
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2022 

Techniques For Accelerating Large-Scale Automata Processing Techniques For Accelerating Large-Scale Automata Processing 

Hongyuan Liu 
William & Mary - Arts & Sciences, lliuhy@gmail.com 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Liu, Hongyuan, "Techniques For Accelerating Large-Scale Automata Processing" (2022). Dissertations, 
Theses, and Masters Projects. William & Mary. Paper 1673275513. 
https://dx.doi.org/10.21220/s2-dbkj-z447 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1673275513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1673275513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-dbkj-z447
mailto:scholarworks@wm.edu


Techniques for Accelerating Large-scale Automata Processing

Hongyuan Liu

Jinan, Shandong, China

Bachelor of Engineering, Shandong University, 2013
Master of Science, University of Hong Kong, 2016

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
January 2022



c© Copyright by Hongyuan Liu 2022



APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Hongyuan Liu

Approved by the Committee, January 2022

Committee Chair
Adwait Jog, Associate Professor, Computer Science

College of William & Mary

Pradeep Kumar, Assistant Professor, Computer Science

College of William & Mary

Zhenming Liu, Assistant Professor, Computer Science

College of William & Mary

Weizhen Mao, Professor, Computer Science

College of William & Mary

Zhijia Zhao, Associate Professor

University of California, Riverside

Adwait Jog



ABSTRACT

The big-data era has brought new challenges to computer architectures due to
the large-scale computation and data. Moreover, this problem becomes critical in
several domains where the computation is also irregular, among which we focus on
automata processing in this dissertation. Automata are widely used in applications
from different domains such as network intrusion detection, machine learning,
and parsing. Large-scale automata processing is challenging for traditional von
Neumann architectures. To this end, many accelerator prototypes have been
proposed. Micron’s Automata Processor (AP) is an example. However, as a spatial
architecture, it is unable to handle large automata programs without repeated
reconfiguration and re-execution. We found a large number of automata states
are never enabled in the execution but still configured on the AP chips, leading
to its underutilization. To address this issue, we proposed a lightweight offline
profiling technique to predict the never-enabled states and keep them out of the
AP. Furthermore, we develop SparseAP, a new execution mode for AP to handle
the misprediction efficiently. Our software and hardware co-optimization obtains
2.1× speedup over the baseline AP execution across 26 applications.

Since the AP is not publicly available, we aim to reduce the performance gap
between a general-purpose accelerator—Graphics Processing Unit (GPU) and
AP. We identify excessive data movement in the GPU memory hierarchy and
propose optimization techniques to reduce the data movement. Although our
optimization techniques significantly alleviate these memory-related bottlenecks,
a side effect of them is the static assignment of work to cores. This leads to
poor compute utilization as GPU cores are wasted on idle automata states.
Therefore, we propose a new dynamic scheme that effectively balances compute
utilization with reduced memory usage. Our combined optimizations provide a
significant improvement over the previous state-of-the-art GPU implementations of
automata. Moreover, they enable current GPUs to outperform the AP across sev-
eral applications while performing within an order of magnitude for the rest of them.

To make automata processing on GPU more generic to tasks with different amounts
of parallelism, we propose AsyncAP, a lightweight approach that scales with the
input length. Threads run asynchronously in AsyncAP, alleviating the bottleneck
of thread block synchronization. The evaluation and detailed analysis demonstrate
that AsyncAP achieves significant speedup or at least comparable performance
under various scenarios for most of the applications.

The future work aims to design automatic ways to generate optimizations and map-
pings between automata and computation resources for different GPUs. We will
broaden the scope of this dissertation to domains such as graph computing.



TABLE OF CONTENTS

Acknowledgments v

Dedication vi

List of Tables vii

List of Figures ix

1 Introduction 2

1.1 Towards Efficient Large-scale Automata Accelerator . . . . . . . . . . 3

1.2 Reducing the Gap between GPGPU and Automata Accelerator . . . . 4

1.3 Designing and Analyzing a Generic Automata Processing Scheme on

GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Automata Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Graphics Processing Units (GPUs) . . . . . . . . . . . . . . . . . . . . 9

3 Architectural Support for Efficient Large-Scale Automata Processing 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Background and Terminology . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 NFA-based Pattern Matching . . . . . . . . . . . . . . . . . . . 15

3.2.2 Baseline Automata Processor (AP) . . . . . . . . . . . . . . . 16

i



3.3 Motivation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Topological Order and Normalized Depth . . . . . . . . . . . . 18

3.3.2 Analysis of Normalized Depth and Enabled NFA States . . . . 20

3.3.3 Analysis of Performance Benefits . . . . . . . . . . . . . . . . . 21

3.4 Design and Implementation of NFA Partitioning . . . . . . . . . . . . 23

3.4.1 Profiling-based Hot/Cold State Prediction . . . . . . . . . . . . 24

3.4.2 Where to Partition? . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 How to Partition? . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Hardware Support for Intermediate Report Handling and Partitioned

NFA Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Analysis of New Execution Modes for AP . . . . . . . . . . . . 28

3.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Why GPUs are Slow at Executing NFAs and How to Make them Faster 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Pattern Matching via NFAs . . . . . . . . . . . . . . . . . . . . 46

4.2.2 NFA Processing on GPUs . . . . . . . . . . . . . . . . . . . . . 47

4.3 Problem and Previous Efforts . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



4.3.2 Compute Utilization . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Limitations of Prior Efforts . . . . . . . . . . . . . . . . . . . . 51

4.4 Addressing the Data Movement Problem via Matchset Analysis . . . . 52

4.4.1 Inefficiencies in the Transition Table . . . . . . . . . . . . . . . 52

4.4.2 Optimization I: A New Way to Store and Access Matchset and

Topology Information (NewTran/NT) . . . . . . . . . . . . . . 54

4.4.3 Optimization II: Matchset Compression (MaC) . . . . . . . . . 56

4.5 Addressing the Utilization Problem via Activity Analysis . . . . . . . 57

4.5.1 Analysis of Activation Frequency . . . . . . . . . . . . . . . . . 57

4.5.2 Optimization III: Activity-based Processing . . . . . . . . . . . 58

4.5.3 How do we choose the hot states? . . . . . . . . . . . . . . . . 61

4.6 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Generalizing Automata Processing on GPUs by Leveraging Symbol-level

Parallelism 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Asynchronous Parallel Automata Processing on GPUs . . . . . . . . . 80

5.3.1 Why do we need a new way to process Automata on GPUs? . . 80

5.3.2 Overview of Asynchronous Parallel Automata Processing . . . . 82

5.3.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . 84

5.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Characterization of Synchronous Automata Processing and AsyncAP 89

5.4.1 Applications Configurations . . . . . . . . . . . . . . . . . . . . 89

iii



5.4.2 Comparison of Identified Patterns . . . . . . . . . . . . . . . . 89

5.4.3 Characterization of Work by Emulation . . . . . . . . . . . . . 92

5.4.4 Comparison of Useful Work . . . . . . . . . . . . . . . . . . . . 95

5.4.5 Comparison of Total Work . . . . . . . . . . . . . . . . . . . . 95

5.4.6 How balance the work is in AsyncAP? . . . . . . . . . . . . . 96

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Evaluation Configurations . . . . . . . . . . . . . . . . . . . . . 97

5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.3 Analysis of Pattern Lengths . . . . . . . . . . . . . . . . . . . . 102

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Mapping Automata to Computation Resources . . . . . . . . . 106

5.6.2 Increasing Parallelism of Automata . . . . . . . . . . . . . . . . 106

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions and Future Work 109

6.1 Summary of Dissertation Contributions . . . . . . . . . . . . . . . . . 109

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 112

Vita 133

iv



ACKNOWLEDGMENTS

This dissertation would not have been possible without the help and support of
many people.

I would like to express my deepest appreciation to my advisor, Adwait Jog for his
helpful and valuable guidance throughout my Ph.D. journey. I have been extremely
lucky to work with Adwait and I enjoyed my Ph.D. life. Adwait has been a role
model for me. I also thank his family for their support.

I would like to thank our collaborators. I am so grateful to Sreepathi Pai for his
valuable ideas and insights, which have greatly helped my automata projects in this
dissertation. I also wish to thank Onur Kayıran for his knowledge and insights in
the automata accelerator project. I very much appreciate Bogdan Nicolae, Sheng
Di, and Franck Cappello for the valuable mentorship on the DNN project when I
was a visiting student at ANL.

I would like to thank my dissertation committee members, Pradeep Kumar, Zhen-
ming Liu, Weizhen Mao, and Zhijia Zhao, for their valuable feedback, suggestions,
and time.

I would like to thank Meena Arunachalam for the mentorship when I interned at
Intel.

I thank the entire technical staff for managing computing facilities at William &
Mary. Special thanks to Eric Walter, who helped me with my requests efficiently.
I also thank the Administrative Director of the computer science department,
Vanessa Godwin, for being efficient, professional, and caring.

I am especially thankful to our lab members Mohamed Assem Ibrahim, Gurunath
Kadam, Ying Li, and Haonan Wang for the support, companionship, and discus-
sions. It’s a bit sad to say goodbye to our previous office McG-101B.

I would like to extend my gratitude to all my friends. Especially, I am also very
fortunate to have a group of dear friends in William & Mary!

I am deeply indebted to my family. My wife and our cat Lume always support me.

I also thank my parents and other family members for their care and encouragement
without which I would not be what I am today.

v



To my family

vi



LIST OF TABLES

3.1 The effectiveness of profile-based prediction. c© 2018 IEEE. . . . . . . 25

3.2 List of evaluated applications: “RStates” stands for reporting states

and “MaxTopo” stands for maximum topological order across NFAs.

“Grp” stands for resource requirement groups: High (H), Medium

(M), Low (L). c© 2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Summary of Execution Scenarios. c© 2018 IEEE. . . . . . . . . . . . . 35

3.4 Runtime statistics for AP and BaseAP/SpAP (under 1% profiling

input): The first three columns show the number of executions on the

AP, BaseAP mode and SpAP mode, respectively. “EStalls” stands

for the stalls caused by enable operations for handling simultaneous

intermediate reports. “JumpRatio” is defined as the proportion of

cycles skipped in the SpAP mode. c© 2018 IEEE. . . . . . . . . . . . 39

4.1 Overview of the evaluated schemes on GPU . . . . . . . . . . . . . . . 63

4.2 Characteristics of evaluated NFA applications. . . . . . . . . . . . . . 65

4.3 Absolute throughput with our schemes (MB/s). The best performance

among GPU schemes is highlighted. . . . . . . . . . . . . . . . . . . 66

5.1 Three levels of parallelism in NFA processing . . . . . . . . . . . . . . 76

5.2 Categorization of Prior Works . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Comparison of Time Complexity. n: number of symbols; m number

of states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Overview of Evaluated Applications . . . . . . . . . . . . . . . . . . . 90

vii



5.5 Characteristics of applications based on our execution models: Our

key observations: (1) The GPU utilization depends on applications.

(2) Although AsyncAP has higher time complexity, in reality only

5% more useful work is needed on average. (3) Most applications

balance the work across threads well, but rarely the work is severely

imbalanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Absolute throughput (in MB/s) of evaluated applications under the

scenarios with different amounts of parallelism. . . . . . . . . . . . . . 100

5.7 Pattern Lengths of Applications . . . . . . . . . . . . . . . . . . . . . 103

viii



LIST OF FIGURES

2.1 Illustrating an Automata Processor and the NFA configured to it . . . 8

2.2 Overview of GPU Memory Hierarchy . . . . . . . . . . . . . . . . . . 9

3.1 A large portion of NFA states are cold (never-enabled) but are still

configured on the AP leading to its underutilization. c© 2018 IEEE. . 14

3.2 A homogeneous NFA that accepts regular expression

a((bc)|(cd)+)f: the doubled circle represents starting state

and the hexagon represents reporting state. c© 2018 IEEE. . . . . . . 16

3.3 The figure illustrates the first execution cycle of an AP configured

with the NFA shown in Figure 3.2. S1 is enabled when input symbol

a arrives, which activates S1, and enables S2 and S4 in the next cycle.

