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ABSTRACT

Compiler optimization is a long-standing research field that enhances program per-
formance with a set of rigorous code analyses and transformations. Traditional
compiler optimization focuses on general programs or program structures without
considering too much high-level application operations or data structure knowledge.
In this thesis, we claim that an integrated view of the application and compiler is
helpful to further improve program performance. Particularly, we study integrated
optimization opportunities for three kinds of applications: irregular tree-based query
processing systems such as B+ tree, security enhancement such as buffer overflow
protection, and tensor/matrix-based linear algebra computation.
The performance of B+ tree query processing is important for many applications,
such as file systems and databases. Latch-free B+ tree query processing is efficient
since the queries are processed in batches without locks. To avoid long latency, the
batch size can not be very large. However, modern processors provide opportunities
to process larger batches parallel with acceptable latency. From studying real-world
data, we find that there are many redundant and unnecessary queries especially when
the real-world data is highly skewed. We develop a query sequence transformation
framework Qtrans to reduce the redundancies in queries by applying classic data-
flow analysis to queries. To further confirm the effectiveness, we integrate Qtrans
into an existing BSP-based B+ tree query processing system, PALM tree. The
evaluations show that the throughput can be improved up to 16X.
Heap overflows are still the most common vulnerabilities in C/C++ programs. Com-
mon approaches incur high overhead since it checks every memory access. By ana-
lyzing dozens of bugs, we find that all heap overflows are related to arrays. We only
need to check array-related memory accesses. We propose Prober to efficiently detect
and prevent heap overflows. It contains Prober-Static to identify the array-related
allocations and Prober-Dynamic to protect objects at runtime. In this thesis, our
contributions lie on the Prober-Static side. The key challenge is to correctly iden-
tify the array-related allocations. We propose a hybrid method. Some objects can
be identified as array-related (or not) by static analysis. For the remaining ones,
we instrument the basic allocation type size statically and then determine the real
allocation size at runtime. The evaluations show Prober-Static is effective.
Tensor algebra is widely used in many applications, such as machine learning and
data analytics. Tensors representing real-world data are usually large and sparse.
There are many sparse tensor storage formats, and the kernels are different with
varied formats. These different kernels make performance optimization for sparse
tensor algebra challenging. We propose a tensor algebra domain-specific language
and a compiler to automatically generate kernels for sparse tensor algebra computa-
tions, called SPACe. This compiler supports a wide range of sparse tensor formats.
To further improve the performance, we integrate the data reordering into SPACe
to improve data locality. The evaluations show that the code generated by SPACe
outperforms state-of-the-art sparse tensor algebra compilers.
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Chapter 1

Introduction

Performance, which is usually measured by response time, throughput, or resource uti-

lization [130], is one of the key concerns for many applications in various areas, for

example, databases [64, 85], parallel file systems [185], online analytical systems [36],

security [186, 136, 28, 169], data analysis and mining applications [104, 158, 182], health-

care applications [2, 125], machine learning applications [117, 173], social network ana-

lytics [216], natural language processing [24, 145] and many others. These applications

require high performance in the form of high throughput, low latency, or efficient memory

usage, among others.

Compiler optimization is widely used to improve program performance through a series

of optimizing transformations. These optimizations introduce a wide variety of benefits

such as execution time reduction [34, 152, 59, 82], memory overhead elimination [33,

201], and/or reduced power consumption [90, 167, 89]. However, traditional compiler

optimizations usually focus on analyzing code structures only, such as loop constructs,

function calls, isomorphic instructions, and common expressions or sub-expressions. An

example of this is loop optimizations, a major kind of compiler optimizations. Loop

optimizations usually include loop unrolling, loop fusion, and loop tiling/blocking [13].

These optimizations are general; however, because of their generality, they miss some

optimization opportunities due to the lack of high-level application knowledge as well.
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1.1 Thesis topic

Application knowledge (or application information) in this thesis refers to multiple aspects

of an application, for example, input or output, function operations, data distribution or

data storage. If the input of an application is a sequence of queries [74, 126, 56, 86, 206,

143], the query type and operands belong to application knowledge; if the input is a set

of data elements, the data pattern, format, and distribution also belong to application

knowledge [79, 98, 98, 184, 192, 108, 38].

This thesis argues that it is possible to leverage high-level application knowledge to

expose more optimization opportunities to compilers to improve program performance.

More specifically, this thesis aims to build an application-compilation integrated view and

explore various optimizations that are provided by this integration. In other words, it

is impossible to benefit from these optimizations if the application and compilation are

treated separately.

1.2 Optimization opportunities

This thesis studies three main applications from various domains: B+ tree-based query

processing, buffer overflow protection, and sparse tensor algebra computations. It mainly

explores three optimization opportunities: redundant computation elimination, unneces-

sary computation removing, and efficient parallelism.

Redundant computation elimination corresponds to the classic compiler opti-

mization of partial redundancy elimination (PRE). PRE is used to eliminate redundant

code in programs. A computational statement is redundant if the same computation is

calculated multiple times while the operands of the statement do not change along the

path. Eliminating the redundancy computations in the program reduces the number of

computations, resulting in performance improvement. Many PRE algorithms have been

developed to optimize program performance [132, 57, 147, 32, 148, 101, 26]. As afore-

mentioned, these algorithms consider code-level information only without considering any
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application knowledge. Redundancy elimination is also used in storage systems to improve

the space utilization [189, 22, 175, 107, 151] and in network communications to reduce

data transferred [215]. These strategies leverage the redundancy in data to reduce the

storage space or communication overhead. This thesis does not leverage data redundancy

but rather targets eliminating redundancy through the use of other kinds of application

knowledge, such as the input query of the B+ tree query processing system.

Unnecessary computation removing is an effective way to remove computations

that do not affect the final result. In compiler optimizations, unnecessary computation

usually has two main forms, redundant computation and dead code in programs. Dead

code is code that is executed but whose results are never used [5]. Many dead code

elimination approaches have been proposed to improve program performance [100, 23,

203, 78, 141]. These approaches rely on analyzing the programs, i.e. only consider code-

level information. This thesis leverages application knowledge to remove the unnecessary

computations. For example, it is possible to control the protection scope of buffer overflows

by leveraging code patterns in programs.

Parallelism is key to program performance. This thesis mainly considers two types of

parallelism, data parallelism and task parallelism. Data parallelism refers to distributing

data to different hardware computing resources and computing them in parallel. Task

parallelism refers to distributing tasks to different hardware computing resources and ex-

ecuting these tasks in parallel. Data parallelism is often achieved with SIMD (Single

Instruction, Multiple Data) units [156, 168], and task parallelism is often achieved with

multi-threads. For SIMD data parallel, SIMD utilization plays an important role in per-

formance [156, 72, 159, 157]; for multi-thread task parallel, reducing the synchronization

or communication overhead plays a key role in efficient execution [37, 44, 202]. This thesis

explores efficient parallelism for B+ tree based query processing system execution and

sparse tensor algebra computations.

The three studied applications share common optimization opportunities. Figure 1.1

shows the connections between the optimization opportunities and the applications.
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B+ tree based query 
processing system

Heap buffer overflow 
protection

Sparse tensor/matrix 
algebra computations

Optimization opportunities Applications Application knowledge

Input queries (type, key)

Array allocations in code

Tensor format, operations

Redundancy elimination

Unnecessary computation 
removing

Efficient parallelism

Figure 1.1: Connection between optimizations and applications

For redundancy elimination and unnecessary computation removing, this thesis ana-

lyzes input queries in B+ tree query processing systems and identifies many redundant

and unnecessary queries (application knowledge). It then applies a compiler optimization,

redundancy elimination, to eliminate the redundant and unnecessary queries, thus improv-

ing the throughput. Similarly, in buffer overflow protection, this thesis analyzes dozens

of heap buffer overflow bugs in C/C++ programs and discovers that all heap overflows

are related to arrays (application knowledge). This means that protection of non-array

objects is unnecessary for heap buffer overflows. This thesis designs a set of compiler

techniques to automatically analyze source code and identify array allocations.

To improve program parallelism in B+ tree query processing system, this thesis ana-

lyzes the input queries to guarantee that the queries on the same key (or the same leaf node

in B+ tree) are only processed by one thread. It therefore reduces thread conflicts and

achieves better thread-level parallelism. Similarly, for sparse tensor algebra computations,

the computations on each dimension of output tensor are only processed by one thread

thus achieving better thread-level parallelism. Moreover, because the compiler knows the

distribution of queries or the computation pattern of tensor computations, it is possible

to design effective SIMD optimizations to achieve better SIMD utilization as well.
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1.3 Contributions

In this thesis, we explore program optimizations from an integrated view of compiler

and application knowledge. As we mentioned above, we study three different types of

applications. The contributions in each application are presented in the rest of this section.

1.3.1 Improving B+ tree query processing by reducing redundant

queries.

B+ trees are used in a wide range of applications, such as database systems and file sys-

tems. Improving the performance of B+ tree processing systems has been thoroughly

studied. Most efforts focus on improving concurrency. However, synchronization is still

a performance bottleneck in improving concurrency. Latch-free B+ tree query[170] pro-

cessing is proposed to avoid synchronizations. Queries are collected into batches and each

batch is processed by threads parallel under a bulk synchronous parallel (BSP) model.

The threads are carefully coordinated so that locks can be avoided. The problem is that

the batch size can not be very large to avoid long delays. However, advanced modern

processors make it possible to increase the batch size. In this thesis, we find that there

will be more optimization opportunities beyond parallelism when the batch-size increases,

especially with the highly skewed real-world datasets. We find that there are many re-

dundancies in the queries. To identify and remove the redundant queries, we propose a

query sequence analysis and transformation framework - QSAT based on applying classic

data-flow analysis. For practical use, we implement a one-pass QSAT, called Qtrans. To

evaluate the effectiveness, we integrate Qtrans into an existing BSP-based B+ tree query

processing system, PALM tree [170]. The evaluation shows that Qtrans is effective and

efficient, yield up to 16X throughput improvement.
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1.3.2 Using compiler static analysis to assist in defending heap buffer

overflow.

Heap buffer overflows are still the top vulnerabilities in C/C++ programs. Common

approaches often bring too much performance overhead since they check every overflow.

Efficient approaches such as Cruiser [211], DoubleTake [121], HeapTherapy [212], iRe-

player [119], can not stop the vulnerabilities before overflow happens since they detect

buffer overflows after the effect. We propose Prober to overcome these issues. Prober

imposes a low overhead and can stop the program before overflow happens. It can also

detect both read-based and write-based heap overflows. Prober is based on the key obser-

vation that overflows are typically related to arrays. This key observation identifies that

we only need to protect array-related objects. Prober is composed of Prober-Static and

Prober-Dynamic. Prober-Static is used to identify and instrument the array-related allo-

cations in programs and Prober-Dynamic is for protecting the instrumented array-related

objects in run-time. In this thesis, we contribute Prober on the Prober-Static side.

The key challenge of Prober-Static is to correctly identify all the array-related heap

objects. On one hand, missing array-related heap objects will lead to no detection of

overflows. On the other hand, including unnecessary objects will increase the run-time

protection overhead. To this end, Prober-Static uses a hybrid approach. Some objects

can be identified as array-related (or not) statically with the compiler. For the remaining

ones, we decide in the runtime. We first instrument the size of the basic allocation type

statically, then use Prober-Dynamic to determine the real allocation size in run-time.

If the real allocation size is multiple times the size of the basic type, the allocation is

identified as array-related allocation. Overall, Prober-Static is conservative and it does

not miss any array-related allocations. The effectiveness has been evaluated in dozens of

real-world heap overflow applications.
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1.3.3 Building high-performance compiler for sparse tensor algebra

computations.

Tensor algebra is at the core of numerous applications in scientific computing, machine

learning, and data analytics, where data is often sparse with most entries as zeros. Achiev-

ing high-performance on sparse tensor algebra computations is important. There are many

challenges in writing high-performance code for sparse tensor computations. First, the

storage format will influence computation performance. There are many storage formats

to store the non-zero values in sparse tensors and not a single format is good for all cases.

To get high-performance for specific sparse tensors computations, users need to choose the

proper format according to the feature of the sparse tensors. Second, optimizing sparse

computation is difficult. Sparse tensor computations contain many indirect memory ac-

cesses and write dependencies. Besides this, different tensor expressions and different

storage formats make the computation kernels different. It is necessary to use different

optimizations to solve different performance bottlenecks in different computations kernels.

Third, there are many back-end hardware platforms. Different hardware platforms require

different code optimizations for high-performance.

To handle some of the above challenges, we propose a compiler-based approach to

achieve high-performance on data-intensive sparse tensor computations. We build a sparse

tensor compiler, SPACe, based on the Multi-level Intermediate Representation (MLIR)

framework, a compiler infrastructure developed by Google to build reusable and exten-

sible compilers. MLIR provides a disciplined, extensible compiler pipeline with gradual

and partial lowering. Users can build customized compilers based on MLIR by creating

customized domain-specific intermediate representations (IR) and implementing domain-

specific optimizations. Since SPACe is built on MLIR infrastructure, it supports different

hardware platforms by utilizing the powerful back-end compilation support.

SPACe supports several most common formats, such as Coordinate format, Com-

pressed sparse fiber format and Mode-generic format with our proposed sparse tensor for-
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mat attributes, which considers the format attribute of each dimension of tensors. SPACe

is implemented as an extension of the MLIR framework. It contains a highly-productive

domain-specific language (DSL) that provides high-level programming abstractions for

tensor algebra computations. SPACe uses the high-level tensor algebra information, such

as tensor expression and tensor formats, to generate the corresponding computation ker-

nels. We also integrate the data reordering optimization into SPACe to further improve

the performance. We evaluate the performance of SPACe on massive sparse matrix/tensor

datasets. The results show that SPACe can generate more efficient sequential and parallel

code compared to state-of-the-art sparse tensor algebra compilers.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the necessary

general background for data-flow analysis, Low-level Virtual Machine (LLVM) compiler

infrastructure, and Multi-level Intermediate Representation compiler framework (MLIR)

used in this thesis. Chapter 3 shows how we use redundancy elimination techniques in the

compiler to improve the performance of B+ tree query processing on many-core processors.

Chapter 4 shows how we use compiler static analysis techniques to assist in heap buffer

overflows in C/C++ programs effectively and efficiently. Chapter 5 shows how we build

the high-performance sparse tensor algebra compiler based on high-level information such

as tensor operations and tensor formats. Finally, we conclude the thesis and discuss the

future research directions in chapter 6.



Chapter 2

Background

In this section, we provide the necessary background and the compiler frameworks we use

in this thesis. The compiler optimizations used in this thesis are mainly based on the

data-flow analysis. The compiler frameworks we use are LLVM and MLIR.

2.1 Data-flow analysis

Data-flow analysis is a classic way used by the compiler to infer run-time information

statically. In an optimizing compiler, data-flow analysis is mainly used for reasoning

about helpful run-time information statically to get more optimization opportunities, and

providing logical evidence to prove the correctness of the optimizations at some program

points. Programmers can also use data-flow analysis to better understand their programs

to improve the programs accordingly. Data-flow analysis is usually conducted by solving

a set of equations based on a graphical representation of the program. The output of the

data-flow analysis is the possible facts that can happen during run-time [46].

Data-flow analysis has variable forms, such as variable liveness analysis, expression

availability analysis, reaching definition analysis and very busy expression analysis. Vari-

able liveness analysis finds live variables at program points. A variable v is live at point

p if and only if there is a path from p to a use of v and there is no redefinition of v in

this path. Variable liveness analysis can be used to make global register allocation more

10
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efficient, to detect references to uninitialized variables, and so on. Expression availability

analysis discovers the set of available expressions at each program point. It can be used to

reason and eliminate global common sub-expressions. Reaching definition analysis finds

the set of definitions that reach a block. It can be used to reason about where an operand

is defined. An expression is very busy at a point if the expression will be guaranteed to

be computed at some time in the future. Very busy expression analysis can be used to

reduce the number of operations in the whole program. All these analyses play key roles

in applying optimizations.

2.2 LLVM compiler infrastructure

LLVM is an open-source compiler infrastructure to support analyses and transformations

for any program in all stages, including compile-time, link-time, install-time, run-time,

and even idle time between runs. LLVM has five critical features that make it a powerful

compiler infrastructure. First, LLVM provides persistent program information during a

program’s lifetime, which makes it possible to perform code analyses and transformations

in all stages. Second, LLVM allows offline code generation. This feature makes it possible

to add specific optimizations for performance-critical programs. Third, LLVM gathers

user-based profiling information at runtime so that the optimizations can be adapted

to the actual users. Fourth, LLVM is language independent so that any language can

be compiled. Fifth, LLVM allows whole-program optimizations because it is language

independent [110].

LLVM provides the above five features based on two critical parts. First, LLVM

provides a low-level, but typed code representation, called LLVM Intermediate Repre-

sentation (LLVM IR). LLVM IR represents the programs by using an abstract RISC-like

three-address instruction set but including higher-level information such as type infor-

mation, explicit control flow graphs, and data-flow representation. This higher-level in-

formation plays an important role in conducting code analysis and optimizations in all
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stages. LLVM IR also provides explicit language-independent type information; it contains

explicitly typed pointer arithmetic. To this end, LLVM IR also serves as a common rep-

resentation for code analysis and transformations during the program’s lifetime. Second,

LLVM uses a compiler design to provide a combination of capabilities. Static compiler

front-ends generate codes in LLVM IR and combined them into one LLVM IR code file

by LLVM linker. Multiple optimizations can be applied during link-time, including the

inter-procedural optimizations. The optimized code will usually be translated into native

machine code according to the target given at link-time or install-time. The persistent

information and the flexibility of applying optimizations make it possible for LLVM to

perform code analysis and optimizations in all the stages [110].

2.3 Multi-level IR compiler framework (MLIR)

MLIR(Multi-level IR) is a compiler infrastructure for building reusable and extensible

compilers. MLIR supports the compilation of high-level abstraction and domain-specific

constructs and provides a disciplined, extensible compiler pipeline with gradual and partial

lowering. The design of MLIR is based on minimal fundamental concepts and most of

the IRs in MLIR are fully customized. Users can build domain-specific compilers and

customized IRs, as well as combining existing IRs, opting into optimizations and analyses.

The core MLIR concepts include operations, attributes, values, types, dialects, blocks,

and regions. An operation is the unit of semantics. In MLIR, “instruction”, “function”

and “module”, are all modeled as operations. An operation always has a unique opcode.

It takes zero or more operands and produces zero or more results. These operands and

results are maintained in static single assignment (SSA) form. An operation may also

have attributes, regions, blocks arguments, and location information as well. An attribute

provides compile-time static information, such as integer constant values, string data, or

a list of constant floating-point values. A value is the result of an operation or block

arguments, it always has a type defined by the type system. A type contains compile-time
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semantics for the value. A dialect is a set of operations, attributes, and types that are

logically grouped and work together. A region is attached to an instance of an operation

to provide the semantics (e.g., the method of reduction in a reduction operation). A region

comprises a list of blocks, and a block comprises a list of operations [111].

