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ABSTRACT

To protect and manage ecosystems over large spatial scales, repeated mapping with
remote sensing, such as aerial photography, is valuable, but several potential problems need
to be overcome to generate accurate maps. For instance, to monitor submerged aquatic
vegetation (SAV), such as seagrass, satellite imagery must often capture seasonal and inter-
annual variation as well as disturbances. We used a model system, SAV and the blue
crab Callinectes sapidus in the lower Chesapeake Bay, to examine (i) if Planet Lab (PL)
satellite imagery can be used to accurately estimate SAV coverage by comparing PL images
coincident with those of the VIMS SAV survey; (ii) if PL imagery can capture seasonal and
episodic changes in SAV accurately; and (iii) if PL and VIMS SAV survey imagery can be
integrated to assess the relationship between SAV nursery habitat and recruitment of young
juvenile blue crabs in mid-summer through early fall. To do so, we analyzed data from six
selected sites with high salinity in lower Chesapeake Bay. Our findings were (i) PL satellite
imagery was a suitable surrogate for VIMS aerial surveys of SAV conducted annually at the
selected sites, with the caveat that PL imagery is at a lower resolution (3 m) than the VIMS
SAV survey (24 cm), which could affect the utility of PL imagery for some goals; (ii) PL
imagery was able to capture seasonal and episodic changes in SAV cover in the Bay; and
(iii) remote sensing imagery taken in late spring and early summer was not representative of
SAV cover available to the blue crab during the recruitment period in mid-summer through
fall. Consequently, PL imagery can be used to estimate SAV bed area over time scales that
are relevant to recruitment of the blue crab in lower Chesapeake Bay.

Understanding SAV dynamics and future effects of climate change on SAV can be im-
proved with broad-scale data from remote sensing techniques, such as aerial photography
and satellite imagery. However, new platforms such as Planet Lab can provide accurate spa-
tial and temporal distribution patterns for SAV beds relative to abundance of the blue crab
during critical phases in its life history. At two locations in the York River, lower Chesa-
peake Bay, we conducted a mensurative field experiment by sampling percent cover of SAV
(eelgrass Zostera marina, widgeon grass Ruppia maritima) and algae (mostly Gracilaria
vermiculophylla), density of blue crab juveniles, bed area by Planet Lab, and select inde-
pendent variables bimonthly over two years. The main findings were: (i) juvenile blue crab
density was inversely related to SAV bed area, but reductions in crab density as bed area
increased were more than offset by higher total abundance of crabs as bed area enlarged;
(ii) crab density was positively related to percent cover of algae (Gracilaria), Ruppia and
Zostera; (iii) location, year, season and water depth were not significant predictors of crab
density in SAV beds after accounting for the effects of bed area and SAV percent cover;
and (iv) potential loss of Zostera in the lower Chesapeake Bay due to global warming was
projected to cause either only a modest reduction in crab density if other SAV species do
not compensate and bed area remains constant, or crab density could even increase if algae
and Ruppia were to compensate for the loss of Zostera.

vii



Satellites, Seagrass, and Blue Crabs: Understanding Inter-Annual Fluctuations and
Linkages in the York River



CHAPTER 1

USING SATELLITE IMAGERY TO TRACK CHANGES IN SUBMERGED

AQUATIC VEGETATION WITHIN A COASTAL TEMPERATE ESTUARY

1.1 Introduction

Remote sensing techniques are more cost effective than field methods for surveying large

areas (Mumby et al., 1999). One technique, aerial photography, has long been used to

survey seagrass beds due to its high resolution, serving as a baseline for management efforts

(Mumby et al., 1997; Ferwerda et al., 2007). The use of satellite imagery has gradually

expanded to complement aerial photography (Dekker et al., 2006). When comparing maps

from satellite imagery to those from aerial surveys, typically on the distribution and changes

in extent of seagrass beds, there are few differences (Mumby et al., 1997; Howari et al.,

2009; Roelfsema et al., 2009; Lyons et al., 2011; Meyer and Pu, 2012; Lathrop et al.,

2014). One of the first satellites used was the Landsat Thematic Mapper (TM) with a spatial

resolution of 30 m (Ferguson and Korfmacher, 1997; Roelfsema et al., 2009; Yang and

Yang, 2009; Pu et al., 2010; Meyer and Pu, 2012). Using the Landsat TM, the presence or

absence of seagrass and seagrass extent in St. Joseph Sound and Clearwater Harbor, Florida

(USA), were determined with equivalent accuracy (71%) as aerial photointerpretation maps

(Meyer and Pu, 2012). In coastal lagoons of North Carolina (USA), Landsat TM had

an agreement as high as 73% with aerial images (Ferguson and Korfmacher, 1997). In

general, coarse-detail mapping with satellite imagery is about 70% accurate, while fine-

detail mapping is lower at about 40% (Mumby et al., 1999); nonetheless, satellite images

have been useful in the determination of spatial and temporal dynamics of seagrass beds

over large areas (Koedsin et al., 2016).

As technology has improved, satellites with higher spatial resolution than the Landsat
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TM have been used. For instance, satellites such as the China Brazil Earth Resources

Satellite and the Systeme Probatoire de l’Observation de la Terre (SPOT) with improved

resolution at 20 m were used to detect seagrass (Mumby et al., 1997; Yang and Yang,

2009). The QuickBird and IKONOS satellites with 4-m spatial resolution further enhanced

the utility of satellite images to map seagrass at even finer scales (Yang and Yang, 2009; Pu

et al., 2010).

More recently, emphasis has shifted from simply mapping seagrass beds with satellite

imagery to examining how seagrass distribution changes through time, with the Landsat

TM images at low spatial resolution to the SPOT, IKONOS, and QuickBird images at high

resolution (Dekker et al., 2005; Gullström et al., 2006; Barillé et al., 2010; Howari et al.,

2009; Lyons et al., 2011, 2013). These studies have been able to determine if seagrass

extent is declining (Dekker et al., 2005), increasing (Barillé et al., 2010; Howari et al.,

2009), or remaining stable (Gullström et al., 2006; Lyons et al., 2011, 2013), which has

been supported with complementary field observations (Howari et al., 2009; Lyons et al.,

2011).

To protect and manage ecosystems, often over large spatial scales, repeated mapping

with remote sensing can be a useful management tool since managers can track changes in

the ecosystem over time (Mumby et al., 1999; Gullström et al., 2006). However, several

potential problems need to be overcome to generate accurate maps (Roelfsema et al., 2013).

To monitor submerged aquatic vegetation (SAV), such as seagrass, satellite imagery must

capture seasonal variation and disturbance events, which requires a high image frequency

on the order of hours to weeks (Roelfsema et al., 2013; Muller-Karger et al., 2018). Some-

times a given set of imagery may not be available for a particular time scale or time of year

for a specific goal. For example, in Chesapeake Bay the blue crab recruits to SAV during

mid-summer and early fall (Lipcius et al., 2007), a period not typically assessed by annual

aerial surveys in the region (Orth and Moore, 1986). To understand the influence of SAV

upon blue crab recruitment, remote sensing surveys of SAV would need to be undertaken
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during that time period. Therefore, it may be necessary to combine data from different

sources of imagery to determine the extent of SAV cover during periods when blue crabs

recruit to their juvenile habitat. The overall goal of this study was to use a model system

to investigate how newly available sources of imagery can be used to generate time series

of SAV beds such as seagrass to investigate seasonal changes in cover over large spatial

scales.

