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ABSTRACT 

 

In the United States, the Magnuson-Stevens Reauthorization Act mandates that all 

federally fished species must have catch limits, which can be challenging for data-limited 

species. One approach is to assess and manage a group of species with similar life history 

characteristics, vulnerability to the fishery, and overlapping geographic distributions in a 

single management unit, or a complex (i.e., stock or species complex). Using the Gulf of 

Alaska (GOA) Other Rockfish complex as a case study, the main goals of this 

dissertation are five-fold: 1) review species complexes in the United States; 2) compare 

multivariate techniques for assigning species to complexes; 3) group species based on 

spatial and temporal patterns using a new application of a species distribution model (i.e., 

Vector Autoregressive Spatio-Temporal model, VAST, model); 4) compare catch advice 

between existing assessment models used for species complexes with that from the new 

spatio-temporal modelling (i.e., VAST) application; 5) refine management advice on 

appropriate species groupings and associated catch limits for this complex.  

In Chapter 1 a review was undertaken of all managed and assessed complexes in 

the United States, thereby identifying regional differences in management strategies and 

assessment models used to set catch limits for established complexes. The remaining 

chapters focused on the GOA Other Rockfish, a group of 27 Sebastes species. In Chapter 

2, a suite of multivariate methods (e.g., cluster analyses and ordination techniques) was 

developed and applied on an array of datasets (e.g., life history values, fishery-dependent 

catch, and fishery-independent surveys), to examine how species groupings can vary 

depending on the methods or data utilized. Results indicated that the species composition 

for the two main gear types, trawl and longline gear, were different. Chapter 3 addressed 

the complex membership using a spatio-temporal species distribution model, which was 

used to investigate the temporal and spatial relationships among species and compared 

with groupings based on harvest fractions and life history values. Main results for species 

groupings were consistent across methods from Chapter 2 and 3, suggesting that rockfish 

belonging to a sub-group of the GOA Other Rockfish (i.e., members of the Demersal 

Shelf Rockfish) should be removed and managed separately from the Other Rockfish 

complex throughout the GOA management area. Using the resultant complexes, Chapter 

4 compared two assessment models for the GOA Other Rockfish: the currently used 

random effects model and a newly, developed spatio-temporal model (VAST). While the 

results of this research are specific to the GOA Other Rockfish, the lessons and 

recommendations are applicable to other complexes with similar data availability. 

Multiple data sources and a variety of methods should be used to identify or verify 

complex membership, where the best species groupings are those that are consistent 

across all analyses. Variation in groupings across analytical methods and data inputs can 

provide further insight into data needs or species that warrant careful monitoring. 

Additionally, new assessment models for species complexes should be explored and 

tested to ensure results adequately reflect the status of the complex and provide 

reasonable harvest limits.  
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Abstract 

One approach to comply with federal mandates that require catch limits for all 

federally harvested stocks in the United States is to assess and manage multiple stocks, 

which demonstrate similar biological characteristics or exploitation patterns, as a single 

stock complex. However, methodology for assigning and assessing species complexes 

varies widely depending on location, institution, exploitation patterns, and data 

availability. Thus, we review all managed and assessed stock complexes in the United 

States, thereby identifying regional differences in management strategies and assessment 

models used to set catch limits. Approaches for assessing complexes in the United States 

are typically divided into two categories: deriving harvest limits for each stock 

individually before producing the total harvest limit and calculating a single harvest limit 

for the stock aggregation. The assessment models range from using catch scalars based 

on catch time series to age-structured models depending on the region and data 

availability. As one of the first reviews of federally managed species complexes in the 

United States, the results provide guidance to regional fisheries management bodies that 

could improve how species complexes are treated by identifying alternate methods that 

might be adapted from similar complexes in other regions. Despite regional differences in 

data and management needs, a more consistent and generalized approach towards 

managing species complexes could aid in reducing the scientific burden associated with 

managing species complexes in the United States.  
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1.1 Introduction 

 

Marine fisheries provide important food resources and associated livelihoods 

from the fishing industry (FAO, 2020). But, human population growth has intensified the 

direct and indirect pressures on marine resources. As a result, it is increasingly important 

to develop scientific-based assessment and management advice of all directly and 

indirectly (i.e., non-target) exploited stocks to ensure sustainably managed fisheries. Yet, 

the majority of the world’s fish stocks lacks adequate data for conventional age or length- 

structured stock assessment methods (referred to as data-limited stocks). Thus, globally, 

more than 80% of total worldwide marine fish removals come from data-limited species 

that lack formal assessments (Costello et al., 2012). Similarly, approximately 70% of all 

managed stocks in the United States are data-limited (Newman et al., 2015). Despite 

insufficient data for many species, in the United States the Magnuson-Stevens Fishery 

Conservation and Management Reauthorization Act of 2006 (MSRA; MSRA, 2007) 

requires annual catch-limits for all federally exploited fish stocks in order to promote 

sustainable harvest (MSRA, 2007). One approach for dealing with data-limited fisheries 

that aligns with the federal and international marine policy, is to assess and manage 

multiple species within a stock complex. A complex is defined as a group of stocks with 

common life history characteristics, susceptibility to fishing gear, and similar geographic 

distribution (USOFR, 2009). A stock complex is typically managed as a single functional 

unit with catch advice provided for the aggregated complex and not for individual 

species. 



5 
 

Formation of a stock complex can be done for a variety of reasons (USOFR 

2009), including data-limitations (e.g., Caribbean angelfish complex; SEDAR, 2009), 

being a non-target (e.g., bycatch) species, or exploitation by a non-selective gear type 

necessitating multi-species management advice (e.g., the Bering Sea-Aleutian Islands 

skate complex; Ormseth, 2020). Another common reason is that species mis-

identification may prevent adequate single species assessment and management, because 

identifying morphologically similar species with overlapping geographic ranges is not 

possible without careful examination or genetic data (e.g., as is the case for rougheye 

(Sebastes aleutianus) and blackspotted (S. melanostictus) rockfishes in the Gulf of 

Alaska; Shotwell and Hanselman 2019). Inadequate data for individual assessments or 

lack of funds devoted to species identification is often due to low economic value or 

limited resources, because it is often not cost-efficient to devote personnel or funds to 

species of limited economic value. Therefore, the formation of stock complexes can be 

useful for adhering to the requirements of international and federal mandates requiring 

catch limits for all exploited species by providing assessments and catch limits for the 

entire complex instead of on a species-by-species basis. Similarly, identifying and 

managing stock complexes reduces the number of stock assessments needed, while 

allowing species that lack adequate data for single-species stock assessments to be 

quantitatively managed. 

In the United States, stock complexes are managed as a single unit in the fishery 

management plans by the Fishery Management Councils (FMC; i.e., institutions 

entrusted with managing the fisheries in a given region). The regions and associated 

FMCs include: Caribbean (CFMC), Gulf of Mexico (GMFMC), Atlantic Highly 



6 
 

Migratory Species (HMS), South Atlantic (SAFMC), Mid-Atlantic (MAFMC), Northeast 

(NEFMC), Western Pacific (WPFMC), Pacific (PFMC), and North Pacific (NPFMC). 

Within these complexes are stocks that can be assessed individually or as groups, which 

results in the annual catch limits (ACLs) being derived for each stock individually before 

producing the summed complex ACL or calculated simply as a single ACL for the stock 

aggregation, respectively. However, to date there has been no holistic review of the 

assessment and management approaches used for stock complexes in the United States. 

By providing a thorough review of stock complexes in the United States, consistent and 

divergent patterns across regions can be elucidated, which can help fisheries managers 

identify and adapt new approaches that may help improve and standardize stock complex 

assessment methodology. More specifically, stock complexes are reviewed to compare 

regional differences in: 1) the number of fish stock complex assessments per region in the 

United States; 2) assessment methods; and 3) approaches to formulating ACLs for fish 

stock complexes. Therefore, this review addresses the challenges and progress in the 

assessment of stock complexes across the United States. 

 

1.2 Methods 

A database of federally managed species in the United States was analyzed to 

identify the number of stock complexes being managed within each region along with 

key characteristics determining why the stock complex approach was utilized (e.g., data 

limitations). Similarly, the type of assessment methodology was then determined and 

described. Comparisons across complexes and regions were made to identify key drivers 

of stock complex management in the United States and common methods utilized. The 
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Gulf of Alaska Other rockfish complex is explored in detail as a case study, because this 

complex provides an exemplar for stock complex management that is then analyzed in 

detail in subsequent chapters. 

 

1.2.1 Data sources and comparison metrics 

Federal fishery management plans (FMPs) were reviewed to obtain designated 

management complexes, then compared to stocks listed in the Stock SMART (Status, 

Management, Assessments and Resource Trends; 

https://www.st.nmfs.noaa.gov/stocksmart) database to ensure consistency across listings. 

Ecosystem component species (i.e., stocks not caught in the fisheries, not subject to 

overfishing, nor would being overfished be likely, but are considered to be an important 

part of the ecosystem) are excluded from the list of complexes, because these species are 

not required to have formal stock assessments or catch limits. The management 

complexes are further classified by type of management strategies utilized: indicator 

species (single-species stock assessments for one or a few key species only), individual 

(single-species assessments for each stock in the complex), unassessed, complex (2+ 

aggregated stocks assessed as a single unit), or indicator and complex (combination of 

using indicator species and a complex). For all managed stock complexes, the number of 

species, indicator species (if applicable), and reason for managing as a complex were 

recorded. Assessments for fish stock complexes containing 2+ stocks are reviewed (i.e., 

complexes containing only multiple stocks of the same species and assessments for 

invertebrate complexes are not addressed here). Because many data-limited stocks are not 

assessed annually, the most recent, full (i.e., complete) assessments are used with the 

https://www.st.nmfs.noaa.gov/stocksmart


8 
 

years ranging from 2017 to mid-2021. Accepted assessments for stock complexes are 

ones that use an estimation model approach, which has been accepted by the associated 

regional Science and Statistical Committee (SSC; i.e., the review body entrusted with 

verifying the appropriateness and robustness of all United States federal stock 

assessments; MSRA, 2007). If assessments were rejected or ACLs were formed based on 

fractions of past catch (i.e., catch scalars), the management strategy was marked as 

‘unassessed’.  

The following information from each assessed fish complex stock assessment was 

also recorded: number of species, indicator species (if applicable), reason for managing 

as a complex, assessment model, harvest strategy, and data-level assignment (if 

applicable). Furthermore, assessment models were classified based on data needs, data-

availability, and type of harvest control rule utilized. Because each fisheries management 

region has its own data-level assignments for assessed stocks, there is no consistent data-

level assignment available. For example, the PFMC assigns stocks in categories from 1 

(data-rich) to 3 (data-poor), whereas the NPFMC designates stocks into tiers ranging 

from 1 (data-rich) to 6 (data-poor). Thus, for this review, assessment model 

categorizations were redefined from 1 to 4, where: “1” designates a data-rich statistical 

age- or length-structured model “2” represents a data-moderate model that that can 

estimate maximum sustainable yield (MSY) values, but without age or lengths (e.g., 

production models); “3” was a data-limited estimation model that produces biomass 

estimates, but uses MSY proxies; and “4” was reserved for data-poor methods that use 

historical catch-based approaches to set catch limits (i.e., falls into the “unassessed” 

category and used catch scalars). Finally, because a managed complex consisted of 
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multiple stocks managed under a single ACL, stocks belonging to a given complex may 

have different levels of available data. Therefore, there were multiple data-level tiers and 

two assessment model categorizations were provided. The first assessment model 

category for the assessed complex is based on the majority of category assignments (i.e., 

model level ‘majority’). The second assessment model category assignment was based on 

the lowest category value (i.e., the least data-rich level or ‘lowest’ model level).  

 

1.2.2 Gulf of Alaska Other Rockfish complex background 

The Gulf of Alaska (GOA) Other Rockfish complex comprises 27 Sebastes 

species in the GOA management region. In general, rockfish species are characterized by 

their late maturity and high longevity and they bear live young (Love et al., 2002). 

However, there is a wide range of life history values within the rockfish complex (see 

Chapter 2 for life history values and references). The length and age at 50% maturity 

range from 150 - 450 mm and 2.5 - 22 years, respectively, and the maximum age of 

maturity ranges from 26 – 117. The maximum average length, defined here as von 

Bertalanffy asymptotic length, 𝐿∞,  ranges from 304 – 810 mm. Given the slow growth 

and long-lived attributes for rockfish, the estimated natural mortality (M) is low, 0.04 – 

0.06 yr-1. Unfortunately, most life history studies examining maximum age, age at 

maturity and associated lengths were completed in lower latitudes than the Gulf of 

Alaska. Studies have shown differential growth rates in different latitudes (e.g., splitnose 

rockfish [S. diploproa]; Gertseva et al., 2010); thus, life history characteristics presented 

here are likely to contain a moderate degree of uncertainty.  
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In rockfish, fertilization of the egg, embryonic development, and hatching occur 

internally, and studies have shown that some energy during development is transferred 

directly from mother to embryo (Love et al., 2002). This reproductive strategy is defined 

as viviparous instead of ovoviviparous (i.e., where energy arises solely from yolk sacs). 

This strategy of internal development and hatching of the eggs increases the survival of 

the eggs by almost four times compared to external fertilization and development in the 

water column (Bechtol, 1998). Estimated fecundity for GOA rockfish species ranges 

from 1,700 to close to 2 million (Love et al., 2002). Older females produce more 

offspring than younger females, while annual fecundity, the number of broods, and 

reproductive season vary by year and region for each Sebastes species (Love et al., 2002; 

Beyer et al., 2015). However, multiple broods may be less likely in the northern latitudes 

(Love et al., 2002). 

In addition to having an array of life history characteristics, the Other Rockfish 

species vary in their distribution and habitat selection. Most of these species are at their 

northern distribution limits, spanning from off the coast of Southern California to Alaska 

(Love et al., 2002). Harlequin rockfish (S. variegatus) is the only species that is found 

primarily in the northern waters from British Columbia to Alaska (Tribuzio and Echave, 

2019). Typically, rockfish are found at depths ranging from 100 - 275 m (Love et al., 

2002), but can be found in depths up to 800 m. Some rockfish species undergo an 

ontogenetic shift, where the juveniles commonly occupy shallower depths feeding on 

plankton, then adults move to deeper depths over a variety of substrate types (Love et al., 

2002). Adults occupy a wide range of habitat types including high relief rocks, reefs or 

crevices, low relief rocky bottoms, mudflats, vegetative areas, and mixed habitat 
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(Johnson et al., 2003; Conrath et al., 2019). Individuals of some species are more solitary, 

whereas others tend to aggregate in large mixed-species schools (Johnson et al., 2003). 

 

1.3 Results 

 In total, there are 117 stock complexes managed in United States federal waters 

across all regions, 75% of which are fish stock complexes and 25% are composed of 

invertebrates (e.g., octopus, crustaceans, and corals; Table 1). While the individual 

invertebrate species belonging to complexes could not be tabulated due to the 

innumerable coral species, there are around 388 individual fish species that are assigned 

to managed stock complexes. The exact number of fish species remains unknown, 

because a few complexes are assigned by family groups (e.g., Gempylidae in the Western 

Pacific region). The CFMC manages the most fish complexes with 35, while the NPFMC 

manages the second highest number of fish complexes with 17 (Table 1). All species 

belonging to complexes are caught in multispecies fisheries, where the majority are not 

directly targeted. Stocks in fish complexes frequently are fished recreationally and, in 

some regions (i.e., Caribbean and Western Pacific), are caught in subsistence fisheries. In 

addition to being caught in a multi-species and often in multi-gear fisheries, stocks 

belonging to complexes largely lack sufficient data to assess as a single-species stock. 

There are a few complexes that are assessed and managed as a complex due to mis-

identification (e.g., rougheye and blackspotted rockfish in the North Pacific fisheries; 

Spencer et al., 2020; Shotwell and Hanselman 2019) or for which genetic analyses have 

only recently been conducted that clearly delineate what was previously assumed to be a 

single stock into two distinct species (e.g., Blue [Sebastes mystinus] and Deacon 
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[Sebastes deaconus] rockfish in the Pacific Coast fisheries). As of 2021, the NEFMC and 

MAFMC are the only regions that do not manage any stock complexes. 

 The majority (68%) of stock complexes are considered to be unassessed (i.e., do 

not have quantitative stock assessments or stock assessments were not accepted by the 

associated SSC). For example, all complexes in the South Atlantic region are currently 

considered to be unassessed, mainly due to insufficient data to assess many non-target 

species (Table 1). Compared to other regions, the PFMC and NPFMC more frequently 

used indicator species, when deemed appropriate, to determine the status of the stock 

complex, which helps to reduce the number of individual assessments required. When 

indicator species are used, ACLs are based either solely on the estimated abundance of 

the indicator species or jointly using both the indicator species and the total catch of the 

complex (Table 1; Fig. 1). Typically, when ACLs are set using only indicator species, the 

indicator species comprises the majority of the catch of the complex (e.g., Northern sole 

[Lepidopsetta polyxystra] in the Bering Sea- Aleutian Islands Rock Sole complex).  

 Each FMC has a unique set of models that are typically used to assess the fish 

complexes managed in the region. With the exception of one complex, the CFMC, 

GMFMC, HMS, and SAFMC rely on catch scalars based on the available time series of 

catch to calculate ACLs, which are not classified as accepted stock assessments (i.e., 

model level 4; Table 1). The WPFMC, which manages all the Pacific Islands fisheries, 

only have four accepted stock assessments for complexes (Table 1). These four 

complexes consist of ‘bottomfish’ (i.e., groundfish) caught in multi-species fisheries. The 

associated assessments depend mostly on fishery catch, because the Pacific Islands 

Fisheries Science Center (PIFSC), which provides scientific advice for these species, 
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does not have the infrastructure, personnel, or financial resources to perform fishery-

independent surveys for the remote islands around which these species tend to aggregate. 

The four PIFSC species complexes are assessed using Bayesian surplus production 

models, a data-moderate method (model level 2). The NPFMC and PFMC have the 

largest suite of stock assessment models for fish complexes. As noted, the PFMC 

assesses complexes based on individual indicator species when appropriate (Fig. 1). For 

the stocks with sufficient data that are assessed as smaller subunits of the complex (e.g., 

Blue and Deacon rockfish for Minor Nearshore Rockfish Complexes in the Northern and 

Southern regions of the West Coast), a data-rich, statistical catch-at-age model is used 

(model level 1; i.e., Stock Synthesis 3 [SS3]; Methot and Wetzel, 2013). Unassessed fish 

complexes in the Pacific region use depletion-based stock reduction analysis (XDB-SRA; 

Dick and MacCall, 2011; Cope et al., 2015) or extended simple stock synthesis (exSSS; 

Cope et al., 2015) when sufficient catch histories or survey data are available to set ACLs 

(i.e., model level 3 stocks because it sets ACLs based on estimated depletion values). 

Finally, the NPFMC manages their complexes using SS3 for the data-rich (model level 1) 

complexes, a random effects model (SAWG, 2013) for the data-limited complexes 

(model level 3), and using catch scalars based on fishery catch for the data-poor stock 

complexes (model level 4) to calculate ACLs. Frequently, species within fish complexes 

in the North Pacific region, similar to the Pacific region, are further divided into subunits 

and assessed using methods appropriate for the available data at the subunit level before 

summing the ACLs. For example, Alaska skate (Bathyraja parmifera) is used as an 

indicator species for the Bering Sea and Aleutian Islands Skate complex and is assessed 
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using SS3 (model level 1), while the other remaining species are assessed using the 

random effects model (model level 3).  

 

1.3.1 Assessment and management of the Gulf of Alaska Other Rockfish complex  

The Other Rockfish complex consists of non-target species that are captured in 

more lucrative rockfish and other groundfish fisheries using trawl and longline gear 

types. Since the 1990’s, there has been no directed fishery on the species in the complex 

with the exception of a silvergray (S. brevispinis) and yellowmouth (S. reedi) rockfish 

bottom trawl fishery in 1993 and a trial fishery for Pacific Ocean perch (S. alutus) and 

silvergray rockfish using trolling gear in 2004 and 2005 (Tribuzio and Echave, 2019). 

The Other Rockfish species have a low economic value (~ $1.19 per pound headed and 

gutted in 2018) compared to the targeted Thornyhead rockfish (Sebastolobus spp.) fishery 

that is valued around $3.04 per pound (pers. comm. Ben Fissel). The low economic value 

has resulted in a high discard rate, estimated at 46% (Tribuzio and Echave, 2019), and 

limited or no targeting of species in the Other rockfish complex.  

The GOA management area is divided into five sub-management areas: 610, 620, 

630, 640, and 650 (see Figure 1 in Chapter 2). The highest biomass for the complex is in 

the Eastern GOA (sub-area 640 and 650) based on fisheries catches and fishery-

independent surveys. The biennial NOAA Alaska Fisheries Science Center bottom trawl 

survey has provided fishery-independent biomass estimates for the Other Rockfish 

complex since 1984. However, seven of the species in the complex live in high relief 

habitats that are only fishable using longline gear and are essentially inaccessible to 

bottom trawls. Currently, these seven rockfishes are managed as a part of the Other 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1135
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=42378
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Rockfish complex in four of the five GOA sub-areas. In the fifth sub-area, 650, where the 

majority of the catch for these species occurs, the seven rockfish species are assessed and 

managed in a separate complex known as the Demersal Shelf Rockfish complex. 

Additionally, northern rockfish (S. polyspinis) is assessed separately in the Central and 

Western GOA regions (sub-areas 610, 620, and 630) and included in the Other Rockfish 

complex in the Eastern GOA region due to low abundance. Harvest of the Other Rockfish 

species is below the aggregate complex catch limit; thus, overfishing is not occurring.  

Management for the GOA Other Rockfish complex has evolved since the 

establishment of this general non-target rockfish complex as the “Other Slope Rockfish” 

in 1991, which began with a total of 16 Sebastes species. In 1993, the northern rockfish 

was removed from the complex, but was later reassigned to the complex in management 

sub-areas 640 and 650 in 1999. Yellowtail (S. flavidus) and widow rockfish (S. 

entomelas), originally belonging to their own Pelagic Shelf Rockfish complex, were 

moved to the ‘Other Slope Rockfish’ complex in 2012, and the complex was renamed the 

‘Other Rockfish’ complex. In 2013, the seven Demersal Shelf Rockfish were included in 

the Other Rockfish complex in the management sub-areas 610 – 640. The most recent 

change was the inclusion of two new rockfish, aurora (S. aurora) and shortbelly (S. 

jordani), in the 2019 assessment (Tribuzio and Echave, 2019). 

The Other Rockfish are divided into subunits based on data-level (i.e., tiers), 

where ACLs are calculated per tier and summed to produce a total ACL for the complex. 

The tiers include two data-limited tiers (Tier 4 and 5) and a data-poor tier (Tier 6). 

Species belonging to Tiers 4 and 5 are further subdivided into natural mortality groups, 

where a random effects model (model level 3; SAWG, 2013) is applied to each natural 
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mortality group to calculate biomass estimates, and the ACL is calculated for each Tier 

separately. The ACL for rockfish species in Tier 6 is based on a catch scalar method (i.e., 

maximum recorded catch from the previous four year).  

 

1.4 Discussion 

1.4.1 Regional differences in the assessment and management of complexes 

 Aggregating stocks into a single unit (i.e., a stock complex) can be an efficient, 

practical tactic to comply with federal mandates, but approaches to assessing and 

managing complexes are region-and case-specific. Data availability, resource 

accessibility (i.e., availability to fishery and survey gear), and economic importance 

influence the selection of assessment model and, often, dictate the management strategies 

applied to set ACLs for each complex. For example, regions that rely on fishery catch 

data, and often lack resources to conduct consistent fishery-independent surveys, tend to 

have more unassessed complexes and rely on catch scalars to set ACLs (e.g., the 

Caribbean, Gulf of Mexico, and Western Pacific regions) compared to regions with 

fishery independent surveys and more complete and detailed historical catch time series 

(i.e., the Pacific and North Pacific regions; Berkson and Thorson 2015). The PFMC and 

NPFMC tend to apply more data-rich and data-moderate methods due to their data and 

resource availability compared to other regions (Newman et al., 2015), which results in a 

larger variety of management strategies (e.g., complexes, individual assessments, 

indicator species, and a hybrid of management types).  

When aptly selected, indicator species can be a useful tool to monitor the stock 

status of a complex. Indicator species should share similar productivity levels, be 
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consistently caught by the fishing gears, and demonstrate similar population trends as the 

remaining species in the complex. (Landres et al., 1988; Zacharias and Roff, 2001). 

While the indicator species have similar characteristics to other species in the complex, 

the indicator species should be among the more vulnerable species in the complex (i.e., 

‘weakest link’ species; Shertzer and Williams, 2008). The single-species assessments for 

the indicator species can potentially provide more detailed, reliable results for the 

associated stock and infer stock status for the remaining species in the complex. 

However, selecting indicator species can be challenging; all the criteria for an indicator 

species are often not fulfilled and assumptions for when an indicator species is 

appropriate (e.g., having a stable community structure) are often violated (Niemi et al., 

Shertzer et al., 2009). 

 Each region tends to apply their own set of assessment approaches. Many models 

were developed specifically to aid in the assessments for a particular region (e.g., the 

random effects model in the North Pacific), while other regions use more generic 

platforms (e.g., stock synthesis 3, SS3, in the Pacific region). Regional disparities in 

assessment model selection, which go hand-in-hand with the applied management 

strategies, are due to data availability, management area, and other management resource 

factors (e.g., personnel; Berkson and Thorson, 2015). Most methods applied to assess 

stock complexes are not specifically designed for a group of aggregated species. Wide 

ranges in productivity and species resilience to environmental and anthropogenic 

pressures are common in stock complexes (DeMartini, 2019). To accommodate 

differences in productivity across species in a complex, it is common to partition the 

complex into smaller productivity sub-units and apply harvest control rules to those sub-
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units (e.g., based on differential natural mortality groupings as is done with Other 

Rockfish in the Gulf of Alaska; Tribuzio and Echave, 2019). However, there is a 

necessary balance between defining biologically informative and realistic complexes (i.e., 

grouping as few species as is biologically appropriate) versus the practical aspects of 

managing extremely data-limited species (i.e., reducing the number of assessed species to 

reduce administrative and scientific burden). 

 

1.4.2 Gulf of Alaska Other Rockfish complex research needs 

The GOA Other Rockfish are not overfished and overfishing is not occurring 

(Tribuzio and Echave, 2019). Most rockfish species in the complex are assessed using the 

random effects model by natural mortality group, which serves as a way to capture some 

of the species’ productivity levels. However, the species that belong to the Other 

Rockfish complex in the GOA management sub-areas 610-640, but are assessed 

separately in the sub-area 650 as the Demersal Shelf Rockfish complex, rely on catch 

scalars to set ACLs. In recent years, stock assessment scientists and management bodies 

have questioned the decision to keep the seven species associated with the Demersal 

Shelf Rockfish complex in the Other Rockfish complex in management sub-areas 610 – 

640 (Tribuzio et al., 2017). More specifically, it has been suggested that verification is 

needed to ensure “that these species [Demersal Shelf Rockfish] are more similar to each 

other in their complex than to species in other complexes” using statistical approaches 

(Tribuzio et al., 2017). The research in Chapter 2 and Chapter 3 address this question 

using multivariate methods and species distribution modeling; here we provide further 
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review of the rationale for pursuing management by species complexes and information 

on how assessment and management of the GOA Other Rockfish complex is conducted. 

 

1.4.3 The future of stock complexes 

 The management of complexes is not likely to be eliminated in the near future in 

the United States, because it provides a way to assess and set harvest recommendations 

for a large number of data-limited stocks. The success of managing a complex stems 

from the ability to assign stocks into appropriate groups. Most complexes are based on 

taxonomic groupings and distribution (Cope et al., 2011), but productivity-susceptibility 

analysis and other risk assessment methods that use expert judgement to rank species into 

vulnerability groups (e.g., Cope et al., 2011; Zhou et al., 2016) and multivariate analyses 

(e.g., Shertzer and Williams, 2008; Farmer et al., 2016) are also common. Ultimately, the 

management of complexes is only as good as the data and scientific information used to 

define the complexes (Fujita et al., 1998).  

 There were important advancements in data-limited methods when the MSRA 

required ACLs to be set for all federally exploited stocks (Newman et al., 2015), but there 

is now a clear need to improve the methods used for identifying and assessing stock 

complexes. Increased data collection and incorporating all available data are two ways to 

enhance the assessment of complexes. Improved cost-effective data collection methods, 

such as collecting length composition, can greatly benefit assessments for stock 

complexes (Dowling et al., 2016). Length data alone allows scientists to apply more data-

limited methods to assess stock status, such as simple length-based indicators (e.g., 

Miethe et al., 2019) or length-based estimation of spawning potential ratio (Hordyk et al., 
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2015). Other alternative data sources, such as local ecological knowledge (Beaudreau and 

Levin, 2014) and eDNA (Lacoursière‐Roussel et al., 2016), can also be incorporated to 

group species and aid in assessment of stock complexes. Additionally, borrowing results 

from data-rich or data-moderate stocks to help inform the assessment of data-limited 

stocks (i.e., the ‘Robin Hood’ approach; Punt et al., 2011) or applying hierarchical 

Bayesian models (e.g., Jiao et al., 2009) can help advance data-limited methods for stock 

complexes. Life history characteristics within a family group have been shown to be 

similar and have been suggested as a potential alternative to infer missing productivity 

values (Thorson et al., 2017). However, all models assessing complexes should be 

investigated for sensitivity to the input data, which necessarily includes uncertainty in life 

history characteristics or the reliability of the catch and effort time series (e.g., Sagarese 

et al., 2019).  

Models assessing complexes should be robust to differences in the species’ 

productivity levels, susceptibility to different fishing gear types, and responses to external 

pressures that affect population levels. It is important to understand the similarity of 

aggregated species and how a complex might respond to changes in the environment 

from natural causes or human pressure. Each species in a complex has a niche in the 

ecosystem. Preserving species diversity within a complex will help maintain the stability 

of the system and prevent fisheries closures due to overharvest (i.e., the portfolio effect; 

Schindler et al., 2010). Moreover, diversity within a species complex can be difficult to 

conserve if researchers do not identify the effects of fishing pressures on species 

composition and size structure (Rochet et al., 2011). 
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 Ultimately, there are no generic solutions for assessing data-limited species, 

particularly for stock complexes (Dowling et al., 2019). Likewise, applying an array of 

methods without considering the assumptions and sensitivities of the models can lead to 

inconsistencies and mis-representation of the stock complex status (Dowling et al., 2019). 