Downward arrows represent the enable signal being fed to routing

matrix in the current cycle. Upward arrows enable successor states for

the next cycle. The physical connections between STEs and routing

matrix are bi-directional, which are represented by the dashed arrows.

c© 2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Illustration of topological ordering and normalized depth. c© 2018

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Distribution of normalized depth for NFA states. For presentation

purposes only, normalized depth is classified as: i) shallow ([0–0.3)),

ii) medium ([0.3–0.6)), and iii) deep ([0.6–1]). c© 2018 IEEE. . . . . . 21

ix



3.6 An illustrative figure showing that by not configuring cold states on

AP, all the hot states can fit onto an AP at the same time, reducing

the number of re-executions over the input and hence saving time. c©

2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Partitioning an NFA by the partition layer. c© 2018 IEEE. . . . . . . 27

3.8 Constrained states are cold states but configured on the AP due to the

constraints in our topological-order-based partitioning scheme. Conse-

quently, some AP resources are underutilized with a few applications.

c© 2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Illustration of performance benefits under realistic partitioning: be-

cause of the jump operation, only a portion of input symbols are

executed in the SpAP mode execution. c© 2018 IEEE. . . . . . . . . 29

3.10 Speedup and Resource Savings on AP. c© 2018 IEEE. . . . . . . . . . 36

3.11 Performance per STE of various AP sizes with BaseAP/SpAP execu-

tion considering 1% profiling input. c© 2018 IEEE. . . . . . . . . . . 37

3.12 Comparison of number of reporting states: “IM” stands for interme-

diate reporting states. “True” stands for original reporting states on

BaseAP mode. “P” stands for profiling. c© 2018 IEEE. . . . . . . . . 38

3.13 Sensitivity on the different capacities of AP chip. c© 2018 IEEE. . . . 40

4.1 Working example of an NFA. . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The data movement normalized to the ideal cases: two prior schemes

use 25× and 18× compared to the ideal case where only the input

stream is loaded. The evaluation methodology is discussed in Section 4.6. 52

4.3 Two metrics showing the redundancy (#edges/#occupied-entries)

and sparsity (#occupied-entries/table-size) in the transition table.

Lower is worse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x



4.4 Illustrating the per-node data structure of NewTran (NT). Shaded

variables are in the local memory and others are in the registers. . . . 55

4.5 Percentage of states whose matchsets are complete, complement, or

not compressible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 The activity profile of the states. For the majority of applications,

80% of non-starting states are activated for only less than 1% of the

processed symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Illustrating the activity-based processing . . . . . . . . . . . . . . . . 60

4.8 Throughput sensitivity to the selection of hot states. Detailed evalua-

tion methodology is in Section 4.6. HotStart (or HotStart Opt,

an optimized version) has the best performance among these selection

schemes. Hence, we choose the always-active start states as hot states. 61

4.9 Throughput enhancement results normalized to iNFAnt. On average

HotStart-MaC achieves 26.5× speedup across 16 applications. The

best GPU results outperform an AP chip in 5 applications (CAV,

YARA, Snort, LV, and Bro). . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Throughput enhancement for the applications without always-active

start states in the single input stream scenario. Our schemes outper-

form NFA-CG and iNFAnt by at least 9% and 2.6×, respectively. . 68

4.11 Effect on data movement reduction: our schemes use significantly

fewer gld transactions than prior work. For example, HotStart-

MaC reduces gld transactions by 99.3% over iNFAnt. . . . . . . . . 69

4.12 Effect on the number of NFA states per thread block (a proxy for

compute utilization). More states are handled per thread block in

HotStart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



4.13 Performance sensitivity to Volta GPU Architecture. Both

HotStart-MaC and HotStart show more than 15× speedup over

iNFAnt, indicating their effectiveness on newer GPU architectures. . 70

5.1 Illustrating an NFA that accepts a*.x*y. S0 and S1 are all-input

starting states, which are always active in the execution. . . . . . . . 80

5.2 Revisiting traditional synchronous automata processing on GPU (a)

and the basic idea of AsyncAP (b). The executions try to find

pattern def in an input stream abcdefg... . . . . . . . . . . . . . . 83

5.3 Worklist holds active states or matched states. WL stands for worklist. 85

5.4 Performance of Selected Implementations of AsyncAP. Evaluation

methodology is described in Section 5.5. . . . . . . . . . . . . . . . . 86

5.5 Illustrating our implementation of AsyncAP . . . . . . . . . . . . . 87

5.6 Synchronous execution identifies disjoint patterns; Patterns identified

by different threads in asynchronous execution may overlap. . . . . . 91

5.7 Ratio of Overlapped Patterns (R) in Evaluated Applications . . . . . 91

5.8 Illustrating the Execution Models of Synchronous (GPU-NFA) and

Asynchronous (AsyncAP) Automata Processing on GPU . . . . . . . 93

5.9 Performance of synchronous and asynchronous automata executions

on GPU under different amounts of parallelism . . . . . . . . . . . . . 99

5.10 Performance sensitivity to Ampere GPU Architecture . . . . . . . . . 101

5.11 Slowdown of PEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.12 Large portion of NFAs can never have infinite long patterns. . . . . . 104

5.13 When limiting the pattern length to 1K, PEN does not exhibit slow-

down (i.e., slowdown is less than 1). . . . . . . . . . . . . . . . . . . . 105

xii



Techniques for Accelerating Large-scale Automata Processing



2

Chapter 1

Introduction

For decades, computing has relied on Moore’s law to provide abundant computing re-

sources. However, achieving continued growth in terms of performance and energy effi-

ciency has become extremely challenging due to near-end of Moore’s law and Dennard

scaling. Being compute-centric [25], the current general-purpose von Neumann architec-

tures (CPUs and GPUs) need to fetch instructions/data from memory involving costly

operations in terms of energy and speed. Further, achieving fine-grain parallelism and

synchronization on these general-purpose processors is difficult from both software and

hardware perspectives [7]. Therefore, it is very challenging for these conventional proces-

sors to efficiently execute all types of computations.

To address such inefficiencies, domain-specific accelerators (DSAs) are being developed

to achieve ASIC-like performance and at very high energy efficiency. A plethora of DSAs

have emerged in recent years from both industry and academia—Google’s Tensor Process-

ing Unit (TPU) [58] and Pixel Visual Core [4] for machine learning and image processing

workloads respectively; NVIDIA’s Deep Learning Accelerator (DLA) [3]; ARM’s Trillium

Project [2]; Microsoft’s Brainwave [1]; the DianNao ML accelerator family [39, 40, 45];

GenAx and Darwin for bioinformatics [49], and many more.

This dissertation considers an important domain—automata processing. Similar to

the aforementioned examples, many accelerators are proposed to accelerate automata



CHAPTER 1. INTRODUCTION 3

processing [44, 98, 47, 21]. Automata work as computation kernels of a large set of

applications used in different areas such as machine learning [93, 112], bioinformatics [34,

90], and network intrusion detection [10, 131]. However, in the big-data era, automata

applications are also growing fast. The applications require many automata and input

streams running at the same time. For example, ClamAV [6] is an application containing

a lot of virus patterns, which are accumulated very fast with the increased number of

internet viruses.

This dissertation focuses on tackling the large-scale automata processing problem on

both domain-specific accelerators and general-purpose accelerators.

We study three aspects for efficient large-scale automata processing: 1) How to make

current automata DSAs (i.e., Automata Processor) efficient for large-scale automata pro-

cessing [66]? 2) How can we reduce the gap between the general-purpose accelerator (i.e.,

General-purpose Graphics Processing Units, GPGPUs) and the DSA (i.e., Automata Pro-

cessor) for large-scale automata processing [69]? 3) How do we generalize the automata

processing on GPU to adapt to various automata task sizes?

1.1 Towards Efficient Large-scale Automata Accelerator

We focus on Automata Processor [44] (AP), which is one of the recently proposed Au-

tomata DSAs. We found a fundamental problem of AP—it is unable to handle large-scale

automata programs without repeated reconfiguration and re-execution.

To achieve higher throughput in those large-scale automata applications, we propose

efficient architectural support for large-scale automata processing. Our mechanisms are

based on our key observation that not all states of the automata are enabled during

execution, and hence need not be configured to the AP. Specifically, a large fraction of

states unnecessarily take space in the AP chip but are not part of any state transitions,

leading to its underutilization. To address this problem, we propose a profiling scheme

to predict which states are not needed to be configured to AP. We propose a lightweight



CHAPTER 1. INTRODUCTION 4

misprediction handling approach working as an execution mode of AP with marginal

hardware overhead. The detailed experiments demonstrate that our software/hardware

co-optimization significantly improves the performance of AP as well as performance per

area.

1.2 Reducing the Gap between GPGPU and Automata Ac-

celerator

GPUs are massively parallel accelerators that are widely used and available on the market.

Besides its ability in graphics, GPUs also accelerate many general-purpose workloads

such as machine learning and scientific computing. Execution of automata on highly

parallel architectures like GPUs, therefore, appears very attractive. However, automata

applications are very hard to accelerate on traditional von Neumann architectures. In

this direction, we analyze the bottlenecks of the large-scale automata processing on GPU.

Specifically, we observe two major bottlenecks: 1) excessive data movement through the

GPU memory hierarchy is needed for every input byte; 2) many threads are idle in the

execution due to the characteristics of automata execution.

To tackle the two bottlenecks, we propose new data structures and parallel execution

mechanisms tailored for GPU. The new data structures fit the topology of NFA into GPU

registers, which avoids the data movement for transition table look-ups. Our parallel

execution mechanisms map the active states to threads while mapping the infrequently

active states to worklists. These optimizations not only outperform the state-of-the-art

GPU automata processing approaches but also reduce the gap between GPU and AP into

an order of magnitude. Moreover, for several applications we evaluated, our approach

outperforms AP.



CHAPTER 1. INTRODUCTION 5

1.3 Designing and Analyzing a Generic Automata Process-

ing Scheme on GPU

To make automata processing on GPU more generic for tasks with different parallelism,

we propose AsyncAP, an approach that processes automata asynchronously on GPU.

Our approach exploits an additional source of parallelism that scales with the length of

an input stream. As the input stream is often long enough, AsyncAP enables all tasks to

have enough parallelism that can utilize all GPU cores. Each thread of AsyncAP works

asynchronously, reducing the overhead incurred by thread block synchronization.

Theoretically, AsyncAP has more time complexity than the traditional synchronous

automata processing approaches on GPUs. However, no prior work has studied the amount

of work in practice. To understand the amount of work needed in reality, our detailed

characterization of synchronous automata execution and AsyncAP demonstrates that

AsyncAP only incurs marginal more work on average across the evaluated applications.

For most of the applications, the evaluation demonstrates that a significant speedup

is obtained when the original parallelism of a task is not enough. Further, even when the

task is equipped with enough parallelism originally, the new approach achieves comparable

performance to the state-of-the-art GPU automata processing engine.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the background

for automata, Automata Processor (AP), and General-purpose Graphics Processing Units

(GPGPUs). Chapter 3 introduces our observation that the current automata processor

cannot efficiently execute large-scale automata processing. Based on our key observations

that a large fraction of states are never enabled, we propose software-hardware co-design

optimizations for AP to accelerate large-scale automata processing. Chapter 4 answers

why GPUs are not efficient at executing automata and propose software approaches to



CHAPTER 1. INTRODUCTION 6

accelerate it. Our optimizations reduce the gap between a general-purpose accelerator

(GPU) and a domain-specific accelerator (AP) and even outperform AP for a few applica-

tions. Chapter 5 focuses on the problem that automata processing tasks may not always

have enough parallelism to utilize GPU cores. To address this problem, we propose a

more generic scheme that exploits symbol-level parallelism, achieving at least comparable

performance as the state-of-the-art scheme on GPU for most of the evaluated applications.