1.2 Model system: SAV and blue crab (Callinectes sapidus) in Chesapeake Bay

In Chesapeake Bay, the SAV Program at the Virginia Institute of Marine Science (VIMS)

has conducted an aerial survey from May to October of each year for nearly four decades

(Orth et al., 2017a,b, 2018). From May to July, the survey focuses on the lower Chesa-

peake Bay polyhaline and mesohaline SAV beds, and on the upper bay and its lower salin-

ity tributaries from August to October (R. Orth, personal communication). Its goal is to

determine the distribution of SAV beds within the bay system and inform ongoing restora-

tion and management efforts directed at SAV species. When processing the aerial imagery,

the VIMS SAV survey must account for tides, SAV growth stage and type (e.g. seagrass,

macroalgae), water clarity, wind conditions, and cloud cover. The images are then used to

create a comprehensive map with 24-cm resolution to assess inter-annual changes in SAV

cover (Orth et al., 2017b, 2018).

The blue crab recruitment period spans July through November (mid-summer through

fall) when young juveniles use the SAV beds in the lower Chesapeake Bay as nursery habi-

tat (van Montfrans et al., 1990; Lipcius et al., 2007). Structured habitats such as seagrass

and algal beds provide food and protection from predators for juvenile blue crabs and many

other estuarine species (Heck and Thoman, 1984; Orth and van Montfrans, 1987; van Mont-

frans et al., 1990; Pardieck et al., 1999; Lipcius et al., 2005, 2007; Seitz et al., 2005, 2008;

Johnston and Lipcius, 2012; Bromilow and Lipcius, 2017), as do other coastal habitats (i.e.

oyster beds, salt marshes) for a range of fish and invertebrates (Barbier et al., 2011; Seitz
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et al., 2014; Vasconcelos et al., 2014). Hence, analysis of aerial or satellite imagery of

SAV beds over time relative to abundance of juvenile blue crabs may reveal the association

between extent of nursery habitats, blue crab abundance, and ecosystem services (Ander-

son, 1989; Lefcheck et al., 2019). However, the VIMS SAV survey only focuses on SAV

beds in high salinity regions within the lower Chesapeake Bay once per year, from May to

July, and thus may not represent the available nursery habitat for juvenile blue crabs due to

episodic disturbances and seasonal changes (Orth and Moore, 1986). In contrast, satellite

imagery from Planet Lab, which has a large fleet of satellites (Planet Team, 2019), is taken

throughout the year on a semi-weekly basis, potentially allowing the capture of monthly

changes in cover, episodic events, and seasonal alterations.

The specific objectives of this study were to determine (i) if Planet Lab (PL) satellite

imagery can be used to accurately estimate SAV coverage by comparing PL images coin-

cident with those of the VIMS SAV survey; (ii) if PL imagery can capture seasonal and

episodic changes in SAV accurately; and (iii) if PL and VIMS SAV survey imagery can be

integrated to assess the relationship between SAV nursery habitat and recruitment of young

juvenile blue crabs in mid-summer through early fall. These were accomplished by quanti-

fying SAV cover using 2017 and 2018 PL imagery in tandem with aerial photographs from

the VIMS SAV survey.

1.3 Methods

1.3.1 Field sites

Field sites were in the mainstem of the lower Chesapeake Bay and the York River (Fig-

ures 1.1 and 1.2). The lower bay sites corresponded to VIMS Juvenile Blue Crab Survey

locations: Dameron Marsh, Occahanock, Pocomoke, and Poquoson (Figure 1.1). This

survey runs from May through July each year, corresponding to peak SAV biomass, and

supplements the Blue Crab Winter Dredge Survey (Sharov et al., 2003; Virginia Institute

of Marine Science, 2018) by sampling shallow water sites. The York River sites were Al-
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lens Island and the Goodwin Islands, selected as representative of a mixed bed of seagrass

species and a mixed bed of algal and seagrass species, respectively (Figure 1.2). Allens

Island consisted predominantly of seagrasses, eelgrass Zostera marina and widgeon grass

Ruppia maritima. The Goodwin Islands had a well mixed bed with eelgrass and widgeon

grass in addition to Gracilaria vermiculophylla and some woody and leaf debris (Wood,

2017). Gracilaria vermiculophylla often does not remain anchored to the bottom and can

be moved by tides, currents, and storm conditions, resulting in frequent changes to the

viewable bed area in remote sensing imagery (Thomsen et al., 2007). All field sites were

shallow, between 0.3 and 1.2 m deep at low tide. Salinity ranged from 10 to 20 depending

on precipitation and local conditions.

1.3.2 Imagery selection

Visible color images for 2017 from all six sites were used to compare the VIMS SAV

survey and PL imagery, focusing on the above-ground SAV visible to the unaided eye

in both imagery sources. The imagery sources had differing resolutions, with the VIMS

SAV survey at 24-cm resolution and PL imagery at 3-m resolution. The selected images

needed to have no or minimal cloud cover, which can be a challenge when working with

remote sensing images (Mumby et al., 1997; Koedsin et al., 2016). Water clarity was

considered good if tidal height was low and if known sand bars or shoals were visible,

metrics also used by the VIMS SAV survey to define usable images (D. Wilcox, personal

communication). Images were matched as close as possible temporally, but no more than

two days apart (Table 1.1). Only the York River sites (Allens Island and the Goodwin

Islands) were examined for the time series analysis. PL images were selected from May to

November in 2017 and 2018, with two images per month when possible.
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1.3.3 Analysis of remote sensing imagery

ArcMap 10.4 (ESRI, 2015) was used to calculate percent agreement between VIMS SAV

survey and PL imagery. For the lower Chesapeake Bay sites, polygons were drawn around

the 2017 Juvenile Blue Crab Survey sites. For the York River sites, the images from the

2016 VIMS SAV survey were used to search for local SAV beds, but polygons were drawn

based on field observations and scaled to match concurrent blue crab sampling efforts. Each

polygon encompassed areas known to contain seagrass, which was mapped in ArcMap, but

were expanded to include unvegetated areas (Table 1.2) to compare the ability of the PL

and VIMS SAV survey imagery to detect SAV. Thirty random points were generated within

each polygon at each site, specified to be at least 10 m apart (Figure 1.3). The presence or

absence of SAV was used to calculate the percent agreement between the imagery types,

based on whether the images agreed or disagreed on the occurrence of SAV.

For the time series analysis, PL images from the York River for 2017 and 2018 (Table

1.3) were classified using Interactive Supervised Classification, with no more than eight

pixel classes per image for ease of interpretation (K.E.B, personal observation ). Pixel

classes represented the color of the terrestrial area, unvegetated bottom, and the varying

shades of SAV present. Each classified image was then converted into a polygon and used

to manually outline the visible SAV beds. Each polygon’s area was then calculated through

the Calculate Geometry function in ArcMap and visualized using R Studio (ESRI, 2015;

RStudio Team, 2016).

1.4 Results

1.4.1 Field site conditions

Water quality differed slightly between the two sampling years (Table 1.4). The watershed

received 20 to 25 cm of rainfall during July 2018 in comparison to 5 to 10 cm in July

2017 (National Weather Service, 2019). This caused the salinity at the two study sites to
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be uncharacteristically low in 2018, despite a similar trend over time (Figure 1.4). Mean

salinity in 2017 remained between 19.1 and 21.6, which is typical for the York River.