Each complex should be managed on a case-by-case basis even within the same region, 

because of differences in life history, fishing gear susceptibility, and habitat suitability 

(DeMartini, 2019). Additionally, individual stock populations will fluctuate with climate 

induced changes, anthropogenic impacts, and other environmental factors. However, 

developing a common suite of methods or generic practices that could be used to identify 

and assess stock complexes would be useful to better standardize assessment 

methodology for stock complexes worldwide. Stock complexes need to be carefully 

assessed and group membership periodically revised to ensure the species composition 

within the complex remains relatively stable, such that managing as a complex maintains 

the continuity and preserve species diversity. 
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1.6 Tables 

 

Table 1.1 A summary of the number of complexes, number of species (in parentheses), 

number of complexes per management type (i.e., unassessed, individual assessments, 

indicator species, as a complex, or both indicator species and complex), and model-level 

category for fish complexes (for the majority of stocks in complex [majority] and the 

most ‘data-rich’ assessment level for the complex [lowest]) for each Fishery Management 

Council (FMC) region. The model-level categories are; 1. data-rich with age- or length-

structured model, 2. data-moderate model without age or lengths and estimated MSY 

values, 3. data-limited estimation model with MSY proxies, and 4. data-poor method that 

uses historical catches. The FMC include: Caribbean (CFMC), Gulf of Mexico 

(GMFMC), North Pacific (NPFMC), Pacific (PFMC), South Atlantic (SAFMC), Western 

Pacific (WPFMC), and Highly Migratory Species (in the Atlantic).  

 

 CFMC GMFMC NPFMC PFMC SAFMC WPFMC HMS 

No. complexes         

Fish complexes 35 (223) 5 (16) 17 (118) 13 (108) 6 (27) 10 (117) 2 (21) 

Invertebrate complexes 1 5 3 - 5 15 - 

Management type        

Unassessed 33 9 1 4 11 21 1 

Individual - - 1 2 - - - 

Indicator - 1 6 4 - - - 

Complex - - 8 3 - 3 1 

Indicator & complex 3 - 4 - - 1 - 

Model level (majority) 

(only fish complexes)        

1 - 1 5 3 - - - 

2 - - - - - 4 - 

3 - - 7 6 - - - 

4 35 4 4 1 6 - 1 

NA - - 1 3 - 6 1 

Model level (lowest) 

(only fish complexes)        

1 - 1 7 3 - - - 

2 - - 1 - - 4 - 

3 - - 7 6 - - - 

4 35 4 1 1 6 - - 

NA - - 1 3 - 6 1 
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1.7 Figures 

 

 
Fig. 1.1 Regional comparison of the number of complexes per each management type 

(unassessed, individual, complex, indicator, complex, and indicator & complex) for fish 

and invertebrate managed complexes with the shape size indicating the number of total 

species for the fish complexes. Number of species for invertebrate complexes are 

unknown for the majority of complexes. The regions for the Fishery Management 

Council include: Caribbean (CFMC), Gulf of Mexico (GMFMC), North Pacific 

(NPFMC), Pacific (PFMC), South Atlantic (SAFMC), Western Pacific (WPFMC), and 

Highly Migratory Species (in the Atlantic). 
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CHAPTER 2 

Methods for Identifying Species Complexes Using a Novel Suite of Multivariate 

Approaches and Multiple Data Sources: a Case Study with Gulf of Alaska Rockfish 
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Abstract 

International and national laws governing the management of living marine 

resources generally require specification of harvest limits. To assist with the management 

of data-limited species, stocks are often grouped into complexes and assessed and 

managed as a single unit. The species that comprise a complex should have similar life 

history, susceptibility to the fishing gear, and spatial distribution, such that common 

management measures will likely lead to sustainable harvest of all species in the 

complex. However, forming complexes to meet these standards is difficult due to the lack 

of basic biological or fisheries data to inform estimates of biological vulnerability and 

fishery susceptibility. A variety of cluster and ordination techniques are applied to 

bycatch rockfish species in the Gulf of Alaska (GOA) as a case study to demonstrate how 

groupings may differ based on the multivariate techniques used and the availability and 

reliability of life history, fishery independent survey, and fishery catch data. For GOA 

rockfish, our results demonstrate that fishing gear primarily defined differences in species 

composition, and we suggest that these species be grouped by susceptibility to the main 

fishing gears while monitoring those species with high vulnerabilities to overfishing. 

Current GOA rockfish complex delineations (i.e., Other Rockfish and Demersal Shelf 

Rockfish) are consistent with the results of this study, but should be expanded across the 

entire GOA. Differences observed across species groupings for the variety of data types 

and multivariate approaches utilized demonstrate the importance of exploring a diversity 

of methods. As best practice in identifying species complexes, we suggest using a 

productivity-susceptibility analysis or expert judgement to begin groupings. Then a 

variety of multivariate techniques and data sources should be used to identify complexes, 
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while balancing an appropriate number of manageable groups. Thus, optimal species 

complex groupings should be determined by commonality and consistency among a 

variety of multivariate methods and datasets.  
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2.1 Introduction 

The requirement to implement catch limits for data-limited and previously 

unassessed stocks resulting from recent international policies, such as the Magnuson-

Stevens Reauthorization Act of 2006 (MSRA, 2007) and Common Fisheries Policy (CFP, 

2013), presents scientific and management challenges for regional fishery management 

entities. Managing an aggregation of fish stocks or species as a single unit is one 

approach utilized by fisheries managers in an attempt to comply with international and 

federal laws (Jiao et al., 2009), reduce the number of required stock assessments 

(Koutsidi et al., 2016), and create manageable harvest regulations. These aggregations, 

also known as stock or species complexes, are often determined by similarity in life 

history characteristics, vulnerability to the fishery, and geographic distributions (USOFR, 

2009). Multiple stocks of a single species being managed together are likely to have 

strong similarities in life history and susceptibility, whereas complexes consisting of 

multiple species have more diverging characteristics in productivity (i.e., life history 

traits), behavior, and habitat preference. Species in a complex are typically caught in a 

multispecies fishery and often lack adequate data for a single species assessment 

(USOFR, 2009).  

Assigning species to complexes can be a difficult, but critical task for 

implementing sustainable management of data-limited species. Complexes are often 

formed using a combination of life history traits, trophic roles, and fishing pressure 

(Shertzer and Williams, 2008). However, rarely is the full extent of this information 

available to adequately determine the appropriateness of a complex grouping, and there 

can be a mismatch in groupings when using life history traits compared to fishery 
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susceptibility (i.e., species caught together by the same gear types). Grouping species 

based on life history characteristics, which represent the population’s productivity, is 

important because species with similar growth and maturity often demonstrate similar 

responses to fishing pressure (e.g., Farmer et al., 2016; DeMartini, 2019). From a 

management perspective, grouping by susceptibility to fishing gear (e.g., multispecies 

fisheries) is often simpler than grouping by life history traits, because management by 

gear type is less easily enforceable for complexes harvested by a variety of gears. Yet, the 

potential for disproportionate impacts on the species within the complex exists when 

complexes are formed using gear susceptibility and when selectivity or availability 

differs by species (DeMartini, 2019).  

Aggregating species exclusively based on either life history or fishery traits can 

lead to unsuitable groupings. For example, a complex formed on fishing vulnerability 

may group species with divergent life history characteristics, and species that reproduce 

at earlier ages and are more fecund (i.e., have a higher productivity) are more resilient to 

fishing pressure compared to species that have lower fecundity and reproduce later in life 

(i.e., have a lower productivity). Alternatively, grouping species only on similarities in 

life history may be futile if the species are not vulnerable to the same fishing gear (e.g., 

Pikitch, 1991; Vinther et al., 2004).  

Reconciling the need to balance fishery vulnerability and biological 

considerations for establishing species complexes remains a difficult scientific problem. 

No single method has proven robust for all species complex grouping approaches, and 

often development of species complexes relies on a combination of qualitative (i.e., 

expert judgement) and quantitative measures. Productivity-susceptibility analysis (PSA) 
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has been proposed as a tool for grouping data-limited species based primarily on expert 

judgement (Patrick et al., 2010; Cope et al., 2011). A PSA bins information (i.e., life 

history values and impact by fisheries indicators) in productivity or susceptibility 

categories based on expert judgement. The rankings within each category are calculated 

into an overall vulnerability score, which is thereby used to summarize species into 

groups. However, PSA may not be as useful when forming complexes with closely 

related species with poor quality data, because vulnerability rankings are likely to be too 

similar despite having the possibility of scoring differently in the susceptibility 

categories. For example, Cope et al. (2011) determined that vulnerability rankings from a 

PSA could not alone be used to establish complexes for rockfish species in the U.S. West 

Coast groundfish fishery. A hierarchical tiered approach was implemented by applying 

clustering analyses first using ecological distribution (i.e., depth and latitude), followed 

by using the vulnerability scores. Yet, the use of expert judgement for scoring 

vulnerability was considered problematic for species with such poor quality data.  

Alternately, multivariate techniques (e.g., cluster analyses and ordination 

methods) are a quantitative tool used for identifying similarities among species when 

adequate species-specific data are available. Of the few quantitative studies that have 

developed species complexes, the combination of expert judgement and multiple data 

sources or multivariate approaches (or both) have typically been used to assign species to 

appropriate groups. For example, both ordination and clustering methods can be used to 

examine species assemblages using one data source (e.g., Lee and Sampson, 2000; 

Williams and Ralson, 2002), or multiple data sources with each dataset being analyzed 

separately, summarized and compared to determine species groupings (e.g., Shertzer and 
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Williams, 2008; Pennino et al., 2016). Other studies have developed methods to 

quantitatively synthesize findings of species co-occurrence when using multiple datasets. 

For example, Farmer et al. (2016) combined analysis of multiple catch data matrices 

along with a life history matrix to assign species to complexes by amalgamating the 

results from individual hierarchical cluster analyses into a weighted mean cluster 

association index. However, the weighted mean cluster association index depended on 

each cluster analyses from each data source to produce clear, sensible results (i.e., no 

chaining, which is when single units branch and form their own cluster). The array of 

quantitative studies used to identify species complexes have focused primarily on 

associations or similarities among species.  

Conversely, other studies examining potential species complexes have grouped 

together similar catch units (i.e., within a specified area and temporal scale) based on 

similar species composition. Grouping species based on vulnerability to particular fishing 

gears allowed analysts to determine how different factors, such as depth (Rogers and 

Pikitch, 1992), influenced the species composition, while providing potential species 

assemblages based on fishery susceptibility that many east management and enforcement. 

Koutsidi et al. (2016) developed a unique method that combined biological traits with 

fishing operation data to examine how the different fishing sectors tended to catch 

species with similar biological traits. This study concluded that it could be advantageous 

to consider functional biological traits in management decisions for data-limited species 

that lack traditional assessments. The method that Koutsidi et al. (2016) applied required 

knowledge of a variety of life history, behavior, distribution, ecology and habitat 
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attributes in addition to species-specific catch data from the fisheries, which may not be 

available for data-limited species. 

Management of several of the Gulf of Alaska (GOA) rockfish species (Figure 1) 

is an example where managers have identified species complexes, but further quantitative 

analysis would be desirable to validate these assignments. GOA rockfish (genus 

Sebastes) are caught as bycatch (i.e., unintended catch that is either discarded or retained) 

in a variety of fisheries. Rockfish in the GOA pose a unique challenge due to their range 

in life history values, habitat preferences, and behavior. Optimally, the rockfish in each 

complex should withstand similar fishing pressures, have comparable distributions, and 

common productivity levels. Currently, most of the non-targeted rockfish in the GOA are 

assessed in two complexes: the Other Rockfish complex, which consists of species that 

are classified as the “slope”, “pelagic shelf” and “demersal shelf” rockfish assemblages; 

and the Demersal Shelf Rockfish complex, which separates the group of seven “demersal 

shelf” species from the remaining rockfish species in one management area (NPFMC, 

2019). These complex delineations often combine species with different habitat 

preferences, which ultimately affects their spatial distributions (i.e., based on gear 

selectivity and availability). Additionally, the species compositions of the GOA rockfish 

complexes have undergone multiple changes throughout their management history. In 

2011, a PSA indicated that select GOA rockfish had high vulnerability scores due to their 

low productivity and medium susceptibility level in the fisheries (Ormseth and Spencer, 

2011), which implies that the rockfish assemblages should be carefully monitored and 

managed judiciously. However, further quantitative analysis is warranted to identify 

whether current GOA complexes should be restructured. 
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In this study, the goal is to explore the consistency of various quantitative 

methods for identifying species complexes, while also providing an approach to 

aggregate data across different spatial areas and gear types. The GOA Other Rockfish and 

Demersal Shelf Rockfish species are used as a case study, because identifying consistent 

species groupings has proven difficult for these species. Most of the GOA rockfish 

species are generally not targeted and have high discard rates due to little economic 

value. A combination of life history traits, fishery dependent, and fishery independent 

data sources are used to assemble species complexes with hierarchical and non-

hierarchical clustering methods and ordination techniques. Two modes of analyses were 

implemented to the catch data for the clustering methods: 1) aggregate similar species 

together based on catch presence and abundance; 2) group similar sampling units based 

on common catch composition. The species assemblages are compared across 

multivariate techniques and data types to explore patterns of consistency and identify 

species complexes for management. These results provide new insight into how the data 

quality and quantitative methodology utilized may influence groupings for implementing 

species complexes. Additionally, this is the first quantitative analysis to identify species 

complexes in the GOA. 

 

2.2 Materials and Methods 

2.2.1 Management Units and Species 

The GOA is partitioned into the National Marine Fisheries Service (NMFS) 

subareas: 610, 620, 630, 640 and 650 (Figure 1). These subareas are used in the analyses 

to examine differences in the species composition by area. The GOA Other Rockfish 
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complex comprises 25 Sebastes species in the GOA management area. Seven of the 25 

species are managed in a separate complex (Table 1), Demersal Shelf Rockfish, in 

subarea 650, but are included in the Other Rockfish complex in all other subareas in the 

GOA. The State of Alaska assesses the Demersal Shelf Rockfish in subarea 650, and 

manages their catch in parallel with state waters fisheries for these species. Additionally, 

northern rockfish (S. polyspinis) are only included in the Other Rockfish complex in 

subareas 640 and 650 for management, but they are assessed as part of a single species 

stock assessment for the entire GOA. Northern rockfish catch data from all subareas are 

included in our analyses for comparison, but are not a candidate for reassignment. 

Other Rockfish species vary widely in their distribution, habitat selection, and life 

history traits. With an exception of harlequin (S. variegatus), these rockfish in the GOA 

are at the northern limits of their distribution, which span the U.S. West Coast from 

Southern California to Alaska (Love et al., 2002). Harlequin are found primarily in 

northern waters from British Columbia to Alaska (Tribuzio et al., 2019). Species in the 

Other Rockfish complex occur in depths up to 800 m, but typical are found in depths 

ranging from 100 to 275 m (Love et al., 2002). Adult habitats include high relief rocks, 

reefs or crevices, low relief rocky bottoms, mudflats, vegetative areas, and mixed habitat 

(Johnson et al., 2003; Conrath et al., 2019). Some individuals are more solitary, whereas 

others tend to aggregate in mixed-species assemblages (Johnson et al., 2003). In general, 

rockfish species are characterized by their late maturity, longevity, and their ability to 

bear live young (Love et al., 2002; Beyer et al., 2015). However, there is a wide range of 

life history values within the Other Rockfish complex (Table 1; see Section 2.2.1).   
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The Other Rockfish complex consist of bycatch species captured in more 

lucrative rockfish and other groundfish fisheries using trawl and longline gear. More than 

half of the species belonging to the Other Rockfish complex are rarely caught (< 1% of 

the total catch of the Other Rockfish complex). These rockfish have a low economic 

value (B. Fissel, AFSC, pers. comm.) resulting in a high discard rate estimated at 56% 

over the entire time series (Tribuzio et al., 2019). Based on biomass, most of the Other 

Rockfish are caught in the trawl fisheries. Within the complex, some species tend to be 

caught more on longline gear (e.g., yelloweye rockfish in in subarea 630), and others 

across gear types (e.g., redbanded rockfish), highlighting the variability within the 

complex. Species in the Demersal Shelf Rockfish complex managed in subarea 650 are 

commonly found in rocky, high relief habitats (Tribuzio et al., 2019), where trawling 

fishing gear is prohibited. Demersal Shelf Rockfish species are primarily caught by 

longline gear fisheries (i.e., hook-and-line and jig) targeting sablefish (Anoplopoma 

fimbria) and Pacific halibut (Hippoglossus stenolepis; Table 1).  

 

2.2.2 Data Sources 

Life History Data 

The life history parameters were assembled from peer-reviewed articles, grey 

literature, assessment data from NMFS, and global predictions using FishLife (Thorson et 

al., 2017). Although species data from the GOA or northern ranges were used when 

available, most life history studies examining maximum age or age/length at maturity 

were completed in lower latitudes. When no data were available from the GOA, life 

history information from southern areas were utilized, despite the potential for 
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differential growth rates by latitude (e.g., splitnose rockfish [S. diploproa]; Gertseva et 

al., 2010). Depending on data availability, the included life history data for the analyses 

were: age and length at maturity (𝐴𝑚𝑎𝑡 and 𝐿𝑚𝑎𝑡, respectively), maximum age recorded 

(as a proxy for longevity, 𝐴𝑚𝑎𝑥), mean maximum length from the von Bertalanffy growth 

curve (𝐿∞), and von Bertalanffy growth parameter (k; Table 1). Natural mortality, M, was 

not included in the life history analysis, because M is frequently derived from other life 

history traits, such as maximum age, for these species, and is thus directly correlated.  

 

Fishery Catch Data 

Fishery catch information from 2010 to 2018 was used to estimate 

presence/absence and catch-per-unit-effort (CPUE) for each of the species. Other 

Rockfish species are incidentally caught in other groundfish fisheries by five gear types 

including non-pelagic trawl (NPT), pelagic trawl (PTR), longline hook and line (LL), pot 

(POT), and jig (JIG). The majority of the rockfish bycatch species by biomass are caught 

in the trawling gear (NPT and PTR), which primarily targets pollock, Pacific cod, 

flounders, and target rockfish species, in all subarea except 650. They are also caught in 

fishery longline gear types (LL and JIG) in all subareas that target sablefish and Pacific 

halibut. Fisheries species-specific catch information is gathered from the Alaska Regional 

Office Catch Accounting System (CAS) using data from 2010 (when quality data were 

first available for these rockfish species) to 2018. The sampling unit for the catch data is 

determined by each unique vessel trip identifier each week for each subarea as reported 

by fishermen, ranging from <10 to over 8,000 vessel trips for each gear type and subarea 
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over the entire time period. The CPUE input data used for the analyses are defined as 

biomass (mt) caught per vessel trip for each species based on available fisheries data.  

 

Survey Data 

The NMFS Alaska Fisheries Science Center (AFSC) bottom trawl survey (von 

Szalay and Raring, 2018) and annual longline survey (Malecha et al., 2019) were used as 

fishery independent data sources. Other Rockfish species information has been collected 

on the Alaska bottom trawl survey in the GOA since 1980. The bottom trawl survey used 

a triennial time scale from 1984 - 1996, followed by a biannual basis (1999 - current). 

Years included in this dataset range from 1984 to 2017. The trawl survey covers depths 

up to 1000 m, sampling around 320,000 km2 from late May - early August using a 

stratified-random design including an average of 235 hauls that catch at least one species 

in the Other Rockfish complex. The sampling unit for the trawl survey is biomass (kg) 

per km2 calculated by the biomass caught per area swept by the trawl net. General habitat 

types (i.e., gully, shelf, and slope), depth and latitude and longitude are recorded.  

The NMFS annual longline survey targets sablefish (Anoplopoma fimbria), but 

also catches Other Rockfish species. The longline survey can sample areas that are 

deemed untrawlable (e.g., areas with high relief and rocky habitat), providing catch 

information for species that might not be susceptible to the trawl gear. Data on rockfish 

from the longline survey used in this study range from 1995 to 2017. The sampling unit 

for the longline survey is number of individuals caught per set of hooks. Other factors 

that influence survey catch, such as depth bins, latitude and longitude, are available. 
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2.2.3 Multivariate Analyses Background 

A variety of quantitative multivariate clustering and ordination methods were 

implemented to explore potential alternative species groupings. We considered a species 

complex ‘appropriate’ for management advice if there was high consistency in clustering 

among different multivariate methods and types of data. Two clustering methods and one 

ordination technique were applied to each data type as suggested by Lee and Sampson 

(2000) and Shertzer and Williams (2008). The two clustering methods conducted in this 

study are Ward’s minimum variance and k-mediods; the ordination technique that is 

implemented is either canonical correspondence analysis (CCA) or non-metric 

multidimensional scaling (NMDS). These methods are described in Manly (2005), Zurr 

et al. (2007) and Legendre and Legendre (2012). All analyses were conducted in the R 

software language (R Core Team, 2020). 

Both hierarchical (Ward’s minimum variance) and non-hierarchical (k-mediods) 

cluster analysis are implemented to identify and compare consistency in species 

groupings. Ward’s minimum variance analysis is a hierarchical, agglomerative clustering 

technique, which uses the centroid method to iteratively group closest objects together 

(Ward, 1963). Ward’s analyses were conducted in R package “stats” (R Core Team, 

2020), and a bootstrap resampling method was applied to determine the stability of each 

grouping with 1000 bootstrap samples in R package “fpc” (Hennig, 2007; Hennig, 2020). 

For each bootstrap sample, the new dataset was formed by drawing samples from the 

original dataset with replacement and applying the Ward’s clustering analysis. The 

Jaccard coefficient, J, was calculated to examine the similarity in the cluster membership 

between the original cluster with each bootstrap cluster. The mean Jaccard coefficient 



41 
 

values, 𝐽,̅ were computed for each cluster, where a higher value indicated more stability 

in the cluster. A value of 0.75 or greater implies that the original cluster is stable; values 

ranging from 0.6 to 0.75 suggest there are patterns in the data, but uncertainty in the 

cluster (Hennig, 2007). Dendrograms were used to aid in the interpretation of the results. 

The non-hierarchical cluster method, k-mediods, is a more robust variant of the 

traditional k-means (Kaufman and Rousseeuw, 1990). This k-mediods method finds 

optimal groupings by minimizing the distance between all objects and their nearest 

cluster center (mediod). The k-mediods analyses were conducted using R package “stats” 

(R Core Team, 2020). The optimal number of desired groupings for k-mediods was 

determined a priori using the average silhouette width (Rousseeuw, 1987) in R package 

“factoextra” (Kassambara and Mundt, 2020). The silhouette width is the measure of 

quality of the clustering by examining the (dis)similarities of an object to the other 

objects within the same cluster compared to objects belonging to other clusters 

(Rousseeuw, 1987), where the number of k clusters selected is based on the highest 

average silhouette width. An average silhouette width less than 0.25 signifies that there is 

not enough structure in the data to support natural clusters (Kaufman and Rousseeuw, 

1990).  

Additionally, for either method it is possible to use either of two different 

clustering techniques: R-mode (comparing variables or descriptors) or Q-mode 

(comparing objects; see Figure 2; described in Legendre and Legendre, 2012). R-mode 

directly identifies relationships among species (variables) by examining species 

similarities based on the catch in each sampling unit, whereas Q-mode identifies clusters 

by grouping units based on commonality in species composition. Q-mode is particularly 
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useful for identifying groupings of sampling units (e.g., year and gear combinations) in 

multispecies catch data, but requires further analysis to examine species composition 

groupings within sampling units (e.g., Rogers and Pikitch, 1992).  

The ordination techniques that were utilized to identify relationships among 

species are CCA and NMDS. The CCA technique is commonly used to examine species 

relationships and environmental variables that influence community composition. This 

analysis uses a set of weighted linear regressions to describe the relationship among 

species catch and explanatory variables (e.g., gear, depth, or location). It assumes that the 

species data are unimodal and vary along the gradients of the explanatory variables. Here, 

depth or depth bins, general substrate type, gear, and NMFS subarea were included as 

factors in CCA when applicable. In contrast to CCA, NMDS accommodates different 

magnitudes in the data, because it preserves the order of the distances rather than the 

magnitude of the distances. The NMDS technique also does not assume an underlying 

response model (Legendre and Legendre, 2012). Both ordination methods were 

conducted using R package “vegan” (Oksanen et al., 2019) and the first two dimensions 

of ordination space were used for visual representation.  

 

2.2.4 Application of Multivariate Analyses 

Analyses of Life History Characteristics 

Both Ward’s and k-mediods analyses were applied to identify species groupings 

based on life history characteristics using R-mode. The input life history table used in the 

analysis had species as the rows and life history characteristics as the columns with 

entries being the associated life history values. Three versions of the life history table 
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were used for the analyses: species-specific values for each characteristic when data were 

available (species with no information were removed from this table, n = 21), species-

specific values with missing values estimated from FishLife (Thorson et al., 2017, Table 

1), and binned data based on four percentile bins (0-25%, 26-50%, 51-75%, and 75-

100%). Binned data allowed for data gaps and data uncertainty. The data in the species-

specific life history tables were standardized by dividing each characteristic value by the 

mean for each life history characteristic. The standardization process ensures the 

magnitude of the data are similar so that the life history values are weighted the same in 

the analyses. The Euclidean distances were then calculated to develop the final 

dissimilarity matrix before Ward’s and k-mediods analyses were implemented. Lastly, 

NMDS was applied to the dissimilarity matrix to assist in visualizing the species 

groupings and show any relationships among species and life history characteristics. 

 

Sub-unit Matrices of Catch and Survey Data 

 There are two scales of aggregation of the data, sub-unit and a more aggregated 

‘unit’ scale (Figure 2). At the ‘sub-unit’ scale, input data matrices had entries of 

presence/absence or CPUE of a species (represented in the rows) for a given sampling 

unit (i.e., the smallest sampling unit of either haul, tow, or set in the columns). A matrix 

was created for every area and gear combination for all years combined. The application 

of the multivariate methods for each individual data sub-unit matrix ensured that each 

gear in the fisheries and surveys and each area are treated independently.  

 Ward’s analysis, k-mediods and CCA were applied to the commercial catch and 

survey matrices. The R-mode for the cluster analyses was implemented for the sub-unit 
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data matrices. The multivariate analyses using R-mode allowed direct identification of 

species groupings for each gear type and NMFS subarea in the GOA when using the sub-

unit matrix. Once the data matrices were created, the CPUE sub-unit matrices were 

standardized using a root-root transformation to down-weight highly abundant and 

prevalent species. Subsequently, the dissimilarity matrices were computed using 

Sorensen distance for presence/absence data matrix and chi-square measure of distance 

for the standardized CPUE sub-unit matrix prior to the application of cluster analyses. 

Other data standardizations and distance measures were implemented, but did not change 

the results. The sub-unit CPUE input data matrices were assembled with the sub-units as 

rows and species as columns for the CCA. A chi-square transformation was applied on 

the data matrices before implementing a CCA. External factors, such as depth, latitude, 

longitude and substrate type, were included in the survey catch analyses for each sub-

unit.  

 

Proportion Matrix of Catch and Survey Data 

 The second scale of aggregation was the aggregated ‘unit’ scale, which developed 

an input ‘proportions’ matrix. This proportions matrix consolidated the individual sub-

unit matrices into a combined matrix. While in the ‘sub-unit’ matrices the columns 

represented the smallest sampling unit (i.e., haul, tow, or set), the columns of the 

proportions matrix were defined as a ‘unit’, which encompassed a temporal, spatial, and 

gear component. Here, each column was a unique combination of year, month, subarea, 

and gear while rows were species. The gear indicates the gear types used in the 

commercial catch and fishery-independent surveys, such that the gear categories are: 
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NPT, PTR, LL, POT, and JIG for the fisheries gear and “trawl survey” and “longline 

survey” for the NMFS surveys. The entries were the proportion of tows that a species was 

present within that unit (i.e., the sum of tows with a species present divided by the total 

number of tows within the unit). The proportions matrix combined data for all gear 

categories (i.e., commercial and survey gears) into a single matrix, which allowed the 

exploration of similarity in the species catch composition among different gears and 

areas. The proportions matrix can also be useful to limit the impact of abundant and 

frequently caught species by reducing the difference between the number of null or zero 

catches for less common species and high valued positive catches for prevalent species.  

 Ward’s analysis and k-mediods were applied to the proportions matrix using both 

R-mode and Q-mode. Similar to the R-mode application of the cluster analyses on the 

sub-unit matrices, the R-mode allows direct comparison of species relationships. The Q-

mode, which used the transpose of the proportions matrix as the input data, required more 

detailed investigation to identify species groupings because clustering was by unit, not 

species. The species groupings that comprised each cluster were visually examined to 

determine which characteristics (i.e., gear, subarea, month, season and year) influenced 

the clustering. The proportions matrix (or transpose thereof) already reduced the catch of 

species to comparable scales, thus, no standardization was necessary. Chord distances 

were calculated to obtain the dissimilarity matrices for the proportions matrix prior to 

applying the cluster analyses. The Chord distance is a type of Euclidean distance measure 

that can accommodate non-normalized data and is not sensitive to outliers (Shirkhorshidi 

et al., 2015). For the CCA, the proportions input matrix was assembled with the units as 

rows and species in the columns. A chi-square transformation was applied before 
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implementing a CCA. Gear and subarea for each unit in the proportions matrix was 

included as external factors.  

 

2.3 Results 

2.3.1 Analyses of Life History Characteristics 

The rockfish in the GOA have a wide range of life history values (Table 1). 

Results for Ward’s analysis and k-mediods on the life history tables differed slightly, but 

provided the same general conclusion. The multivariate analyses on the life history table 

supplemented with FishLife values are reported here; results based on the life history 

table with missing values and binned data are similar and reported in the Supplementary 

Material (Supplementary Figure 1 and 2).  

