPlacer. We use optimized benchmarks to

characterize and understand the importance of HM in both performance and en-

ergy.

Monitoring program execution and guiding optimization for GPUs. We present a
framework that provides insight and guide optimization for GPU program. Specifically,

we make three contributions.

* CUDAAdVvisor is the first fine-grained GPU profiler that supports various genera-
tions of modern NVIDIA GPU architectures and CUDA versions, to the best of our

knowledge.

» CUDAAdvisor combines the code- and data-centric profiling results from both CPU

and GPU, and associates performance bottlenecks with their root causes.

5

* We demonstrate CUDAAdVvisor is able to combine different analyses and derive

useful metrics and insights to guide optimizations for GPUs.

Accelerating Incremental Large Graph Processing on GPU. We develop a frame-
work that employs link prediction to boost incremental graph process to reduce graph

property query latencies. Specifically, we make four contributions.

+ We develop incremental implementations of three fundamental graph algorithms,
Breadth First Search, Connected Components, and Triangle Counting. The im-

plementations are tailored for GPU execution.

» We demonstrate that updates are highly predictable for real-world evolving graphs,

which can greatly benefit the incremental computation.

* We propose Presponse, a framework that leverages graph update prediction and

utilizes GPU to boost incremental graph processing.

We show that Presponse can accelerate important graph algorithms on real-world

graphs with significant speedups.

1.3 Dissertation Organization

The rest of this dissertation is structured as follows. In Chapter 2, we present our study of
characterizing a heterogeneous memory system and guiding data placement. In Chap-
ter 8, we present our tool that monitors program execution and guides code optimization
for GPUs. In Chapter 4, we present our framework that reduces graph response latency
via link prediction and incremental processing. In Chapter 5, we conclude the disserta-

tion.

Chapter 2

Characterizing Emerging

Heterogeneous Memory

2.1 Introduction

In modern computer systems, the speed gap between processors and memory has
become huge. As a result, accessing main memory incurs not only high latency but
also excessive energy. To bridge such a speed gap, CPUs employ multiple levels of
caches. Cache hits reduce memory access latency. Caches are precious resources
due to their limited space. For a traditional memory subsystem, hardware manages
caches at the granularity of cache lines. Hardware also employs built-in algorithms,
e.g., least recently used (LRU), to determine which lines of data to evict. Moreover,
multi-core systems employ sophisticated protocols (e.g., MESI) to guarantee the data
consistency in private and shared caches, associated with different cores and sockets.

Caches are transparent to compilers and programmers. One cannot explicitly control
the data placement and replacement in caches. Software usually cannot explicitly con-
trol the data locality to exploit caches. One policy does not fit all usage patterns. Hence,
existing hardware-managed caches do not provide a straightforward way to achieve the
optimal performance. Without the entire program profile, hardware is handicapped in

making best data movement decisions. The situation is aggravated in the context of

parallel architectures, where cores compete for shared cache. For example, the cached
data may be evicted without being fully utilized due to an eviction caused by another
core. Contention can significantly degrade program performance. Because of the exist-
ing hardware-managed cache system, one can only use some workarounds to explicitly
but indirectly interact with caches, such as non-temporal instructions [3], cache parti-
tioning based on page coloring [4], and memory footprint reduction via loop tiling [5].
Though effective, these workarounds rely on special support from instruction set archi-
tectures (ISAs), special hardware, customized operating systems and complex source
code transformations.

As an alternative, emerging parallel architectures offer heterogeneous memory (HM,
also known as hybrid memory) to complement hardware-managed caches. A typical HM
system consists of a fast memory component and a slow memory component. The fast
component, unlike traditional caches, needs explicit software operations to hoist or evict
data in or out. Memory techniques include 3D stack memory [6] and non-volatile mem-
ory [[7], which together with traditional DRAM form the emerging HM systems. For exam-
ple, the latest generation of Intel Xeon Phi, Knights Landing (KNL), has on/off-package
memories. The on-package memory has 5x the bandwidth of off-package memory [8].
The KNL's memory hierarchy is a kind of HM. Moreover, scratchpad memory [9] is widely
used in accelerators, such as GPUs and digital signal processors (DSPs), and has a
higher bandwidth and lower latency than DRAM. In this chapter, we refer to a system
with fast and slow memory as HM.

HM offers flexibility in managing data. For example, programmers can partition the
fast memory across different threads to avoid contention. Another advantage of HM
is its power efficiency. HM does not require power hungry hardware mechanisms for
cache management [10]. In the foreseeable future, HM will become more popular to
complement hardware caches for its programming flexibility.

However, software-based data movement can incur much higher overhead than

a hardware-based approach. Thus, inappropriate data placement and frequent data

movement in HM can significantly degrade memory performance, negating its benefit.
Therefore, it is important to characterize the performance and energy consumption of
HM to achieve beneficial data placement. Prior work mainly utilizes simulators to study
the data placement [11, 12, 13, 14, 15]. There are two weaknesses to this approach:
first, given the complex architectures, it is difficult to simulate every feature of HM and
its interactions with the CPUs. Second, due to the high overhead of simulation, itis time
consuming to evaluate real, long-run parallel programs. To address these two issues,
we study HM in real hardware in this chapter.

Given the real hardware evaluation, we have the following questions: (1) For a real
parallel program, how should we place its data in HM to achieve high performance? (2)
How much can a real HM affect a program’s performance and energy? In pursuit of

answers to these questions, we make three contributions in this chapter:

* We develop a benchmark suite, HMBench. HMBench is coded in OpenMP and
runs on HM-based machines. To the best of our knowledge, it is the first bench-
mark suite based on OpenMP 4.0 standard for studying the performance and en-

ergy impacts of HM.

» We design a performance tool, DataPlacer, to guide data placement in HM. This
tool can help programmers when they try to port their code to a system with HM.
DataPlacer provides rich information sorted by key metrics to intuitively present

the analysis results.

* We optimize HMBench guided by DataPlacer. We utilize the original and opti-
mized benchmarks to characterize the capabilities of HM-based architectures and

understand the importance of HM in both performance and energy.

We use KeyStone Il [10], a server-class ARM+DSP heterogeneous architecture from
Texas Instruments, in our studies. KeyStone II's HM consists of an off-chip DRAM and
a relatively large on-chip SRAM (scratchpad memory). We choose DRAM+scratchpad

memory to study HM because stacked memory and non-volatile memory are not com-

mercially available. Moreover, the scratchpad memory on KeyStone Il is much larger
than the ones in existing embedded systems, which can be effectively used to emulate
the emerging fast memory. In the rest of this chapter, we refer to DRAM and scratchpad
memory as HM on KeyStone II.

Our experiments show that HM demands extensive attentions to obtain high perfor-
mance and low energy benefits. Our DataPlacer provides rich information with reason-
able overhead to successfully guide data placement in HM. This chapter also provides
insights and practical evaluation of the KeyStone |II.

This chapter is organized as follows. Section 2.2 reviews state-of-the-art work and
distinguishes our approach from prior work. Section 2.3 describes KeyStone I, the
testbed we use to evaluate HM. Section 2.4 describes the design and implementation
of HMBench, which is used to characterize the performance and energy effects of HM.
Section .5 describers DataPlacer, a tool to provide high-level guidance for optimization
with HM. Section R.6 studies HMBench in KeyStone II, including performance character-
ization, power measurement, and HM-based optimization. Section .7 discusses some
limitations in studying HM with KeyStone II. Section 4.6 offers our conclusions and pre-

views future work.

2.2 Related Work

HM has been recognized as a key alternative or complement to caches and main mem-
ory [9]. Due to its simpler hardware design, it can provide high performance, predictabil-
ity, and energy efficiency. Prior research demonstrates that HM-based systems are
able to achieve higher performance than cache-based systems when the program data
is carefully placed [[16]. In modern accelerators, such as Keystone II[17], HM is regarded
as a key enabler for high Gflops/Watt value [18], as has been demonstrated in hand-
optimized programs [19]. However, using HM faces key challenges of programmability

in obtaining good performance.

10

Recognizing the significance of HM, much work has been done to ease its man-
agement. Unfortunately, due to the difficulty in accessing real hardware platforms and
applications, prior evaluation methodologies were limited to two categories: most of
them are simulation without actual hardware [20, 21, 22]; some of them replay memory
trace on hardware platforms, for which the memory trace is often recorded by using a
simulator or software instrumentation [23]. Our efforts bridge the gap with a realistic
benchmark suite targeting physical platforms.

The lack of an HM benchmark suite has been an important drawback. In much of
the prior work, micro benchmarks have been used [[16, 24, 25]. However, it is often
difficult to map the micro benchmark outcome to that of real applications. Some work
employs macro benchmarks in studying HM, however, with somewhat ad-hoc choices.
The macro benchmarks employed include SPEC2006 [20], NAS [26], LULESH [22], or
hand-selected apps [21]. It is unclear to what extent these benchmarks can exercise
HM and therefore these benchmarks cannot quantify the benefits of HM.

Since HM was often employed in embedded and network processors, embedded
systems benchmarks, e.g., MiBench, are often selected in evaluating HM proposals tar-
geting these processors [23, 27]. However, embedded system benchmarks often fea-
ture very small working sets, from tens to hundreds of KBs. This is also the case for GPU.
Since HM is a critical feature of GPU, well-known GPU benchmarks, e.g. SHOC[28],
are often exploiting HM for performance and are used in evaluating software that man-
ages GPU HM [29, 30]. However, SHOC benchmarks are explicitly tuned towards the
small HM (a few hundreds of KB) on GPU. Moreover, the CUDA programming model
cannot represent the general multithreading models in mainstream CPU processors.
Thus, the resulting programs can hardly exercise the large HM that are emerging in new
architectures, such as KeyStone Il.

Beyond an effective benchmark suite, there exists no tool to guide the data place-
ment in heterogeneous memory systems. Our previous work on memif [31] provides

an efficient way to support data movement between fast and slow memory in KeyStone

11

Il. However, memif is an OS service for data movement, providing no guidance for the
data placement to an application developer. A recent work [32] describes a profiler to
analyze memory access patterns to guide data placement. However, the profiler does
not provide performance insights such as memory footprint metrics in the full calling
contexts, which are important to understand the data structure allocations and program
phases.

Unlike existing approaches, we developed HMBench, which has three unique ad-
vantages. First, HMBench is developed based on a widely used benchmark suite, Ro-
dinia, which represents the program behaviors of different domains. Second, HMBench
leverages the latest OpenMP 4.0 standard. Furthermore, we developed DataPlacer and
released it along with HMBench. DataPlacer, to the best of our knowledge, is the first
practical tool that provides high-level optimization guidance, such as a variety of met-
rics within the full calling contexts, when programmers port source code to a HM-based

machine.

2.3 Testbed Description and Motivation

Texas Instruments (T1) Corporation developed KeyStone Il, a heterogeneous chip that
employs CPUs and DSPs. It aims to achieve high performance with low energy costs.
A KeyStone Il chip integrates a quad-core ARM Cortex-A15 processor as the host CPU
and eight TMS320C66x DSPs as accelerators. Each ARM core has 1.4 GHz clock
frequency, while each DSP has 1.2 GHz. The theoretical peak performance of the over-
all chip is 63 GFLOPS of double precision and 198 GFLOPS of single precision [17].
The ARM cores and DSPs are coupled with security and packet processing and Ether-
net switching, which is designed for lower energy consumption, compared to multi-chip
solutions. The programming models that KeyStone Il supports are OpenMP [33] and
OpenCL [34]. The design of KeyStone Il is for embedded infrastructure applications,

such as media processing, high-performance computing, transcoding, security, gam-

12

6 MIB L3
SMIC 4-1
8%

4x
I|] |
|] |
|] |
L 32KkBL1 | 32KBL1
il] H |cache D cache
DSP ARM
U1 C66x A15

1 32KB L1 32KB L1
[IH Icache D cache 4 MB L2 cache

- 1 MB L2 cache

Figure 2.1: The architecture and memory hierarchy of the KeyStone Il. Part of L2 cache
in DSP and the whole MSMC shared by DSP and ARM are configured as HM by default.

ing, analytics, and virtual desktop.

Figure .1 shows the architecture of KeyStone Il and its memory hierarchy. On the
host side, each ARM core has a 32 KB L1 instruction cache and 32 KB data cache. All
four ARM cores share a 4 MB L2 cache. Both L1 and L2 caches on the host ARM cores
are managed by hardware. On the accelerator side, each DSP has a 64 KB L1 cache
and a 1 MB L2 cache. By default, the L2 cache is configured as a 256 KB hardware-
managed cache and a 768 KB scratchpad memory. The host and accelerators share a
Multicore Shared Memory Controller (MSMC), a scratchpad memory of 6 MB. Beyond
MSMC, both CPU and DSP have memory controllers to access main memory (DDR).
In KeyStone Il, both the scratchpad memory in L2 and MSMC are fast HM layers, which
requires software to control the data placement and manage data consistency.

With the default configuration, the KeyStone Il has three HM layers: L2 scratchpad
memory, L3 MSMC, and DDR. Unlike other embedded systems, the scratchpad mem-
ories (L2 and L3) in the KeyStone Il are large enough to emulate future HM in the main-
stream CPU architectures. To explicitly place the data in each layer, Tl provides APls as

shown in Listing R.1. These APlIs, like standard data allocation functions (malloc and

13

—
QOWONOOOOOAPLWN -

NN A A A A aaaa
N2 OQOO~NOOOAaOPLWN -

/* to allocate in L2 x/

void __heap_init_12 (void *ptr, int size);

/* to manage a heap on L2 x/

void *__malloc_12 (size_t size);

/* to allocate in msmc */

void __heap_init_msmc (void *ptr, int size);
/* to manage a heap on MSMC */

void *__malloc_msmc (size_t size);

void *__calloc_msmc (size_t num,size_t size);
void *__realloc_msmc (void *ptr,size_t size);
void __free_msmc (void *ptr);

void *__memalign_msmc (size_t alignment, size_t size);

/* to allocate in ddr */

void __heap_init_ddr(void *ptr, int size);

/* to manage a heap on DDR */

void *__malloc_ddr (size_t size);

void *__calloc_ddr (size_t num, size_t size);

void *__realloc_ddr (void *ptr, size_t size);

void __free_ddr (void *ptr);

void *__memalign_ddr (size_t alignment, size_t size);

Listing 2.1: APIs for managing KeyStone II's L2 cache, MSMC, and DDR.
free) in 1libc, can allocate and free memory in different HM layers. The KeyStone I

maps the space of different HM layers to disjoint memory segments. One can simply

issue a memcpy to copy data from one memory segment to another.
Performance characterization of the KeyStone II’'s HM

To evaluate the impacts of L2, MSMC, and DDR in program performance, we devel-
oped two micro benchmarks to characterize KeyStone Il: Stream and Lat. The descrip-

tion of the two micro benchmarks is as follows:

» Stream, a well-known benchmark [35], is used to quantify the memory bandwidth.
It issues memory accesses with streaming patterns, such as array copy, scale,
add, and triad. We adapt Stream to measure the bandwidth of both MSMC and
DDR.

 Latis developed for evaluating the performance impact of different data placement
policies in HM-based memory hierarchies. The kernel of Lat is a sequence of

random accesses to an array placed in a specific HM layer. It also moves data

14

Table 2.1: Bandwidth comparison of MSMC and DDR with a single thread.

HM copy scale add triad
MSMC | 5.1 GB/s | 4.8 GB/s | 5.4 GB/s | 5.3 GB/s
DDR | 2.7GB/s | 2.8 GB/s | 2.6 GB/s | 2.8 GB/s

between different HM layers to evaluate the data movement latency.

Table 2.1 shows the experimental results of bandwidth tests in MSMC and DDR. We
can see that MSMC’s bandwidth is around 1.7-2x DDR’s bandwidth, with respect to
different access patterns. Moreover, Lat shows that placing data in MSMC obtains an
8 x acceleration compared to placing data in DDR. The L2 scratchpad memory shows
similar latency as MSMC. Additionally, Lat evaluates aggressive data movement policy,
which always loads each word one by one from DDR to MSMC before using it. This pol-
icy significantly degrades the performance because of the nontrivial overhead incurred
by the software-based memory movement. It causes a 10x slowdown compared to the
original code with all accesses to DDR, and an 80 x slowdown compared to the optimal
code with all accesses to MSMC.

The experiments on these two micro benchmarks demonstrate the importance of
data placement and data movement policies when porting code to HM-based systems.
It is necessary to have a set of benchmarks and tools to characterize the performance
impact of HM in the real world. The following sections describe the design and imple-
mentation of the benchmarks and tools with this purpose. [t is worth noting that the
benchmarks we propose in this chapter are general for HM systems beyond the Key-

Stone Il. It is publicly available at https://bitbucket.org/hmbench/hmbench.git.

2.4 Design and Implementation of HMBench

We develop HMBench, a benchmark suite to characterize the performance impact of

HM in real hardware. HMBench meets the following four criteria.

1. HMBench needs to work on heterogeneous architectures, i.e., CPU+accelerators,

15

https://bitbucket.org/hmbench/hmbench.git

Table 2.2: Benchmark descriptions.

Application | Domain | Description

mtrans linear algebra Matrix Transposition.

mmulti linear algebra Matrix Multiplication.

bfs graph algorithm Breadth-First Search one a graph.

cfd fluid dynamics Computational Fluid Dynamics solves 3-
D Euler equations for compression fluid
flow.

hotspot physics simulation Hotspot is a thermal simulation bench-
mark that assesses processor tempera-
tures.

kmeans data mining K-means clusters points into user spec-
ified number of categories based on the
distance to other points.

lavaMD molecular dynamics | LavaMD computes particle potentials and
relocation forces. It divides a 3D space
into cubes for computation.

lud linear algebra Lud performs matrix LU decomposition.

nn data mining Nearest Neighbor is a benchmark that
finds the first k nearest neighbors for a
specified location.

nw bioinformatics Needleman-Wunsch is a benchmark that
performs DNA sequence alignment opti-
mization.

particlefilter | medical imaging Particle Filter assesses the location of a
target object with noisy measurements of
the target’s location.

pathfinder grid traversal Pathfinder searches a path with the low-
est aggregate weights in a 2-D grid.

srad image processing Srad, with the full name Speckle Reduc-
ing Anisotropic Diffusion, is a diffusion al-
gorithm that removes speckles from an
image.

because modern HM (e.g., scratchpad memory + DRAM) is widely used in accel-

erators, rather than mainstream CPUs.

2. HMBench should run in parallel, as accelerators typically employ multiple threads
for high thread-level parallelism, which leads to significantly different behaviors in

HM from sequential execution.
3. HMBench should leverage the interfaces provided by the HM to control the data

16

placement and movement for evaluating different strategies.

4. HMBench should cover different kinds of applications. As the performance of HM
is tightly related to memory access patterns, which differ significantly in different
kinds of applications, ranging from data analytics to scientific computing. Thus, a

high coverage of applications can evaluate HM thoroughly.

HMBench leverages omp target to support heterogeneous workloads. Thus, HM-
Bench, with minimal adaptation, works on existing and emerging HM architectures in
accelerators or co-processors, such as DSP, GPU and Xeon Phi. Moreover, it provides
APIs to encapsulate memory management interfaces provided in HM-based architec-
tures. The initial benchmark suite consists of 13 applications from different areas, includ-
ing two scientific benchmarks for matrix computation and 11 benchmarks derived from
Rodinia 2.2 [36]. The reason we choose to adapt Rodinia benchmarks is that Rodinia
has a good coverage of application domains. It has an OpenMP implementation but
no HM-aware design, which provides us an opportunity to extend its benchmarks with
the OpenMP 4.0 standard and HM-friendly design. HMBench is open to enclose more
benchmarks in the future. In the rest of this section, we describe different benchmarks

in detail and show our design and implementation specific for HM-based accelerators.

2.41 Benchmark Description

Table 2.2 shows the descriptions of HMBench benchmarks. They are highly represen-
tative in their own fields according to Rodinia’s specification [36]. Together with two
matrix-based scientific benchmarks, HMBench has good coverage of different domains

of real-world parallel applications.

2.4.2 Simple Benchmark Implementation

Porting these benchmarks to an HM-based system, such as the KeyStone I, is nontriv-

ial. The challenges come from its uncommon architecture and system support, which

17

is different from general-purpose CPUs. Specifically, we need to handle work decom-
position between CPU and accelerators, limited compiler support in accelerators, and
lack of 1/0O capability in accelerators. In the rest of this section, we use the KeyStone Il

to illustrate the challenges and our solutions.

Work decomposition To fully leverage the computing resources in the KeyStone I,
we need to split the work into the CPU part and the DSP part. We apply a simple work
decomposition strategy in HMBench: we offload all OpenMP parallel regions to the DSP
device and leave all non-OpenMP regions running on the CPU. As most computation
is done in the OpenMP regions, this strategy can expose as much as computation for
evaluating the HM on the accelerator (DSP) side.

To allow different vendor-provided compilers work on different code regions, the of-
fload code region must be encapsulated in a subroutine and placed in a separate target
source file. Thus, the CPU compiler can produce CPU binary and also cross compile the
DSP binary for execution. To encapsulate each OpenMP region, we identify its inputs

and outputs, which are all passed as arguments by reference to the new subroutine.

Code adaptation for the DSP compiler The DSP compiler only supports C-like syn-
tax. Thus, the code running on the DSP cannot use C++ features, such as classes,
memory allocations, and type conversions. Moreover, moving data between CPU and
DSP requires the support from DSP’s OpenMP compiler, which explicitly accepts ar-
ray names and sizes. However, the compiler does not support multi-dimensional arrays
well. In order to move multi-dimensional arrays between CPU and DSP, we need to map
them to a continuous 1-D memory chunk for processing on DSP, and then map them
back to the original layout for processing on CPU. Benchmarks, such as pathfinder,

need such code transformations.