Chapter 6 summarizes the dissertation and discusses the future work.



Chapter 2

Background

2.1 Automata

Automata are also known as finite state machines (FSMs). Deterministic Finite Au-

tomaton (DFA) and Non-deterministic Finite Automaton (NFA) are two commonly used

representations. DFA allows only one active state for each symbol. On the contrary,

NFA allows multiple active states, which is ideal for parallel processing. The NFA used in

Automata Processor is Glushkov NFA (aka homogeneous NFA) [51]. In this dissertation,

we focus on Glushkov NFA and use automata or NFA to term it.1 We refer the readers

to the classical textbooks for the basic knowledge of automata theory [102].

NFA and matching process. An NFA is a directed graph where each node represents

a state and each edge represents a state transition. Every state in the NFA has a matchset

that contains the alphabets (symbols) it matches. Every NFA has at least one start state

and at least one reporting state. The matching process begins by activating the start

states. An NFA consumes one symbol at a time from the input stream. For each symbol,

all currently active states attempt to match the incoming symbol with their matchset.

If any of them match, they activate their successors. Unlike DFA, where only one state

is active, NFAs can have multiple states active simultaneously—making them ideal for

1Those representations can be transformed with each other, with the same expressiveness.

7



CHAPTER 2. BACKGROUND 8

parallel architectures. If a reporting state matches an input symbol, it generates a report

showing that a relevant pattern has been observed in the input stream. Usually, all starting

states are always-active, unless a user wants to search patterns that only start at a certain

position of the input stream.

2.2 Automata Processor

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

1 1

1

1

1

1

1

1 1

Input Symbol

8x
25

6 
D

ec
od

er

‘A’

‘C’

‘E’

‘L’

‘P’

‘B’

‘D’

State Bit

…
…

Routing Matrix

P P L EA

I C A T I O N

S0 S1 S2 S3 S4

S5 S6 S7 S8 S9 S10 S11

Input Stream: APPLEC

Figure 2.1: Illustrating an Automata Processor and the NFA configured to it

Automata Processor (AP) is a memory-centric accelerator for finite state automata

processing by implementing NFA states and state transitions in memory. AP exploits the

high parallelism in DRAM. Figure 2.1 illustrates an AP and the NFA configured to it. The

matchset of each state is stored in the DRAM columns. For example, S0 accepts symbol

A, then the bitset of A is mapped to the first column. The transitions are configured to the

routing matrix. Each cycle, the 8×256 decoder selects the row of the incoming symbol. If

a state accepts the incoming symbol (i.e., its state bit is 1), then the routing matrix sets

the state bit of its successors. The entire input stream is processed sequentially at the



CHAPTER 2. BACKGROUND 9

rate of one symbol per cycle.

We refer the readers to prior work [44, 126] and Chapter 3.2 for more details of AP.

2.3 Graphics Processing Units (GPUs)

GPU was an accelerator designed for computer graphics originally. Now, GPUs are found

in a wide range of computer systems such as data centers, embedded systems, mobile

phones, personal computers, workstations, and game consoles [67, 68, 136, 54]. Compared

to the CPU, GPU provides much higher instruction throughput and memory bandwidth

than the CPU within a similar price and power envelope. Many applications leverage these

higher capabilities to run faster on the GPU than on the CPU [129, 137, 134, 133, 132, 135],

making GPU a general-purpose accelerator. We refer the readers to this document [7] for

more background about GPU.

Thread

Per-thread Local 
Memory

Thread Block

Shared Memory

Thread Block Thread Block

Thread Block Thread Block

Grid

Global Memory

Figure 2.2: Overview of GPU Memory Hierarchy

Programming model and memory hierarchy. GPU uses SIMT programming

model [7, 64]. The code running on the device (i.e., kernel) is launched in a grid. The grid



CHAPTER 2. BACKGROUND 10

consists of multiple thread blocks (aka Cooperative Thread Arrays, CTA, or workgroups).

A thread block contains one or more warps where 32 threads are grouped. The thread block

scheduler assigns thread blocks to stream multiprocessors (SMs) in a many-to-one manner

depending on the SM resources and the requirements of thread blocks. In each cycle, the

warp schedulers issue an instruction from an active warp to the SIMD executions units.

The independent scheduled multiple warps lead to high throughput because of better

latency hiding [57, 56].

Figure 2.2 shows the memory hierarchy corresponding to the programming model.

Local memory is private to each thread. While the local memory can use cache hierarchy in

recent GPU architectures, it is located in the off-chip DRAM. Shared memory is allocated

to each thread block. The threads within a thread block can communicate through the

low-latency on-chip shared memory. Global memory is located in the off-chip DRAM

which is accessible to all threads within the same CUDA context.



11

Chapter 3

Architectural Support for Efficient

Large-Scale Automata Processing

The Automata Processor (AP) accelerates applications from domains ranging from ma-

chine learning to genomics. However, as a spatial architecture, it is unable to handle larger

automata programs without repeated reconfiguration and re-execution. To achieve high

throughput, this paper proposes for the first time architectural support for AP to effi-

ciently execute large-scale applications. We find that a large number of existing and new

Non-deterministic Finite Automata (NFA) based applications have states that are never

enabled but are still configured on the AP chips leading to their underutilization. With

the help of careful characterization and profiling-based mechanisms, we predict which

states are never enabled and hence need not be configured on AP. Furthermore, we de-

velop SparseAP, a new execution mode for AP to efficiently handle the mis-predicted NFA

states. Our detailed simulations across 26 applications from various domains show that

our newly proposed execution model for AP can obtain 2.1× geometric mean speedup (up

to 47×) over the baseline AP execution.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 12

3.1 Introduction

Many applications from domains such as genomics, malware detection, machine learning,

and data analytics exhibit high levels of parallelism and are being accelerated through the

use of spatial architectures that can exploit higher levels of parallelism than CPUs and

also can significantly reduce data movement [39, 71, 45, 49, 110, 47, 100, 73, 19]. Spatial

architectures usually consist of many interconnected processing elements that expose a

very high degree of parallelism. Field-programmable gate arrays (FPGAs) are a classic

example; the systolic-array-based Matrix Multiply Unit in Google’s Tensor Processing

Unit [58] is also a spatial architecture. One of the fundamental challenges with spatial

architectures is that program size is a first order concern – there are a fixed number of

states available and a spatial program must fit completely to begin execution. Otherwise,

execution may be impossible, or in the best case multiple rounds of reconfiguration and

re-execution may be required that can incur significant performance penalties [144]. On

traditional von Neumann architectures, these issues can typically be handled by traditional

mechanisms such as context switching and virtualization. However, the large size of the

spatial program state means that these techniques do not transfer directly. Some of these

issues affect also traditional architectures like the Graphics Processing Units (GPUs),

whose massive parallelism also means that the amount of state is often prohibitively large

to support efficient multitasking [109, 80, 65, 38].

In this paper, we focus on providing architectural support for executing large-

scale tasks on a special class of spatial architectures, known as automata processors

(APs) [44]. These architectures accelerate the processing of Non-deterministic Finite Au-

tomata (NFA), a widely used representation of Finite State Machines (FSMs). FSMs are

foundational in a wide range of application domains such as DNA sequence matching,

network intrusion detection and machine learning [152, 113, 91, 33, 81, 121]. Although

many existing approaches [36, 146, 154, 88] accelerate NFA processing on CPUs or GPUs,

none of them completely solve the problem of data movement caused by irregular accesses



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 13

due to NFA transition table lookups. In comparison, the AP executes NFAs natively and

achieves significant performance speedup [123, 76] primarily because of: a) AP’s massive

parallelism where NFA states are mapped to columns in DRAM and can be activated

independently and simultaneously in a given cycle; and b) AP’s in-memory processing

capability that handles NFA transitions without data movement between processor and

memory.

An AP half-core (the basic processing unit of AP) can hold up to 24K states. However,

in future, we expect that the NFA-based applications are going to scale both in terms of

the number of NFAs per application and the number of states in an NFA. We expect

this scaling from at least two aspects. First, in the era of big-data, the new applications

will likely be mining even larger databases. For example, ClamAV [6], an anti-virus

application, uses a variant of regular expression to specify each virus signature in an ever-

enlarging database. The number of NFA states constructed from these signature regular

expressions is consequently larger and state-of-the-art AP chips can no longer hold all

the states at once. Second, a number of existing and newly proposed techniques enhance

the throughput of FSM processing, but only by increasing the number of states. For

example, existing AP supports duplicating NFAs to run multiple input symbol streams in

parallel [5]; newly proposed Parallel Automata Processor [106] duplicates NFAs for parallel

enumeration; and the Multi-stride NFAs [35, 29] transformation increases the number of

transitions for processing multiple symbols at one step. Current AP chips execute these

applications with a large number of NFAs/states by making independent batches of NFAs

and executing each batch on the entire input while reconfiguring the AP between each

batch.

To address the performance inefficiencies from repeated re-executions, we propose

hardware and software support for large-scale NFA-based applications that currently do

not fit in the AP chips. Our mechanisms are based on our key observation that not all

states of an NFA are enabled during execution, and hence need not be configured to the

AP. Specifically, a large fraction of states unnecessarily take space in the AP chip but are



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 14

0%
20%
40%
60%
80%
100%

CA
V4

k D
S

CA
V

D
S0
3

D
S0
6

Sn
or
t_
L

D
S0
9

Sn
or
t

H
M
15
00

H
M
50
0

H
M
10
00 H
M

PE
N

TC
P

Rg
1

EM ER
Rg
05

Fe
rm

i
Pr
o

Br
ill LV

Br
o2

17
SP
M

RF
1

RF
2Pe

rc
en

ta
ge
	o
f	s
ta
te
s Hot	(Enabled) Cold	(Never-enabled)

Figure 3.1: A large portion of NFA states are cold (never-enabled) but are still configured
on the AP leading to its underutilization. c© 2018 IEEE.

not part of any state transitions. We refer to such never enabled states as cold states

and the remaining (enabled) states as hot states. Figure 3.1 quantitatively shows our

observation across 26 diverse applications [123, 30] sorted in the increasing order of their

percentage of hot states (across all NFAs in an application). We find that on average 59%

of states are cold and it can be up to 99% in applications such as CAV4k.

These observations can be explained by revisiting the way NFAs process inputs. NFA

behavior is highly input dependent. A state can attempt to match a symbol of input only

if it is enabled. In the most general case, a state is enabled only if at least one of its

predecessor states matched a symbol of input (the exceptions being starting states, which

are always enabled). A match indicates that the current input string is plausibly still a

valid prefix of the regular language recognized by the NFA. States stop matching as soon

as the input string is definitely not in the language. However, the AP must still process

all input symbols as long as there is one state enabled (which is always true for an NFA

with at least one starting state that is always enabled), thus leaving many states never

enabled. Section 3.3 shows that this is indeed the case for the NFAs running on the AP.

Based on the above key insight, we first develop software-based mechanism to predict

which states are cold and hence need not be configured on the AP. Next, we propose

changes in the AP hardware to efficiently execute the mis-predicted cold states. To the best



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 15

of our knowledge, this is the first work that proposes architectural support for efficiently

executing large-scale NFA-based applications on the AP. In summary, this paper makes

the following contributions:

• We demonstrate that a large number of NFA states are cold during execution but

are still configured on the AP. This leads to its severe underutilization.