However in 2018, salinity was on average below 20 for the entirety of sampling, with values

as low as 14.1. The heightened precipitation also increased turbidity, particularly in July,

with a mean value of 44.1 NTU (Figure 1.5, Table 1.4). As a result, water clarity decreased,

making it hard to find usable satellite images during the summer months and sample SAV

in the field. Water temperature varied seasonally, but did not vary significantly between

2017 and 2018 (Figure 1.6).

1.4.2 Validation of PL imagery as a surrogate for aerial imagery

For the lower Chesapeake Bay and York River sites in 2017, the mean percent agreement

between PL and VIMS SAV survey imagery was 91.1% with a margin of error of ±5.3%

(Table 1.5). Values ranged from 80.0% at Pocomoke to 100.0% at Dameron Marsh. In-

terestingly, correspondence at the western shore sites (93.3% and 100%) was significantly

better than at the eastern shore sites (80.0% and 90.0%; Tables 1.6 and 1.7). Whether a site

was in the northern (Dameron Marsh, Pocomoke) or southern (Occahanock, Poquoson) lo-

cations did not influence correspondence (Tables 1.6 and 1.7). Moreover, correspondence

did not differ between Allens Island and Goodwin Islands (Logistic regression, df = 1, 58,

z = 0.46, p = 0.64). In addition, correspondence (Table 1.5) and percent SAV (Table 1.2)

were not significantly correlated (Linear regression, df = 1, 4, r2 = 0.03, p = 0.74). The

association between correspondence and SAV bed area (Table 1.2) was marginally signif-

icant (Linear regression, df = 1, 4, r2 = 0.57, p = 0.0502), but the correlation was driven

by a single outlier (Pocomoke). After removing the outlier, correspondence and SAV bed

area were also not significantly correlated (Linear regression, df = 1, 3, r2 = 0.0003, p =

0.98). Finally, correspondence and polygon area (Table 1.2) did not correlate significantly

(Linear regression, df = 1, 4, r2 = 0.01, p = 0.88). Using the selection criteria for the SAV

beds, PL imagery was validated as a surrogate for VIMS SAV survey imagery.
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1.4.3 Temporal patterns in SAV captured by PL imagery

In 2017, trends in SAV bed area at Allens Island and the Goodwin Islands differed over

time (Table 1.3; Figure 1.7). Allens Island had a peak in SAV bed area around 5 ha in July,

and remained stable between 2.8 and 3.8 ha for the rest of the time series. In contrast, the

Goodwin Islands peaked in late June around 3.8 to 5.7 ha, but declined sharply to 1.2 ha

in August, most likely due to a tropical storm that passed the mouth of Chesapeake Bay on

August 28 and 29. Bed area then fluctuated between 1.6 and 3.2 ha for the rest of the time

series.

In 2018, the bed area trends between Allens Island and the Goodwin Islands were sim-

ilar but temporally asynchronous (Table 1.3; Figure 1.7). Allens Island reached its peak

in late June at just under 4.0 ha, then declined sharply to 0.84 ha by August. Thereafter,

bed area continued to decrease slowly, dropping to 0.04 ha by November. From the start of

the time series to the end, the bed area at Allens Island decreased by 99.1% (Figure 1.8).

Conversely, the Goodwin Islands peaked at 3.7 ha in August, then more gradually declined

to 0.13 ha by early November, with a slight recovery to 0.44 ha. By the end of the time

series in 2018, the Goodwin Islands bed area declined by 74.6%, a less steep loss than

Allens Island.

Satellite data on SAV bed area captured the change in SAV cover from spring and

summer in the lower Chesapeake Bay to the SAV available to blue crabs during recruitment

in the mid-summer and fall months, although this varied slightly based on site. On 1 June

2017, Allens Island had a bed area of 3.3 ha and the Goodwin Islands had 3.7 ha (Figure

1.7). By November 3, the Goodwin Islands had declined to 1.33 ha whereas Allens Island

remained stable at 3.3 ha. On 20 June 2018, Allens Island began with 3.9 ha and the

Goodwin Islands with 2.7 ha. After the seagrass die-off event, Allens Island declined to

0.03 ha and the Goodwin Islands to 0.44 ha (Figure 1.7).
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1.5 Discussion

Using a model system of submerged aquatic vegetation (SAV) and blue crab recruitment in

the lower Chesapeake Bay, our specific findings were (i) Planet Lab (PL) satellite imagery

was a suitable surrogate for VIMS aerial surveys of SAV conducted annually at the sur-

veyed sites, with the caveat that PL imagery is at a lower resolution (3 m) than the VIMS

SAV survey (24 cm), which could affect the utility of PL imagery for some goals; (ii) PL

imagery was able to capture seasonal and episodic changes in SAV cover in the Bay; and

(iii) a remote sensing image taken in late spring and early summer was not representative of

SAV cover available to the blue crab during the recruitment period in late summer through

fall. Consequently, PL imagery can be used to estimate SAV bed area over time scales that

are relevant to recruitment of the blue crab in the lower Chesapeake Bay.

The correspondence of PL satellite imagery with aerial imagery from the VIMS SAV

Survey was very high, ranging from 80.0% to 100.0% in lower Chesapeake Bay sites and

90.0% to 93.3% in York River sites. The comparability of the two image types was well

above the typical benchmark of 40% for fine-scale mapping with satellite imagery (Mumby

et al., 1999). The high correspondence could be reduced if images are unavailable with

good water clarity, low cloud cover, and known SAV presence. Some variation in corre-

spondence was evident between the western and eastern shores of Chesapeake Bay; corre-

spondence was higher at western shore sites (Dameron Marsh, Poquoson), which ranged

from 93.3% to 100.0%, than at eastern shore sites (Pocomoke and Occahanock), which

ranged from 80.0% to 90.0%. In addition, correspondence at two closely spaced locations,

Allens Island and Goodwin Islands, was high (90.0% and 93.3%, respectively) and did not

differ by location.

PL imagery successfully captured seasonal and episodic events. In 2017, there were no

extreme weather events or conditions, reflected in a relatively constant SAV cover at Allens

Island throughout the year. However in 2018, there was twice as much rainfall resulting in
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lower salinity and increased turbidity. The negative effect on SAV cover was reflected in the

PL imagery at the York River, with severe changes at Allens Island. In addition, the impact

of an episodic event, a tropical storm, was captured in August 2017 at the Goodwin Islands

due to shifting algal cover not present at Allens Island (K.E.B, personal observation).

Remote sensing imagery taken in the spring at the height of SAV coverage did not rep-

resent the decline in SAV cover in the fall when juvenile blue crabs recruit to this habitat.

SAV cover was highly variable over the course of a year due to weather patterns, seasonal

variation, and episodic disturbances. Only the imagery from Allens Island could be appli-

cable at any time in 2017, but this was the exception. The Goodwin Islands were affected

by a tropical storm in 2017 and both sites were affected by high precipitation in 2018,

which presumably led to the decrease in SAV cover. The temporal variation on a seasonal

scale was too high to successfully use a spring image for fall SAV cover. Thus, we verify

that snapshot imagery surveys may be representative of a specific time period, but not of

intra-annual variation.