Beyond the built-in IRs in the MLIR system, MLIR users can easily define new cus-

tomized IRs, such as high-level domain-specific language, dialects, types, operations, anal-

yses, optimizations and transformation passes [111].
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Chapter 3

Transforming Query Sequences for

High-Throughput B+ Tree

Processing on Many-core

Processors

The throughput of B+ tree query processing is critical to many databases, file systems,

and cloud applications. Based on bulk synchronous parallel (BSP), latch-free B+ tree

query processing has shown promise by processing queries in small batches and avoiding

the use of locks. As the number of cores on CPUs increases, it becomes possible to process

larger batches in parallel without adding any extra delays. In this work, we argue that

as the batch size increases, there will be more optimization opportunities exposed beyond

parallelism, especially when the query distributions are highly skewed. These include the

opportunities of avoiding the evaluations of a large ratio of redundant or unnecessary

queries.

To rigorously exploit the new opportunities, this work introduces a query sequence

analysis and transformation framework – QTrans. QTrans can systematically reason about

the redundancies at a deep level and automatically remove them from the query sequence.
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QTrans has interesting resemblances with the classic data-flow analysis and transformation

that have been widely used in compilers. To confirm its benefits, this work integrates

QTrans into an existing BSP-based B+ tree query processing system, PALM tree, to

automatically eliminate redundant and unnecessary queries 1. Evaluation shows that, by

transforming the query sequence, QTrans can substantially improve the throughput of

query processing on both real-world and synthesized datasets, up to 16X.

3.1 Introduction

As a fundamental indexing data structure, B+ trees are widely used in many applications,

ranging from database systems and parallel file systems to online analytical processing and

data mining [64, 85, 185, 36, 39]. There have been significant efforts on optimizing the

performance of B+ trees, with a large portion of work aiming to improve the concur-

rency [161, 170, 134, 25, 27, 60]. As the memory capacity of modern servers has increased

dramatically, in-memory data processing becomes more popular. Without expensive disk

I/O operations, the cost of accessing in-memory B+ trees becomes more critical.

To reduce the tree accessing cost, prior work has proposed latch-free B+ tree query

processing [170]. Traditionally, B+ tree query processing requires locks (i.e., latches) to

ensure the correctness since queries may access the same tree node and if one of them

modifies it (e.g., an insertion query), it would cause conflicts. Latch-free B+ tree query

processing avoids the use of locks by adopting a bulk synchronous parallel (BSP) model.

Basically, it processes the queries batch by batch, with each batch handled by a group of

threads in parallel. By coordinating the threads working on the same batch, the use of

locks can be totally avoided (see Section 2). To guarantee the quality of service (QoS),

the size of a query batch should be carefully bounded to avoid long delays.

Fortunately, as modern processors become increasingly parallel, the size bound of a

batch can be dramatically relaxed without incurring extra delays. For example, the latest

1Artifact available at: https://doi.org/10.5281/zenodo.1486393
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Intel Xeon Phi processors equipped with 64 cores can process 1M queries with time cost

at only milliseconds (ms) level. In this work, we argue that as the batch size grows, there

will be more optimization opportunities exposed beyond parallelism, which are further

compounded by the fact that many real-world queries follow highly skewed distributions.

The high level idea is abstractly illustrated by Figure 3.1.

more 
CPU cores

larger 
batch

skewed 
distribution

redundant &
unnecessary queries

BSP-based B+ Tree Query Processing

Figure 3.1: New Optimization Opportunities

For example, queries to the locations where taxi drivers stop are highly biased in both

the time dimension (e.g., rush hours) and the space dimension (e.g., popular restaurants).

As the query batch becomes larger, there will be growing possibilities of redundant queries

(e.g., a repeated search of the same location) or unnecessary queries (e.g., a later query

“cancel out” the effect of an earlier query).

To identify these “useless” queries, this work proposes a query sequence analysis and

transformation framework – QTrans, to systematically reason about the relations among

queries and exploit optimization opportunities.

QTrans has interesting resemblances with the classic data-flow analysis and transfor-

mation, but it targets query-level analyses and transformations. Intuitively, QTrans treats

a query sequence as a “high-level” program, where each query resembles a statement in

a regular program. By tracking the queries that “define” values, QTrans is able to link

search queries to their corresponding defining queries. Based on the analysis, QTrans

marks all the useful queries in the sequence and sweeps the useless ones, reducing the

amount of queries to evaluate. Comparing to a traditional data-flow analysis [46, 4] that

iterates over cyclic control flows, QTrans only needs to perform acyclic analysis for query
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sequences with the most basic types of queries—although the algorithm of redundancy

elimination is similar regardless of this difference.

To evaluate its effectiveness, we integrate QTrans into an existing BSP-based B+ tree

processing system, called PALM tree [170]. The integration is at two levels: QTrans

for each individual batch (i.e., intra-batch integration), and QTrans across batches (i.e.,

inter-batch integration). To minimize the runtime overhead, we also implement the parallel

version of QTrans and discuss potential load imbalance issues.

Finally, our evaluation using real-world and synthesized datasets confirms the efficiency

and effectiveness of QTrans, yielding up to 16X throughput improvement on Intel Xeon

Phi processors, with scalability up to all the 64 cores.

In sum, this work makes a four-fold contribution.

• First, this work identifies a class of optimizations for B+ tree query processing,

enabled by the increased hardware parallelism and the skewed query distributions.

• It proposes QTrans, a rigorous solution to optimizing query sequences, inspired by

the conventional data-flow analysis and transformation.

• It integrates QTrans into an existing BSP-based B+ tree processing system and the

evaluation shows significant throughput improvement.

• The idea of leveraging traditional code optimizations at the query level, in general,

could open new opportunities for optimizing query processing systems.

In the following, we will first provide the background on B+ trees and the latch-free

query processing (Section 3.2), then discuss the motivation of this work (Section 3.3).

After that, we will present QTrans (Section 3.4), the integration of QTrans into PALM

tree (Section 3.5), and the evaluation results (Section 3.6). Finally, we discuss the related

work (Section 3.7) and conclude this work (Section 3.8).
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3.2 Background

This section introduces B+ trees, its basic types of queries, and the high-level idea of

latch-free query evaluation.

3.2.1 B+ Tree and Its Queries

A B+ tree is an N-ary index tree. It consists of internal nodes and leaf nodes. In contrast

to B trees, B+ trees only maintain the keys and their associated values in their leaf nodes,

and their internal nodes are merely used to hold the comparison keys and pointers for tree

traversals. The maximum number of children nodes for internal nodes is specified by the

order of B+ tree, denoted as b. The actual number of children for internal nodes should

be at least d b2e, but no more than b. Figure 3.2 shows an example of a 3-order B+ tree.

Each internal node contains comparison keys and pointers to the children nodes. The leaf

nodes together hold all the key-value pairs. In the leaf nodes, the numbers represent the

keys and the numbers marked with asterisks represent the values of the corresponding

keys. For the 3-order B+ tree, each internal node has at least 2 children nodes, but no

more than 3.

hours) and the space dimension (e.g., popular restaurants).
As the query batch becomes larger, there will be growing
possibilities of redundant queries (e.g., a repeated search of
the same location) or unnecessary queries (e.g., a later query
“cancel out” the effect of an earlier query).

To identify these “useless” queries, this work proposes
a query sequence analysis and transformation framework –
QTrans, to systematically reason about the relations among
queries and exploit optimization opportunities.

QTrans has interesting resemblances with the classic data-
flow analysis and transformation, but it targets query-level
analyses and transformations. Intuitively, QTrans treats a
query sequence as a “high-level” program, where each query
resembles a statement in a regular program. By tracking the
queries that “define” values, QTrans is able to link search
queries to their corresponding defining queries. Based on the
analysis, QTrans marks all the useful queries in the sequence
and sweeps the useless ones, reducing the amount of queries
to evaluate. Comparing to a traditional data-flow analysis [12],
[13] that iterates over cyclic control flows, QTrans only needs
to perform acyclic analysis for query sequences with the most
basic types of queries—although the algorithm of redundancy
elimination is similar regardless of this difference.

To evaluate its effectiveness, we integrate QTrans into an
existing BSP-based B+ tree processing system, called PALM
tree [7]. The integration is at two levels: QTrans for each
individual batch (i.e., intra-batch integration), and QTrans
across batches (i.e., inter-batch integration). To minimize the
runtime overhead, we also implement the parallel version of
QTrans and discuss the potential load imbalance issues.

Finally, our evaluation using real-world and synthesized
datasets confirms the efficiency and effectiveness of QTrans,
yielding up to 16X throughput improvement on Intel Xeon Phi
processors, with scalability up to all the 64 cores.

In sum, this work makes a four-fold contribution.

• First, this work identifies a class of optimizations for B+
tree query processing, enabled by the increased hardware
parallelism and the skewed query distributions.

• It proposes QTrans, a rigorous solution to optimizing query
sequences, inspired by the conventional data-flow analysis
and transformation.

• It integrates QTrans into an existing BSP-based B+ tree
processing system and the evaluation shows significant
throughput improvement.

• The idea of leveraging traditional code optimizations at the
query level, in general, could open new opportunities for
optimizing query processing systems.

In the following, we will first provide the background on
B+ tree and the latch-free query processing (Section 2), then
discuss the motivation of this work (Section 3). After that, we
will present QTrans (Section 4), the integration of QTrans into
PALM tree (Section 5), and the evaluation results (Section 6).
Finally, we discuss the related work (Section 7) and conclude
this work (Section 8).
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Fig. 2: A 3-order B+ tree, where key-value pairs are stored
only in leaf nodes (i.e., last level).

II. BACKGROUND

This section introduces B+ tree, its basic types of queries,
and the high-level idea of latch-free query evaluation.

A. B+ Tree and Its Queries

A B+ tree is an N-ary index tree. It consists of internal nodes
and leaf nodes. In contrast to B trees, B+ trees only maintain
the keys and their associated values in their leaf nodes, and
their internal nodes are merely used to hold the comparison
keys and pointers for tree traversals. The maximum number
of children nodes for internal nodes is specified by the order
of B+ tree, denoted as b. The actual number of children for
internal nodes should be at least d b2e, but no more than b.
Figure 2 shows an example of a 3-order B+ tree. Each internal
node contains comparison keys and pointers to the children
nodes. The leaf nodes together hold all the key-value pairs. For
the 3-order B+ tree, each internal node has at least 2 children
nodes, but no more than 3.

The structure of B+ tree dynamically evolves as queries to
the tree are evaluated. In general, there are three basic types
of B+ tree queries: (i) insertion; (ii) search; and (iii) deletion.

Given a B+ tree T , suppose function FIND(keyi, T ) can
find the leaf node of keyi if it exists or return null otherwise,
then the semantics of queries can be described as follows.
• I(keyi, vj): if FIND(keyi, T ) 6= null, then update its value

to vj ; otherwise, insert a new entry of (keyi, vj) into T .
• S(keyi): if FIND(keyi, T ) 6= null, return the value of keyi;

otherwise, return null.
• D(keyi): if FIND(keyi, T ) 6= null, then remove the entry
(keyi, vj) from the B+ tree.

Among the three, only S(keyi) returns results; I(keyi, vj)
and D(keyi) only update/modify the B+ tree. It is important
to note that, when multiple queries arrive in a sequence, the
order in which the queries are evaluated may affect both the
returned results and the tree structure. In other words, there
exist dependences among the queries in general.

B. Latch-Free Query Evaluation

When there are multiple threads operating on the same B+
tree, it becomes challenging to evaluate the queries efficiently.
First, the workload for each thread is too little to benefit from
thread-level parallelism [7]; Second, since different queries
may access the same node, threads have to lock the nodes (or
even subtrees) that they operate, which essentially serializes
the computations, wasting hardware parallelism.

Figure 3.2: A 3-order B+ tree, where key-value pairs are stored only in leaf nodes (i.e.,
last level).

The structure of B+ tree dynamically evolves as queries to the tree are evaluated. In

general, there are three basic types of B+ tree queries: (i) insertion; (ii) search; and (iii)

deletion.
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Given a B+ tree T , suppose a function Find(keyi, T ) can find the leaf node of keyi

if it exists or return null otherwise, then the semantics of queries can be described as

follows.

• I(keyi, vj): if Find(keyi, T ) 6= null, then update its value to vj ; otherwise, insert a

new entry of (keyi, vj) into T .

• S(keyi): if Find(keyi, T ) 6= null, return the value of keyi; otherwise, return null.

• D(keyi): if Find(keyi, T ) 6= null, then remove the entry (keyi, vj) from the B+ tree.

Among the three, only S(keyi) returns results; I(keyi, vj) and D(keyi) only update/-

modify the B+ tree. It is important to note that, when multiple queries arrive in a

sequence, the order in which the queries are evaluated may affect both the returned re-

sults and the tree structure. In other words, there exist dependencies among the queries

in general.

3.2.2 Latch-Free Query Evaluation

When there are multiple threads operating on the same B+ tree, it becomes challenging

to evaluate the queries efficiently. First, the workload for each thread is too little to

benefit from thread-level parallelism [170]; Second, since different queries may access the

same node, threads have to lock the nodes (or even subtrees) that they operate, which

essentially serializes the computations, wasting hardware parallelism.

A promising solution to the above issues is latch-free query evaluation [170]. Basically,

it adopts the bulk synchronous parallel (BSP) model and processes queries batch by batch.

Threads are coordinated to process the queries in a batch in parallel without any use

of locks. Specifically, each query batch is processed in three stages 2, as illustrated in

Figure 3.3:

2For better illustration, we merged stages 3 and 4 in [170].
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Stage-1 Partition queries to threads evenly; threads then run in parallel to find the

corresponding leaf nodes based on the keys in the queries;

Stage-2 Shuffle queries based on the leaf nodes such that each thread only handle queries

to the same leaf node. Evaluate queries in parallel, including returning answers to

search queries and updating corresponding tuples in the leaf nodes for insert and

delete queries;

Stage-3 Modify tree nodes bottom up:

• Update tree nodes in parallel and collect requests for updating the parent

nodes (i.e., the upper level);

• Shuffle modification requests to the parent nodes such that each thread only

modifies the same node;

• Repeat update-shuffle, until the root node is reached and updated as needed.

t1

batch

t2 t3
…

t1 t2
t1

stage-1

stage-2

stage-3

queries w/
diff. keys

node update

t1 t2 t1 t2 t3
threads

tuple update
t1 t2
bottom-up, level-by-level

Figure 3.3: Latch-Free Query Evaluation

The shuffling in stages-2 and 3 ensures contention-free operations for each thread,

guaranteeing the correctness. Comparing with lock-based schemes, this latch-free scheme
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can significantly boost the throughput of query evaluation for B+ trees, up to an order of

magnitude [170].

3.3 Motivation

On top of the promises of latch-free query evaluation, we find new opportunities to further

improve the efficiency of B+ tree processing, enabled by modern many-core processors and

the highly skewed query distributions.

3.3.1 Growing Hardware Parallelism

As the CPU clock frequency has reached a plateau, modern processors have embraced

an increase in parallelism to sustain performance gain. For example, the latest Xeon

Phi processor, Knights Landing [180], contains 64 cores/256 hyper threads. This massive

hardware parallelism enables high processing capacity by allowing a larger pool of threads

to run in parallel.

In the context of latch-free B+ tree query processing, the availability of more hardware

threads allows the use of larger batch sizes while preserving the processing delay. However,

this work argues that the benefits of using larger batches are not limited to the parallelism

– as the batches become larger, new optimization opportunities are exposed, especially

when the queries are unevenly distributed.

3.3.2 Highly Skewed Query Distribution

We observe that, the query distributions of real-world applications are often highly skewed.

Take the taxi data of New York City (NYC) as an example 3. The geolocations where

taxi drivers pick up (or drop off) passengers follow a highly skewed distribution, as shown

in Figure 3.4-(a).

The x-axis shows the geolocations and the y-axis indicates the visiting frequencies of

3https://s3.amazonaws.com/nyc-tlc/trip+data/yellow tripdata 2009-01.csv
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Geolocation of Taxi Pickup/Dropoff
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(c) YCSB (Latest Distribution)

Figure 3.4: Highly Skewed Query Distributions

each geolocation for a period of one month. The top 1000 geolocations out of 4,194,304

(i.e., 0.02%) covers 68.272% of total visits. In this case, the skewed distribution is caused

by the fact that some geolocations are much more likely to be visited by taxis, such as

shopping malls or popular restaurants.

In fact, skewed distributions frequently appear in other query processing scenarios,

such as BigTable [35], Azure [47], Memcached [69], among others. Figures 3.4-(b) and (c)

show the key distributions in cloud workloads modeled by Yahoo Cloud Serving Benchmark

(YCSB). In these cases, the top 1% keys cover 30% and 56% requests, respectively.
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Figure 3.5: Optimization Opportunities

3.3.3 Optimization Opportunities

When the distribution becomes highly skewed, queries with identical keys tend to appear

more frequently. This trend not only results in repetitive queries (i.e., query redundancies),
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but also queries that might not have to be evaluated.

Next, we use an example query sequence, as shown in Figure 3.5, to illustrate the

optimization opportunities, and informally characterize them into three categories.

• Query Redundancy 1 . One obvious opportunity is for the repeated search queries

like queries 2 and 4 in Figure 3.5. Since query 3 does not modify key1, query 4 should

return the same value as query 2. Thus, we only need to evaluate one of them, then

forward the return value to the other.

• Query Overwriting 2 . When two queries operate on the same key and both of

them are either insert or delete with no search queries on the same key in between,

then the second query may “overwrite” the first query. In another word, the first

query becomes unnecessary, such as the overwritten queries 3 and 5 in Figure 3.5.

• Query Inference 3 . For a search query, by tracing back prior queries in the query

sequence, one may find an earlier query carrying the information that the search

query needs, thus we may infer its return value without evaluating it, such as query

pairs (1, 2), (6, 9), and (7, 8).

In addition, as existing opportunities are exploited, more opportunities might be un-

covered. For example, an earlier removal of a search query may enable a new opportunity

of query overwriting. As we will show in the evaluation, the above optimization opportu-

nities frequently appear when dealing with both real-world and synthesized datasets.

3.4 Analysis and Transformation

In this section, we present a rigorous way to systematically exploit the new opportunities

mentioned above, inspired by the classic data-flow analyses and transformations.
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3.4.1 Overview

Basically, we treat the query sequence as a “program”, where each “statement” is a B+

tree query. Then the optimization of query sequence follows the typical procedure of a

traditional compiler optimization: it first performs an analysis over the query sequence,

based on which, it then transforms the query sequence into an optimized version – a new

query sequence that is expected to be evaluated more efficiently. We refer to this new

optimization scheme as query sequence analysis and transformation or QSAT, in short.