•We develop a prediction mechanism to classify the NFA states into predicted hot and

predicted cold sets. We use properties of NFA execution to develop a simple and effective

partitioning scheme based on a state’s topological order and profiling information.

• We develop efficient hardware mechanisms to execute predicted cold states using

a new sparse execution mode for the AP (called as SparseAP). Our detailed evaluation

shows that we can achieve 2.1× geometric mean speedup (up to 47×) over the baseline

AP execution across a wide range of 26 applications.

3.2 Background and Terminology

In this section, we provide a brief background on NFAs and their processing on the AP.

3.2.1 NFA-based Pattern Matching

An NFA is represented by a 5-tuple, (Q,Σ,∆, q0, F ), where Q is a set of states, Σ is the

alphabet (set of input symbols), ∆ is a transition function which maps Σ ×∆ pairs to a

new set of states, q0 is the set of starting states, and F is a set of accepting or reporting

states. Because there can be more than one possible state on a transition, such FSM is

called non-deterministic. The NFAs used by APs are homogeneous1.

These NFAs can be visualized as a directed graph where each node represents a state

and each edge represents a state transition. Each state in the NFA has a symbol-set that

represents what symbols can be accepted by this state. Each state has one or multiple

1In homogeneous NFAs [44, 20], all incoming transitions to any given state must accept the same set of
input symbols (symbol-set). In the rest of this paper, we treat homogeneous NFA synonymous with NFA,
because they have the same computational ability and time complexity.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 16

b c

a
c d

S1

S2 S3

S6S5S4

f

Figure 3.2: A homogeneous NFA that accepts regular expression a((bc)|(cd)+)f: the
doubled circle represents starting state and the hexagon represents reporting state. c©
2018 IEEE.

successors connected by directed edges. In each step, the NFA has a number of enabled

states. The starting states are enabled prior to the execution. The matching process is

driven by a stream of input symbols. Each cycle, an enabled state compares the input

symbol with its symbol-set for matching; when the symbol matches, the state is activated,

and all its successor states are enabled in the next cycle. When a reporting state is

activated, it generates a report showing that a relevant pattern has been observed in the

input symbol stream.

Figure 3.2 shows the NFA of the regular expression a((bc)|(cd)+)f. At first, the

starting state S1 is enabled. abcf is the input symbol stream. a activates state S1,

resulting in the successors of S1 (i.e., S2 and S4) to be enabled in the next cycle. b

activates state S2 (S4 is not activated since it does not accept symbol b), then the successor

of S2 (i.e., S3) is enabled. The process repeats until all input symbols are consumed. In

this case, since reporting state S6 is activated by input symbol f, a report is generated

indicating a successful match.

3.2.2 Baseline Automata Processor (AP)

Figure 3.3 shows a schematic of the considered baseline AP chip. The AP is a DRAM-

based spatial architecture in which each state of NFA is stored in a memory column of

the DRAM, namely a state transition element (STE). A bit in the column represents

whether the STE can accept the corresponding input symbol represented by each row.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 17

Routing matrix

1

S1 S2 S3 S4 S5 S6

1
1

1 1
1

State 
vector

8-
25

6 
D

ec
od

er

input 
symbol
‘a’

State 
bit

97th row

Figure 3.3: The figure illustrates the first execution cycle of an AP configured with the
NFA shown in Figure 3.2. S1 is enabled when input symbol a arrives, which activates
S1, and enables S2 and S4 in the next cycle. Downward arrows represent the enable
signal being fed to routing matrix in the current cycle. Upward arrows enable successor
states for the next cycle. The physical connections between STEs and routing matrix are
bi-directional, which are represented by the dashed arrows. c© 2018 IEEE.

The maximum size of the alphabet is 256 as this is the width of the address decoder in

the current AP architecture. Therefore, there are 256 rows in total. An AP chip consists

of two half-cores. The state transition cannot go across half-cores due to the limitation of

the interconnect. The state transitions are compiled to the reconfigurable interconnecting

network namely routing matrix.

The entire input stream is processed sequentially with the rate of one symbol per cycle.

Each cycle, one input symbol is fed into the address decoder, which selects a whole row

(out of 256) of the DRAM (orange shaded part in Figure 3.3). Each STE column has a

bit that represents whether the STE is enabled or not, namely state bit. The state bits for

all STEs are combined as a state vector. This information is available from the previous

cycle. An AND operation is performed between the selected row (e.g., shaded part) and



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 18

the state vector resulting in a vector that determines the activated states. This activation

information is sent to the routing matrix, which updates the state vector with the enabled

states for processing next symbol. Such a process is repeated until the entire input symbol

stream is processed.

To understand the working of AP, we illustrate the execution of previously considered

NFA (Figure 3.2) via Figure 3.3. We previously observed in Figure 3.2 that S1 accepts

symbol a. Accordingly, the bit stored in the 97th row (corresponding to the ASCII of a)

and the column of STE that stores S1 is set to 1 and the others remain 0. The state bit

of S1 is 1 and {a} is in the symbol-set of S1, therefore, S1 is activated and it broadcasts

the enable signals to the successor states (S2, S4) via the routing matrix (upward arrows

in Figure 3.3).

3.3 Motivation and Analysis

In this section, we analyze why a high percentage of states are cold, which states are more

likely to be cold, and how avoiding these states from being configured to AP can improve

the performance.

3.3.1 Topological Order and Normalized Depth

In general, it is hard to predict which states will be enabled in NFAs [149]. Clearly,

all starting states will be enabled at least once and this does not depend on the input.

The states that are further away from the starting state, however, depend on the input.

Each subsequent state transition in a homogeneous NFA must match a symbol of input

(homogeneous NFAs do not have ε-transitions [101]). Intuitively, a state that is further

away from the starting state is less likely to be enabled since each additional state on the

path to it increases the chances of a mismatch.

To verify if this intuition holds on NFAs from real-world applications executing on the

AP, we study whether states are hot or cold with respect to their depths in the NFAs.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 19

For simplicity of exposition, we first consider only NFAs that are also directed-acyclic

graphs (DAGs). In this case, the depth of a state is simply its topological order (i.e.,

the maximum steps from the starting state to itself in the matching process). Thus, the

matching process goes from states with a lower topological order to states with a higher

topological order but cannot go back as DAGs do not have cycles. Such an NFA can be

viewed as a graph with layers, where all starting states are in the first layer (i.e., their

topological order is one), states in the second layer (i.e., states with topological order of

two) are reachable from the first layer, states in the third layer are reachable from the first

and second layers, and so on.

However, NFAs are not always DAGs, because they can contain back edges (i.e., from a

later layer to an earlier layer) and cycles. For example, the NFA in Figure 3.4 ( 1 ) contains

a cycle between states S4 and S5. Topological sort cannot be performed on such graphs.

Therefore, we pre-process an NFA by identifying all its strongly connected components

(SCC) [42]. Each state s is marked with a connected component number SCC(s), such that

the states belonging to the same SCC are marked with the same number. We construct

graph G′ from directed graph G (i.e., the NFA) by treating each SCC in G as a single

node in G′ (e.g., in Figure 3.4, the SCC that includes states S4 and S5 is considered as a

single node in G′). For each edge (u, v) in G, an edge (SCC(u), SCC(v)) is added in G′

if nodes u and v are in different SCCs. The resulting G′ is a DAG on which we can run

a topological sort. Figure 3.4 ( 2 ) shows the results of identifying SCCs and topological

sort. The topological order of each state is indicated as a number right to the state. Since

S4 and S5 belong to the same SCC, they are assigned with the same topological order.

The absolute topological order or depth of a state is uninformative as different NFAs

can have a different number of layers, even within the same application. Therefore, we

normalize the depth of a state to the maximum depth in the NFA it belongs to, resulting

in normalized depth. For example, in Figure 3.4 ( 2 ), because the maximum topological

order is 4 (S6), the normalized depth of each state s is topoorder(s)/4 (e.g., for S4 and

S5, it is 2/4 or 0.5) where topoorder is a function that returns the topological order of



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 20

b

c

f

a

c

d

S1

S2

S3

S6

S5

S4

1

2 2

23

4

1/4

2/4

2/4

4/4

2/4

3/4

SCC
b

c

f

a

c

d

S1

S2

S3

S6

S5

S4

1 2

Figure 3.4: Illustration of topological ordering and normalized depth. c© 2018 IEEE.

a state. A normalized depth closer to 1 indicates the state is at the bottom of the NFA

(or relatively deep), while a value closer to 0 indicates the state is closer to the top (or

relatively shallow).

3.3.2 Analysis of Normalized Depth and Enabled NFA States

Figure 3.5(a) shows the normalized depth distribution of enabled (hot) states for our

evaluated applications. Each application is comprised of many NFAs, each representing a

different pattern. We find that for the majority of applications, the hot states have low

normalized depth (i.e., they are closer to the starting state of the NFAs). Furthermore,

for the same set of applications, Figure 3.5(b) shows the normalized depth distribution

of cold (never enabled) states. We observe that the cold states in the majority of the

applications have high normalized depth (i.e., they are in deeper regions of the NFAs). To

confirm this conclusion further, we also find that there is a significant negative correlation

(average correlation coefficient is −0.82) between normalized depth and percentage of hot

states for all applications, except ER.

We conclude that whether a state is hot or cold is highly correlated with its normalized

depth. Overall, “shallow” states are more likely to be hot while “deep” states are more

likely to be cold.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 21

0%

20%

40%

60%

80%

100%

CA
V4

k
DS CA
V

DS
03

DS
06

Sn
or
t_
L

DS
09

Sn
or
t

HM
15
00

HM
50
0

HM
10
00 HM PE
N

TC
P

Rg
1

EM ER
Rg

05
Fe
rm

i
Pr
o

Br
ill LV

Br
o2

17
SP
M

RF
1

RF
2Pe

rc
en

ta
ge
	o
f	s
ta
te
s Shallow Medium Deep

(a) Hot (Enabled) states.

0%

20%

40%

60%

80%

100%

CA
V4

k
DS CA
V

DS
03

DS
06

Sn
or
t_
L

DS
09

Sn
or
t

HM
15
00

HM
50
0

HM
10
00 HM PE
N

TC
P

Rg
1

EM ER
Rg

05
Fe
rm

i
Pr
o

Br
ill LV

Br
o2

17
SP
M

RF
1

RF
2

Pe
rc
en

ta
ge
	o
f	s
ta
te
s

(b) Cold (Never-enabled) states.

Figure 3.5: Distribution of normalized depth for NFA states. For presentation purposes
only, normalized depth is classified as: i) shallow ([0–0.3)), ii) medium ([0.3–0.6)), and iii)
deep ([0.6–1]). c© 2018 IEEE.

3.3.3 Analysis of Performance Benefits

We analyze the ideal performance benefits when we completely eliminate the cold states

from being configured on the AP. We show the potential benefits using a performance

model assuming oracular knowledge of which states are cold and not configured on the

AP.

Performance Model. Consider the case of the baseline AP execution, where the ap-

plication has S states (across all NFAs) and the number of states the AP half-core can

hold (capacity) is CAP . Without loss of generality, we only discuss the case of one AP

half-core. If the number of states (S) is larger than the size of AP (CAP ), it is not possible

to configure the entire application at once to the AP and will require configuring the AP



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 22

Execution Execution

Execution Cycles 

Batch 1
Batch 1 Batch 2

Hot States
B

as
el

in
e

Compile-time Runtime

input stream

Saved 

Time

input stream

input stream

Hot States
Pe

rf
ec

t 
Pa

rt
iti

on
in

g

Batch 2

Starting state

Hot state

Cold state

ApplicationA

C

D

E

B

Figure 3.6: An illustrative figure showing that by not configuring cold states on AP, all
the hot states can fit onto an AP at the same time, reducing the number of re-executions
over the input and hence saving time. c© 2018 IEEE.

multiple times. Each configuration places a set of NFAs that can collectively fit in the

AP. Suppose the size of each NFA in the application is less than the size of AP, therefore,

the number of configurations to the AP would be Nconfig = d S
CAP
e, under the assumption

that individual NFAs can be split at state granularity. In the current AP architecture,

batches (partitions) usually contain whole NFAs, so the number of configurations may be

even higher.