We also examined whether the percent cover of SAV in a polygon, SAV bed area, and

polygon area of an image influenced correspondence between VIMS SAV survey and PL

imagery. Neither percent cover of SAV (r2 = 0.03) nor polygon area (r2 = 0.01) affected

correspondence, even though percent cover and polygon area ranged widely, from 8.6%

to 57.1% for percent cover and from 14.5 to 1023.0 ha for polygon area. Correspondence

was marginally correlated with SAV bed area (r2 = 0.57, p = 0.0502), but this was due to a

single outlier. After removing the outlier, correspondence was not associated with SAV bed

area (r2 = 0.0003). Despite these findings, we encourage others to examine these possible

sources of bias, specifically that the degree of correspondence may be affected by percent

cover of SAV, SAV bed area, or polygon area in an image. For example, if images have

extremely low percent cover, correspondence could be higher if detection of unvegetated

habitat were more accurate than that for vegetated habitat.

This study communicates the importance of remote sensing imagery captured and pro-
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cessed on a regular basis to inform long-term monitoring efforts. Many surveys used in

conservation monitoring are only done once per year. They can miss important seasonal

and episodic changes that may impact the monitored ecosystem. Using regularly taken

satellite imagery can capture disturbance events in real time, whereas a yearly survey can

only capture the end result and miss changes over time.

Researchers can utilize the different characteristics of imagery sources to examine com-

plex questions. Hyperspectral imagery can examine SAV traits usually measured in field

surveys, such as biomass, blade length, and shoot density (Lathrop et al., 2014; Koedsin

et al., 2016). Multiple remote sensing sources often have different spatial resolutions rang-

ing from sub-meter to 30 m, which can be used to address different questions (Yang and

Yang, 2009; Orth et al., 2017a, 2018). Finer spatial resolutions are recommended, since

they can examine SAV at finer scales (Muller-Karger et al., 2018) and improve understand-

ing of bed boundaries which can vary based on the bed type or substrate (Mumby et al.,

1997; Meyer and Pu, 2012). Imagery sources can have differing frequencies of image cap-

ture, from hours and days to months and years (Muller-Karger et al., 2018). Combining

these images can capture events on different time scales and make it possible to examine

the impacts of seasonal variation and episodic events. Differing imaging frequencies from

multiple sources could potentially account for cloud cover and water clarity, which are

impossible to control (Mumby et al., 1997; Koedsin et al., 2016). Fusing annual remote

sensing surveys with additional sources can address knowledge gaps about changes in SAV

cover on a fine scale, and how these changes may affect recruitment of the various species

that use SAV beds as nursery habitats. This can encompass varying temporal and spatial

scales, ranging from local weather events to climate change, and help resource managers

prepare for future environmental change.
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Tables

Table 1.1: Date of image selection for the VIMS SAV Survey and Planet Lab imagery in
2017 (listed alphabetically).

Location SAV Survey Planet Lab
Allens Islands June 29 June 29
Dameron Marsh July 9 July 9
Goodwin Islands June 29 June 29
Occahanock May 17 May 16
Pocomoke June 12 June 14
Poquoson June 29 June 29
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Table 1.2: Area of the polygons used for comparison study at the six lower Chesapeake Bay
sites. The area of the SAV bed, in hectares, was outlined by eye using Planet Lab imagery
at each location. The comparison polygons were determined based on the VIMS Juvenile
Blue Crab Survey and field observations. Percent SAV is the percent of the comparison
polygon that contains by SAV.

Location SAV Bed (ha) Comparison Polygon (ha) Percent SAV
Allens Islands 5.9 16.6 35.5%
Dameron Marsh 44.1 296.9 14.9%
Goodwin Islands 6.5 14.5 44.8%
Occahanock 88.2 1023.0 8.6%
Pocomoke 292.4 787.4 37.1%
Poquoson 188.6 330.1 57.1%
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Table 1.3: Date of image selection for the time series of Planet Lab imagery. The same
image was used for both Allens Island and the Goodwin Islands.

2017 2018
Date Day of Year Date Day of Year
June 1 152 May 12 132
June 29 180 May 24 144
July 19 200 June 20 171
July 31 212 July 10 191
August 31 243 August 6 218
September 24 267 August 25 237
October 3 276 September 5 248
October 18 291 October 1 274
November 3 307 November 4 308
November 17 321 November 16 320
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Table 1.4: Water quality parameters at the Goodwin Islands Continuous Monitoring Sta-
tion (CHE019.38) from May to November in 2017 and 2018. Data are from the Virginia
Estuarine and Coastal Observing System (VECOS) network operated by the Chesapeake
Bay National Estuarine Research Reserve (CBNERR) at VIMS. Presented is the mean per
month of each parameter.

2017 2018
Temperature
(◦C)

Salinity Turbidity
(NTU)

Temperature
(◦C)

Salinity Turbidity
(NTU)

May 20.1 19.4 10.4 21.8 17.5 5.8
June 25.2 19.1 8.5 26.6 14.1 8.5
July 28.2 20.8 5.6 27.8 16.1 44.1
August 27.0 20.6 12.6 28.6 16.5 12.3
September 24.1 19.9 15.9 27.4 15.2 13.8
October 21.0 20.2 5.9 21.0 14.5 8.4
November 13.6 21.6 5.0 12.7 14.4 5.0
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Table 1.5: Correlation between SAV survey aerial and PL satellite imagery in 2017 for
absence/presence of SAV. Values represent the mean ±margin of error. Each image had 30
sampling points. The percent correlation reflects the percentage of comparison points that
matched.

Location Percent correlation
Allens Islands 90.0 ± 17.3%
Dameron Marsh 100.0 ± 11.4%
Goodwin Islands 93.3 ± 15.6%
Occahanock 90.0 ± 17.3%
Pocomoke 80.0 ± 21.6%
Poquoson 93.3 ± 15.6%
Mean Agreement ± (SE) 91.1 ± 5.6%
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Table 1.6: AIC calculations for correspondence between PL satellite and SAV survey aerial
imagery. k = number of parameters, including sample variance (s2) as a parameter. AICc

= corrected AIC value. ∆i = difference between model gi and the best model. wi = model
probability of fitting the observed data. Model g3 with two factors was not significantly
better than model g1 with only one factor (Likelihood ratio χ2 test, df = 118, p = 0.75).

Model Variables k AICc ∆i wi

g1 Shore 3 72.47 0 0.70
g2 Latitude 3 77.43 5.17 0.05
g3 Shore + Latitude 4 74.51 2.04 0.25
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Table 1.7: Estimate, SE (standard error), and 95% Confidence Interval (CI) of the parame-
ters from logistic regression model g1 from Table 1.6.