Results from Ward’s analysis had weakly supported groupings based on the 

bootstrap resampling for species with mid to lower values of length and ages associated 

with maturity, growth, and longevity (𝐽 ̅values ranging from 0.63 to 0.69). The bootstrap 

resampling suggested patterns in the data for the grouping of three or four clusters with 

similar 𝐽 ̅values ranging from 0.63 to 0.83, but the clusters lack stability. Only the low 

productive species (i.e., tiger, blackgill, and yelloweye) remained in their own grouping 

in both k= 3 or 4 clusters in Ward’s analysis with 𝐽 ̅values of 0.73 and 0.83, respectively. 

The NMDS plot with results from Ward’s analysis represents three clusters, one with the 

low productivity group (i.e., high length and age values), one with relatively higher 

productivity (i.e., lower length and age values), and the third group with varying levels of 

productivity (Figure 3A). When k= 4 clusters, two species, redbanded and bocaccio, 
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separate into their own group; these two species have low 𝐴𝑚𝑎𝑥 and high 𝐿𝑚𝑎𝑡 and 𝐿∞ 

compared to the other species in their cluster when k=3. 

Results from k-mediods split the rockfish into two clusters based on the highest 

silhouette width of 0.30. The first cluster contained rockfish with life history values with 

high length and age values (i.e., low productivity). The second cluster consisted of 

rockfish with medium to high productivity (Figure 3B). 

Comparing the results from the different clustering methods, the methods tended 

to group species by large or small lengths (𝐿∞ and 𝐿𝑚𝑎𝑡) and younger or older maximum 

age (𝐴𝑚𝑎𝑥) and age at maturity (𝐴𝑚𝑎𝑡), but most clusters were weakly supported. There 

were a few species that were placed in the same group regularly. These species tend to 

fall on the ends of the rockfish productivity spectrum (i.e., all high or low values for age 

and length associated with maturity, growth, and longevity). For example, tiger, blackgill, 

and yelloweye rockfishes all have high 𝐿𝑚𝑎𝑡, 𝐴𝑚𝑎𝑡 ,  𝐿∞, and 𝐴𝑚𝑎𝑥 values (i.e., low 

productivity) and were consistently clustered together for k-mediods and Ward’s analysis. 

There are other rockfish species that have opposing life history characteristics. For 

example, splitnose has a high 𝐴𝑚𝑎𝑥, but low 𝐿∞, while bocaccio has low 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑎𝑡 

and high 𝐿∞and 𝐿𝑚𝑎𝑡. These species tended to waver between clusters depending on the 

method and suggested number of clusters. Overall, larger, older rockfish tended to cluster 

together, but there is a wide variation and spread of life history values among and within 

the clusters resulting in no distinct support for clusters.  

 

2.3.2 Sub-unit Matrices of Catch and Survey Data 
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Exploratory runs were performed with all methods applied to the catch and survey 

data to determine whether results were robust to the inclusion of rare species (i.e., species 

comprising less than 1% of total catch). Due to poor performance (i.e., lack of clustering 

and chaining in Ward’s analyses) in exploratory runs when rare species were included, it 

was determined that these species should be removed from further analyses of the catch 

and survey data. Species removal varied considerably for sub-unit analyses (see 

Supplementary Material 1 and Supplementary Figure 3 for species composition and 

sparseness across gears and subareas). 

When each gear and area were analyzed separately using the sub-unit matrix, 

some analyses demonstrated poor performance (e.g., high prevalence of chaining or lack 

of clustering). Generally, results demonstrated that the more abundant and more 

frequently caught species tended to group together, while the less abundant species also 

commonly clustered together (Supplementary Figure 4). This pattern is demonstrated in 

both types of cluster analyses for all subareas of the GOA and all gear types for both 

presence/absence and CPUE data matrices. However, these results should be interpreted 

with care, given the performance issues encountered. The ordination analyses (CCA) did 

not yield discernable groupings nor strong associations with the additional explanatory 

information (e.g., depth, longitude, latitude, and substrate type; Supplementary Figure 5). 

Thus, the analyses using the sub-unit matrix were of limited insight for grouping of 

species complexes. 

 

2.3.3 Proportions Matrix of Catch and Survey Data 
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The exploratory runs with the proportions matrix indicated that rare species 

should be excluded to provide better clustering performance. A total of 14 species 

remained in the unit proportions matrix after rare species were excluded. The total 

number of species remained the same across analyses and modes. 

Aggregating the data into units (i.e., by year, month, subarea, and gear) in the 

proportions matrix enabled the cluster analyses to find stronger relationships among the 

species using R-mode. Although the groupings from the k-mediods analysis using the 

unit aggregation led to similar results as using the sub-unit matrix, Ward’s analyses 

tended to aggregate species by co-occurrence. The bootstrap resampling method 

indicated that k= 2 or 3 clusters were supported with 𝐽 ̅values ranging from 0.69 to 0.84. 

For the two-cluster output, one stable cluster (𝐽 ̅= 0.84) contained species that are only 

within the Other Rockfish complex with the exception of rosethorn (Figure 4). The other 

cluster aggregated species predominately found in the Demersal Shelf Rockfish group (𝐽 ̅

= 0.82). For the three-cluster output, the clustering data suggested that two species (i.e., 

canary and yellowtail could be weakly separated into their own group (𝐽 ̅= 0.69), whereas 

these species are aggregated with the Demersal Shelf Rockfish cluster when k=2 (Figure 

4).  

 The clustering and ordination analyses indicated that gear and occasionally 

subarea influenced the groupings using Q-mode. There did not appear to be any seasonal 

or temporal trends. Ward’s analysis performed poorly due to the common chaining issue 

and there was no appropriate number of groupings found based on the bootstrapping. 

Conversely, the k-mediods method provided discernable groupings. The optimal number 

of clusters (k) for k-mediods was 5 based on the average silhouette width of 0.32. 
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However, the optimal number of clusters based on where the average silhouette width 

first reaches its asymptote was k= 2 at a silhouette width value of 0.29 (Figure 5). Thus, 

results from the k = 2 and k = 5 clusters are presented.  

 Results from k-mediods with k = 2 clusters yielded clearly defined groups 

differentiated primarily by gear type (Figure 6A). The first cluster contained trawling 

gears (i.e., NPT, PTR, and the trawl survey), as well as the pot gear (POT). The second 

cluster consisted of longline gear types (i.e., LL, JIG, and the longline survey). 

Differences in subareas could also be discerned (Figure 6B); the first cluster mostly 

contained subareas 610, 620, and 630, whereas cluster 2 comprised all subareas. The 

division of subareas can be attributed to specific fishing gear in certain subareas 

(Supplementary Figure 3). For example, NPT and PTR gear types do not fish in subarea 

650, whereas JIG gear is primarily used in subareas 630 and 650. 

 The majority of the species belonging to the Demersal Shelf Rockfish complex 

(i.e., china, yelloweye, tiger, rosethorn, quillback and canary) had a higher proportion of 

presence in the cluster associated with the longline gear (cluster 2; Figure 6C). In 

comparison, most of the species that only belong to the Other Rockfish complex (i.e., 

widow, sharpchin, redstripe and harlequin) were present in higher proportion in the 

cluster that contained mostly all trawl gear and subareas 610, 620 and 630 (cluster 1; 

Figure 6C). For comparison, northern rockfish are caught in almost 100% of the units in 

cluster 1 (Figure 6C), which is as expected because the northern rockfish is a target 

species, assessed separately, and caught solely by trawl gears in subareas 610, 620, and 

630. The northern rockfish results suggest that the clustering is accurately reflecting the 

data. There were some species that did not follow this pattern. Two species (i.e., 
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silvergray and redbanded) that were commonly found in all gear types (Supplementary 

Figure 3), but belong only to the Other Rockfish complex, were found in 41% and 46%, 

respectively, of the total units in cluster 1 (affiliated with trawl gear; Figure 6C), whereas 

these two species were in 56% and 68% of the units in cluster 2 (affiliated with longline 

gear; Figure 6C). Additionally, yellowtail was present more frequently in the units in the 

cluster associated with longline gear (cluster 2; Figure 6C) than the cluster associated 

with trawl gear (cluster 1; Figure 6C), despite the species only being assigned to the 

Other Rockfish complex. 

 Although the results when k=5 clusters generated more mixed groupings 

compared to k = 2, there was some separation among gear types (Figure 7A). The major 

fishery gears (i.e., NPT, JIG, and LL) each separated into their own clusters with some 

overlap between LL and JIG gear (i.e., clusters 3, 4, and 5, respectively, in Figure 7A). 

Cluster 1 consisted of a mix of all trawl gear (fishery and survey), while cluster 2 

included mostly all longline survey and LL units (Figure 7A). The separation of subareas 

in the clusters followed a similar pattern to the k=2 cluster results. Most clusters 

contained a mix of subareas (Figure 7B); however, some gear types do not fish in specific 

subareas. 

 There were several species that were abundant in most clusters and some species 

that were specific to a few clusters when k = 5 (Figure 7C). For example, yelloweye was 

present in 75% or more of the units in all but cluster 1 (Figure 7C). In contrast, harlequin 

was generally associated only with trawling gear types and subareas 610, 620 and 630 

(i.e., clusters 1 and 3; Figure 7C). Similar to the species composition when k = 2 clusters, 

many of the Demersal Shelf Rockfish species were found in higher proportion in clusters 
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associated with longline gear (LL, JIG, and longline survey in clusters 2, 4, and 5 

covering all subareas; e.g., quillback). Yellowtail was found in higher proportion in 

clusters with JIG and LL (i.e., clusters 4; Figure 7C) and in low presence (i.e., < 10%) in 

clusters linked with longline survey and all trawl gear (Figure 7C). 

 Although CCA results from the proportions matrix did not reveal any species 

aggregations in ordination space, the results did reveal general groupings primarily by 

gear (Figure 8) and secondarily by subarea (Supplementary Figure 6). The groupings 

indicated that there were underlying differences in the species composition by gear and 

subarea. The other variables (i.e., year, month, and temporal factors) did not influence the 

groupings and were excluded from further CCA analyses. About a third (36%) of the 

variation could be explained by the gear and subarea variables, which suggested that 

these variables were correlated with the species composition. The first axis, CCA1, 

represented a strong gradient and explained ~40 % of the CCA variation. The second 

axis, CCA2, explained ~25% of the CCA variation (Supplementary Table 1). Based on 

CCA1 and CCA2, the longline survey, LL and JIG all separated (Figure 8). The various 

trawl gear units (NPT, PTR and trawl survey) appeared to be mixed in ordination space 

along the CCA axes. The POT fisheries gear overlapped with both the trawl gears and LL 

(Figure 8). A few species are moderately associated to specific gears according to the 

CCA results, such as yellowtail, canary and China rockfish to JIG, longline survey, and 

LL. Axis CCA1 separated subarea 650 from the other subareas (Figure 8). However, all 

the other subareas were not affiliated with the CCA axes, indicating that gear types 

contributed to most of the variation. 
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2.4 Discussion 

Our analyses demonstrate the importance of exploring a variety of quantitative 

methods for determining species complexes based on both life history and catch or 

survey data. Although each multivariate approach has associated pros and cons, utilizing 

multiple methods can help identify consistent trends across data and statistical 

approaches. The use of multiple data types and methods for identifying species 

complexes should be considered best practice for the management of data-limited 

fisheries. Our results demonstrate that reliance on single methods or a single type of data 

may provide limited interpretations that may lead to suboptimal species groupings and, 

ultimately, poor management performance. 

Specific to our case study, our analyses indicate that an alteration in the 

complexes for management of these species may be warranted. We suggest that the 

Demersal Shelf Rockfish species should be separated from the remainder of the Other 

Rockfish complex in all subareas in the GOA for assessment purposes. The remaining 

bycatch rockfish from this study can be grouped together as one complex. There were no 

clear divisions of species based on the life history characteristics due to the uncertainty 

and diversity in values, and unstable clustering among methods. The application of 

multiple methods (clustering and ordination techniques, R- and Q-mode, and data 

structure) and examination of the catch and survey data provided a basis to develop 

possible complexes. Some methods were unsuccessful (e.g., sub-unit analyses), while 

others delivered sensible groupings (k-mediods in Q-mode for proportions matrix). The 

rockfish groupings separated mainly by gear in our analyses, which suggested that the 
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assessment models providing management advice for these complexes should incorporate 

the associated survey gear.  

 

2.4.1 GOA Bycatch Rockfish Results and Study Limitations 

Wide ranges in productivity and resilience of species’ populations are not 

uncommon when applying methods to identify species complexes (DeMartini, 2019). The 

life history cluster analysis results indicated that rockfish in the GOA tended to group by 

higher (i.e., earlier age and smaller size at maturation) and lower (i.e., older age and 

larger size at maturation) productivity levels, but generally demonstrated a wide range in 

life history values. A few rockfish species had conflicting levels of productivity with 

different life history characteristics (e.g., long-lived with early age-at-maturity), which 

made it challenging to define a species with high or low productivity compared to other 

rockfish. The uncertainty in the life history values limits interpretation of the results. One 

source of uncertainty is that life history values were borrowed from outside of the GOA 

when data were not available and research suggests that there can be regional differences 

in values (Boehlert and Kappenman, 1980; Gertseva et al., 2010; Keller et al., 2012). 

Additionally, studies for a given species often showed variability, making it difficult to 

place a species into high or low productivity groupings. Given the uncertainties in the 

data, the results did not yield definitive groups and were deemed less reliable than the 

outputs of the cluster analysis using catch and survey data. Yet, based on PSA results, 

GOA rockfish, as a genus, fall in the lower productivity spectrum (Ormseth and Spencer, 

2011). Rockfish results from Ormseth and Spencer (2011) concur with the U.S. West 

Coast groundfish PSA results (Cope et al., 2011) that included more rockfish species. 
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Given that rockfish are generally less productive compared to the other species in the 

GOA, they tend to be more vulnerable to fishing pressure.  

Each rockfish species faces different susceptibility to the widely varying fisheries 

that operate in the GOA, but one particular challenge is the placement of rare or 

ubiquitous species into a species group using cluster analyses. We had a range of 3 to 13 

species included in the sub-unit cluster analyses depending on the gear type and subarea 

due to the exclusion of rare species (species with < 1% of total catch). There were 11 of 

the 25 species that made up < 1% of the units (year-month-subarea-gear) with positive 

catch for the proportions matrix. The multivariate methods in this study were unable to 

provide species association or coexistence relationships for these rare species. Likewise, 

species that are captured across many gear types and areas are difficult to assign to 

groups. The clustering results did not indicate specific species associations for these 

abundant rockfish. 

Most of the clustering analyses also failed to provide consistent or reliable results 

when applied to each gear and subarea dataset separately through application to the sub-

unit matrix. When the various methods were applied to the sub-unit matrices there were 

no clearly delineated relationships of commonly caught species or rarer species. We had 

anticipated that the finer-scale approach might provide insight into the co-occurrence 

among species. However, the lack of identified co-occurrence relationships (i.e., 

similarities among species) with the sub-unit matrices was likely because the R-mode 

groups by similar catch in each unit or sub-unit. As a result, the more abundant and more 

frequently caught species are commonly grouped. Thus, the differences in magnitude and 

frequency of the catch mask the less obvious relationships among species. 
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Aggregating all the datasets into a single data matrix enabled gears, subareas, and 

temporal components to be compared, while major categories that influenced the 

groupings could be identified. The challenge is determining logical and biologically 

informed clusters (e.g., balancing too few or too many clusters that may result in a 

narrow or wide range of species productivity), while balancing the practical management 

of species that are exploited across varying gear types and subarea. Using the k-mediods 

analysis, either two or five clusters were recommended. The suggested k = 5 clusters 

identified specific relationships among different gear types and occasionally subareas. 

Some species appeared to be associated with only a specific cluster (or clusters), whereas 

other species were commonly found in all clusters. The rockfish that occur in medium to 

high frequency in all or most of the clusters are species that are found ubiquitously in the 

GOA and are caught by most gear types. The results with k = 2 clusters indicated that the 

species composition caught by longline gear types clearly separated from trawling gear 

types. Overall, the analysis of the catch and survey data indicated that gear was the 

biggest contributing factor in grouping similar units of rockfish species composition. 

NMFS management subarea could have influenced the cluster results, as there was a 

strong interaction between fishery gear and subarea (i.e., certain gears only operate in 

specific subarea). These analyses suggest that rockfish species that are only 

predominately caught by a specific gear could be assigned to a rockfish complex that 

commonly associates with that gear for assessment and management purposes.  

These analyses, particularly the proportions matrix analyses, provided a way to 

examine the species composition from the fishery catch with the survey data. Our results 

indicated that the trawl survey and trawl fisheries gear tended to be grouped together 
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more frequently than the longline gear types (i.e., the longline survey, LL, and JIG). 

Williams and Ralston (2002) found that the bottom trawl survey reflects the trawl fishery 

sector well off the coast of California and Oregon, USA, which includes non-pelagic and 

pelagic trawl, because it catches species that are typically found at the bottom (e.g., 

Keller et al., 2008) or distributed in the water column (e.g., widow rockfish, Wilkins, 

1986). In contrast, the longline survey is a fixed station survey that targets primarily 

commercially important sablefish (Malecha et al., 2019). The longline survey did not 

always catch species typically caught in the longline fishery gear types (Supplementary 

Figure 3). Of the top five Other Rockfish species caught in the longline survey by 

numbers, only three are designated in the Demersal Shelf Rockfish complex. This result 

suggests that the longline survey alone is not representative of the populations within the 

complex or caught by the longline gear fisheries. If the Demersal Shelf Rockfish complex 

is extended to all subareas of the GOA, other data resources will be needed to assess this 

assemblage. For example, the Demersal Shelf Rockfish assessment utilizes submersibles 

to estimate abundance trends to set quotas in NMFS subarea 650 (Olson et al., 2018). 

Studies have identified that commercial catch data do not necessarily reflect the species 

composition in the survey data (i.e., species composition in the ecosystem; Lee and 

Sampson, 2000; Pennino et al., 2016), but surveys should include a broader diversity of 

species than that found in the commercial catch. Given the diversity of gear types utilized 

in the GOA, as well as specific gears fishing in habitat-specific areas (e.g., Rooper et al., 

2012) and habitat-specific preferences of some rockfish (Laidig et al., 2009; Conrath et 

al., 2019), it is not surprising that the longline survey does not perfectly reflect the 

species composition of the various longline gear fisheries. Yet, the paucity of data 
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available for the bycatch rockfish species in the GOA requires that any data on catch 

rates and composition should be utilized. We suggest the incorporation of the longline 

survey data in the analysis of species complexes in the GOA, despite some limitations in 

the overlap of the survey catch composition compared to the longline gear species 

composition. In the future, other survey types, such as submersibles, which are used in 

the current Demersal Shelf Rockfish assessment (Olson et al., 2018), should be 

investigated when survey data underrepresent the species composition of the fishery. 

 

2.4.2 GOA Bycatch Rockfish Management Recommendations 

The management of the bycatch of GOA rockfish poses a challenge because these 

species have a diverse range in life history values, habitat preferences, spatial 

distribution, and fishing vulnerability. Based on the summary of our analyses, as well as 

consideration of previous work with GOA rockfish complexes (e.g., the PSA of Ormseth 

and Spencer, 2011), we propose an alteration for management of the rockfish complexes 

in the GOA (Table 2). The current GOA Other Rockfish complex consists of species that 

are classified as the “slope”, “pelagic shelf”, and “demersal shelf” rockfish assemblages 

and the group of seven “demersal shelf” species are separated into the Demersal Shelf 

Rockfish complex in subarea 650. Our results indicated that the current delineation that 

split the GOA Other Rockfish and Demersal Shelf Rockfish complexes is appropriate. 

The analysis of catch and survey data indicated that these two complexes tended to 

separate by the main fishing gear types, trawl and longline, gulf-wide with the Demersal 

Shelf Rockfish more closely associated with the latter gear. We suggest that the Demersal 

Shelf Rockfish species be placed into their own complex for all subareas in the GOA.  
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Some alterations and considerations may be warranted, particularly for highly 

prevalent or rare species. For instance, silvergray and redbanded rockfish were 

commonly found in all gear types and were equally common in both the longline and 

trawl groupings. We suggest that the few species that are caught in high prevalence by all 

gear types should be placed in the group of species that associates with the gear that 

catches the species in the highest abundance (see Table 2 for these assignments). 

Although these bycatch rockfish are frequently caught, they do not have enough data to 

warrant a single-species assessment. Similar approaches will likely be appropriate for 

rare species, which were excluded from this analysis (but included in Table 2 based on 

gear association). We suggest placing rare species in the species group associated with 

the gear in which they are most commonly caught. By doing so will help ensure that the 

rare species are managed consistent with the fishing pressure that they encounter. 

However, rare species may be more prone to localized depletion or other conservation 

concerns and should be carefully monitored. 

Further specific alterations to the current complexes also should be investigated. 

One species, yellowtail rockfish, which is assigned to the “pelagic shelf” assemblage by 

the North Pacific Fishery Management Council (NPFMC, 2019) and assessed in the 

Other Rockfish complex, was associated more closely with the longline gear grouping. 

However, this species was caught in both main fishery gear types, trawl and longline, but 

only caught in the trawl survey. We suggest that yellowtail rockfish remain in the Other 

Rockfish complex, but should be monitored due to its association with species from the 

Demersal Shelf rockfish complex (Table 2). Careful consideration should be applied to 

all species belonging to the “pelagic shelf” assemblage classified by the North Pacific 
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Fishery Management Council (NPFMC, 2019), because results from this analysis split 

the “pelagic shelf” rockfish into opposing groups based on species association, but have 

different gear associations.  

One method to help provide guidance for the management and sustainability of 

species in complexes is to identify indicator species. An indicator species should be 

commonly observed in the gear types associated with the clusters, demonstrate similar 

population trends, and share similar life history traits (e.g., reproductive success) as other 

species, and not have a noticeable competitive relationship with the rest of the species in 

the group (Landres et al., 1988; Simberloff, 1998; Zacharias and Roff, 2001). 

Additionally, they should exhibit the highest vulnerability or be near the lower end of the 

productivity spectrum for the complex (i.e., be a “weakest link” species; Shertzer and 

Williams, 2008). The community structure must also be relatively stable to manage a 

complex based on an indicator species; yet, studies often show large marine ecosystem 

shifts (Shertzer et al., 2009). Thus, these assumptions are often violated or no species is 

able to fulfill all the requirements for an appropriate indicator species (Niemi et al., 

1997). However, an indicator species can still be useful by providing supplementary 

precautions and buffers for the complex by demonstrating potential instability within the 

group if the variation in the population of the indicator species increases or there are 

drastic changes to the population.  

To help ensure sustainability for all rockfish in the complexes, it may be useful to 

select one or two precautionary indicator species that are on the lower end of the 

productivity spectrum for the complex, but are commonly observed by the predominant 

gear type (i.e., they are not rare species). Based on the PSA results from Ormseth and 
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Spencer (2011), Cope et al. (2011), and our analyses on the life history characteristics, we 

suggest that redbanded and silvergray in the Other Rockfish complex and yelloweye in 

the Demersal Shelf rockfish complex may be appropriate indicator species given their 

low productivity and relatively high frequency of observation (Table 2). We believe that 

these general groupings are both practical for management advice (i.e., bycatch quotas 

can be enforced because groupings align by common gear types) and biologically 

relevant (i.e., all rockfish genus fall on the lower end of the productivity spectrum). We 

suggest that future research explore the possibility of identifying indicator species for the 

GOA Other Rockfish complex and whether redbanded and silvergray might be 

appropriate representatives. 

Given the data limitations for the GOA Other Rockfish species (e.g., lack of 

consistent life history data, a number of diverse gear types, and the high occurrence of 

rare species that are seldom observed), the groupings for the complexes should be re-

evaluated when new or updated data are available. In particular, the uncertainty in life 

history values used in these analyses hindered the ability to develop clusters based on 

productivity. For example, length data are not collected for many species in this study, 

but length data collection could inform key life history values. To be able to adequately 

represent these data-limited species, particularly rare species, improved data collection 

will be the only reliable solution to implement the type of species clustering approaches 

used in this study. Future focus on the collection of biological data from discards of rare 

species would be a helpful for better managing bycatch rockfish species.  

In the current study, we were unable to include environmental or habitat features 

to the proportions matrix analyses due to the lack of data from the various fishery sectors, 
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as well as, the problematic issue of identifying broad-scale features for entire 

management subareas. However, many studies examining species association or 

identifying species complexes have determined depth (Rogers and Pikitch, 1992; Lee and 

Sampson, 2000; Gomes et al., 2001; Williams and Ralston, 2002; Rooper, 2008), broad 

substrate or habitat structure (Ann et al., 2009) or a combination of factors (Tolimieri and 

Levin et al., 2006) affect the species composition. Additionally, when multiple fishing 

gears are included in analyses to examine species composition in a given area, it is often 

found that different combinations of gear type, environmental, and spatial features 

influence the species catch (e.g., Vinther et al., 2004; Pennino et al., 2016; Tuda et al., 

2016). Nonetheless, most of these studies focus on only one gear type or utilize survey 

data collected by submersibles, which enables researchers to determine main 

environmental or habitat features influencing the grouping. Further work is warranted to 

collect data and determine if habitat or environmental variables might help to better 

identify rockfish species complexes. 

 

2.4.3 General Species Complex Recommendations 

Appropriate methods for identifying species complexes are likely to vary on a 

case-by-case basis because each region and fishery has different attributes that need to be 

evaluated. Oftentimes, life history characteristics are unknown or complexes formed 

based on productivity do not necessarily align with vulnerability to the fishery or spatial 

distribution of the species. When there are conflicting results on groupings, managers 

must consider alternative options. A PSA or other risk assessment methods (e.g., 

Sustainability Assessment for Fishing Effects, Zhou et al., 2016) can help guide 
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groupings for management as a preliminary tool (Cope et al., 2011), but this method may 

not accurately depict fishing dynamics in the susceptibility scores for all species (Hordyk 

and Carruthers, 2018). As previously discussed, Cope et al. (2011) recommend a step-

wise method for assigning species to complexes using commonalities among species in 

depth preferences, spatial distribution, and vulnerability scores (i.e., based on levels of 

productivity and susceptibility to exploitation). Based on our analyses, we recommend 

that gear type needs to be considered in this step-wise grouping method, because certain 

species are more susceptible to specific gears than others. Incorporating gear types 

enables the comparison of species’ vulnerability to different fishing pressures due to 

differences in spatial distribution (McCully Phillips et al., 2015), patchy distributions 

(Silva et al., 2012), and habitat preferences (e.g., Jagielo et al., 2003; Conrath et al., 

2019).  

The use of a variety of multivariate methods helps validate the appropriateness of 

the suggested groupings. We recommend using a combination of multiple data types, data 

aggregation scales, and the application of several multivariate analyses to develop species 

complexes. Each data-limited situation requires context-specific methods tailored to 

intricacies of the species and fishery being managed. For example, the inadequacies of 

our analyses using the sub-unit matrices to identify species co-occurrence demonstrates 

the importance of applying multiple analyses at multiple data aggregation scales to 

develop robust groupings. Likewise, we suggest that exploring both R-mode and Q-mode 

multivariate methods is warranted, especially when fishery and survey catch are the 

primary sources of data. Although not as widely used for analysis of species complexes, 

Q-mode can be valuable to identify commonalities in species groupings across gear types 
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and management subareas. R-mode analysis provides a more direct clustering approach 

by species, which is useful when reliable life history data are available or a limited 

number of gear types (or a single multispecies fleet) harvest the primary species of 

concern (e.g., reef fishes that are fished using longline gear types along the southeastern 

coast of the U.S. [Shertzer and Williams, 2008] and Gulf of Mexico [Farmer et al., 

2016]). However, it can be difficult to get reliable outputs from R-mode when a variety 

of gears differentially exploit the diversity of species under consideration across a broad 

spatial range (i.e., management subareas).  In our study, Q-mode analysis proved to be 

useful when determining manageable species complexes. Ultimately, there is not a single 

universal approach to determining species complexes that is robust to all species traits 

and data availability situations. Our study demonstrates that a diversity of quantitative 

multivariate approaches is warranted when exploring potential species complexes, while 

Q-mode analysis should be more widely explored, especially for situations where there 

are multiple gear types. Thus, the optimal groupings should be determined by 

commonality and consistency among a variety of different multivariate methods and 

datasets.  

 

2.4.4 Conclusions 

Managing data-limited species as a complex can be a practical approach for 

reducing the number of required stock assessments when insufficient data and ecological 

knowledge exists to perform individual stock assessments (Koutsidi et al., 2016), but the 

management of the complex is only as good as the information used to define the 

groupings (Fujita et al., 1998). We provide one of the first explorations of species 
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complex groupings based on the combination of clustering from multiple data types (e.g., 

life history, catch, and survey data), multiple data aggregation scales (e.g., by sub-unit 

and at an aggregated “unit” scale), and a wide variety of multivariate methods (e.g., 

Ward’s analysis, k-mediods, CCA, and NMDS), as well as, different modes (e.g., R-mode 

and Q-mode). Exploration of each of these approaches was important for making 

management recommendations for the GOA Other Rockfish complex, because certain 

approaches (i.e., analyzing sub-unit matrices for the catch and survey data) failed their 

diagnostics of model adequacy, and data (i.e., life history characteristics) had varying 

levels of quality. By analyzing all of these approaches, we were able to address 

consistency and reliability across methods, thereby developing species complex advice 

that is likely more robust compared to using any single approach. 

We found that the species designations for the Other Rockfish and Demersal Shelf 

Rockfish complexes appear to be appropriate, but these complexes should be extended 

across all management subareas in the GOA (i.e., the Demersal Shelf Rockfish complex 

is currently only delineated in subarea 650). Despite our methodology being more 

resource intensive and providing the same complex assignment as existing, less 

analytically thorough, approaches, these results are likely specific to this case study. We 

would expect that in other situations, using our suite of quantitative methods would result 

in different species assignment compared to more commonly used qualitative approaches. 