To maintain semantics, each configuration batch must see the same input stream.

The matching process finishes after all batches of NFAs are executed on the same input

stream. Thus, the total number of cycles spent on the same input stream is Nconfig × n,

where n is the length of the input stream and Nconfig is the number of batches. Under

a perfect scenario where we can identify cold states (Scold ) with 100% accuracy, we can

reduce Nconfig by not configuring the cold states to the AP. We define the resource saving

p = Scold
S . Therefore, the speedup over the baseline case is d S

CAP
e/d (1−p)·S

CAP
e. If the number

of states is sufficiently large, the speedup we can get is proportional to 1
1−p , p 6= 1. Thus,

the larger the proportion of cold states that can be correctly identified and eliminated,

the more speedup we can have over the baseline execution scenario.

Illustrative Example. To illustrate the benefits of configuring the AP with only hot

states, Figure 3.6 shows two scenarios: a) the baseline AP execution, and b) the AP that



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 23

only executes hot states. The execution in both cases considers the same application

( A ). In the baseline scenario, if the number of total states is more than the AP capacity,

the execution will need to be done in batches as discussed before. In this example, the

compiler partitions the application into two batches, where each batch can individually fit

in the AP ( B ). Hence, the same input stream is executed twice in a sequential manner

( D ). However, with the oracular knowledge of cold states, the compiler can generate a

perfect partition of the application with only the hot states ( C ). If this perfect partition

fits in the AP, it can execute on it by consuming the same input stream only once ( E ),

resulting in significant savings in the execution cycles.

In summary, significant speedup can be achieved if cold states are not configured to

AP. In the next section, we propose a simple and effective profiling-based mechanism to

identify such states in realistic scenarios and then leverage the profiling information to

efficiently partition them from the NFAs.

3.4 Design and Implementation of NFA Partitioning

Any realistic implementation that eliminates cold states from NFAs (i.e., partitions NFAs

into cold and hot states, and only configures AP with hot states) has to deal with at

least three challenges. First, although it is not possible to predict cold states with 100%

accuracy in general, we need to develop low-overhead techniques to improve the accuracy

of prediction as much as possible. Second, in the case of a mis-prediction, some transitions

may require states that are not configured on the AP. To this end, we need a mechanism

working as a safety net to handle a transition from a state on the AP to a state that is

not on the AP. Third, to minimize the cost of such mis-predictions, transitions should be

unidirectional to avoid re-executions of inputs on the AP.

Our proposed partitioning scheme systematically addresses these challenges. First, we

use a profiling-based scheme to identify the topological layer that acts as a partition layer

for each NFA in the application. Second, our proposed scheme handles transitions out of



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 24

the AP by adding intermediate reporting states that piggyback on existing AP reporting

hardware. Finally, to ensure unidirectional transitions, we partition the NFA at a specific

topological order. Since the matching always proceeds from a lower to a higher topological

order, edges that cross partitions go only in one direction.

3.4.1 Profiling-based Hot/Cold State Prediction

We use a small portion of input for each application as profiling input. Basically, at

compile time, we run the profiling input on the NFAs of the application and determine

whether a state is hot or cold. We assume that this profiling information holds true during

the actual execution and hence are able to predict which states will be hot or cold. In

the following parts of this sub-section, we evaluate the effectiveness of our profiling-based

prediction.

Profiling and Testing Inputs. Each application that we evaluate has a 1MB input.

We divide this 1MB input into two equal parts of 512KB. The first 512KB of input is

used for creating different sizes of profiling inputs and the last 512KB is used for testing

input. We create different sizes of profiling inputs by using the first 0.2%, 2%, 20%, 100%

symbols of the 512KB portion, which is essentially 0.1%, 1%, 10%, 50% of the entire input.

Methodology for Evaluating the Effectiveness of Profiling. In our evaluation,

we treat hot as positive (P ) and cold as negative (N). Therefore, true positives (TP)

are states that are hot both under profiling input and testing input. Similarly, false

positives (FP) are states that are hot under profiling input but actually cold under testing

input. True negatives (TN ) and false negatives (FN ) are defined similarly. We define: a)

accuracy = TP+TN
P+N , which measures overall how well is the profiling-based prediction; b)

recall = TP
TP+FN , which measures how complete our prediction is terms of predicting hot

states; and c) precision = TP
TP+FP , which measures how well the prediction could realize

the resource saving scope (p).

Effectiveness of Profiling. Table 3.1 shows the average numbers for accuracy, recall,

and precision when we use different sizes of profiling inputs. We evaluate all applications



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 25

Table 3.1: The effectiveness of profile-based prediction. c© 2018 IEEE.

Percentage of the entire input ⇒ 0.1% 1% 10% 50%

Accuracy 87% 90% 93% 97%

Recall 64% 76% 87% 97%

Precision 94% 92% 90% 92%

except Fermi and SPM. Specifically, using only 2% prefix of the first 512KB (i.e., 1% of

the entire input) can achieve 76% recall, which means 76% of hot states under testing

input are also hot with the small profiling input. The results are consistent across 24

applications (recall varies from 49% to 100%). In addition, the prediction also has good

results in terms of accuracy and precision. To conclude, only a small profiling input can

identify most of the hot states during the actual execution. Therefore, we use 0.1% and 1%

of the entire input for profiling and the remaining for the actual evaluation2 (Section 3.7).

3.4.2 Where to Partition?

In current AP architecture, the application is split at NFA granularity into batches. In

contrast, we partition the NFAs at topological-order granularity. There are two reasons

that we use topological-order as our partition granularity. First, our previous analysis

(Section 3.3.2) shows there is a correlation between normalized depth and percentage of hot

states. Second, partition at topological-order granularity can guarantee the unidirectional

transition between predicted cold and hot states. In this sub-section, we show how do

we obtain partition layer kU for each NFA U of the application. We will show how to

partition each NFA at the topological-order granularity in Section 3.4.3.

Choosing Partition Layer. At compile time, we functionally simulate all NFAs of the

application using the profiling input and predict whether a state is hot or cold. After

simulation, for each NFA U , we set kU = max{topoorder(s)}, ∀s is a hot state in NFA U

under the profiling input. We define the predicted hot set = {s | s ∈ U ∧ topoorder(s) ≤

kU , ∀U}. Accordingly, the predicted cold set = {s | s ∈ U ∧ topoorder(s) > kU ,∀U}. We

2For Fermi and SPM, we use the entire input for the actual execution because their starting states are
only enabled at position 0 (start-of-data in ANML configuration).



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 26

divide the predicted hot set at NFA level into batches that can fit in AP and configure

each batch sequentially.

Optimization. As an optimization, to make each batch fill the AP completely, we assign

additional states to the predicted hot set from predicted cold set. This is achieved by

incrementing kU , which adds the states of the subsequent partition layers for each NFA

U . This process terminates when the capacity of AP is met for each batch.

3.4.3 How to Partition?

In this sub-section, we demonstrate how to partition an NFA into two parts at a given

partition layer k calculated based on the description presented in Section 3.4.2 and how

to handle state transitions when the partitioning is imperfect. For brevity, we describe

our partitioning scheme for a single NFA, which then can be separately applied to each

NFA in the application. Figure 3.7 illustrates NFA partitioning using the partition layer

k = 3 and cut the edges that connect states with k ≤ 3 to states with k > 3 (indicated as

dashed lines in Figure 3.7 ( 1 )). However, the prediction may not be perfect – a state in

the predicted cold set could end up being enabled during matching. Since only states in

the predicted hot set are present on the AP, the matching process must transition out of

the AP.

To handle such cases, for each edge (u, v) we cut in the original NFA, we introduce an

intermediate reporting state v′ and an edge (u, v′). The state v′ matches exactly the same

input symbols (symbol-set) as v but is also a reporting state. During execution, the AP

contains these intermediate reporting states along with the predicted hot set. Therefore,

when the matching process tries to enable a state that is not on the AP (i.e., in the

predicted cold set), it activates the corresponding intermediate reporting state instead.

Consequently, an intermediate report is generated that notifies a handler (Section 3.5).

The handler will enable corresponding states in predicted cold set to continue the matching

process. Since we use topological order to partition, after the matching process continues,

it will never go back to the predicted hot set. In Figure 3.7 ( 2 ), the intermediate reporting



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 27

1
a

b c

d

a

1

2 2

2

e

d

e

2

3
3

3

c

d

T

d

f

Q

a

b c

d

a

1

2 2

2

e

d

e

2

3
3

3

2

S3P4

S2P3

S1P2

S1P1

c

d

T

d

f

Qc c d f

P1 P2 P3 P4

S1 S2

S3

S1 S2

S3

3

4Predicted 
hot set

Predicted 
cold set

Translation 
table

Intermediate reporting state

Figure 3.7: Partitioning an NFA by the partition layer. c© 2018 IEEE.

states are P1 through P4. When activated, these states enable their corresponding states

S1, S2 and S3 as indicated in the translation table (Figure 3.7 ( 3 )), which lie in the

predicted cold set shown in Figure 3.7( 4 ).

3.4.4 Discussion

The use of SCC and topological-order-based partitioning imposes constraints that lead to

more states than necessary being added to the predicted hot set. Specifically, (1) even if

only one state in an SCC is hot, the whole SCC must be included in predicted hot set,

and (2) a cold state with topological order less than the partition layer k is still included

in the predicted hot set. This might reduce the AP resource savings.

To study the extent of this underutilization, Figure 3.8 shows that for all the 26

evaluated applications, our topological-order based perfect partitioning constrains only

4% on average more states to the predicted hot set (which in reality are not going to be

enabled), compared with perfect partitioning that can cut NFAs at arbitrary edges. Two



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 28

0%
20%
40%
60%
80%
100%

CA
V4

k DS CA
V

DS
03

DS
06

Sn
or
t_
L

DS
09

Sn
or
t

HM
15
00

HM
50
0

HM
10
00 HM PE
N

TC
P

Rg
1

EM ER
Rg

05
Fe
rm

i
Pr
o

Br
ill LV

Br
o2

17
SP
M

RF
1

RF
2Pe

rc
en

ta
ge
	o
f	s
ta
te
s

Hot	states Constrained	states Cold	states

Figure 3.8: Constrained states are cold states but configured on the AP due to the
constraints in our topological-order-based partitioning scheme. Consequently, some AP
resources are underutilized with a few applications. c© 2018 IEEE.

exceptions are LV and ER whose large SCCs prevent effective partitions. In summary, we

still have a significant opportunity for resource savings if we can accurately identify the

partition layer for each NFA.

3.5 Hardware Support for Intermediate Report Handling

and Partitioned NFA Processing

In this section, we discuss how to efficiently handle the intermediate reports generated

from the execution of the predicted hot set. To this end, we propose to: a) enable the

states that intermediate reporting state directs to, and b) continue the matching process

from the cycle (i.e., the input position) where the intermediate report was generated at.

Although both steps can be performed on CPU, it incurs significant performance slowdown

(Section 3.7), therefore we propose a new execution mode for the AP.