System /O Some benchmarks, such as bfs and nn, require input files. Since the DSP

software stack in the KeyStone Il does not support system 1/0, we need to modify the

18

codes so that the host CPU reads input files and map the data to the DSP for computa-
tion. DSPs process the data and move it back to the host for writing to the file system.
This simple scheme works for most of our benchmarks. However, there is one excep-
tion. Benchmark nn repeatedly reads in 10 entries of a database for processing, until
completing the whole database. To avoid frequent data movement between CPU and
DSP, we perform the 1/0 once to read in all the entries in the input database and offload

them altogether to DSP for processing.

Summary: HMBench vs. Rodinia Although HMBench shares some common pro-
grams with the Rodinia benchmark suite, it overhauls their implementations: (1) HM-
Bench uses OpenMP 4.0 omp target to offload parallel regions to accelerators, where
we can use the fast scratchpad memory. We identify the input and output data for omp
target pragma to ensure the correctness of the code. Moreover, as aforementioned,
we need to transpose the array layout for the data transfer between the host and ac-
celerator. (2) HMBench fuses OpenMP regions to minimize the data transfer overhead
between the host CPU and the target accelerator. (3) HMBench is extended to manage

allocations of heterogeneous memory.

2.4.3 Limitation of HMBench Implementation

Our implementation of HMBench is straightforward, without taking the HM into consid-
eration. By default, the compiler places all data in the slow memory, e.g., DDR of the
KeyStone Il. Benchmarks with this implementation do not achieve good performance.
We need to take advantage of different HM layers to cache data for efficient accesses.
However, determining which data to place in the fast HM layers is difficult, so we need
a profiling tool to help make decisions. The next section describes DataPlacer for this

purpose.

19

2.5 Design and Implementation of DataPlacer

It is challenging for programmers to port code to an HM-based system. One needs high-
level guidance to place data objects in the fast HM layers to obtain high performance.
In this section, we describe the design and implementation of DataPlacer, a profiler
that identifies optimization opportunities of data placement in HM. Figure R.2 shows
the workflow of DataPlacer. DataPlacer works on an x86 host machine. It monitors
program execution and provides optimization guidance for porting this code to an HM-
based target machine. DataPlacer has the following three features to make it an effective

tool.

+ DataPlacer provides software metrics only. Because the host and target machines
have different architectures, using the host’s hardware metrics is inappropriate to

guide the optimization in the target HM-based machine.

» DataPlacer provides high-level optimization guidance for programmers. The guid-

ance can be easily used for source code transformation.

» DataPlacer can monitor parallel program execution with reasonable overhead. For
private and shared HM layers between multi-cores, DataPlacer provides different

optimization guidances.

In the rest of this section, we describe the basic methodology of DataPlacer and

several refinements to make it practical.

2.5.1 Basic Methodology of DataPlacer

DataPlacer leverages Intel Pin [37] to instrument binary and collect memory traces.
All the analyses are based on the memory traces without using any information from
architecture-specific hardware performance counters. To provide high-level optimization
guidance, DataPlacer performs array-centric analysis. It identifies arrays with a signif-

icant amount of accesses, which, if put into fast HM layers, can improve performance.

20

porting code

source code source code

optimized
source code

executable

gl

A ;\
DataPlacer / executable
X86 architecture H M.-based
architecture

Figure 2.2: The functionality of DataPlacer. DataPlacer monitors program execution
on x86 and generates pure software-based profiles to guide program optimization when
porting the code to an HM-based architecture.

With this guidance, programmers can easily transform the source code for optimiza-
tion. To achieve array-centric analysis, DataPlacer needs to monitor array allocations,

associate memory accesses with arrays, and derive metrics for analysis.

Tracking array allocations DataPlacer leverages Pin to analyze a binary executable
and monitor its execution to extract array allocations. DataPlacer monitors both static
and heap arrays. On one hand, DataPlacer reads the symbol table of the binary to
identify the names and memory ranges of static arrays. On the other hand, DataPlacer
instruments array allocation functions, such asmalloc, calloc, and realloc, to capture
the allocated memory ranges as well as the allocation location mapped to the source
code with the help of compiler debugging information. DataPlacer logs these memory
ranges and IDs (names for static arrays and allocation sites in source code for heap

arrays) into a map for further use.

Collecting and attributing memory traces DataPlacer utilizes Pin to instrument both
memory loads and stores for their effective addresses. Upon a memory access, Data-

Placer checks the map to identify the memory interval that includes the effective address

21

of this memory access and associates it with the array. DataPlacer counts the number
of accesses attributed to each array. For multithreaded programs, accesses from multi-
ple threads can be attributed to the same array at the same time, so DataPlacer needs

to use atomic operations to ensure the correctness of accumulating the counter.

Deriving metrics From the array-centric analysis, DataPlacer obtains the number of
accesses to each array. Arrays with significant accesses are candidates for being placed
into the fast HM layers. To weigh the significance of arrays, we use Equation 2.1 to
derive a metric F for each array, which is the average access frequency per byte. In
the equation, C' is the total number of memory accesses to an array. S is the number of

memory bytes allocated to the array.

¢

F= 2.1
S 2.1)
DataPlacer sorts all arrays according to F'. With a greedy algorithm, DataPlacer recom-

mends placing arrays with high £ until the space of HM runs out.

2.5.2 Refined Methodology of DataPlacer

The basic design of DataPlacer is inadequate to be used in practice. There are five

major issues.

1. Metrics ' and C alone are insufficient in providing effective guidance. We need
more insightful access pattern analysis to extract more features of an array, such

locality, beyond the simple access quantity.

2. If the fast HM layers have limited space and the arrays used in the programs are
too large to fit in, DataPlacer cannot place such large arrays. Moreover, not all
elements of an array have the same number of accesses to receive the equal

treatment.

22

3. HM may have layers that are private or shared between cores. Applying the same
data placing strategy to different kinds of HM layers may hurt performance. For
example, inappropriate placement can cause high overhead due to maintaining

data consistency.

4. DataPlacer produces static data placement guidance. Once the data is loaded
into HM, it never gets replaced. In practice, static placement preclude optimal
performance because program execution can have different phases with different

memory access patterns.

5. A system that integrates both traditional hardware caches and HM is difficult to
optimize. DataPlacer needs to take this into consideration for HM-based data

placement.

Thus, we refine DataPlacer to address all these issues.

Data locality An array with a large stride or a random access pattern does not exploit
the reuse in caches. We call such array one of poor locality. An array of poor local-
ity can significantly degrade program performance because accesses to this array are
more likely to suffer from cache misses and high exposed memory latency. Therefore,
DataPlacer prioritizes the placement of arrays with bad locality into fast HM. DataPlacer
adopts our previous approach [38] to collect the reuse distance of memory accesses
and associates them with arrays. The technology is to instrument all memory accesses
and record the trace of effective addresses in a hash map for the computation of reuse
distance. We report the instructions and arrays associated with long reuse distances
as with poor locality. We evaluate the necessity for placing arrays of poor locality in

Section R.6.

Large arrays DataPlacer decomposes the memory intervals allocated for large arrays

into small chunks with the sizes not larger than N. N is tunable by programmers; by

23

default, we set it as one tenth of the HM size. DataPlacer treats each chunk as a sep-
arate array and performs original array-centric analysis. With the offsets computed for
chunks in the array, programmers can easily place part of the array in the HM. Besides
handling large arrays that do not fit into the HM, DataPlacer’s array decomposition is
more appropriate for handling irregular access patterns. With irregular access patterns,
elements in an array may have different access frequencies. The array decomposition

provides more details in the array internals for data placement.

Private vs. shared HM HM can be private or shared in a multi-core system, e.g., the
KeyStone Il. For example, each DSP in the KeyStone Il has a private fast layer—L2
cache— and all eight DSPs share a fast layer—L3 MSMC. Optimizations on these two
kinds of fast HM layers are different. On one hand, DataPlacer recommends thread-local
arrays rather than shared arrays to be placed in private HM because handling shared
arrays needs to maintain data consistency. For example, if an element of a shared array
is updated by one thread in the private HM, the update should be written back to the main
memory. Moreover, all of the copies of this element in different private HMs have to be
invalidated and reloaded from the main memory. In a traditional cache system, this data
consistency is guaranteed by the hardware, which is efficient. However, HM requires
software to keep the data consistency, which is expensive. Thus, DataPlacer avoids
recommending shared arrays to be placed in private HM layers.

On the other hand, DataPlacer prioritizes shared arrays to be placed in shared HM
layers. If there is space, DataPlacer places local arrays in the shared HM. One strength
of this strategy is that no software-based data consistency is needed. Moreover, shared
arrays are used by multiple threads, so loading them into shared HM can benefit many
threads. In contrast, loading local arrays into shared HM only benefits a subset of
threads, rather than all of them.

To provide appropriate optimization guidance, DataPlacer identifies whether an array

is local or shared and adapts the array-centric analysis accordingly. When it attributes

24

memory accesses to arrays, it also associates the IDs of threads that perform the ac-
cesses with the array. If an array is accessed by more than one thread, DataPlacer

recognizes it as a shared array. Otherwise, it is a local array.

Static vs. dynamic placement The basic implementation of DataPlacer produces the
strategies of array placement in a static way: once an array is placed in the HM, it is
never evicted throughout the entire execution. However, a typical program has phases.
Loading an array into the fast HM layer without using it in some phases can waste the
precious HM resources. Therefore, we improve DataPlacer to provide guidance for
placing arrays dynamically. The main challenge of generating guidance for dynamic
placement is to identify the phase changes to apply dynamic adaptation of data place-
ment. Moreover, DataPlacer needs to provide high-level guidance that can be used by
programmers to refactor their source code.

To address the challenge, DataPlacer makes an assumption: phase changes occur
at function boundaries. In other words, DataPlacer applies the same data placement
strategy inside a function. When switching to a different function, DataPlacer adapts
the data placement strategy, if needed, based on the memory accesses in the new
function only. However, frequent changes of data placement are costly because of the
heavyweight software-based data movements. To reduce the overhead, DataPlacer
adapts the data placement when coming into a new function that invokes a significant
number of memory accesses. To provide high-level guidance, DataPlacer associates
memory accesses with functions in their full calling contexts.

DataPlacer uses Pin [37] to instrument every function call and return instruction. It
maintains a shadow stack to track function frames in the system execution stack. When
calling a function, DataPlacer pushes the function frame, identified by the starting ad-
dress of the function, into the shadow stack. When returning from a function, DataPlacer
pops the function frame on top of the shadow stack. The calling context of any instruc-

tion under execution is in the shadow stack. DataPlacer accumulates the number of

25

Figure 2.3: Creating a CCT for a program and pruning it by discarding nodes with small
numbers of memory accesses. The blue nodes are internal functions, while the red
nodes are leaf functions.

memory accesses acc to the function frame on top of the shadow stack, as exclusively
to the function (not to its callers).

To efficiently maintain these per-function metrics, all the calling contexts are orga-
nized in a compact data structure, called a calling context tree (CCT) [39], by merging
all common prefixes. Figure .3 shows a typical CCT. The root node of a CCT is the
starting function, typically “main” or “thread start”; the internal nodes (in blue) are func-
tions that have function calls inside; the leaf nodes (in red) are ones with no function
call inside. To compute the inclusive metrics for each node (i.e., the aggregate metric
of the function and all its callees), DataPlacer traverses the CCT from bottom to top to
accumulate the inclusive acc for every node. It then prunes the CCT, leaving the nodes
that account for significant proportions of memory accesses during the entire program
execution, as shown in Figure E For leaf nodes in the pruned CCT, DataPlacer treats
them as separate phases, in which the data placement strategy is dynamically adapted
according to the array-centric metric F', computed with memory accesses in the phase.
As for the optimization, programmers need to flush the data in the fast HM layers at the

beginning of the function and then place the data according to DataPlacer’s suggestions.

26

Table 2.3: DataPlacer’s optimization decisions based on two metrics.

acc fp optimization decisions

high high optimization with high priority

low high little performance gains (low data reuse)
low/high | low | little performance gains (dataset fit in hardware cache)

Hybrid memory subsystem A system with hybrid hardware- and software-managed
cache/memory is challenging for data placement. For example, each of KeyStone II's
DSPs has a 256 KB L2 cache that is managed by hardware. We find that if the dataset
of a program is small enough to fit into the hardware cache, placing data objects into
HM does not help its performance. Therefore, DataPlacer collects memory footprints
fp for each node in the pruned CCT, like acc. Memory footprint is defined as the unique
memory bytes accessed in a calling context. Table R.3 shows how DataPlacer makes
optimization decisions based on these two metrics. DataPlacer suggests that optimizing
data placement in contexts with high acc and fp can lead to significant performance
improvement. If acc is low and fp is high, the code exposes little locality. Thus, placing
data into HM does not benefit performance much. Moreover, if fp is low, the hardware
caches can hold all the data, minimizing the effects of HM.

To collect fp, DataPlacer creates a hash set to maintain all unique memory bytes
accessed exclusively to CCT nodes. Like acc, the hash set is merged from bottom to
top in the CCT along all call paths for the inclusive footprint of a context. fp of a function

is computed as the size of the inclusive hash set associated with the function.

2.5.3 DataPlacer Output

DataPlacer produces the text output once the program finishes its execution. Figure R.4
shows an example output of DataPlacer for srad, a case study to be described in the
next section, running with four threads. At the beginning of the output file, DataPlacer
shows the total number of memory accesses in this execution. Then, DataPlacer ranks
all data objects in a descending order by F. In the figure, we only show one example

array. DataPlacer outputs the data ID (for DataPlacer’s internal usage) and the number

27

A total of 184016202 memory accesses.

Rank 0 >>>>
Dynamic Data 45703 chunk 1 accessed 33107904 times.

Data allocation call path:
45678:0x71f20c32816e0:pushqg %rbp:malloc::0
45676:0x400dda:callg 0x400bf@:main: [...]/main.c:157
30599:0x7f20c3227b03:callqg %rax:__libc_start_main::0
29824:0x401b40:callg 0x400bad:_start: [...]/sysdeps/x86_64/start.S:122
1:(nil)::THREAD[@]_ROOT_CTXT::0

size = 898.109 KB contribution = 17.9918% F = 36.00

accessed by threads:
12445583 6927600 6867360 6867360

Footprint and accesses per context
Footprint is 4591168 Bytes, #accesses is 22831020
Calling contexts:
24341:0x401cf@:movsxdl (%rld,%rax,4), %rcx:main._omp_fn.1::0
24289:0x401590:callqg 0x401cl@:main::0
14026:0x7f896debbb@3:callqg %rax:__libc_start_main::0
13647:0x401b40:callq 0x400ba0d:_start:/home/abuild/rpmbuild/BUILD/
glibc-2.19/csu/../sysdeps/x86_64/start.S5:122
1:(nil)::THREAD[@] _ROOT_CTXT::0
Figure 2.4: An output example of DataPlacer when monitoring srad.
of accesses. For static arrays, DataPlacer displays its name. For dynamic arrays, Dat-
aPlacer prints the full call path so that a programmer can associate the data object with
the source code. In this example, the data object is allocated on heap by malloc. Dat-
aPlacer also maps the call paths to the source code for easy interpretation: the malloc
is called at line 157 in main.c.

Moreover, DataPlacer computes the array size in bytes, the contribution of memory
accesses (in percentage) to the whole program execution, and F. DataPlacer lists the
number of accesses by each thread and identifies whether the data object is shared or
private. In this example, as all the four threads access this array, this array is shared by
all the threads and should be placed into the shared fast memory layer.

DataPlacer also reports acc and fp, as shown in Table R.4 for the whole program.
To give dynamic optimization guidance, DataPlacer further reports acc and fp in all the
functions with full calling contexts. Figure R.4 shows one example OpenMP function.
As this OpenMP function performs the most computation, DataPlacer suggests to target

this function with one strategy to place the array in the fast memory, highlighted in the

28

allocation call path.

It is worth noting that the text output of DataPlacer can contain thousands of lines
because all the allocations and functions with their full call paths are included. How-
ever, by sorting all the items (sorting arrays with ¥’ and sorting functions with acc), we
can successfully shrink the searching space and focus on a few arrays and function
contexts. In the future, we plan to build a graphical interface for DataPlacer for easy

data interpretation.

2.6 Evaluation

We evaluate HMBench and DataPlacer on the Tl KeyStone II. The configuration of Key-
Stone Il is described in Section 2.3. The compiler on the host side is gcc 4.7.2, while the
complier on the device side is TI's OpenMP Accelerator Model Compiler clacc 1.1.1.
We compile all the benchmarks in HMBench with -03. DataPlacer collects execution
profiles of HMBench on an x86 machine, which has 16 Intel Xeon 3.2 GHz cores, with
192 GB memory. DataPlacer monitors the program executions with eight threads. The
overhead is 40-60x the native execution. We average the execution time and power
consumption with running each experiment five times; we find that variance is negligible.

We discuss our experiments in four aspects. In Section .6.1, we optimize HM-
Bench according to the guidance of DataPlacer. In Section .6.2, we characterize the
performance difference of HMBench due to HM in KeyStone II. In Section 2.6.3, we
characterize the difference in power consumption with the utilization of HM in KeyStone

1. Finally, we discuss some issues in our experiments in Section 2.6.4.

2.6.1 Optimizing HMBench on KeyStone Il

With the guidance of DataPlacer, we are able to apply the optimizations to all the bench-
marks in HMBench. To evaluate DataPlacer and demonstrate our optimizations, we

study four benchmarks in detail. Without specific explanation, the speedups we report

29

A wWON =

/* allocation and initialization x*/
#pragma omp parallel for ...
for(i =0 ; i < N ; i++)
for(j =0 ; j <N ; j++)
B[j1[i] = A[i][j];

Listing 2.2: Code snippet of mtrans: matrix A is transposed into matrix B.

are over the default execution of HMBench on KeyStone I, which does not use the fast

HM.

mtrans There are two arrays in this micro benchmark, the original matrix A and the
transposed one B, as shown in Listing R.2. Both matrices are shared by all threads.
DataPlacer suggests we should place matrix B into fast memory if there is not enough
room for both, because of the bad locality in matrix B. We optimized the application
following DataPlacer and observed an 11.51x speedup. In contrast, placing matrix A (of
good locality) into fast memory obtains only a 5.52x speedup, or half the performance

gain of placing matrix B.

lud There are two phases in 1ud: a file input phase and a kernel computation phase.
DataPlacer identifies that there is only one significant array m, which contains all the
matrix data for decomposition computation. As shown in Listing R.3, m is allocated in
create_matrix_from_file and used in lud_omp, the parallel kernel. Array m accounts
for ~18% of total memory accesses. Moreover, m is shared by all threads, so Data-
Placer suggests placing it into fast memory. We apply the optimization according to
DataPlacer’s guidance and achieve a 3.95x speedup for the OpenMP parallel region

when running on eight DSPs.

nw DataPlacer identifies two significant arrays used in nw. As shown in Listing 2.4, the
two arrays referrence and input_itemsets with the same size, 2.2 MB. Both of them
are used in a parallel region, shared by all threads. These two arrays account for ~32%

of total memory accesses. With this performance insights, DataPlacer recommends

30

NOoO R WN =

float *m;

/* file input */
create_matrix_from_file(&m,input_file,&matrix_dim);

/ *kernel computation */
lud_omp(m, matrix_dim) ;

Listing 2.3: Code snippet of 1ud. Array m reads the input file and then is passed for
kernel computation.

placing both arrays into fast memory, which leads to a 1.5x speedup for the overall

program.

srad Besides the array highlighted in Figure .4, DataPlacer identifies six more signif-
icant arrays, as shown in Listing 2.5, which account for ~50% of total memory accesses
in the program. Threads share six of these arrays in the following parallel region. Ide-
ally, DataPlacer recommends placing all seven arrays in the fast memory. However,
due to the limited space, the fast memory cannot hold all the arrays. With the analysis
of DataPlacer, we place five arrays with the highest F to the fast memory. These arrays
are image, dN, dS, dw and c. As for the optimization, the array image needs to be initial-
ized in the host and then passed to the device. For the other four arrays, they can be

initialized on the device. With this optimization, we obtain a 1.15x speedup.

Further analysis on speedups Table R.4 summarizes the optimization to all the bench-
marks in HMBench with the guidance of DataPlacer. In the table, we show the footprint,
the number of accesses, and the number of arrays placed into fast memory under the
guidance of DataPlacer. We set two baselines to make the comparison. Baseline B1 is
the default program configuration without utilizing the fast memory. Baseline B2 utilizes
scratchpad memory with a naive data placement strategy: first come, first served. From
the table, we can see that eight of 13 benchmarks benefit from the HM optimization
and achieve more than 1.10x speedups over B1. Among them, mtrans and lud ob-

tain significant speedups. However, benchmarks like kmeans, 1avaMD, particlefilter,

31

N —

O~NO bW

11
12
13
14
15
16
17

18
19
20

referrence = (int *)malloc(max_rows * max_cols * sizeof (int));
input_itemsets = (int *)malloc(max_rows * max_cols * sizeof (int))

)

/* process top-left matrix */
#pragma omp parallel for
for(idx = 0 ; idx <= i ; didx++){
input_itemsets[index]= maximum(input_itemsets[index-1-max_cols]
+ referrence[index],
input_itemsets[index-1] - penalty,
input_itemsets [index-max_cols] - penalty);

}

/* process bottom-right matrix x*/
#pragma omp parallel for
for(idx = 0 ; idx <= i ; idx++){
input_itemsets[index]= maximum(input_itemsets[index-1-max_cols]
+ referrence[index],
input_itemsets[index-1] - penalty,

input_itemsets[index-max_cols] - penalty);

3

Listing 2.4: Code snippet of nw. Arrays referrence and input_itemsets are frequently
accessed.

and pathfinder obtain nearly no performance improvement. Therefore, not all kinds of
benchmarks can benefit from HM. We discuss the performance impact of HM to differ-
ent kinds of benchmarks in the next section. Moreover, we can see that five out of 13
benchmarks (mtrans, mmulti, bfs, hotspot, and nw) achieve more than 1.10x speedup
over B2. On average, DataPlacer achieves a speedup of 1.56x and 1.17 x over B1 and

B2 baselines, respectively.