However, our approach does require increased resources, including both funding and 

personnel, which needs to be weighed against the desire to improve species assignment, 

assessment, and management of species complexes.  
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Although these results are based on the best data currently available, there is a 

clear need for improved data collection on bycatch species in the GOA. Collection and 

incorporation of other data could improve clustering analysis in the future by providing 

improved data on species distributions, habitat associations, and co-occurrence. As fish 

move poleward and into deeper depth subareas due to changing climactic conditions 

(e.g., Perry et al., 2005; Pinsky et al., 2013; Kleisner et al., 2017), there is likely to be a 

northward shift in the center of gravity for many of the GOA rockfish species examined 

here, which are at the northern extent of their range in the GOA. Improved data collection 

will be paramount for identifying changing distributions, which are likely to alter the 

frequency and abundance of rockfish catch by fisheries and surveys. Thus, the 

combination of new data collection approaches and further refinement of methods for 

identifying species complex groupings will be crucial to detect changes in species 

composition and abundance and implementing sustainable fisheries management. 
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2.6 Tables 

 

Table 1. Life history characteristics for each Gulf of Alaska Other Rockfish (GOA OR) and Demersal Shelf Rockfish (DSR) species. 

Assessment Group indicates the current species complex assignment. Life history values included are: maximum age (𝐴𝑚𝑎𝑥), age-at-

maturity (𝐴𝑚𝑎𝑡), length-at-maturity (𝐿𝑚𝑎𝑡), average maximum length (𝐿∞) and von Bertalanffy growth parameter, k. Regions or states 

(i.e., California= CA, Oregon= OR, Washington= WA, British Columbia= BC, Alaska= AK) and citation (in Appendix 1) are listed in 

parentheses.  

 

Common 

name 

Sebastes sp. Assessment 

Group 

𝑨𝒎𝒂𝒙 𝑨𝒎𝒂𝒕 𝑳𝒎𝒂𝒕 
(mm) 

𝑳∞ 

(mm) 

k 

blackgill  S. melanostomus GOA OR 90 (OR/CA; 1) 21 (OR/CA; 1) 350 (OR/CA; 1) 548 (OR/CA; 1) 0.04 (OR/CA; 1) 

bocaccio S. paucispinis  GOA OR 45 (WA; 2) 4 (CA; 12) 450 (CA; 12) 909 (BC; 22) 0.088 (BC; 22) 

canary  S. pinniger DSR 71 (CA; 3) 9 (CA; 12) 480 (BC; 20) 580 (BC/WA/OR/CA; 23) 0.16 (BC/WA/OR/CA; 23) 

Chilipepper S. goodie GOA OR 35 (OR/CA; 4) 2.5 (OR/CA; 4) 260 (OR/CA; 4) 575 (OR/CA; 4) 0.252 (OR/CA; 4) 

China  S. nebulosus DSR 78 (AK; 5) 4 (CA; 12) 270 (CA; 12) 450 (AK; 28) 0.19 (WA/OR/CA; 31) 

copper  S. caurinus DSR 50 (AK; 5) 6 (CA; 12) 340 (CA; 12) 400 (AK; 28) 0.13 (WA/OR/CA; 31) 

darkblotched  S. crameri GOA OR 105 (6) 8.4 (OR; 13) 365 (OR; 13) 455 (OR; 24) 0.185 (6) 

greenstriped  S. elongates GOA OR 54 (AK; 5) 
8.5  
(WA/OR/CA; 14) 230 (CA; 12) 355 (BC; 25) 0.115 (BC; 25) 

harlequin  S. variegatus GOA OR 34 (AK; 7) 9.0* 230 (AK; 20) 323 (AK; 7) 0.110 (AK; 7) 

northern  S. polyspinis 

Subareas: 

640,650 72 (AK; 7) 13 (AK; 15) 360 (AK; 15) 404 (AK; 7) 0.155 (AK; 7) 

pygmy  S. wilsoni GOA OR 26 (BC; 5) 6.0* 183.9* 230 (AK; 28) 0.180* 

quillback  S. maliger DSR 90 (AK; 8) 5 (AK; 16) 260 (CA; 12) 610 (AK; 28) 0.113* 

redbanded  S. babcocki GOA OR 106 (AK; 5) 4 (CA; 12) 420 (BC; 20) 698 (BC; 22) 0.042 (BC; 22) 

redstripe  S. proriger GOA OR 55 (BC; 5) 8 (16) 290 (BC; 20) 420 (BC; 22) 0.15 (BC; 22)  

rosethorn  S. helvomaculatus  DSR 87 (AK; 5) 8 (CA; 12) 210 (AK; 20) 319 (BC; 22) 0.079 (BC; 22) 
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sharpchin  S. zacentrus GOA OR 58 (AK; 7) 10 (16) 270 (AK; 16) 350 (AK; 7) 0.122 (AK; 7) 

silvergray  S. brevispinis GOA OR 75 (AK; 7) 10 (BC; 17) 460 (BC; 16) 623 (AK; 7) 0.093 (AK; 7) 

splitnose  S. diploproa GOA OR 103 (BC; 9) 7 (CA; 12) 218 (WA/OR/CA; 21) 314 (BC; 9) 0.155 (BC; 9) 

stripetail  S. saxicola GOA OR 38 (30) 4 (CA; 18) 200 (BC; 20) 327 (CA; 18) 0.147 (CA; 18) 

tiger S. nigrocinctus DSR 116 (AK; 5) 15.0* 391.1* 610 (AK; 28) 0.083* 

vermilion S. miniatus GOA OR 60 (AK; 5) 6 (CA; 18) 330 (CA; 18) 688 (CA; 18) 0.164 (CA; 27) 

widow  S. entomelas GOA OR 60 (BC; 5) 5 (CA; 12) 370 (CA; 12) 516 (OR; 26) 0.15 (OR; 26) 

yelloweye S. ruberrimus DSR 117 (AK; 10) 22 (AK; 16) 475 (AK; 16) 644 (AK; 10) 0.046 (AK; 10) 

yellowmouth S. reedi GOA OR 99 (BC; 5) 11 (BC; 32) 380 (BC; 20) 469 (BC; 32) 0.12 (BC; 32) 

yellowtail S. flavidus GOA OR 64 (BC; 11) 9 (WA/OR/CA; 19) 410 (WA/OR/CA; 19) 530 (BC; 22) 0.20 (BC; 22) 

 



74 
 

 

Table 2. Suggested assemblages for species complexes based on the analysis of all 

available data and clustering techniques. These complexes should be assessed and 

managed as such throughout the entire GOA. Species in bold italics are assigned based 

on occurrence in gear types, but should be carefully monitored. Species in bold are 

commonly caught in all gears and have been assigned to the complex that is associated 

with the gear in which they are most commonly caught. Rare species (species that 

comprise <1% of total catch) are provided in italics and are similarly assigned to the 

complex related to the gear in which they are most frequently caught. Other management 

considerations (e.g., enforcement issues) might be warranted to reassign common and 

rare species to different complexes. An “*” is used to identify suggested precautionary 

indicator species for each complex based on the low productivity from the life history 

cluster analyses.  

 

GOA Other Rockfish GOA Shelf Rockfish 

blackgill canary 

bocaccio china 

chilipepper copper 

darkblotched quillback 

greenstriped rosethorn 

harlequin tiger 

northern yelloweye* 

pygmy  
redbanded*  
redstripe  
sharpchin  
silvergray*  
splitnose  
stripetail  
vermilion  
widow  
yellowmouth  
yellowtail  
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2.7 Figures 

 

 

Figure 2.1. Map of the National Marine Fisheries Service (NMFS) management subareas 

in the Gulf of Alaska 
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Figure 2.2. Design of the model analyses identifying data, clustering technique and input matrix structure for each aspect of the 

cluster analyses. 
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Figure 2.3. NMDS plot of species’ clusters identified from life history values estimated 

from FishLife for missing values from (A) Ward’s hierarchical cluster analysis and (B) k-

mediods. In Ward’s analysis three or four clusters were supported by the bootstrapping 

resampling method; results with four clusters separated redbanded and bocaccio into their 

own cluster. 
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Figure 2.4. Results from Ward’s hierarchical cluster analysis using the proportions 

matrix with “units” (year-month-subarea-gear) in R-mode where 2 (black lines) or 3 

(grey lines) clusters are supported by the bootstrap resampling method. The “*” indicates 

species that currently belong to the Demersal Shelf Rockfish complex. 
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Figure 2.5. Average silhouette width from Q-mode k-mediods cluster analysis using the 

proportions matrix with “units” (year-month-subarea-gear). The suggested optimal 

number of clusters is k= 5 (black dashed line), but the average silhouette width plateaus at 

k= 2 (grey dashed line). 
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Figure 2.6. Results from Q-mode k-mediods using the proportions matrix with “units” 

(year-month-subarea-gear) to synthesize all gear types (fishing gear: jig [JIG], longline 

hook and line [LL], non-pelagic trawl [NPT], pot [POT], and pelagic trawl [PTR]; and 

surveys: longline and trawl) and subareas into one dataset when k= 2 clusters. In (A) the 

number of units where each gear type was present in each cluster is shown. In (B) the 

number of units where each subarea were present in each cluster is illustrated. In (C) the 

proportion of units (year-month-subarea-gear) that a species is present out of the total 

number of units assigned to each cluster is provided to represent the species composition 

in each suggested cluster when k= 2. Species that currently belong to the Demersal Shelf 

Rockfish complex are indicated by “*”. 
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Figure 2.7. Results from Q-mode k-mediods using the proportions matrix with “units” 

(year-month-subarea-gear) to synthesize all gear types (fishing gear: jig [JIG], longline 

hook and line [LL], non-pelagic trawl [NPT], pot [POT], and pelagic trawl [PTR]; and 

surveys: longline and trawl) and subareas into one dataset when k= 5 clusters. In (A) the 

number of units where each gear type was present in each cluster is shown. In (B) the 

number of units where each subarea were present in each cluster is illustrated. In (C) the 

proportion of units (year-month-subarea-gear) that a species is present out of the total 

number of units assigned to each cluster is provided to represent the species composition 

in each suggested cluster when k= 5. Species that currently belong to the Demersal Shelf 

Rockfish complex are indicated by “*”. 
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Figure 2.8. CCA results using the proportions matrix with units (year-month-subarea-

gear) plotted on the first two CCA axes. Gear type is color coded, species are marked in 

blue text (with species currently assigned to the Demersal Shelf Rockfish marked with 

“*”) and factors (i.e., gear and subarea) provided in black bold text. Gear types include 

fishing gear (jig [JIG], longline hook and line [LL], non-pelagic trawl [NPT], pot [POT], 

and pelagic trawl [PTR]) and surveys (longline and trawl surveys). 
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2.8 Appendix Life History Parameter Value Sources 

 

Table A.1. Reference number with associated source from the life history parameters of 

rockfish from Table 1.  

 

Reference  

number 
Source 

1 Stevens, M.M., Andrews, A.H., Cailliet, G.M., Coale, K.H., Lundstrom, 

C.C., 2004. Radiometric validation of age, growth, and longevity for the 

blackgill rockfish (Sebastes melanostomus). Fish. Bull., U.S. 102, 711–

722. 

2 Piner, K.R., Wallace, J.R., Hamel, O.S., Mikus, R., 2006. Evaluation of 

ageing accuracy of bocaccio (Sebastes paucispinis) rockfish using bomb 

radiocarbon. Fish. Res. 77, 200–206. 

3 Andrews, A.H., Kerr, L.A., Cailliet, G.M., Brown, T.A., Lundstrom, C.C., 

Stanley, R.D., 2007. Age validation of canary rockfish (Sebastes pinniger) 

using two independent otolith techniques: Lead-radium and bomb 

radiocarbon dating. Mar. Freshwater Res. 58, 531–541. 

4 Field, J.C., 2007. Status of the chilipepper rockfish, Sebastes goodei, in 

2007. Santa Cruz, CA. 

5 Munk, K.M., 2001. Maximum ages of groundfishes in waters off Alaska 

and British Columbia and considerations of age determination. AK Fish. 

Bull. 8, 12–21. 

6 Gunderson, D.R., Zimmermann, M., Nichol, D.G., Pearson, K., 2003. 

Indirect estimates of natural mortality rate for arrowtooth flounder 

(Atheresthes stomias) and darkblotched rockfish (Sebastes crameri). Fish. 

Bull., U.S. 101, 175–182. 

7 Malecha, P.W., Hanselman, D.H., Heifetz, J., 2007. Growth and mortality 

of rockfishes (Scorpaenidae) from Alaska Waters. U.S. Dep. Commer., 

NOAA Tech. Memo. NMFS-AFSC-172, 61 pp. 

8 Kerr, L.A., Andrews, A.H., Munk, K., Coale, K.H., Frantz, B.R., Cailliet, 

G.M., Brown, T.A., 2005. Age validation of quillback rockfish (Sebastes 

maliger) using bomb radiocarbon. Fish. Bull., U.S. 103, 97–107. 

9 Gertseva, V.V., Cope, J.M., Matson, S.E., 2010. Growth variability in the 

splitnose rockfish Sebastes diploproa of the northeast Pacific Ocean: 

Pattern revisited. Mar. Ecol. Prog. Ser. 413, 125–136. 

10 Andrews, A.H., Cailliet, G.M., Coale, K.H., Munk, K.M., Mahoney, 

M.M., O’Connell, V.M., 2002. Radiometric age validation of the 

yelloweye rockfish (Sebastes ruberrimus) from southeastern Alaska. Mar. 

Freshwater Res. 53, 139–146. 
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11 Chilton, D.E., Beamish, R.J., 1982. Age Determination Methods for Fishes 

Studied by the Groundfish Program at the Pacific Biological Station. 102 

pp. 

12 Echeverria, T.W., 1987. Thirty-four species of California rockfishes: 

maturity and seasonality of reproduction. Fish. Bull., U.S. 85, 229–250. 

13 Nichol, D.G., Pikitch, E.K., 1994. Reproduction of darkblotched rockfish 

off the Oregon Coast. Trans. Am. Fish. Soc.,123, 469–481. 

14 Hicks, A.C., Haltuch, M.A., Wetzel, C., 2009. Status of greenstriped 

rockfish (Sebastes elongatus) along the outer coast of California, Oregon, 

and Washington. Northwest Fishery Science Center, 2725 Montlake, Blvd. 

E., Seattle, WA. 

15 Heifetz, J., J.N. Ianelli, Clausen., D.M., 1997. Slope rockfish. Stock 

assessment and fishery evaluation (SAFE) report for the groundfish 

resources of the Gulf of Alaska, pp. 247-288. North Pacific Fisheries 

Management Council, Anchorage. 

16 Bechtol, W.R., 1998. A synopsis of life history and assessment of Cook 

Inlet rockfish. Regional Information Report No. 2A98-40. Alaska Dept. of 

Fish and Game, 333 Raspberry Road, Anchorage, AK. Available at: 

http://www.adfg.alaska.gov/FedAidPDFs/RIR.2A.1998.40.pdf. 

17 Stanley, R.D., Kronlund, A.R., 2005. Life history characteristics for 

silvergray rockfish (Sebastes brevispinis) in British Columbia waters and 

the implications for stock assessment and management. Fish. Bull., U.S. 

103, 670–684. 

18 Phillips, J.B., 1964. Life history studies on ten species of rockfish (genus 

Sebastodes). Cal. Dep. Fish Game Fish Bull. 126. 

19 Tagart, J., Wallace, F., Ianelli, J.N., 2000. Status of the yellowtail rockfish 

resource in 2000. Pacific Fishery Management Council, 7700 NE 

Ambassador Pl #101, Portland, OR. 

20 Westrheim, S.J., 1975. Reproduction, maturation, and identification of 

larvae of some Sebastes (Scorpaenidae) species in the northwest Pacific 

Ocean. J. Fish. Res. Bd Can. 32, 2399–2411. 

21 Gertseva, V.V., Cope, J. M., 2011. Population dynamics of splitnose 

rockfish (Sebastes diploproa) in the Northeast Pacific Ocean. Ecol. Model. 

222, 973–981.  

22 Westrheim, S.J., Harling, W.R., 1975. Age-length relationships for 26 

Scorpaenids in the Northeast Pacific Ocean. Fisheries and Marine Service 

Research and Development Technical Report 565. 

23 Wilson, C.D., Boehlert, G.W., 1990. The effects of different otolith ageing 

techniques on estimates of growth and mortality for the splitnose rockfish, 
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Sebastes diploproa, and canary rockfish, S. pinniger. Cal. Fish Game 76, 

146–160. 

24 Nichol, D.G., 1990. Life History Examination of Darkblotched Rockfish 

(Sebastes crameri) off the Oregon Coast. [Master’s thesis, Oregon State 

University, Corvallis] Available at: 

http://ir.library.oregonstate.edu/xmlui/handle/1957/11341. 

25 Keller, A.A., Molton, K.J., Hicks, A.C., Haltuch, M., Wetzel, C., 2012. 

Variation in age and growth of greenstriped rockfish (Sebastes elongatus) 

along the U.S. west coast (Washington to California). Fish. Res. 119–120, 

80-88.  

26 Lenarz, W., 1987. Ageing and growth of widow rockfish, pp. 31-35. In 

Widow rockfish, proceedings of a workshop, Tiburon, California, 

December 11-12, 1980. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-

48.  

27 MacCall, A.D., 2005. Assessment of Vermilion Rockfish in Southern and 

Northern California. Pacific Fishery Management Council, 2130 SW Fifth 

Ave, Suite 224, Portland, OR 97220. 128 pp. 

28 Kramer, D.E., O’Connell, V.M., 1988. Guide to northeast Pacific 

rockfishes: genera Sebastes and Sebastolobus, Marine Advisory Bulletin 

25. Alaska Sea Grant College Program, University of Alaska, Fairbanks, 

AK. 

29 Froese, R., Pauly, D., 2010. FishBase. Assessed: 5/25/2020. 

https://fishbase.org 

30 Love, M.S., Yoklavich, M., Thorsteinson, L., 2002. The rockfishes of the 

northeast Pacific. Univ. Calif. Press, Berkeley, CA.  

31 Cope, J., Dick, E.J., MacCall, A., Monk, M., Soper, B., Wetzel, C. 2015. 

Data-moderate stock assessments for brown, china, copper, sharpchin, 

stripetail, and yellowtail rockfishes and English and rex soles in 2013. 

Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 

200, Portland, OR 97220. 298 pp. 

32 Edwards, A.M., Haigh, R., Starr, P.J., 2012. Stock assessment and 

recovery potential assessment for yellowmouth rockfish (Sebastes reedi) 

along the Pacific coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 

2012/095. iv + 188 p. 
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2.9 Supplementary Material 

 

Supplementary Material 1 

General Catch and Survey Data Summaries 

In general, the rockfish species diversity and quantity decreased in the catch data 

from east to west in the GOA (Supplementary Figure 2) with NPT and LL as the 

dominant gear types. Subareas 640 and 650 (Eastern GOA) and subarea 630 (eastern part 

of Central GOA) had the highest diversity and catch compared to other regions, while the 

highest diversity was observed in the lower southeast GOA. Some species were caught in 

most gears and subareas, such as yelloweye (S. ruberrimus), silvergray (S. brevispinis), 

redbanded (S. babcocki) and rosethorn (S. helvomaculatus; Supplementary Figure 2). In 

comparison, other species were only caught by specific gear, such as china rockfish (S. 

nebulosus) by LL and JIG (Supplementary Figure 2).  

The two dominant gear types, NPT and LL, each had their highest catch in 

subarea 630 (Supplementary Figure 2). The NPT and PTR had higher catch of Other 

Rockfish species compared to the other commercial gear types (Supplementary Figure 2). 

The average annual catch across all subareas, excluding commercially targeted northern 

rockfish, for NPT was 805 mt compared to 324 mt for LL. However, LL caught more 

rockfish species in more subareas in the GOA. The JIG gear fishery mainly occurred in 

two subareas, 630 and 650, but had a similar catch composition as LL. 

The two surveys, trawl and longline, tended to catch a different species 

composition from one another (Supplementary Figure 2). An average of 17 Other 

Rockfish species were caught by the trawl survey per year. However, there were eight 

species that constituted 90% of the total catch for the Other Rockfish complex, which 
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were redbanded, silvergray, sharpchin (S. zacentrus), harlequin, yelloweye, redstripe (S. 

proriger), rosethorn and greenstriped (S. elongates). The longline survey caught an 

average of 1,340 individuals from the Other Rockfish complex per year with about 515 

set-depth combinations. The longline survey typically caught 7 rockfish species in the 

Other Rockfish complex. Of the top five most caught Other Rockfish species in the 

longline survey by numbers, only three (yelloweye, canary and rosethorn) have been 

designated to the Demersal Shelf Rockfish complex in subarea 650.  
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Supplementary Tables 

Supplementary Table 1. Variance associated with each CCA axis from the CCA 

proportions matrix with units (year-month-subarea-gear). 

CCA Axis Variance 

1 0.3895 

2 0.2542 

3 0.1603 

4 0.0434 

5 0.0244 

6 0.0176 

7 0.0108 

8 0.0081 

9 0.0007 

10 0.0001 
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Supplementary Figures 

 

 

Supplementary Figure 1. NMDS plot of species’ clusters identified from the life history 

table using species with all values (complete cases) from (A) Ward’s hierarchical cluster 

analysis and (B) k-mediods.  
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Supplementary Figure 2. NMDS plot of species’ clusters identified from the life history 

table with binned values (0-25%, 26- 50%, 51-75%, and 76-100% percentile bins) from 

(A) Ward’s hierarchical cluster analysis and (B) k-mediods.  
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Supplementary Figure 3. Total log(CPUE) for each fisheries gear type (top panel; jig 

[JIG], longline hook and line [LL], non-pelagic trawl [NPT], pot [POT], and pelagic 

trawl [PTR]) in each NMFS subarea and survey gear (bottom panel; longline and trawl). 

CPUE is measured in metric tons caught per vessel trip for all fishery gear types, 

kilograms per km2 swept for the trawl survey and number of individuals caught per hook 

set for the longline survey. NMFS subarea are arranged from 610 (western GOA) to 650 

(southeastern GOA). Confidential data are indicated by an “x”.    
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Supplementary Figure 4. Typical examples of results from cluster analyses using R-

mode with individual sub-unit matrices. (A) A dendrogram of Ward’s hierarchical cluster 

analysis using transformed presence-absence data from the NMFS bottom trawl survey in 

NMFS subarea 640. Suggested groupings from k-mediods based on the highest average 

silhouette width using transformed presence-absence data from the NMFS longline 

survey in NMFS subarea 650 with the rank of presence of rockfish from highest to lowest 

indicated by parentheses with (B) and without (C) redbanded rockfish, which is the most 

highly abundant species in subarea 650.  
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Supplementary Figure 5. Example of a CCA ordination using individual sub-unit matrix 

from the NMFS longline survey with individual haul units (points), species (black text) 

and additional environmental factors, including depth bins (green text) and NMFS 

subarea (blue text). Arrows indicate the strength and direction of the environmental 

factor. 
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Supplementary Figure 6. CCA results using the proportions matrix with units (year-

month-subarea-gear) plotted on the first two CCA axes with each unit color coded by 

NMFS subarea designation, species marked in blue text (with species currently assigned 

to the Demersal Shelf Rockfish marked with “*”) and factors, gear and subarea, in black 

bold text.   
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CHAPTER 3  

Identifying species complexes based on spatial and temporal clustering from joint, 

dynamic species distribution models 
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Abstract 

Data-limited species are often grouped into a species complex to simplify management. 

Commonalities between species that may indicate if species can be adequately managed 

as a complex include: shared habitat utilization (e.g., overlapping fine-scale spatial 

distribution), synchrony in abundance trends, consistent fishing pressure or gear 

susceptibility, or life history parameters resulting in similar productivity. In this study, we 

present the first attempt to determine spatial and temporal similarities among species for 

the purpose of developing species complexes using the vector autoregressive spatio-

temporal (VAST) model, which is a joint, dynamic species distribution model. Using 

fishery-independent trawl survey data, we compare: 1) the spatial and 2) temporal model 

covariance among species using Ward’s hierarchical cluster analysis of harvest fractions 

and life history characteristics to examine similarity in species clustering using species 

belonging to the Gulf of Alaska Other Rockfish complex as a case study. Results indicate 

that all species demonstrated a positive spatial correlation and a positive or neutral 

correlation in temporal changes. We conclude that there are some Gulf of Alaska Other 

Rockfish species that consistently group together (Group 1: canary and yellowtail; and 

Group 2: silvergray and yellowmouth), but the arrangement and number of clusters differ 

slightly depending on the data used. Developing species complexes for fisheries 

management requires a variety of analytical approaches, of which both species 

distribution models and cluster analyses should be included, applied across the full extent 

of available data sources. 
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3.1 Introduction 

The management of non-target species, those being caught incidentally to the 

primary species, can be a challenge, particularly when the fisheries span a wide, 

heterogeneous geographic area. Non-target species typically have limited economic 

value, have low population densities, are previously allocated towards a different target 

fishery, or are preserved as forage for other ecosystem components (e.g., Davies et al., 

2009). Despite potential limited economic importance, adequate management of non-

target catch is necessary to maintain individual populations and ensure overall ecosystem 

health, particularly when the accumulated biomass of non-target species exceeds the 

targeted species biomass or for species with high vulnerability to overfishing (e.g., 

Lewison et al., 2004; Piet et al., 2009; Cope et al., 2011; Rezende et al., 2019). Many 

non-target species have sparse life history data, undocumented species-specific catch 

histories, or unknown spatial distributions. Additionally, fishery-independent surveys, if 

available, do not typically optimize sampling for non-target species. Yet, international 

fishery policies, particularly in the United States and the European Union, mandate catch 

limits on all exploited species, including data-limited species (e.g., Magnuson-Stevens 

Reauthorization Act of 2006, MSRA, 2007; Common Fisheries Policy, CFP, 2013).  

One approach to comply with management requirements is to assess an 

assemblage of non-target species as a unit, known as a species complex (Jiao et al., 

2009). Complexes are typically designated for species caught in a multispecies fishery 

where adequate data or technical support are often lacking to perform single species stock 

assessments, or where gear interactions make single species management difficult to 

implement (USOFR, 2009; Reuter et al., 2010). While species complexes are 
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characterized as a group of species having similar life history characteristics, 

susceptibility to the fishing gear, and geographic distributions (MSRA, 2007), 

information is typically missing to satisfy all requirements. For example, estimates of life 

history values (e.g., maximum age, age-at-maturity) can be sparse for data-limited 

species. Although recent efforts have predicted these for all fish species using taxonomic 

and life-history correlations (Thorson et al., 2017; Thorson, 2020), these predictions are 

correlated within taxa. As a result, species are often partitioned into family or similar 

aggregations (DeMartini, 2019). Moreover, the fishery vulnerability and geographic 

overlap conditions for a complex can be difficult to address when the area of 

management spans a wide diversity of habitat and fishing gears. Ideally, species within a 

complex would demonstrate high spatial overlap and would sustain similar environmental 

and fishing pressures reflected by synchrony in temporal trends of abundance (Cope and 

Punt, 2009). 

Understanding of spatio-temporal distributions of non-target species can help to 

better identify appropriate stock complex groupings. Overlapping fine-scale distributions 

for species in a complex indicates co-existence, which can occur when it is mutually 

beneficial for both (or all) individuals (e.g., schooling for increased predator protection; 

Morse, 1977; Parrish, 1991), species’ fitness levels are comparable to one another (i.e., 

have similar abilities for reproductive success; Chesson and Kuang, 2008), resources are 

not limiting (Neves et al., 2018), or habitat complexity enables a diversity of species to 

cohabitate (Almany, 2004). However, understanding all the drivers that promote co-

existence is a challenge (Neves et al., 2018). Species belonging to a complex should 

fulfill similar niches in the ecosystem (i.e., niche overlap; Hutchinson, 1957), such that 
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external forces would similarly influence the productivity and status of all species in the 

complex. Additionally, identifying commonality in spatial distributions can help 

determine the degree of similarity in harvest pressure across species. Species that 

demonstrate spatial synchrony are more likely to be harvested at similar rates (if they 

have similar susceptibility to the gear), thereby reducing the possibility of localized 

depletion if the complex is managed for sustainability (Jarillo et al., 2018).  

A common ecological tool for identifying spatial synchrony and structure of 

biological populations are species distribution models (SDMs), which are becoming 

increasingly prevalent for fisheries applications (Planque et al., 2011; Berger et al., 

2017). A critical advancement in SDMs, which has allowed a more thorough 

understanding of species distributions given limited observed data, has been the 

incorporation of spatial autocorrelation (Legendre, 1993; Dormann et al., 2007). The 

assumptions of spatial autocorrelation  (i.e., spatial covariation among locations) imply 

that neighboring locations are more similar than locations further away, which enables an 

SDM to interpolate across space and estimate abundance for model grid cells that may 

not have data (Dormann et al., 2007; O’Leary et al., 2020). A wide variety of potential 

explanatory covariates can be incorporated into SDMs to establish correlations to 

observed features and aid in extrapolation when data on abundance are sparse. For 

instance, many SDMs incorporate abiotic factors as covariates in the model, including 

temperature, depth, sediment or bottom type, salinity, and spatially varying responses to 

regional oceanographic conditions (e.g., Nishida and Chen, 2004; Perry et al., 2005; 

Godefroid et al., 2019; Thorson, 2019). While abiotic factors can increase the predictive 

performance of presence or density estimates, there are many unknown factors that 
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similarly influence a species’ distribution. More recently, SDMs have been extended to 

incorporate random effects to account for unobserved or unexplained processes affecting 

the spatial distribution of species (Thorson et al., 2015). 

Identifying co-existence or asynchrony among species can help inform spatial 

distributions in the same way as abiotic factors, particularly when spatial abiotic factors 

are unknown. Joint, dynamic SDMs (JDSDM) allow for the simultaneous estimation of 

spatio-temporal densities for multiple species. Incorporating species associations can be 

particularly useful for data-poor species due to sparse observation data. Thus, identifying 

and incorporating species’ relationships can improve spatio-temporal extrapolations and 

aid in estimating species distribution (Ovaskainen and Soininen, 2011; Thorson et al., 

2015; Thorson and Barnett, 2017). Modeling both spatial and temporal correlations for 

multiple species simultaneously can better delineate direct relationships among species’ 

distributions and detect spatio-temporal changes in respect to biotic, abiotic, and 

anthropogenic factors (Godefroid et al., 2019). JDSDMs can generate community 

dynamic spatio-temporal trends in addition to individual abundance indices (Thorson et 

al., 2016). Therefore, a single model to identify fine-scale spatial correlation along with 

similarities in temporal trends among multiple data-limited species can help validate 

species complexes. 