3.5.1 Analysis of New Execution Modes for AP

In order to support the aforementioned steps, we propose an augmented AP which supports

two modes: BaseAP mode, and SparseAP (SpAP) mode. The BaseAP mode execution is

similar to the baseline AP execution, however, AP in this mode is configured with only the



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 29

Execution Cycles saved via
Hot States

Time

input stream

Execution (BaseAP mode)

Predicted Hot Set

5 14
Intermediate reports

input stream

Remaining 
states

Execution 
(SpAP mode)

Jump

Predicted Hot Set

R
ea

lis
tic

Pa
rt

iti
on

in
g

Cycles saved via

Hot States

Pe
rf

ec
t 

Pa
rt

iti
on

in
g

input stream

Remaining states
(predicted cold set)

Starting state Hot state Cold state

1 2

Jump
dc

Perfect partitioning

Realistic partitioning

a b

a b

Figure 3.9: Illustration of performance benefits under realistic partitioning: because of
the jump operation, only a portion of input symbols are executed in the SpAP mode
execution. c© 2018 IEEE.

predicted hot set. Once the execution of BaseAP mode finishes, the generated intermediate

reports are handled in the SpAP mode. In the SpAP mode, the AP is configured with

the predicted cold set. The AP in this mode not only consumes input symbols but is also

driven by the intermediate reports.

In this context, we develop two major operations for the SpAP mode: enable and

jump. The enable operation allows each intermediate report to enable the appropriate

state in the predicted cold set. The jump operation skips over the input symbols that

are not necessary for handling the intermediate reports. Since no back-edge exists from

predicted cold states to predicted hot states (discussed in Section 3.4), no back and forth

switching between BaseAP and SpAP modes is required.

Each intermediate report in the list of intermediate reports (L) is represented by

a tuple: input position and state ID (c, sid) denoting that the intermediate report is

generated at input position c (i.e., cycle c in the BaseAP mode execution) and the state

to be enabled is sid. Algorithm 1 shows the pseudo code for the SpAP mode execution. In

each cycle, if no state is enabled (Line 4), it performs a jump operation setting the current

input position i to the input position where next intermediate report was generated. The



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 30

Algorithm 1 Functionality of SpAP mode

Input: L, the list of intermediate reports. Each element in L contains (c, sid) showing
the input position where the report was generated, and the state id to be enabled.

Input: input , the input symbol stream.
Output: out list, the list of reports.

1: i⇐ 0
2: j ⇐ 0 . i is the index (input position) of input , j is the index of L.
3: while i < input .length do
4: if E is ∅ then . E is the set of enabled states.
5: if j < L.length then
6: i ⇐ L[j].c . Jump operation.
7: else
8: break
9: while L[j].c = i and j < L.length do

10: enable L[j].sid . Enable operation.
11: j ⇐ j + 1

12: A ⇐ {states in E that accept input [i ]}
13: . A is the set of activated states.
14: E ⇐ ∅
15: for all s in A do
16: if s is a reporting state then
17: append (i, s.id) to out list

18: E ⇐ E ∪ {successors of s}.
19: i⇐ i+ 1

enable operation (Line 9 to Line 11) is performed due to either scenario: current input

position i reaches the input position in next intermediate report or the current input

position i was just set to L[j].c by the jump operation. The remaining functionality of the

SpAP mode is the same as the BaseAP mode. We describe next how these operations are

used to handle realistic partitioning scenarios with the help of an illustrative example.

Illustrative Example. Figure 3.6 earlier discussed the performance benefits of perfect

partitioning. Under realistic partitioning, inaccurate predictions of cold states require

intermediate report handling. Figure 3.9 shows an illustrative example demonstrating

the benefits of executing AP in BaseAP and SpAP modes. The execution starts in the

BaseAP mode ( 1 ) that is configured with the predicted hot set. During its execution, two

intermediate reports are generated at input position 5 and input position 14, respectively

and are stored ( a , b ). Once all the input symbols are consumed, the SpAP mode begins



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 31

( 2 ), which is driven by both the input stream and the intermediate reports. If no state

is enabled, SpAP mode jumps to the input position where the next intermediate report

was generated. In this example, initially, it jumps to the input position 5 of the first

intermediate report directly ( c ). During the execution, when there is no enabled state (at

input position 8), the SpAP jumps to input position (14) of the next intermediate report

( d ). Therefore, under SpAP, only a portion of the input symbols are executed (green

shaded part in 2 ).

3.5.2 Implementation Details

We describe the required hardware implementation supporting SpAP mode by implement-

ing the jump and enable operations on top of the current AP architecture. We start by the

implementation of the SpAP operations. Then we estimate the execution time overhead

of these operations. Finally, we demonstrate the storage requirements for the intermediate

reports.

Jump Operation. The jump operation modifies a register that tracks the current input

position. Specifically, if no STE is enabled, the jump operation updates the register value

with the input position from the next intermediate report. Since no state configured to

SpAP is always enabled, the enabled states in next cycle are only determined by the

activated states in the current cycle. Therefore, given that the routing matrix routes the

enable signal from the activated states, we assume that the routing matrix provides a flag

that is set if no STE is enabled.

Enable Operation. Given an intermediate report, we use the state ID information to

enable the corresponding STE. Since STEs are connected to the routing matrix, and the

routing matrix follows a hierarchical design (block, rows, and STEs) [44], we utilize such

hierarchy to perform the enable operation. The routing matrix consists of 96 blocks per

half core. Each block is a group of 16 rows, and each row is a group of 16 STEs. Since

state ID is represented by 16 bits, we divide these bits to enable the required STE in a

hierarchical manner. We use the first 8 bits to select the block, the middle 4 bits to select



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 32

the row, and the last 4 bits to select the required STE within the row. We use a total

of three decoders to select the required block, row, and STE, respectively. Specifically, a

7×128 decoder is used to select the block. Then, a 4×16 decoder selects the row. Finally,

a 4 × 16 decoder enables the required STE. The enable operation works in parallel with

the processing of input symbols during SpAP mode.

Enable Operation Execution Overhead. We can overlap the enable operation of only

one intermediate report with the processing of the input symbols in SpAP mode. Thus, if

multiple intermediate reports were generated in the same input position during BaseAP

mode, the input processing is stalled until all the states in the simultaneous intermediate

reports are enabled. In SpAP mode, to do that, we compare the input position of the head

intermediate report with the next input position (current input position + 1). Similarly, we

compare the input position of the second intermediate report with the next input position.

If both of these comparisons are set, we pause the processing of the input symbols. After

enabling the states in all simultaneous intermediate reports, the input processing resumes.

The cycles spent to enable the simultaneous intermediate reports are considered overhead

to the overall SpAP mode execution and are accounted for in our evaluation methodology.

Intermediate Reports Storage Overhead. The list of intermediate reports is stored

in the off-chip device memory. Only a portion of the reports is loaded to the on-chip

memory to be consumed during the SpAP mode. We use a queue of 128 entries to store

the loaded intermediate reports. Because each intermediate report is a (input position,

state ID) tuple, we need 6 bytes per intermediate report (4 bytes for the input position,

and 2 bytes for the state ID). Thus, the overall storage required for the intermediate

reports queue is 128× 6 bytes.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 33

3.6 Evaluation Methodology

3.6.1 Applications

We evaluate our mechanisms with all applications in the ANMLZoo benchmark suite [123]

and the Regex benchmark suite [30]. Table 3.2 shows that these applications have states

ranging from approximately 2K to 100K, and several of them have states more than 24K,

which is the size of our baseline AP half-core. In order to evaluate applications with an

even larger number of states, we generate multiple applications based on three sources:

ClamAV [6], Hamming [90], and Snort [89].

ClamAV4k (CAV4k). We convert the regular expressions in main.cvd of the Q1 2018

ClamAV Virus Database to ANML format. We select the first 4,000 patterns from the

virus database. We use the same input of ClamAV in ANMLZoo [123].

Hamming. We generate Hamming automata using the same approach as the ANMLZoo

benchmark suite[90]. To keep it consistent with Hamming in ANMLZoo, we also create

the automata in the BMIA (Bounded Mismatch Identification Automaton) format. We

created three different workloads from Hamming that contain different number of NFAs,

namely HM500, HM1000 and HM1500. For each workload we generate, we create a mix of

different expected pattern lengths (8, 12, 20, 30), each with a distance of 2 to 20% of the

pattern length (e.g., 0.2× 30 = 6). Similar to Hamming in ANMLZoo [123], we generate

the inputs randomly.

Snort L. Our Snort L application includes 3,126 rules from both community rules and

registered rules of the Snort network intrusion detector [89]. We convert the regular ex-

pressions to ANML format. We use the same network traffic input as the Snort application

in ANMLZoo.

We consider a total of 26 applications and divide them into three groups based on

the number of states they contain. The high resource requirement (high) group contains

applications with states more than the capacity of an AP chip (49K). The medium resource

requirement (medium) group contains applications with states more than the capacity



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 34

Table 3.2: List of evaluated applications: “RStates” stands for reporting states and
“MaxTopo” stands for maximum topological order across NFAs. “Grp” stands for resource
requirement groups: High (H), Medium (M), Low (L). c© 2018 IEEE.

Application Abbr. Grp. #States #NFAs MaxTopo #RStates
ClamAV4000 [6] CAV4k H 1124947 4000 2080 4015

Hamming1500 [90] HM1500 H 366000 3000 32 6000
Hamming1000 [90] HM1000 H 244000 2000 32 4000

Snort big [89] Snort L H 132171 3126 4509 4043
Hamming500 [90] HM500 H 122000 1000 32 2000

SPM [123] SPM H 100500 5025 16 5025
Dotstar [123] DS H 96438 2837 95 2838

EntityResolution[123] ER H 95136 1000 64 1000
RandomForest1 [123] RF1 H 75340 3767 3 3767

Snort [123] Snort H 69029 2687 133 4166
ClamAV[123] CAV H 49538 515 542 515

Brill [123] Brill M 42658 1962 38 1962
Protomata [123] Pro M 42009 2340 123 2365

Fermi [123] Fermi M 40783 2399 13 2399
PowerEN [123] PEN M 40513 2857 44 3456

RandomForest2 [123] RF2 M 33220 1661 3 1661
TCP [30] TCP L 19704 738 100 767

Dotstar06 [30] DS06 L 12640 298 104 300
Ranges05 [30] Rg05 L 12621 299 94 299
Ranges1 [30] Rg1 L 12464 297 96 297

ExactMath [30] EM L 12439 297 87 297
Dotstar09 [30] DS09 L 12431 297 104 300
Dotstar03 [30] DS03 L 12144 299 92 300
Hamming [123] HM L 11346 93 20 186

Levenshtein [123] LV L 2784 24 23 96
Bro217 [30] Bro217 L 2312 187 84 187

of an AP half-core (24K). The rest of the applications are grouped into low resource

requirement (low) group.

3.6.2 Experimental Setup

We build our mechanisms on top of the open-source virtual automata simulator –

VASim [124]. As we mentioned in Section 3.5, we evaluate both AP–CPU and BaseAP/S-

pAP execution. In the AP–CPU execution, the states that are executed in the SpAP mode

are instead executed on the CPU. Table 3.3 shows a summary of the evaluated scenarios.

We model different timing mechanisms for AP–CPU and BaseAP/SpAP in the simulator

as detailed below.

Timing AP–CPU Execution. We record the total amount of time that the CPU spends



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 35

Table 3.3: Summary of Execution Scenarios. c© 2018 IEEE.

System Software Hardware

Execution of
entire NFAs

Execution of
predicted
hot set

Execution of
predicted
cold set

AP
Partition

(at NFA granularity)
BaseAP Mode N/A N/A

AP–CPU
Partition

(hot/cold set)
N/A BaseAP Mode CPU

BaseAP/SpAP
Partition

(hot/cold set)
N/A BaseAP Mode SpAP mode

to handle the intermediate reports by using std::chrono in C++ library. Therefore, we

use the real time when we calculate the speedup in the AP–CPU execution. We run our

experiments on a machine with Intel(R) Xeon(R) CPU E5-2683 v3. We use 7.5 ns as the

cycle time per symbol [106] for the BaseAP execution.