Parameter Variable Estimate SE 95% CI p
α Intercept 1.74 0.36 (1.01, 2.46) <<0.0001
β Shore 1.63 0.81 (0.02, 3.24) <0.043
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Figures

Figure 1.1: Locations of the four VIMS Juvenile Blue Crab Survey sampling sites within
the lower Chesapeake Bay; see Ralph et al. (2013) for details of the survey. The colored
areas were used in the assessment of accuracy of Planet Lab remote sensing imagery.
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Figure 1.2: Locations of the two sampling sites within the York River, Allens Island and
the Goodwin Islands. The colored portion represents the area used for the remote sensing
technique comparison.
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Figure 1.3: Example of the Planet Lab (a) and VIMS SAV survey (b) imagery comparison.
Pictured is Allens Island on June 29, 2017.
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Figure 1.4: Salinity at the Goodwin Islands Continuous Monitoring Station (CHE019.38)
from May to November in 2017 (a) and 2018 (b). Data are from the Virginia Estuarine and
Coastal Observing System (VECOS) network operated by the Chesapeake Bay National
Estuarine Research Reserve (CBNERR) at VIMS. The red line represents a loess fit (span
= 0.25).
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Figure 1.5: Turbidity at the Goodwin Islands Continuous Monitoring Station from May to
November in 2017 (a) and 2018 (b). Data are from the VECOS Network operated by the
CBNERR at VIMS. The red line represents a loess fit (span = 0.25).
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Figure 1.6: Water temperature at the Goodwin Islands Continuous Monitoring Station from
May to November in 2017 (a) and 2018 (b). Data are from the VECOS Network operated
by the CBNERR at VIMS. The red line represents a loess fit (span = 0.25).
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Figure 1.7: Trends in SAV bed area at Allens Island (dark green) in 2017 (a) and 2018 (b),
and the Goodwin Islands (dark blue) in 2017 (c) and 2018 (d), calculated using Planet Lab
satellite imagery. The time series runs from May to November in both years. The colored
line represents the loess fit (span = 0.75). The dark grey areas represent 95% confidence
intervals, calculated based on the fit of the data to the loess line.
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Figure 1.8: A depiction of a loss of seagrass cover at Allens Island in the York River over
the summer of 2018. Notice the decrease from May 24 (a) to September 5 (b).
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CHAPTER 2

IMPACT OF VARIATION IN SUBMERGED AQUATIC VEGETATION AND

CLIMATE CHANGE ON JUVENILE BLUE CRABS IN NURSERY HABITATS

OF CHESAPEAKE BAY

2.1 Introduction

Many ecologically and commercially valuable marine and estuarine species, including the

blue crab Callinectes sapidus, depend on structured nursery habitats, such as seagrass beds,

salt marshes and mangrove forests (Beck et al., 2001; Heck et al., 2003; Boström et al.,

2006; Seitz et al., 2014). Much is known about the influence of patch characteristics of

nursery habitats on survival, abundance and growth of juveniles of the blue crab and various

other fish and crustaceans (Hovel and Lipcius, 2001, 2002; Lipcius et al., 2007; Seitz et al.,

2014). For instance, variation in seagrass patch size, due to habitat fragmentation, alters

blue crab survival, which is inversely related to patch size due to the association of larger,

cannibalistic blue crabs with large patches (Hovel and Lipcius, 2001). In addition, the

value of seagrass patches varies seasonally and with habitat complexity (Hovel and Lipcius,

2001). As fragmentation increases, the distance between the patches increases, decreasing

the connectivity of the landscape and creating more unvegetated and unstructured habitat

in which juvenile blue crabs suffer high mortality (Lipcius et al., 2007). In contrast to

such examples of patch-related effects, little information exists on the broad-scale effects

of nursery habitat on the demography of fish and crustaceans (Ralph et al., 2013; Lipcius

et al., 2019). In part this has been due to logistical limitations associated with acquisition

of broad-scale data on habitat availability over time by techniques such as aerial or satellite

imagery (Mumby et al., 1997, 1999; Howari et al., 2009; Roelfsema et al., 2009; Lyons

et al., 2011; Meyer and Pu, 2012; Lathrop et al., 2014). Recently, however, new platforms
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such as Planet Lab have facilitated acquisition of satellite imagery at sufficient resolution to

quantify accurate temporal patterns of habitat distribution, such as seagrass beds (Chapter

1).

The blue crab has served as a model system for investigating the characteristics of nurs-

ery habitats that drive population dynamics in marine crustaceans (Hines, 2007; Lipcius

et al., 2007; Seitz et al., 2014; Lipcius et al., 2019). Young juvenile blue crabs inhabit

shallow, structured nursery habitats such as seagrass and macroalgal beds, salt marshes,

and coarse woody debris (Heck and Thoman, 1984; Orth and van Montfrans, 1987; Wilson

et al., 1990; Everett and Ruiz, 1993; Hines and Ruiz, 1995; Lipcius et al., 2007), which

provide food and refuge (Perkins-Visser et al., 1996; Pile et al., 1996; Hovel and Lipcius,

2001; Lipcius et al., 2005; Seitz et al., 2005; Johnston and Lipcius, 2012; Bromilow and

Lipcius, 2017). Once juvenile crabs reach approximately 20-30 mm carapace width (CW),

they attain a size refuge from most predators and then disperse to unstructured secondary

nursery habitats (Lipcius et al., 2005; Seitz et al., 2005; Lipcius et al., 2007; Bromilow

and Lipcius, 2017). Juvenile crab densities are highest in continuous seagrass beds and

very small patches, when compared with moderately sized and large patches (Hovel and

Lipcius, 2002). Juvenile crab density is also positively related to seagrass shoot density

and vegetation percent cover (Hovel and Lipcius, 2002), which can vary based on year and

location (Ralph et al., 2013).

Seagrass cover and distribution vary seasonally and interannually (Orth and Moore,

1986), and are likely to be altered further with climate change (Moore and Jarvis, 2008;

Hines et al., 2010). Such variability may strongly influence blue crab recruitment. For

instance, Stockhausen and Lipcius (2003) examined how juvenile blue crab recruitment

might change if SAV beds were not available in the lower York River estuary. With most

crabs settling in the lower Chesapeake Bay near the mouth of the York River, the effects

of seagrass loss upriver were alleviated (Stockhausen and Lipcius, 2003). However, if

this habitat were to disappear due to climate change, juvenile blue crabs could experi-
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ence increased mortality when settling in unstructured habitats (Lipcius et al., 2007; Hines

et al., 2010). Given the scarcity of information on the broad-scale effects of nursery habitat

quantity and quality, we conducted a mensurative field experiment to examine the role of

submerged aquatic vegetation (SAV) nursery bed area on abundance of blue crab juveniles

relative to broad- and patch-scale features including percent cover of seagrass and algae,

SAV bed area, water depth, location, season, and year. This study was facilitated by the

recent demonstration that Planet Lab satellite imagery can provide accurate temporal dis-

tribution patterns of SAV relative to the seasonal recruitment window of the blue crab in

nursery habitats (Chapter 1).

2.2 Logical framework and objectives

The specific goals of this study were to (i) examine the hypothesis that juvenile blue crab

density in SAV nursery habitats is inversely related to bed area; (ii) evaluate alternative

hypotheses concerning effects of SAV percent cover and other independent variables on ju-

venile blue crab density; and (iii) simulate potential effects of climate change on SAV nurs-

ery habitats and blue crab recruitment. We generated hypotheses (Hi) with varying com-

binations of algae (mostly Gracilaria vermiculophylla, see Wood (2017)) percent cover,

widgeon grass Ruppia maritima (hereafter, Ruppia) percent cover, eelgrass Zostera marina

(hereafter, Zostera) percent cover, bed area, year (2017, 2018), location (Allens Island,

Goodwin Islands), Julian day, and water depth. Each Hi was associated with a specific

statistical model gi (Table 2.1), suited to the collected data. The suite of statistical models

(gi) represented multiple alternative hypotheses (Chamberlin, 1890) that were evaluated

following an Information Theoretic approach (Burnham and Anderson, 2002; Anderson,

2008). For example, in H1 (statistical model g1), we expect juvenile blue crab density to

correlate positively with total percent cover (Ralph et al., 2013), which includes all types

of SAV. We also propose, as a null hypothesis, that greater bed area will be associated with

lower juvenile blue crab densities, since crabs can disperse to other seagrass beds due to
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density-dependent emigration (Pile et al., 1996), which is represented by H2 and statistical

model g2. We expect juvenile blue crab density to correlate positively with percent cover

of seagrass (i.e., Ruppia and Zostera), as seagrass is the preferred nursery habitat (Orth

and van Montfrans, 1987; Lipcius et al., 2007; Seitz et al., 2008). Density of juvenile blue

crabs could also correlate positively with algal percent cover, which serves as an alternative

nursery habitat (Johnston and Lipcius, 2012; Wood, 2017). The remaining hypotheses and

corresponding statistical models dealt with various combinations of independent factors

and variables (Table 2.1).