The goal of this research is to explore a new application of JDSDMs as a tool for 

identifying species complexes for data-limited species. We demonstrate the approach 

through exploration of the spatial and temporal patterns of non-target rockfish belonging 

to two management complexes in the Gulf of Alaska (GOA): Other Rockfish and 

Demersal Shelf Rockfish. The model accounts for unobserved spatial and temporal 
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variation in a delta-model that estimates the unknown variables in both the encounter and 

positive catch given presence model components. The JDSDM model is applied to 

examine the spatial and temporal correlations along with overlap in distributions of the 

species in the non-target GOA rockfish complexes by modeling the species 

simultaneously. Then we apply a clustering method to the results of the JDSDM to group 

species based on spatial and temporal synchrony in abundance and distribution. Finally, 

we compare resultant species complexes suggested by the JDSDM to species complex 

delineations based on harvest rates and on life history characteristics, along with recent 

assignments to complexes suggested by Omori et al. (2021; Chapter 2). We show that 

identifying spatio-temporal correlations using JDSDMs can be a useful tool for 

identifying species complexes, which is a useful addition to the suite of analytical 

clustering approaches currently considered for identifying species complexes in data 

limited situations. 

 

3.2 Methods 

3.2.1 Case Study: GOA Non-target Rockfish 

The GOA Other Rockfish complex consists of over 20 non-target Sebastes 

species within the GOA management area with more than half that are rarely caught 

(<1% of the total GOA Other Rockfish catch). The nine Demersal Shelf Rockfish species 

are a subset of species within the GOA Other Rockfish, but are separately managed in 

one of the five areas (650; Supplementary Material Fig. SM1). For the purposes of this 

document, “Other Rockfish” will refer to species within both complexes in the GOA. 

Members of the Other Rockfish complexes vary widely in their distributions and habitat 
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preferences, with many being at the northern limits of their distributions in the GOA, 

which typically span the U.S. West Coast from Southern California to Alaska (Love et 

al., 2002). Rockfish tend to be found near the benthic substrate in a variety of habitats 

including high relief rocks, reefs, and boulders, to low relief rocky substrate and mudflats 

(Johnson et al., 2003; Conrath et al. 2019). The Other Rockfish species are typically 

found in depths ranging from 100 to 275 m, but can be found at depths up to 800 m (Love 

et al., 2002). Rockfish species generally have late maturity, are long-lived, and bear live 

young (Love et al. 2002; Beyer et al. 2015). These low productivity characteristics tend 

to place rockfish into a high vulnerability category, requiring careful management (Cope 

et al., 2011; Ormseth and Spencer, 2011). 

The Other Rockfish species are incidentally caught in trawl and longline 

groundfish fisheries. Around 46% of these non-targeted species are discarded (Tribuzio 

and Echave, 2019) due to their low economic value (pers. Comm. Ben Fissel), relatively 

small body size compared to other rockfish species, and low catch rates. Most of the 

species in the Other Rockfish complex are caught in the GOA trawl fisheries, while a 

subgroup of rockfish are primarily caught by longline gear fisheries in rocky, high relief 

habitats (Tribuzio and Echave, 2019).  

 

3.2.2 GOA Fishery Independent Trawl Survey Dataset 

For our analyses, we use the National Marine Fisheries Service (NMFS) bottom 

trawl survey because this fishery-independent survey represents the most cohesive and 

spatially extensive source of data on all Other Rockfish species. The NMFS trawl survey 

is also currently used as the basis of the GOA Other Rockfish complex stock assessment 
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and management advice (Tribuzio and Echave, 2019). The NMFS bottom trawl survey, 

further referred to as the ‘trawl survey’, has collected species-specific data for the Other 

Rockfish species, including weights of each species caught per tow, since 1984; the GOA 

was surveyed on a triennial rotation from 1984 – 1996, followed by a biennual time scale 

from 1999 – present (von Szalay and Raring, 2018). We include years from 1984 – 2019, 

which totals 16 surveyed years. The survey is conducted from May through August and 

follows a stratified random sampling design with, on average, 725 tows per year 

(Supplementary Material Fig. SM1). The bottom trawl survey reaches depths up to 900 m 

depending on the year. Each tow covers on average 0.032 km2 swept per tow. Species-

specific data are entered as biomass caught per tow with area swept as an offset. Due to 

the extreme rarity of some bycatch species in the Other Rockfish complex, we 

demonstrate our modeling approach using a subset of nine rockfish with the requirements 

that each chosen species make up more than 1% of the total catch biomass in the survey 

over the entire time series (Table 1). These nine species have been consistently identified 

throughout the timeseries. 

 

3.2.3 Model Structure 

We implement a JDSDM that applies spatial dynamic factor analysis to identify 

spatial and temporal commonality among the Other Rockfish species. More specifically, 

we applied the Vector Autoregressive Spatio-Temporal (VAST) model version 3.4.0 

(downloaded from https://github.com/James-Thorson-NOAA/VAST) developed by 

Thorson et al. (2015 and 2016) to account for latent spatial and temporal variation. VAST 

estimates the latent (i.e., unknown) variables as “factors”, and allows locations to be 
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spatially autocorrelated and years to be independent, random, or correlated with previous 

time steps. This JDSDM framework allows flexibility of delta-model variants, which 

separates the catch into two parts: encounter probability and catch probability given 

presence.  

We apply a Poisson-link delta-gamma model (Thorson, 2018; Thorson et al., 

2021) to estimate the density of each species at every location in each year. The symbols 

used below to describe the model are defined in the Supplementary Material Table SM1 

and the notation follows Thorson (2019). The delta model estimates the encounter and 

positive catch separately. The encounter probability, approximated by the first linear 

predictor, p1, and positive catch probability, approximated by the second linear predictor, 

p2, for each observation i, which represents each location s, species c, and year t, are 

modeled as: 

𝑝∗(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) = 𝜇𝛽∗(𝑐𝑖) + ∑ 𝐿𝛽∗(𝑐𝑖 , 𝑓)𝛽∗(𝑡𝑖, 𝑓)
𝑛𝛽∗
𝑓=1⏟                      

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

+ ∑ 𝐿𝜔∗(𝑐𝑖, 𝑓)𝜔∗(𝑠𝑖, 𝑓)
𝑛𝜔∗
𝑓=1⏟              

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

  , 
(1) 

 

where “*” replaces the “1” or “2” subscripts corresponding to the first (p1; encounter) and 

second (p2; positive catch) linear predictor equations, respectively. There is a 𝜇𝛽∗ 

intercept for each observation that represents the time-average for each species. The 

temporal variation is represented by 𝛽∗(𝑡𝑖, 𝑓) for each year and factor, f (latent variable), 

with the associated loadings matrices denoted as 𝐿𝛽∗(𝑐𝑖, 𝑓). Here, the temporal variation 

follows a random walk: 

𝛽∗(𝑡𝑖, 𝑓) = {
𝛿∗(𝑡𝑖 , 𝑓) if 𝑡 = 𝑡𝑚𝑖𝑛

𝛽∗(𝑡𝑖 − 1, 𝑓) + 𝛿∗(𝑡𝑖, 𝑓) if 𝑡 > 𝑡𝑚𝑖𝑛
 (2) 
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where 𝛿∗(𝑡𝑖, 𝑓) follows a standard normal distribution. The 𝜔∗(𝑠𝑖, 𝑓) is the spatial variation 

for each location and factor, and 𝐿𝜔∗(𝑐𝑖, 𝑓) components are the loadings matrices. We use 

a full rank model by defining the number of factors in the model as the total number of 

species, such that  

𝑛𝛽∗ = 𝑛𝜔∗ = 𝑛𝑐 = 9, for both the temporal and spatial variation in each linear predictor. 

The spatial variation (𝜔∗) is estimated as a Gaussian Markov Random Field to 

account for spatial autocorrelation:  

𝛚∗(𝑠𝑖, 𝑓)~𝑀𝑉𝑁(0,𝐑∗)     (3) 

 

The spatial correlation matrix, 𝐑∗, is modeled using a Matérn correlation function, which 

assumes that nearby locations are more correlated and the correlation decreases by 

distance (Thorson, 2019).  

The predicted density, 𝑑(𝑠𝑖, 𝑐𝑖, 𝑡𝑖), is estimated using a Poisson-link that assumes 

that areas with a higher expected encounter rate also have a higher expected biomass for 

each encounter. By “linking” the two model components (encounter and positive catch 

probabilities) in a Poisson-link model, the number of parameters that are estimated can be 

reduced compared to a typical delta-model. The predicted density from the Poisson-link 

model for each observation using the first and second linear predictors (Eq. 1) is: 

𝑑(𝑠𝑖, 𝑐𝑖, 𝑡𝑖) = 𝑟1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) × 𝑟2(𝑠𝑖, 𝑐𝑖, 𝑡𝑖)   

 where  𝑟1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) = 1 − exp(−𝑎𝑖 × exp(𝑝1(𝑠𝑖, 𝑐𝑖, 𝑡𝑖)) ) 

and  𝑟2(𝑠𝑖, 𝑐𝑖, 𝑡𝑖) =
𝑎𝑖×exp(𝑝1)

𝑟1(𝑠𝑖,𝑐𝑖,𝑡𝑖)
× exp(𝑝2(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖)). 

(4) 

(5) 

(6) 
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The density is based on the predicted biomass (metric tons, mt) per area-swept, 𝑎𝑖 

(km2), where the area-swept is included as an offset in the model in Eqs. 5 and 6. The 

link function for the probability of a non-zero catch (encounter probability) is 𝑟1 and the 

link function for positive catch is 𝑟2. The encounter and positive catch probabilities are 

modeled in the delta-gamma model to obtain the probability distribution of biomass catch 

as: 

Pr(𝑏(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) = 𝐵) = {
1 − 𝑟1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖)                    𝑖𝑓 𝐵 = 0

𝑟1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) × 𝐺𝑎𝑚𝑚𝑎{ 𝐵 |𝑘 =
1

𝜎𝑐
2 , 𝜆 = 𝑟2(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) ∗ 𝜎𝑐

2}    𝑖𝑓 𝐵 > 0
 , (7) 

 

where the observed biomass catch data (𝑏(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖)) is for each location s, species c, and 

year t. The positive catch is modeled using a reparameterized gamma distribution for 

the probability density function, where the shape, k, and scale, 𝜆, are functions of the 

expected catch given a presence, 𝑟2(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) (Eq. 6), and residual biomass sampling 

variation, 𝜎𝑐
2, for species c (i.e., measurement error). 

Model diagnostics that are used to determine model fit include the comparison of 

empirical distributions to simulated distribution using Q-Q plots and density histograms 

(Supplementary Material Fig. SM2 and Fig. SM3). 

The flexible model structure includes fixed effects (𝜎𝑐
2, 𝜇𝛽∗intercepts, 𝐿𝛽∗∗(𝑐𝑖, 𝑓) , 

𝐿𝜔∗∗(𝑐𝑖, 𝑓)) and random effects (𝛽∗(𝑡𝑖, 𝑓) and 𝜔∗(𝑠𝑖, 𝑓)). Fixed effects are estimated by 

maximizing the marginal likelihood while integrating across the random effects. A 

Laplace approximation is used to approximate the marginal likelihoods (Skaug and 

Fournier, 2006). To improve efficiency of estimation, VAST creates a mesh of discrete 

locations (i.e., knots) to represent a reduced set of locations to approximate the sampling 

area (Thorson et al., 2015). The knots are determined internally in VAST by a k-means 
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cluster algorithm, which distributes the knots based on the proportionality of sampling 

intensity (Shelton et al., 2014; Thorson et al., 2015). We use 500 knots (estimated 

locations, s) in our model with a 10 x 10 km grid size. VAST is executed in Template 

Model Builder (TMB; Kristensen et al., 2016) and uses R statistical program (R Core 

Team, 2021) as a platform to identify the maximum likelihood estimates of fixed effects. 

Lastly, we use Microsoft R Open 3.5.3 (https://mran.microsoft.com/) to improve 

computational efficiency. The VAST model structure is described in further detail in 

Thorson (2019) and the VAST code is available online (www.github.com/james-thorson-

NOAA/VAST). 

 

3.2.4 Estimated and Derived Quantities 

The individual covariance matrices for each linear predictor are calculated using the 

estimated loadings matrices where the temporal loading matrices, 𝐿̂𝛽∗∗(𝑐𝑖, 𝑓), and spatial 

loading matrices, 𝐿̂𝜔∗∗(𝑐𝑖, 𝑓), are denoted as 𝐋̂𝟏
  and 𝐋̂𝟐 for the first and second linear 

predictor. We compute a single, joint covariance matrix, 𝐕̂𝐭𝐨𝐭𝐚𝐥, for each model 

component, temporal (β) and spatial (ω), by summing the individual covariance matrices 

from the first and second linear predictors as follows: 

𝐕̂𝐭𝐨𝐭𝐚𝐥 = 𝐋̂𝟏
 T𝐋̂𝟏 + 𝐋̂𝟐

 T𝐋̂𝟐. (8) 

 

The 𝐕̂𝐭𝐨𝐭𝐚𝐥 are examined to determine temporal and spatial similarities among species by 

examining the positive, negative, or neutral individual variance between two species 𝑐1 

and 𝑐2, 𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐2) in the 𝐕̂𝐭𝐨𝐭𝐚𝐥. We calculate the combined loading matrices for the 

temporal and spatial model components using a Cholesky decomposition on each 𝐕̂𝐭𝐨𝐭𝐚𝐥 in 

https://mran.microsoft.com/
http://www.github.com/james-thorson-NOAA/VAST
http://www.github.com/james-thorson-NOAA/VAST
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order to examine the association of species with latent factors. Then we apply a principal 

component analysis (PCA) approach on the combined loading matrices to rotate the 

species’ loadings to visualize the temporal and spatial factors (Thorson et al., 2016). The 

proportion of variation explained by each linear predictor for spatial and temporal model 

components is calculated by dividing the sum of the eigenvalues from 𝐋̂𝟏
  and 𝐋̂𝟐 by the 

sum of eigenvalues from both 𝐋̂𝟏
  and 𝐋̂𝟐. The proportion of variation explained by each 

factor for each model component is calculated by dividing the eigenvalues associated 

with each factor by the sum of all eigenvalues in each model component.  

 

To examine the similarities in temporal trends among species, we use the indices of 

abundance, 𝐼(𝑐, 𝑡), for each species and each year derived from estimates in the model for 

the GOA management area by summing all the locations, 𝑛𝑠, in the spatial grid: 

𝐼(𝑐, 𝑡) =∑ (𝑎(𝑠) × 𝑑̂(𝑠, 𝑐, 𝑡))
𝑛𝑠

𝑠=1
, (9) 

 

where  𝑑̂(𝑠, 𝑐, 𝑡) is the predicted density in kg/km2 at each location and is expanded by the 

area at each location, 𝑎(𝑠), in km2.  

 

3.2.5 Cluster Analyses and Comparison 

We apply Ward’s hierarchical clustering (Ward, 1963) on the 𝐕̂𝐭𝐨𝐭𝐚𝐥 to investigate 

species groupings based on the temporal and spatial relationships to compare with the 

PCA results. The distances 𝛾(𝑐1, 𝑐2) between each set of species, 𝑐1 and 𝑐2, used in the 

clustering method on the covariance matrices, 𝐕̂𝐭𝐨𝐭𝐚𝐥, are calculated by: 
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𝛾(𝑐1, 𝑐2) = √𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐1) + 𝑣𝑡𝑜𝑡𝑎𝑙(𝑐2, 𝑐2) − 2𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐2) , (10) 

 

using the variance of each species, 𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐1) and 𝑣𝑡𝑜𝑡𝑎𝑙(𝑐2, 𝑐2), and covariance between 

the two species, 𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐2). A distance matrix composed of elements 𝛾(𝑐1, 𝑐2) is 

calculated for each of the temporal and spatial component using the temporal, 𝐕̂𝛃𝐭𝐨𝐭𝐚𝐥, and 

spatial, 𝐕̂𝛚𝐭𝐨𝐭𝐚𝐥, covariance matrices. We calculate the average silhouette width to 

determine the optimal number of clusters, where the highest value indicates the preferred 

number of clusters (Rousseeuw, 1987). The average silhouette width measures the 

similarity of objects within the same cluster compared to other clusters and is calculated 

using R package “factoextra” (Kassambara and Mundt, 2020).  

We calculate the spatial and temporal centroids for each cluster from the Ward’s 

analysis to compare spatial and temporal trends between clusters. The individual species 

and location specific spatial estimates from the first, 𝜔̂1(𝑐, 𝑠), and second, 𝜔̂2(𝑐, 𝑠), 

linear predictors that are derived from the spatial variation component in Eq. 1 are 

summed to obtain a total spatial estimate for each species at each location (𝜔̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑠) =

𝜔̂1(𝑐, 𝑠) + 𝜔̂2(𝑐, 𝑠)). We average the total spatial estimates of each species belonging to 

the cluster to obtain the average spatial value for each cluster g, 𝜔̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑠). Then we 

map the average spatial value, 𝜔̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑠), for each cluster to visualize the spatial 

pattern associated with each cluster. The temporal centroids from the Ward’s clusters are 

calculated differently from the spatial centroids because the temporal variation follows a 

random walk. First, we sum the individual temporal estimates for each species and each 

year from the two linear predictors (𝛽̂1(𝑐, 𝑡) and 𝛽̂2(𝑐, 𝑡)) derived from the temporal 

variation component in Eq. 5 to obtain the total temporal estimates, 𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡). Then the 
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difference between the total temporal estimates for each species for each year 

(Δ𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡) = 𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡) − 𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡 − 1)) for t > tmin are calculated. Next, we 

average the Δ𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡) for all the species belonging to the cluster, 𝑔, each year to 

obtain a Δ𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑡) as the average temporal value for each year after tmin. Finally, the 

cumulative sum of the Δ𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑡) for each cluster are calculated to transform back into 

the original random walk scale. 

We compare the clustering results based on the spatial and temporal components of 

the JDSDM (i.e., VAST model) with species clusters based on life history characteristics 

and fisheries data (Supplementary Material Table SM2 and SM3). The comparison of life 

history attributes is based on values determined from a literature review of GOA Other 

Rockfish species (Omori et al., 2021). The values utilized in this study are: age- and 

length-at-maturity (𝐴𝑚𝑎𝑡 and 𝐿𝑚𝑎𝑡, respectively), maximum age observed (as a proxy for 

longevity, 𝐴𝑚𝑎𝑥), and mean maximum length from the von Bertalanffy growth curve 

(𝐿∞). The resultant life history table is standardized (i.e., divided by its mean) to give 

equal weight to each life history characteristic before calculating the Euclidean distances 

(i.e., similarity among species). To compare similarities in harvest impacts, we calculate 

the annual harvest fraction for each species by dividing the total species-specific fisheries 

catch in the GOA by the estimated abundance (Eq. 9) for each year modeled in the 

JDSDM. The species-specific fisheries catch data is gathered from the NMFS Alaska 

Regional Office Catch Accounting System (Cahalan et al. 2014) using data from 2010 to 

2019, representing years when robust species-specific fisheries data have been reported. 

Each harvest fraction is normalized by dividing by the largest harvest fraction in the 

dataset, followed by calculating the Euclidean distance to determine similarity among 
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fisheries harvest fractions across species (Supplementary Material Table SM3). Finally, 

we apply Ward’s clustering analyses to the life history and harvest fraction distance 

datasets to identify species clusters, using the R package “stats” (R Core Team, 2021). 

Dendrograms are used to compare the relationships among rockfish included in the 

JDSDM from the temporal and spatial covariance matrices and the life history and 

harvest fraction data sources. We use the average silhouette width to determine optimal 

number of clusters for each data source.   

 

3.3 Results 

3.3.1 Spatial Overlap, Correlation, and Clusters 

GOA Other Rockfish have varying levels of spatial overlap. Density estimates 

suggest that some species are found in deep waters throughout the GOA (i.e., harlequin 

and yelloweye), while others have a GOA-wide distribution, but have densities that are 

more concentrated in the southeastern GOA (i.e., canary, yellowtail, and yellowmouth; 

Fig. 1). The remaining species also tend to have higher densities in the southeastern 

GOA, but have a more gradual decreasing density gradient moving westward (e.g., 

redbanded, redstripe, sharpchin, and silvergray; Fig. 1).  

The majority of the spatial variation is explained in the first linear predictor, 

encounter probability (81%). For the combined spatial component, the first three rotated 

factors out of nine comprise 72%, 9%, and 7% of the total spatial variation, respectively 

(Supplementary Material Table SM4). Factor 1 from the combined spatial component 

appears to be associated with both differences between the southeastern GOA and other 

areas along with distance from land. Factor 2 demonstrates a more centralized association 
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with the southeastern GOA, but no distinguishable association with distance from land 

throughout the remaining GOA (Fig. 2). Based on the PCA rotation of the spatial factors, 

the rockfish separate into three groups (Fig. 2, see Supplementary Material Table SM5 

and Fig. SM4 for Factor 3 factor loadings). Two species, canary and yellowtail, which 

have high concentrations in the southeastern GOA, clustered together and separate on the 

Factor 2 axis. Another group consisting of harlequin, redstripe, sharpchin, and yelloweye 

has small, negative Factor 2 rotated loadings and larger Factor 1 rotated loadings (Fig. 2). 

The four species belonging to this group tend to have higher densities throughout more 

areas in the GOA (e.g., higher densities between Prince William Sound and Cook Inlet; 

Fig. 1) compared to the other two groupings. The third group with redbanded, silvergray, 

and yellowmouth has small, positive Factor 2 rotated loadings (Fig. 2). The species in 

this third group have higher density concentrations in the southeastern GOA, but most are 

also found in other areas in the GOA in lower densities (Fig. 1). While all rockfish 

demonstrate positive spatial correlation with one another, there are varying strengths of 

correlation (Supplementary Material Fig. SM5). For example, canary and yellowtail 

demonstrate strong positive spatial correlation, but have weaker correlation with the other 

rockfish (Supplementary Material Fig. SM5). Overall, the strength of the correlations 

among species varied, but were all positive. 

Ward’s clustering using the spatial covariance matrix results in similar groupings 

as those found in the PCA rotation from the spatial component, with three suggested 

groupings: 1. canary and yellowtail, 2. harlequin, yelloweye, redstripe, and sharpchin, 3. 

redbanded, silvergray, and yellowmouth (Fig. 3a). The centroid of cluster 1 (containing 

canary and yellowtail) has high values in southeastern GOA (Fig. 4). The centroid of 
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cluster 2 (harlequin, yelloweye, redstripe, and sharpchin) is elevated further from the 

land, as well as waters between Prince William Sound and Cook Inlet, and Cluster 3 

(redbanded, silvergray, and yellowmouth) have a higher concentration in southeastern 

GOA with more extended densities into the eastern area (Fig. 4). 

 

3.3.2 Temporal Overlap, Correlation, and Clusters 

The calculated indices of abundance do not appear to track one another over time, 

which is supported by the weak and wide range of positive temporal correlations among 

species (Supplementary Material Fig. SM6). However, the abundance indices for many 

GOA Other Rockfish at the end of the time series are at or above their median yearly 

biomass indicating a relatively stable or an increase in abundance in the more recent 

years (Fig. 5). Redbanded, silvergray, and yelloweye abundance increases throughout the 

survey time series, while others show higher variability (i.e., canary and sharpchin). A 

few species, such as redstripe, sharpchin, and silvergray, have an estimated biomass 

almost tenfold higher than the other species included in the model (Fig. 5).  

The second linear predictor explains 81% of the total temporal variation, which is 

the variance of a random walk process, while the first linear predictor explains only 19% 

of the total temporal variation. The first three rotated factor loadings out of nine of the 

combined temporal component account for 67%, 16%, and 12% of the total temporal 

variation, respectively (Supplementary Material Table SM4). Yellowtail and canary 

appear to separate from the other rockfish along with from one another based on Factor 1 

and 2 after the PCA rotation (Fig. 6; see Supplementary Material Table SM6 and Fig. 

SM6 for Factor 3 factor loadings).  
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Results from Ward’s clustering suggests two temporal groupings for this set of 

rockfish (Fig. 3b). Canary and yellowtail separate into their own cluster (Cluster 1), and 

appear to have a decrease in temporal estimate values in the early 1990’s compared to the 

remaining species in the other cluster (Fig. 7). The average temporal values (i.e., the 

average yearly temporal values for the cluster on the random walk scale) of the two 

species cluster (Cluster 1) fluctuate more than the other cluster with seven species 

(Cluster 2), but both clusters appear to demonstrate a slight increase in the end of the time 

series where the majority of the average temporal values in the latter years are above their 

median value (Fig. 7). 

 

3.3.3 Cluster Analyses Comparison 

The clustering on the annual harvest fractions separated the species based on 

levels of exploitation, with three clusters defined by high, intermediate, and low harvest 

fractions (Fig. 3c; Supplementary Material Table SM3). Similarly, the three clusters 

using the life history data are divided into low, medium, and high productivity levels 

(Fig. 3d; Supplementary Material Table SM2), where low levels of productivity 

correspond to large sizes at 50% maturity and maximum length, and older ages for 50% 

maturity and maximum age. 

There are two pairs of species that are clustered together consistently for all data 

types (i.e., spatial overlap, temporal synchrony, harvest fractions, and life history 

characteristics): 1) canary and yellowtail, and 2) silvergray and yellowmouth (Fig. 3). 

However, these pairs of species are differentially clustered with other rockfish in two or 

three clusters depending on the data source.  
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3.4 Discussion 

Our results using a set of non-target rockfish species indicate that fine-scale SDMs 

can be a useful tool to identify species complexes. In particular, JDSDMs (i.e., VAST, in 

this example) can help determine co-existence and correlation among data-limited 

species, because shared information, particularly for infrequently caught species, 

improves the predictive powers of the model (e.g., Ovaskainen and Soininen, 2011; 

Pacifici et al., 2014; Thorson et al., 2015). The JDSDM applied here helps improve the 

understanding of fine-scale spatial distributions as well as the detection of spatial overlap 

across species, especially compared to using broad-scale distributions of species.  

Because fine-scale JDSDMs can detect both spatial and temporal correlations among 

species, they can be used by managers to group species with overlapping distributions to 

help better understand spatial community structure. By clustering non-target species in 

multispecies fisheries, the application of a joint, dynamic SDM can aid managers in 

determining incentives or appropriate regulations to decrease the fishing pressure on 

areas with high densities of non-target species (e.g., Dolder et al., 2018; Stock et al., 

2020). Moreover, major changes in fishing practices or large environmental perturbations 

can potentially be detected across the community of a species complex or may be 

detected early if population trajectories of particularly susceptible species rapidly alter 

(Pollock et al., 2014). For example, the model can help identify population shifts in the 

center-of-gravity (Thorson and Barnett, 2017), which will become increasingly important 

as more species continue to move northward (Pinsky et al., 2013). However, large 

differences in the individual species’ biomass in a complex can lead to one species 

component becoming overfished when large discrepancies in population sizes exist 
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(PFMC, 2013). Careful consideration and evaluation when developing complexes is 

warranted, particularly for species, such as rockfish, that are vulnerable to overfishing 

(Cope et al., 2011; Ormseth and Spencer, 2011). 

The results of a joint, dynamic SDM applied to fishery-independent trawl data for 

GOA rockfish species indicate that spatial factors are a key element linking these species 

together. The model gave evidence that the density estimates for most species is highest 

in the southeastern area of the GOA. The non-target rockfish species analyzed in this 

study cluster by spatial density, with three main spatial patterns: high density 

concentration in only the southeastern GOA; high density in the eastern GOA, but found 

throughout the GOA; and ubiquitously distributed throughout the GOA. We did not see 

strong temporal correlations among species, suggesting that these rockfish demonstrate 

differential responses to environmental and fishing pressures. We note that no single 

species demonstrated a severe decrease in abundance during the time series, although 

harlequin decreased initially then demonstrated constant biomass throughout the rest of 

the time series. Excluding the first few years of the survey data when there were small 

changes in the survey design (von Szalay and Raring, 2018) can alter the inference of the 

time series. If we excluded the first few years of the survey in this study, the estimated 

biomass for some rockfish species would be increasing, while others would appear to be 

stabilized. As noted, differential responses to perturbation can help stabilize a complex as 

a whole, which might be ideal for a group of species known for their longevity and late 

maturation (Love et al., 2002; Ormseth and Spencer, 2011). Managing species in a 

complex with differential responses to perturbation aligns with the holistic approach of 
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ecosystem-based fishery management, such that the complex as a whole can help 

maintain its role and the biodiversity within the ecosystem (Link, 2002). 

There are a few species that consistently clustered together based on the spatial 

and temporal correlation, harvest fractions, and life history characteristics: 1) canary and 

yellowtail; and 2) silvergray and yellowmouth. However, all the rockfish did not group 

into the same distinct clusters for all data sources. In particular, most of the rockfish 

grouped in similar clusters except in either the harvest fractions or life history clusters. 

For instance, sharpchin, harlequin, and redstripe grouped together in all, but the harvest 

fraction clusters, whereas redbanded moved between groupings. As suggested in Cope et 

al. (2011), a hierarchical, step-wise grouping method can provide a way to assign 

rockfish to complexes by identifying important attributes (e.g., spatio-temporal overlap) 

that can be first used to separate the species. Subsequently, the groups can be sub-divided 

utilizing other factors (e.g., fishing susceptibility or productivity) rather than comparing 

all variables concurrently.  

Omori et al. (2021; Chapter 2) performed a more broad-scale (i.e., based on 

management area reporting) clustering analysis to identify GOA rockfish groupings, 

which combined several surveys and fishery catch datasets, and included a different 

subset of rockfish due to the additional datasets. Despite differences in methodology and 

included species, a handful of the spatial groupings from the current fine-scale SDM are 

also identified in the broad-scale analysis. The most interesting results from the current 

study and those by Omori et al. (2021; Chapter 2) regard the treatment of the Demersal 

Rockfish Complex managed exclusively in GOA management area 650. In this current 

study, we only included two species that belong to the Demersal Shelf Rockfish complex, 
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canary and yelloweye, because the remaining species in the complex are not caught in 

high enough numbers in the trawl survey to be modeled with a fine-scale SDM. Yet, both 

studies suggested that the Demersal Shelf Rockfish species should be separated from the 

Other Rockfish for the entirety of the GOA instead of only in management area 650. 