QS Define-use	
analysis

QUD Chains

Query
trans. QS’

Figure 3.6: Conceptual Workflow of QSAT

Figure 3.6 illustrated the workflow of QSAT. The original query sequence QS is first

analyzed to uncover use-define relationships among queries. The output – an intermediate

data structure, called QUD chains is then used to guide the query sequence transformation,

which yields an optimized query sequence QS′. Next, we present the ideas of QSAT.

3.4.2 Query Sequence Analysis

The goal of query sequence analysis is to uncover the basic define-use relations among

the queries, which will be used to facilitate the later transformation. This resembles the

classic reaching-definition analysis used in compilers [46, 4]. Basically, it examines the

queries in the sequence and finds out which queries “define” the “states” of a B+ tree and

which queries “use” the “states” correspondingly.

Based on the semantics defined in Section 3.2.1, the queries that define the state are

insert and delete queries, and the queries that use the state are search queries. The define-

use analysis matches each search query with its corresponding defining query (either an
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insert or a delete) based on the keys that the queries carry.

Example. Figure 3.7-(a) shows the define-use analysis on the running example, where qi

corresponds to the query at line i. Basically, the set e consists of the defining queries that

can reach each query. For example, the defining queries q1, q6 and q5 can reach query q7.
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(a) Forward define-use analysis

Figure 3.7: Example of Query Sequence Analysis and Transformation (QSAT)

QUD Chain. To represent the results of define-use analysis, we construct a data structure

– query-level use-define chain (QUD chain). This data structure resembles the UD chain

constructed internally by some compilers.

The construction of QUD chains is as follows. Basically, when a use query is met, the

construction adds a link from the use query to its corresponding defining query (i.e., the

defining query with the same key) if the later exists in current defining query set e. An

example of constructed QUD chains is shown in Figures 3.7-(b).

QUD chains capture the dependence relations among the queries in a query sequence.

For the query semantics defined in Section 3.2.1, the size of a QUD chain is limited to two

queries. However, in general, the length of a QUD chain can go beyond two. QUD chains

provide critical information for performing query sequence transformation, as shown next.

3.4.3 Query Sequence Transformation

The purpose of query sequence transformation is to generate an optimized version of query

sequence. For clarity, we next describe the transformation with two passes. However, they

can be integrated into one pass, as we will show later.

Round-1: Useless Query Elimination. This round is to eliminate queries that do not
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Algorithm 1 Useless Query Elimination (Mark-Sweep)

1: I = {} . a list of useful queries
2: qud() . qud(q) returns the defining query of query q
3: for qi in {q1 · · · qn} do
4: if qi is a search query then
5: I.add(qi) . mark a search query as “useful”
6: if qud(qi) 6= ∅ then
7: I.add( qud(qi) ) . mark defining query “useful”

8: return I

contribute to the final results of query processing – the returned values of search queries

and the key-value pairs stored in the B+ tree. This can be achieved with a mark-sweep

strategy that has been previously used for garbage collection and dead code elimination.

Algorithm 1 describes the useless query elimination. It first marks all the search queries

as useful queries, as they need to return values. Then it traces back the QUD chains to

find the corresponding defining queries, and mark them as useful queries as well. Note

that the algorithm is customized to QUD chains of length 2, but it can be easily extended

to handle QUD chains with arbitrary length.

Example. Figure 3.7-(c) lists the results after useless query elimination. The number of

queries drops from 9 to 7. This round explores query overwriting (see Section 3.3.3).

Round-2: Query Inference & Reordering. Besides query overwriting, there are

two other optimization opportunities: redundant queries and query inference (see Section

3.3.3). The second round is to explore the latter two.

Basically, for each search query, find its corresponding defining query (if exists), then

retrieve the return value and return it. After this optimization, all the search queries with

corresponding defining queries (i.e., qud(qi) 6= ∅) will be eliminated, as Figure 3.7-(d)

shown (denoted as ret vi).

Note that, after the optimization, no return operations ret vi depend on any other

queries, hence they can be reordered – being moved to the top of the sequence. In this

way, the latency of the search queries could be reduced.

An orthogonal optimization is a top-K cache. When the B+ tree is large, performance
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can be benefited from putting hot key-value pairs (top K pairs) into a small cache. Thus,

when an insert query with a top-K key-value pair is left after round 1, we can transform

the query into a cache write operation (e.g., Wc(keyi,vj) in Figure 3.7-(d)).

Finally, after the two rounds of optimizations, there are only 2 queries left that need

to be actually evaluated.

3.4.4 Discussion

Comparison with Classic Data-flow Analysis. Despite the similarities between our

define-use analysis and the traditional reaching-definition analysis, there are a couple of

critical differences. First, the two analyses work at different granularities. The traditional

data-flow analysis performs at the instruction level, while ours is applied at the query

level. Each query itself may be implemented by a series of low-level instructions. Second,

the traditional data-flow analysis operates on the control-flow graph, which may consist

of cycles and take several iterations to converge. By contrast, our analysis works on a

sequence of queries which imposes no “backward” control flows.

Potential Extension. Note that the ideas of query sequence analysis and transformation

are not limited to the basic query semantics. It may benefit other batch-based query

processing systems that may involve more complicated query structures as well. Consider

a more advance query I(key1, S(key2)). The query is to insert/update key1 with the value

drawn from key2. In this case, the length of a QUD goes beyond 2.

3.5 Integration

To evaluate the proposed analysis and transformation, we integrate QTrans into an existing

latch-free B+ tree query processing system – PALM tree [170] (see Section 3.2.2). To

maximize the benefits, this section also describes a parallel implementation of QTrans and

optimizations across batches.
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Algorithm 2 One-Pass QSAT (for queries of the same key)

1: qo = null . the last defining query
2: ns = 0 . number of search queries
3: I = {} . a list of useful queries & operations
4: for qi in {qn · · · q1} do
5: if qi is a search query then
6: ns + +
7: else if qi is an insert or delete query then
8: if ns > 0 then
9: I.add(infer and return(qi, ns))

10: ns = 0

11: if qo = null then
12: qo = qi
13: if ns > 0 then
14: . no defining query for the last ns queries
15: I.add(search and return(qn, ns))

16: if qo = null then
17: I.add(qo)

18: return I

3.5.1 Parallel Intra-Batch Integration

The QTrans described in Section 4 applies optimizations sequentially over the sequence

of queries. However, in the actual setting of latch-free B+ tree query processing, queries

in a batch are processed in parallel for maximum performance on parallel processors. To

match with the intra-batch parallel query processing scheme, we next present a parallel

design of QTrans.

Given a batch of queries, the parallel QTrans creates a pool of threads based on the

number of available cores N (part of latch-free query evaluation), then performs the query

optimizations in two phases:

• Phase-I: First, partition the query batch evenly intoN mini-batches. Then performs

sequential QSAT over different mini-batches in parallel.

• Phase-II: Shuffle the queries generated by Phase-I based on the keys. Then let each

thread perform a sequential QSAT over queries of the same key.

Figure 3.8 shows the new latch-free query evaluation with the two phases integrated.
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After Phase-II, there will be at most one (defining) query left for each key. After applying

the parallel QTrans, the following steps would be the same as the original latch-free query

evaluation (see Figure 3.3).
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t3

t1 t2
t1

stage-3
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Figure 3.8: Latch-Free Query Evaluation w/ QTrans

Advantages. Comparing with the original latch-free query evaluation (Figure 3.3), the

new design (Figure 3.8) shows several advantages:

• Faster sorting. In the original design, query sorting is at the batch level. While

in the new design, query sorting is only performed at the mini-batch level 4.

• Reduced leaf searches. The original design searches for leaf nodes for every query

in the batch; In comparison, the new design only searches for leaf nodes for each

distinct key in the batch.

• Reduced shuffle overhead. Both the original and the new designs require to

shuffle the queries in Stage 2 and Phase-II. However, in the new design, the shuffle

overhead is lower, due to the query reduction in Phase-I.

4For generality, query sorting is not shown in Figures 3.3 and 3.8.
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Load Balancing. Despite the above advantages, intra-batch optimization may suffer

from a workload imbalance at Phase II. After Phase I, the number of remaining queries

of different keys might be different. Further, after the query shuffling of Phase II, the

number of keys mapped to different leaf nodes might also varies due to the skewed key

distribution. Both cases can cause a load imbalance among worker threads. Note that the

second case also occurs in the original design of query processing. Here, we address them

with a lightweight workload balancing strategy.

Basically, our load balancing method leverages the prefix sum algorithm to calculate

the starting query index for each thread, so that the number of queries assigned to each

thread can be similar, but not necessarily the same. The assignment should not assign

queries with different keys to different threads, which violates the correctness of BSP.

3.5.2 Inter-Batch Optimization

Beside intra-batch optimizations, this work also explores optimization opportunities across

batches. However, it is challenging to implement inter-batch QSAT, because the interme-

diate results of query analysis will grow as more batches are analyzed. For example, a

search query’s corresponding defining query may appear in a much earlier batch. Keeping

tracking all the information will overburden the QSAT, outweighing the benefits.

Instead, we adopt a more scalable strategy that is similar to the alternative solution

mentioned in Section 4.4. Basically, it “simulates” the query evaluation at the inter-batch

level on a different data structure. In this way, we only need to carry the “state” of key-

value pairs from one batch to the next. The key is that the simulation must be faster than

the actual query evaluation to bring in potential benefits. We achieve this with a top-K

cache.

Top-K Cache. This is a small software cache with fixed number of entries – K entries.

This design minimizes the costs of read/write operations. The cache can be implemented

with a hash table, where the key-value pairs perfectly match with the B+ tree key-value
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pairs. As the number of entries is fixed, the hash function can be designed in an efficient

way so that hashing conflicts can be minimized or even avoided. The entries in the top-K

cache can be pre-populated with training data and periodically updated with testing data

using various cache replacement policies (e.g., LRU).

To integrate the inter-batch optimization in the query evaluation system, we place the

top-K cache operations in Stage 1 right after Phase II (see Figure 3.8). At this moment,

the redundant and useless queries within the batch have been eliminated, hence the cache

operations will be reduced to a minimum – only proportional to the number of distinct

keys in the batch.

3.6 Evaluation

This section evaluates the efficiency and effectiveness of QTrans for optimizing the latch-

free B+ query processing.

3.6.1 Methodology

We use an open-source implementation of latch-free B+ query processing system 5 as the

baseline, which follows the design of PALM tree querying system [170]. It supports SIMD

operations for key search within a tree node. QTrans is implemented in C++ language

with the use of Pthread for multicore programming and is then integrated into PALM

tree, serving as the optimized querying system.

Platform. We evaluate B+ tree query processing on the latest version of Xeon Phi,

Knights Landing. Our Xeon Phi is a 64-core 7210 processor, used as a CPU, running

at 1.3 GHz with 1M L2 cache shared between two cores, supporting 512-bit AVX512

instructions.

Datasets. To evaluate our query sequence optimization, we build B+ trees based on the

unique keys from four synthetic datasets (with configurations the same as those in [170])

5https://github.com/runshenzhu/palmtree

https://github.com/runshenzhu/palmtree
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and two realistic datasets:

• gaussian: the keys of queries follow the classic Gaussian distribution with parameters

µ = N ∗ 0.5, δ = µ ∗ 0.5%, where N is the range of queries;

• self-similar: the keys follow 80-20 rule, which means 80% queries cover 20% range

of queries [76];

• zipf: the keys follow Zipfian [76] with θ = 1.0;

• uniform: the keys are uniformly distributed;

• ycsb: Yahoo! Cloud Service Benchmark (YCSB) [45] that is used to evaluate the

performance of cloud systems. It includes Zipfian (ycsb-zipf) and latest (ycsb-latest);

Note that zipf and ycsb-zipf are different in terms of the parameter settings.

• taxi: NYC taxi data published by New York City Taxi & Limousine Commission,

containing the yellow and green trips in New York City at different time6.

All key distributions except uniform are skewed. The size of our input queries, the

configuration of trees, and the input query distributions are summarized in Table 3.1.

Table 3.1: Dataset configurations

Dataset #queries #uniq-key parameters

Gaussian 100M 50M µ = N ∗ 0.5, δ = µ ∗ 0.5%
Self-similar 100M 50M 80-20 rule

Zipfian 100M 50M θ = 1
Uniform 100M 50M /

YCSB-latest 30M 10M /
YCSB-zipfian 30M 10M θ = 0.99

Taxi 13.9M 4.1M /

3.6.2 Performance and Scalability

Synthesized Data. Figure 3.9 compares the original B+ tree processing with the one

optimized with QTrans on four synthetic datasets (i.e., gaussian, self-similar, zipf and

6http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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Figure 3.9: Overall throughput improvement. x-axis: update ratios; y-axis: throughput
of queries.
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Figure 3.10: Throughput scalability. x-axis: update ratios; y-axis: throughput of queries.

uniform) in terms of throughputs. For each distribution, the update ratio (i.e., the ratio

of insert and deletion queries) changes from 0% to 75%. For all distributions, the one

with QTrans (i.e., opt) shows better throughput, with up to 4.05X improvement (occurs

on zipf dataset).

Specifically, for all datasets, the throughput improvement is higher when the update

ratio is lower. Even for the uniform dataset, the throughput improvement reaches 2.37X.

This is because QTrans handles all Find queries in stage 1, thus avoiding the time con-

suming stage 2 in the original design. When the update ratio is greater than 0%, for

the skewed datasets, such as gaussain, zipf, and self-similar, the throughput improvement
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Figure 3.11: YCSB overall throughput and scalability. x-axis: update ratios; y-axis:
throughput of queries.
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Figure 3.12: Taxi throughput and scalability.
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Figure 3.13: self-similar (U-0.25) leaf operations

is more significant, from 1.76X to 3.59X. This is because they have higher chances to

include queries with identical keys. Interestingly, even for uniform, QTrans shows slightly

improvement (but much less than other skewed cases) when there are updates, owing to

the query transformations.

More specifically, QTrans monitors the query types. If no defining queries are found,

it will evenly partition the input queries and get rid of the time-consuming workload

redistribution. In contrast, such redistribution is always required by the original imple-

mentation. Similarly, if the update ratio is low, it only redistributes the update-related

queries, leading to better performance.

Realistic Data. Next, we confirm the results with real-world datasets ycsb-latest and

ycsb-zipf (Figure 3.11 (a) and (b)), and NYC Taxi dataset taxi (Figure 3.12 (a)). Among

the three datasets, QTrans optimized version achieves higher improvements on ycsb-latest

with a nearly 6.71X improvement (U-0), and taxi with a nearly 16.60X improvement
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Figure 3.14: self-similar throughput analysis, three bars in (c) correspond to bars in
(a) and (b)

(U-0.75). In comparison, on ycsb-zipf, the QTrans optimized version only achieves 2.31X

improvement. Note that the throughput improvements are different between ycsb-zipf

and zipf, due to the parameter setting differences. The former is based on the real-world

cloud system characterization; while the latter is chosen from prior work for a direct

comparison [170].

Scalability. Figures 3.10, 3.11 (c)-(d), and 3.12 (b) report how the throughput of QTrans

optimized version changes with the number of threads increasing from 1 to 64. Most cases

show strong scalability up to 64 threads. Only taxi scales up to 32 threads. This is

because taxi has fewer unique keys than other datasets, thus our optimization results in

more query reduction. The remaining queries are too few to feed 64 threads. This is

proved by its lowest latency in Table 3.2.

3.6.3 Performance Breakdown

To better understand the performance improvements, we perform a case study on the

self-similar dataset.

Figure 3.14 compares the intra-batch and inter-batch optimized versions with the orig-

inal version on throughput, query reduction ratio, and execution time of different stages,

with the update ratio ranging from 0% to 75%.

Intra-batch Optimization Benefits. Comparing the original with the one enabled

intra-batch optimization (Figure 3.14a), there is a clear throughput improvement.

The improvement is due to two main reasons. First, intra-batch optimization reduces
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Figure 3.15: self-similar (U-0.25) throughput

the number of queries to process, which is reflected by the query reduction ratio, as

shown in Figure 3.14b. However, as mentioned earlier, the query reduction may cause

the workload imbalance in the later stage for leaf node searching, which can in turn

compromises the reduction benefits to a certain degree. To alleviate this, QTrans performs

a lightweight load balancing with parallel prefix sum (see Section 5.1). This is the second

contributor to the throughput improvement.

In addition, we perform a study on the distribution of workload (counts of operations)

on the leaf nodes when all 64 threads are employed, as shown in Figure 3.13. The counts

are for a whole query sequence. The results demonstrate the efficiency of load balance

optimization. However, even with our optimization, it is impossible to achieve a perfect

load balance. Because there exists data dependencies among update queries that perform

on the same tree node, these modifications will always be processed by the same thread.

Since the input query is skewed, the number of queries handled by different threads is also

skewed.

Inter-batch Optimization Benefits. The last bar in each sub-figure of Figure 3.14

shows the throughput gain, the task reduction ratio, and the execution time when the

inter-batch optimization is applied. In general, the improvement varies because, in some

cases, the optimization opportunities have already been explored by the earlier intra-batch

optimization, especially for relatively larger batch sizes.

Batch Size Impact. We set batch size as 0.5M, 3M, and 6M with update ratios of 25%

for self-similar distribution, and test the throughput differences under different kinds of
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optimizations. As shown in Figure 3.15, the throughput increases as the growing of the

batch size, specifically, the benefit from intra-batch redundancy elimination.

Considering the batch size (in Table 3.2) and the absolute throughput after our opti-

mizations together, we observe a strong correlation – a larger batch size leads to a better

absolute throughput. In the offline processing case without the latency requirement, we

can always select a large batch size to achieve a better throughput. Our work considers a

more challenging online processing, and these batch sizes are chosen for a more acceptable

latency requirement.

Table 3.2: Latency for each dataset

Dataset
Batch-
size

Opt Lat(ms) Org Lat(ms)
U-0.0 U-0.75 U-0.0 U-0.75

Gaussian 5242880 52.26 133.62 122.18 492.09
Self-similar 3145728 65.12 404.88 200.49 818.54

Zipfian 3145728 62.31 253.84 300.37 1011.5
Uniform 2097152 36.50 391.37 105.89 475.99

YCSB-latest 1500000 18.23 112.75 133.16 519.74
YCSB-zipfian 1500000 14.95 99.96 39.02 182.90

Taxi 2081427 14.66 17.65 49.12 161.38

3.6.4 Latency

Table 3.2 reports the latencies for two scenarios: search-only and 75% update, with the

corresponding batch size. For comparison, we also report the original PALM tree’s latency

with identical batch sizes. Even for the largest batch case, we still maintain our search-

only latency lower than 50ms and our update latency lower than 400ms. For the three

real-world cases, our search-only latencies range from 14.66ms to 18.23ms, and update

latencies range from 17.65ms to 112.75ms. This is smaller than 0.5-1s latency maintained

in previous buffering method [217]. In addition, we can always trade our high throughput

for faster response time by using a smaller batch size, if it is desired.
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3.7 Related Work

This section focuses on research related to B+ tree processing, bulk synchronous parallel

model, as well as redundancy elimination in traditional compilers.