2.3 Methods

2.3.1 Field sites

Field sites were in the York River at two locations, Allens Island and the Goodwin Islands

(Figure 2.1). Sampling periods varied slightly for each year. In 2017, sampling was from

August through November and in 2018 from June through October (Table 2.2). The exten-

sion in the time period for 2018 was designed to encompass the entire juvenile blue crab

recruitment period. The sampling sites at each location were defined by past observations

of the presence of seagrass and by the Virginia Institute of Marine Science (VIMS) SAV

survey, defined by the comparison polygons in Chapter 1 (see Table 1.2 for Allens Island

and the Goodwin Islands). Random sites were designated 10 m apart were assigned within

each location, four sites per location in 2017 and 10 sites per location in 2018. The specific

sampling plot of each site was adjusted in the field based on the presence or absence of

SAV by selecting the next random site from a previously generated list.

2.3.2 Field sampling

At each site, a 1.68 m2 drop net was deployed from the bow of the boat, ensuring any blue

crabs present would be trapped within (Ralph et al., 2013). Water quality measurements

(i.e., temperature, salinity, dissolved oxygen, depth) were taken per location in 2017 and
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per site in 2018. Different parameters of SAV were measured within the drop net. Percent

cover was estimated by species for seagrass (Zostera and Ruppia) and for algae (Gracilaria

spp.). Absolute percent cover was calculated after sampling and used for the analysis. In

2018, a 12-cm core sample was taken for shoot density at one core-length from the seam

on the drop net. All cores were taken back to the lab to determine shoot density by species.

Samples were collected by suction for 6 min, which is 80% efficient in collecting the blue

crabs present, followed by a sweep with a dip net to catch any remaining crabs (R. Lipcius,

unpubl. data, Ralph et al. (2013)). Captured adult blue crabs were measured and sexed

in the field and released. Suction samples were sorted for juvenile blue crabs, which were

sexed if the carapace width was greater than 15 mm.

2.3.3 Satellite imagery analysis

Planet Lab satellite images, with 3-m resolution (Planet Team, 2019), were selected from

June through November of 2017 and 2018 at Allens Island and the Goodwin Islands (Ta-

ble 2.2). Images were selected based on their having no clouds and good water clarity for

optimum visibility of SAV. Images were also within one to two weeks of the date of field

sampling, which ensured the bed area captured in the image would align with field obser-

vations. Bed area was calculated using the Supervised Interactive Classification in ArcMap

10.4, based on the area of visible SAV per site in each image (ESRI, 2015).

2.3.4 Statistical analysis

All statistical analyses were performed in R Studio (RStudio Team, 2016) using a general-

ized linear model with the negative binomial distribution in the MASS package, which is

ideal for analyzing count data that are overdispersed (Venables et al., 2002). The response

variable was crab density from each of the samples. After running each of the statistical

models (Table 2.1), the resulting Akaike Information Criterion (AIC) values from each

model were used to calculate AICc, a second-order bias correction estimator (Anderson,
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2008). Model probabilities (wi) based on ∆i values were used to rank the different mod-

els against the model with the lowest AICc. Any model with wi < 0.10 was eliminated.

Competing models were compared with likelihood ratio χ2 tests (Vuong, 1989).

2.4 Results

2.4.1 Water Quality Parameters

In 2017, water temperature followed a seasonal trend, peaking in August at 28.0◦C and

declining to 12.6◦C by November (Table 2.3). Salinity ranged from 20.7 to 23.1 through-

out the sampling period. Dissolved oxygen varied greatly, fluctuating between 4.5 to 14.2

mg/L. Samples were taken in 0.7 to 1.2 m water depths. In 2018, water temperature fol-

lowed the same seasonal trend, but at slightly warmer temperatures, with a peak at 31.2◦C

decreasing to 15.0◦C by November (Table 2.4). Salinity was below 20 for the entire sam-

pling period, fluctuating between 11.3 and 16.0. Dissolved oxygen was slightly lower,

between 4.3 and 7.7 mg/L. Samples were also taken in shallower water as the sampling

progressed through the summer, starting at 1.0 m but decreasing to 0.5 m due to the sea-

grass die-off in deeper water, which forced sampling farther inshore.

2.4.2 Blue crab recruitment, SAV bed area, and SAV percent cover

Multiple cohorts of juvenile blue crabs recruited in both 2017 (Figure 2.2) and 2018 (Figure

2.3). In addition, SAV bed area in Allens Island and the Goodwin Islands varied more than

an order of magnitude seasonally and inter-annually in 2017 and 2018 (Figure 2.4). Given

the presence and variation of juvenile blue crabs and SAV bed area, we were able to conduct

our mensurative field experiment as planned to determine the relative influence of SAV bed

area and patch-scale features of SAV on blue crab abundance in nursery habitats.

Crab density varied substantially between locations and years, ranging over two orders

of magnitude, with highest densities reaching 100 per 1.68 m2 (Figure 2.5), which equals

about 60 m−2. Percent cover of algae varied from 0% to 100% and was generally higher
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at the Goodwin Islands than at Allens Island (Figure 2.6). Percent cover of Ruppia and

Zostera varied from 0% to 100% and was generally higher at Allens Island (Figures 2.7

and 2.8). However, Zostera declined drastically and almost disappeared completely at both

sites in 2018 (Figure 2.8).

2.4.3 Effects of SAV bed area and patch features on crab density

Of the 14 statistical models, only models g4, g6, g7 and g11 were supported by the field

data (Table 2.1). Seagrass shoot density was included in initial model runs, but was not

a significant predictor and was excluded from the analysis. Model g6, with independent

variables SAV bed area and percent cover of algae, Ruppia and Zostera, had the highest

weighted probability (w6 = 0.54). Although models g7 and g11 had more parameters than

model g6, they did not improve the fit to the data over model g6 (likelihood ratio χ2 tests,

p > 0.4). In contrast, model g6 fit the data significantly better than model g4, which had

fewer parameters (likelihood ratio χ2 test, p = 0.035).

All independent variables within model g6 were significantly different from 0 (Table

2.5). Blue crab density increased significantly with percent cover of algae, Ruppia and

Zostera (Figure 2.9). In contrast, crab density was inversely related to bed area (Figure

2.9). The final equation for crab density from model g6 (Table 2.5) is:

Density = e2.537+0.0317x1+0.0213x2+0.0109x3−0.0000087x4 (2.1)

where x1 = algal % cover, x2 = Ruppia % cover, x3 = Zostera % cover, and x4 = bed area

in m2.