2.6.2 Performance Characterization

In this section, we characterize the performance impact of HM and identify the workload
features that can benefit from HM. We mainly focus on the performance of parallel re-
gions in these benchmarks. Common to all the benchmarks that benefit from HM, they
have three features. First, their parallel regions should be large enough to avoid parallel

overhead in OpenMP from overwhelming the execution time. For example, the parallel

32

—
QOWONOOOOOAPLWN -

—_ A A
A wON -

16
17
18
19
20
21
22
23
24

image_ori = (fp*)malloc(sizeof (fp)*image_ori_elem);

image = (fp*)malloc(sizeof (fp) * Ne);

dN malloc(sizeof (fp)*Ne); // north direction derivative
dS = malloc(sizeof (fp)*Ne); // south direction derivative

dW = malloc(sizeof (fp)*Ne); // west direction derivative
dE = malloc(sizeof (fp)*Ne); // east direction derivative
¢ = malloc(sizeof (fp)*Ne); // diffusion coefficient
resize(image_ori, image_ori_rows,...);

#pragma omp parallel for ...
for (j=0; j<Nc; j++)
for (i=0; i<Nr; i++) {
// divergence
D = cN*dN[k] + cS*dS[k] + cW*dW[k] + cEx*xdE[k];

// updates image
image [k] = imagel[k] + 0.25*lambdax*D;

3
}

Listing 2.5: Code snippet of srad. There are seven arrays with significant accesses in
the OpenMP parallel region.

region in lud accounts for almost 100% of the program execution time, so our optimiza-
tion shows a significant speedup. Second, parallel regions have reasonable memory
footprints and accesses. Third, benchmarks have hot arrays, whose placement in the
HM can benefit a large number of memory accesses. For example, 1ud, nw, and srad
have hot arrays; placing them in HM can benefit 18-50% of the total memory accesses.

However, as shown in Table 2.4, there are benchmarks having little performance im-
provement with HM optimization. With the help of DataPlacer, we obtain the benchmark

characteristics that may not benefit from HM.

» Small footprints. If the memory footprint is small, all data can be loaded into Key-
Stone II's L1 and L2 caches, so optimization does not help. For example, cfd has
less than 1MB footprints that can fit into the hardware-managed L2 cache. Thus,

the speedup for cfd is trivial.

33

Table 2.4: The analysis and optimization guidance provided by DataPlacer. The
speedups are measured for all benchmarks running with eight threads in KeyStone II.

benchmarks footprint accesses ﬁ}arrays g\?eere dUF i\?eere P
(bytes) HM | B1 B2

mtrans 2.9E6 | 1.3E7 1 11.51x | 2.09x
mmulti 3.7E8 | 6.4E8 1 218x | 1.85x
bfs 2.0E6 | 1.4E8 6 1.31x | 1.18x
cfd 6.0E5 | 1.2E7 2 1.05x | 1.03x
hotspot 1.3E7 | 3.7E8 2 1.17x | 1.10x
kmeans 6.7E7 | 1.4E10 1 1.01x | 1.01x
lavaMD 3.3E6 | 3.7E6 3 1.01x | 1.01x
lud 2.1E6 | 3.1E8 1 3.95x | 1.00x
nn 2.1E6 | 2.8E9 1 1.10x | 1.00x
nw 4.7E6 | 8.8E7 2 1.51x | 1.30x%
particlefltr | 7.4E6 | 8.0E8 10 1.02x | 1.00x
pathfinder | 4.0E6 | 4.0E8 1 1.01x | 1.06x
srad 1.0E7 | 1.2E9 5 1.15x | 1.02x
Geo.mean / / / 1.56 x | 1.17x

» Streaming access patterns. If a benchmark has a streaming access pattern, load-
ing data into HM does not benefit from many reuses. For example, lavaMD has a

streaming access pattern (fp ~ acc); optimizing it shows nearly no speedup.

 Large footprint with a uniform access pattern. If all arrays in a benchmark are uni-
formly accessed, placing a small number of arrays in the fast HM layers does not
significantly improve the performance. For example, kmeans has a large footprint
with an uniform access pattern. Placing only a small subset of data into HM leads

to nearly no speedup.

In addition to the performance, HM can improve program scalability. We evaluate
strong scaling [of all benchmarks in HMBench. Most of the benchmarks have slightly
better scalability when optimized with HM. The reason is that MSMC has much larger

bandwidth than DDR in KeyStone Il, so contentions in memory bandwidth can be re-

'Strong scaling means that the problem size is constant and the number of cores increases.

34

baseline

300 M optimized

250

200

150

100

50

Figure 2.5: Comparison of whole-system energy consumption between baseline and
optimized benchmarks running with eight threads. The vertical axis indicates the energy
consumption, measured in Joules.

duced with the use of MSMC.

2.6.3 Power Characterization

We measure the power consumed by each application on a Tl evaluation board that
features one Keystone 66AK2H SoC, running with 1, 2, 4 and 8 DSP cores. Without a
convenient way to tap into the power rails for the DSP and memory, we measure the
board-level power consumption, by sampling the voltage and current with an external
digital multimeter, Agilent 34450A. When the board is idle (no workload on CPU and
DSP), we measure the board power as the baseline; when workload is being executed,
we sample the board power. We repeatedly run each benchmark multiple times to min-
imize the measurement errors introduced by the system noise. We report the workload
energy consumption by integrating the power over time.

Figure R.5 compares the energy consumption of the whole system when running the

original (without using MSMC) and optimized benchmarks. As shown in the figure, the

35

baseline
35

M optimized

30

25 -l —

20 |

10 +l— -

Figure 2.6: Comparison of dynamic energy consumption between baseline and opti-
mized benchmarks running with eight threads. The vertical axis indicates the energy
consumption, measured in Joules.

optimizations with HM for HMBench always reduce energy consumption. We can see
that seven benchmarks have more than 20% energy reduction due to our HM optimiza-
tion. Itis worth noting that some benchmarks, such as cfd, kmeans and particlefilter,
do not obtain speedups with the utilization of fast HM, but they obtain nontrivial energy
reduction, 9-18%.

Due to the design limitation of the evaluation board, its static power is known to be
much higher than that of a production device. To further highlight our efficiency bene-
fit, we compare the dynamic energy consumption, which is computed as the difference
between the measured energy and the baseline energy on chip. Figure R.6 shows the
measurement results: most of the benchmarks have significant reduction in energy con-
sumption, more than 2x on average. We further notice that nn and pathfinder after
optimization consume more dynamic energy (Figure 2.6), but less overall energy (Fig-
ure .5). The reason is that the execution time reduction of these benchmarks saves a

significant amount of static energy, which surpasses the dynamic energy increment.

36

2.6.4 Takeaways from Experimenting KeyStone Ii

With the evaluation of a benchmark suite running on a real system, KeyStone Il, we
identify that HM can benefit both performance and power consumption for many, but not
all, applications. A performance tool, like DataPlacer, is necessary to guide the use of
HM for the best performance.

However, we cannot further characterize HM’s impact in performance and energy
with hardware performance events on KeyStone II. Such hardware events include L1/L2
cache accesses/misses and MSMC accesses. The reason is that DSPs on KeyStone
Il lack of performance counters to record such events. Without this information, we
cannot explain some phenomena. For example, we cannot directly understand DDR
contention when scaling benchmarks to more DSPs. Moreover, we have no idea why
nn and pathfinder consume more dynamic energy with HM optimizations. This work
motivates Tl to provide such support in DSPs to better understand their application be-

haviors.

2.7 Limitations with KeyStone I

Our study of HM based on KeyStone Il has two limitations. First, the fast memory (L2
and MSMC) on KeyStone Il has a small size (6 MB), so we need to tune the HMBench
inputs with small sizes to make sure the fast memory can hold a sufficient portion of
arrays to affect the performance. We tried large inputs of HMBench, which are difficult
for us to obtain the performance gains. We expect 8-16 GB fast memory in the emerging
architectures, where we foresee the benefit can be obtained from optimizing HMBench
with large inputs.

Second, we lack the insights of the memory behavior in HM-based accelerators be-
cause there are no performance monitoring units (PMUs) in DSP. Thus, we cannot pre-
cisely explain why several HMBench benchmarks fail to obtain speedups with placing

data in the fast memory. As the mainstream CPU architectures will employ HM in the

37

future, we expect to use CPU’s PMU to collect rich information to understand the HM

performance.

2.8 Chapter Summary

In conclusion, this chapter introduces HMBench and DataPlacer to study the impact
of software-managed heterogeneous memory in a real system, the Tl KeyStone Il. HM-
Bench is the first OpenMP benchmark suite that adopts OpenMP 4.0 standard and works
on heterogeneous architectures. DataPlacer is a profiler to provide guidance for data
placement in different layers of software-managed cache and memory. Using HMBench
and DataPlacer, we observe the insight that HM plays an important role in both boosting
performance and reducing energy consumption. Moreover, we leverage HMBench and
DataPlacer to characterize the performance gains with HM.

Our future work is twofold. First, we will develop more benchmarks for HMBench to
make it as the standard benchmark suite for evaluating HM-based systems and compil-
ers. Second, we will extend DataPlacer to provide low-level guidance for compiler-based
optimization for HM. Such low-level information includes the finer granularity of data
placement on cache lines or pages, instead of arrays. We believe that optimizations on
HM from both high-level source code transformation and low-level compiler-supported

code generation can achieve the optimal performance.

38

Chapter 3

CUDAAdvisor: LLVM-Based
Runtime Profiling for Modern GPUs

3.1 Introduction

General-purpose GPUs have been widely adopted in various computing domains, such
as accelerating scientific computing applications, deep learning and graph workloads.
From hardware perspective, 71 supercomputers in the top 500 list employ CPU+GPU
heterogeneous architectures as of June 2017 [40]; among them, Piz Daint and Titan,
both of which employ CPU-GPU architectures, rank third and fourth on the list, respec-
tively. Moreover, due to the advancement of deep learning, NVIDIA released DGX-
1 [41], a deep learning system consisting of eight Pascal GPUs. From software per-
spective, large packages, such as LAMMPS [42], TensorFlow [43] and Galois [44], have
been leveraging modern GPUs to achieve superior performance.

Unlike CPUs, GPUs typically offer a relatively more complex programming and ar-
chitectural scenario. For instance, they employ thousands of threads, which are divided
into warps. With the Single-Instruction Multiple-Threads (SIMT) programming model, all
the threads in one warp share the same program counter. Moreover, a warp is able to
coalesce multiple memory requests to adjacent memory words into one single request,

so threads can benefit from spatial locality. Caches on GPUs are often very limited in

39

capacity and they are shared across threads. Typically, programmers have to offload
kernels to GPU (e.g., NVIDIA GPUs) to benefit from its high parallelism.

Efficiently designing a GPU kernel is difficult, especially when using low-level pro-
gramming models, such as CUDA [1] and OpenCL [2]. Thus, it is not uncommon to
come across performance bottlenecks that prevent the code from achieving high perfor-
mance on GPUs. There are multiple unique types of challenges for GPU performance
optimization. First, as GPU uses the SIMT programming model, control flow divergence
may hurt parallelism. Since threads in different branch paths have the same program
counter, they need to serialize between each other. Second, due to memory divergence
caused by irregular or strided memory access patterns, GPU performance can be signif-
icantly degraded. Third, given the limited cache size on GPU, a large number of threads
can easily compete for cache resources without efficient cache management strategies.
Finally, optimizations at the level of intra- and inter-CTA [45] cannot be easily conducted
without some clear guidance, especially when dynamic parallelism [46] is involved.

Manually analyzing these performance bottlenecks is tedious, error-prone and some-
times impossible for large code bases. Thus, one usually uses performance profilers to
guide code optimization. For example, many CPU profilers have been proposed, such
as Intel VTune [47], Oracle Solaris Studio [48], HPCToolkit [49] and gprof [50]. How-
ever, these CPU performance tools cannot directly profile GPU kernels. Existing GPU
profilers, such as NVProf [51], TAU [562], and G-HPCToolkit [53], perform coarse-grained
analysis for GPU kernels with relatively fixed metrics. These tools leverage CUPTI [54]
interface available in NVIDIA GPUs to obtain the callbacks upon kernel launches and
returns. They enable hardware performance counters on GPUs at the kernel launch
point, record the occurrence of performance events during the kernel execution, and
associate the events with the kernel after the kernel execution. These performance
events include cache misses, memory divergence, and branch divergence. However,
these coarse-grained analyses associate performance metrics with GPU kernels, lack-

ing insights into kernel’s instructions, loops, or functions. Recent NVIDIA Maxwell and

40

its later GPU generations support PC sampling [565], which samples instructions in a
round-robin fashion and provides various stall reasons. However, PC sampling only
provides sparse instruction-level insights.

To perform fine-grained analysis inside a GPU kernel, one needs to rely on GPU
simulators (e.g. GPGPU-Sim [56]) or emulators (e.g., Ocelot [67]). However, simula-
tion and emulation usually incur high overhead and are complex to develop. Moreover,
they may suffer from compatibility issues related to the latest application and runtime
features. Since they do not simulate or emulate every feature of the state-of-the-art
GPU architectures, the optimization guidance generated may not apply to contempo-
rary GPU hardware. Therefore, there is a high demand for fine-grained profilers that
monitor kernel execution on real GPU architectures.

To support fine-grained profiling, NVIDIA released a research prototype named
SASSI [68] —a tool that instruments GPU codes to support fine-grained analysis. How-
ever, as a close-source tool, SASSI has several limitations in practice, in terms of porta-
bility (i.e., not portable across CUDA runtime and architectures), expansibility (i.e., in-
strumentation engine is not open sourced), complexity (i.e., implementation level can
be too low for common developers) and coverage (i.e., overlooks the interaction be-
tween CPU host and GPU). To address all these challenges, we present CUDAAdVvisor,
a fine-grained profiling framework that works on real GPU architectures across differ-
ent CUDA versions. CUDAAdVvisor leverages LLVM infrastructure to instrument a CUDA
program for both its CPU and GPU code. Moreover, CUDAAdvisor collects performance
data during CUDA program execution, associates the performance data with CPU and
GPU behaviors and interactions, and derives useful metrics to guide various optimiza-

tion techniques.

Contributions. In summary, we make the following contributions in CUDAAdvisor:

+ CUDAAGdvisor is the first fine-grained GPU profiler that works across generations of

modern NVIDIA GPU architectures and CUDA versions, to the best of our knowledge.
* CUDAAdvisor combines the code- and data-centric profiling results from both CPU

41

and GPU and associates performance bottlenecks with their root causes.

* We also demonstrate CUDAAdVvisor is able to combine different analyses and derive

useful metrics and insights to guide optimizations (e.g., cache bypassing).

We evaluate CUDAAdvisor on two GPU platforms to demonstrate portability: NVIDIA
Tesla K40c (Kepler architecture) with CUDA runtime 7.0 and NVIDIA Tesla P100 (Pascal
architecture) with CUDA 8.0. By applying CUDAAdvisor to a number of commonly-used
GPU applications, we show that CUDAAdvisor can successfully associate performance
bottlenecks with program source code and understand their provenience. To showcase
the optimization scenarios, we also perform software-level horizontal cache bypassing

under the guidance of CUDAAdVvisor, which yields speedup as high as 2x.

3.2 Existing GPU Profilers and Limitations

In this section, we elaborate on the most related work—SASSI, the state-of-the-art fine-
grained profiling framework—and distinguish our approach. SASSI is a research proto-
type from NVIDIA research group, which is implemented as a pass in NVIDIA's backend
compiler ptxas. SASSI selectively inserts instrumentation code to monitor the execution
of CUDA kernels. SASSI can instrument instructions and functions. Moreover, SASSI
is able to read the values residing in memory location and registers. As demonstrated
in the chapter [68], SASSI supports to build effective fine-grained profilers. However,

SASSI has several limitations in its portability, expansibility, complexity, and coverage.

 Portability. As SASSI is based on the CUDA backend compiler ptxas, it requires
substantial efforts from NVIDIA to support SASSI with the rapid evolution of CUDA
runtime and GPU architectures. SASSI currently does not work for CUDA runtime
8.0. In contrast, CUDAAdVvisor is based on LLVM for code instrumentation, which can

be generally applied to all modern NVIDIA GPUs and CUDA versions.

» Expansibility. As SASSI’s instrumentation engine is close source, tool developers can-

42

source instrumentation .
. profiler
code engine

foptimization

erreeeeeeeessneenins analyzer @

Figure 3.1: Workflow of CUDAAdvisor.

not add any new capability in SASSI. In contrast, CUDAAdvisor’s instrumentation en-
gine is based on LLVM, which is open source. Tool developers are able to extend

CUDAAdVvisor.

» Complexity. SASSI performs instrumentation during the translation from PTX code to
a lower internal code representation for CUDA. Tool developers need to gain a deep
knowledge of PTX to develop efficient profilers. To increase productivity, CUDAAdvi-

sor instruments at bitcode level, which hides all the details in CUDA.

* Coverage. SASSI instruments GPU kernels only, which overlooks the interaction be-
tween CPU and GPU. Instead, CUDAAdvisor instruments both CPU and GPU code

to analyze its interactions.

3.3 CUDAAdvisor Methodology

In this section, we introduce CUDAAdvisor’s implementation methodology. Figure 4.2
shows the workflow of CUDAAdvisor, which consists of three components: instrumenta-
tion engine, profiler, and analyzer. CUDAAdvisor’s instrumentation engine accepts the
source code of CUDA program. It performs code transformation and leverages CUDA
compiler to produce the binary code. CUDAAdVvisor’s profiler then collects the data that
represent the behavior of the binary code during its execution on a real GPU hardware.
Finally, CUDAAdvisor’s analyzer analyzes the profiling data and generates optimization
advice with source code attribution. Programmers can follow the advice to optimize the

source code and begin another round of analysis if necessary.

43

In this section, we elaborate on the design and implementation of each CUDAAdvisor
component. In the end, we point out some limitations of CUDAAdvisor. CUDAAdvisor

is available at https://github.com/sderek/CUDAAdvisor.git.

3.3.1 CUDAAdvisor Instrumentation Engine

The task of the instrumentation engine is to add necessary instrumentation to CUDA
code. We build CUDAAdVvisor’s instrumentation engine on top of LLVM framework [59]
for three reasons. First, LLVM is a general compiler infrastructure that works on both
CPU and GPU codes. Second, LLVM works across different GPU architectures and
CUDA versions. Third, LLVM is robust, even for complex HPC programs. Figure 3.2
shows the positions of the instrumentation engine in the whole compilation workflow. As
shown in the figure, LLVM frontend—Clang can translate the source code on both host
(CPU) and device (GPU) into bitcode, the LLVM’s intermediate representation. Clang
also supports CUDA compiling (gpucc) [60]. Then, the instrumentation engine, imple-
mented as an LLVM pass, works on both host and device bitcodes. After instrumentation
in the device bitcode, LLVM uses specific backend [61] to translate the instrumented bit-
code into the CUDA PTX intermediate code. The native CUDA assembler assembles
the PTX code into a fat binary (i.e., a file with .fatbin extension), which is then inserted
to the host-side CPU bitcode as a string literal. Finally, LLVM compiles the host bitcode
into a binary executable.

The engine inserts mandatory instrumentation and provides an interface to add op-

tional instrumentation. We describe these two kinds of instrumentations as follows:

(I) Mandatory instrumentation CUDAAdvisor’s engine inserts mandatory instrumen-
tations since CUDAAdVvisor always reconstructs the call path and data flow in the profil-
ing component, which will be shown in Section 3.3.2. To collect necessary performance
data for the profiling, CUDAAdvisor’s engine mandatorily instruments calls and returns

for CPU functions, as well as for GPU kernels. Moreover, it instruments functions that

44

https://github.com/sderek/CUDAAdvisor.git

device
source code

clang f--------

host
source code

< --=---- clang

instrumentation | instrumentation

engine engine
instrumented instrumented
device bitcode host bitcode
lle p-------- >

Figure 3.2: The workflow of the engine inserting instrumentation.

allocate memory in CPU code (e.g., malloc, calloc, realloc), in GPU code (e.g., cudaMal-
loc), and CPU-GPU data transfer functions (e.g., cudaMemcpy). At each instrumenta-
tion site, the engine inserts a function and passes the information as arguments of each
function. For the memory allocations, the arguments include the starting addresses and
the number of bytes allocated on CPU or GPU; for data transfers, the arguments include
the starting addresses of memory ranges on both CPU and GPU, as well as the amount

of bytes for the transfer.

(Il) Optional instrumentation CUDAAdvisor’s engine provides the capability of in-
serting optional instrumentations to support different analyses. Currently, the engine

supports optional instrumentation in three categories.

* Memory operations. The engine can instrument every memory read and write and

obtain the effective memory address accessed by this operation and its access width.

» Arithmetic operations. The engine can instrument every arithmetic computation and

obtain the operator and the (symbolic) values of the operands.

45

» Control flow operations. The engine can instrument every control flow instruction, such

as conditional or unconditional branches, and record their targets.

Common to all these mandatory and optional instrumentation functions, the engine
is able to obtain the source code correlation of each instrumented operation, including
the file name, line number and column number if available in the debugging information.
This information is also passed to the instrumentation function as arguments.