B+ Trees and Its Optimizations. As a basic data structure, B+ tree has received

significant attentions, especially on improving the concurrency by reducing tree contention.

Prior work can be roughly categorized into three groups. The first group contains

methods that improve lock performance and designing lock-free trees, in asynchronous

processing. For instance, Rodeh designed optimized lock-based B+ trees [161], and later,

Braginsky and Petrank proposed a lock-free B+ tree to further improve the performance

for high contention cases [25]. More recently, new lock-free tree structures are proposed to

address the performance challenges brought by contentions, such as [134, 27, 60]. The sec-

ond group leverage the Bulk Synchronous Parallel (BSP) model. PALM tree proposed by

Sewall et al. [170] is a representative solution. The third group exploits hardware support

like Hardware Transactional Memory (HTM), including the red-black tree implemented

by Dice et al. [58] and Eunomia proposed by Wang et al. [195]. Based on these techniques,

it is also effective to apply lazy tree restructuring [49, 50] to further reduce the contention.

The above methods focus either on improving locking behavior, lock-free policy, or on

changing the tree structure. By contrast, this work focuses on exploiting the skewed query

distribution, the semantic relations among queries, and the high concurrency provided by

modern many-core processors, so it is complementary to all of these existing approaches.

In addition, there are techniques to map B+ trees or other similar index trees on many-

core processors or other new architectures. For instance, Fix et al. [70] implemented a

B+ tree on GPU, while Daga et al. [53]’s B+ tree is specific for APUs. Kim et al. [91]

designed and implemented a fast architecture-sensitive search tree on both CPUs with

SIMD units and GPUs. A more recent design of a B+ tree for heterogeneous platforms

is given by Shahvarani and Jacobsen [171]. There are also many efforts on improving the

cache performance for in-memory trees, such as Cache-sensitive search (CSS) trees [154]
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and cache-sensitive B+ trees (CSB+-trees) [155].

Bulk Synchronous Parallel (BSP): The BSP model [190] used in latch-free B+ tree

query processing has also been commonly used for many other applications. For example,

Pregel [128] and Giraph [42], a well-known graph processing model is based on BSP.

Many other graph processing engines or libraries are also directly built on BSP, such as

GraphX [188] for distributed clusters and Gunrock [196] for GPUs. Moreover, the BSP

model also serves as a design foundation for many successful programming models in big-

data and high-performance computing fields, such as MapReduce [55], Spark [210], and

Apache Hama [172].

Redundancy Elimination The key idea of this work is to eliminate redundant and

unnecessary queries by transforming the query sequence. At high level, it shares the objec-

tives with some traditional compiler optimizations, such as partial redundancy elimination

(PRE) and memoization, which are also designed to eliminate unnecessary code in the pro-

grams.

Consider the control-flow graph (CFG) of a function in a program. If a computational

statement is evaluated again along a certain path, without any of its operands changed

in between, the later evaluation would be (partially) redundant and thus will be removed

by PRE. Over the past 30 years, many PRE algorithms [132, 57, 148, 101] have been

designed to optimize program performance. Another traditional compiler optimization

for redundancy elimination is memorization [138, 52, 3, 75], which is heavily used for

functional programming languages. The basic idea is to cache the results of frequent yet

expensive function calls and returning the corresponding cached result when calls with

the same inputs appear again.

The above techniques for code optimizations inspire the design of our query sequence

analysis and transformation. In addition, redundancy elimination has also been used

to improve the space utilization in storage systems [189, 22, 175] and the integration of

relational database schema [102].
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Finally, there are some compiler optimization techniques being used to optimize SQL

queries [8, 11, 10], where the SQL queries are first transformed into imperative programs,

then optimized by conventional compiler techniques. By contrast, our techniques directly

transform the query sequences without any query-to-code transformations.

3.8 Summary

This chapter targets the critical throughput problem of B+ tree query processing. It,

for the first time, points out the new optimization opportunities raised by the growing

hardware parallelism and the highly skewed query distributions in real-world B+ tree

applications. More specifically, this work identifies three categories of optimization oppor-

tunities in the B+ tree query evaluation. To systematically exploit these opportunities,

it introduces a novel query sequence analysis and transformation (QSAT) framework, in-

spired by the conventional code optimizations in compilers. For practical use, this work

designs a one-pass QSAT, namely QTrans, and integrates it into a latch-free B+ tree query

processing system, with parallelization and load balancing supports. Finally, our evalua-

tion confirms the efficiency and effectiveness of QTrans on both synthetic and real-world

datasets with up to 16X throughput improvement.
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Chapter 4

Compiler static analysis assistance

in defending heap buffer overflows

Heap-based overflows in C/C++ programs are still not completely solved even after

decades of research. We propose Prober, a novel system aiming to detect and prevent

heap overflows in production environments. Prober leverages a key observation based on

the analysis of dozens of real bugs: all heap overflows are related to arrays. Based on this

observation, Prober only focuses on array-related heap objects, instead of all heap objects.

Prober utilizes static analysis to label all susceptible call-stacks during the compilation,

and then employs the page protection to detect any invalid accesses during the runtime.

In addition to this, Prober integrates multiple existing methods together to ensure the

efficiency of its detection. Overall, Prober introduces almost negligible performance over-

head, with 1.5% on average. Prober not only stops possible attacks in time, but also

reports the faulty instructions that could guide bug fixes. Prober is ready for deployment

due to its effectiveness and low overhead. In this thesis, my contribution in this work is

to use compiler static analysis to effectively identify the array-related heap objects.
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4.1 Introduction

C/C++ applications are prone to memory errors, such as buffer overflows (including over-

reads/over-writes). Buffer overflows will not only cause a program to crash, but also can be

exploited to issue security attacks or cause information leakage [186]. Since it is difficult

to expunge all buffer overflows during development phases which are highly dependent

on program inputs, significant research has focused on detecting and preventing buffer

overflows dynamically. Among them, stack-based overflows can be detected with very low

overhead (less than 6.5%) via the shadow stack technique [186]. But heap-based overflows

are still unresolved, and they were still ranked as the top 2 vulnerabilities (as shown in

Table 4.1).

Table 4.1: Top five vulnerabilities reported in 2018 [51].

Vulnerabilities DoS Code Execution Overflow XSS Gain Information

16555 1852 3035 2492 2004 1426

Dynamic detection tools can be further divided into multiple types. The most common

approach is to check the overflow before every memory access, which can stop a overflow

immediately if a memory access is found to access red zones that are not supposed to be

read or written. Existing work, such as Valgrind [136], Dr. Memory [28], and Address-

Sanitizer [169], employs this approach. However, it imposes high performance overhead.

For example, AddressSanitizer still imposes over 40% performance overhead. Efficient ap-

proaches such as Cruiser [211], DoubleTake [121], HeapTherapy [212], or iReplayer [119],

detect buffer overflows after the effect, typically by checking the evidence of corrupted

canaries. However, they cannot detect read-based overflows because reads do not leave

any evidence behind. Also, they cannot timely stop security attacks.

We propose a novel system, called Prober, to overcome these issues. Prober imposes

low performance and memory overhead so that it can be used in production systems.

Second, Prober can detect both read-based and write-based overflows. Third, Prober will

stop overflows immediately, eliminating any possibility of memory exploits. Last but not
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least, Prober is able to report detailed information to assist bug fixes, e.g., allocation sites

and faulty instructions. Prober is based on a key observation that separates it from all

existing work: overflowing objects are typically related to arrays. This observation is based

on our analysis on dozens of bugs collected by existing work [208] (as further discussed in

Section 4.2.1). We further confirmed that this observation holds for all overflows reported

in a randomly-selected period in the CVE database. This observation is also aligned with

intuition: for an object not related to an array, there is no need of operating it with error-

prone operations, such as pointer arithmetic instructions, string APIs, or loop operations,

thus with a low possibility of overflows.

This key observation identifies the type of objects that may have buffer overflows, called

as array-related objects or susceptible objects. Both terms will be utilized interchangeably

in the remainder of this chapter. To take advantage of this observation, Prober proposes

to separate array-related objects from normal objects, by placing them into a separate

space. Then Prober employs the page protection to detect overflows, an idea that was

initially proposed by Electric Fence [150] but can be seamlessly integrated with this key

observation that reduces the scope of detection. Once the vulnerabilities are detected,

Prober will immediately stop the execution and any subsequent exploits, and report the

faulty instructions precisely.

The key challenge is to correctly identify all array-related heap objects. On the one

hand, missing array-related objects will lead to no detection/protection of overflows caused

by them, reducing the safety guarantee. On the other hand, if some unnecessary objects

were included, it may impose some overhead unnecessarily. To this end, Prober proposes

a hybrid approach to identify array-related objects. Some objects can be identified as

array-related (or not) statically by analyzing the source code as described in Section 4.3,

while the remaining ones will be identified in a hybrid way: Prober’s static component

(Prober-Static) identifies the basic type of such allocations (easier to do), instruments the

size of such allocations with the compiler, and its runtime system (Prober-Dynamic) is

responsible for determining whether it is an array-related object by the real allocation size.
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That is, if the size of an allocation is multiple times of the basic type, then this allocation

site is identified as susceptible allocation site. Consequently, all future allocations from

such sites will be allocated from the protected heap so that all overflowing references can

be detected and prevented immediately.

In this thesis, the contribution to Prober lies in Prober-Static side. In its implemen-

tation, Prober-Static relies on the LLVM compiler to perform the analysis and instru-

mentation at the Intermediate Representation (IR) level. Prober proposes to identify

array-related allocations based on the allocation function, the definition of the size pa-

rameter, and the operations of the corresponding object. After that, Prober-Static further

labels array-related allocation sites with simple instrumentation, so that Prober-Dynamic

will place the corresponding objects in the protected heap. For objects that cannot be

identified as array-related ones statically, Prober-Static simply labels the unit size so that

Prober-Dynamic can determine its type dynamically. Overall, Prober is over-estimated so

that it will not miss any array-related allocations.

To ensure that Prober-Static does not miss any necessary instrumentation, we have

confirmed that Prober-Static instruments correctly for all known overflows collected by

existing work [208]. Also, we further confirmed that Prober correctly detects and pre-

vents 10 known overflows within real applications. The performance overhead evaluation

shows Prober imposes only 1.5% performance overhead. Prober is ready for in-production

systems due to its low overhead, timely prevention, and effectiveness.

Overall, in this thesis, the contribution to Prober system is as follows:

• We propose effective way to use compiler static analysis to identify the allocation

site of the array-related objects.

• We implement a code transformation pass to successfully instrument the array-

related objects based on LLVM.

• We proposes a hybrid mechanism that ensures to identify all array-related alloca-

tions. Such a mechanism is based on the allocation function, the definition of size
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parameter and the operations on the corresponding object, or the combination of

the unit size and the requested size.

• The thesis performs extensive evaluation on the effectiveness and performance of

Prober, showing that Prober has the potential to be actually employed in the de-

ployment environment.

The remainder of this chapter is organized as follows. Section 4.2 first describes the

key observation, the basic idea of Prober, and then describes the attack model of Prober.

The implementation details are further described in Section 4.3, and the evaluation is

presented in Section 4.4. After that, we discuss Prober’s weaknesses in Section 4.5. In the

end, Section 4.6 discusses related work, and Section 4.7 concludes.

4.2 Overview

This section first analyzes overflow bugs from an existing study [208], and derives our key

observation: overflowing objects are all related to arrays. Based on this key observation,

it further discusses the basic design and key challenges of Prober in Prober-Static part.

Table 4.2: Analysis on 48 heap overflows collected by [208].

Type Overflow Reason Num(#)

Sub-
structure
overflows

Pointer arithmetic 0
Loop operation 4
System call 0

String API
memcpy 2
strncpy 3
strcpy 1

Whole-
structure
Overflows

Pointer arithmetic 3
Loop operation 20
System call 2

String API

memcpy 6
strncpy 1
strncmp 1
memset 3
sprintf 1
memmove 1
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4.2.1 Observations on Heap Overflows

One recent work studies 100 “randomly selected bugs within the buffer overflow category

from the CVE website” [208]. Based on their description, the study is objective due

to random selection, representing the real situation of buffer overflows. Therefore, our

analysis was based on these bugs to avoid any bias. Based on our analysis, these 100

overflow bugs include 48 heap overflows, and 52 stack or global buffer overflows. This

section focuses on 48 heap overflows, as shown in Table 4.2. We have the following

observations.

The first observation is that all of the heap overflows are involved with arrays, either

sub-structure or whole-structure overflows. Here, a whole-structure overflow is an overflow

for which the allocation is an array of structures or basic units (e.g., characters, integers,

or words). A sub-structure overflow is where object (or allocation) itself is not an array,

but the corresponding structure includes one or multiple arrays internally. It is intuitive

that array-related objects are prone to overflows. If an allocation is just a structure, every

field can be manipulated with a member access operator (e.g., “->” or “.”), which should

not cause the overflow. On the other hand, if an object is related to an array, then it

is very likely to employ error-prone operations, such as pointer arithmetic instructions,

string APIs, or loop operations.

The second observation is that whole-structure overflows are much more common than

sub-structure overflows, consisting of around 79.2% of these bugs (with 38 bugs in total).

The third observation is that overflow bugs can be caused by multiple operations, such

as pointer arithmetic instructions, string APIs, loop operations, or system calls, as further

shown in Table 4.2. More specifically, 24 out of 48 overflows are related to loops during the

iterations, and 19 overflows are related to string APIs. For instance, the memcpy function

copies more memory than it should. These two categories actually consist of more than

89.5% of these bugs. In addition to these two categories, three overflows are related to

pointer arithmetic, and two overflows occur when the read system call does not check the
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boundary of the buffer. Thus, overflow occurs if programs utilize pointers to access the

entry of an array, but without correctly checking its size.

Table 4.3: Heap overflows between 11/01/2018 and 02/15/2019.

Type Overflow Reason Num(#)

Sub-
structure
overflows

Loop operation 4
String API sprintf 1

Whole-
structure
Overflows

Pointer arithmetic 5
Loop operation 15
System call 1

String API

memcpy 4
strncat 1
strncpy 1
memset 2
snprintf 1
memmove 2

Confirming Key Observation: In order to further confirm our key observation, we

further examined 65 heap overflow bugs reported in the National Vulnerability Database,

with the published date between 11/01/2018 to 02/15/2019. Since only 37 bugs out of

65 bugs have a detailed description or have the source code information, we focused on

these 37 bugs. Based on our analysis, all of these 37 bugs are array-related, where whole-

structure overflows are still the most common types of overflows, with the percentage of

86.4% and a total of 32 bugs.

4.2.2 Basic Idea of Prober

Based on the key observation, Prober focuses only on array-related whole-structure over-

flows, where around 80% reported heap overflows belong to. Since array-related objects

are only a small percentage of all heap objects, the detection overhead can be dramatically

reduced as further evaluated in Section 4.4 when using the page-protection mechanism.

Prober does not handle sub-structure overflows in this chapter, which will be the future

work.

Basically, Prober includes two components, Prober-Static and Prober-Dynamic.
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Figure 4.1: Overview of Prober.

Prober-Static is a static compile-time based tool that identifies and labels susceptible

memory allocation sites, while Prober-Dynamic performs overflow detection/prevention

and determines some array-related allocations on top of the static instrumentation. In

this thesis, we only introduce the details of Prober-Static.

4.2.2.1 Prober-Static

Prober-Static performs analysis and instrumentation at the Intermediate Representation

(IR) level because of multiple benefits. First, LLVM IR offers multiple built-in functions

that can facilitate analysis and instrumentation. For example, define-use and use-define

chains that track the definition and usage of memory allocation, can help determine an

array-related allocation. Second, analysis and instrumentation algorithms on LLVM IR

are more robust, because many complicated cases (e.g., various macros) at the source code

are simplified or merged at the IR level. Third, instrumenting at IR level provides the

flexibility of registering the new code transformation pass in an appropriate position of

the compilation chain, thus avoiding the possible side-effects to the subsequent analysis

and code optimizations (e.g., loop optimizations) that are crucial to the code performance.



CHAPTER 4. DEFENDING HEAP BUFFER OVERFLOWS 49

Prober-Static analyzes the IR to determine array-related allocations, and marks suscepti-

ble allocation sites via the explicit instrumentation. Currently, Prober-Static is registered

as a Link Time Optimization (LTO) pass so that it can handle definitions and usages

located in multiple C/C++ files.

Research Challenges: The aim of Prober-Static is to design a robust compile-time

analysis, which further includes two challenges. First, how to identify memory allocations,

given that memory allocations have various forms, e.g., wrapper functions, or function

pointers? Second, how to identify array-related memory allocations? Basically, Prober

designs a hybrid mechanism to ensure correctness and completeness. If an allocation site

can be identified statically, as described in Section 4.3, then it will be labeled explicitly.

Otherwise, Prober-Static labels the size of its basic unit, and then relies on its dynamic

component to determine array-related allocations.

4.3 Compiler Analysis and Instrumentation

This section describes the detailed design and implementation of Prober-Static.

Prober-Static performs its static analysis and instrumentation on LLVM IR to identify

all susceptible allocations, and relies on dynamic confirmation to identify those that can-

not be determined statically. Overall, our hybrid approach guarantees a 100% coverage

for array-related allocations, which is is conservative and thus does not miss an allocation.

Prober-Static is implemented as one Link Time Optimization (LTO) pass because of two

major considerations. First, the allocation function may be located inside a wrapper func-

tion, but this wrapper function is invoked in another C file, so an inter-module analysis

(provided by LTO) is required. Second, placing instrumentation at link-time can effec-

tively avoid complicating or interfering performance-critical compile-time analysis and

optimizations (e.g., varied loop optimizations). Prober-Static determines array-related

allocations in three steps, as further described in Section 4.3.1.
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4.3.1 Identify Susceptible Allocations

Prober-Static analyzes susceptible (or array-related) allocations in the following steps.

Step-I: Identify memory allocation functions: Based on our knowledge, memory

allocations are invoked by several APIs and operators in C/C++, such as new, malloc(),

calloc(), realloc(), valloc, posix memalign(), and memalign(). But there are multiple

situations as described in the following.