2.4.4 Simulated scenarios of SAV and crab density

To illustrate the relative effects of each independent variable on crab density, we used

equation 2.1 to calculate crab density under various scenarios of bed area and percent cover
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of algae, Ruppia, and Zostera (Table 2.6). In the reference scenario, we used a bed area

of 20,000 m2 (= 2 ha), and 20% cover each of algae, Ruppia and Zostera; these values

approximated the mean of each variable (Figures 2.4, 2.6, 2.7 and 2.8). In the first set of

scenarios, we simply doubled each SAV variable while keeping the others constant (Table

2.6). Crab density increased most with enhanced algal cover (88.7%), moderately with

Ruppia (53.3%), and least with Zostera (24.4%). For percent cover of all three SAV species,

percent changes in crab abundance mirrored those for density. Conversely, crab density

decreased 16.0% when bed area was doubled, though crab abundance was raised by 68.1%

due to the greater bed area. In the second set of scenarios, we projected alterations in crab

density if Zostera were to be eradicated from Chesapeake Bay due to climate change (Table

2.6). In one scenario, we eliminated all Zostera and kept the other SAV variables constant,

which reduced crab density modestly (19.4%). In the other scenarios, we compensated

equally for the 20% loss of Zostera cover by increasing algal cover and Ruppia cover each

by 10%. In contrast to the non-compensatory scenario, crab density was raised by 36.7%.

Crab abundances were exactly proportional to crab density.

2.5 Discussion

Using temporal distribution patterns of SAV derived from Planet Lab satellite imagery, the

main findings were: (i) juvenile blue crab density was inversely related to SAV bed area,

but reductions in crab density as bed area increased were more than offset by higher total

abundance of crabs as bed area enlarged; (ii) crab density was positively related to percent

cover of algae (primarily non-native Gracilaria vermiculophylla), widgeon grass Ruppia

maritima and eelgrass Zostera marina; (iii) location, year, season and water depth were not

significant predictors of crab density in SAV beds after accounting for the effects of bed

area and SAV percent cover; and (iv) potential loss of Zostera in Chesapeake Bay due to

global warming was projected to cause either only a modest reduction in crab density if

other SAV species do not compensate and bed area remains constant, or crab density could
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even increase if algae and Ruppia were to compensate for the loss of Zostera.

Ruppia is better suited than Zostera for warmer water temperatures, with Zostera ceas-

ing to grow at temperatures above 26.5◦C (Richardson et al., 2018). With temperatures

above that threshold from June to September in this study, the future of Zostera within

the York River and lower Chesapeake Bay is uncertain (see Tables 2.3 and 2.4). In the

past, Ruppia has persisted or even expanded its range when Zostera has experienced a

die-off (Moore and Jarvis, 2008; Moore et al., 2014; Shields et al., 2019). Hence, Ruppia

might continue to expand and eventually replace Zostera to become the dominant seagrass

species.

With the changing conditions expected under climate change, there could be an ecosys-

tem shift within the York River and other tributaries of lower Chesapeake Bay. When con-

ditions drastically change (e.g. warming temperatures), species composition can change,

potentially causing a shift to a new equilibrium (May, 1977; Scheffer et al., 2001). Cur-

rently, Zostera and Ruppia are co-dominant seagrass species, with algae (i.e. Gracilaria

spp.) also present in the system. In the near future, the York River and other lower Chesa-

peake Bay tributaries may shift to a system dominated by Ruppia and algae, with Zostera

absent or present at much lower abundance. Given future scenarios of climate change, algae

and Ruppia could compensate for the loss of Zostera, acting as an alternative nursery habi-

tat network (Johnston and Lipcius, 2012; Wood, 2017). Algal beds (mostly Gracilaria spp.)

were a significant predictor of juvenile blue crab density, with algae-only samples having

the highest crab densities. This supports the recent suggestion that algal patches serve as

an important alternative nursery habitat for juvenile blue crab recruitment in Chesapeake

Bay (Johnston and Lipcius, 2012; Wood, 2017).

If the current system in lower Chesapeake Bay with Zostera were replaced with one

composed of algae and Ruppia but not Zostera, our simulations indicate that nursery habitat

for juvenile blue crabs would remain viable and possibly increase, as long as SAV bed area

does not decline sharply. The current climate change scenarios indicate a strong potential
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for Zostera to be eradicated from Chesapeake Bay (Moore et al., 2014; Richardson et al.,

2018; Shields et al., 2019). However, with less inter-specific competition, the distribution

of Gracilaria and Ruppia could expand substantially and compensate for the loss of Zostera

(Shields et al., 2019).

This study illustrates the value of remote sensing (e.g. satellite imagery) capable of

accurately capturing temporal and spatial patterns of habitat distribution. Planet Lab satel-

lite imagery allowed us to quantify the availability of SAV bed habitat during the seasonal

blue crab recruitment period, and define how the area of available nursery habitat varies

both inter-annually and seasonally within the York River system. Broad-scale data of habi-

tat availability, such as SAV beds, is crucial for addressing the complex issues involving

marine resources, like the blue crab, linked to these habitats. Access to accurate satellite

imagery will help quantify temporal changes in habitat distribution due to seasonal and

episodic disturbances. This information will assist fisheries managers in preparing for fu-

ture changes in nursery habitat distribution due to climate change and extreme weather

events, and thereby effect ecosystem-based fishery management.
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Tables

Table 2.1: AIC calculations for the negative binomial regression models corresponding to
the different hypotheses for juvenile blue crab density in both 2017 and 2018, denoted by
gi. k = number of parameters, including sample variance (s2) as a parameter. AICc =
corrected AIC value. ∆i = difference between model gi and the best model. wi = model
probability of fitting the observed data. Abbreviations: Total percent cover = T; Bed area
= B; Year = Y; Location = L; algal percent cover = A; Ruppia maritima percent cover = R;
Zostera marina percent cover = Z; Julian day = J; Depth = D.

Model Variables k AICc ∆i wi

g1 T 3 1383.0 44.9 <0.01
g2 T + B 4 1374.2 36.1 <0.01
g3 Y + L + B 5 1414.6 76.4 <0.01
g4 A + R + Z 5 1340.4 2.3 0.17
g5 Y + L + T + B 6 1357.7 19.6 <0.01
g6 A + R + Z + B 6 1338.1 0 0.54
g7 Y + L + A + R + Z 7 1341.1 3.0 0.12
g8 Y + L + A + R + B 7 1351.8 13.7 <0.01
g9 Y + L + A + Z + B 7 1382.8 44.7 <0.01
g10 Y + L + J + T + B + D 8 1362.0 23.9 <0.01
g11 Y + L + A + R + Z + B 8 1340.8 2.7 0.14
g12 (Y × L) + J + T + B + D 9 1361.3 23.2 <0.01
g13 Y + L + J + A + R + Z + B + D 10 1345.0 6.9 0.02
g14 (Y × L) + J + A + R + Z + B + D 11 1346.9 8.8 <0.01
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Table 2.2: Dates of sampling in the York River. A sampling period consisted of one day in
2017 and multiple days in 2018.

2017 2018
Date Day of Year Date Day of Year
August 10 222 June 19 170
August 15 227 June 25 176
August 31 243 July 2 183
September 14 257 July 3 184
October 5 278 August 6 218
October 19 292 August 8 220
November 16 320 August 20 232

August 23 235
August 24 236
September 4 247
September 20 263
October 2 275
October 3 276
October 22 295
October 23 296
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Table 2.3: Water quality parameters for 2017 at both Allens Island and the Goodwin Is-
lands. Aug = August; Sept = September; Oct = October; Nov = November.