In Section 3.3.2 and 3.4.2, we introduce the details of the profiling methods that are

based on mandatory and optional instrumentation, respectively.

3.3.2 CUDAAdvisor Profiler

CUDAAdVvisor’s profiler divides its task into two stages: (1) the data collection during
the CUDA kernel execution, and (2) the data attribution at the end of each CUDA kernel
instance. Combining these two stages, CUDAAdvisor performs both code- and data-
centric analyses on the fly, which provide the basic infrastructure for code optimization

guidance.

3.3.2.1 Code-centric Profiling

CUDAAdVvisor maintains a shadow stack to mirror the execution stack of each thread
when the kernel runs on GPU. The profiler pushes the call site onto the shadow stack in
the instrumented function at every call instruction, and pops the call site from the shadow
stack in the instrumented function at every return instruction. By immediately querying
the shadow stack, CUDAAdVvisor is able to obtain the call path for each monitored in-
struction. For efficient analysis, CUDAAdvisor encodes each function with a unique ID
number and a call stack is represented as an array of IDs. All GPU threads share the
same encoding map from the number to function name and source code; the map re-
sides in GPU global memory. To scale the analysis, each GPU thread maintains its own
shadow stack; the shadow stacks are also in GPU’s global memory. Upon kernel return,

CUDAAGdVvisor copies all the data from GPU to CPU for further analysis.

46

On the CPU side, CUDAAdvisor maintains similar shadow stacks for CPU threads,
which are used to determine the call stack for the invocation of each CUDA kernel.
CUDAAdvisor concatenates this CPU call path with the ones collected inside the GPU
kernel instance to give a complete path from the main function to each monitored CUDA

instruction. We call this capability of CUDAAdVvisor as code-centric profiling.

3.3.2.2 Data-centric Profiling

CUDAAdvisor’s data-centric profiling reconstructs the data flow from CPU to GPU to
help understand the access patterns of a data object across CPU and GPU, or even
across different GPU kernels. Figure 8.3 highlights the behavior of CUDAAdvisor’s pro-
filer for data-centric analysis. The data flow of one data object starts at the beginning
of its lifetime and ends in the memory accesses in GPU kernels that reference this data
object. Typically, a data object is allocated on the CPU side dynamically or statically.
The profiler interprets the malloc family functions (which are already instrumented by
the engine) for dynamic allocation and reads the symbol table for static allocation. The
profiler maintains a map that records the allocation call path for dynamic data objects
and names for static data objects, and their allocated memory ranges. Similarly, CUD-
AAdvisor’s profiler captures the data object allocation on the GPU side and keeps these
data objects in another map. To correlate the two maps, CUDAAdvisor overloads the
memcpy family functions and captures the two memory ranges involved in the memory
copy.

With the two maps ready, CUDAAdVvisor’s profiler associates the memory accesses
in GPU kernels with the data allocation. As the memory instrumentation obtains the
effective address accessed by each memory read or write, the profiler utilizes this effec-
tive address to associate the memory access with data object. Since all data allocations
and transfers are invoked on the CPU side, the profiler performs data-centric attribu-
tion at the end of each kernel instance after the memory access traces are copied back

to the host CPU. After the data-centric profiling, CUDAAdvisor is able to construct a

47

data

CPU allocation GPU allocation

ee——
transfer
ID Memory ID Memory
1 [0x20, 0x30] 2 [0x60, 0x70]
[0x40,0%50] 4 [0x80,0%90]
0x60 0x61 0x62 0x63 0x83 0x84 0x85

Figure 3.3: CUDAAdVvisor’s data-centric profiling.

complete data flow from every data allocation to its accesses, which helps observe in-
teresting memory behaviors, such as the change of access patterns of the same data

object across different GPU kernels.

3.3.2.3 Profiling Outputs

To minimize the overhead, CUDAAdvisor’s profiler does not perform any analysis other
than the code- and data-centric attribution. At the end of each kernel instance, the
profiler copies all the performance data from GPU to CPU for further analysis. In Sec-

tion 3.4, we elaborate on the implementations with case studies.

3.3.3 CUDAAdvisor Analyzer

CUDAAdVvisor’s analyzer has an online component that is invoked at the end of each
kernel instance. It performs the analysis on the data collected by the profiler. The ana-
lyzer can be customized for different purposes. In Section 3.4, we show how we devise
the analysis for reuse distance, memory divergence and branch divergence. Moreover,
CUDAAdvisor’s analyzer has an offline component that merges the analysis results of
kernel instances in the same call path. It provides an aggregate statistical view, such
as mean, min, max, and standard deviation across all these instances. Such statistical

analysis demonstrates the performance variation across different instances of the same

48

Table 3.1: GPU architectures for evaluation.

Architecture GPU CC. | CUDA | Driver Host CPU
Kepler Tesla K40c | 3.5 7.0 361.93 | Intel Xeon E5-2650
Pascal Tesla P100 | 6.0 8.0 375.20 | Intel Xeon E5-2698

GPU kernel and provides intuitive guidance for performance optimization.

3.3.4 Limitations of CUDAAdvisor

CUDAAdvisor has a few limitations. First, similar to other runtime profilers such as
SASSI, it incurs relatively high overhead (but much lower than simulators), which is
caused by heavyweight fine-grained instrumentation to CPU and GPU instructions. This
high overhead may disturb a program execution. However, the goal of CUDAAdVvisor is
not to capture the abnormal behavior of hardware-software interactions, but to formu-
late software metrics to identify software inefficiencies. Thus, CUDAAdvisor’s overhead
does not affect the accuracy of the framework. Moreover, it can capture detailed exe-
cution behavior, while no existing coarse-grained tools such as NVProf [561] and HPC-
Toolkit[49] can. Second, CUDAAdVvisor is based on LLVM, which requires the availability
and recompilation of the source code of a monitored program. In the HPC community,
the source code is often available and the recompilation time is much less than the
execution time. Thus, the benefit of code optimization surpasses the extra work of re-
compilation. Third, the performance analysis is based on the code generation of LLVM,
not other GPU compilers, such as nvcc. We will show that CUDAAdvisor’s optimization
guidance also works for CUDA codes with other compilers. Finally, since CUDAAdvisor
is implemented at the bitcode level, it cannot profile register-related stats since NVIDIA

has not released its assembly layer to the public.

3.4 Evaluation

In this section, we present use cases of CUDAAdvisor on detailed memory and control

flow analysis, using a group of GPU applications. We also show two examples where

49

Table 3.2: Benchmarks for showcasing CUDAAdvisor.

Application Description warps/CTA Input dataset Source
backprop Back Propagation 8 65536 Rodinia[62] |
bfs Breadth First Search 16 graph1MW_6.txt Rodinia[62]
hotspot Temperature Simulation 8 temp_512 power_512 Rodinia[62]
lavaMD Molecular Dynamics 4 -boxes1d 10 Rodinia[62]
nn Nearest Neighbor 8 filelist_4 -r 5 -1at30 -Ing90 Rodinia[62]
nw Needleman-Wunsch 1 2048-10 Rodinia[62]
srad_v2 Speckle Reducing Anisotropic Diffusion 8 2048-2048-0-127-0.5-2 Rodinia[62]
bicg BiCGStab Linear Solver 8 1024*1024 Polybench[63]
syrk Symmetric Rank-K Operations 8 default Polybench[53]
syr2k Symmetric Rank-2K Operations 8 default Polybench[63]

CUDAAdvisor provides guidance for code optimization.

3.4.1 Evaluation Methodology

Evaluation Environment. We evaluate CUDAAdvisor on two different architectures,
which are summarized in Table B.1. Both host architectures are Intel Xeon CPUs with
gcc 4.8.4 and installed with LLVM 5.0. For GPUs, we select an NVIDIA Kepler architec-
ture because of its mainstream adaptation. Kepler’s L1 cache shares the same on-chip
storage with the shared memory (i.e., scratchpad memory) on each SM. Their sizes are
configurable, 16/48 KB, 32/32 KB or 48/16 KB for Kepler. For demonstrating portabil-
ity, we also evaluate CUDAAdvisor on the most recent NVIDIA Pascal architecture with
CUDA 8.0. Pascal completely uses the entire on-chip storage for shared memory but
it has a 24KB read-only L1/Texture unified cache. Note that although only Kepler and
Pascal are tested in this chapter, CUDAAdvisor can be generally applied to all the other
modern NVIDIA GPUs such as Fermi and Maxwell.

Benchmarks. Shown in Table 3.2, we showcase CUDAAdvisor using ten represen-
tative GPU applications, from Rodinia [62] and Polybench [63]. Both are among the most
commonly-used open source CUDA benchmarks. They contain a wide range of appli-
cations that fall into various research categories. The selected applications in Table 3.2

are also used in the previous studies [45, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74, [5].

50

3.4.2 Case Studies

In this subsection, we present the use cases of CUDAAdvisor on detailed memory sys-
tem analysis and control flow analysis, both of which are critical performance bottle-
necking factors for modern GPUs. To further showcase the application of our tool, we
demonstrate how these insights extracted from CUDAAdvisor can be used to aid pro-
gram debugging, steer performance optimizations and facilitate compiler/architecture
research. Additionally, we provide instrumentation scenarios for these case studies to
assist users.
(A) GPU Reuse Distance

Significance. Recent research [45, 64, 65, 66, 67, 68, 69, 70, [71, 72, 73, [74, [75]
has focused on on-chip cache locality optimization for overall performance and energy
consumption since modern GPUs heavily rely on their on-chip memories (e.g., L1 and
texture caches) to reduce the off-chip memory wall effects. One of the most widely
applied approaches to analyze cache behavior is reuse distance analysis [76, 77]. Atthe
surface level, reuse distance can generally reflect how good cache locality an application
has under certain input. Combined with other detailed information such as memory
divergence degree and MSHR (miss-status holding-registers) status, it can be used to
help architects predict optimal cache design such as size and associativity. However,
conducting this analysis can be quite complex due to GPU’s parallel execution model
and fine-grained massive multi-threading. Conventional approaches resort to either a
GPU simulator such as GPGPU-Sim, which often uses trimmed down input sizes due to
time-consuming execution, or a GPU emulator such as Ocelot [567] which only provides
unordered lists of memory accesses rather than ordered traces that can be obtained
from simulators (e.g., [76] has to enable its own assumed warp and CTA scheduler on
top of Ocelot to produce usable traces). On the contrary, our CUDAAdvisor enables
much faster and convenient runtime profiling of reuse distance across generations of
NVIDIA GPU architectures.

CUDAAdVvisor Instrumentation. We instruct CUDAAdVvisor to instrument at all the

51

1
2

O OVWoO~NOOGhwWw

—_ =

13
14
15
16
17
18
19

20
21
22

virtual bool runOnBasicBlock(Function::iterator &B) {

for(BasicBlock::iterator BI = B->begin(), BE = B->end(); BI != BE;
++BI) {
if (auto *op = dyn_cast<LoadInst>(&(*BI))) {
/* get loc info */
const Debugloc &loc = BI->getDebugLoc();
int line = loc.getLine();
int col = 1loc.getCol();
/* get effective address */
Valuex addr = op->getPointerOperand();
Value* ptr = builder.CreatePointerCast(addr, Type::getInt8PtrTy
));
/* get number of bits x/
Type* tp = CI->getType();
int sizebits=(int)tp->getPrimitiveSizeInBits ();
/* insert a function call x/
IRBuilder<> builder (op);
builder.CreateCall (hook, {ptr, builder.getInt32(sizebits),
builder.getInt32(line), builder.getInt32(col), 11});
}
}
¥

Listing 3.1: The LLVM pass to instrument memory accesses.

global memory operations. At each instrumentation site, CUDAAdvisor collects some
specific information and passes them as arguments to the analysis function, such as
effective address, number of bits accessed, source code location, etc. As discussed
previously, CUDAAdVvisor leverages a LLVM pass to conduct instrumentation at the bit-
code level. Shown in Listing[.1, LLVM parses the bitcode (Line 1 and 3) and instruments
every global load instruction (Line 5). It then extracts the source code line and column
from the debugging information (Line 7-9), obtains the effective address (Line 11-12) and
the number of bits (Line 14-15). Finally, the pass creates a function call to a predefined
analysis function and passes all these arguments (Line 18). Note that global stores and
shared/constant/texture/read-only accesses can be profiled in a similar fashion.

Listing 8.2 shows a snippet of instrumented bitcode. Line 1 is the original code,
which loads a float from address %a. Line 2 and 3 are inserted by CUDAAdvisor. Line

2 converts the pointer from float (float*) into a general pointer (i8), while Line 3 calls

52

1%3 load float, float* %a, align 4, Idbg !1127
2%4 = bitcast float* %a to i8%, !dbg !'1127
3 call void @Record(i8* %4, i32 32, i32 20, i32 13, i32 1), 'dbg !'1127

Listing 3.2: Memory access instrumented bitcode.

50 50 50 50
_. 40 Backprop 40 Hotspot 40 Srad_v2 40 BICG
¥ 30 30 30 30
20 20 20 20
10 l ol X I 10 | I I 10 I 10
© 0 0 " 0 I I I [N | L o
- O N DA DN DA S O N DA SN DA DN o
N RN S A PR YD ED S O NN O DDA S s o 1 2 4 >
¥ LG bv’”&”’pw” VM e &5
_ 50 50 NW 50 syrk
£ 40 LavaMD 40 40 v
30 30 30
20 I 20 20
10 I 10 10
= o W | "o o ILALm AR RN N RS-
O N DN O D DAL DPD
P AN N e SRS 4 O N DA O DD O N P P QO NDIPA O DDIN O DDA O DA 3
ey e“‘»\?yxé’bbw’& s VX DTG S G VN PRI S S P

Figure 3.4: Reuse distance analysis through CUDAAdvisor. ~o is defined as data is
never reused again during the program execution or before the next write to the address
(e.g., write-evict L1 on NVIDIA GPUSs).

analysis function Record(), and passes arguments as the effective address, number of
bits accessed, the source code line and column, and operation type. Record() packs all
the arguments along with CTA ID and thread ID into one entry. Entries from all mem-
ory accesses form a trace. CUDAAdVvisor stores this trace in a buffer located in GPU’s
global memory. This analysis function is a __device___ function so that it is callable by
device. It is written in a separate CUDA source file and compiled into a separate bit-
code file before being merged with the kernel bitcode by llvm-link. For data marshaling,
CUDAAGdVvisor initiates data transfer using cudaMemcpy and copies collected trace from
device to host (e.g., can be accomplished through Unified Memory supported by CUDA
6 and beyond). To calculate reuse distance for each CTA, the trace is first regrouped into
multiple traces based on their associated CTA IDs, which is then used by CUDAAdVvi-
sor. CUDAAdVvisor offers two reuse distance model: memory element based and cache
line based. In addition to reuse, CUDAAdvisor also records the number of streaming
accesses (i.e., accesses to memory elements that are never reused by the same CTA).

Results and Analysis. Throughout the chapter, we refer to reuse distance as the
traditional definition of data reuse distance. From the view of memory and cache, a

sequential execution of a program is a sequence of data access [[/7]. Given such a se-

53

qguence, we define reuse distance as the number of distinctive data elements accessed
between two consecutive uses of the same element. Under such definition, reuse dis-
tance directly reflects data temporal reuse. For instance, ABCCDEFAAAB is a data
access sequence. The reuse distance of B is 5. For better facilitating the later dis-
cussion on GPU L1 cache-level optimization, we slightly tweak its definition: once an
address A is written, we will restart its reuse distance counting as another address ‘A”
because GPU L1 cache follows write-no-allocate write-evict policy [68, 72]. Since reuse
distance is an inherent program property and independent of cache parameters or un-
derlying machines, we perform reuse distance analysis with CUDAAdvisor on Kepler
architecture only. We evaluated ten applications from Table .2. Seven of them are
shown in Figure B.4. BFS and NN are excluded because they exhibit very low reuse
(more than 99% of the accesses), while Syr2k is excluded since it resembles Syrk. The
x-axis represents the range of reuse distance. oo represents no-reuse, indicating that
data is never reused in the program or before the next write to it. We have the fol-
lowing interesting observations: (1) BFS and NN exhibit very low reuse, both suffering
from branch-heavy codes with little loads during execution. For example, Kernel and
Kernel2 with few loads to some_array in BFS, and euclid with few loads to d_locations in
NN. (2) Eight out of ten applications suffer from high no-reuse accesses (except for Syrk
and Syr2k), which wastes the precious resources such as cache and MSHRs. Among
them, Hotspot exhibits both long reuse distance and very high no-reuse, making it in-
sensitive to L1 cache level optimizations, such as capacity increment and bypassing.
The other seven cases incur accesses with both decent frequency of short reuse dis-
tance and high no-reuse, e.g., BICG and LavaMD. They present some level of sensitivity
to L1 level optimization schemes. (3) Syrk and Syr2k both exhibit low no-reuse and
higher frequency of short reuse distance (e.g., reuse distance 0’s frequency is close to
40%). However, they also exhibit accesses with very long reuse distance (e.g., around
25% beyond 512), indicating that cache capacity likely affects the effectiveness of L1

level optimization schemes. In summary, CUDAAdvisor’s reuse distance analysis paints

54

a general picture of an application’s cache locality and provides important insights for
selecting potential optimizations for different software/architectures. To better steer op-
timizations, reuse distance analysis can be combined with other information, such as
memory divergence degree, register pressure and shared memory usage.

(B) Memory Divergence Frequency and Degree

Significance. GPU memory divergence can significantly bottleneck performance,
thus becomes a popular research topic in recent years [78, 74, 66, [79, 80]. It is also
an important indicator on whether a program is well optimized for memory access. Be-
cause of GPU’s SIMT execution model, warp instructions execute in a lock-step. All the
memory requests for a given instruction must be received before this warp can proceed.
At architecture level, a coalescing unit has been added into the data path before reach-
ing to L1 cache as a “best effort” approach for combining accesses to the same cache
line into a single request for reducing off-chip memory access. However, memory di-
vergence still occurs quite often in irregular kernels that touch many unique cache lines,
causing performance degradation. Effectively profiling memory divergence frequency
and degree for applications is essential for optimizations. Unlike production tools (e.g.,
NVprof [561]) that provides coarse-grained estimation and is limited to early generations
of hardware, CUDAAdvisor provides programmers with fine-grained profiling for mem-
ory divergence at instruction level. It also flexibly reports summarized results, such as
memory divergence degree.

CUDAAdvisor Instrumentation. CUDAAdvisor relies on memory traces to analyze
GPU kernel’'s memory divergence characteristics. We instruct CUDAAdVvisor to instru-
ment at all the global memory read and write operations. Similar to reuse analysis, CU-
DAAdVvisor collects effective address, number of bits accessed and source code location
at instrumentation site, and then passes them to the analysis function. CUDAAdvisor
leverages the same LLVM pass of Reuse Distance in Listing 3.1 for memory divergence
profiling. Runtime traces are stored on GPU’s global memory and copied to host for

data marshaling. Analysis metrics such as memory divergence degree is modularized

55

60 Backprop Hotspot Srad_v2 LavaMD NwW NN BFS

= 60 50 100 60

] 60 w0 40 50

;,40 0 20 30 80 gg

[

22 2 20 20 20 60 20

14 10 I | 10

“ oo LK o A Ao 0 prtHR 0 STISEPON |) IUSSTRON ! [0 1'1'1'1'1'1'11HHHHHH
123 1234 12 12345678 1 5 9 13 17 12 13 5 7 9 11 13 15 17 19 21

(a)

Backpro Srad_v2 BFS

30 prop 80 Hotspot 60) LavaMD 20 NwW 100 NN 50

S 40 80 40

- 60 30

g20 40 % 60 30

g10 0 20 20 40 20

g II 20 10 | 20 10 I

o ILELRE o 1'11@1' o [EA 0 0 MHEUMLLEENLELLLLLLY O hhHE O mlili';';';';';';';'u
12345 123456 1234 1 9 17 25 1357 9111315 1357 135 7 91113

(b)

Figure 3.5: Profiled memory divergence distribution of unique touched cache lines by in-
structions of an entire application on Kepler. X-axis represents number of unique cache
lines touched (min is one and max is 32). (a) Kepler architecture with 128 Byte cache
line; (b) NVIDIA Tesla P100 (Pascal) with 32 Byte cache line.

in post-analysis.

Results and Analysis. Figure 3.5 shows the profiled memory divergence distribu-
tion for an entire application on Kepler (128 Byte cache line) and Pascal (32 Byte cache
line) architectures in Table 8.1, which is calculated as the number of unique cache lines
touched by each instruction. The selected applications are from Table 3.2 and the maxi-
mum range of x-axis is 32 for NVIDIA GPUs due to 32 threads/warp. Note that since the
distribution figures for three applications including BICG, Syrk and Syr2k have mostly
1 and 32 cache lines touched, we do not show them in the figures to save space but re-
port their numbers here: for Kepler architecture, BICG (1 = 75%, 32 = 25%), Syrk (1 =
50.02%, 32 = 49.98%) and Syr2k (1 = 50%, 32 = 50%); for Pascal, BICG (1 = 50%,
4 = 25%, 32 = 25%), Syrk (1 = 49.98%, 32 = 49.98%) and Syr2k (1 = 49.99%,
32 = 49.99%). Such distribution of unique cache lines touched reflects the general
optimization degree on memory access for an application, or how well the memory ac-
cess pattern is structured. For example, we can observe in Figure B.5 that Backprop,
Hotspot and Srad_v2 have better code optimization for avoiding memory divergence
than the others in the group. Also, architecture plays a role in deciding the distribution:
the largest number of unique cache line touched in Pascal is generally larger than that on

Kepler primarily due to cache line size. CUDAAdVvisor also provides user interfaces for

56

1

A wWN

—
O OWoo~NO®

11
12
13

14

virtual bool runOnBasicBlock (Function::iterator &B) {
/* construct an argument for basic block's name */
std::string bb_name = B->getName () .str();
Value* str_bbname = builder.CreateGlobalStringPtr (bb_name);
Value* ptr_bbname = builder.CreatePointerCast(str_bbname, Type::
getInt8PtrTy (C));

/* fetch debug information */

const Debugloc &loc = inst->getDebugloc();
int 1n = loc.getLine();

int cl loc.getCol () ;

/* create a function call to analysis function */
builder.CreateCall (hookBB, {ptr_bbname, builder.getInt32(1ln),
builder.getInt32(cl) });
}

Listing 3.3: Implementation of LLVM pass to instrument basic blocks.

profiling application’s memory divergence degree, which is computed using the average
of weighted sum of distribution for the number of unique cache lines touched. Memory
divergence degree is also an important index for modeling GPU performance.
(C) Branch Divergence

Significance. In addition to the memory-level analysis capability discussed in (A)
and (B), CUDAAdVvisor also provides profiling for control flow analysis. Modern GPU pro-
gramming models enables flexibility for programmers to add control flow in their codes.
But conditional control flow can significantly affect warp efficiency and overall perfor-
mance since it could cause threads in a warp to execute different instructions, which is
called branch divergence. Branch divergence can be very harmful to GPU performance
because a subset of threads in a warp will be deferred to a divergent stack until all the
other threads finish executing their path. CUDAAdvisor can provide insights of the ker-
nel’s divergence, such as how many times a branch is executed, how many threads
execute this branch and how often a certain branch causes a warp to diverge.