Basic Case: Some memory allocation invocations can be directly recognized according

to the name in LLVM IR. For example, the new[] keyword is translated to Znam in LLVM

IR. Similarly, various macro definitions can also be recognized directly in IR level, because

they have already been replaced by the preprocessor before being converted to IR.

Special Cases: Prober-Static also handles two more sophisticated but common cases.

First, memory allocation is invoked inside a wrapper. For this case, Prober-Static recur-

sively treats all functions in its calling stack as wrappers of memory allocation functions.

Second, memory allocation is defined as a function pointer. Fortunately, LLVM translates

function pointer calls to indirect calls in its IR, and the function invocation is specified

by a load instruction. Listing 4.1 shows a simple example. The definition of malloc ptr

requires an additional check to determine whether line 2 is a memory allocation.

Listing 4.1: Memory alloc is defined and called as a fun ptr.

1 %4 = load i8∗ (i64)∗, i8∗ (i64)∗∗@malloc ptr, align 8

2 %5 = tail call i8∗ %4(i64 %0)

Step-II: Identify array-related allocations: Prober-Static further identifies array-

related allocations by the name of functions, the definition of allocation size, and the

operations of the corresponding object. Table 4.4 lists multiple examples that cover 36

bugs analyzed in Section 4.2.1. The details of these examples are discussed as follows.

Type I can be identified by the name of memory allocation functions. For example,
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new[] is known as an operator to allocate an array, and calloc allocates an array with

multiple objects with the same size. 5 out of 36 cases belong to this simple type.

Type II, III, and IV can be identified by the definition of size parameter. If its

size parameter is defined (or manipulated) by multiplication, addition, and strlen

operations, then the corresponding allocation is array-related. We can easily understand

this by checking its contradiction. If an allocation is just for a single structure, a sizeof

operation will be used to compute the size parameter, without these operations. Prober-

Static employs LLVM’s built-in def-use and use-def chains to assist the analysis on the

definition of size parameter. 24 out of 36 cases can be analyzed using this method.

Type V can be identified by the operation on corresponding objects. As we know,

some APIs, such as read, fread, pread, readv, read multiple bytes from the network or

a file to the local buffer. Therefore, whenever one object appears as the destination buffer

of these system calls, it should be tracked. Based on our analysis, 2 out of 36 cases belong

to this type. Similarly, the analysis also requires the support of LLVM’s built-in def-use

and use-def analysis.

Type VI requires further analysis, when the size parameter of an allocation is a

constant integer. For most cases, if the size parameter is a constant, the corresponding

allocation is an array. But there are some exceptions when analyzing in IR level. For

instance, if a statement is like this, (structS∗)malloc(sizeof(structS)), the size param-

eter is also interpreted as a constant integer in IR level. But this is not an array. To

avoid the misidentification, Prober-Static further confirms whether the size is equal to

the size of the corresponding data type. Although LLVM has some built-in functions to

get the size of the object type, it requires some additional analysis to determine the object

type. The challenge is to determine this when an allocation returns a void type pointer.

Prober-Static adopts a def-use or use-def analysis to find the definition or the usage of

the return value to figure out the object type.

Type VII is more complicated, since the object can be an array in some branches.

More specifically, LLVM-IR represents these branches with a PHINode instruction.
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Table 4.4: Examples of susceptible allocations.

Type Example Explanation Count

I ... = (int*) new[5];
... = (int*) calloc(5,sizeof(int));

Memory allocation calls
new[] or calloc.

5

II size = num * sizeof(struct S);
... = (struct S*) malloc(size);

size is defined by a
multiply operation.

13

III size = size1 + size2;
... = (struct S*) malloc(size);

size is defined by a add op-
eration.

10

IV size = strlen(buffer);
... = (int*) malloc(size);

size is a return value of
strlen().

1

V buffer = malloc(size);
read(buffer, 0, size);

Object is operated by
array-related syscalls.

2

VI ... = (int*) malloc(const value); size is a constant. 3
VII size = (i > 0 ? sizeof(int) : 10 *

sizeof(int));
... = (int*) malloc(size);

size is from a branch that
is potentially array-related.

2

SUM 36

Prober-Static tracks all incoming values of this PHINode instruction. If at least one value

belongs to Type II, III, or IV, this allocation is treated as array-related conservatively.

After the above analysis, Prober-Static will determine most allocations array-related

or not and selectively protect the arrays and ignore the ones that are not array-related.

Step I
Identify allocation functions

Step II
Identify array-related allocation

Basic allocation operations 

Allocation wrappers

Function pointers

Call new[ ] or calloc

Defined by mul

Defined by add

Special cases

Defined by strlen

Used in array syscall

By use-def

Constant value

Data type

Come from branch

PHINode instruction

Check allocation size

Check fun name/opBasic case

Check object operation

</>

C/C++

LLVM IR

Step III
Identify type

Def-use chain

Metadata

Dynamic 
checking

Figure 4.2: Identify susceptible allocations.

Step-III: Identify the object type (and unit size) for memory allocations non-

determined: If a statement cannot be determined array-related or not in Step-II, Prober-

Static labels the allocated object type (and thus the unit size) so that this allocation can
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be determined dynamically by Prober-Dynamic. Prober-Dynamic collects the size of an

allocation size and divides it by the unit size1. If this result is greater than one, Prober-

Dynamic will protect this memory allocation.

Prober-Static mainly employs LLVM’s built-in def-use chains to find an object’s type

in its usage site. Prober-Static also relies on the metadata in LLVM IR to find the type

information. Listing 4.2 and 4.3 show two examples of finding the object type with

def-use chains and metadata, respectively. Listing 4.2 illustrates that an explicit casting

operation reveals the object type.

Listing 4.2: Identify the object type with a casting

1 %1 = call noalias i8∗ @malloc(i64 70) #4

2 %2 = bitcast i8∗ %1 to %struct.s∗

Sometimes, it is difficult to find any obvious usage for a memory allocation, then the

metadata information showed in Listing 4.3 also helps to find its object type.

Listing 4.3: Identify the object type with metadata

1 %21 = tail call i32 @mbuffer create(%struct.mbuffer t∗ nonnull %20, i64 %19) #7, !dbg

↪→ !1409

2 !22 = !DIBasicType(name: ”int”, size: 32, encoding: DW ATE signed)

3 !1393 = !DILocalVariable(name: ”r”, scope: !1387, file: !137, line: 312, type: !22)

It is worth noticing that Prober-Static sets the type size as “1” by default, so even

it cannot determine the object type statically via the above analysis, the allocation site

will be protected effectively during the runtime. That is, Prober always ensures over-

protection.

Summary: Figure 4.2 summarizes Prober-Static’s implementation. In Step-I, it checks

each LLVM IR instruction according to one basic case and two special cases to identify all

1A memory allocation might be used in more than one data types
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invocations of allocation functions, allocation function wrappers, and allocation function

pointers. In Step-II, only these allocation invocations are further identified based on the

following order. First, it checks the function name and operator. Second, it checks the

allocation size with use-def, data type, and PHINode instruction information. Finally, it

checks whether the operations of the corresponding objects are related to some special

system calls. If an allocation meets any of these cases, then it is array-related. Prober-

Static labels it explicitly as shown in Section 4.3.2. Otherwise, Prober-Static finds the

object type (and type size) with either def-use chains or metadata in LLVM IR, and

instruments the size of the allocation before the allocation so that Prober-Dynamic will

confirm it dynamically.

In real-world applications, pointers and alias variables may complicate this analysis in

two aspects. First, an alias pointer points to the protected allocation. However, this will

not cause any issue, since Prober detects any access on the protected pages, no matter

whether they are accessed via an alias or not. Second, an allocation function contains

pointers or alias variables as its size parameter. Prober-Static relies on LLVM’s pointer

and alias analysis functions to associate these pointers or alias variables to the actual size

variable and then performs further analysis. The evaluation in Section 4.4 demonstrates

that Prober-Static can successfully identify and instrument array-related allocations for

46 bugs.

Listing 4.4: A LLVM-IR instrumentation example with new.

1 @specialMalloc = external thread local global i8, align 1

2 define dso local i32 @main() #0 {

3 store volatile i8 −1, i8∗ @specialMalloc, align 1

4 %6 = call i8∗ @ Znam(i64 20) #2

5 ret i32 0

6 }
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Listing 4.5: Equivalent C instrumentation of the new example.

1 extern thread volatile bool specialMalloc;

2 int main(){

3 specialMalloc = −1;

4 int∗ b = new int[5];

5 return 0;

6 }

4.3.2 LLVM-IR Instrumentation

After a susceptible allocation site has been identified, a thread-local variable, e.g., special-

Malloc, will be inserted to mark this site as a susceptible allocation. Here, the specialMalloc

variable is an integer variable, with the value of “0” by default. This variable is set to

“-1” before the allocation site if the allocation is array-related allocation. For instance,

the new example of Type I in Table 4.4 is instrumented as Listing 4.4, where Listing 4.5

shows its equivalent C code for clarification. If a memory allocation is non-determinable

statically, specialMalloc will be set as the size of the object type. Prober’s runtime will

determine if it should be protected.

4.4 Experimental Evaluation

We performed the experiments on a two-socket quiescent machine, where each socket is

an Intel(R) Xeon(R) Gold 6138 processor with 20 cores. It has 200GB main memory,

and 32KB L1, 1024 KB L2 and 28160 KB L3 cache. The experiments were performed

on Ubuntu 18.04, installed with Linux-4.15.0 kernel. All applications were compiled with

LLVM-8.0, by adding an analysis/instrumentation pass of Prober-Static.
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4.4.1 Effectiveness

The effectiveness evaluation includes two parts, 38 bugs included in the existing study [208]

and other overflow bugs included in other existing work, such as Bugbench [123], CVE

database, or HeapTherapy [212].

4.4.1.1 38 Bugs from the Existing Study

For 38 bugs listed in the existing study, we confirm that Prober correctly instrumented

36 bugs. The remaining two bugs cannot be instrumented due to the invocation of

external standard library calls (e.g., libstdc++), which are not analyzed (shared by

instrumentation-based approaches). Therefore, Prober’s evaluation presents high confi-

dence on the actual overhead, since it could instrument all bugs correctly.

Note that we did not run these buggy applications directly, due to the following rea-

sons. First, these bugs may not include erroneous inputs that are required to exercise

them. Second, many of them are not compatible with modern libraries, which requires a

significant amount of manual efforts for the compilation. Therefore, we only verify whether

the corresponding bugs have been instrumented correctly.

4.4.1.2 Other Real-world Bugs

We performed the effectiveness evaluation on 10 other real-world bugs that are not listed

in the existing study [208]. These applications and their specific bug trigger inputs are

obtained from Bugbench [123] , CVE database, or HeapTherapy [212]. Among these 10

vulnerable applications, the heartbleed and libtiff-4.0.7 vulnerabilities are caused by buffer

over-reads, while others are caused by buffer over-writes. The details of these applications

are shown in Table 4.5, where all of these bugs can be detected by AddressSanitizer. Ta-

ble 4.5 also listed the number of allocation sites that can be identified statically (“Static”

column) and dynamically (“Dynamic”). Overall, Prober detects all known overflows with-

out false positives. Upon detection, Prober stops the execution immediately (before the
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crashes), and reports the type of an overflow (over-read or over-write), the call path of

triggering the overflow, and the allocation site of the corresponding buffer. The evaluation

confirms that Prober is able to detect real heap overflows with its proposed instrumenta-

tion and runtime system.

Table 4.5: Statically and dynamically identified callsites in buggy applications

Application Reference Static # Dynamic #

bc-1.06 BugBench [123] 43 5
gzip-1.2.4 BugBench [123] 3 1
Heartbleed CVE-2014-0160 [66] 9314 3941
LibHX-3.4 CVE-2010-2947 [29] 23 15
Libtiff-4.0.1 CVE-2013-4243 [30] 406 75
Libtiff-4.0.7 CVE-2016-10269 [48] 421 104
Memcached-1.4.25 CVE-2016-8706 [187] 80 19
openjpeg-1.3 CVE-2012-3535 [166] 756 201
polymorph-0.4.0 BugBench [123] 1 0
squid-2.3 BugBench [123] 83 175

4.4.1.3 Case Study

Figure 4.3 shows the bug report for the heartbleed vulnerability. Prober identifies that

this bug is a buffer over-read problem. The bug report also includes the call stack of the

faulty instruction (where the overflow occurs), and the call stack of this object’s allocation

site.

According to the bug report, the overflow occurs in the memcpy() function, which

is invoked by the tls1 process heartbeat function at line 2586 of ./ssl/t1 lib.c file.

By checking the source code, the corresponding statement is memcpy(bp, pl, payload).

According to the attribute of this problem–a buffer over-read problem, it is easy to know

that the over-read issue is related to the source of memcpy, that is, either pl or payload.

Since pl is the starting address of a normal heap object that is allocated at line 770

of ./ssl/s3 both.c file, then the failure must be caused by payload. By examining the

source code, we could easily find out that payload is computed from the length of the data
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A buffer over−read problem is detected at:
../glibc/../multiarch/memcpy−avx−unaligned.S:237
../x86 64−linux−gnu/bits/string3.h:53
../openssl−OpenSSL 1 0 1f/ssl/t1 lib.c:2586
../openssl−OpenSSL 1 0 1f/ssl/s3 pkt.c:1092
../openssl−OpenSSL 1 0 1f/ssl/s3 both.c:457
...
../nginx−1.3.9/src/event/ngx event.c:247
../nginx−1.3.9/src/os/unix/ngx process cycle.c:807
...
This object is allocated at:
../openssl−OpenSSL 1 0 1f/ssl/s3 both.c:770
../openssl−OpenSSL 1 0 1f/ssl/s3 pkt.c:949
../openssl−OpenSSL 1 0 1f/ssl/s3 both.c:457

Figure 4.3: Bug report for the Heartbleed Problem.

that the server receives from the network. Therefore, via the bug report, programmers

can easily reason the root cause of overflow, and fix the problem correspondingly.

4.5 Limitations

Prober focuses on array-related heap overflows, representing over 86% of heap overflows

based on our observations (Section 4.2). It cannot detect array-related internal-structure

overflows, which is its biggest limitation. However, there is no fundamental reason why

this cannot be done. It is possible to arrange the fields of the structure so that array(s)

can be placed at the end of the corresponding structure. Adding the support for internal-

structure overflows will be our future work.

Prober can only detect overflows landing on the protection page(s). Prober can be

configured to change the pages for the protection if necessary. In theory, it is able to detect

more errors than existing approaches with redzones, such as AddressSanitizer [169]. It

currently cannot detect heap underflows. However, heap underflows cannot do any harm,

since they can only land on the non-used area.

Prober only detects overflows when the source code is analyzed and instrumented

by Prober-Static. This limitation is also shared by all instrumentation-based tools, e.g.,
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EffectiveSan [61] or AddressSanitizer [169]. When an overflowing object is allocated in a

library that is not instrumented, Prober cannot detect it. However, different from existing

work that detects overflows by checking memory accesses, Prober can detect overflows

caused by APIs of a non-instrumented library. This is a significant difference.

4.6 Related Work

We classify existing tools of detecting heap buffer overflow based on the type of approaches.

Static Detection: Many tools utilize static analysis to detect buffer overflow

bugs [122, 71, 109, 112]. They only analyze software source code in order to reason which

statements could potentially cause buffer overflows. However, some variables (e.g., indi-

rect branches) could not be determined without the execution. Thus, they may generate

many false positives or false negatives, which requires further manual efforts to confirm

the reported bugs. In contrast, Prober never generates any false positives.

Dynamic detection: Several tools place an inaccessible memory page around every

heap object [139, 140, 150, 212], which is similar to Prober. Memory accesses to the

protected pages will generate a SIGSEGV signal. However, these existing work suffer from

a prohibitively high performance overhead by protecting all pages or even probabilistically.

Although Prober employs the same mechanism to detect heap buffer overflow, it narrows

down heap objects that can potentially result in buffer overflows, which drastically reduces

its performance overhead. Also, Prober has a carefully designed runtime system to reduce

its overhead.

Static instrumentation-assisted detection: Numerous tools analyze source code

to identify necessary instrumentation, which favors sanity checks at runtime [162, 6, 73, 80,

135, 149, 169, 62, 106, 41]. They instrument all memory accesses at compilation phases,

and check the validity of accesses at runtime. AddressSantizer [169] is the state-of-art of

this type of approaches, which further employs the static analysis to prune out certain

unnecessary checks. However, AddressSanitizer still imposes non-negligible performance
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overhead. Different from these tools, Prober does not check every memory access, but

relies on page protection to detect overflows without checking overhead, if there is no

overflow.

Dynamic instrumentation-assisted detection: Many dynamic analysis tools de-

tect memory errors by checking memory accesses during runtime, such as Valgrind’s Mem-

check tool [136], Dr. Memory [28], Purify [81], Intel Inspector [84], and Sun Discover [144].

Due to the expensive instrumentation and inspection, they typically impose a too high-

performance overhead to be employed in a production environment.

Hardware-assisted detection: A few tools rely on new hardware to detect buffer

overflows. Intel MPX tries to reduce the overhead of pointer checks by embedding checks

into a new hardware [142]. BOGO relies on Intel MPX to provide both spatial and tempo-

ral safety [213]. However, the overhead of validating every memory access is too high to be

adopted in practice. Sampling-based techniques, such as CSOD [120] and Sampler [174],

utilize hardware watchpoints or Performance Monitor Unit (PMU) hardware to monitor

a few heap objects at one time or validate a subset of memory accesses. Although they

impose low runtime overhead similarly as Prober, they cannot guarantee the same effec-

tiveness as Prober, especially when there are a lot of heap objects. CHERI requires the

cooperation of architecture, compiler, and operating system together to enforce memory

safety [198], which inevitably increases developers’ effort. Prober, which is a dynami-

cally linked library, imposes little manual effort, without changing the underlying OS and

requiring new hardware.

Postmortem detection: Some evidence-based tools detect buffer over-writes by ap-

pending canaries after each heap object and checks if canaries are corrupted at memory

deallocations or epoch ends [211, 121, 119, 212]. Since read operations do not leave evi-

dence, they cannot detect read-based buffer overflow, while Prober can detect both buffer

over-reads and buffer over-writes. Also, evidence-based approaches cannot be applied

in the security environment, since the attacks may already be issued successfully before

performing the detection.
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4.7 Summary

This chapter presents a novel system to defend heap overflows. It is based on a key

observation obtained from the analysis of 48 real overflow bugs: overflowing objects are

typically involved with arrays. Based on this observation, Prober takes a two-phase ap-

proach to detect heap overflows: its static component identifies all possible array-related

allocations before the compilation, and then instruments the code correspondingly; its

dynamic component further intercepts the allocations, and redirects the allocations from

susceptible allocation sites to the protected heap in order to detect the overflows with the

page protection mechanism. Overall, Prober only imposes around 1.5% performance over-

head on average, but without compromising its effectiveness. The low overhead and the

high effectiveness makes Prober an always-on approach for the production environment.
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Chapter 5

High performance Sparse Tensor

Algebra Compiler

Tensor algebra is widely used in many applications, such as scientific computing, machine

learning, and data analytics. The tensors representing real-world data are usually large

and sparse. There are tens of storage formats designed for sparse matrices and/or ten-

sors and the performance of sparse tensor operations depends on a particular architecture

and/or selected sparse format, which makes it challenging to implement and optimize ev-

ery tensor operation of interest and transfer the code from one architecture to another.