Recording the Cycles in BaseAP/SpAP Execution. In the BaseAP/SpAP execu-

tion, we record the execution cycles via the simulator. The number of cycles in BaseAP/S-

pAP execution is the sum of cycles spent on BaseAP mode and SpAP mode. Therefore,

SpeedupBaseAP/SpAP = Number of cycles on AP baseline execution
Number of cycles on BaseAP Mode+Number of cycles on SpAP Mode .

Performance per STE. We define a metric called performance per STE to show how

much throughput each STE can provide on average. Specifically, performance per STE =

throughput
CAP

, where throughput = number of input symbols
number of cycles . This allows us to compare APs with

different capacities while also considering techniques that improve performance solely by

increasing the AP size. Because each STE in the AP occupies die area, we can also consider

this metric as a proxy for performance/area.

Overheads. In this paper, we focus on reducing the re-execution overhead as we found it

is the major performance bottleneck in AP. The new SpAP mode incurs the stall cycles due

to simultaneous intermediate reports (Section 3.5.2). Our final results include these stall

cycles. There are two more generic overheads related to output and reconfiguration. In

our evaluations, we do not include the output overhead [5] and rely on existing work [122]

that proposes both hardware and software techniques to address it. We also do not include

the reconfiguration overhead (50 ms [92, 126] for reconfiguring a full AP board) in our



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 36

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V
Bril

l
Pr

o
Fe

rm
i

PE
N

RF2

Geo
Mea

n
0
1
2
3
4
5

Sp
ee

du
p

47 47 47 47 5.0 

high medium

AP-CPU Profile0.1% AP-CPU Profile1% BaseAP/SpAP Profile0.1% BaseAP/SpAP Profile1%

(a) Speedup with AP–CPU and BaseAP/SpAP execution using 0.1% and 1% profiling input (ca-
pacity = 24K).

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V
Bril

l
Pr

o
Fe

rm
i

PE
N

RF2 Avg
0.00

0.25

0.50

0.75

1.00

Re
so

ur
ce

 S
av

in
gs

high medium

Profile 0.1% Profile 1%

(b) Resource savings (i.e., the portion of states that are not configured in the BaseAP mode)

Figure 3.10: Speedup and Resource Savings on AP. c© 2018 IEEE.

results as we believe it can be amortized over AP execution, especially when it executes

very large inputs.

3.7 Experimental Results

Effect on Performance. To show the benefits of our schemes, we evaluate the speedup

for applications in the high and medium groups. Our mechanisms do not change the

throughput of AP for applications in the low category since the sizes of applications are

smaller than our baseline AP with 24K STEs. Figure 3.10(a) shows the performance re-

sults of our proposal, from which we draw four major observations. First, The AP–CPU

execution shows a significant geometric mean slowdown of 9.8× and 2.9× under 0.1% and

1% profiling input, respectively. However, five applications out of 16 applications (CAV4k,

HM1500, HM1000, DS, Snort) achieve a 4.2× geometric mean speedup at no cost of hard-



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 37

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0
SP

M DS ER RF1
Sn

or
t

CA
V

Bril
l

Pr
o

Fe
rm

i
PE

N
RF2 TC

P
DS0

6
Rg0

5
Rg1 EM

DS0
9

DS0
3

HM LV

Bro
21

7
Avg

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rf

or
m

an
ce

/S
TE

(*
 1

00
00

)

high medium low

AP (49k) BaseAP/SpAP (49k) AP (24k) BaseAP/SpAP (24k) AP (12k) BaseAP/SpAP (12k)

Figure 3.11: Performance per STE of various AP sizes with BaseAP/SpAP execution
considering 1% profiling input. c© 2018 IEEE.

ware modification. Second, we find that BaseAP/SpAP execution shows a speedup in the

majority of evaluated applications. It can achieve 1.8× and 2.1× geometric mean speedup

using 0.1% and 1% of input as profiling input, respectively. Third, BaseAP/SpAP execu-

tion can be slower than the AP in a few applications (e.g., PEN), since these applications

generate many simultaneous intermediate reports, leading to lengthy enable stalls on the

SpAP mode (shown in Table 3.4). Fourth, in applications with large SCCs that prevent

efficient partitioning (e.g., ER, see Figure 3.8), our scheme configures all the states to the

BaseAP mode execution with no change in execution time.

Effect on Performance per STE. In order to evaluate the efficiency of our schemes

across a wider set of system sizes and configurations, we show performance per STE in

Figure 3.11, from which we draw two major observations. First, although different sizes of

AP chips can execute the same application with the same performance (e.g. an application

in low group fits and runs on both an AP chip or an AP half-core), larger AP chips have

less performance/STE, because fewer STEs in the larger AP are utilized for the same

application size. Such underutilization leads to less performance/STE. Second, on average,

our scheme not only increases performance/STE by 32.1% under the scenario of AP half-

core and using 1% profiling input, but consistently achieves better performance/STE under

different sizes of AP as well. There are two major reasons: (1) we predict cold states and

eliminate them from being configured, which increases AP utilization; (2) we use fewer

cycles in the SpAP mode for mis-prediction handling than re-execution by batches hence

increasing the throughput.



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 38

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V
Bril

l
Pr

o
Fe

rm
i

PE
N

RF2
0

1

2

3

4

#
Re

po
rt

in
g 

St
at

es
(n

or
m

al
iz

ed
 t

o 
Ba

se
lin

e)

high medium

Baseline P0.1%_True P0.1%_IM P1%_True P1%_IM

Figure 3.12: Comparison of number of reporting states: “IM” stands for intermediate
reporting states. “True” stands for original reporting states on BaseAP mode. “P” stands
for profiling. c© 2018 IEEE.

Resource Savings and Speedup. We show the results of resource savings in Fig-

ure 3.10(b). By comparing it with Figure 3.10(a), we make three observations. First,

generally, the applications with high resource savings also have good speedups. Second,

PEN shows slowdown although it has good resource savings. This is because its SpAP

mode execution has lots of enable stalls due to a large amount of simultaneous interme-

diate reports (Table 3.4). Third, although the resource savings may be the same under

different profiling inputs, the speedup may be different (e.g., Snort). It is because the

original size of the predicted hot set was different, but due to the optimization in Sec-

tion 3.4.2, each batch was extended with a part of the predicted cold states to match the

capacity of AP. Consequently, this leads to the same resource savings. However, since

larger profiling input has higher recall for hot states (Section 3.4.1), the speedup is also

higher. To conclude, the speedup is generally related to resource savings as we explained

in Section 3.3.3, but the speedup also depends on other factors such as the quality of

prediction and the number of enable stalls.

Intermediate Reporting States. The addition of intermediate reporting states in-

creases the total number of states which could increase the total number of configurations

and executions (e.g., HM500 in Table 3.4). Figure 3.12 shows the effect on the number of

reporting states in BaseAP mode normalized to that of the baseline. In the BaseAP/SpAP



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 39

Table 3.4: Runtime statistics for AP and BaseAP/SpAP (under 1% profiling input):
The first three columns show the number of executions on the AP, BaseAP mode and
SpAP mode, respectively. “EStalls” stands for the stalls caused by enable operations for
handling simultaneous intermediate reports. “JumpRatio” is defined as the proportion of
cycles skipped in the SpAP mode. c© 2018 IEEE.

#Baseline
Execution

#BaseAP/SpAP
Execution

BaseAP/SpAP Runtime
Statistics

App AP
BaseAP
Mode

SpAP
Mode

#Intermediate
Reports

#EStalls JumpRatio

CAV4k 47 1 0 0 0 -
HM1500 15 4 13 80680 248 99.37%
HM1000 10 3 9 54075 180 99.39%
Snort L 6 1 5 172665 87882 97.99%
HM500 5 2 5 27815 79 99.43%
SPM 5 4 1 63490 119 2.11%
DS 4 1 0 0 0 -
ER 4 4 0 0 0 -
RF1 4 4 0 0 0 -
Snort 3 1 2 70 4 99.99%
CAV 3 1 1 3215 0 99.67%
Brill 2 1 1 68125 23997 81.51%
Pro 2 1 1 89733 15862 77.43%

Fermi 2 2 0 0 0 -
PEN 2 1 1 5450318 4509743 1.96%
RF2 2 2 0 0 0 -

mode, the total number of reporting states includes both original reporting states and in-

termediate reporting states (stacked bars in the figure). We make two observations. First,

the total number of reporting states in BaseAP mode could be more than the baseline

AP execution that only contains original reporting states. For example, the number of

reporting states in ER increases by 3.6×, because it has a large number of crossing edges

between predicted hot set and predicted cold set. Second, the number of reporting states

could decrease (e.g., Snort and Snort L) in the BaseAP mode execution because the num-

ber of crossing edges is smaller than the number of original reporting states. Although

our scheme may increase the number of reporting states, we are aware that an effective

software-based reporting state compression technique [122] could be applied on top of our

scheme.

Effect of Jump Operations. In Table 3.4, although for some applications (e.g., HM500,



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 40

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V
Bril

l
Pr

o
Fe

rm
i

PE
N

RF2 TC
P

DS0
6

Rg0
5

Rg1 EM
DS0

9
DS0

3
HM LV

Bro
21

7

Geo
Mea

n
0
1
2
3
4
5
6

Sp
ee

du
p

29 54 8.0 7.5 8.0 

high medium low

AP-CPU Profile0.1% AP-CPU Profile1% BaseAP/SpAP Profile0.1% BaseAP/SpAP Profile1%

(a) Speedup on a small AP (capacity = 12K)

CA
V4k

HM15
00

HM10
00

Sn
or

t_L

HM50
0

SP
M DS ER RF1

Sn
or

t
CA

V

Geo
Mea

n
0
1
2
3
4
5
6

Sp
ee

du
p

24 24 24 24 

high

AP-CPU Profile0.1%
AP-CPU Profile1%

BaseAP/SpAP Profile0.1%
BaseAP/SpAP Profile1%

(b) Speedup on an AP chip (capacity = 49K)

Figure 3.13: Sensitivity on the different capacities of AP chip. c© 2018 IEEE.

Brill) the number of executions of BaseAP/SpAP may be greater than or equal to the

baseline, we still obtain speedups on them because SpAP mode execution can reduce total

number of cycles due to the jump operations. To show the effect of jump operations,

we define JumpRatio as the proportion of cycles skipped in the SpAP mode. Formally,

JumpRatio = 1 − Total cycles on SpAp mode
Number of batches on SpAP mode×Length of input stream . Higher JumpRatio

indicates better effect of jump operations. We show JumpRatio in Table 3.4 for the

applications that use SpAP mode. To conclude, the majority of the applications only

execute a few percent of input symbols with the help of jump operations.

Sensitivity of speedup on capacity of AP. The applications in the low resource

requirement group require fewer states than the capacity of AP half-core. Figure 3.13(a)

shows the speedup achieved by our schemes when the capacity of AP is 12K. Similar

observations still hold as discussed in Figure 3.10(a). Specifically, BaseAP/SpAP achieves

1.9× and 2.2× speedup using 0.1% and 1% profiling input, respectively. In addition,



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 41

we demonstrate another sensitivity study on AP with 49K STEs for the applications in

the high group. Figure 3.13(b) shows BaseAP/SpAP execution achieves 1.9× and 2.1×

speedup using 0.1% and 1% profiling input in the 11 applications of this group.

3.8 Related work

To the best of our knowledge, this is the first work that designs an efficient architectural

support for large-scale NFA applications on AP.