CUDAAdvisor Instrumentation. We instruct CUDAAdvisor to instrument at all ba-
sic block entries. At each instrumentation site, CUDAAdvisor collects the names of these
basic blocks and extracts their source location from debug information before passing

them to the analysis function. Similar to memory access instrumentation, CUDAAdvisor

57

1/* string of basic block id */
2@5 = private unnamed_addr constant [6 x i8] c"entry\\00"
3

4 /x one basic block in a certain function */

Sentry:

6 call void @passBasicBlock(i8* getelementptr inbounds ([6 x i8], [6
x i8] @5, i32 0, i32 0), i32 15, i32 36), !dbg !620

7 /* here starts the original instructions x/

8 %0 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x(), !dbg !'625

Listing 3.4: Basic block instrumented bitcode.
Table 3.3: Results of Branch Divergence on Pascal.

Application | # divergent blocks | # total blocks | % divergence
backprop 26257 95011 27.64%
bfs 408420 1292788 31.59%
hotspot 1372 4197 32.69%
lavaMD 103 744 13.84%
nn 81 2001 4.05%
nw 147875 212992 69.43%
srad_v2 92643 270128 34.30%
bicg 0 1256 0.00%
syrk 0 817 0.00%
syr2k 15 393 3.82%

relies on an LLVM pass to instrument at bitcode level. As shown in Listing 8.3, the pass
retrieves the name of each basic block and creates a pointer to the string where the
name is stored (Line 4-6). It then fetches the source code locations from debug infor-
mation (Line 9-11). Finally, it creates a function call to the analysis function and pass
these arguments (Line 14). Listing 8.4 shows a snippet of instrumented bitcode. Line 5
and 8 are the original bitcodes and they reside in a certain function. Line 5 indicates a
basic block named “entry” and Line 8 is the first instruction in this basic block. Line 2 and
6 are inserted by CUDAAdVvisor. Line 2 is a global string which stores the basic block’s
name. Line 6 is a function call to the predefined analysis function passBasicBlock()
which takes in the basic block’s name and source code location. passBasicBlock()
records arguments along with CTA ID and thread ID in a buffer. Similar to memory ac-
cess instrumentation, passBasicBlock() is written in a separate CUDA source file and
merged into application’s kernel at bitcode level. For data marshaling, the trace is trans-
ferred to CPU upon kernel exit.

Results and Analysis. Table 3.3 shows the profiling results on the percentage of

divergent blocks in an application running on NVIDIA Pascal architecture. This result

58

Kepler 16K Cache

0.8
0.6
0.4
0.2
0 1 1 1 1 1
BFS Hotspot BICG Syrk Syr2k Gmean
OBaseline @ Oracle & Prediction

Kepler 48K Cache
: N \

0.8
0.6

0.2 |

BFS Hotspot BICG Syrk Syr2k Gmean
O Baseline @ Oracle K Prediction

Figure 3.6: Normalized execution time of different applications on NVIDIA Kepler ar-
chitecture when using the predicted optimal number of warps per CTA for bypassing.
Baseline case is using all the warps (no bypassing). Oracle exhaustively searches the
optimal solution. Prediction represents our model.

summary also applies to other NVIDIA GPUs since branch divergence under CUDA is
independent of architectures. We can observe that NN, BICG, Syrk and Syr2k have
very low frequency of branch divergence while the others (especially Nw) suffer from
high frequency of branch divergence. This analysis effectively helps programmers tar-
get applications that are in need of branch divergence optimizations, to which previous
optimization techniques [81, 82, 83] can be applied.
(D) Optimization 1: Horizontal Cache Bypassing.

Recently, cache bypassing has become a heavily investigated research topic in GPU
computing. This is because modern GPUs have very limited L1 data cache and mas-

sively threaded GPU applications often exceed the L1 capacity, causing severe thrash-

59

Pascal 24K Cache

0.8
0.6

0.2 \

BFS Hotspot BICG Syrk Syr2k Gmean

OBaseline @ Oracle Prediction

Figure 3.7: Normalized execution time of different applications on NVIDIA Pascal ar-
chitecture when using the predicted optimal number of warps per CTA for bypassing.
Baseline case is using all the warps (no bypassing). Oracle exhaustively searches the
optimal solution. Prediction represents our model.

ing [69, 64]. Additionally, cache-level resources (e.g., MSHR entries and load/store
queues) are also very limited, often causing severe resource congestion (e.g., MSHR
allocation failures) [45, 74, 68]. To tackle this problem, many architecture solutions are
provided, e.g., enabling bypassing threshold in tag store [68] and proposing new by-
passing policy [67]. Two general types of software-level bypassing are also proposed:
vertical bypassing [[72] targeting on every global memory access instruction in PTX (by-
passing them for every warp), and horizontal bypassing [67] which focuses on concur-
rency and only allows certain number of concurrent warps per CTA to access L1 cache.
Each of them has certain advantages and disadvantages: vertical bypassing is more
fine-grained but requires architectural and runtime information to evaluate every individ-
ual load and also bypass all the warps; horizontal bypassing is much simpler and can

manage bypassing granularity better but cannot distinguish loads with little reuse. To

1//=== compute warp id and set threshold ===
2mov.u32 %r0, %tid.x; //Thread index

3 shr.u32 %r0, %r0, 5; //Warp index

4 setp.1lt.s32 %pO, %rOs, pi; //Set Threshold

6 //=== for each global load ===
7@%p0 1ld.global.ca.s32 %r9, [%rd6]; //Cache
8@!'%p0 ld.global.cg.s32 %r9, [%rd6]l; //Bypass

Listing 3.5: PTX instrumentation for horizontal bypassing.

60

showcase our tool’s prediction capability, we choose the most recent software-level hori-
zontal bypassing proposed in [67] to compare with, which uses a pre-execution sampling
period to do exhaustive searching for the optimal number warps per CTA to access L1
on a SM and then follows such suggestion for the remaining execution. Although it can
accurately identify the best warp number to access L1, it requires exhaustively searching
all the options for number of warps. The actual bypassing in PTX is shown in Listing 3.5.
Using the memory tracing functionality demonstrated in (A) reuse distance and (B) mem-
ory divergence from CUDAAdVvisor, we can actually model the optimal number warps to
access L1 along with other parameters provided by the application and architecture fea-
tures, without the need of exhaustive searching. We build the optimal warp estimation
model in Eq.(B.1), which can be built into post processing of CUDAAdvisor as an metric.
In this model, R.D. represents an application’s average reuse distance, and M.D. is
the average memory divergence of the application; both can be calculated through the
outputs of CUDAAdvisor. Note that for showcasing purpose we use the average value
of R.D. and M.D. instead of eliminating the outliers (e.g., extreme data points) to rather

conservatively estimate the optimal warp number.

L1_Cache_Size
R.D. x Cacheline_Size x M.D. x #CT As/SM

Opt_Num_Warps = (3.1)

We tested our model on the two GPU architectures shown in Table B.1: Kepler with
16KB or 48KB L1 cache and Pascal with 24KB L1/Texture unified cache. We also se-
lect cache-bypassing favorable applications (based on the experience from recent sim-
ulation work [68]) from Table 8.2 to demonstrate our model’s prediction accuracy for
bypassing. Figure 3.6 and 3.7 show the prediction evaluation on Kepler and Pascal.
The baseline case is the default scenario where cache bypassing is disabled (i.e., using
cache), while oracle stands for the exhaustive horizontal bypassing in [67] and predic-
tion represents our model. Both figures clearly show that our model achieves very good
performance. Itis 6.7% and 4.3% slower than the oracle scenario, for 16KB and 48KB

L1 on Kepler, respectively. And for the 24KB unified cache on Pascal, our prediction

61

57

63

75

172
173

217

22

33

// bfs.cu
int main(int argc, char** argv) {

éééGraph(argc, argv);

. ..

void BFSGraph(int argc, char*x argv) {
éﬁaaMalloc((yg;g**) &d_graph_visited, bytes) ;

cudaMemcpy (d_graph_visited, h_graph_visited, bytes,
cudaMemcpyHostToDevice) ;

Kernel<<<grid,threads ,0>>>(..., d_graph_visited, ...);
}

// Kermnel.cu
__global__ void Kermel(...,bool *g_graph_visited,...) {

i%&!g_graph_visited[g_graph_edges[i]])
Listing 3.6: Code Snippet of BFS.

is 5% slower. We also observe that these supposed bypassing-favorable applications
actually are quite different. BFS and Hotspot are quite insensitive applications which
match their streaming features discussed in Section 4.2-(A) and Figure 8.4. The other
three who benefit from bypassing actually suffer greatly from capacity misses because
increasing cache size from 16KB to 48KB dramatically reduces bypassing benefits (e.g.,
23% to 9% for oracle on Kepler). Additionally, architecture features play an important
role in bypassing. Forinstance, bypassing on Pascal performs better than that on Kepler
because the unified cache on Pascal locates in texture processor cluster (TPC) instead
of SM (i.e., multiple SMs locate on one TPC so the unified cache technically locates
between SM and NoC instead of on SM). All these detailed analysis on cache bypass-
ing optimization of real GPU hardware can be easily obtained and modeled through our
CUDAAGdvisor tool.

(E) Optimization 2: Code- and Data-Centric Debugging.

When understanding or debugging a large project, it can be cumbersome and error-

62

0: main():: [some path]/bfs.cu: 57
CPU 1: BFSGraph():: [some path]/bfs.cu: 63
2: Kernel():: [some path]/bfs.cu: 217
GPU {3, Kernel():: [some path]/Kernel.cu: 33

Figure 3.8: Code-centric view shows concatenated calling context from both host and
device.

prone to read the code and track all data objects. As discussed in Section [3.3.2, a major
contribution of CUDAAGdvisor is to provide code-centric and data-centric profiling to show
insights of the program and guide debugging. To showcase these features, we take BFS
as an example. A code snippet is shown in Listing 8.6. Since BFS’s kernel uses data
types of bool and float, a warp can ideally touch only one cache line on Kepler (128 Byte
cache line) and up to four cache lines on Pascal (32 Byte cache line), assuming the
program has no memory divergence. However, BFS has a portion of memory accesses
that touch more than the limits, as previously shown in Figure B.5.

If a programmer is interested to know which memory accesses suffer from memory
divergence, CUDAAdvisor can show not only the source code location, but also the call-
ing context. Figure 3.8 is an illustrative example. Each rows lists the index, the function
name, the source file and line number. This example shows that Line 33 of Kernel.cu
has significant memory divergence. As can be seen in the figure, CUDAAdvisor con-
catenates the call path from both host and device to show the calling context starting
from main function on host all the way to the suspicious site on device, to better guide
programmers to understand the program’s behavior. Note that CUDAAdVvisor is able to
capture and display function calls in CUDA kernel as well.

CUDAAGdVvisor also detects which data object is associated with memory divergence.
An illustrative output is shown Figure 8.9. CUDAAdvisor shows the calling context
to malloc(), cudaMalloc() and cudaMemcpy(). It shows programmer that an array of
bool d_graph_visited allocated at Line 172 of bfs.cu suffers from memory divergence,

and that its counterpart on host is h_graph_visited allocated at Line 113 of bfs.cu.

63

0: main():: [some path]/bfs.cu: 57
L»1: BFSGraph():: [some path]/bfs.cu: 63

2: malloc():: [some path]/bfs.cu: 113
h_graph_visited = (bool*) malloc(bytes);

2: cudaMalloc():: [some path]/bfs.cu: 172
cudaMalloc((void**) &d_graph_visited, bytes) ;

2: cudaMemcpy():: [some path]/bfs.cu: 173
cudaMemcpy(d_graph_visited, h_graph_visited, bytes, cudaMemcpyHostToDevice) ;

h_graph_visited 4—}| d_graph_visited
CPU GPU

Figure 3.9: Data-centric view shows the interesting data objects, where it is allocated
on host and device and where it is transferred.

160
O Memory-Kepler @ Memory-Pascal
140
B Control Flow-kepler ® Control Flow-pascal
g 120 M M
[
® 100
—
T 80
N
©
§ 60
K HHIE
" ng HHIN HI@
. 1 s (ond | [Ia§
R & 3 Q & N O R & N Q
\@o S ,@Qo @@ N N £ &° A\ 6@« @e@
‘Ofbc ‘(\0 o b@

Figure 3.10: Overhead of memory and control flow instrumentation, on Kepler and Pas-
cal Architectures.

These features of CUDAAdvisor can significantly reduce debugging time for a fairly large
project.
3.5 Tool’s Overhead Analysis

Figure 3.10 shows the runtime overheads of running GPU kernels for each benchmark
listed in Table B.2. The baseline used is the original benchmark compiled by Clang
5.0. We perform overhead analysis on Kepler and Pascal architectures, with detailed

information in Table B.1. The experimental results are averaged on five runs. As shown

64

in Figure .10, the runtime overhead mostly ranges from 10x to 120x. It is much faster
than simulators such as GPGPU-Sim that usually incurs 1-10 millions of slow down to
the native execution [58].

With further analysis, the overhead mostly comes from three sources. First, CUD-
AAdvisor utilizes atomic operations to serialize memory access or control flow events.
Second, CUDAAdVvisor inserts a function call to each instrumentation site. In the future,
we will explore a more efficient way to insert instructions rather than heavyweight func-
tion calls. Third, the buffer on the device side lives in GPU’s global memory. It competes

the GPU kernel with shared resources such as cache and MSHR.

3.6 Related Work

We have distinguished CUDAAdvisor from the most related work—SASSI [58] in Sec-
tion B.2. In this section, we review other profilers that work on GPUs.

NVIDIA provides its own tools to support profiling CUDA code, such as Visual Profiler
(NVP) [16], nvprof [51], and NSight [84]. These profilers collect performance data via
hardware performance counters and lightweight binary instrumentation. They are able
to identify inefficient CPU-GPU interactions and pinpoint performance bottlenecks in
CUDA code. However, these production-quality tools are not open sourced and very
inflexible for novel research exploration and various analysis since they only provide
very limited pre-selected metrics. For example, unlike CUDAAdVvisor, these tools do not
provide intuitive optimization guidance with cache bypassing, detailed reuse distance
analysis, and memory divergence distribution frequency.

In the HPC community, several profilers that can support coarse-grained GPU-
level analysis have been proposed, including Vampire [85], TAU [52], Scalasca [86],
G-HPCToolkit [53] and [B87]. They collect data via CUPTI tool [54] and hardware per-
formance counters available on GPUs and associate these data with GPU kernels and

timestamps. These tools usually incur small overhead and provide insights into prob-

65

lematic CPU-GPU interactions with profiles and traces. However, they fail to identify
detailed performance insights into GPU kernels and lack the root cause analysis on
performance bottlenecks inside CUDA kernels.

In the architecture community, GPGPU-sim [56] is a widely-used simulator to per-
form fine-grained simulation tracing. However, compared to runtime profilers, simulation
is very slow, preventing it from working on real inputs. Moreover, simulation may not
simulate all the features of each hardware component, so the analysis result may not
reflect the real execution on newer GPU architectures (i.e., GPGPU-sim only models

Fermi architecture).

3.7 Chapter Summary

This chapter presents CUDAAdvisor, a general framework that supports fine-grained
analysis to identify performance bottlenecks of CUDA code. CUDAAGdvisor is built atop
LLVM to instrument CUDA code running across different GPU architectures and CUDA
runtimes. Moreover, CUDAAdvisor supports novel code- and data-centric profiling to
provide intuitive guidance for understanding abnormal behaviors in CUDA code. Finally,
CUDAAGdvisor supports various analysis techniques. We have shown three different
analyses for reuse distance, memory and branch divergence. Based on these analyses,
CUDAAGdvisor is able to further devise new metrics to guide GPU optimization of cache
bypassing, which achieves up to 2x speedup. It also provides unique code-centric and

data-centric debugging capability.

66

Chapter 4

Presponse: Accelerating
Incremental Large Graph
Processing on GPU via Speculative

Preprocessing

4.1 Introduction

Processing large graphs is always a difficult yet highly-crucial task for warehouse com-
panies and high performance computing as it demands substantial computation power
and high memory bandwidth. As a result, GPUs are often adopted to accelerate graph
processing [88, 89, 90] because of the scalability and energy efficiency.

In the meantime, real-world graphs are not statically conserved but continuously
evolving. Queries regarding to the graph properties often involve computation upon a
large portion of the graph. When a graph evolves, it is desired that properties are up-
to-date and the latest changes to the graph are reflected in query responses. However,
fast processing for graph updates is computation intensive and crucial. One workaround

is to aggregate updates in batches and emit the batches periodically. The period be-

67

tween batches depends on the update rate and batch size. Query responses reflect
the changes in the latest batch and remain valid until the next batch is emitted and pro-
cessed.

To process an update batch, a naive approach is to update the graph and recompute
the properties of the entire evolved graph, marked as static in Fig 4.1a. Based on the
observation that updates usually apply to only a small fraction of a large graph, existing
approaches employ incremental computation to achieve efficient processing for evolv-
ing graphs [91, 92, 89, 93, 94]. Unlike static re-computation, incremental processing
conducts minimal computation only for the evolved fraction. Thus, the computation and

response latency can be substantially reduced, as shown in Fig 4.1b.

original graph update update

, static queries
a J— R i
o1, o=

| incremental
(b) .@: || quertes

§ :

'Y
() \
E>que”es :>'
predlctlon §correct|on
- —‘——.A%
time

Figure 4.1: Comparison of three approaches to evolving graph: (a) static re-
computation, (b) incremental processing, (c) proposed approach. The horizontal
bottom arrow indicates time. The vertical dashed lines indicate batch emit times. The
length of blue arrows indicate the processing time.

We can further accelerate the incremental processing by speculatively computing the
possible updates based on our observation that graph updates are highly predictable.
Large graphs in the real world, such as social networks, road maps, paper citations
and community question answering graphs, often reflect real relations between vertices.

Thus, real-world graphs are not random but semantically meaningful. For example, in a

68

social network, a vertex stands for a user, and an edge between two vertices represents
a friend relation between the two users. New edges are more likely to appear between
users who have a lot of mutual friends, or share common interests. Based on this,
changes to real-world graphs follow certain patterns, making them predictable. Our
experiments show that a well-trained classifier can reach over 90% accuracy.

Based on this observation, we propose Presponse, a prediction-based incremental
graph processing framework. As shown in Fig §.1c, during the idle interval between
batches, Presponse predicts the updates in the next batch, and speculatively computes
the intermediate properties. When the real update batch is emitted, our framework com-
putes the updated properties by processing some correction changes. The falsely pre-
dicted changes are rolled back, and missed changes are patched. Given a sufficiently
high prediction accuracy, the processing time is substantially reduced. It is worth noting
that the update pattern may also evolve over time. To take that into consideration, Pre-
sponse monitors the changes to the graph and keeps learning the new patterns, which
guarantees that our framework continuously follows the pattern changes and delivers
reliable predictions.

In summary, we present Presponse, a framework that boosts graph processing by
predicting graph updates. We propose three incremental graph algorithms tailored for
GPU. We empirically show that prediction accuracy can reach over 90%, and delivers
speedups up to 25x for query responses.

Contributions. In summary, we make the following contributions in this chapter:

* We develop incremental implementations of three fundamental graph algorithms,
Breadth First Search, Connected Components, and Triangle Counting. The im-

plementations are tailored for GPU execution.

* We demonstrate that updates are highly predictable for real-world evolving graphs,

which can greatly benefit the incremental computation.

» We propose Presponse, a framework that leverages graph update prediction and

69

utilizes GPU to boost incremental graph processing.

* We show that Presponse can accelerate important graph algorithms on real-world

graphs with significant speedups.

In the rest of this chapter, Section §.2 discusses some background knowledge used
in this chapter. Section §.3 elaborates on the methodology used by Presponse. Sec-
tion 4.4 shows our evaluation and analysis on Presponse. Section 4.5 discusses some

related work and distinguishes Presponse. Section 4.6 summarizes this chapter.

4.2 Background

In this section, we discuss the two most related topics: graph feature embedding and

GPU support for processing evolving graphs.