Yelloweye grouped with the other non-target rockfish commonly caught in the trawl 

survey gear. However, yelloweye is assigned with the Demersal Shelf Rockfish because 

it constitutes the majority of the catch for the Demersal Shelf Rockfish group, despite 

being caught and distributed Gulf-wide (Tribuzio and Echave, 2019). We suggest that 

yelloweye continue to be managed with the Demersal Shelf Rockfish complex, but note 

that the other species in the complex have a smaller habitat range. The JDSDM results 

suggest both fine-scale spatial and temporal differences for canary and yellowtail 

compared to the other species in the model. Mainly, canary and yellowtail rockfish are 

concentrated primarily in the southeastern GOA with a few other patches of higher 

density, whereas yelloweye was spread evenly throughout the GOA. While yellowtail 

consistently grouped with canary in the broad-scale clustering as well as the fine-scale 

model, yellowtail should be carefully examined for placement into a complex because it 

is not considered a Demersal Shelf Rockfish. 

Future spatial and temporal relationships could likely be better detected with 

improvements to the fine-scale SDM by incorporating other surveys that cover a wider 

breadth of habitat, including untrawlable areas. The trawl survey catches select species 

associated with the trawlable areas, which excludes habitat with high complexity. As a 

result, the trawl survey does not adequately sample many of the Demersal Shelf Rockfish 

species and other rockfish species that are associated with complex habitat (e.g., 
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harlequin; Rooper and Martin 2012). Further, the trawl survey depths can be restricted 

such that depths greater than 500 m are not surveyed in all years. Including the NMFS 

fishery-independent longline survey (Siwicke et al., 2021) and the International Pacific 

Halibut Commission longline survey (Erikson and Ualesi, 2020), for instance, could 

extend the surveyed habitat to cover areas with increased sloping gradient and rocky 

habitats. The longline surveys sample a different community of rockfish species, 

including more Demersal Shelf Rockfish species. More surveyed habitat and different 

gear selectivity may help confirm the strength of the spatial correlations among non-

target rockfish and increase the spatial estimation extent. Additionally, VAST can include 

habitat covariates in the model to help improve the density estimates as well as determine 

the amount of variation associated with the covariates. Rockfish are often associated with 

a mix of habitat types including high relief rocks, reefs, and crevices, to mudflats and 

vegetative areas (Johnson et al., 2003; Conrath et al., 2019). Theoretically, because most 

of the variation in our model is associated with the spatial component, adding habitat 

covariates, such as rocky habitat, substrate type, or depth, would help identify key 

attributes that influence spatial overlap of rockfish species. 

Our results highlight that, when survey data are available, fine-scale SDMs can be 

applied to validate or construct species complexes. We demonstrate how SDMs can be 

used to examine both spatial and temporal similarities among species to detect fine-scale 

species distribution overlap and asynchronous or synchronous changes in abundance. 

Modeling multiple data-limited or rare species simultaneously can detect fine-scale, 

species-specific relationships. In comparison, typically applied broad-scale multivariate 

approaches, which utilize a wider variety of data but often at a broader spatio-temporal 
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scale, provide a more general overview of potential species complexes. JDSDMs can also 

help detect individual and community responses to environmental or anthropogenic 

perturbations, and can be used to predict how the complex may be impacted by future 

shifts in the ecosystem (Ovaskainen and Soininen, 2011). As species distributions 

continue to expand, contract, or shift, fine-scale SDMs can aid in detecting changes in 

correlations among species and major shifts in their distributions. Modeling species in a 

complex simultaneously when species-specific data are available can help scientists 

provide improved management advice with limited data. In the development and 

management of species complexes, we advise simultaneously applying both fine-scale 

SDMs and broad-scale multivariate modeling techniques (e.g., Omori et al., 2021; 

Chapter 2), applied across the full extent of available data, to validate and/or create 

species complexes. Additionally, a hierarchical, step-wise structure can be used to assign 

species to complexes by identifying regional influential factors to separate species (Cope 

et al., 2011). By applying the full complement of methods, including the JDSDM 

approach suggested here, there is greater likelihood to detect a variety of species 

relationships. Similarly, strong species correlations are likely to persistently appear across 

multiple methods and data sources, allowing the identification and validation of more 

robust species complexes.  
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3.6 Tables  

Table 3.1. List of non-target rockfish species (Sebastes sp.) included in the multispecies 

VAST model, including the associated total number of trawl survey tows with a non-zero 

catch (i.e., encounters) and the total biomass from the bottom trawl survey catch for all 

years combined for each species. 

 

Common Name Scientific name 

(Sebastes) 

Encounters Total Biomass  

(kg) 

canary S. pinniger 72 3,399 

harlequin S. variegatus 886 22,135 

redbanded S. babcocki 1,256 6,270 

redstripe S. proriger 369 19,913 

sharpchin S. zacentrus 881 36,719 

silvergray S. brevispinis 815 34,266 

yelloweye S. ruberrimus 304 2,034 

yellowmouth S. reedi 54 1,331 

yellowtail S. flavidus 74 1,651 
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3.7 Figures 

 

Fig. 3.1 VAST estimated average density (ln(mt/km2)) of each rockfish species across all 

GOA trawl survey years. 
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Fig. 3.2. Combined results of the two linear predictors from the spatial component 

(𝜔(𝑐, 𝑠)) of the model. The left two panels represent maps of the first two factors after the 

PCA rotation. The right panel provides the first two factor loadings after a PCA rotation 

on the combined spatial covariance matrix for all species. 
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Fig. 3.3. Ward’s hierarchical clustering dendrograms from the spatial component (a), 

temporal component (b), harvest fraction (c), and life history (d). Box colors and line 

type indicate different cluster groupings with labeled cluster below, where each data type 

is independent from one another. Italicized species in blue and bold species in green 

indicate two sets of rockfish that consistently group together. 
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Fig. 3.4. Average distribution of the spatial component clusters identified by the Ward’s 

clustering results (Fig 3.3a, 𝜔̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑠)). Values that are less than 1% of the maximum 

value are represented by dark gray and box colors correspond with spatial clusters from 

Fig. 3.3a. 
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Fig. 3.5. VAST estimated indices of abundance (black line and points) with 95% 

confidence interval (gray shading) and median estimate (dashed horizontal line for non-

target rockfish species.  
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Fig. 3.6. The first two factor loadings of the temporal variation component, 𝛽(𝑐, 𝑡), after 

a PCA rotation on the combined covariance from the first and second linear predictors, 

where the temporal variation follows a random walk. 
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Fig. 3.7. Average temporal values (𝛽̂𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑡)) for each cluster based on the Ward’s 

clustering results. 

 

  



 

134 
 

3.8 Supplementary Material 

 

Supplementary Tables 

 

Table SM1. List of symbols used in the joint, dynamic species distribution model 

following notation from Thorson (2019).  

Symbol Description Dimensions 

(n = number) 

Type 

i Observation  ̶ Index 

𝑐 Category (i.e., species) ̶ Index 

s Spatial location  ̶ Index 

t Time interval (i.e., year) ̶ Index 

f Factor ̶ Index 

g Cluster ̶ Index 

𝑛𝑖 Number of observations 𝑛𝑖 = 11601 ̶ 
𝑛𝑠 Number of locations 𝑛𝑠 = 500 ̶ 
𝑛𝑐 Number of species 𝑛𝑐 = 9 ̶ 
𝑛𝑡 Number of years 𝑛𝑡 = 16 ̶ 
𝑛𝛽1 Number of temporal factors in linear predictor 

1 
𝑛𝛽1 = 9 ̶ 

𝑛𝛽2 Number of temporal factors in linear predictor 

2 
𝑛𝛽2 = 9 ̶ 

𝑛𝜔1 Number of spatial factors in linear predictor 1 𝑛𝜔1 = 9 ̶ 
𝑛𝜔2 Number of spatial factors in linear predictor 2 𝑛𝜔2 = 9 ̶ 
𝑏𝑖 Biomass (i.e., survey catch) data 𝑛𝑖  Data  

𝑎𝑖 Area-swept for each observation 𝑛𝑖 Data 

𝑎(𝑠) Area associated with each location 𝑛𝑠  Data 

𝜎𝑐
2 Variance for positive catch for each species 𝑛𝑖  Fixed effect 

𝜇𝛽1(𝑐𝑖) Intercept for 1st linear predictor 𝑛𝑖  Fixed effect 

𝜇𝛽2(𝑐𝑖) Intercept for 2nd linear predictor 𝑛𝑖  Fixed effect 

𝐿𝛽1(𝑐𝑖, 𝑓) Loadings matrix for temporal covariation for 1st 

linear predictor 
𝑛𝑐 × 𝑛𝛽1 Fixed effect 

𝐿𝛽2(𝑐𝑖, 𝑓) Loadings matrix for temporal covariation for 

2nd linear predictor 
𝑛𝑐 × 𝑛𝛽2 Fixed effect 

𝐿𝜔1(𝑐𝑖, 𝑓) Loadings matrix for spatial covariation for 1st 

linear predictor 
𝑛𝑐 × 𝑛𝜔1 Fixed effect 

𝐿𝜔2(𝑐𝑖, 𝑓) Loadings matrix for spatial covariation for 2nd 

linear predictor 
𝑛𝑐 × 𝑛𝜔2 Fixed effect 

𝛽1(𝑡𝑖, 𝑓) Temporal factors for 1st linear predictor 𝑛𝑡 × 𝑛𝛽1 Random 

effect 

𝛽2(𝑡𝑖, 𝑓) Temporal factors for 2nd linear predictor 𝑛𝑡 × 𝑛𝛽2 Random 

effect 

𝜔1(𝑠𝑖, 𝑓) Spatial factors for 1st linear predictor 𝑛𝑠 × 𝑛𝜔1 Random 

effect 

𝜔2(𝑠𝑖, 𝑓) Spatial factors for 2st linear predictor 𝑛𝑠 × 𝑛𝜔2 Random 

effect 

𝑝1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) 1st linear predictor 𝑛𝑖 Internally 

derived 



 

135 
 

𝑝2(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) 2st linear predictor 𝑛𝑖 Internally 

derived 

𝑟1(𝑠𝑖, 𝑐𝑖 , 𝑡𝑖) 1st link-transformed predictor that follows 

Poisson process 
𝑛𝑖 Internally 

derived 

𝑟2(𝑠𝑖, 𝑐𝑖, 𝑡𝑖) 2nd link-transformed predictor 𝑛𝑖 Internally 

derived 

R1 Spatial correlation matrix for 1st linear predictor 𝑛𝑠 × 𝑛𝑠 Internally 

derived 

R2 Spatial correlation matrix for 2nd linear 

predictor 
𝑛𝑠 × 𝑛𝑠 Internally 

derived 

𝐕𝐭𝐨𝐭𝐚𝐥 Joint covariance matrix calculated for temporal 

and spatial component separately 
𝑛𝑐 × 𝑛𝑐 Externally 

derived 

𝑣𝑡𝑜𝑡𝑎𝑙(𝑐1, 𝑐2) Total variance between species 𝑐1 and 𝑐2 1 Externally 

derived 

𝐋𝟏 Loadings matrix from either temporal or spatial 

covariation from 1st linear predictor 
𝑛𝑐 × 𝑛𝑐 Externally 

derived 

𝐋𝟐 Loadings matrix from either temporal or spatial 

covariation from 2nd linear predictor 
𝑛𝑐 × 𝑛𝑐 Externally 

derived 

𝐼(𝑐, 𝑡) Index of abundance 𝑛𝑐 × 𝑛𝑡 Externally 

derived 

𝑑(𝑠, 𝑐, 𝑡) Predicted density 𝑛𝑠 × 𝑛𝑐 × 𝑛𝑡 Externally 

derived 

𝛾(𝑐1, 𝑐2) Distance between a set of species 𝑐1 and 𝑐2 

based on covariance matrix 

1 Externally 

derived 

𝜔1(𝑐, 𝑠) Spatial component estimates from 1st linear 

predictor 
𝑛𝑐 × 𝑛𝑠 Externally 

derived 

𝜔2(𝑐, 𝑠) Spatial component estimates from 2nd linear 

predictor 
𝑛𝑐 × 𝑛𝑠 Externally 

derived 

𝜔𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑠) Total spatial component estimate 𝑛𝑐 × 𝑛𝑠 Externally 

derived 

𝜔𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑠) Total average spatial value for each cluster 𝑛𝑔 × 𝑛𝑠 Externally 

derived 

𝛽1(𝑐, 𝑡) Temporal component estimates from 1st linear 

predictor 
𝑛𝑐 × 𝑛𝑡 Externally 

derived 

𝛽2(𝑐, 𝑡) Temporal component estimates from 2nd linear 

predictor 
𝑛𝑐 × 𝑛𝑡 Externally 

derived 

𝛽𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡) Total temporal component estimate 𝑛𝑐 × 𝑛𝑡 Externally 

derived 

Δ𝛽𝑡𝑜𝑡𝑎𝑙(𝑐, 𝑡) Difference between total temporal estimates 

from t-1 and t 
𝑛𝑐 × (𝑛𝑡 − 1) Externally 

derived 

Δ𝛽𝑡𝑜𝑡𝑎𝑙(𝑔, 𝑡) Total average difference between temporal 

estimates from t-1 and t for each cluster 
𝑛𝑔 × (𝑛𝑡 − 1) Externally 

derived 
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Table SM2. Life history characteristics for rockfish borrowed from a literature review in Omori et al. (in review). 

 

  Max age Age at maturity Length at maturity Max length 

canary 71 9 480 580 

harlequin 34 9 230 323 

redbanded 106 4 420 698 

redstripe 55 8 290 420 

sharpchin 58 10 270 350 

silvergray 75 10 460 623 

yelloweye 117 22 475 644 

yellowmouth 99 11 380 469 

yellowtail 64 9 410 530 

 

Table SM3. Scaled harvest fractions for each rockfish species used for Ward’s hierarchical cluster analysis. 

 

  1996 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 

canary 1 0.936 0.488 0.584 0.109 0.084 0.16 0.104 0.614 0.142 0.162 0.232 

harlequin 0.013 0.089 0.126 0.721 0.788 0.598 0.911 0.61 0.53 1 0.807 0.624 

redbanded 0.574 0.371 0.477 0.484 0.372 0.444 0.434 0.726 0.996 0.722 1 0.857 

redstripe 0.031 0.034 0.017 0.211 0.056 0.212 0.228 0.506 0.188 0.374 0.571 1 

sharpchin 0.203 0.078 0.077 0.183 0.036 0.058 0.051 0.094 0.038 0.088 0.102 0.056 

silvergray 0.127 0.156 0.078 0.23 0.047 0.215 0.296 0.932 0.267 0.642 0.732 1 

yelloweye 0.95 0.729 0.816 1 0.573 0.684 0.764 0.741 0.929 0.612 0.688 0.589 

yellowmou

th 0.001 0.001 0.001 0.278 0 0.037 0.009 0 0 0 0 1 

yellowtail 0.112 0.177 1 0.146 0.035 0.041 0.039 0.041 0.048 0.076 0.04 0.031 
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Table SM4. Total and first three eigenvalues associated with each linear predictor and total spatial (𝜔) and temporal (𝛽) model 

components.  

 

 Total 1 2 3 

𝜔 204.24 147.96 19.06 14.77 

𝛽 4.58 3.06 0.74 0.53 

𝜔1 165.72 - - - 

𝜔2 38.5172 - - - 

𝛽1 0.87 - - - 

𝛽2 3.72 - - - 

 

 

Table SM5. Combined rotated factor loading values for the spatial components. 

 

 1 2 3 4 5 6 7 8 9 

canary 2.034 2.873 -0.829 0.191 -1.295 0.068 0.567 -0.002 -0.252 

harlequin 4.453 -1.131 -1.443 1.069 -0.240 0.453 0.064 0.820 0.196 

redbanded 2.755 0.620 2.147 1.465 1.013 0.580 0.306 -0.094 -0.164 

redstripe 5.475 -0.835 0.120 -1.122 0.789 -0.761 0.782 0.211 -0.144 

sharpchin 6.247 -0.564 -0.021 1.001 -0.642 -0.854 -0.328 -0.643 0.142 

silvergray 3.958 0.826 0.375 -0.495 0.152 -0.096 -1.008 0.420 -0.417 

yelloweye 4.280 -0.855 -1.143 -0.854 0.143 1.187 -0.030 -0.624 -0.108 

yellowmouth 3.166 0.394 2.206 -1.040 -0.990 0.382 -0.017 0.187 0.417 

yellowtail 1.843 2.562 -1.034 -0.208 1.368 -0.085 -0.181 -0.058 0.427 
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Table SM6. Combined rotated factor loading values for the temporal components. 

 

 1 2 3 4 5 6 7 8 9 

canary 1.221 0.001 -0.119 -0.021 0.020 -0.022 -0.032 0.000 0.000 

harlequin 0.404 0.290 -0.367 0.027 -0.162 0.038 0.010 0.000 0.000 

redbanded 0.069 0.027 0.004 0.091 0.130 -0.021 0.037 0.000 0.000 

redstripe 0.398 0.223 0.205 0.088 -0.097 -0.079 0.006 0.000 0.000 

sharpchin 0.315 0.416 -0.219 -0.060 0.192 0.001 0.002 0.000 0.000 

silvergray 0.199 0.088 0.287 0.223 0.054 0.045 -0.032 0.000 0.000 

yelloweye 0.107 0.089 -0.094 0.222 -0.014 0.012 0.028 0.000 0.000 

yellowmouth 0.614 0.230 0.450 -0.147 -0.025 0.038 0.027 0.000 0.000 

yellowtail 0.843 -0.603 -0.051 0.017 0.020 0.012 0.020 0.000 0.000 
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Table SM7. Fixed effect estimates from species distribution model (i.e., VAST model). 

Estimates  canary harlequin redbanded redstripe sharpchin silvergray yelloweye yellowmouth yellowtail 

𝜎𝑐
2  1.19 1.47 1.07 1.41 1.51 1.19 0.78 1.37 1.21 
𝜇𝛽1(𝑐𝑖)  -6.05 -2.43 -2.11 -4.38 -4.48 -2.83 -4.30 -5.40 -4.83 
𝜇𝛽2(𝑐𝑖)  0.38 1.08 0.41 0.72 1.07 0.47 1.24 0.19 0.27 
𝐿𝛽1(𝑐𝑖, 𝑓) f = 1 -0.341 0.197 -0.084 -0.040 0.124 -0.080 0.028 -0.164 -0.606 

 f = 2 0.000 -0.190 -0.119 -0.098 -0.201 -0.146 -0.241 0.130 0.206 

 f = 3 0.000 0.000 0.028 -0.174 0.098 -0.029 -0.012 -0.052 0.066 

 f = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝐿𝛽2(𝑐𝑖, 𝑓) f = 1 -1.179 -0.508 -0.047 -0.378 -0.389 -0.151 -0.124 -0.544 -0.702 

 f = 2 0.000 -0.278 0.054 0.135 -0.127 0.321 0.006 0.244 0.057 

 f = 3 0.000 0.000 0.072 -0.048 0.327 -0.073 -0.050 -0.021 -0.238 

 f = 4 0.000 0.000 0.000 -0.262 -0.144 -0.159 0.042 -0.505 0.335 

 f = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝐿𝜔1(𝑐𝑖, 𝑓) f = 1 -3.282 -1.797 -1.468 -2.637 -2.627 -2.082 -2.020 -1.621 -2.714 

 f = 2 0.000 3.758 1.956 4.259 4.943 2.865 4.109 2.237 0.403 

 f = 3 0.000 0.000 2.973 0.239 1.076 0.646 -0.963 1.357 -0.015 

 f = 4 0.000 0.000 0.000 -1.093 -0.283 -0.712 -0.240 -1.028 -0.249 

 f = 5 0.000 0.000 0.000 0.000 0.619 0.279 0.117 0.308 1.109 

 f = 6 0.000 0.000 0.000 0.000 0.000 -1.082 0.203 0.201 -0.971 

 f = 7 0.000 0.000 0.000 0.000 0.000 0.000 0.579 0.415 -0.686 

 f = 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.922 -1.288 

 f = 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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𝐿𝜔2(𝑐𝑖, 𝑓) f = 1 2.099 0.781 0.004 -0.394 1.536 1.198 0.148 0.674 0.491 

 f = 2 0.000 2.711 -0.010 1.173 1.589 0.110 0.570 -0.680 -0.198 

 f = 3 0.000 0.000 1.184 0.743 0.301 0.615 0.271 0.428 0.531 

 f = 4 0.000 0.000 0.000 2.323 1.399 1.030 0.159 1.215 -0.052 

 f = 5 0.000 0.000 0.000 0.000 -1.462 0.411 0.327 0.220 0.790 

 f = 6 0.000 0.000 0.000 0.000 0.000 -0.600 0.160 -0.551 0.292 

 f = 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 f = 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Supplementary Figures 

 

 
Fig. SM1. Map of the Gulf of Alaska (GOA) with points indicating each haul of the 

fisheries-independent trawl survey from 1984- 2019 and NMFS management areas 

outlined in black. The GOA Other Rockfish complex of species covers species in each of 

these bounded areas, however, the seven species associated with the Demersal Shelf 

Rockfish complex are managed separately only in Area 650. 
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Fig. SM2. Q-Q plots comparing the empirical vs. simulated distributions for each 

species. 
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Fig. SM3. Predictive density distributions for each species. 
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Fig. SM4. Factor loadings with 1st and 3rd (left panel) and 2nd and 3rd (right panel) factors 

after PCA rotation on the combined spatial covariance matrix. 
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Fig. SM5. Correlation estimates among the nine GOA rockfish from the spatial 

component of the VAST model. Size of circle and printed value indicate correlation 

estimate for each pair of species. 
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Fig. SM6. Factor loadings with 1st and 3rd (left panel) and 2nd and 3rd (right panel) factors 

after PCA rotation on the combined temporal covariance matrix. 
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Fig. SM7. Correlation estimates among the nine GOA rockfish from the temporal 

component of the VAST model. Size of circle and printed value indicate correlation 

estimate for each pair of species. 
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Fig. SM8. Standardized indices of abundance from the trawl survey (Index_raw) 

compared to the JDSDM model biomass estimates (Index_VAST). 
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CHAPTER 4 

 

A comparison of two stock assessment methods for a non-target rockfish complex in 

the Gulf of Alaska 
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Abstract 

There are over twenty non-target rockfish species in the Gulf of Alaska that are 

assessed and managed as a single unit within the “Other Rockfish” complex. Currently, a 

random effects model is used to estimate the biomass for the complex based on a 

smoothing algorithm applied to the design-based estimator of survey biomass. However, 

we develop and apply a spatio-temporal species distribution (i.e., the Vector 

Autoregressive Spatio-Temporal, VAST) model as an alternative assessment method, 

which may better account for unknown factors affecting species’ abundance and spatial 

autocorrelation in the estimation of species biomass. We compare the results of the 

random effects model with the spatio-temporal model for assessing the data-limited Other 

Rockfish species. We use Mohn’s ρ and the coefficient of variation to examine the 

retrospective pattern (i.e., consistency in model outputs as new years of data are 

incorporated) and biomass uncertainty, respectively, for each of four main assessment 

model types: 1) the random effects model implemented on individual species, 2) the 

spatio-temporal model implemented on individual species, 3) the random effects model 

implemented on species aggregated by natural mortality (M) groupings, and 4) the spatio-

temporal model implemented on species aggregated by M groupings. Results demonstrate 

that the spatio-temporal model returns biomass estimates with less uncertainty, but has 

similar stability compared to the random effects model for both the individual and M 

group models. Additionally, the spatio-temporal model applied to M groups gives the 

highest biomass estimates, which lead to increased acceptable biological catch (ABC) 

estimates and could have important implications for management of the directed fisheries 

that catch these rockfish species as bycatch. Although we recommend that the spatio-
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temporal model be considered for management, careful examination is warranted when 

selecting the model framework used for assessing data limited, non-target species given 

the implications for resultant harvest control rules and catch quotas. 
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4.1 Introduction 

The majority of non-targeted rockfishes (Sebastes spp.) in the Gulf of Alaska 

(GOA) are grouped together as a single unit: the GOA “Other Rockfish” stock complex. 

Although the complex consists of up to 27 species depending on the management area, 

only 6 species constitute > 95% of the total estimated catch (Tribuzio and Echave, 2019). 

Other Rockfish species are grouped in a complex due to their low catch and economic 

value, and because there is insufficient data for conventional age-structured assessment 

models. The species belonging to the complex are incidentally caught in lucrative 

groundfish fisheries, primarily by trawling and longline gear. The complex has a high 

average annual discard rate of 56% that has decreased to 22- 43% in recent years 

(Tribuzio and Echave, 2019). The Other Rockfish species vary in their distribution, 

habitat selection, behavior, and life history characteristics. With the exception of 

harlequin (S. variegatus), these rockfish are at the northern extent of their distribution in 

the GOA, which spans from southern California to Alaska (Love et al., 2002). Rockfish 

are typically found near the seabed in a variety of benthic substrates, including high relief 

rocks, reefs, and boulders, to low relief rocky substrate and mudflats (Johnson et al., 

2003; Conrath et al., 2019). Adults can inhabit depths up to 800 m, but are typically 

found from 100 to 275 m (Love et al., 2002). Rockfish species tend to have late-maturity, 

are long-lived, and have the ability to bear live young (Love et al. 2002), but species-

specific life history values are often not measured for the GOA rockfish. The low 

productivity characteristics tend to place rockfish into a high vulnerability category 

compared to other groundfish species in the GOA (Ormseth and Spencer, 2011), 

requiring careful management. 
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The species belonging to the Other Rockfish complex are assigned to three data-

level tiers: Tier 4 (survey data and age-at-maturity estimates for catch limits), Tier 5 

(survey data and fishing mortality proxies for catch limits), and Tier 6 (fisheries catch 

data and maximum catch for catch limits). Sharpchin (S. zacentrus) is categorized as Tier 

4, because it is the only species with sufficient maturity and growth data, which are used 

to set harvest recommendations. The majority of the rockfish (16 total) are assigned to 

Tier 5 with another species, yelloweye (S. ruberrimus), being discussed as a potential 

additional Tier 5 species (it is currently assigned to Tier 6; assignments listed in Tribuzio 

and Echave, 2019). Tier 4 and 5 species are assessed throughout the entire GOA area 

using a fishery-independent trawl survey. Within Tier 5, species are further divided into 

five (or six with yelloweye) natural mortality (M) groups (Table 1). The M group 

assignments are based on a variety of life history invariant methods including Hoenig 

(1983) and Alverson and Carney (1975). The M values range from 0.02 (yelloweye; 

O’Connell and Brylinsky, 2003) to 0.10 (redstripe, S. proriger; Archibald et al., 1981). 

The biomass for each M group for Tiers 4 and 5 are estimated and smoothed using a 

random effects model, which accounts for both process and observation error (further 

details in Methods and Appendix A; Hulson et al., 2021). Similar to other complexes in 

the GOA and Bering Sea- Aleutian Islands, allowable biological catches (ABCs) are then 

calculated for each Tier then summed for a single ABC for the Other Rockfish complex 

based on the North Pacific Fishery Management Council’s harvest control rule (e.g., 

fishing mortality that corresponds to 40% of the unfished spawning stock biomass [F40%] 

for Tier 4 and 0.75*M for Tier 5; DiCosimo et al., 2010). 
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A spatio-temporal model using a Vector Autoregressive Spatio-Temporal model 

(VAST; Thorson, 2019) has been suggested as an alternative assessment model for the 

GOA Other Rockfish complex. The VAST model has become a popular tool for 

developing abundance indices and estimating spatial dynamics of marine species (e.g., 

Thorson et al., 2015), and has been adapted to help identify species complexes in the 

GOA (Omori et al., in review; Chapter 3). Spatio-temporal models have been able to 

produce more precise indices of abundance than other model approaches (e.g., Thorson et 

al., 2015; Johnson et al., 2019) and estimate sub-area abundance for use in spatial 

management. The models can account for known and unknown factors that affect the 

abundance or catchability of species. The VAST framework accounts for observed and 

latent factors by having the possibility of including spatial autocorrelation and spatio-

temporal random effects, and the option of adding known covariates. Spatio-temporal 

density estimates at each location and time step can then be scaled to produce annual 

biomass or count estimates that can be integrated into stock assessments (Thorson et al., 

2015; Cao et al., 2017).  

In this study, we compare the current random effects assessment model and the 

newly proposed spatio-temporal (VAST) model for the Tier 4 and 5 GOA Other Rockfish 

species. Specifically, we examine the retrospective patterns and biomass uncertainty 

using Mohn’s ρ, mean-absolute-relative-difference, and the coefficient of variation to 

compare the performance of the models for single species and M groups. 

Recommendations from the model comparison can be used directly for management 

advice for Tier 4 and 5 GOA Other Rockfish species and methods can be adapted to other 

data-limited stock complexes.  
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4.2 Methods 

The National Marine Fisheries Service (NMFS) bottom trawl survey in the GOA, 

further referred to as the trawl survey, is used as the primary data input for both modeling 

frameworks. The trawl survey is used as the main biomass data source in the current 

assessment, covers the largest spatial extent of any survey in the GOA, and samples 

species-specific biomass data for the GOA Other Rockfish species (Tribuzio and Echave, 

2019). The trawl survey uses a stratified-random design, sampling from May to August 

(von Szalay and Raring, 2018). There are on average 725 tows per year covering an 

average of 0.031 km2 swept per tow. The trawl survey operated on a triennial basis from 

1984 to 1996, then on a biennial cycle from 1999 to present. There are 16 surveyed years 

from 1984 to 2019 used in this model comparison study.  