We propose a tensor algebra domain-specific language (DSL) and compiler infrastructure

to automatically generate kernels for mixed sparse-dense tensor algebra operations, named

SPACe. The proposed DSL provides high-level programming abstractions that resemble

the familiar Einstein notation to represent tensor algebra operations. The compiler per-

forms code optimizations and transformations for efficient code generation while covering

a wide range of tensor storage formats. SPACe compiler also leverages data reordering to

improve spatial or temporal locality for better performance. Our results show that the

performance of automatically generated kernels outperforms state-of-the-art sparse ten-

sor algebra compiler, with up to 20.92x, 6.39x, and 13.9x performance improvement, for

parallel SpMV, SpMM, and TTM over TACO, respectively.
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5.1 Introduction

Tensor algebra is at the core of numerous applications in scientific computing, machine

learning, and data analytics. Tensors are a generalization of matrices to any number

of dimensions, which are often large and sparse. Sparse tensors are used to represent

a multifactor or multirelational dataset, and has found numerous applications in data

analysis and mining [104, 158, 182] for health care [2, 125], natural language processing [24,

145], machine learning [117, 173], and social network analytics [216], among many others.

Developing optimized kernels for sparse tensor algebra methods is complicated. First,

sparse tensors are often stored in a compressed form (indexed data structures) and com-

putational kernels needs to efficiently loop over the nonzero elements of the tensor inputs.

Second, iterating over nonzero elements highly depends on the particular storage format

employed, hence many algorithms exist to implement the same operation, each targeting

a specific format. Finally, applications may use multiple formats concurrently throughout

the computation and mix different formats in the same operation to achieve high perfor-

mance. When tensors with different storage formats are used in the same operation, there

are two options: converting one (or both) tensor(s), which is time-consuming especially if

the tensor is only used once, or developing an algorithm that can efficiently iterate over

both formats simultaneously, which lacks generality and requires different implementations

for each combination of tensor formats [17, 118].

The current solutions implement ad hoc high-performance approaches for particu-

lar computer architecture and/or format. Most of these algorithms tackle specific prob-

lems and domains and conveniently store sparse tensors in a format that exploits the

characteristics of the problem. This approach has resulted in tens of different for-

mats [179, 114, 137, 43, 17] to represent sparse tensors. Some of these formats are

storage-efficient for specific inputs [43, 193, 105, 17] or evenly nonzero distributions

across rows/columns [131, 43]; some are better suited for specific tensor computations,

e.g., sparse matrix-vector multiplication [205, 204] versus sparse tensor-matrix multiplica-
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tion [178, 17]; others are particularly designed for different computer architectures, such

as CPUs [204, 115] versus GPUs [127, 129]. On the other hand, it is infeasible to manu-

ally write optimized code for each tensor algebra expressions considering the all possible

combinatorial combinations of tensor operations and formats.

To solve the above challenges, we present a sparse tensor algebra compiler, named

SPACe, that is agnostic to storage formats: as opposed to a library of sparse tensor

methods, where the methods are statically defined, a compiler can automatically and dy-

namically generate efficient tensor algebra kernel specifically optimized mixed dense and

sparse tensor expressions. SPACe Domain-Specific Language (DSL) is a highly-productive

language that provides high-level programming abstractions that resemble the familiar

Einstein notations [63] to represent tensor operations. SPACe is based on the Multi-Level

Intermediate Representation (MLIR) [111] framework recently introduced by Google to

building reusable and extensible compiler infrastructures. The key benefit of building

on top of MLIR is its built-in performance portability. In the SPACe multi-level In-

termediate Representation (IR), domain-specific, application-dependent optimizations are

performed at higher levels of the IR stack where operations resemble programming lan-

guages’ abstractions and can be optimized based on the operations semantics. Generic,

architecture-specific optimizations are, instead, performed at lower-levels, where simpler

operations are mapped to the memory hierarchy and to the processor’s registers.

To enable modular code generation with respect to formats and combinations of for-

mats, we employ four storage format attributes – dense, compressed unique, compressed

non-unique, and singleton – which are assigned to each tensor dimension [99]. By properly

combining those attributes in each dimension, it is possible to express common sparse ten-

sor compressed formats, such as COO, CSR, DCSR, ELLPACK, CSF and Mode-generic.

SPACe code generation algorithm analyzes the dimension attributes and produces code

to efficiently iterate over the nonzero elements of the input tensors. Since the number of

storage format attributes is far lower than all possible combinations of storage formats, the

code generation algorithm is greatly simplified and yet can support most of the commonly
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used sparse tensor storage formats and arbitrary combinations of those. This approach

lets users not only mix and match storage format desired for their applications but also can

enable custom formats without modifying the underlying compiler infrastructure. Once

the loop form of a computation has been generated at the IR, SPACe either lowers the code

for sequential or parallel execution. In the former case, SPACe produces a high-quality

LLVM IR (which we show in this work has better loop unrolling and vectorization than

an equivalent LLVM IR produced by clang); in the latter case, instead, SPACe lowers

code to the async dialect for asynchronous task execution based on LLVM co-routines

Compared to hand-tuned libraries [115, 19, 205, 114, 179, 137] and source-to-source com-

pilers [99, 97, 95], our approach is more portable, flexible, and adaptable, as emerging

architectures and storage formats can be added without re-engineering the computational

algorithms. Finally, SPACe employs the state-of-the-art data reordering algorithm [116]

to increase spatial and temporal locality on a modern processor.

We evaluated SPACe with 2833 sparse matrices and six tensors from the SuiteSparse

Suite Matrix Collection [54], FROSTT Tensor Collection [176] and BIGtensor [87]. Our

results show that SPACe can generate efficient code for multi-threaded CPU architec-

tures from high-level descriptions of the algorithms. Compared to state-of-the-art high-

productivity tensor algebra languages and compiler, SPACe provides on average 2.29x,

up to 6.26x, performance improvements over the TACO compiler for sequential Sparse-

Matrix Dense-Matrix (SpMM). We also show that asynchronous task execution outper-

forms OpenMP parallelization, especially for small input matrices, where runtime overhead

is predominant. Our results show up to 6.39x and 13.9x speedup over TACO for SpMM

and TTM, respectively. Finally, data reordering achieves up to 3.89x and 7.14x perfor-

mance improvements for parallel SpMV and SpMM kernels, respectively, over the original

SPACe.

To the best of our knowledge, SPACe is the first MLIR-based compiler that integrates

generic code generation for arbitrary input formats, data reordering, and automatic par-

allelization within the same framework. SPACe can improve end-user application perfor-
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mance while supporting efficient code generation for a wider range of formats specialized

for different applications and data characteristics. This chapter makes the following con-

tributions:

• We introduce the SPACe DSL, an intuitive yet powerful and flexible language to

implement dense and sparse tensor algebra algorithms;

• We propose an MLIR-based compiler that automatically generates efficient sequen-

tial and parallel code for a tensor expression with dense and mixed operands while

supporting the important sparse tensor storage formats.

• We integrate the state-of-the-art data reordering algorithm to enhance data locality.

• We provide an exhaustive experimental evaluation and show that SPACe generally

outperforms state-of-the-art tensor compiler for both sequential and parallel execu-

tion.

5.2 Background and Motivation

There exist various compressed and uncompressed formats to store sparse matrices and

tensors in the literature, including COOrdinate (COO), Compressed Sparse Row (CSR),

Double Compressed Sparse Row (DCSR), ELLPACK, Compressed Sparse Fiber (CSF),

and Mode-Generic [19, 67, 129, 40, 93]. The specific format chosen to represent data in

an application generally depends on the expected characteristics of the data itself and

how these impact other desired properties, such as performance of a computational kernel

or memory footprint (which is particularly important in the case of very large, multi-

dimensional tensors).

Each format is important for different reasons. COO [165, 9] is commonly used to

store sparse matrices and tensors, such as the Matrix Market exchange format [1] and

the FROSTT sparse tensor format [176]. While COO is the most natural format, it is

not necessarily the most performant format. CSR [199] is for sparse matrices, which
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compresses row indices as pointers to row beginning positions to avoid duplicated stor-

age and increase performance for memory bandwidth-bound computation such as Sparse-

Matrix Dense-Vector (SpMV). DCSR [31] further compresses zero rows by adding an extra

pointer to nonzero rows based on the CSR format. With an extra level of compression

on rows, DCSR is more efficient than CSR for highly sparse (hypersparse) data. The

ELLPACK [93] format is efficient for matrices that contain a bounded number of nonze-

ros per row, such as matrices that represent well-formed meshes. CSF [179] generalizes

the DCSR or CSR matrix format to high-order tensors that compresses every dimension.

Mode-Generic format [17] is a generic representation of semi-sparse tensors with one or

more dense dimensions stored as dense blocks with the coordinates of the blocks stored in

COO.

An application might need one or more of these formats based on its needs, which

makes it important to support computation with various tensor storage formats and their

combinations. The main challenge is that the computational kernel needs to effectively

iterate over each sparse input tensor stored in different storage formats. This problem is

especially more complicated for expressions that involve multiple operands.

Because of the large number of storage formats and possible combinations, most state-

of-the-art sparse tensor libraries support only a few sparse formats (and generally only

binary operations) or convert tensors to an internal storage format, thereby potentially

losing the performance, memory footprint, or other advantages that a specific format may

offer. A compiler, on the other hand, can automatically generate the efficient code for

specific input formats and their combinations, increasing flexibility, adaptivity to new for-

mats, and portability to various hardware platforms. To achieve this goal, two important

requirements need to be satisfied: 1) a unified way to represent important sparse storage

formats (Section 5.4) and 2) an efficient algorithm to generate specific code for a given

expression and its particular input formats (Section 5.6).
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1   def main() {
2         #IndexLabel Definition
3         IndexLabel [a] = [?];
4         IndexLabel [b] = [?];
5         IndexLabel [c] = [32]; 
6
7         #Tensor Definition
8.       Tensor<double> A([a,b],CSR);   #Tensor<double> A([a,b],{D,CU}); 
9.       Tensor<double> B([b,c],Dense); #Tensor<double> B([b,c],{D,D});
10      Tensor<double> C([a,c],Dense); #Tensor<double> C([a,c],{D,D});
11
12       #Tensor Readfile Operation
13       A[a,b] = space_read(filename); 
14
15      #Tensor Fill Operation
16      B[b,c] = 1.0;
17      C[a,c] = 0.0;
18
19      #Tensor Contraction
20      C[a, c] = A[a,b] * B[b,c];
21   }

Figure 5.1: An example SPACe program for Sparse Matrix-times-Dense-Matrix operation.

5.3 SPACe Overview

SPACe consists of a DSL for tensor algebra computations, a progressive lowering process

to map high-level operations to low-level architectural resources, a series of optimizations

performed in the lowering process, and various IR dialects to represent key concepts,

operations, and types at each level of the multi-level IR. This section reviews the key

characteristics of our compiler framework. SPACe is based on the MLIR framework [111], a

compiler infrastructure to build reusable and extensible compilers and IRs. MLIR supports

the compilation of high-level abstractions and domain-specific constructs and provides a

disciplined, extensible compiler pipeline with gradual and partial lowering. Users can

build domain-specific compilers and customized IRs (called dialect), as well as combining

existing IRs, opting into optimizations and analysis.

Our previous work focuses on dense high-dimensional tensor contractions. The com-

piler reformulates tensor contractions as a sequence of transpose and matrix-matrix mul-

tiplication operations, then generates efficient code by several code optimizations (e.g.,



CHAPTER 5. SPARSE TENSOR ALGEBRA COMPILER 69

loop tiling, micro kernel). The detailed description of previous work and its perfor-

mance results for important tensor expressions from the Northwest Chemistry framework

(NWChem) [191] can be found in [133]. This work, instead, focuses on sparse tensor

algebra.

Figure 5.1 shows an example SPACe program for an SpMM operation. The

IndexLabel operation defines an index label. It can assign the size of the index with

a scalar number. If the size is unknown in static time, then a question mark (?) is used

(Lines 3-5). The Tensor operation defines new tensors (Lines 8-10); the SpMM operation

is defined at Line 20. In particular, the matrix A is stored in the CSR format while the

matrix B and the result matrix C are dense. Note that there is no specific operation for

SpMM at language level, nor the programmer needs to explicitly state the format of each

input tensor while contracting the two tensors. SPACe atomically derives the specific

operation from the format of input tensors and the index labels. SPACe internally an-

notates each tensor with storage format attributes, devises the storage formats used in

the contraction, and properly passes this information down to the IR stack when lowering

the code. SPACe can generate the appropriate code according to the input tensor storage

formats (Section 5.6.2).

The code generation in SPACe follows a progressive lowering approach where optimiza-

tions are applied at different levels. Figure 5.2 shows the compilation pipeline of SPACe,

where our contributions are annotated by the dashed box. Users express their computa-

tion in a high-level tensor algebra DSL (Section 5.5). First, the SPACe DSL is lowered to a

Sparse Tensor Algebra (TA) IR, the first dialect in the SPACe IR stack. The language op-

erators, types, and structures are first mapped to an abstract syntax tree and then to the

TA dialect. The TA dialect contains domain-specific concepts, such as multi-dimensional

tensors, contractions, and tensor expressions. Our compiler framework applies high-level

optimizations and transformation leveraging semantics information carried from the DSL.

For example, SPACe tracks the input tensors’ definitions and annotates each tensor with

storage format attributes on each dimension, based on the index label definitions.
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Figure 5.2: SPACe execution flow and compilation pipeline

Next, our compiler lowers the Tensor Algebra (TA) IR code to lower levels of the

IR stack, which follows different paths depending on the operation and input formats.

Dense tensor algebra operations are lowered first to the linear algebra dialect, then to

the Structured Control Flow (SCF) dialect, and finally to the standard dialect. Sparse

linear algebra operations are lowered to the SCF dialect which is a loop represented in the

MLIR framework. At this point, SPACe employs generic optimizations during the lowering

steps but also considers additional information about the final target architecture. For

CPU execution, the code is lowered to the Low-Level Virtual Machine (LLVM) dialect

for sequential execution and the async dialect to models asynchronous execution at a

higher-level and then to proper LLVM IR for final assembly and linking.
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Figure 5.3: Example matrix and tensor represented in different formats. Each format is
a combination of the storage format attributes.

5.4 Tensor Storage Format

As reported in Section 5.2, to support multiple sparse storage formats a compiler needs a

uniform way to represent each tensor in memory. This internal storage formats need to

preserve the characteristics of the original format, e.g., data compression or performance

for specific sparse patterns, while allowing a unified algorithm to generate efficient code

for each computational expression. SPACe defines a set of storage format attributes

for each dimension to represent various sparse tensor formats. Code generation is then

based on each dimension’s storage format attributes rather than the whole format, which

greatly reduces the number of formats and combinations that a compiler needs to support.

Importantly, SPACe does not convert the original data layout into a different storage

format. Instead, the storage format attributes are used to compose meta-data information

that describes the original format, i.e., the data layout of the original format is preserved

in memory and retains the original characteristics (compression, locality, etc.).

Representing every tensor dimension separately has been shown to be an effective way

to generalize tensor storage formats and support efficient code generation [98]. Represent-

ing each dimension independently makes it easier to manage, adapt, and convert formats

and to generate computational kernels uniformly. SPACe defines the following four storage
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format attributes borrowed from [179, 98, 114]:

Dense (D). This dimension is in the “dense” format, i.e., all coordinates in this

dimension will be accessed during the computations. For this format, we only use

one scalar number stored in the pos array to represent the size of this dimension,

such as the row dimension in Figure 5.3a(3).

Compressed Unique (CU). This dimension is in a “compressed unique” format,

i.e., the coordinates of nonzero elements in this dimension are compressed, and only

the unique (no duplication) ones are stored in the array crd. It uses another array

pos to store the start position of each unique coordinate, such as the row dimension

Figure 5.3a(4), where the elements 1 and 2 are in the same row, but only one row

coordinate is stored in row crd array.

Compressed Nonunique (CN). This dimension is in a “compressed non-unique”

format, i.e., all the coordinates of nonzero elements will be recorded in crd array,

and every coordinate in the crd array will be accessed one by one. CN then stores

the start and the length of the crd array to the pos array, such as the row dimension

Figure 5.3a(2), where all the row coordinates of the nonzeros are stored in row crd

array, row pos only stores the start and the length of the row crd array.

Singleton (S). The dimension is in a “singleton” format, i.e., all the nonzero co-

ordinates are recorded to the array crd without any other information, such as the

column dimension Figure 5.3a(2), only the column coordinates of the nonzeros are

stored in row crd array.

Internally, each tensor dimension is described by two arrays, a position (pos) and a

coordinate (crd) array. D only uses the pos array to store the size of the dimension; the

compressed storage format attributes CU and CN use both pos and crd arrays to store

the nonzero coordinates and their positions; S only uses the crd array to store the nonzero

coordinates in the dimension.
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Furthermore, Figure 5.3 shows two examples that store a sparse matrix and a sparse

tensor, respectively, in three formats (COO, CSR, and DCSR) with the representation of

varied storage format attributes combinations. By properly combining the tensor storage

format attributes, SPACe can represent the important sparse storage formats, including

COO, CSR, DCSR, BCSR, CSB, ELLPACK, CSF and Mode-generic, in a uniform way,

while retaining each format’s characteristics.

5.5 SPACe Language Definition

SPACe provides a high-level Tensor Algebra DSL that increases portability and productiv-

ity by allowing scientists to reason about their algorithms implementation in their familiar

notation and syntax. Specifically, SPACe DSL allows scientists 1) to express concepts and

operations in a form that closely resembles their familiar notations and 2) to convey

domain-specific information to the compiler for better program optimization. For exam-

ple, our language represents Einstein mathematical notation and provides users with an

interface to express tensor algebra semantics. The same SPACe program can be lowered

to different architectures, and the lowering steps can follow different optimizations and

lowering algorithms, allowing SPACe to produce high-quality code for target architectures

without excessive burden on the programmer (see Section 5.6). This work extends the

SPACe tensor algebra language to support sparse tensor algebra operations and syntax,

the storage formats described in the previous sections.