4.21 Graph Embedding

Graph embedding extracts global properties from a graph by mapping to a multi-
dimensional feature space. A trending technique to extract features is to apply random
walks [95, 96, 97]. Multiple paths are sampled from a graph, and each path is regarded
as a word sequence. Further feature learning is conducted based on Skip-gram, which
is originally developed in the context of NLP (Natural Language Processing). The ap-
proach node2vec [97] is the state-of-the-art framework for learning feature vectors for
vertices in a graph. It explores diverse neighborhood of a vertex by conducting a biased

random walk.

4.2.2 GPU Acceleration

Adopting GPU for evolving graph processing requires storage structure that supports ef-
ficient graph updates, and fine-tuned implementations of algorithms. We concentrate on

the storage structure and the algorithms will be discussed in the following section. There

70

are two types of graph representation: adjacent matrix [98] and compressed sparse row
(CSR) [99]. Adjacent matrix supports efficient edge insertion/deletions but consumes
substantial space; CSR is efficient in terms of space consumption but is not ideal for
evolving graphs. Because adding or deleting one single edge requires resizing arrays
and extensive memory copies. As aresult, the latest work utilizes a hybrid storage struc-
ture [100] to support evolving graphs. The key of hybrid storage is to adopt a linked list
of edge blocks. Each block is continuous on memory and block size is a configurable
parameter. Upon insertion, a new edge is appended to the last block if there is a va-
cancy. If the last block is fully occupied, a new block is allocated. Upon deletion, the
edge is swapped to the last edge and mark the last edge as deleted. Thus, efficient

updates to evolving graphs are supported.

4.3 Methodology

This section introduces the workflow of Presponse, defines the problem that Presponse

solves, discusses graph update prediction, and elaborates on incremental algorithms.

4.3.1 Workflow Overview

Presponse consists of two major components: prediction engine and graph processing.
The prediction engine accepts the original graph as input, predicts changes for next
batch and generates a list of prediction updates. The graph processing component
processes a graph either statically or incrementally and outputs graph properties for
query response.

Figure §4.2 overviews the workflow of Presponse. For initialization, Presponse takes
the original graph and generates initial properties via static processing. In the next step,
Presponse’s prediction engine generates prediction updates based on the characteris-
tics of the original graph. We discuss the details of the prediction engine in the following

section. Given the prediction updates and the initial properties, incremental processing

71

Original Prediction Update
Graph Engine Batch

Prediction Correction
Updates Updates

Static Incremental Incremental
Processing Processing Processing

Updated
Property

Figure 4.2: Workflow of Presponse. The rectangles represents components of Pre-
sponse. Given the original graph, static processing obtains initial property and predic-
tion engine generates prediction updates. Incremental processing takes updates as
input and computes intermediate properties. When an update batch is emitted, incre-
mental processing takes correction as input and computes updated property. Orange
shaded area represents procedures which run repeatedly for each batch.

Intermediate
Property

Initial
Property

component generates intermediate properties. It is worth noting that the intermediate
properties are not necessarily for the real graph and are not used to respond queries.
When an update batch is emitted, Presponse compares prediction updates with the
batch, computes correction updates, and applies another round of incremental process-
ing to obtain updated properties. These updated properties are obtained from the up-
dated graph and are used to respond queries. Since updates are grouped into batches,

the prediction and correction processes are repeated for each batch.

4.3.2 Presponse Prediction Engine

The task of prediction engine is to predict updates in the future. As mentioned in Section
4.3.1, Presponse launches the prediction engine when the static original graph is avail-
able. The engine periodically makes predictions about future changes during the interval
between the arrival of two batches. The prediction engine works asynchronously. That

being said when the system predicts graph changes, the graph processing component

72

can still respond to queries with the current properties at the same time.

We implement Presponse’s prediction engine based on a well-trained binary clas-
sifier. Figure 4.3 shows the diagram of training the classifier. Starting from the static
graph Gy, Presponse first learns the characteristics of the graph by generating a feature
vector for each vertex. Second, the vertex features are converted into edge features.
Third, the prediction engine generates True and False labels by sampling G. Lastly, a
classifier is trained using aforementioned edge features and labels.

(1) Feature Embedding. Presponse relies on node2vec [97] to extract graph features.
node2vec is an algorithmic framework which learns features of vertices of a graph and
outputs a map of vertices to a multi-dimensional feature space. The feature learning
problem is formulated as an optimization problem. To implement that, node2vec ex-
tends skip-gram to graphs. Skip-gram architecture is originally developed in the context
of Natural Language Processing [101]. In node2vec, the objective function maximizes
the probability of observing a certain vertex’s network neighborhood, conditioned on its
feature. Moreover, node2vec defines a flexible network neighborhood of a vertex by
generating biased random walk. This flexible notion is key to richer feature representa-
tions. In summary, Presponse feeds a static graph to node2vec and obtains features of
each vertex.

The next step is to convert vertex to edge features. The feature of an edge (u,v) is
generated by taking the Hadamard product [102] of the two vertices v and v. Hadamard
product is a binary operation that takes two vectors of the same dimensions and pro-
duces a new vector whose element i is the product of elements i from the original two
vectors: (A o B); = A; - B;. Note that Presponse only generates features for those
edges, which will be used for classifier training.

(1) Training Classifier. The edge features will be used to train a binary classifier. The
True labels represent positive training set of existing edges in Gy and False training set
represents negative training set of edges that are not present in Gy. To build positive set,

edges in Gy are randomly sampled. To construct a False label, two vertices are randomly

73

Feature Vertex
Embedding Features

A 4

learn Edge
Features

train

Original |::> Binary
True Labels Classifier
Random |::> False Labels
Generate

Training Set

Figure 4.3: Details of training a classifier for Presponse’s prediction engine.

selected. If these two vertices are not directly connected by an edge, this virtual edge
is tagged False. The entire training set is used to train an SVM binary classifier [103].
When given an edge of interest, the classifier will indicate the edge will be present or
absent in the future. Thus, Presponse generates a list of edges that will be inserted and
deleted.

Thus, Presponse’s prediction engine is able to capture the characteristics of a graph
and make predictions. In some cases, the prediction results may suffer from low accu-
racy because the update pattern of a graph is dynamically evolving. For example, in a
social network, a user’s interest may shift. As another example in a community question
answering graph, one user may start to explore new domains. In order to follow these
changes of an evolving graph, we propose a refined model of the prediction engine. The
refined model monitors the prediction accuracy for each batch. If the characteristics of
a graph has changed after a few batches, the prediction accuracy is going to decrease.
When the accuracy drops below a threshold, the prediction engine will re-train the clas-

sifier using the current graph features, which can increase the prediction accuracy.

74

4.3.3 Presponse Graph Processing

The graph processing component consists of static and incremental implementations.
Static processing takes a static graph as input and computes certain properties of the
graph. When the graph evolves, static processing would apply the changes and re-
compute for the entire new graph. This approach is time-consuming. Therefore, Pre-
sponse utilizes static processing merely to obtain initial properties, and relies on incre-
mental processing for graph updates. Incremental processing takes previous property
and graph updates (known as batches) as input, and efficiently computes the property
for the updated graph.

Presponse relies on GPU to efficiently process graph and updates. GPUs have been
widely utilized in graph workloads due to multi-threading and high computation power.
Here we introduce the storage format and load balance strategy on GPU. Note that these
implementation choices are independent of any concrete graph algorithms, which will
be covered in the next section.

We employ a hybrid data storage format introduced by cuStinger [100]. This hybrid
format stores vertices in arrays and each vertex has a linked list of blocks to main-
tain its edges, where a block is a continuous memory space, or equivalently, an array.
We employ this format rather than adjacent matrix format and compressed sparse row
format. Adjacent matrix format consumes considerable space, making it undesirable
to store a large graph on memory-constrained architectures, e.g., GPU. Compressed
sparse row format is compact in space, but inserting or deleting edges requires data re-
allocation and movements, which incurs high overhead. As a good tradeoff, the linked
list of blocks only consumes reasonable space yet provides high efficiency for applying
updates, which is especially suitable for storing evolving graphs on GPU.

In order to fully utilize the computation power of GPU, graph workload should be
distributed to GPU blocks and threads. Depending on different graph algorithms, the
kernel may need to traverse either vertices or edges. For vertex traversal, Presponse

simply assigns the same amount of vertices to each block. When even distribution is

75

not possible, the last block will be assigned fewer vertices. On the other hand, edge
traversal requires more efforts to ensure balancing. The amount of neighbouring vertices
(i.e., degree) is taken into account. Each block will be assigned various amounts of
vertices but the sum of the degrees of these vertices are similar. Thus, workload is
evenly distributed to each block. It is worth noting that strict even distribution is often

impossible for edge traversal; approximate even distribution is sufficient [100].

4.3.4 Graph Algorithm Implementation

Presponse provides static and incremental implementation of three graph algorithms:
Breadth First Search (BFS), Connected Components (CC), and Triangle Counting (TC).
We select these algorithms because they are fundamental to complex graph algorithms

that are widely utilized.

4.3.4.1 Breadth First Search (BFS)

BFS starts from the root and calculates depth of all vertices. The depth is defined as
the number of hops between certain vertex and the root. For the vertices that are not
connected to the root, depth is infinity.

Static Computation: Initially, each vertex is assigned with an infinity depth. A root
is randomly picked and pushed into a task queue. A global depth counter is initialized
to 0. In each iteration, Presponse traverses every vertex in the task queue. If the the
vertex has a depth smaller than infinity, it means this vertex has been previously visited
by another thread. In this case, no action is needed on this vertex. If a vertex still has a
depth of infinity, it takes the value of global depth counter and pushes all its neighbors
into the task queue for computation in the next iteration. After each iteration, the global
depth counter increments by 1. The entire computation halts when the task queue is
empty.

Incremental Computation: Presponse scans all edges in the update batch and

identifies all unique vertices. Presponse finds the vertex that is closest to the root. Such

76

Algorithm 1: BreadthFirstSearch

1 StaticBFS(Gy, frontier)
Input: Gy:static input graph, frontier: vertices to initialize the queue
Output: an array D of depth of each vertex
add each vertex in frontier into queue
D «inf
depth < 0
while queue do
initialize next queue
for each u in queue do

if D[u] is inf then

Dlu] < depth
L add all neighbors of « into next_queue

© 00 N OO O b~ WODN

-
o

1 queue < nexrt_queue
12 depth < depth + 1

13 return D
14
15 IncrementalBFS(Gy, B, Dg)
Input: Gy:static input graph, B:update batch, Dy: pre-computed depth of each
vertex in G
Output: an array D; of depth of each vertex
16 threshold < inf
17 for each vertex u in B do
18 L threshold < min (threshold, Dolu])

19 frontier < vertices depth > threshold
20 Dy < StaticBFS(Gy, frontier)
21 return D,

vertex has the lowest depth value, which we call the threshold depth. The global depth
counter is set to the threshold depth. For all vertices of depth greater than or equal to
this threshold, their depths are reset to infinity and pushed into a task queue. Finally,
Presponse reverts to the aforementioned static computation.

Correctness Proof: The incremental computation merely decides the threshold
depth and conducts re-computation for those vertices of higher depth than threshold.
This is essentially static computation without vertices above (of lower depth than) thresh-
old. This approach generates correct results because vertices above the threshold are

not impacted by the updates. Moreover, the execution time of incremental computation

7

Algorithm 2: ConnectedComponents

1

© 00 N OO O b~ WODN

- =
- O

- = -
A WO DN

15
16
17
18

19
20

StaticCC(Gy, frontier)
Input: Gy:static input graph, frontier: the entire graph for static implementation
Output: an array componentI D of all vertices
initialize componentI D with vertex_id
flag < true
while flag do
flag + false
for each edge (u,v) in frontier do
if componentI D[u] # componentI D[v] then
id < min(componentI D[u], componentI D|v])
componentl D]u| < id
componentI D[v] « id
flag < true

return componentI D

IncrementalCC(Gy, B, componentlD)
Input: Gy:static input graph, B:update batch, componentI D: pre-computed
component ID of all vertices in G
Output: componentI D, of component ID of all vertices
initialize frontier for each edge (u,v) in B do
if componentID[u] # componentI D[v] then
add v into frontier
L add v into frontier

componentI D1 < StaticCC(Gy, frontier)
return componentI D,

is dependent on the threshold rather than batch size. In section 4.4.2, we will empirically

show that the speedup is dependent on the threshold, or approximately proportional to

non-impacted vertices.

4.3.4.2 Connected Components (CC)

A connected component means there is always a path connecting any two vertices within

the component. Our implementation of CC counts the number of connected components

in a graph and outputs the components for any vertex.

CC computation. Initially, each vertex has a component ID that is equal to its vertex ID,

Static Computation. Presponse uses a classical working set algorithm for static

78

which means that each vertex itself is a component. A global boolean flag is defined
to control the iterative computation. When an iteration starts, the global flag is first set
to False. In each iteration, Presponse traverses all edges in the graph and compares
the component IDs of the two ending vertices of each edge. If the component IDs are
different, two actions are required. First, the framework takes the smaller one of these
two IDs and assigns it to both vertices. Thus, these vertices are grouped into one com-
ponent. Second, the global flag is set to True and more following iterations are needed.
When the global flag remains False at the end of an iteration, the computation converges
and the execution halts.

Incremental Computation. Presponse traverses the update batch. If the two end-
ing vertices of an edge (to be inserted or deleted) fall into different components, these
two components are marked and further actions are required. After parsing the batch, all
vertices in the marked components are pushed into the task queue. Presponse resets
the component IDs of all vertices in the task queue and reverts to the static computa-
tion algorithm. It is worth noting that if the two ending vertices of a new edge fall into
the same component, inserting this new edge will not change the component ID of any
vertex. Thus, Presponse does not need further computation on this kind of edges.

Correctness Proof The incremental computation generates correct results because
it conducts re-computation for all vertices in the impacted components, which is a subset
of the entire graph. It is straightforward that the speedup of incremental computation

relies on the amount of components.

4.3.4.3 Triangle Counting (TC)

A triangle in a graph means that there are three edges (u,v), (u,w), and (v, w) connect-
ing three vertices u, v, and w. The TC algorithm counts the number of triangles that any
given vertex is involved.

Static Computation. Presponse maintains a counter for each vertex to record the

number of triangles that this vertex belongs to. Initially, the counter is set to 0. For

79

Algorithm 3: TriangleCounting

1

a b WON

(=]

StaticTC(Gp)
Input: Gy:static input graph
Output: number_tri: of each vertex
number_tri < 0
for each vertex u in Gy do
for each v in u’s adjacent list do
L L number_tri[u] < number of common neighbors

for each vertex u in Gy do
L number_tri[u] <— number_trifu]/3

8 return number_tri

10

1"
12
13

14
15
16
17
18

19
20

21

IncrementalTC(Gy, B, number_ tri)
Input: Gy:static input graph, B:update batch, number_tri: pre-computed triangle
counts of all vertices in Gg
Output: an array number_tri; of depth of each vertex
initialize queue with unique vertices in B
for each vertex u in queue do
L number_trifu] < 0

for each vertex u in queue do
for each v in u’s adjacent list do
for each w as a common neighbor do
number_trifu] <— number_triju] + 1 if w not in queue then
L L number_trifw] < number_trijw] — 1

for each vertex u in Gy do
L number_trifu] <— number_triju]/3

return number_tri

each vertex u, Presponse examines each vertex v in its adjacent list. For each pair

of (u,v), Presponse counts the number of common neighbors of u and v by taking the

intersection of their adjacent lists. This number of common neighbors is accumulated to

the counter of vertex u. After all vertices finalize their counters, Presponse divides the

counter values by three to obtain the total number of triangles for each vertex, because

the algorithm repeatedly counts each triangle three times.

Incremental Computation. The incremental algorithm handles edge insertion and

deletion separately. Similar to BFS and CC algorithms, the incremental TC for edge

80

insertion works on the updated graph with the update batch. It consists of two steps.
In the first step, we traverse the update batch, identify all unique vertices, and push
them into a task queue, resetting their corresponding counters to 0. In the second step,
for each vertex u in the queue, Presponse examines each vertex v in its adjacent list.
For each pair of (u,v), Presponse counts the number of common neighbors of « and
v by taking the intersection of their adjacent lists. This number of common neighbors
is added to the counter of vertex u. In addition, for each common neighbor w for pair
(u,v), the counter of w is incremented by 1 if w itself is not in the task queue. This way,
Presponse obtains the number of triangles of each vertex. The second step is similar to
the static implementation with two following differences. 1) The incremental algorithm
only traverses vertices in the task queue while the static implementation traverses all
vertices in the graph. 2) The incremental algorithm needs to increment the counter of
the common neighbors by 1 if that common neighbor itself is not in the task queue.

The incremental TC of edge deletion works on the original graph without the batch
update. Presponse first traverses the update batch and tags all edges from the batch
in the original graph with a delete marker. Presponse then performs incremental TC of
batch insertion but skip any edge that is marked with a delete marker. After the incre-
mental TC is finished, we apply the batch to the original graph and obtain the evolved
graph. Because of the fact that we only mark edges to be deleted without actually re-
moving them, incremental TC of batch deletion spends time accessing those edges on
memory. This procedure downgrades the performance. However, this is harmful only
when batch size is comparable to the graph. We will confirm with experiments and
discuss the results in Section §4.4.

Correctness Proof: If an vertex is impacted by the updates, incremental computa-
tion resets its triangle counter and re-computes this vertex via static computation. The
only exception is that the counter of a common neighbour also needs to increment when
the common neighbour itself is not in the updates. The rationale is changing one edge

may introduce one triangle, impacting three vertices. When the common neighbor is not

81

present in the updates, it will be not be reset and re-computed. Therefore, incremental
computation has to increment its counter in order to guarantee correctness. It is easy
to note that the execution time is dependent on the batch size. To be more specific, it is

proportional to the amount of unique vertices in the batch (see Section 4.4.2).

4.4 Evaluation

In this section, we evaluate the speedup of aforementioned incremental graph algo-
rithms, analyze the effectiveness of prediction, and assess Presponse using real-world

graph datasets.

441 Experiment Setup

Evaluation Overview Our empirical studies consist of two aspects. First, we com-
pare the static re-computation against incremental processing, and demonstrate that
incremental processing provides performance gains. Second, we evaluate the effec-
tiveness of Presponse and demonstrate that combining link prediction and incremental

processing can yield further speedups.

Evaluation Platform We evaluate Presponse on two platforms. One platform employs
48 Intel Xeon E-2650 processors running at 2.2 GHz and an NVIDIA K40c (Kepler) GPU
with driver 384.111. The other platform employs 24 Intel Xeon E5-2643 processors run-
ning at 3.4 GHz, hosting an NVIDIA GTX 1080 (Pascal) GPU with driver 390.77. For both

platforms, the host compiler is gcc 4.8.5, and CUDA version is 8.0.

Evaluated Algorithms We evaluated three widely used graph algorithms: BFS, CC
and TC. BFS takes either directed or undirected graph as input, while CC and TC accept

undirected graph only.

82

Table 4.1: Graph Datasets for Algorithm Evaluations.

Dataset Name Type #Vertices #Edges
delaunay_n15 ni5 synthetic 32769 196548
delaunay_n18 nl8 synthetic 262145 1572792
delaunay_n20 n20 synthetic 1048577 6291372
ca-HepPh hep real world 12008 237010
af_shell9 shell realworld 504856 17084020
thermall?2 thermal realworld 1227088 7352268
1.4 1.41
121 w 1.2 %
a X o k‘\ R
S A\ S \\ X
D 1.0/ ISSe e | @ 1,01 RS = aaava
() ()
9{087 shell —=— nl8 %08 shell —=— nl8
' —— hep —— n20 ' —— hep —— n20
0.61 nl5 thermal 0.6 nl5 thermal
101 102 103 10* 105 106 101 102 103 10* 105 106
batch size batch size
(a) Kepler (b) Pascal

Figure 4.4:. Speedup of incremental BFS. Horizontal axes are log-scaled. Horizontal
axes represent the size of update batches. Vertical axes represent incremental BFS’s
speedup against static BFS.

4.4.2 Incremental Algorithms

We evaluate the performance of incremental algorithms against the original static im-
plementations. Given a graph and its updates, we compare the execution time of in-
cremental processing against static re-computation. Updates are randomly generated
and are rendered in batches. Batch sizes range from 10 to 1,000, 000 edges. Table §.1
summarizes the datasets used for evaluation; these datasets are representative ones
widely used in previous work [[104, 105].

BFS: Figure 4.4 shows the speedup of incremental BFS against static re-
computation. We can see that on both platforms, incremental algorithm runs faster with

smaller update batches (<100 edges). However, the speedup decreases as batch size

83

“‘
1.4 “"
o'.‘
1.31 ..‘“!‘
“ L]
g-].2‘ ’t‘.
© ot e
i P
211 \:“b'
o 8
1.0 e
0.91
0.8 - - . . .
0 5 10 15 20 25 30
fraction

Figure 4.5: Relation between speedup and fraction of impacted vertices. The horizontal
axis represents the fraction of non-impacted vertices in percentage. The vertical axis
represents the ratio of elapsed time of incremental BFS computation to static BFS com-
putation. The blue scattered points are data points, while the red dashed line represents
linear fitting.

1. 1

104] e I 12

——————

3 e all
10 Y.\:\\ 2

S \ B0
10 \ g
\ w09
10! \
\ 0.8
10° s n

0.7 1071 o
100 102 10° 10* 10° 10° 101 102 10° 10* 10° 10° 100 102 10° 10° 10° 10° 100 102 10° 10* 10° 10°
batch size batch size batch size batch size

/\ shell

— —— hep

nl5
—=— nl8
—+— n20

thermal

(a) Insertion Kepler (b) Deletion Kepler (c) Insertion Pascal (d) Deletion Pascal

Figure 4.6: Speedup of incremental CC. Horizontal axes are log-scaled. For deletion
cases, both axes are log-scaled. Horizontal axes represent the size of update batches.
Vertical axes represent incremental CC’s speedup against static CC.

increases. The speedup starts around 1.4x and drops to 1x. Such trends are similar
across different datasets.