A random effects time-series model was developed to ensure consistency in 

methods among data-limited assessments for biomass estimates and apportionment for 

species managed by the North Pacific Fisheries Management Council (NPFMC), which 

includes the GOA and Bering Sea/Aleutian Islands regions (SAWG, 2012). The random 

effects model implemented in this research is the same model currently used in the 

assessment for the Other Rockfish complex. The model accounts for variability in 

biomass over time through a process error term, which follows a random walk. The 

random walk allows the model to estimate relative biomass for missing survey years. The 

precision of fit between the model estimates and observed trawl survey data is modeled 

by the observation error, which uses a log-normal distribution. Relative biomass is 

estimated for each species or species M group for the GOA area. The model is 

implemented in AD-Model Builder (Fournier et al., 2012) and the R programming 



 

156 
 

language (R Core Team, 2021). For further model details see Appendix A and Hulson et 

al. (2021). 

The framework of the proposed VAST model is designed as a delta-model with 

components for encounter (i.e., presence) and positive catch given presence probabilities 

to accommodate the numerous zero catch observations. A Poisson-link delta-model is 

implemented with the positive catch modeled using a Gamma distribution. The 

specifications of the VAST model align with other VAST models being explored for 

GOA species (e.g., Pacific ocean perch [S. alutus] Hulson et al., 2020) and VAST model 

configurations are available in Table SM1. Both temporal and spatial components 

initially are included in the VAST models, but may be excluded depending on the species 

or M group models due to insufficient data to estimate each component (Table SM2). The 

spatial variation in the spatial component is modeled as an auto-correlated stochastic 

process using a Gaussian Markov Random Field. The spatial correlation matrix is 

modeled using a Matérn correlation function. Three versions of VAST are implemented 

with different temporal processes (Appendix B): 1) VAST using a random walk (VAST-

RW), 2) VAST with an autoregressive (AR(1)) process, where the AR coefficient, φ, is 

freely estimated (VAST-free), and 3) VAST with an AR process, where φ is fixed at a 

value calculated from the fishing mortality corresponding to the spawner-per-recruit 

(SPR) proxy value (VAST-fixed). Thorson et al. (2019) demonstrate that the F40% 

estimated from SPR levels (FSPR) can be converted to the φ parameter in the AR process 

by: 

𝜑 = 1+
F𝑆𝑃𝑅

1∗log(0.4)
  , (1) 
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where FSPR is approximated for the GOA Other Rockfish species by the linear 

relationship between M (natural mortality) and FSPR from similar GOA rockfish species 

where SPR estimates are available (Table SM2). M values are assigned for GOA Other 

Rockfish species based on Tier 5 M groupings (Tribuzio and Echave 2019). The final 

models include fits with a maximum absolute gradient of < 1e-6 and a positive definite 

Hessian matrix as the convergence criteria. Q-Q normal plots are used as a model 

diagnostic to determine model fit. VAST computations are performed using the VAST 

model (available at: www.github.com/james-thorson-NOAA/VAST) in Microsoft R 

Open 3.5.3 (https://mran.microsoft.com/). Further details of the VAST model structure, 

description, and implementation are described in Thorson (2019).  

The random effects model and VAST models (VAST-RW, VAST-free, and 

VAST-fixed) are applied to eighteen individual species as well as seven M groups (Table 

1). Model performance is examined by three metrics: Mohn’s ρ, mean-absolute-relative-

difference (𝐴𝑅𝐷̅̅ ̅̅ ̅̅ ), and the coefficient of variation (CV). Mohn’s ρ is used to investigate 

retrospective bias in the models (i.e., systematic inconsistency occurring in the biomass 

estimates when subsequent years of data are added; Mohn, 1999). Mohn’s ρ is calculated 

using the relative differences between biomass estimated in the base model (𝐵̂𝑌−𝑦,𝑏𝑎𝑠𝑒; 

model with all years of data) and the terminal year biomass estimated (𝐵̂𝑌−𝑦,𝑛) with fewer 

years of data (i.e., with subsequent years of data “peeled” or removed) by: 

𝜌̂ =
𝐵̂𝑌−𝑦,𝑛 – 𝐵̂𝑌−𝑦,𝑏𝑎𝑠𝑒

𝐵̂𝑌−𝑦,𝑏𝑎𝑠𝑒
  , 

(2) 

 

http://www.github.com/james-thorson-NOAA/VAST
https://mran.microsoft.com/
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where Y is the final year in the base model and 𝑦 is the terminal year of the given nth 

“peel” in the subsequent models. The terminal years for the retrospective analysis 

include: 2009, 2011, 2013, 2015, and 2017. 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  measures the variation on peels in the 

retrospective analysis, or in other words, is the mean relative bias between the base model 

and each peel (i.e., when fewer years of data are modeled). 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  is calculated by: 

𝐴𝑅𝐷̅̅ ̅̅ ̅̅ =
|𝐵̂𝑌−𝑦,𝑛 – 𝐵̂𝑌−𝑦,𝑏𝑎𝑠𝑒|

𝐵̂𝑌−𝑦,𝑏𝑎𝑠𝑒
  . 

(3) 

 

The annual CV and average CV across each time series ( 𝐶𝑉̅̅ ̅̅ ) from the base models are 

used to investigate the relative fit of the random effects and VAST models using the 

biomass estimate (𝐵𝑦̂) and estimated standard error ( 𝑆𝐸𝑦̂) for each year in the survey. 

The 𝐶𝑉̅̅ ̅̅  is derived using: 

𝐶𝑉̅̅ ̅̅ = (
𝑆𝐸𝑦̂

𝐵𝑦 ̂
)  . 

(4) 

 

Large average CV and 𝐶𝑉̅̅ ̅̅  values (i.e., > 1) can indicate that a model demonstrated poor 

performance and should not be considered permissible to use. 

Lastly, the overfishing limit (OFL) and acceptable biological catch (ABC) are 

calculated for the Tier 4 and 5 species in the Other Rockfish complex by tier for each 

model type (random effects, VAST-RW, VAST-free, and VAST-fixed). The NPFMC 

harvest control rule is utilized for each tier by multiplying the total estimated biomass by 

the exploitation fraction corresponding to the OFL (FOFL) and ABC (FABC). The estimated 

biomass is calculated based on the stratified random design of the trawl survey and then 
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expanded for the GOA for the random effects model. The VAST model estimates 

biomass at each grid location in the GOA. The FOFL and FABC are equivalent to F35% and 

F40% for Tier 4, respectively, which are based on age-at-maturity obtained from the 

current assessment (Tribuzio and Echave, 2019). The harvest recommendations for Tier 5 

are calculated based on M group values as a proxy, where FOFL ~ M and FABC = 0.75* 

FOFL (DiCosimo et al., 2010; Tribuzio and Echave 2019). Two harvest control rules for 

Tier 5 are implemented to calculate the OFL and ABC: 1) the current NPFMC approach 

where a single, average M value of 0.073 is used to calculate harvest limits for the entire 

Tier 5, and 2) the M value is used to calculate the OFL and ABC for each corresponding 

M group before summing together for a total OFL and ABC). The R programming 

language (R Core Team, 2021) is used to run and compare all models. 

 

4.3 Results 

A total of 9 out of 18 individual species models converged using the random 

effects model compared to 9 species models for VAST-RW, 5 for VAST-free and 11 for 

the VAST-fixed models (Table 1 and Fig. SM4a-c). The remaining individual species 

have insufficient survey data to adequately run the models. For example, chilipepper (S. 

goodie) is not caught in any sample of trawl survey. All the individual species that have 

on average > 3% encounter rate (i.e., average annual proportion of positive catch in a 

trawl sample) yield abundance results from at least three models. The relative biomass 

estimates from the random effects, VAST-RW, VAST-free, and VAST-fixed individual 

species models generally follow the trawl survey catch trends well (Fig. 1). The 𝐶𝑉̅̅ ̅̅ s from 

the random effects model are similar or higher than the 𝐶𝑉̅̅ ̅̅ s from the three configurations 
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of VAST, whereas the VAST-RW and VAST-fixed models typically have similar 𝐶𝑉̅̅ ̅̅ s 

that are lower than the 𝐶𝑉̅̅ ̅̅ s from VAST-free (Table 1). There are no consistent 

retrospective patterns based on Mohn’s ρ (Table 1; Fig. SM4a-c).  However, the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  

results suggest that the individual species random effects models are more stable or have 

similar stability when years of data are added compared to the VAST models (Table 1).  

 Similar to the individual species results, all four models applied to each M group 

provide abundance estimate trends that generally follow the trawl survey catch trends 

(Fig. 2), except VAST-free models did not converge for three M groups (M= 0.05, M= 

0.06, M= 0.092; Table 1). The random effects models generally produce smoother trends 

(i.e., less steep biomass changes from year to year), whereas the VAST models generate 

more variable trends (Fig. 2). It is worth noting that because sharpchin is the only Tier 4 

species, it is modeled in its own M group; thus, the results in Table 1 for individual and M 

group values along with the sharpchin panel in Figure 1 and the M=SC panel in Figure 2 

represent identical model outputs. Similarly, yelloweye, harlequin, and redstripe are 

represented by single species Tier 5 M group (i.e., M groups for 0.02, 0.092, and 0.10, 

respectively). In addition, widow rockfish is grouped with silvergray within the 0.05 M 

group did not lead to many differences between the silvergray single species models and 

the M group 0.05 models (Table 1), due to the low and infrequent catch of widow 

rockfish in the trawl survey. The 𝐶𝑉̅̅ ̅̅ s from the M group runs for the VAST models range 

from 17 to 39%, while the 𝐶𝑉̅̅ ̅̅ s from the random effects model range from 19 to 79% 

(Table 1). The random effects models consistently have small, positive Mohn’s ρ values, 

but the VAST models demonstrate no consistent retrospective bias (Table 1). 

Additionally, the retrospective analysis from the VAST-free model for M= 0.02 (same as 
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the yelloweye individual VAST-free model), demonstrates that VAST model can be 

unstable with fewer years of data (Fig. SM4e). Based on the 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  results, there is no 

clear model that outperforms the other models. For example, the random effects model 

for M= 0.10 (i.e., redstripe) has a lower 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  value than all VAST models, whereas the 

VAST models have lower 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  values for M= 0.07 than the random effects model 

(Table 1). As more species are added to the VAST models within the M groups 

framework, the resulting magnitude of Mohn’s ρ and 𝐴𝑅𝐷̅̅ ̅̅ ̅̅  tend to decrease significantly 

(e.g., the 0.06 and 0.07 M groups; Table 1). 

 Overall, the VAST-RW model for both individual and M groups provide the 

highest total biomass estimate for 2019 for Tier 5 rockfish, followed by the VAST-fixed, 

random effects model, and finally the VAST-free (Table 2). The estimated total biomass 

for Tier 5 species from the VAST-free model is significantly lower than the estimated 

biomass from all the other models due to model convergence challenges for both 

individual and M group models. The models from the M groups produce slightly higher 

biomass estimates (< 2%) compared to the associated summed values from the individual 

species model runs (Table 2). The two OFL calculation methods, using a single average 

M value for the entire Tier 5 group and M specific values corresponding to each M group, 

provide similar harvest recommendations for the random effects model, but different 

OFL and subsequent ABC recommendations for the three VAST models; using M 

specific values for each M group for the OFL calculation generated larger OFL and ABC 

values (Table 2). Including yelloweye to the Tier 5 group (it is currently listed as a Tier 6 

species) adds between 1,700 to 2,800 metric tons (mt) in total biomass and between 25 to 

150 mt to the ABC (Table 2). For the only Tier 4 species, sharpchin, the random effects 



 

162 
 

model generates the lowest total biomass estimates and subsequent OFL and ABC 

recommendations compared to the VAST models. 

 

4.4 Discussion 

The results from this study demonstrate that the assessment model type, decision 

to assess species individually or as an M group, and harvest control rule approach (i.e., 

using M group values compared to a single average M value) have important impacts on 

the harvest limit recommendations. Here, the proposed VAST models (VAST-RW and 

VAST-fixed) have the potential to be used as an alternative assessment model for the 

species in the Tier 4 and 5 Other Rockfish complex. No models produced highly variable 

and unprecise results (i.e., CVs < 1) suggesting that the model choices provided 

reasonable results. The input configuration (temporal process choice and spatial 

components) for the VAST models allow the model to be flexible, but can be unstable in 

the retrospective analyses, suggesting that VAST models for indices of abundance are 

feasible, but may be impracticable with short time series or too few data points. In 

comparison, the random effects model smoothed the time series and provided more stable 

and consistent results when years of data were excluded in the retrospective analyses. 

Here in this research, the VAST models produce larger biomass estimates compared to 

the random effects model. Additionally, the results demonstrate that modeling by M 

groups led to higher total biomass estimates than the summed biomass estimates from the 

individual species models because there were insufficient data to run some individual 

species models. The ability to include more species (and thus increased total survey 

catch) in the grouped models led to the higher biomass estimates compared to summing 
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the individual species models, because non-converged individual models led to no 

biomass being added to the complex for that species. Conversely, ability to examine 

changes in species specific biomass trends and how they change over time when running 

individual species models can be equally as important as scientists continue to see shifts 

in populations (e.g., Pinsky et al., 2013; Thorson and Barnett, 2017). 

The application of alternative harvest control rules (i.e., OFL calculation method) 

provides different harvest limits for the VAST models, but not for the random effects 

model. We recommend using OFL and ABC calculations that apply the M value for each 

associated M group as a proxy for FOFL for each of the M group models for the Tier 4 and 

5 Other Rockfish. The weighting of biomass estimates from the M groups better reflects 

the proportion of biomass that can be harvested as a whole compared to a single M value 

for the entire stock complex. Therefore, applying individual M group values in the 

development of harvest recommendations should provide a more biologically realistic 

approach to setting harvest recommendations. 

The differences in ABCs from each model and FOFL calculation method could 

alter fishing practices if these non-target species are limiting the catch of target species 

(i.e., if any are ‘choke’ species; Schrope, 2010; Batsleer et al., 2015). Additionally, 

because the VAST models can provide fine-scale spatiotemporal maps of abundance, 

they can be used to identify potential areas of high concentration for a given species. If 

any species are deemed to be particularly vulnerable or exhibiting high bycatch rates, 

abundance maps can be provided to fishermen to help identify potential areas of bycatch 

hotspots, which can then be used to avoid areas of high non-target catch or to inform 

managers of areas to implement spatio-temporal fishery closures (Dolder et al., 2018; 
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NPFMC, 2021). Fortunately, the total fishery catch for the GOA Other Rockfish are 

typically below the set catch limits (Tribuzio and Echave, 2019), but the high 

vulnerability to overfishing of Sebastes species necessitates precautions (Cope et al., 

2011; Ormseth and Spencer, 2011). As noted by the NPFMC Science and Statistical 

Committee (NPFMC, 2021), it may be useful to set lower ABCs for vulnerable, non-

target stocks, such as the Other Rockfish complex, to increase awareness of potential 

challenges and consequences if the stock becomes overfished. 

 Previous comparisons of VAST and alternative design- or model-based estimators 

have typically involved more “data-rich” species than those explored here (Cao et al., 

2017; Thorson et al., 2015, 2021). Our results illustrate the need to explore alternative 

model structures for data-poor cases like sharpchin where the scale is radically different 

between model and design-based estimators. Exploration could focus upon, e.g., the 

consequence of including covariates, identifying and exploring fit in subareas with large 

discrepancies between methods, and diagnostics for model suitability.   

 We note that the random effects model explored here is also used to recommend 

total catches for subareas within the Gulf of Alaska. Similar to this study, the random 

effects model is applied to survey catch data for each management area separately. The 

proportion of biomass estimated in each management area then is used to apportion the 

ABCs to each area (Tribuzio and Echave, 2019). VAST is being explored for use in 

apportionment, similar to its use for Tier-4/5/6 OFL estimates that we propose here.   

 The tier designations used here are based on those of the most recent full 

assessment, conducted in 2019 (Tribuzio and Echave 2019). One important consideration 

is that some of the species within the complex may change tier category. Both harlequin 
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and yelloweye rockfish are being considered for moving up tiers. Further, species with 

little data that are currently Tier 5 (e.g., chilipepper) could be downgraded to Tier 6, 

which could reduce some of the non-convergence issues. Lastly, for at least one species, 

yelloweye rockfish, hook-and-line surveys may provide more useful information for the 

species and alternate surveys need to be considered.  

The selection of assessment model and harvest control rules requires further 

discussion with regional management entities, because there is a large range in resulting 

harvest limit recommendations (i.e., OFLs and ABCs) based on the model and harvest 

control rule selection. Likewise, the advantages and caveats of each model does not 

produce a clear best model choice. While the results and application are specific to the 

GOA Other Rockfish, similar methods and lessons from this research can provide 

guidance to other studies comparing assessment models. Although the VAST and random 

effects models implemented in this study provided similar results and performance, we 

would suggest that the VAST models might be a useful alternative modeling tool moving 

forward. VAST, as applied in this research, included spatial and temporal components, 

but can include a spatio-temporal term if spatial changes are known to occur over time. 

From prior investigation, we excluded the spatio-temporal component to reduce the 

model complexity for these data-limited species and to not over fit the model because 

there was no indication that spatial changes occurred over time. Future models can 

include a spatio-temporal component if necessary when more data are available. As the 

survey time series continues to expand, survey protocols will continue to improve to 

better account for non-target rockfish in both trawlable and untrawlable habitat by 

incorporating additional or alternative surveys (e.g., other survey gears and fishery 
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catch), and identifying and reporting other environmental variables. It is expected that a 

spatio-temporal modeling framework will continue to improve, resulting in more robust 

biomass estimates for the data-limited Other Rockfish species in the Gulf of Alaska. 

The spatio-temporal modeling approach, implemented here in the VAST 

framework, to be a useful method to identify (multivariate approach) and model 

(univariate approach) species complexes. Although the full range of data and grouping 

methods available should be implemented and compared when developing species 

complexes, a spatio-temporal model, such as VAST, provides a useful single tool that can 

first be used to identify spatio-temporal correlations and changes among species that can 

help determine which species could be managed as a complex (e.g., Omori et al., in 

preview). Then, the same framework can be utilized to determine the biomass of the 

entire complex and resultant sustainable harvest levels (univariate approach used in this 

chapter). The ability to use a single framework for the entire species complex 

management process could help reduce the time needed to manage non-target and data-

limited species, while also improving consistency among modeling assumptions 

throughout the management process.   
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4.6 Tables 

 

Table 4.1. List of Tier 4 and 5 rockfish species, average annual encounter percentage (Enc; encounter percentage range in 

parentheses), their associated natural mortality (M) group, AR φ parameter for associated VAST-fixed model, model performance 

metrics (Mohn’s ρ [Eq. 2], absolute relative difference [ARD; Eq. 3]) and, average CV [𝐶𝑉; Eq. 4]) for each individual and M group 

model run of the random effects (RE), VAST-RW, VAST-free, VAST-fixed model. The “-“ indicates that the either the model was 

unable to converge or there were insufficient data to run the model. 

 

Common 

name Sebastes spp. Enc 

M 

group AR φ  

Individual   M Group 

RE 
VAST-

RW 
VAST-

free 
VAST-

fixed 
  

RE 
VAST-

RW 
VAST-

free 
VAST-

fixed 

Yelloweye S. ruberrimus 
3% 

(1-4) 
0.02 0.98 

𝐶𝑉 0.24 0.22 0.22 0.22  𝐶𝑉 0.24 0.22 0.22 0.22 

ρ 0.06 -0.27 -0.04 -0.05  ρ 0.06 -0.27 -0.04 -0.05 

ARD 0.08 0.28 0.07 0.07  ARD 0.08 0.28 0.07 0.10 

Silvergray S. brevispinis 
7% 

(1-10) 

0.05 0.94 

𝐶𝑉 0.37 0.28 - 0.28       

ρ 0.02 -0.01 - -0.02  𝐶𝑉 0.37 0.28 - 0.28 

ARD 0.07 0.04 - 0.04  ρ 0.02 -0.01 - -0.02 

Widow S. entomelas 
0% 

(0-1) 

𝐶𝑉 - - - -  ARD 0.07 0.04 - 0.04 

ρ - - - -       

ARD - - - -       

Blackgill 
S. 

melanostomus 

0% 

(0-0) 

0.06 0.92 

𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Bocaccio S. paucispinis   
0% 

(0-1) 

𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Chilipepper S. goodie NA 
𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Pygmy S. wilsoni 
1% 

(0-1) 

𝐶𝑉 - - - 0.50       

ρ -0.66 - - 0.24       

ARD 0.94 - - 0.47       
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Redbanded S. babcocki 
11% 

(5-13) 

𝐶𝑉 0.18 0.16 - 0.16  𝐶𝑉 0.19 0.17 - 0.17 

ρ 0.03 0.02 - 0.00  ρ 0.02 0.01 - 0.00 

ARD 0.03 0.04 - 0.03  ARD 0.04 0.04 - 0.03 

Splitnose S. diploproa 
0% 

(0-1) 

𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Stripetail S. saxicola 
0% 

(0-0) 

𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Vermilion S. miniatus 
0% 

(0-0) 

𝐶𝑉 - - - -       

ρ - - - -       

ARD - - - -       

Yellowmouth S. reedi 
0% 

(0-1) 

𝐶𝑉 7.67 - - 0.68       

ρ -0.24 - - -0.77       

ARD 0.31 - - 0.83       

Darkblotched S. crameri 
1% 

(0-1) 

0.07 0.90 

𝐶𝑉 1.11 0.58 0.61 0.57       

ρ 0.07 0.33 -0.76 0.20       

ARD 0.20 0.39 0.84 0.27       

Greenstriped S. elongates 
1% 

(0-2) 

𝐶𝑉 - 0.37 - 0.38  𝐶𝑉 0.79 0.38 0.39 0.38 

ρ - -0.08 - -0.11  ρ 0.08 0.03 0.00 0.01 

ARD - 0.15 - 0.16  ARD 0.17 0.08 0.05 0.07 

Yellowtail S. flavidus 
1% 

(0-2) 

𝐶𝑉 - 0.81 0.78 0.81       

ρ - 0.07 -0.84 -0.40       

ARD - 0.31 0.84 0.55       

Harlequin S. variegatus 
8% 

(5-14) 
0.092 0.87 

𝐶𝑉 0.49 0.29 - 0.29  𝐶𝑉 0.49 0.29 - 0.29 

ρ 0.13 -0.02 - -0.02  ρ 0.13 -0.02 - -0.02 

ARD 0.13 0.09 - 0.08  ARD 0.13 0.09 - 0.08 

Redstripe S. proriger 
3% 

(1-6) 
0.1 0.85 

𝐶𝑉 0.63 0.36 0.41 0.37  𝐶𝑉 0.63 0.36 0.41 0.37 

ρ 0.05 -0.12 -0.50 -0.15  ρ 0.05 -0.12 -0.50 -0.15 

ARD 0.12 0.16 0.50 0.15  ARD 0.12 0.16 0.50 0.15 

Sharpchin S. zacentrus 
7% 

(3-13) 

SC 

(0.060) 
0.92 

𝐶𝑉 0.50 0.30 0.31 0.30  𝐶𝑉 0.50 0.30 0.31 0.30 

ρ 0.03 -0.01 -0.01 -0.02  ρ 0.03 -0.01 -0.01 -0.02 

ARD 0.08 0.07 0.02 0.07  ARD 0.08 0.07 0.02 0.07 
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Table 4.2. Estimated total biomass, overfishing limit (OFL), and acceptable biological 

catch (ABC) in metric tons (mt) for the GOA region in 2019 for Tier 4 and 5 rockfish by 

model type (random effects [RE] and VAST models). Results are provided with and 

without yelloweye rockfish (YE) included in the Tier 5 total biomass and subsequent 

harvest recommendations (see text for more details). The ‘M=0.07’ signifies the average 

M value used as a proxy for FOFL and the associated FABC (FABC = 0.75 * M). The harvest 

recommendations with ‘M per grp’ indicates that each M for each M group or individual 

was used as a proxy for FOFL and associated FABC (FABC = 0.75 * M).  

Tier YE Model 

Total 

Biomass 
OFL  
M=0.07 

OFL  
M per grp 

ABC  
M=0.07 

ABC 
M per grp 

4 

 - RE 10,826  855  704 

 - VAST- RW 19,636  1,551  1,276 

 - VAST- free 19,995  1,580  1,300 

 - VAST- fixed 19,316  1,526  1,256 

5 

Individual 

 RE 56,318 3,942 3,950 2,957 2,963 

 VAST- RW 85,506 5,985 6,595 4,489 4,946 

 VAST- free 36,825 2,578 3,587 1,933 2,691 

 VAST- fixed 83,345 5,834 6,385 4,376 4,789 

 M Group 

 RE 59,862 4,190 4,192 3,143 3,144 

 VAST- RW 86,313 6,042 6,642 4,531 4,982 

 VAST- free 37,314 2,612 3,622 1,959 2,716 

 VAST- fixed 83,693 5,859 6,405 4,394 4,804 

Individual 

✓ RE 58,021 4,061 3,984 3,046 2,988 

✓ VAST- RW 88,255 6,178 6,650 4,633 4,987 

✓ VAST- free 39,705 2,779 3,645 2,085 2,734 

✓ VAST- fixed 86,098 6,027 6,440 4,520 4,830 

 M Group 

✓ RE 61,565 4,310 4,226 3,232 3,170 

✓ VAST- RW 89,063 6,234 6,697 4,676 5,023 

✓ VAST- free 40,194 2,814 3,679 2,110 2,759 

✓ VAST- fixed 86,446 6,051 6,460 4,538 4,845 
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4.7 Figures 

 

 
 

Fig. 1. Estimated biomass trends for each individual GOA Tier 4 and 5 rockfish species 

from each model type (line type and color for each model are provided in legend for the 

random effects [RE] and VAST models; observed survey catch values are represented by 

the grey shaded region and corresponding right-hand y-axis). 
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Fig. 4.2. Estimated biomass trends for each natural mortality (M) group of GOA Tier 4 

(Sharpchin; M= SC) and 5 rockfish from each model type (line type and color for each 

model are provided in legend random effects [RE] and VAST models; observed survey 

catch values are represented by the grey shaded region and corresponding right-hand y-

axis). 

 

  



 

174 
 

4.8 Appendices 

Appendix A. Random effects time series model 

The random effects model for estimating biomass in a time series was developed 

by the North Pacific Stock Assessment Working Group (SAWG, 2013) and recent 

updates to the model are found in Hulson et al. (2021). The estimated biomass, 𝐵̂𝑦, for 

year y, is estimated by: 

𝐵̂𝑦 = ∑ 𝑒 ϵ̂𝑟,𝑦𝑅 , 

where each region, r, is modeled separately and summed for the total estimated biomass. 

The random effects parameters, 𝜖𝑟̂,𝑦, for each region and year are estimated using two 

components, the process and observational errors, that are summed and minimized in the 

negative log-likelihood functions. 

 The process error, which accounts for the changes of biomass over time, follows a 

random-walk process, which is constrained by the estimated process error variance, 𝜎̂𝜖,𝑟
2 . 

The negative log-likelihood for the process error component, p, is: 

− ln 𝐿𝑝 =∑ ∑
1

2𝑅
ln(𝜋𝜎̂𝜖,𝑟

2 ) + (𝜖𝑟̂,𝑦 − 𝜖𝑟̂,𝑦−1)
2
/𝜎̂𝜖,𝑟

2
𝑌

𝑦=2
 

 The observational error, which accounts for the difference between the estimated 

and observed survey biomass (𝐵𝑟,𝑦), follows a log-normal distribution with the variance 

as the trawl survey biomass variance, 𝜎𝐵,𝑟,𝑦
2 . The negative log-likelihood for the 

observational error, o, is: 

− ln 𝐿𝑜 =∑ ∑
1

2
[ln(2𝜋𝜎𝐵,𝑟,𝑦

2 ) +
1

𝜎𝐵,𝑟,𝑦
2 (𝜖𝑟̂,𝑦 − ln𝐵𝑟,𝑦)

2
]

𝑅𝑌
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Appendix B. VAST temporal process 

Temporal process (𝛽), where the “φ” dictates the difference between the three VAST 

models, is as follows: 

𝛽∗(𝑡)~{
𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛽∗

2 )

𝑁𝑜𝑟𝑚𝑎𝑙(𝜙𝛽∗𝛽(𝑡 − 1), 𝜎𝛽∗
2 )
    
𝑖𝑓 𝑡 = 1
𝑖𝑓 𝑡 > 1

   . 

𝛽∗(𝑡) represents 𝛽1(𝑡) and 𝛽2(𝑡) for the first and second linear predictors and 𝜎𝛽∗
2  is the 

conditional covariance for the temporal component in the first (𝜎𝛽1
2 ) and second (𝜎𝛽2

2 ) 

linear predictors. Similarly, 𝜙𝛽∗
 is the coefficient in the autoregressive (AR) process in 

the temporal component for the first and second linear predictor. If 𝜙 = 1, the temporal 

process follows a random walk (VAST-RW). If 𝜙 is estimated freely, the temporal 

process follows an AR (1) process (VAST-free). If 𝜙 is fixed at a calculated value based 

on 𝐹𝑆𝑃𝑅, the temporal process also follows an AR (1) process, but 𝜙 is not estimated in 

the model.  



 

176 
 

4.9 Supplementary Material  

 

Supplementary Tables  

 

Table SM1. Starting input configuration for each VAST model. See Table SM3 for 

unique inputs for each model.  

 

Model VAST-RW VAST-free VAST-fixed 

No. knots 750 750 750 

Use 

anisotrophy 

TRUE TRUE TRUE 

ObsModel (2,1)= Poisson-link 

Gamma 

(2,1)= Poisson-link 

Gamma 

(2,1)= Poisson-link 

Gamma 

Overdispersion Eta1= 0, Eta2= 0 Eta1= 0, Eta2= 0 Eta1= 0, Eta2= 0 

Fine scale TRUE TRUE TRUE 

AR φ NA Free Species-specific 

Bias correct TRUE TRUE TRUE 

FieldConfig Beta1= “IID”, 

Beta2= “IID” 

Omega1=0, 

Omega2= 0 

Epsilon1= 0, 

Epsilon2= 0 

Beta1= “IID”, 

Beta2= “IID” 

Omega1=0, 

Omega2= 0 

Epsilon1= 0,  

Epsilon2= 0 

Beta1= “IID”, 

Beta2= “IID 

Omega1= 0 

Omega2= 0 

Epsilon1= 0, 

Epsilon2= 0 

RhoConfig Beta1= 2, Beta2= 2 

Epsilon1= 0, 

Epsilon2= 0 

Beta1= 2, Beta2= 4 

Epsilon1= 0, 

Epsilon2= 0 

Beta1= 2, Beta2= 4 

Epsilon1= 0, 

Epsilon2= 0 
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Table SM2. List of GOA rockfish species that have fishing mortality that corresponds to 

40% of the unfished spawning stock biomass (F40) estimated from spawner-per-recruit 

levels, M (natural mortality) values, year of the FSPR and M estimates, and source. 