Furthermore, we extend SPACe to support dynamic data types. As discussed above,

Figure 5.1 shows an example of a SPACe program. In the SPACe language, a tensor

object refers to a multi-dimensional array of arithmetic values that can be accessed by

indices. Range-based index label constructs (IndexLabel) represent the range of indices

expressed through a scalar, a range, or a range with increment. Index labels can be used

both for constructing a tensor or for representing a tensor operation. Different from the

original SPACe compiler [133], IndexLabels can now be defined as static or dynamic.
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Static IndexLabels explicitly state the size of the dimension (Line 5) while dynamic

IndexLabels (Lines 3 and 4) only indicate that there exists a dimension, but the size will

be determined later on during the execution of the program. Dynamic and static index

labels differ in that dynamic index labels indicate an unknown size through a question

mark (?) operator while static index labels explicitly state the size of the dimension

through a scalar value.

A tensor is constructed by defined static or dynamic index labels and by declaring

the sparsity of each dimension, according to the internal storage format described in the

previous section. In Figure 5.1 tensor A is stored in CSR format, while tensors B and C are

stored in dense format. Note that SPACe provides convenient notation to represent the

most common tensor storage format, avoiding the need to specify the storage format for

each dimension, as described in the comments at Lines 8-10. Internally, however, SPACe

reasons in terms of sparsity on each dimension when generating code.

In the example SPACe program in Figure 5.1, the tensor A, B, and C are initialized

with a tensor file by space read(), the constant value 1.0, and the constant value 0.0,

respectively. The function space read() first reads a tensor from the file in COO format

and then converts it to our internal storage format (see Section 5.4) to represent CSR.

We implement space read() as a runtime function, and it can be called in the SPACe

program directly.

The last line in the program performs the SpMM operation. However, users need not

explicitly state that the operation is an SpMM but can simply use the common tensor con-

traction * operator. SPACe will infer that the operator refers to an SpMM operation from

the storage format of the input tensors, in this case, a sparse matrix and a dense matrix,

and will generate the proper code to iterate over the specific storage format through rules

generated from the definition of storage format attributes. Also, note that SPACe employs

index labels to determine the type of operation to perform. For example, the * operator

refers to a tensor contraction if the contraction indices are adjacent or to element-wise op-

eration otherwise. In Figure 5.1, the index label b is used as contraction indices between
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1  #map0 = affine_map<(d0, d1, d2) -> (d0, d1)>
2  #map1 = affine_map<(d0, d1, d2) -> (d1, d2)>
3  #map2 = affine_map<(d0, d1, d2) -> (d0, d2)>
4  module {
5     func @main() {
6         %c0 = constant 0 : index
7         %c1 = constant 1 : index
8         %c32 = constant 32 : index
9         %a = "ta.index_label_dynamic"(%c0, %c1) : (index, index) -> !ta.range
10       %b = "ta.index_label_dynamic"(%c0, %c1) : (index, index) -> !ta.range
11       %c = "ta.index_label_static"(%c0, %c32, %c1) : (index, index, index) -> !ta.range
12       %A = "ta.tensor_decl"(%a, %b) {format = ["D", "CU"]} : (!ta.range, !ta.range) -> tensor<?x?xf64>
13       %B = "ta.tensor_decl"(%b, %c) {format = ["D", "D"]} : (!ta.range, !ta.range) -> tensor<?x32xf64>
14       %C = "ta.tensor_decl"(%a, %c) {format = ["D", "D"]} : (!ta.range, !ta.range) -> tensor<?x32xf64>
15       %labeledA = "ta.labeled_tensor"(%A, %a, %b) : (tensor<?x?xf64>, !ta.range, !ta.range) -> tensor<?x?xf64>
16       %read_data = "ta.generic_call"() {callee = @space_read,  filename = "dataset.mtx"} : () -> tensor<*xf64>
17       %setop = "ta.set_op"(%labeledA, %read_data) {__beta__= 0.000000e+00 : f64} : 

 (tensor<?x?xf64>, tensor<*xf64>) -> tensor<?x?xf64>
18       "ta.fill"(%B) {value = 1.0 : f64} : (tensor<?x32xf64>) -> ()
19       "ta.fill"(%C) {value = 0.0 : f64} : (tensor<?x32xf64>) -> ()
20       "ta.tc"(%A, %B, %C) {alpha = 1..000000e+00 : f64, beta = 0..000000e+00 : f64, 
                      format = [["D", "CU"], ["D", "D"], ["D", "D"]],  indexing_maps = [#map0, #map1, #map2]} : 
                      (tensor<?x?xf64>, tensor<?x32xf64>, tensor<?x32xf64>) -> ()
21       "ta.return"() : () -> ()

Figure 5.4: Generated sparse tensor algebra dialect for SpMM operation

A and B (adjacent or internal indices), thus the operator * refers to a tensor contraction.

Therefore, SPACe can not only support tensor contraction but are generally applicable to

many other operations as well. In conclusion, the SPACe TA language simplifies writing

tensor algebra program by supporting common programming paradigms and enables users

to express high-level concepts in their preferred notation.

5.6 Compilation Pipeline

We introduce the sparse tensor algebra dialect in MLIR to support mix dense/sparse tensor

algebra computations with a wide range of storage formats. We use format attributes to

represent each dimension’s sparsity format in a uniform way in the proposed TA IR.

SPACe compiler generates efficient code based on the represented format attribute per

dimension. This section describes the compiler framework, which consists of two main

parts: 1) a sparse MLIR TA dialect to represent tensor storage formats and operations,

and 2) code generation algorithms to generate efficient serial and parallel code starting

from the proposed TA DSL.
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5.6.1 Sparse Tensor Algebra Dialect

SPACe supports a uniform tensor storage format based on the attributes described in

Section 5.4 and the tensor algebra operations supported in our DSL. Figure 5.4 shows the

generated tensor algebra IR for the SpMM program in Listing 5.1. The rest of this section

details the various operation in the sparse TA dialect.

Static/Dynamic Index Labels. The sparse tensor algebra dialect supports two

types of index labels, static and dynamic. If the dimension size of the index is known

at compile-time, SPACe uses ta.index label static to represent the index label. It

has three operands, which represent the start, end, and step value on this index.

ta.index label dynamic is used to represent the index label when the dimension size

is unknown at compile time. ta.index label dynamic has two operands, the start, and

step value on this index. The end value on this index will be known at runtime.

Sparse Tensor Declaration. In the sparse tensor algebra dialect, the tensor is

declared with ta.tensor decl operation. The operands of ta.tensor decl are the index

labels of the tensor. It can contain an arbitrary number of operands, which means it can

declare arbitrary dimensional tensor. The ta.tensor decl operation also contains storage

format attributes of the tensor in each dimension for sparse tensors.

Sparse Tensor Operations. The sparse TA dialect also defines the tensor algebra

operations supported by SPACe. For example, the tensor contraction ta.tc operation for

an SpMM computation (shown in line 20 of Figure 5.4) takes two input tensors and com-

putes the result of the contraction. The first and second operands (%A and %B) are input

tensors, and the third operand (%C) is the output tensor. “ta.sptensor<tensor<?×i32>,

tensor<?×i32>, tensor<?×i32>, tensor<?×i32>, tensor<?×f64>>” is the data type for

%A, while “tensor<?×32×f64>” is the data type for %B, and “tensor<?×32×f64>” is

the data type for %C. “-> ()” represents the return type which is void.

We introduce a formats attribute to extend the original ta.tc to provide the storage

format information of each input tensor. In line 20 of Figure 5.4, the first tensor is in
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 %A = “ta.sptensor_construct”(%A1pos, %A1crd, %A2pos, %A2crd, %Aval) :
            (tensor<?xi32>, tensor<?xi32>, tensor<?xi32>, tensor<?xi32>, 
            tensor<?xf64>)  ->  
            (!ta.sptensor<tensor<?xi32>, tensor<?xi32>, tensor<?xi32>,   
            tensor<?xi32>, tensor<?xf64>>)

Figure 5.5: Sparse tensor data structure construction operation

the CSR format, while the second and third are all Dense tensors. The code in the

figure shows that each input tensors is associated with its storage format information.

We also introduce indexing maps to ta.tc to represent the indices of each tensor. The

indexing maps helps propagate indices information along with the lowering stack. The

tensor expression and the storage format information will be further propagated down to

the lower level of the IR to provide the format attribute in each dimension when generating

the computational code.

Sparse Tensor Data Type. As described in Section 5.4, a tensor T consists of k

dimensions di for 0 ≤ i ≤ k − 1, where every dimension di is associated with a uniform

storage attribute ai ∈ {D,CU,CN,S}. SPACe associates two arrays crd and pos to

each dimension to describe the storage format (meta-data). In the TA dialect, we define

a sparse tensor as a struct data structure, which contains the nonzero indices in each

dimension and their values.

Figure 5.5 shows how a 2D sparse matrix is represented in our TA dialect. In Fig-

ure 5.5, ta.sptensor construct is the function to construct the sparse tensor struct,

which is implemented as an operation in the TA dialect. The sptensor construct opera-

tion takes the pos and crd arrays in each dimension (%A1pos, %A1crd, %A2pos, %A2crd)

and the nonzero values (%AVal) as input, and returns a ta.sptensor type data structure

that represents a sparse tensor in the TA dialect. The tensor types within ta.sptensor

represent the pos and crd arrays corresponding to each dimension of the tensor itself

(see Section 5.4). In the ta.sptensor structure, the type of %A1pos, %A1crd, %A2pos,

%A2crd are tensor<?×i32>, the type of %Aval is tensor<?×f64>.
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5.6.2 Sparse Code Generation Algorithm

SPACe lowers the code from high-level SPACe DSL language to low-level machine code

in multiple lowering steps.

DSL Lowering. The first step in our compilation pipeline consists of lowering the

high-level SPACe DSL into the sparse TA dialect. Figure 5.4 shows the TA dialect corre-

sponding to the SPACe code presented in Figure 5.1. In Figure 5.4, ”ta.” represents the

tensor algebra dialect. The indexLabel operation in SPACe DSL will be lowered either

into a ta.index label static operation or a ta.index label dynamic operation (e.g.,

Lines 9-11 in Figure 5.4) based on whether the size of the dimension represented by the

index label is known or unknown at compile time. The ta.index Label operation has

three parameters (%A, %a, and %b), which are the start, the end, and the iteration step

values in the dimension represented by the index label. The IndexLabel at Lines 3-4 of

Figure 5.1 has an unknown size, so it will be lowered into the ta.index label dynamic

operation, which only contains the start value of the dimension. The dimension size will

be inferred during the runtime.

Progressive Lowering. Next, the sparse TA dialect is further translated to lower

MLIR dialects. We describe this lowering process in two parts, early lowering and late

lowering .

First, in the early lowering step, SPACe lowers all the operations in the sparse TA

dialect, except the ta.tc operation. In particular, the ta.tensor decl operation, which

declares a tensor, is lowered into alloc and tensor load operations, which are standard

dialect operations in std dialect for dense. For sparse tensors, ta.tensor decl operations

are lowered into more, a composition of alloc and tensor load operations for pos and

crd arrays to store the coordinates of nonzeros in each dimension, and val array to store

nonzero values. These coordinates of nonzeros are later used by ta.sptensor construct

operation (Figure 5.5) to construct a sparse tensor. To fill the pos, crd, and val ar-

rays, the ta.generic call operation is invocated to to call the space read() function.
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The ta.generic call operation is then lowered to the call operations in the MLIR

std dialect. The ta.fill operation initializes dense tensors with identical values. The

ta.fill operation will be lowered into the fill operation in the MLIR linalg dialect.

The ta.return operation returns the function, and is lowered into return operation

in the MLIR std dialect. The ta.index label dynamic operations is lowered into the

ta.index label static operation when the index label is identified from the input file.

Second, in the late lowering step, ta.tc operations are lowered into the MLIR scf

(structure control flow) dialect operations. Figure 5.7 describes the lowering algorithm

to ta.tc with an example mix sparse dense tensor contraction operation, where a sparse

tensor A times a dense tensor B, and the output can be either sparse or dense. The

algorithm takes ta.tc as input, and automatically generates the computational kernel

code of a combination of scf and std dialects. ta.tc is the sparse tensor algebra dialect

of the tensor contraction operation presented at Line 20 in Figure 5.1. As shown at Line

20 in Figure 5.4 ta.tc operation is lowered based on the code generation algorithm in

Figure 5.7.

Figure 5.7 shows SPACe’s code generation algorithm that consists of three key steps.

This algorithm is general, applicable to varied tensor algebra operations, and can generate

arbitrary index permutations. Moreover, in contrast to TACO, SPACe can generate sparse

output. Take tensor expression Cik = Aij ∗ Bjk as an example, and assume the format

of A is [D, CU], B is [D, D] and C is [D, D], respectively. The basic idea of this code

generation is as follows:

Step-I (Line 1 to Line 3) collects both index information as well as the format

attribute of each index. The above sample tensor expression has three indices (all-

Indices = {i, j, k}). The order of these indices matters, and is decided by tensor access

orders. The format attribute of each index is decided by the usage of this index. If this

index appears in dense input tensors only, its format attribute is D; otherwise, the format

attribute is decided by the corresponding dimension of the sparse tensor. For the above

sample tensor expression, the format attribute of index i is D and j is CU (both decided
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by sparse input tensor A), and k is D (decided by dense input tensor B), respectively. Af-

ter collecting this information, this algorithm defines three index variables (vIdxA, vIdxB

and vIdxC) to access the value array of tensor A, B and C, respectively (Line 3).

Step-II (Line 4 to Line 19) iterates each index to generate loop structure code (as

the algorithm line starting with ”emit” shows). It leverages the aforementioned definition

of each storage format attribute to find nonzero coordinates in each dimension via pos

and crd arrays (e.g., d pos and d crd in the algorithm). Table 5.1 shows the sample loop

code in C language for each format attribute. Besides generating loop structure code for

each index, this step also updates three index variables (vIdxT , T ∈ {A,B,C}) that will

be used for the inner-most computation. If the format attribute of an index (e.g., d) is

D, i.e., d only appears in dense tensors, then vIdxT = vIdxT × d SIZE + arg, where

T denotes all dense tensors that contain index d, arg is the coordinate on index d (i.e.,

the argument of the generated loop for index d), and d SIZE is index d’s dimension size.

If the format attribute of index d is sparse (e.g., CU), this step handles sparse tensors

and dense tensors separately. For sparse tensors T that contain index d, vIdxT = arg,

where arg is still the argument of the generated loop for index d. For dense tensors T

that contain index d, vIdxT = vIdxT + d crd[arg], where d crd is the crd array of index

d, and d crd[arg] is the coordinate.

Step-III (Line 20) generates the inner-most computation code to load values from

A[vIdxA] and B[vIdxB], compute their product, and update C[vIdxC ], after step-II gen-

erates vIdxT for tensor T (T ∈ {A,B,C}).

Table 5.1: Generated code to access nonzeros coordinates

Attr Corresponding code

D for i from 0 to pos[0] { ... }
CU for i from pos[m] to pos[m+1]{ idx = crd[i];}

(m: The argument of the upper level loop. m is 0 when the dimension is the first
dimension of the tensor)

CN for i from pos[0] to pos[1]{idx = crd[i];}
S idx = crd[m];
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1   %A1SIZE_i32 = load %A1pos[%c0] : memref<?xi32> 
2   %A1SIZE = index_cast %A1SIZE_i32 : i32 to index  
3   scf.for %i = %c0 to %A1SIZE step %c1 { 
4       %next_i = addi %i, %c1 : index   
5       %A2pos_start_i32 = load %A2pos[%i] : memref<?xi32>
6       %A2pos_start = index_cast %A2pos_start_i32 : i32 to index
7       %A2pos_end_i32 = load %A2pos[%next_i] : memref<?xi32>
8       %A2pos_end = index_cast %A2pos_end_i32 : i32 to index
9       scf.for %arg1 =   %A2pos_start to %A2pos_end step %c1 {
10         %j_i32 = load %A2crd[%arg1] : memref<?xi32> 
11         %j = index_cast %j_i32 : i32 to index 
12         scf.for %k = %c0 to %c32 step %c1 { 
13              %Avalue = load %Aval[%arg1] : memref<?xf64> 
14              %Bvalue = load %B[%j, %k] : memref<?x32xf64>
15              %product = mulf %Avalue, %Bvalue : f64
16              %Cvalue_old = load %C[%i, %k] : memref<?x32xf64>
17              %Cvalue = addf %Cvalue_old, %product : f64
18              store %Cvalue, %C[%i, %k] : memref<?x32xf64>
19   }}}

6-7

8-9

6-7

20

Figure 5.6: Lowered scf dialect code example for SpMM in the CSR format. The right
side numbers represent line numbers in Algorithm 5.7

5.6.3 Parallel Code Generation

For sequential execution SPACe lowers the scf dialect to the llvm IR dialect and then to

proper LLVM IR for assembly and linking. For parallel execution, instead, the scf dialect

is lowered to the async dialect (See Figure 5.2). In details, we developed a pass to lower

scf.for loops to scf.parallel loops and the latter to the async dialect. The async di-

alect encapsulates the semantics of an asynchronous task-based parallel runtime in which

computational tasks are spawned and asynchronously executed by parallel worker threads.