To understand why speedup drops as update batch size grows, we conduct further
investigation. We find that speedup is highly related to the fraction of vertices that are
not impacted by the update batch. We take n20 as an example and show its results in
Figure 4.5. The horizontal axis represents the non-impact fraction (in percentage), and
vertical axis is the speedup. The figure clearly shows the fewer vertices are impacted
by the update batch, the higher speedup we can achieve. To be more specific, speedup

is almost proportional to non-impact fraction. The root cause is straightforward. If an

84

shell
—— hep

nl5
—=— nl8
—+— n20

thermal

S
10° R R ¥ -
100 102 16° 10* 10° 10° 100 102 10° 10° 10° 10° 100 102 10° 10° 16° 10° 100 102 10° 10° 10° 10°
batch size batch size batch size batch size

(a) Insertion Kepler (b) Deletion Kepler (c) Insertion Pascal (d) Deletion Pascal

Figure 4.7: Speedup of incremental TC. Both axes are log-scaled. Horizontal axes
represent the size of update batches. Vertical axes represent incremental TC’s speedup
against static TC.

update inserts or deletes an edge that is very close to the root, it is straightforward to
foresee that vertices that are deeper or equal to that vertex need re-computing, as de-
scribed in Section 4.3.4.1; Thus, its execution time is close to the static re-computation.
On the other hand, if the update batch only impacts vertices are that far away to the root,
it takes much less time to incrementally compute the updated results only.

CC: Figure }4.6 shows the speedup of incremental CC computation against static
recomputation. For incremental CC computation with edge insertion (Figure §.6a and
K4.6d), the speedup is significantly greater than 1x for smaller batches, but drops as
batch size increases. Itis worth noting that the speedup always starts from a large value
and quickly dimishes at a so-called inflection point. 1t is due to the property of graphs
used in our experiments. To be more specific, a few components consist most vertices,
i.e., dominant components, but other components only contains few vertices. When
we randomly generate updates, it is likely to connect vertices in the same component.
As described in Section 4.3.4.2], such edges requires no extra computation, resulting
in high speedup. We are more likely to see this case for smaller batches. In contrast,
when the batch size increases, the probability of inserting a new edge across different
components increases dramatically. In this case, more vertices are put into the task
queue for recomputation, resulting in no speedups. It is worth noting that the speedup
can be smaller than 1x due to the overhead incurred from the update batch traversal.

As for incremental CC computation with edge deletion (Figure 4.6b and }4.6d, the

speedup is always around 1 except for the very large batch on Pascal. The reason

85

is that the datasets used in the experiments consist only a few components where a
certain component owns most vertices. As long as one edge from the batch touches this
component, all vertices of this component are put into the task queue for recomputation.
Because little computation can be saved, the speedup is around 1x.

TC: Figure §.7 shows the speedup of incremental TC computation against static
recomputation, with edge insertions and deletions, respectively. In both figures, the
speedup is significantly greater than 1 for small update batches across all input graphs.
As the batch size increases, the speedup drops. In the edge insertion mode, for most
input graphs, the speedup drops to 1x when batch size is large. The reason is that the
number of vertices in the task queue for recomputation cannot exceed the total number
of vertices in the graph. Thus, the incremental computation at worst is the same as the
static recomputation. Some datasets such as shell, n18 suffer from slowdown because
of the overhead incurred in update batch traversal and task queue operations.

In edge deletion mode, the incremental computation can incur a large slowdown
given a large enough update batch with the following reason. When the size of the
update batch is comparable to the original graph Gy, the task queue for incremental TC
computation includes most vertices in the graph. When traversing the adjacent list of a
certain vertex, we need go through every edge and only act on those that are not marked
as delete (see Section §.3.4.3). Thus, the computation time of incremental algorithm in
deletion mode is comparable to the static TC on Gy. On the other hand, when the update
batch is large enough, the evolved graph can be a small subgraph of Gy, so the static
algorithm needs little time for recomputation. As an extreme example, when the update
batch deletes all vertices and edges in Gy, the static recomputation requires zero runtime
but the incremental computation still yields significant runtime.

To further understand the speedup, we examine the relation between the speedup
and the number of impacted vertices. We take shell as an example and show the results
in Figure 4.8. From the figure we can see that the speedup is inversely proportional to

the number of impacted vertices in the graph during the evolution.

86

P
103 3
}
b
o 1028
=] [
?)
2 3
0 .
[]
1014 °.,
0.. .
e,
LT TP
100, PR
0 20 40 60 80 100
fraction

Figure 4.8: Relation between speedup and fraction of impacted vertices. Horizontal
axis represents the percentage of impacted vertices. Vertical axis represents speedup.
The blue scattered circles represent each data point, and the red dashed line represents
theoretical speedup obtained via regression.

Table 4.2: Description of Real-world Datasets.

Dataset #Vertices #Edges
android 36418 51441
apple 64613 117730
gaming 52170 112829
tex 47992 149103
unix 69143 171146

4.4.3 Update Batch Prediction

In this section, we discuss the accuracy of link prediction. We use real-world graph
generated from the data from stackezchange. comfor evaluation. The website stackex-
change is for community question answering (CQA) and offers raw data for download.
The raw data are categorized into many domains and we select the following domains
for our evaluation: android, apple, gaming, tex, and unix. Table §.2 elaborates on the
details of these graphs. In these graphs, each vertex represents one user, who asks
and/or answerers a question; each edge (u,v) denotes that user v answers a question

asked by user w.

87

stackexchange.com

We construct the initial graph using the data till Jan 1, 2018. We create updates
using new data collected later and divide them into batches on a monthly basis. It is
worth noting that there are only insertions in a CQA graph, because existing questions
and answers are never deleted.

We use accuracy to assess Presponse’s classifier. By definition, accuracy is the
ratio of correct predictions (true positive plus true negative) to all the test cases; 100%
means the prediction is always correct, while 0% means the prediction is always wrong.
Figure §4.9 quantifies the accuracy. For tex and gaming, the accuracy is around 90%
and is stable over the time. For unix, apple and android, the accuracy is below 80%,
indicating that these three topics are difficult to predict. Among all five domains, android
and apple show a clear trend that the classifier’s accuracy decreases over time. This
implies that the hot topics and interests change fast in these two domains. Thus, the
classifier is not highly reliable on predicting future changes.

In order to address this low accuracy issue, we retrain the classifier when the ac-
curacy is low. In our experiment, we set a threshold of 70% and show the results of
re-training in Figure 4.10. The red line represents the accuracy without re-training, and
the blue line represents accuracy with re-training. In Figure 4.10a, apple’s accuracy
starts above 70% and drops below the threshold in Mar. When re-training is enabled,
the accuracy goes higher. More importantly, the prediction accuracy on the following
batches also improves over the baseline. Similarly, in Figure 4.10b, the classifier is re-
trained multiple times to improve the accuracy. We obtain a satisfactory accuracy in
Jun, which is higher than 70%. In contrast, the accuracy drops below 60% if re-training

is disabled.

4.4.4 Presponse Performance with Incremental Computation and Link

Prediction

In this section, we demonstrate the benefits that graph update prediction can provide on

top of incremental processing. We use standalone incremental processing (without the

88

100

90| B o

~P—

80 1

70

60 -

accuracy(%)

—e— android
apple
401 —— gaming
tex
unix

501

30

20

Jan Feb Mar Apr May Jun

Figure 4.9: Prediction accuracy. Horizontal axis represents the time. Vertical axis rep-
resents prediction accuracy in percentage.

link prediction) as the baseline to show the speedup of Presponse, which combines link
prediction and incremental processing. Presponse predicts future changes, generates
a prediction batch, and incrementally processes it. When the real batch is emitted, Pre-
sponse generates a correction batch by comparing the prediction and the real batch.
The final results can be obtained by incrementally processing the graph with the correc-
tion batch. As the inputs, we use the same real-world graphs in Section 4.4.3.

Figure 22 shows the normalized execution time. Since training classifier introduces
randomness, we repeat our experiments for five times. Each bar in the figure repre-
sents average execution time. We can see that Presponse is always faster. Take TC
running on gaming as an example, Presponse is 25 x faster. We discuss each algorithm

individually in the following paragraphs.

BFS The results of BFS are shown in Figure #.11d. Our first observation is that Pre-
sponse has speedup on gaming and tex, which falls align with the fact that gaming and
tex are highly predictable (as shown in Figure §#.9). For other datasets, the execution
time of Presponse is generally shorter than baseline on both architectures. As we ex-
plained in Section 4.4.2, the performance of incremental BFS is highly dependent on the
depth from the root to the impacted level, instead of batch sizes. Therefore, although

Presponse makes correct prediction on 85% changes in the Real batch, it only provides

89

100 100
% —=— baseline % —m— baseline
—e— re-train —e— re-train
§ 801 § 801
9 9
© 701 © 701
— —
35 35
|9) O]
O 60 O 60
© [(v]
501 50
40— 40— : : : . .
Jan Feb Mar Apr May Jun Jan Feb Mar Apr May Jun
(a) Apple (b) Android

Figure 4.10: Prediction accuracy when re-training enabled. (a) for apple, and (b) for an-
droid. Horizontal axis represents the time. Vertical axis represents prediction accuracy,
in percentage. Original setup without re-training is shown as baseline. Red triangle
markers indicate points of re-training.

1.2 {mmm cuStinger ®=m incremental presponse 1.2 {mm cuStinger ®=m incremental presponse 1.2 {mmm cuStinger ®=m incremental presponse
1.0 1.0 1.0
0.8 0.8 0.8
o o o
Eos Eos Eos
= = =
0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0
android apple gaming tex unix android apple gaming tex unix android apple gaming tex unix

(a) BFS (b) CC (c) TC

limited performance speedup because the impacted level is close to the root. Thus, Pre-
sponse has to be conservative about making predictions to vertices close to the root.
Incorrect predictions (both false positive and false negative) on such vertices result in a

higher penalty, which can surpass the benefits of prediction.

CC The results of CC are shown in Figure 4.11b. On both architectures, Presponse
is typically faster than the baseline. Among all datasets, gaming obtains the highest
speedup because of the high prediction accuracy. It is worth noting that Presponse
incurs slowdown for tex. As explained in Section §.4.2, the performance of incremental
CC computation is highly dependent on impacted vertex fraction. In a graph where there

is a large component, we are more likely to see limited speedup. Even if the change

90

impacts only one vertex in the dominant component, all vertices in this component have
to be recomputed. Thus, the speedup is squandered due to the overhead of parsing

batches.

TC The results of TC are shown in Figure 4.11d. We observe significantly speedups of
Presponse for all datasets on both architectures. The highest speedup can be 25x on
the gaming dataset, which falls align with the fact that gaming has the highest prediction
accuracy (in Figure §4.9). It is worth noting that Presponse on unix has 80% prediction
accuracy but the execution time is close to baseline. It is because unix is the largest
among the five datasets. It has the largest vertex and edge counts, and the highest av-
erage degree. As a result, traversing the adjacent lists costs considerable computation,

surpasses the prediction benéefit.

4.5 Related Works

Graph Embedding It has been recently shown that many popular random walk based
approaches, such as DeepWalk [95], LINE [96], and node2vec [97], can be unified into
the matrix factorization framework with closed forms [106]. All of the aforementioned
models are based on the Skip-Gram model introduced by Mikolov et al. [107]. For exam-
ple, DeepWalk samples multiple paths from the graph, each of which is regarded as a
word sequence. Node2vec offers a flexible sampling strategy, with two parameters con-
trolling the shape of the sampled paths. For each vertex in the sequence, they predict
the nearby vertices in both direction, and update the vector according to the Skip-Gram
model. However, these methods ignore the asymmetric nature of the path sampling pro-
cedure and train the model symmetrically, which restricts their applications. Since node
pairs from two hops away will be regarded as negative labels, LINE can only preserve
symmetric second-order proximity when applied to directed graphs [[108].

Line introduces the second order proximity between a pair of vertices, which encodes

the similarity measured by their local neighborhood. However, Line can only preserve

91

symmetric second-order proximity when applied to directed graphs [[109]. In addition, it
cannot preserve the higher-order similarities, since node pairs from two hop away will
be regarded as negative labels [108].

Recently, one has seen a surge of interest in developing methods for learning repre-
sentations for directed graphs. For example, ATP [[110] incorporates graph hierarchy and
reachability information naturally by relying on a nonlinear transformation that operates
on the core reachability and implicit hierarchy within such directed graphs to preserve
the asymmetric transitivity in the embedding space. Sun et al. [111] proposed to solve
the directed graph embedding problem via a two-stage approach: in the first stage, the
graph is symmetrized in one of several possible ways, and in the second stage, the so-
obtained symmetrized graph is embedded using any state-of-the-art (undirected) graph
embedding algorithm such as node2vec [97].

Link Prediction. Wang et al. [112] categorize link prediction techniques into the
following groups: node-based, topology-based and social theory -based. Node-based
approaches leverage the attributes of nodes to mine the similarity between them, for
example interests of users and keywords in profiles [113, 114, 115]. Topology-based
approaches relies on the structural features of the graph when attributes are absent. The
structural features may come from common neighbors, paths or random walks [[116, 117,
118, 119]. The third category includes a lot of social theory metrics such as community,
strong and weak ties, homophily, efc. These techniques can capture additional social
interaction information [120, 121, 122, 123, 124, 125].

Evolving graph processing. There are two categories: offline and online. Offline
processing [126, 127, 92] involves graph generation, storing and analysis of snapshots
of evolving graph. GraphScore [[126] is shared-memory CPU based solution. It conducts
community discovery and anomaly detection by processing graph encodings. Chronos
[92] supports temporal graph processing. It puts together graph vertex data from differ-
ent versions to achieve good cache locality. TEG [127] partitions evolving graph across

graph vertices and enables subgraph querying. Online processing provides continuous

92

query. STINGER [128] defines a layout of storing graph vertices and edges, and sup-
ports fast efficient insertions/deletions to the graph. EvoGraph [104] applies a hybrid
structure to enable compressed storage for static computation and incremental compu-
tation on edge lists. Ji et al. [129] experimentally demonstrate that initial values of the
computation on a new graph snapshot have a critical impact one the convergence of
iterative graph algorithms, such as PageRank and Kmeans.

GPU for graphs. Existing works focus on CPU or Intel Xeon Phi style architectures,
such as Stinger [130], Kineograph [131], CelllQ [132], GraphTau [133] [134] and SLFE
[135]. However, GPUs introduces different design principles and performance concerns
in the parallel execution [105]. King et al. [136] explores the direction of using GPUs
to process real-time analytics on dynamic graphs. However, it only supports insertions
and lacks an efficient indexing mechanism. cuStinger [[100] defines a format for graph
processing on GPU. cuStinger is a framework that implements several graph premises
for GPU. It support various input format and employ a hybrid data storage to reach
a good balance on performance and space consumption. Graphie [137] is a systemt
that supports traversing large-scale graph on single GPU. It relies on two renaming
algorithm to efficiently utilize shared memory and reduce global memory accesses. Sha
et al. [105] proposed two parallel update algorithms (GPMA and GPMA+) to support
efficient stream updates so that the maintained graph is immediately available for high-
speed analytic processing on GPUs. GPMA explores a lock-based approach which
works efficiently for the case where few concurrent updates conflict, e.g., small-size
update batches with random updating edges in each batch. Regarding to the scenarios
where massive conflicts occur, GPMA+, a lock-free approach, was proposed in a bottom-
up way by prioritizing updates that occur in similar positions. GPMA+ is able to maximize
coalesced memory access and achieve linear performance scaling w.r.t the number of

computation units on GPUs, regardless of the update patterns.

93

4.6 Chapter Summary

In this chapter, we propose incremental algorithms of three fundamental graph applica-
tions (Breadth-First-Search, Connected Components, and Triangle Counting), tailored
for GPU. Moreover, this chapter presents Presponse, a framework that boosts incremen-
tal graph processing. Presponse adopts link prediction that predicts update batches for
evolving graph to reduce the delay of the batch processing. Thus, queries regarding to
graph properties can be responded much faster. We demonstrate that prediction accu-
racy can as high as 90% and query responses can be up to 25x faster. For future work,
we will further improve the incremental algorithms such that the performance is only de-
pendent on the batch size. We plan to generalize current implementation to multi-GPU

platforms for better scalability.

94

Chapter 5

Conclusion

In this dissertation, we propose solutions to enhance the performance of programs for
heterogeneous architectures. Specifically, we work on the following three projects:

First, we present DataPlacer, a framework that studies the impact of software-
managed heterogeneous memory in a real system, the Tl KeyStone Il. We also de-
velop HMBench, the first OpenMP benchmark suite that adopts OpenMP 4.0 standard
and works on heterogeneous architectures. DataPlacer is a profiler to provide guidance
for data placement in different layers of software-managed cache and memory. Using
HMBench and DataPlacer, we observe the insight that HM plays an important role in
both boosting performance and reducing energy consumption. Moreover, we leverage
HMBench and DataPlacer to characterize the performance gains with HM.

Our future work is twofold. First, we will develop more benchmarks for HMBench to
make it as the standard benchmark suite for evaluating HM-based systems and compil-
ers. Second, we will extend DataPlacer to provide low-level guidance for compiler-based
optimization for HM. Such low-level information includes the finer granularity of data
placement on cache lines or pages, instead of arrays. We believe that optimizations on
HM from both high-level source code transformation and low-level compiler-supported
code generation can achieve the optimal performance.

Second, we present CUDAAdVvisor, a general framework that supports fine-grained

analysis to identify performance bottlenecks of CUDA code. CUDAAGdvisor is built atop

95

LLVM to instrument CUDA code running across different GPU architectures and CUDA
runtimes. Moreover, CUDAAdvisor supports novel code- and data-centric profiling to
provide intuitive guidance for understanding abnormal behaviors in CUDA code. Finally,
CUDAAdvisor supports various analysis techniques. We have shown three different
analyses for reuse distance, memory and branch divergence. Based on these analyses,
CUDAAGdvisor is able to further devise new metrics to guide GPU optimization of cache
bypassing, which achieves up to 2x speedup. It also provides unique code-centric and
data-centric debugging capability.

Third, we propose Presponse, a framework that boosts incremental graph process-
ing. Presponse adopts link prediction that predicts update batches for evolving graph to
boost batch processing. Thus, queries regarding to graph properties can be responded
much faster. Moreover, we develop incremental algorithms of three fundamental graph
applications (Breadth-First-Search, Connected Components, and Triangle Counting),
tailored for GPU. We demonstrate that prediction accuracy can as high as 90% and
query responses can be up to 25x faster. For future work, we will further improve the
incremental algorithms such that the performance is only dependent on the batch size.
We plan to generalize current implementation to multi-GPU platforms for better scala-

bility.

96

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

NVIDIA. CUDA Programming Guide, 2015.

John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in Science &

Engineering, 12(3):66—73, 2010.

Andreas Sandberg, David Ekldv, and Erik Hagersten. Reducing cache pollution
through detection and elimination of non-temporal memory accesses. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC '10, pages 1-11, Washington,
DC, USA, 2010. IEEE Computer Society.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. In Proceedings of IEEE 14th International
Symposium on High Performance Computer Architecture, pages 367-378, Feb
2008.

Bin Bao and Chen Ding. Defensive loop tiling for shared cache. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), CGO ’13, pages 1-11, Washington, DC, USA, 2013. IEEE Computer
Society.

Jayesh Gaur, Raghuram Srinivasan, Sreenivas Subramoney, and Mainak Chaud-

97

[7]

[8]

[9]

[10]

[11]

[12]

huri. Efficient Management of Last-level Caches in Graphics Processors for 3D
Scene Rendering Workloads. In Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-46, pages 395-407, New
York, NY, USA, 2013. ACM.

Mary Baker, Satoshi Asami, Etienne Deprit, John Ouseterhout, and Margo Seltzer.
Non-volatile memory for fast, reliable file systems. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS V, pages 10-22, 1992.

Intel. Knights Landing, the Next Generation of Intel Xeon Phi. http://www.

enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/.

Last accessed: Dec. 08, 2014.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter
Marwedel. Scratchpad memory: Design alternative for cache on-chip memory
in embedded systems. In Proceedings of the Tenth International Symposium on
Hardware/Software Codesign, CODES ’02, pages 7378, New York, NY, USA,
2002. ACM.

Texas Instruments. DSP products website. http://www.ti.com/lsds/ti/dsp/

overview.page. Last accessed: Dec. 08, 2014.

W. Wei, D. Jiang, S. A. McKee, J. Xiong, and M. Chen. Exploiting program seman-
tics to place data in hybrid memory. In 2015 International Conference on Parallel

Architecture and Compilation (PACT), pages 163—-173, Oct 2015.

Niladrish Chatterjee, Manjunath Shevgoor, Rajeev Balasubramonian, Al Davis,
Zhen Fang, Ramesh lllikkal, and Ravi lyer. Leveraging heterogeneity in dram
main memories to accelerate critical word access. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
45, pages 13-24, 2012.

98

http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://www.ti.com/lsds/ti/dsp/overview.page
http://www.ti.com/lsds/ti/dsp/overview.page

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in
hybrid memory systems. In Proceedings of the International Conference on Su-

percomputing, ICS ’11, pages 85-95, 2011.

Ahmad Hassan, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. Software-
managed energy-efficient hybrid dram/nvm main memory. In Proceedings of the
12th ACM International Conference on Computing Frontiers, CF ’15, pages 23:1—
23:8, New York, NY, USA, 2015. ACM.

Dong Li, Jeffrey S. Vetter, Gabriel Marin, Collin McCurdy, Cristian Cira, Zhuo Liu,
and Weikuan Yu. Identifying opportunities for byte-addressable non-volatile mem-
ory in extreme-scale scientific applications. In Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, IPDPS ’12, pages

945-956, Washington, DC, USA, 2012. IEEE Computer Society.