Location Date Temperature
(◦C)

Salinity Dissolved
Oxygen
(mg/L)

Mean
Depth
(m)

Allens Island Aug 10 27.8 22.7 10.1 1.1
Goodwin
Islands

Aug 10 25.7 22.7 7.8 1.2

Allens Island Aug 15 28.0 22.4 6.8 1.1
Goodwin
Islands

Aug 15 27.4 22.4 6.9 1.0

Allens Island Aug 31 24.9 21.4 8.4 1.0
Goodwin
Islands

Aug 31 24.1 21.4 4.5 0.9

Allens Island Sept 14 24.3 21.5 9.7 0.9
Goodwin
Islands

Sept 14 23.5 22.5 4.5 0.8

Allens Island Oct 5 23.8 20.7 14.2 0.9
Goodwin
Islands

Oct 5 22.9 21.2 8.9 0.8

Allens Island Oct 19 20.6 22.9 11.7 0.9
Goodwin
Islands

Oct 19 19.7 22.4 7.9 0.8

Allens Island Nov 16 13.4 23.1 11.3 1.0
Goodwin
Islands

Nov 16 12.6 22.6 8.7 1.1
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Table 2.4: Water quality parameters for 2018 at both Allens Island and the Goodwin Is-
lands. Aug = August; Sept = September; Oct = October; Nov = November.

Location Date Mean Temperature
(◦C)

Mean
Salinity

Mean
Dissolved
Oxygen
(mg/L)

Mean
Depth
(m)

Allens Island June 19/25 29.1 13.3 6.8 1.0
Goodwin
Islands

June 25 28.6 13.3 7.7 0.9

Allens Island July 2 30.1 12.0 6.6 1.0
Goodwin
Islands

July 3 31.2 13.7 6.1 1.0

Allens Island Aug 6 30.4 14.9 5.9 0.8
Goodwin
Islands

Aug 8 30.8 15.3 6.4 0.7

Allens Island Aug 23 28.6 16.0 5.8 0.5
Goodwin
Islands

Aug 20/24 27.2 14.8 5.1 1.1

Goodwin
Islands

Sept 4 30.4 14.6 4.8 0.7

Allens Island Sept 20 26.3 14.4 4.3 1.0
Goodwin
Islands

Sept 20 26.6 14.1 4.5 1.0

Allens Island Oct 3 26.3 13.8 4.9 0.6
Goodwin
Islands

Oct 2 25.0 14.3 4.5 0.7

Allens Island Oct 23 18.0 13.1 5.2 0.6
Goodwin
Islands

Oct 22 15.0 11.3 6.2 0.5
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Table 2.5: Parameter estimates from negative binomial regression model g6 for juvenile
blue crab density in 2017 and 2018. Percent of deviance explained by the model = 41.6%.

Parameter Variable Estimate SE p
α Intercept 2.537 0.150 <<0.001
β1 Algal % cover 0.0317 0.00325 <<0.001
β2 Ruppia % cover 0.0213 0.00287 <<0.001
β3 Zostera % cover 0.0109 0.00318 <0.001
β4 Bed area -0.000009 0.000004 0.046
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Table 2.6: Simulated crab density under various scenarios of bed area and percent cover
of Algae, Ruppia maritima, and Zostera marina calculated using equation 2.1. ‡Although
crab density declined by 16.0%, abundance increased by 35.0% due to the larger bed area.

Percent cover
Conditions Algae Ruppia Zostera Bed area

(m2)
Crab density
(per 1.68 m2)

%
change

Reference 20% 20% 20% 20,000 38.1
Algae x 2 40% 20% 20% 20,000 71.9 ↑ 88.7%
Ruppia x 2 20% 40% 20% 20,000 58.4 ↑ 53.3%
Zostera x 2 20% 20% 40% 20,000 47.4 ↑ 24.4%
Bed area x 2 20% 20% 20% 40,000 32.0 ↓ 16.0%‡
Zostera = 0% (no compensation by Algae or Ruppia)

20% 20% 0% 20,000 30.7 ↓ 19.4%
Zostera = 0% (compensation by Algae + 10% and Ruppia + 10%)

30% 30% 0% 20,000 52.1 ↑ 36.7%
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Figures

Figure 2.1: Locations of the two sampling sites within the York River, Allens Island and
the Goodwin Islands. The colored portion represents the area used for the remote sensing
technique comparison.
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Figure 2.2: Juvenile blue crab data from 2017 grouped into size classes (seven sampling
days total). Divisions made every 2.5 mm carapace width, with any crabs above 40 mm
grouped in one bin. Allens Island = gray; Goodwin Islands = black.
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Figure 2.3: Juvenile blue crab data from 2018 grouped into size classes (eight sampling
sets; at least one day per site). Divisions made every 2.5 mm carapace width, with any
crabs above 40 mm grouped in one bin. Notice the change in axis for sets 1, 2, 3, and 6.
Allens Island = gray; Goodwin Islands = black.
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Figure 2.4: Trends in SAV bed area at Allens Island in 2017 (a) and 2018 (b), and the
Goodwin Islands in 2017 (c) and 2018 (d). The time series runs from May to November in
both years. Calculated using Planet Lab satellite imagery. The curves represent the Loess
fit (span = 0.75). The dark grey areas represent the 95% confidence intervals.
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Figure 2.5: Trends in juvenile blue crab density at Allens Island in 2017 (a) and 2018 (b),
and the Goodwin Islands in 2017 (c) and 2018 (d). Samples were collected within a 1.68
m2 drop net; to translate densities to 1 m2, the graphed values should be multiplied by
0.595. The curves represent the Loess fit (span = 0.25). The dark grey areas represent the
95% confidence intervals.
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Figure 2.6: Trends in algal percent cover at Allens Island in 2017 (a) and 2018 (b), and
the Goodwin Islands in 2017 (c) and 2018 (d). Collected from within 1.68 m2 drop net.
The curves represent the Loess fit (span = 0.75). The dark grey areas represent the 95%
confidence intervals.
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Figure 2.7: Trends in Ruppia maritima percent cover at Allens Island in 2017 (a) and 2018
(b), and the Goodwin Islands in 2017 (c) and 2018 (d). Collected from within 1.68 m2 drop
net. The curves represent the Loess fit (span = 0.25). The dark grey areas represent the
95% confidence intervals.
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Figure 2.8: Trends in Zostera marina percent cover at Allens Island in 2017 (a) and 2018
(b), and the Goodwin Islands in 2017 (c) and 2018 (d). Collected from within 1.68 m2 drop
net. The curves represent the Loess fit (span = 0.75). The dark grey areas represent the
95% confidence intervals.
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Figure 2.9: Component residual plots for model g6, which portray the relationship between
the dependent variable (juvenile blue crab density) and each independent variable, after ac-
counting for the effects of the other independent variables. The blue dotted line represents
the least-squares line. The solid purple line represents the fitted loess line. Algal percent
cover (a), Ruppia maritima percent cover (b), and Zostera marina percent cover (c) all have
positive linear relationships with crab density (Table 2.5). Bed area (d) has a negative linear
relationship with crab density (Table 2.5).
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