Currently, MLIR supports a task continuation stealing approach (like Cilk [21]) in which

the control is returned to the parent task after spawning. The dialect provides seman-

tics primitives to synchronize the execution of tasks. SPACe lowers those asynchronous

tasks execution primitives to LLVM co-routines in LLVM IR, which is then passed to the

assembler and linker to create a binary. As Figure 5.8d shows, the MLIR asynchronous
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# TensorExpr e.g. Cik=Aij*Bjk; Format e.g.A[D, CU], B[D, D], C[D, D]
 CodeGen(TensorExpr, Format)      :   
1.      Generate iteration graph iGraph with the tensor expression information 
2     Extract format attr for each index, then put them into formats 
       # Define variables to store coordinates in the value array of each tensor
3.    Value-Indices v𝐼𝑑𝑥𝐴, v𝐼𝑑𝑥𝐵, v𝐼𝑑𝑥𝐶 = 0     
    
       # Generate for loops based on the format (iterate over all indices in the iteration graph)
4.    for d in iGraph do
5.        switch(formats(d))
6.             case  𝐷:  emit-for(𝑎𝑟𝑔 = 0 to 𝑑_𝑝𝑜𝑠[0])
7.                            v𝐼𝑑𝑥T = v𝐼𝑑𝑥T * d_SIZE + 𝑎𝑟𝑔             # T ∊ {all tensors that contain index d}
                # m is 0 when d is the first index in the input tensor;
                # Otherwise, m is the argument of the upper-level loop
8.            case 𝐶𝑈: emit-for(𝑎𝑟𝑔 = 𝑑_𝑝𝑜𝑠[𝑚] to 𝑑_𝑝𝑜𝑠[𝑚 + 1])
9.                           emit-load(𝑑_𝑐𝑟𝑑, 𝑎𝑟𝑔)
10                          v𝐼𝑑𝑥T = 𝑎𝑟𝑔        # T ∊ {all sparse tensors that contain index d}
11.                         v𝐼𝑑𝑥T = v𝐼𝑑𝑥T * d_SIZE + d_crd[𝑎𝑟𝑔]   # T ∊ {all dense tensors that contain index d}
12.          case  CN: emit-for(𝑎𝑟𝑔 = 𝑑_𝑝𝑜𝑠[0] to 𝑑_𝑝𝑜𝑠[1])
13.                          emit-load(𝑑_𝑐𝑟𝑑, 𝑎𝑟𝑔)
14                           v𝐼𝑑𝑥T = 𝑎𝑟𝑔      # T ∊ {all sparse tensors that contain index d}
15                           v𝐼𝑑𝑥T = v𝐼𝑑𝑥T * d_SIZE + d_crd[𝑎𝑟𝑔]  # T ∊ {all dense tensors that contain index d}
16.          case 𝑆: 𝑎𝑟𝑔 = argument of upper-level loop
17.                      emit-load(𝑑_𝑐𝑟𝑑, 𝑎𝑟𝑔) 
18.                      v𝐼𝑑𝑥T += 0           # T ∊ {all sparse tensors that contain index d}
19.                      v𝐼𝑑𝑥T = v𝐼𝑑𝑥T * d_SIZE + d_crd[𝑎𝑟𝑔]     # T ∊ {all dense tensors that contain index d}
       
        # Generate the loop body of the innermost loop          
20    emit operations to do computation for C[v𝐼𝑑𝑥C] += A[v𝐼𝑑𝑥A] *  B[v𝐼𝑑𝑥B] 
        # Generate load, mul, store operations

Figure 5.7: Sparse code generation algorithm

runtime introduces relatively low overhead during execution, which improves performance,

especially for small computations.

5.7 Data Reordering

The distribution of the nonzero entries in sparse matrices/tensors can significantly affect

the performance of sparse matrix/tensor algebra computations. Reordering [88, 116] is

the de facto technique to optimize the memory access pattern caused by uneven data

distribution. Different from existing compiler frameworks [97, 94] which apply reordering

to iterations, we apply reordering to matrices and tensors to optimize their memory access

patterns.

We borrow from the reordering algorithm presented in [116] (LexiOrder), ex-

tended it to support sparse matrices, and implemented it in the SPACe runtime
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(tensor reorder()). The LexiOrder algorithm is built on top of the doubly lexical

ordering algorithm [124, 146] with some optimization techniques to advance its overall ef-

ficiency and availability in some corner cases. The basic idea of the LexiOrder algorithm

is to sort a specific dimension (either rows or columns for matrices) in an iteration using

the doubly lexical ordering algorithm and sort all dimensions in turn across iterations.

The algorithm’s objective is to cluster all nonzero entries around the diagonal to increase

spatial and temporal locality.

5.8 Evaluation

In this section we evaluate SPACe against state-of-the-art high-level compiler frameworks

and DSL for dense and sparse tensor algebra. Specifically, we compare our results against

TACO [98], a tensor algebra compiler that performs automatic source-to-source transfor-

mation from TACO DSL to sequential C++, Parallel OpenMP, and data-parallel CUDA.

For brevity, we evaluated the performance of selected benchmarks with a single storage

format – matrices (CSR) and tensors (CSF), though our compiler can operate on other

formats as well. All results reported are the average of 25 runs.

5.8.1 Experimentation Setup

We performed our experiments on a compute node equipped with two Intel Xeon Gold

6126 sockets running at 2.60GHz. Each CPU socket consists of 12 processing core (for a

total of 24 cores). The system features 192 GB of DRAM memory. We compiled SPACe,

TACO, and all the benchmarks with −O3 and clang 12.0 and use the most recent MLIR

version at the time of writing this manuscript.

We use as input datasets 2833 matrices and six tensors of different sizes and shapes

chosen from the SuiteSparse Matrix Collection [54], the FROSTT Tensor Collection [177],

and BIGtensor [87]. The SuiteSparse Matrix Collection is a growing dataset of sparse

matrices in real-world applications. The dataset is widely used in the numerical linear
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algebra community for performance evaluation. The FROSTT Tensor Collection is a

composition of open-source sparse tensor datasets from various data sources that are

difficult to collect. The BIGtensor dataset is a tensor database that contains large-scale

tensors for large-scale tensor analysis. Our input datasets represent the most important

HPC domains in scientific computing, including chemistry, structural engineering, various

linear solvers, computer graphics and vision, and molecular dynamics. We provide the

description of the six tensors in Table 5.2.

Name Size Nonzeros Domain

NELL-1 2,902,330 x 2,143,368 x
25,495,389

143599552 Natural Language Process-
ing

NELL-2 12,092 x 9184 x 28,818 76879419 Natural Language Process-
ing

delicious-3d 532,924 x 17,262,471 x
2,480,308

140,126,181 Tags from Delicious website

flickr-3d 319,686 x 28,153,045 x
1,607,191

112,890,310 Tages from Flickr website

vast-2015-mc1-
3d

165,427 x 11,374 x 2 26,021,854 Theme park attend event

Freebase-
music[87]

23,344,784 x 223,344,784
x 166

99,546,551 Entries related with music in
Freebase

Table 5.2: Description of sparse tensors

5.8.2 Sparse Tensor Operations

We define the sparse tensor operations considered in SPACe below.

SpMV. The Sparse Matrix-times-Vector (SpMV or SpMSpV), y = X×v, is the multi-

plication of a sparse matrix X ∈ RI1×I2 with a dense vector v ∈ RI2 . yi1 =
∑I2

i2=1 xi1i2vi2 .

SpMM. The Sparse Matrix-times-Matrix (SpMM or SpGEMM), Y = X×U, is the

multiplication of a sparse matrix X ∈ RI1×I2 with a dense matrix U ∈ RI2×R. yi1r =∑I2
i2=1 xi1i2ui2r.

SpTTV. The Sparse Tensor-Times-Vector (SpTTV) [14] in mode n, Y = X ×n v, is

the multiplication of a sparse tensor X ∈ RI1×I2×I3 with a dense vector v ∈ RIn , along

mode n. Given n = 1, yi2i3 =
∑I1

i1=1 xi1i2i3vin . This results in a two-dimensional I2 × I3

tensor which has one less dimension.
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SpTTM. The Sparse Tensor-Times-Matrix (SpTTM) [103, 14] in mode n, denoted by

Y = X ×n U, is the multiplication of a sparse tensor X ∈ RI1×I2×I3 with a dense matrix

U ∈ RIn×R, along mode n. Mode-1 TTM results in a R× I2× I3 tensor, and its operation

is defined as yr···i2i3 =
∑In

in=1 xi1i2i3uinr. Also, note that R is typically much smaller than

In in low-rank decompositions, typically R < 100.

SpMV and SpMM widely appear in applications from scientific computing, such as di-

rect or iterative solvers [113, 200], to data intensive domains [214], graph analytics [115].

SpTTV and SpTTM are computational kernels of popular tensor decompositions, such

as the Tucker decomposition [103, 209, 173] , tensor power method [7, 197], for a va-

riety of applications, including (social network, electrical grid) data analytics, numerical

simulation, machine learning.

5.8.3 Performance Evaluation

(a) sequential SpMV (b) parallel SpMV (c) sequential SpMM (d) parallel SpMM

Figure 5.8: Performance comparison with TACO on CPU.

(a) seq SpMV-lexi (b) para SpMV-lexi (c) seq SpMM-lexi (d) para SpMM-lexi

Figure 5.9: Performance of Lexi ordering

SpMV and SpMM. We measured the performance of SPACe and TACO while

running SpMV and SpMM with each of the 2833 matrices for sequential and parallel

execution. We present the experimental results in Figure 5.8, where SPACe and TACO
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are represented in red and blue dots respectively. In the plot, the x-axis represents a matrix

(2,833 matrices, ordered by increasing number of nonzeros) and the y-axis execution time

(lower is better). As we can see from the plots, SPACe achieves better performance than

TACO on sequential SpMM (Figure 5.8c and parallel SpMV (Figure 5.8b, and comparable

performance on sequential SpMV and parallel SpMM (Figures 5.8a and 5.8d, respectively).

For sequential execution, SPACe outperforms TACO by up to 6.26x for SpMM (average

2.29x) and by up to 2.14x for SpMV (average 0.94x). A comparison of SPACe and TACO

generated LLVM IR codes shows that SPACe results in more optimized code with better

SIMD (or vectorization) utilization and loop unrolling. For both SpMV and SpMM, take

SpMM as an example. The utilization of many SIMD instructions in TACO is only half of

that in SPACe (e.g., TACO only uses 2 lanes while SPACe uses 4 lanes). SPACe unrolls

multiple loops by 8 while TACO unrolls them by 2. Although the generated LLVM IR for

both SpMV and SpMM show similar differences, the effect of better vectorization and loop

unrolling are more evident for larger computation (SpMM). These results highlight one of

the major goals of MLIR and MLIR-based compilers: by leveraging higher-level semantics

information and progressive lowering steps, it is possible to produce a more aggressive

and higher-quality LLVM IR that, eventually, results in higher performance and resource

utilization.

For parallel SpMV, SPACe achieves an average of 20.92x speedup over TACO. Es-

pecially for small matrices, SPACe outperforms TACO by a significant margin, however,

after further inspection, we realized that this performance difference is due to the overhead

introduced by the underlying parallel runtime. SPACe uses an asynchronous task-based

programming model based on LLVM co-routines while TACO leverages OpenMP. For

small computation, LLVM co-routines introduce less overhead than OpenMP threading

(which is beneficial for larger parallel regions). As we can see from Figure 5.8d, when

there is enough computation for each OpenMP thread, the runtime overhead is amortized

and both SPACe and TACO perform similarly.

Reordering. By reordering data in memory, SPACe attempts to increase spatial and
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(a) bundle_adj (b) bundle_adj after reordering

(c) kron_g500-logn20 (d) kron_g500-logn20 after reordering

Figure 5.10: Visualization comparison of matrices with and without reordering

temporal locality to achieve higher performance. The plots in Figure 5.9 show SPACe

performance when reordering data compared to original case (no reordering). Figure 5.9

shows that, indeed, in many cases there is significant advantage of reordering data, with

up to 3.41x (average 1.04x), 3.89x (average 1.03x), 7.12x (average 1.12x), and 7.14x (av-

erage 1.13x) for SpMV sequential, SpMV parallel, SpMM sequential, and SpMM parallel,

respectively. However, we also note that there might be significant performance degrada-

tion, especially for parallel execution. We further analyzed the reasons for this disparity

and identified load imbalance as the primary source of performance degradation. Our re-

ordering algorithm attempts to cluster nonzeros on the top-left corner of sparse matrices.

In an ideal case, after reordering the nonzeros are distributed around the matrix diagonal.

Figure 5.10(a) and (b) shows a case in which reordering results in high performance

improvements. In this case, the nonzero elements originally around the first column are

distributed around the diagonal. Figure 5.10(c) and (d), instead, shows a case in which

reordering reduces performance. In this case, the nonzeros are clustered around the top-left

corner, thus threads that operate on the top rows have more work to perform compared to

threads that operate on the bottom rows, which results in load imbalance and performance
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degradation.

(a) sequential TTV (b) parallel TTV (c) sequential TTM (d) parallel TTM

Figure 5.11: Performance of tensor operations

TTV and TTM. We also compare SPACe with TACO on TTV and TTM with

six sparse tensors on CPU and multi-threads and with reordering optimization on and

off. Figure 5.11 illustrates the experimental results. TACO does not generate parallel

code if the output tensor is stored in sparse format, even if instructed to do so, thus

the results in the Figure for parallel execution are with respect to sequential execution

of the TACO benchmarks. For sequential TTV, SPACe performs comparably to TACO.

With reordering, SPACe achieves better performance on four out of six sparse tensors.

For parallel TTV, SPACe performs significantly better than TACO with up to 12.5×

and on average 8× speedup. With reordering, SPACe’s performance is degraded on five

of six sparse tensors except for delicious-3d. As for the case of SpMV and SpMM, we

observed similar load imbalance issues. For sequential TTM, SPACe performs better than

TACO with up to 3.3× and on average 2.53× speedup. With reordering, SPACe achieves

better performance on three out of six sparse tensors. For parallel TTM, SPACe performs

significantly better than TACO with up to 13.9× and on average 8.13× speedup. With

reordering, SPACe’s performance is degraded on five of six sparse tensors except for vast-

2015-mc1-3d.

Our results show that reordering tensors have a significant (positive or negative) impact

on performance, more than for matrices. One possible reason is that the LexiOrder

algorithm reorders all dimensions of data simultaneously, which means the data locality

is the best when accessing all the dimensions in conjunction, as in conjunction. The
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sparse tensor operation MTTKRP [116] follows this behavior to gain a good performance

speedup. However, this does not mean that the indices in every dimension get good

locality when accessing the vector or matrix in TTV or TTM, potentially leading to low

performance. We will investigate alternative reordering algorithms and adaptive methods

in future work.

5.9 Related Work

Compiler for Tensor Algebra. Compiler techniques have been used to drive irregular

computation in tensor algebra [83, 98, 15, 92, 183]. TCE [83] is a compiler optimization

framework that focuses on dense tensor contraction operations in quantum chemistry.

TTC [183] is a compiler framework that carries out a composition of high-performance

tensor transpose strategies for GPUs. TACO [98] is a compiler that generates code for

given tensor algebra expressions and used as a higher-level domain-specific language for

tensor algebra. Kim et al. [92] use similar compiler techniques for high-performance tensor

contractions but focus on its application on Graphics Processing Unit (GPU)s. Different

from existing works, we develop a high-performance sparse tensor algebra compiler us-

ing MLIR, which supports both serial and parallel code generation and enables better

portability and adaptability.

Domain-specific Libraries for Tensor Algebra. There have been a collection of

tensor algebra libraries developed [77, 153, 194, 164, 163, 65, 68, 160, 181]. FLAME [77]

is a library aiming for the derivation and implementation of tensor algebra operations on

CPUs. Later, serial linear algebra libraries are extended to run on distributed parallel

systems [153, 164, 163, 65]. On the other hand, these libraries are extended to support

sparse tensor algebra operations using different sparse tensor formats [68, 160, 181]. Tensor

algebra libraries favor scientific computing and are widely utilized in scientific application

development. By contrast, SPACe transparently implements tensor algebra algorithms

per se and can compile most types of sparse tensor formats and automatically generate
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efficient code.

Tensor Algebra Optimization. Plenty of work [12, 19, 16, 105, 179, 207, 114, 20]

leverage reordering to optimize tensor algebra with respect to distinct tensor formats for

different tensor operations and heterogeneous architectures. Kjolstad et al. [96, 99] reorder

loops of tensor algebra computations to improve the data locality. Smith et al. [179] use re-

ordering to enable high-performance tensor factorization operations. Yang et al. [207] iden-

tify an efficient memory access pattern for high-performance SpMM operations through

merge-based load balancing and row-major coalesced memory access. Other works, such

as [127, 114, 43, 18], to name a few, design high-performance algorithms considering com-

puter architecture characteristics using techniques like register blocking, cache blocking,

and reordering. SPACe.

5.10 Summary

In this work, we presented a high-performance sparse tensor algebra compiler, called

SPACe, and a high-productive DSL to support next-generation tensor operations. Our

DSL enables high-level programming abstractions that resemble the familiar Einstein nota-

tion to express tensor algebra operations. SPACe is based on the MLIR framework, which

allows us to build portable, adaptable, and extensible compilers. SPACe provides an ef-

fective and efficient code generation which supports most tensor storage formats through

an internal storage format based on four dimension attributes and a novel code generation

algorithm. Furthermore, we incorporate a data reordering algorithm to increase the data

locality. The evaluation results reveal that SPACe outperforms competing for baseline

sparse tensor algebra compiler TACO with up to 20.92x, 6.39x, and 13.9x performance

improvement for SpMV, SpMM, and TTM computations respectively. In future work, we

plan to extend SPACe to support heterogeneous architectures and to explore alternatives

reordering schemes that better adapt to the sparsity patterns observed in scientific and

engineering input sets.



Chapter 6

Conclusions and Future Work

6.1 Summary of Dissertation Contributions

In this thesis, we apply compiler optimizations to improve the performance of applications

by combining application knowledge. Our contributions lie in the following three areas:

Improving B+ tree query processing by reducing redundant queries. We observe

that there are many redundant and unnecessary queries in BSP based latch-free B+ tree

query processing systems. We propose a novel query sequence analysis and transformation

framework, QSAT, to identify the redundant and unnecessary queries. QSAT is inspired

by classical data-flow analysis, which is often used in compilers for code optimizations.

Practically, we implement a one-pass QSAT, called Qtrans. We integrate Qtrans into

an existing latch-free B+ tree query processing system, the throughput improvement is

up to 16X.

Using compiler static analysis to assist in defending heap buffer overflow. We

observe that all the heap overflows in C/C++ programs are related to arrays. We develop

a compiler approach to automatically identify and instrument the array-related allocations

to effectively reduce protected objects in run-time. We implement a transformation pass in

LLVM to instrument the identified array-related allocations. Our evaluations on massive

real heap overflow applications show that our implementation is effective enough to identify

91
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the array-related heap allocations.

Building high-performance compiler for sparse tensor algebra computations.

We build a high-performance sparse tensor algebra compiler based on the high-level ten-

sor algebra information, such as tensor expressions and tensor formats. We develop a

high-productive domain-specific language for tensor algebra computations. We propose

an internal storage format and an automatic code generation algorithm to generate the

computation kernels for the given tensor operations and formats. We integrate data re-

ordering optimizations in our compiler to improve the data locality. The evaluations show

that the performance of our compiler is comparable with state-of-the-art sparse tensor

algebra compilers.

6.2 Future Research Direction

Our future work targets improving the sparse tensor algebra compiler, mainly from the

generality and performance side.

To improve generality, we will evaluate our compiler on multiple GPUs, and target

to support more storage formats for sparse tensors and more tensor algebra operations.

MLIR supports automatic generation of code for different hardware platforms, and we will

evaluate the performance of our compiler on GPUs. Besides the formats we have already

supported in our compiler, there are many high-performance storage formats for specific

cases. We will support more sparse storage formats in our compiler. We will also support

more tensor algebra operations, such as sparse tensor times sparse tensor.

With respect to performance improvement, we will explore more optimization oppor-

tunities. For example, no one storage format is good for all cases. We will explore an

automatic way to choose the optimal format according to the sparsity patterns of the

input tensors. We will also utilize the features of different hardware platforms to improve

the performance of our compiler on different hardware platforms.
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