Javed Absar and Francky Catthoor. Analysis of scratch-pad and data-cache per-
formance using statistical methods. In Design Automation, 2006. Asia and South

Pacific Conference on, pages 6—pp. IEEE, 2006.

Texas Instruments. 66ak2hx keystone multicore dsp+arm system-on-chips. http:

//www.ti.com/1lit/ml/sprt65ia/sprt65lia.pdf.

Lina J Karam, Ismail AlKamal, Alan Gatherer, Gene A Frantz, David V Ander-
son, and Brian L Evans. Trends in multicore dsp platforms. Signal Processing

Magazine, IEEE, 26(6):38—49, 2009.

Yang Gao, Fan Zhang, and Jason D Bakos. Sparse matrix-vector multiply on the

keystone ii digital signal processor. In IEEE HPEC, 2014.

Jason Cong, Hui Huang, Chunyue Liu, and Yi Zou. A reuse-aware prefetching
scheme for scratchpad memory. In Proceedings of the 48th Design Automation

Conference, DAC '11, pages 960-965, New York, NY, USA, 2011. ACM.

99

http://www.ti.com/lit/ml/sprt651a/sprt651a.pdf
http://www.ti.com/lit/ml/sprt651a/sprt651a.pdf

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. off-chip
memory: The data partitioning problem in embedded processor-based systems.

ACM Trans. Des. Autom. Electron. Syst., 5(3):682—704, July 2000.

Mitesh R Meswani, Gabriel H Loh, Sergey Blagodurov, David Roberts, John Slice,
and Mike Ignatowski. Toward efficient programmer-managed two-level memory
hierarchies in exascale computers. In Hardware-Software Co-Design for High

Performance Computing (Co-HPC), 2014, pages 9-16. IEEE, 2014.

Ross Mcllroy, Peter Dickman, and Joe Sventek. Efficient dynamic heap allocation
of scratch-pad memory. In Proceedings of the 7th International Symposium on

Memory Management, ISMM '08, pages 31-40, New York, NY, USA, 2008. ACM.

Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. Assigning pro-
gram and data objects to scratchpad for energy reduction. In Design, Automation
and Test in Europe Conference and Exhibition, 2002. Proceedings, pages 409—
415. IEEE, 2002.

Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratchpad memory manage-
ment for portable systems with a memory management unit. In Proceedings of
the 6th ACM &Amp; IEEE International Conference on Embedded Software, EM-
SOFT 06, pages 321-330, New York, NY, USA, 2006.

Tong Chen, Tao Zhang, Zehra Sura, and Mar Gonzales Tallada. Prefetching
irregular references for software cache on cell. In Proceedings of the 6th An-
nual IEEE/ACM International Symposium on Code Generation and Optimization,

pages 155-164, New York, NY, USA, 2008.

Ke Bai and Aviral Shrivastava. Automatic and efficient heap data management
for limited local memory multicore architectures. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2013, pages 593-598. |IEEE, 2013.

100

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. The scalable heteroge-
neous computing (SHOC) benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages 63—74.

ACM, 2010.

Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. Porple: An extensible opti-
mizer for portable data placement on gpu. In Microarchitecture (MICRQO), 2014
47th Annual IEEE/ACM International Symposium on, pages 88—-100, Dec 2014.

C. Li, Y. Yang, Z. Lin, and H. Zhou. Automatic data placement into GPU on-chip
memory resources. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’15, New York, NY, USA, 2015. ACM.

Felix Xiaozhu Lin and Xu Liu. Memif: Towards programming heterogeneous mem-
ory asynchronously. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,

ASPLOS 16, pages 369-383, 2016.

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, pages 15:1-15:16, New York,
NY, USA, 2016. ACM.

OpenMP Architecture Review Board. OpenMP application program interface, ver-

sion 4.0. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, July 2013.

John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. IEEE Des. Test, 12(3):66—73,
May 2010.

101

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance

computers. https://www.cs.virginia.edu/stream.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In Proc. of the 2009 IEEE Intl. Symp. on Workload Characterization
(IISWC), pages 44-54, Washington, DC, USA, 2009.

Chi-Keung Luk et al. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proc. of the 2005 ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, pages 190-200, New York, NY,
USA, 2005.

Xu Liu and John Mellor-Crummey. Pinpointing data locality bottlenecks with low
overheads. In Proc. of the 2013 IEEE Intl. Symp. on Performance Analysis of
Systems and Software, Austin, TX, USA, April 21-23, 2013.

Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. ACM Sigplan Notices,

32(5):85-96, 1997.

Top500 supercomputer sites. https://www.top500.0rg/lists/2017/06, Jun.

2017.

NVIDIA Group. NVIDIA DGX-1 Al Supercomputer. http://www.nvidia.com/

object/deep-learning-system.html, 2017.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. J.

Comput. Phys., 117(1):1-19, March 1995.

Google Inc. TensorFlow: An open-source software library for Machine Intelli-

gence. https://www.tensorflow.org, 2017.

102

https://www.cs.virginia.edu/stream
https://www.top500.org/lists/2017/06
http://www.nvidia.com/object/deep-learning-system.html
http://www.nvidia.com/object/deep-learning-system.html
https://www.tensorflow.org

[44] Keshav Pingal. Galois. http://iss.ices.utexas.edu/7p=projects/galois,

2014.

[45] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, and Henk Corporaal. Locality-
Aware CTA Clustering for Modern GPUs. In Proceedings of 22nd ACM Inter-
national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XXII, New York,NY, USA, 2017. ACM.

[46] Guoyang Chen and Xipeng Shen. Free launch: optimizing gpu dynamic kernel
launches through thread reuse. In Proceedings of the 48th International Sympo-

sium on Microarchitecture, pages 407—419. ACM, 2015.

[47] Intel VTune Amplifier XE 2017. http://software.intel.com/en-us/intel-

vtune-amplifier-xe, April 2017.

[48] Oracle. Oracle Solaris Studio. http://www.oracle.com/technetwork/server-

storage/solarisstudio/overview/index.html, 2012.

[49] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22:685-701,

2010.

[50] Dominic A. Varley. Practical experience of the limitations of gprof. Software:

Practice and Experience, 23(4):461-463, 1993.
[51] NVIDIA Visual Profiler. NVIDIA, 2017.

[52] Allen D. Malony, Scott Biersdorff, Sameer Shende, Heike Jagode, Stanimire To-
mov, Guido Juckeland, Robert Dietrich, Duncan Poole, and Christopher Lamb.
Parallel performance measurement of heterogeneous parallel systems with gpus.
In Proceedings of the 2011 International Conference on Parallel Processing, ICPP

11, pages 176-185, Washington, DC, USA, 2011. IEEE Computer Society.

103

http://iss.ices.utexas.edu/?p=projects/galois
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Milind Chabbi, Karthik Murthy, Michael Fagan, and John Mellor-Crummey. Ef-
fective sampling-driven performance tools for gpu-accelerated supercomputers.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC '13, pages 43:1-43:12, New York, NY,
USA, 2013. ACM.

NVIDIA Corp. CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01. https:

//developer.nvidia.com/nvidia-visual-profiler, October 2011.

NVIDIA. CUDA 7.5: Pinpoint Performance Problems with Instruction-Level Pro-
filing. https://devblogs.nvidia.com/parallelforall/cuda-7-5-pinpoint-

performance-problems-instruction-level-profiling, 2015.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing
cuda workloads using a detailed gpu simulator. In 2009 IEEE International Sym-
posium on Performance Analysis of Systems and Software, pages 163—-174, April

20009.

Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and
Nathan Clark. Ocelot: a dynamic optimization framework for bulk-synchronous
applications in heterogeneous systems. In Proceedings of the 19th interna-
tional conference on Parallel architectures and compilation techniques, PACT '10,

pages 353-364, New York, NY, USA, 2010. ACM.

Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi,
Daniel R. Johnson, David Nellans, Mike O’Connor, and Stephen W. Keckler. Flex-
ible software profiling of gpu architectures. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages 185-197,
New York, NY, USA, 2015. ACM.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proceedings of the 2004 International Sympo-

104

https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://devblogs.nvidia.com/parallelforall/cuda-7-5-pinpoint-performance-problems-instruction-level-profiling
https://devblogs.nvidia.com/parallelforall/cuda-7-5-pinpoint-performance-problems-instruction-level-profiling

[60]

[61]

[62]

[63]

[64]

(6]

[66]

sium on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar

2004.

Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,
Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt.
Gpucc - an open-source gpgpu compiler. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization, pages 105-116, New York,

NY, 2016.

LLVM Group. LLVM: User Guide for NVPTX Back-end. http://1lvm.org/docs/

NVPTXUsage.html, 2016.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Workload Characterization. IEEE International Symposium

on, pages 44-54. IEEE, 2009.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. Auto-tuning a high-level language targeted to GPU codes. In Innovative

Parallel Computing (InPar). IEEE, 2012.

Timothy G Rogers, Mike O’'Connor, and Tor M Aamodt. Cache-conscious wave-
front scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 72-83. IEEE Computer Society, 2012.

Onur Kayiran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. Nei-
ther more nor less: optimizing thread-level parallelism for GPGPUs. In Proceed-
ings of the 22nd international conference on Parallel architectures and compilation

techniques, pages 157-166. IEEE Press, 2013.

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Divergence-aware Warp

Scheduling. In Proceedings of the 46th Annual IEEE/ACM International Sympo-

105

http://llvm.org/docs/NVPTXUsage.html
http://llvm.org/docs/NVPTXUsage.html

[67]

[68]

[69]

[70]

[71]

[72]

sium on Microarchitecture, MICRO-46, pages 99—110, New York, NY, USA, 2013.
ACM.

Ang Li, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal. Adaptive
and transparent cache bypassing for GPUs. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,

page 17. ACM, 2015.

Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sas-
try Hari, and Huiyang Zhou. Locality-driven dynamic gpu cache bypassing. In
Proceedings of the 29th ACM on International Conference on Supercomputing,

ICS’'15, pages 67-77. ACM, 2015.

W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory request prioritization for
massively parallel processors. In 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), pages 272-283, Feb 2014.

Xuhao Chen, Li-Wen Chang, Christopher |. Rodrigues, Jie Lv, Zhiying Wang, and
Wen-Mei Hwu. Adaptive Cache Management for Energy-Efficient GPU Comput-
ing. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-47, pages 343—-355, Washington, DC, USA, 2014. IEEE

Computer Society.

Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. An Efficient Compiler
Framework for Cache Bypassing on GPUs. In Proceedings of the International
Conference on Computer-Aided Design, ICCAD ’13, pages 516-523, Piscataway,
NJ, USA, 2013. IEEE Press.

X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static and dynamic
cache bypassing for GPUs. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 76-88, Feb 2015.

106

[73]

[74]

[75]

[76]

[77]

[78]

[79]

R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir,
and O. Mutlu. Exploiting Inter-Warp Heterogeneity to Improve GPGPU Perfor-
mance. In 2015 International Conference on Parallel Architecture and Compilation

(PACT), pages 25-38, Oct 2015.

Lingda Li, Ari B Hayes, Shuaiwen Leon Song, and Eddy Z Zhang. Tag-Split Cache
for Efficient GPGPU Cache Utilization. In Proceedings of the 2016 International
Conference on Supercomputing, ICS’17, page 43. ACM, 2016.

Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. A Locality-aware
Memory Hierarchy for Energy-efficient GPU Architectures. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
46, pages 86-98, New York, NY, USA, 2013. ACM.

C. Nugteren, G. J. van den Braak, H. Corporaal, and H. Bal. A detailed gpu
cache model based on reuse distance theory. In 2014 |IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), pages 3748,
Feb 2014.

Chen Ding and Zhong Yuntao. Reuse Distance Analysis. In Computer Science

at University of Rochester Tech report UR-CS-TR-741. U of Rochester, 2001.

Jingweijia Tan, Shuaiwen Leon Song, Kaige Yan, Xin Fu, Andres Marquez, and
Darren Kerbyson. Combating the reliability challenge of gpu register file at low
supply voltage. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, PACT ’16, pages 3—15, New York, NY, USA, 2016.
ACM.

Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdivision for in-
tegrated branch and memory divergence tolerance. In Proceedings of the 37th An-
nual International Symposium on Computer Architecture, ISCA '10, pages 235—

246, New York, NY, USA, 2010. ACM.

107

[80]

[81]

[82]

[83]

[84]

[83]

(86]

[87]

P. Xiang, Y. Yang, and H. Zhou. Warp-level divergence in gpus: Characteriza-
tion, impact, and mitigation. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), pages 284—-295, Feb 2014.

Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovi¢. Conver-
gence and scalarization for data-parallel architectures. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 1-11, Feb 2013.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly
elimination of dynamic irregularities for gpu computing. SIGPLAN Not., 46(3):369—
380, March 2011.

Zheng Cui, Yun Liang, Kyle Rupnow, and Deming Chen. An accurate gpu per-
formance model for effective control flow divergence optimization. In Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
83-94. IEEE, 2012.

NVIDIA Corp. NVIDIA Nsight. http://www.nvidia.com/object/nsight.html,
2017.

Daniel Hackenberg, Guido Juckeland, and Holger Brunst. Performance analy-
sis of multi-level parallelism: inter-node, intra-node and hardware accelerators.

Concurrency and Computation: Practice and Experience, 24(1):62—-72, 2012.

David Bohme, Markus Geimer, Lukas Arnold, Felix Voigtlaender, and Felix Wolf.
Identifying the root causes of wait states in large-scale parallel applications. ACM

Trans. Parallel Comput., 3(2):11:1-11:24, July 2016.

Shuaiwen Leon Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A sim-
plified and accurate model of power-performance efficiency on emergent gpu ar-
chitectures. In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th Inter-
national Symposium on, pages 673—-686. IEEE, 2013.

108

http://www.nvidia.com/object/nsight.html

[88]

(89]

[90]

[91]

[92]

[93]

[94]

Zhisong Fu, Michael Personick, and Bryan Thompson. Mapgraph: A high level api
for fast development of high performance graph analytics on gpus. In Proceedings
of Workshop on GRAph Data management Experiences and Systems, pages 1—

6. ACM, 2014.

Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
Graphreduce: processing large-scale graphs on accelerator-based systems. In
SC’15: Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 1-12. IEEE, 2015.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. Gunrock: A high-performance graph processing library on the

gpu. In ACM SIGPLAN Notices, volume 51, page 11. ACM, 2016.

Arash Fard, Amir Abdolrashidi, Lakshmish Ramaswamy, and John A Miller. To-
wards efficient query processing on massive time-evolving graphs. In 8th Inter-
national Conference on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), pages 567-574. IEEE, 2012.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a graph engine for
temporal graph analysis. In Proceedings of the Ninth European Conference on

Computer Systems, page 1. ACM, 2014.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, llan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135-146. ACM, 2010.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs.

109

In Presented as part of the 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), pages 17-30, 2012.

[95] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In KDD, 2014.

[96] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

Line: Large-scale information network embedding. In WWW, 2015.

[97] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 855-864. ACM, 2016.

[98] Norman Biggs, Norman Linstead Biggs, and Biggs Norman. Algebraic graph the-

ory, volume 67. Cambridge university press, 1993.
[99] GH Golub and CF Van Loan. Matrix computations. The Johns Hopkins, 1996.

[100] Oded Green and David A Bader. custinger: Supporting dynamic graph algorithms
for gpus. In High Performance Extreme Computing Conference (HPEC), 2016
IEEE, pages 1-6. IEEE, 2016.

[101] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[102] Chandler Davis. The norm of the schur product operation. Numerische Mathe-

matik, 4(1):343-344, 1962.

[103] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

110

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Dipanjan Sengupta and Shuaiwen Leon Song. Evograph: On-the-fly efficient
mining of evolving graphs on gpu. In International Supercomputing Conference,

pages 97-119. Springer, 2017.

Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. Accelerating dynamic
graph analytics on gpus. volume 11, pages 107-120. VLDB Endowment, Septem-
ber 2017.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In WSDM, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Chang Zhou, Yugiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. Scalable graph
embedding for asymmetric proximity. In AAAI, 2017.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In KDD, 2016.

Jiankai Sun, Bortik Bandyopadhyay, Armin Bashizade, Jionggian Liang, P. Sa-
dayappan, and Srinivasan Parthasarathy. Atp: Directed graph embedding with

asymmetric transitivity preservation. In AAA/, 2019.

Jiankai Sun and Srinivasan Parthasarathy. Symmetrization for embedding di-

rected graphs. In AAAI, 2019.

Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link prediction in social
networks: the state-of-the-art. Science China Information Sciences, 58(1):1-38,

2015.

Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Effects

111

of user similarity in social media. In Proceedings of the fifth ACM international

conference on Web search and data mining, pages 703-712, 2012.

[114] Prantik Bhattacharyya, Ankush Garg, and Shyhtsun Felix Wu. Analysis of user
keyword similarity in online social networks. Social network analysis and mining,

1(3):143-158, 2011.

[115] Cuneyt Gurcan Akcora, Barbara Carminati, and Elena Ferrari. User similarities

on social networks. Social Network Analysis and Mining, 3(3):475-495, 2013.

[116] Panagiotis Symeonidis and Nikolaos Mantas. Spectral clustering for link predic-
tion in social networks with positive and negative links. Social Network Analysis

and Mining, 3(4):1433—-1447, 2013.

[117] Purnamrita Sarkar, Deepayan Chakrabarti, and Andrew W Moore. Theoretical
justification of popular link prediction heuristics. In I/CAI proceedings-international

joint conference on artificial intelligence, volume 22, page 2722. Citeseer, 2011.

[118] Mark EJ Newman. Clustering and preferential attachment in growing networks.

Physical review E, 64(2):025102, 2001.

[119] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social net-
works. Journal of the American society for information science and technology,

58(7):1019-1031, 2007.

[120] Jorge Valverde-Rebaza and Alneu de Andrade Lopes. Exploiting behaviors of
communities of twitter users for link prediction. Social Network Analysis and Min-

ing, 3(4):1063-1074, 2013.

[121] Haifeng Liu, Zheng Hu, Hamed Haddadi, and Hui Tian. Hidden link prediction
based on node centrality and weak ties. EPL (Europhysics Letters), 101(1):18004,
2013.

112

[122] Rong-Hua Li, Jeffrey Xu Yu, and Jianquan Liu. Link prediction: the power of
maximal entropy random walk. In Proceedings of the 20th ACM international

conference on Information and knowledge management, pages 1147-1156, 2011.

[123] Baojun Qiu, Kristinka Ivanova, John Yen, and Peng Liu. Behavior evolution and
event-driven growth dynamics in social networks. In 2010 IEEE Second Interna-

tional Conference on Social Computing, pages 217-224. IEEE, 2010.

[124] Baojun Qiu, Qi He, and John Yen. Evolution of node behavior in link prediction.

In AAA/. Citeseer, 2011.

[125] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

In Advances in Neural Information Processing Systems, pages 5165-5175, 2018.

[126] Jimeng Sun, Christos Faloutsos, Christos Faloutsos, Spiros Papadimitriou, and
Philip S Yu. Graphscope: parameter-free mining of large time-evolving graphs.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 687—696. ACM, 2007.

[127] Arash Fard, Amir Abdolrashidi, Lakshmish Ramaswamy, and John A Miller. To-
wards efficient query processing on massive time-evolving graphs. In Collabo-
rative Computing: Networking, Applications and Worksharing (CollaborateCom),

2012 8th International Conference on, pages 567-574. |IEEE, 2012.

[128] David Ediger, Rob McColl, Jason Riedy, and David A Bader. Stinger: High per-
formance data structure for streaming graphs. In 2012 IEEE Conference on High

Performance Extreme Computing, pages 1-5. IEEE, 2012.

[129] Shuo Ji, Yinliang Zhao, and Xiaomei Zhao. A low-latency computing framework for

time-evolving graphs. The Journal of Supercomputing, 75(7):3673-3692, 2019.

[130] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. Stinger: High performance data
structure for streaming graphs. In 2012 IEEE Conference on High Performance

Extreme Computing, pages 1-5, Sep. 2012.

113

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: Taking the
pulse of a fast-changing and connected world. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys '12, pages 85-98, New

York, NY, USA, 2012. ACM.

Anand lyer, Li Erran Li, and lon Stoica. Celliq : Real-time cellular network ana-
lytics at scale. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 309-322, Oakland, CA, 2015. USENIX Asso-

ciation.

Anand Padmanabha lyer, Li Erran Li, Tathagata Das, and lon Stoica. Time-
evolving graph processing at scale. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems, GRADES ’16,
pages 5:1-5:6, New York, NY, USA, 2016. ACM.

Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren. Graphphi: ef-
ficient parallel graph processing on emerging throughput-oriented architectures.
In Proceedings of the 27th International Conference on Parallel Architectures and

Compilation Techniques, page 9. ACM, 2018.

Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and Lizy K John.
Start late or finish early: a distributed graph processing system with redundancy

reduction. Proceedings of the VLDB Endowment, 12(2):154-168, 2018.

James King, Thomas Gilray, Robert M. Kirby, and Matthew Might. Dynamic
sparse-matrix allocation on gpus. In High Performance Computing, Julian M.
Kunkel, Pavan Balaji, and Jack Dongarra, editors, pages 61-80, Cham, 2016.

Springer International Publishing.

Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. Graphie: Large-scale

asynchronous graph traversals on just a gpu. In 2017 26th International Confer-

114

ence on Parallel Architectures and Compilation Techniques (PACT), pages 233—

245. |EEE, 2017.

115

	Exploring Heterogeneous Architectures With Tools And Applications
	Recommended Citation

	tmp.1616455443.pdf.Hjq56