 

Rockfish Year F40 M Source 

Dusky 2020 0.093 0.070 Fenske, K. H., Hulson, P.-J.F., Williams, B., and 

O’Leary, C.A.. 2020. Assessment of the dusky 

rockfish stock in the Gulf of Alaska. In Stock 

Assessment and Fishery Evaluation Report for 

the Groundfish Resources of the Gulf of Alaska, 

North Pacific Fishery Management Council, 605 

W 4th Ave, Suite 306. Anchorage, AK 99501. 

85pp. 

Northern 2020 0.061 0.059 Williams, B.C., Hulson, P.-J.F., Lunsford, C.R., 

and Cunningham, C.J. 2020. Assessment of the 

northern rockfish stock in the Gulf of Alaska. In 

Stock Assessment and Fishery Evaluation Report 

for the Groundfish Resources of the Gulf of 

Alaska, North Pacific Fishery Management 

Council, 605 W 4th Ave, Suite 306. Anchorage, 

AK 99501. 77pp. 
Pacific Ocean 

Perch 

2020 0.10 0.076 Hulson, P.-J.F., Lunsford, C.R., Fissel, B., and 

Jones, D. 2020. Assessment of the Pacific ocean 

perch stock in the Gulf of Alaska. In Stock 

Assessment and Fishery Evaluation Report for 

the Groundfish Resources of the Gulf of Alaska, 

North Pacific Fishery Management Council, 605 

W 4th Ave, Suite 306. Anchorage, AK 99501. 

79pp. 
Rougheye/ 

Blackspotted 

2019 0.04 0.036 Shotwell, S.K. and Hanselman, D.H. 2019. 

Assessment of the rougheye and blackspotted 

rockfish stock complex in the Gulf of Alaska. In 

Stock Assessment and Fishery Evaluation Report 

for the Groundfish Resources of the Gulf of 

Alaska, North Pacific Fishery Management 

Council, 605 W 4th Ave, Suite 306. Anchorage, 

AK 99501. 115pp. 
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Table SM3. VAST input settings for final converged VAST models for each species and 

species group  

 

Model 
Species/  

M Group 

Use 

aniso 

AR 

φ 
RhoConfig FieldConfig 

Con-

verg

ed 

VAST-

RW 
Silvergray T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
Darkblotched T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
Splitnose - - - - F 

VAST-

RW 
Greenstriped T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

RW 
Widow - - - - F 

VAST-

RW 
Yellowtail T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

RW 
Chilipepper - - - - 

F 

VAST-

RW 
Blackgill - - - - 

F 

VAST-

RW 
Vermilion - - - - 

F 

VAST-

RW 
Bocaccio - - - - 

F 

VAST-

RW 
Redstripe T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
Redbanded T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
Stripetail - - - - F 

VAST-

RW 
Harlequin T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

RW 
Pygmy T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

F 

VAST-

RW 
Yellowmouth - - - - 

F 

VAST-

RW 
Yelloweye T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
Sharpchin T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

free 
Silvergray T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
F 
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VAST-

free 
Darkblotched T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

free 
Splitnose - - - - 

F 

VAST-

free 
Greenstriped T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

F 

VAST-

free 
Widow - - - - 

F 

VAST-

free 
Yellowtail T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

free 
Chilipepper - - - - 

F 

VAST-

free 
Blackgill - - - - 

F 

VAST-

free 
Vermilion - - - - 

F 

VAST-

free 
Bocaccio - - - - 

F 

VAST-

free 
Redstripe T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

free 
Redbanded T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

F 

VAST-

free 
Stripetail - - - - 

F 

VAST-

free 
Harlequin T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

F 

VAST-

free 
Pygmy T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

F 

VAST-

free 
Yellowmouth - - - - F 

VAST-

free 
Yelloweye T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

free 
Sharpchin T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Silvergray T 

0.9

37 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Darkblotched T 

0.9

03 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Splitnose - - - - F 

VAST-

fixed 
Greenstriped T 

0.9

03 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

fixed 
Widow - - - - F 
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VAST-

fixed 
Yellowtail T 

0.9

03 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

fixed 
Chilipepper - - - - 

F 

VAST-

fixed 
Blackgill - - - - 

F 

VAST-

fixed 
Vermilion - - - - 

F 

VAST-

fixed 
Bocaccio - - - - 

F 

VAST-

fixed 
Redstripe T 

0.8

53 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Redbanded T 

0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Stripetail - - - - F 

VAST-

fixed 
Harlequin T 

0.8

67 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Pygmy F 

0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Yellowmouth T 

0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Yelloweye T 

0.9

87 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
Sharpchin T 

0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.1 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.092 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.07 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.06 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.05 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=0.02 T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

RW 
M=SC T RW 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 2, 

Epsilon1 = 0 , Epsilon2 = 0 

T 
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VAST-

free 
M=0.1 T free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

free 
M=0.092 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
F 

VAST-

free 
M=0.07 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
T 

VAST-

free 
M=0.06 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
F 

VAST-

free 
M=0.05 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 
F 

VAST-

free 
M=0.02 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

free 
M=SC 

T 

free 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.1 

T 
0.8

53 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.092 

T 
0.8

67 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.07 

T 
0.9

03 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.06 

T 
0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.05 

T 
0.9

37 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=0.02 

T 
0.9

87 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=SC 

T 
0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 0, 

Epsilon1 = 0 , Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Epsilon1 = 0 , Epsilon2 = 0 

T 

VAST-

fixed 
M=SC 

T 

0.9

2 

Beta1 = IID, Beta2 = IID, 

Omega1 = 0 , Omega2 = 

IID, Epsilon1 = 0 , 

Epsilon2 = 0 

Beta1 = 2 , Beta2 = 4, 

Omega1 = 0 , Omega2 = 0 

T 
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Table SM4. VAST model fixed parameter estimates 

 
VAST 

model Group 

Con-

verged 

Beta_ 

mean1_c 

L_ 

beta1_z 

Beta_ 

mean2_c 

L_ 

beta2_z 

Beta_ 

rho2_f 

Log 

SigmaM 

RW Silvergray T 0.265 0.297 2.268 0.647 NA 0.458 

RW Darkblotched T -2.789 -0.262 0.222 0.596 NA 0.19 

RW Splitnose F NA NA NA NA NA NA 

RW Greenstriped T -2.482 -0.314 0.05 0.163 NA 0.087 

RW Widow F NA NA NA NA NA NA 

RW Yellowtail T -1.825 0.513 2.088 0.634 NA 0.322 

RW Chilipepper F NA NA NA NA NA NA 

RW Blackgill F NA NA NA NA NA NA 

RW Vermilion F NA NA NA NA NA NA 

RW Bocaccio F NA NA NA NA NA NA 

RW Redstripe T -0.267 0.231 3.02 0.333 NA 0.611 

RW Redbanded T 0.767 0.196 1.152 -0.116 NA 0.252 

RW Stripetail F NA NA NA NA NA NA 

RW Harlequin T 0.397 0.159 1.872 0.731 NA 0.658 

RW Pygmy F NA NA NA NA NA NA 

RW Yellowmouth F NA NA NA NA NA NA 

RW Yelloweye T -1.082 -0.14 1.906 0.1 NA -0.083 

RW Sharpchin T 0.411 0.296 2.659 0.579 NA 0.671 

free Silvergray F NA NA NA NA NA NA 

free Darkblotched T -2.788 0.262 0.906 0.783 0.296 0.186 

free Splitnose F NA NA NA NA NA NA 

free Greenstriped F NA NA NA NA NA NA 

free Widow F NA NA NA NA NA NA 

free Yellowtail T -1.826 0.513 2.706 0.874 0.155 0.305 

free Chilipepper F NA NA NA NA NA NA 

free Blackgill F NA NA NA NA NA NA 

free Vermilion F NA NA NA NA NA NA 

free Bocaccio F NA NA NA NA NA NA 

free Redstripe T -0.267 -0.231 3.845 0.529 0.261 0.61 

free Redbanded F NA NA NA NA NA NA 

free Stripetail F NA NA NA NA NA NA 

free Harlequin F NA NA NA NA NA NA 

free Pygmy F NA NA NA NA NA NA 

free Yellowmouth F NA NA NA NA NA NA 

free Yelloweye T -1.082 -0.14 1.87 0.145 0.646 -0.086 

free Sharpchin T 0.411 0.296 3.354 0.674 0.335 0.671 

fixed Silvergray T 0.414 -0.319 2.47 0.649 NA 0.458 

fixed Darkblotched T -2.789 -0.262 0.51 0.596 NA 0.19 

fixed Splitnose F NA NA NA NA NA NA 

fixed Greenstriped T -2.483 0.314 0.711 0.204 NA 0.092 

fixed Widow F NA NA NA NA NA NA 

fixed Yellowtail T -1.825 0.513 2.303 0.654 NA 0.317 

fixed Chilipepper F NA NA NA NA NA NA 

fixed Blackgill F NA NA NA NA NA NA 

fixed Vermilion F NA NA NA NA NA NA 

fixed Bocaccio F NA NA NA NA NA NA 

fixed Redstripe T -0.268 0.231 3.539 0.366 NA 0.611 

fixed Redbanded T 0.766 0.196 1.255 0.142 NA 0.251 

fixed Stripetail F NA NA NA NA NA NA 

fixed Harlequin T 0.397 -0.159 2.247 0.707 NA 0.658 

fixed Pygmy T -3.917 0.607 0.278 0 NA 0.417 
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fixed Yellowmouth T -1.922 0 1.934 0.612 NA 0.389 

fixed Yelloweye T -1.082 -0.14 1.904 0.101 NA -0.083 

fixed Sharpchin T 0.41 -0.296 2.858 0.57 NA 0.671 

RW M=0.1 T -0.267 0.231 3.02 0.333 NA 0.611 

RW M=0.092 T 0.397 0.159 1.872 0.731 NA 0.658 

RW M=0.07 T -1.284 0.303 1.58 0.556 NA 0.328 

RW M=0.06 T 0.855 0.206 1.284 0.199 NA 0.317 

RW M=0.05 T 0.265 0.303 2.268 0.651 NA 0.458 

RW M=0.02 T -1.082 -0.14 1.906 0.1 NA -0.083 

RW M=SC T 0.411 0.296 2.659 0.579 NA 0.671 

free M=0.1 T -0.267 -0.231 3.845 0.529 0.261 0.61 

free M=0.092 F NA NA NA NA NA NA 

free M=0.07 T -1.284 0.303 1.716 0.604 0.666 0.328 

free M=0.06 F NA NA NA NA NA NA 

free M=0.05 F NA NA NA NA NA NA 

free M=0.02 T -1.082 -0.14 1.87 0.145 0.646 -0.086 

free M=SC T 0.411 0.296 3.354 0.674 0.335 0.671 

fixed M=0.1 T -0.268 0.231 3.539 0.366 NA 0.611 

fixed M=0.092 T 0.397 -0.159 2.247 0.707 NA 0.658 

fixed M=0.07 T -1.284 0.303 1.65 0.546 NA 0.328 

fixed M=0.06 T 0.854 0.206 1.379 0.211 NA 0.317 

fixed M=0.05 T 0.417 0.325 2.469 0.652 NA 0.458 

fixed M=0.02 T -1.082 -0.14 1.904 0.101 NA -0.083 

fixed M=SC T 0.41 -0.296 2.858 0.57 NA 0.671 
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Supplementary Figures 

 

 
Fig. SM1. Raw total biomass (metric tons, mt) caught in the NMFS bottom trawl survey 

for each species. 
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Fig. SM2. Raw total biomass (metric tons, mt) caught in the NMFS bottom trawl survey 

for each species natural mortality (M) group. 
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Fig. SM3a. Q-Q plots and AIC values for individual species VAST-RW models from the 

base 2019 models. 

 

 
Fig. SM3b. Q-Q plots and AIC values for individual species VAST-free models from the 

base 2019 models. 
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Fig. SM3c. Q-Q plots and AIC values for individual species VAST- fixed models from 

the base 2019 models. 

 

 
Fig. SM3d. Q-Q plots and AIC values for M group VAST- RW models from the base 

2019 models. 
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Fig. SM3e. Q-Q plots and AIC values for M group VAST- RW models from the base 

2019 models. 

 

 

 
Fig. SM3f. Q-Q plots and AIC values for M group VAST- fixed models from the base 

2019 models. 
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Fig. SM4a. Biomass estimates (in 1000 metric tons, mt) from each model (random 

effects [RE], VAST-fixed, VAST-free, and VAST-RW) and individuals, darkblotched, 

silvergray, splitnose, and widow, showing the retrospective pattern. 
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Fig. SM4b. Biomass estimates (in 1000 metric tons, mt) from each model (random 

effects [RE], VAST-fixed, VAST-free, and VAST-RW) and individuals, harlequin, 

redbanded, redstripe, and yellowtail, showing the retrospective pattern. 
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Fig. SM4c. Biomass estimates (in 1000 metric tons) from each model (random effects 

[RE], VAST-fixed, VAST-free, and VAST-RW) and individuals, greenstriped, pygmy, 

sharpchin, yelloweye, and yellowmouth, showing the retrospective pattern. 
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Fig. SM4d. Biomass estimates (in 1000 metric tons, mt) from each model (random 

effects [RE], VAST-fixed, VAST-free, and VAST-RW) and M groups, M= 0.6, M= 0.07, 

M= 0.092, and M= 0.1, showing the retrospective pattern. 
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Fig. SM4e. Biomass estimates (in 1000 metric tons, mt) from each model (random 

effects [RE], VAST-fixed, VAST-free, and VAST-RW) and M groups, M= 0.02, M= 

0.05, and M= SC, showing the retrospective pattern. 

 



194 
 

CHAPTER 5 

 

Conclusions 
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The role of stock assessment scientists is to provide the best estimate of 

sustainable harvest levels possible given the data constraints of the species being assessed 

and managed.  However, for species with limited data or that are not directly targeted, 

scientists must make recommendations to stakeholders and managers based on limited 

information. Despite the large number of data-limited stocks worldwide, relatively few 

analytical methods exist to assign species to complexes and also provide direct 

management advice. Thus, the development of new approaches that can help fisheries 

managers make informed decisions on how to best harvest a species complex can be 

useful for a variety of management situations globally. The methodology developed in 

this dissertation provides tangible steps towards a robust and integrated framework for 

identifying species complexes and providing direct management advice.  

 

5.1 Development of Novel Methodology for Grouping and Assessing Species 

Complexes  

Because species are often managed as a complex due to limited data being 

available or reduced economic value compared to target species, the process of assigning 

species to complexes is oftentimes not treated as thoroughly as a full stock assessment. 

Typically, a productivity-susceptibility analysis (PSA; Patrick et al., 2010; Hordyk and 

Carruthers, 2018) or expert judgement provides a preliminary determination of species 

assignment, but such assignments should be verified using more thorough analytical 

approaches. The methodology developed here demonstrates how a variety of multivariate 

techniques can be combined with species distribution models to provide a more thorough 

and holistic determination of appropriate species complex groupings compared to using 
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only a single analytical or qualitative approach. The explicit demonstration of the 

importance of using and comparing a variety of species assignment methods, which can 

help to better elucidate patterns of association that may not be obvious from a single 

methodology (e.g., looking only at life history characteristics or spatio-temporal patterns 

in abundance), is, perhaps, the most valuable contribution of the current research. Using 

both broad-scale (low spatial resolution) and fine-scale (high spatial resolution) methods 

and incorporating multiple datasets provides a well-rounded assessment on the spatial 

overlap and fishery susceptibility similarities (or dissimilarities) among species. But, 

determining the important factors (e.g., gear type, life history characteristics, and habitat 

preferences) that can be used to group species can be difficult, especially for rare species. 

In such instances, spatio-temporal overlap of species may be a useful indicator of species 

that may warrant grouping into a complex, because species that share common 

distributions often encounter similar biotic, abiotic, and anthropogenic perturbations; 

although this is not often considered when defining species complexes. Thus, the 

inclusion of spatio-temporal models into the species complex analytical toolbox can be 

valuable. 

A significant advancement for assigning and assessing species within complexes 

demonstrated by this study was the application of the spatio-temporal model, ‘VAST’, to 

the Gulf of Alaska (GOA) rockfish complex. This work represents one of the first 

applications of a species distribution model for the purpose of managing species 

complexes. There are multiple benefits associated with the application of VAST for 

species complexes, which include identifying spatiotemporal patterns in abundance that 

can be used to group species with common patterns, validating or comparing groupings 
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from existing or alternate species assignment approaches, and, ultimately, providing 

target harvest levels and management advice based on direct biomass estimates (e.g., 

when fitting to survey abundance data). Thus, the use of spatiotemporal models when 

developing and assessing species complexes provides a single integrated framework that 

provides species groupings as well as harvest advice, which can reduce the burden (i.e., 

need to utilize multiple models to assign then assess species complexes, as is currently 

required for the GOA Other rockfish complex) on scientists tasked with assessing and 

managing complexes. 

A common problem for development of species complexes is how to treat species 

with high prevalence (i.e., frequently caught in all gear types in all spatial areas) along 

with rare species. In the case of species with wide spatial occupancy, spurious 

correlations can result with other species, simply because they overlap with less 

frequently observed species. Similarly, rare species may be difficult to assign to a 

complex, because infrequent observation may prevent identification of overlap with any 

other species. Although increased data collection, use of novel data (e.g., eDNA), and 

better emphasis on accurate species identification are always advisable for data-poor 

species, especially rare species, increased expenditures to improve data collection for 

these species is not always realistic. Thus, it is important to utilize as many species 

assignment approaches as possible to ensure consistency, especially for both ubiquitous 

and rarely observed species, then carefully analyze results across analytical approaches or 

data sources to determine why complex assignments may have differed. After complexes 

are identified, researching and testing potential assessment models and harvest control 

rules is the next critical step for providing catch advice. A variety of models should be 
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examined that maximize the data available for the species complex. Each assessment 

model has assumptions and caveats that should be explored to determine its robustness 

and reliability for determining the stock status of a given species complex. While data 

limitations can hinder the selection of models, applying models that use the full extent of 

the available data is important. Once again, the VAST framework can be a useful tool for 

determining biomass based on survey abundance data, which can then be directly used to 

set catch advice. Although not the only approach available for estimating the biomass of 

a species complex, the spatio-temporal modeling framework utilized in VAST is flexible 

and can be adapted to incorporate a variety of data types (e.g., both fishery-dependent 

and independent data and habitat covariates). Additionally, as noted previously and 

demonstrated by the current research, VAST can be used as a single, integrated modeling 

framework that can determine appropriate species complex groupings (Chapter 3) then be 

subsequently applied to determine biomass estimates and sustainable catch limits 

(Chapter 4). 

Species are commonly grouped into a complex to reduce administrative or 

personnel burden when management advice is required for a large number of data-limited 

and non-target species. The methodology developed here for the GOA Other Rockfish 

complex provides a novel approach to assign and assess species complexes by thoroughly 

analyzing existing data using multiple analytical approaches. Although the specific 

analytical techniques that can be utilized will be context specific (i.e., mainly depending 

on the available data), the general approach can easily be adapted and should be more 

widely considered for other species complexes around the world. By using a wider array 

of clustering methods, more robust species groupings can be developed and 
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inconsistencies among methods can provide insight into which species may require more 

careful monitoring. In particular, it is highly recommended that species distribution 

models be more widely applied to identify species groupings based on consistent spatio-

temporal patterns in abundance and to provide direct harvest advice from a single 

framework. Despite species groupings for GOA rockfish being similar across the 

methods utilized in this research (i.e., multivariate techniques and spatio-temporal 

models), it is not expected that this will be a common result for other species complexes. 

Additionally, the VAST models provided important insight into spatio-temporal patterns 

of abundance and appropriate harvest levels that could not otherwise be obtained from 

traditional multivariate grouping methods. Therefore, implementing spatio-temporal 

models when there is sufficient data represents an important advancement in the analysis 

of species complexes that can be widely utilized to improve management for non-target 

species worldwide.  

 

5.2 Improving Species Complex Assignment for Gulf of Alaska Rockfish 

 The assessment and management of the GOA Other Rockfish complex evolves as 

new data and research are incorporated into the stock assessment process. Due to their 

low productivity and high vulnerability to overfishing (Ormeth and Spencer, 2011), the 

species belonging to the Other Rockfish complex require careful management that 

assimilates the array of data and analytical techniques available. The focus of this 

dissertation was to determine whether the species assignments to the Other Rockfish 

complex, which includes a subset of species that belong to the Demersal Shelf Rockfish 

complex in all but one management area in the GOA, were appropriate based on 
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development and application of new analytical techniques. Through the application of a 

variety of multivariate methods (Chapter 2) and fine-scale species distribution models 

(Chapter 3), this research demonstrated that the Other Rockfish complex species 

assignments were generally robust, but minor adjustments may be warranted to ensure 

sustainable management of each species. For instance, results suggest that the species 

comprising the Demersal Shelf Rockfish Complex should be separated from the Other 

Rockfish complex in all GOA management areas. Although the range of life history 

characteristics (e.g., maximum age and length at maturity) along with variation in survey 

biomass and fisheries catch make it challenging to manage the Other Rockfish complex, 

consistent patterns in species groupings across analytical approaches and data sources 

suggest that these species can likely be adequately managed as a single complex.  

However, as is often the case when comparing species groupings across different 

data sources and methods, species assignments were not always consistent. While the 

application of multivariate methods on each fine-scale fisheries and survey catch datasets 

separately did not yield usable (i.e., stable or meaningful) results, analysis of the 

aggregated (i.e., combined into a single dataset by year, management sub-area, and gear 

type) dataset indicated that the species composition was different for each gear type. The 

combined method also allowed direct comparison of species groupings from the fishery 

versus survey data across gear types (i.e., trawl compared to longline gear). Here, the 

results demonstrated that the species composition from the trawl survey was similar to 

the species composition from the trawl fishery (i.e., non-pelagic trawl) in the GOA, 

whereas the species composition from the longline survey did not always represent the 

species composition in the longline fisheries (i.e., longline and jig). These results 
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demonstrated that the application of multiple multivariate analyses on multiple datasets is 

very important to capture relationships of all species in the complex. In comparison, the 

fine-scale species distribution model (i.e., spatio-temporal species distribution model; 

Chapter 3) was only applied to the trawl survey data, where the subset of rockfish from 

the Other Rockfish complex that were included in the analysis demonstrated spatial 

structure, but little temporal correlation. Based on the species distribution models, the 

spatial patterns among species that emerged were similar to those found using the 

multivariate approaches in Chapter 2, but there were no strong temporal relationships 

among species. 

Although each approach provided interesting and slightly different insights into 

species groupings, the results were influenced by data availability. Thus, the species 

compositions and identified relationships between species were confined to those 

rockfish in the Other Rockfish complex that were most frequently caught. As with any 

data limited species, the ability to manage the Other Rockfish complex would be greatly 

enhanced by improved or increased data collection. Fortunately, species identification for 

the species belonging to the complex is not an issue, but little data are collected 

otherwise. Increased collection of length (or even age) composition data for these species 

would aid in developing improved life history characteristics, which are not well known 

for many of these species. 

Results from Chapter 2 and Chapter 3 suggest that assignments to the Other 

Rockfish and Demersal Shelf Rockfish are appropriate, but the species comprising the 

Demersal Shelf Rockfish Complex should be separated from the Other Rockfish complex 

in all GOA management areas. The species in the Demersal Shelf Rockfish complex are 



 

202 
 

caught by different gears and occupy different habitats throughout the GOA. In the case 

of GOA Other Rockfish, yelloweye rockfish provides an interesting example of a 

ubiquitous species that has important influence on species assignments between the Other 

Rockfish and Demersal Shelf rockfish complexes. Currently yelloweye is assigned to the 

Demersal Shelf Rockfish complex, constituting the majority of the catch for the Demersal 

Shelf Rockfish group, but it is caught in all gear types and is distributed Gulf-wide 

(Tribuzio and Echave, 2019). Conversely, canary and yellowtail, both infrequently 

caught, consistently grouped together in all analyses, despite being assigned to separate 

complexes for the GOA management area 650. Based on the combined results of the 

variety of analytical species assignment methods (i.e., based on groupings using life 

history characteristics, harvest levels, and spatiotemporal patterns in abundance), 

yellowtail rockfish could either be considered for reassignment (i.e., move to the 

Demersal Shelf Rockfish complex) or remain in the Other Rockfish complex, but it 

should be closely monitored due to its strong association with canary. The difficulties 

associated with assigning a species, such as yelloweye and yellowtail, to a complex 

demonstrates how species complex assignment is an ever-evolving process that warrants 

periodic reevaluation as new data and new methodology become available. Much like the 

application of traditional stock assessment models, species complex assignments should 

be reanalyzed every few years and not treated as long-term static decisions.   

The spatio-temporal VAST model proved to be a useful alternative assessment 

approach for the Other Rockfish complex (Chapter 4), but harvest recommendations 

differed moderately depending on the assessment model used (i.e., VAST versus the 

currently utilized random effects model) and whether species were modeled individually 
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or grouped by natural mortality levels (M groups). The comparison across assessment 

approaches undertaken in Chapter 4 suggested that the Other Rockfish complex should 

continue to be assessed by grouping species with similar M values (i.e., utilizing M 

groups). The grouped assessment approach incorporates the full extent of survey biomass 

data and allows incorporation of species that would otherwise go unassessed into the total 

catch advice for similar species groups, given that many of the Other Rockfish species do 

not have sufficient data for individual species assessments. Likewise, calculating catch 

limits based on M groups, where the average M values were calculated across fewer 

species with more consistent life history characteristics compared to a single average M 

value for the entire complex (i.e., as is currently assumed in the random effects GOA 

Other Rockfish management advice), was deemed more practical. It is expected that 

using multiple M groupings in which species maintain consistent natural mortality rates 

better reflects the population dynamics of individual species, thus providing a more 

accurate estimate of fishable biomass for the complex as a whole and more appropriate 

catch targets.  

The species being considered for inclusion in the Other Rockfish complex present 

challenges for identifying relationships among species that can be used to develop 

appropriate groupings and, ultimately, provide sustainable management advice. These 

non-target rockfish in the GOA occupy a range of habitat types and demonstrate a variety 

of behaviors and life history characteristics (Johnson et al., 2003; Conrath et al., 2019). 

Although the range of analyses presented attempted to utilize the full extent of available 

fishery and fishery-independent data covering the variety of habitat types and spatial 

areas occupied by these species, there were many species that could not be included in 
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various analyses because insufficient data was available. Moving forward, the Other 

Rockfish assessment can potentially be improved if other fishery-independent survey data 

aside from the trawl survey are included in the model. Unfortunately, the trawl survey 

only covers low relief, trawlable habitat, whereas the longline surveys (e.g., NOAA 

longline survey and the International Pacific Halibut Commission longline survey) cover 

untrawlable habitat and would provide increased spatial coverage. The flexible, 

integrated nature of the VAST framework allows incorporation of a variety of data 

sources, and longline data could be incorporated into the assessment models developed 

here, thereby providing more comprehensive data inputs that could be particularly useful 

for rare species that could not be included in the models developed in the current 

analyses. Additionally, other alternative surveys, such as using automated underwater 

vehicles (AUV), could also help fill in spatio-temporal data gaps for the Other Rockfish 

complex.  

 

5.3 The Future of Species Complexes  

Species will continue to be managed as complexes due to the number of data-

limited species that either do not have sufficient data for single-species assessments, have 

species identification issues, or simply due to personnel or funding limitations that 

necessitate reducing the number of single species assessments being conducted by a 

given institution (Koutsidi et al., 2016). However, the management of a complex is only 

as good as the information used to define the groupings (Fujita et al., 1998). The species 

within a complex should be periodically monitored to ensure species-specific populations 

are not declining due to mis-specified species membership. Additionally, as fish 
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populations move poleward or to different areas (e.g., deeper waters) due to shifts in 

climatic conditions (e.g., Perry et al., 2005; Pinsky et al., 2013), species assignment to 

complexes and the assessment of the complexes must be carefully monitored and refined 

based on the most current information available. Incorporating new or unused data sets 

(e.g., life history characteristics along with a variety of fishery-dependent and 

independent data) will be vital to identifying changes in abundance and distributions for 

species complexes as well as the appropriateness of species groupings given differential 

responses to ecological and environmental perturbations.  

It is also important to consider that directed fishery species can be impacted by 

the catch limits set for non-target species complexes. Setting low quotas for non-target 

species can lead to these species becoming “choke” species that may impede obtaining 

the full quota for the target species (Schrope, 2010; Batsleer et al., 2015). While setting 

catch advice for species complexes should not be influenced by catch levels for target 

species (i.e., the goal should be sustainable catch levels for all species), incorporating 

socioeconomic considerations into harvest control rules for non-target species complexes 

can help provide a different management strategy and bridge the goals of sustainable 

yields with maximizing economic return. 

The methodology outlined here, wherein a variety of multivariate and 

spatiotemporal models were utilized to determine species groupings and then VAST 

models were used to estimate group biomass, represents a tangible step forward in 

understanding the dynamics of species complexes despite the limited data available. The 

flexibility of spatiotemporal models, such as VAST, to incorporate myriad datasets, while 

also providing descriptions of spatiotemporal changes or overlap (i.e., when comparing 
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across species) in distribution, will be useful for many situations worldwide where 

managing species complexes is necessitated by the preponderance of data limited and 

nontarget species. As national and international legislation continues to urge quantitative 

catch advice for all species caught in commercial fisheries, including non-target species, 

the need to define, implement, assess, and manage species complexes will only expand. 

The methodology and research presented here provides a useful framework that can be 

easily adapted to assign species to groups, while also providing direct management 

advice. Although the tools and data utilized to manage species complexes will necessarily 

expand and be refined, the methods developed here should provide a useful baseline 

framework to use for researchers endeavoring to define new species complexes or test the 

robustness of current species complex delineations.  
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