Spatial Architectures. Multitasking on spatial architectures is usually carried out

through the use of multiple contexts [50], which can consume extra memory. In con-

trast, our BaseAP/SpAP proposal relies on the ability to eliminate dynamically unused

states from NFAs to improve AP utilization. We rely on a mechanism to transfer control

to a spatially distinct partition to accommodate larger than device NFAs, though these

could be implemented as multiple contexts. Recently, gate removal has been proposed to

eliminate unused logic gates from general purpose processor IPs to customize processors

to specific applications [41]. In our approach, we only eliminate states from the NFA

(i.e., the program), and not the hardware. There are also alternative implementations of

AP [59, 107, 139]. For example, cache automaton [107] re-purposes the last-level cache

for automata processing. We believe our techniques are complementary as we propose

hardware/software mechanisms to make the automata processing itself more efficient.

DFA and NFA Acceleration. Deterministic finite automata (DFA) have been charac-

terized previously – with respect to implementing special machines [119] and for paral-

lelization [74, 149, 84, 148, 85]. Parallel execution of NFAs on the AP processor has been

proposed by trading AP resources for higher throughput [106]. However, our character-

ization of the dynamic execution properties of NFAs specific to the AP execution model

is, to our knowledge, the first of its kind. Our elimination of dynamically unused states

can free up AP resources to complement parallel execution.

FSM Decomposition. FSM decompositions [72, 70, 22, 23] could reduce the complex-



CHAPTER 3. EFFICIENT AUTOMATA PROCESSING ON DSA 42

ity of placement and routing in the routing matrix by simplifying the layout. While

cascade decompositions are the closest to our studies, they are often static, for determin-

istic machines only, and are mostly not based on dynamic state behavior (i.e., predicted

hot vs. predicted cold states). In contrast, our proposed approach (which uses graph-

theoretic techniques, rather than sequential machine theory) is focused on increasing the

AP throughput by allowing only predicted hot states to be configured to the AP. We

believe both approaches are complementary and can be applied to different bottlenecks in

the AP execution pipeline. For example, FSM decomposition can make the reconfiguration

process efficient while our technique can accelerate the NFA execution on AP by reducing

the number of re-executions of the input symbol stream.

3.9 Conclusions

Automata processors (AP) are very efficient in executing Non-deterministic Finite Au-

tomata (NFAs). However, like other types of spatial architectures, AP faces major chal-

lenges in its execution model to efficiently execute very large tasks. In this paper, we make

use of the inherent properties of NFAs to avoid using compute resources for states that

are never used during execution by a low-cost software/hardware-coordinated approach.

Consequently, this results in a new execution model for APs that enables efficient and

high-performance processing for large-scale tasks. We believe this work will be helpful

towards wider adoption of APs and will open up new research directions for enabling

efficient NFA processing.



43

Chapter 4

Why GPUs are Slow at Executing

NFAs and How to Make them

Faster

Non-deterministic Finite Automata (NFA) are space-efficient finite state machines that

have significant applications in domains such as pattern matching and data analytics. In

this paper, we investigate why the Graphics Processing Unit (GPU)—a massively parallel

computational device with the highest memory bandwidth available on general-purpose

processors—cannot efficiently execute NFAs. First, we identify excessive data movement

in the GPU memory hierarchy and describe how to privatize reads effectively using GPU’s

on-chip memory hierarchy to reduce this excessive data movement. We also show that

in several cases, indirect table lookups in NFAs can be eliminated by converting memory

reads into computation, to further reduce the number of memory reads. Although our

optimization techniques significantly alleviate these memory-related bottlenecks, a side

effect of these techniques is the static assignment of work to cores. This leads to poor

compute utilization, where GPU cores are wasted on idle NFA states. Therefore, we

propose a new dynamic scheme that effectively balances compute utilization with reduced

memory usage. Our combined optimizations provide a significant improvement over the



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 44

previous state-of-the-art GPU implementations of NFAs. Moreover, they enable current

GPUs to outperform the domain-specific accelerator for NFAs (i.e., Automata Processor)

across several applications while performing within an order of magnitude for the rest of

the applications.

4.1 Introduction

Finite automata are the workhorses of pattern matching, data analytics, malware detec-

tion, bio-informatics, and XML parsing among many other applications [11, 8, 12, 90,

152, 151, 89, 112, 6, 34, 99, 93, 13, 33, 103]. Two representations of finite automata—

non-deterministic finite automata (NFAs) and deterministic finite automata (DFAs)—are

commonly used in the implementation of finite automata based applications [43]. Al-

though DFAs are simpler in terms of transitions, DFA execution is embarrassingly se-

rial, and DFAs can be exponentially larger than equivalent NFAs [149, 103, 141]. Prior

work [74, 149, 148, 84, 86, 55] significantly reduces the latency of DFA execution by paral-

lelizing chunks of the input stream and resolving the dependencies across states. However,

current enumeration or speculation mechanisms increase parallelism which is not always

needed, especially for large-scale automata applications.

The non-deterministic nature of NFAs lends itself naturally to parallel execution lead-

ing to a number of NFA accelerators [107, 97, 98, 153, 106, 95, 47, 61]. In particular, the

Automata Processor (AP) proposed by Micron [44] is an in-memory accelerator for NFAs.

The AP achieves significant throughput and energy benefits because of its ability to per-

form in-memory computations that exploit the parallelism of NFAs [44, 126]. However,

APs have to deal with several challenges. First, APs can hold a limited number of NFA

states at a time and when executing large-scale workloads need repeated re-executions

and re-configurations that hamper throughput significantly [66]. Second, their multiple-

instruction single data (MISD) model means their ability to execute multiple input streams

in parallel is limited.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 45

On the other hand, GPUs are massively parallel accelerators that are widely used.

Execution of NFAs on highly parallel architectures like GPUs, therefore, appears very

attractive. However, NFA-based applications are very hard to accelerate on traditional

von Neumann architectures (e.g., CPUs and GPUs) [44, 76, 88, 111]. In this paper, we

address this hard problem with the help of a careful analysis of the bottlenecks of NFA

execution on GPUs. Specifically, we find that there are two main problems. First, a typical

NFA execution incurs significant data movement because for processing each input byte,

a large transition table stored in the global memory needs to be looked up. Solutions to

reduce this data movement invariably use a fixed mapping of NFA states to GPU threads,

which leads to the second problem—hardware under-utilization. Many NFA states are not

active (cold) in a given NFA, so a fixed mapping leads to idle threads. These idle threads

unnecessarily consume GPU resources and do not perform any useful work leading to

low throughput and poor hardware utilization. Overall, high data movement and poor

hardware utilization are the major sources of inefficiencies.

We solve the first problem by identifying that the transition table used in most imple-

mentations contains redundant entries and is also highly sparse. Therefore, we propose a

new compact data structure to access transition information that can significantly reduce

off-chip memory accesses. We also show that some indirect table lookups can be eliminated

by converting them into local computations. However, we find that such data movement

optimizations require an undesirable fixed mapping between threads and states. There-

fore, we solve the second problem by developing a hybrid mapping where the most active

(hot) NFA states receive a static mapping and all other states are assigned resources dy-

namically. Our mapping scheme not only significantly boosts useful work as most threads

are assigned to active states, but also allows more NFAs to execute concurrently. To the

best of our knowledge, in the context of NFA processing, no prior work has considered

both data movement and utilization problems in conjunction. In summary, this paper

makes the following contributions:

• This paper analyzes the bottlenecks of NFA execution on GPUs and finds that



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 46

high data movement and low utilization are the two major inefficiencies leading to low

throughput.

• We find that the data movement problem is due to the irregular accesses to the

transition table. This table is too large to fit in the on-chip resources due to significant

redundancy and sparsity in the transition table. Our solution stores the topology and

matchset information in a novel compact format such that it can be stored and accessed

from the on-chip resources for most NFA states.

• We find that utilization is low because not all states are active. Hence, we take

advantage of state activity information to assign one thread per hot state and other cold

states are executed on-demand. This improves utilization as a result of increased activity

of threads.

• Overall, our mechanisms outperform the state-of-the-art work in this area. Specif-

ically, across 16 NFA applications, the best of our schemes improves the throughput on

average by 26.5× over iNFAnt [36] and 5.3× over NFA-CG [154]. Further, we only

require 0.7% of the global memory transactions used by iNFAnt.

4.2 Background

This section describes NFAs and their processing on GPUs.

4.2.1 Pattern Matching via NFAs

A non-deterministic finite automaton1 (NFA) is a directed graph where each node rep-

resents a state and each edge represents a state transition. Every state in the NFA has

a matchset that contains the alphabets (symbols) it matches. Every NFA has at least

one start state and at least one reporting state. The matching process begins by acti-

vating the start states. An NFA consumes one symbol at a time from the input stream.

1In this paper, we focus on Glushkov NFAs [51]. They are ε-free and the matchset is on the node
instead of on the edge. Any NFA that accepts a non-empty string can be transformed into an equivalent
Glushkov NFA [51].



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 47

For each symbol, all currently active states attempt to match the incoming symbol with

their matchset. If any of them match, they activate their successors. Unlike determinis-

tic finite automata, where only one state is active, NFAs can have multiple states active

simultaneously—making them ideal for parallel architectures. If a reporting state matches

an input symbol, it generates a report showing that a relevant pattern has been observed

in the input stream. Usually, all starting states are always-active, unless a user wants to

search patterns that only start at a certain position of the input stream.

y S2

z

S3

*
S1

b
S0

(a) NFA accepting pattern b*.y*z: the start
states are shown in octagons and the reporting
states are shown in double-circles.

S0 S1 S2 S3
... S2, S3
b S1 S2, S3
... S2, S3
x S2, S3
y S2, S3 S2, S3
z S2, S3 report

(b) Illustrating a transition table lookup. If the
input symbol is x and the current active states
are S0 and S1, then the shaded cells are fetched
and S2, S3 become active.

Figure 4.1: Working example of an NFA.

For example, Figure 4.1 (a) shows an NFA accepting pattern b*.y*z. It has two start

states S0 and S1, and a reporting state S3. Suppose S0 and S1 are active and the incoming

symbol is x. Since S1 matches x, its successors S2 and S3 become active. S0 and S1 are

always-active, so in the next step, the active states are S0, S1, S2, S3.

4.2.2 NFA Processing on GPUs

GPUs support concurrent execution of a large number of threads and also have very high

memory bandwidth – orders of magnitude more than CPUs. NFAs are a good fit for GPUs

because they exhibit parallelism at multiple levels [76]. Consider the NFA processing

mechanism as shown in Algorithm 2. First, multiple input streams (e.g., different network

packets) can be processed in parallel (Line 2). Second, many NFAs (e.g., different intrusion

signatures) can run in parallel on the same input stream (e.g., a single network packet,

Line 3). Finally, within the same NFA and the same input symbol, multiple states can be



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 48

active at the same time (Line 8). Therefore, there are multiple sources of parallelism: (1)

input stream level parallelism, (2) NFA-level parallelism, and (3) state-level parallelism.

Algorithm 2 Parallelism in NFA Processing

1: procedure NFA processing
2: for all input stream ss do . Input stream-level parallelism
3: for all NFAs n do . NFA-level parallelism
4: Process Input Stream(n, ss)

5: procedure Process Input Stream(n, ss)
6: Initialize starting nodes in active bitset
7: while i < ss.length do . Process each symbol serially
8: for all s in n do . State-level parallelism; s: NFA State, n: NFA
9: if active bitset[s] then

10: tablecell ⇐ T [ss[i]][s] . Transition table lookup
11: if ’report’ in tablecell then
12: report(s, i)

13: for all c in tablecell do . Matched state activates successors
14: next active bitset[c] ⇐ 1

15: active bitset ⇐ next active bitset
16: Zero next active bitset
17: i ⇐ i + 1

A General Approach for NFA Processing on GPUs. Given that NFAs must pro-

cess each input symbol serially (Line 7 in Algorithm 2), and that most GPUs do not

support a cheap global barrier, it is natural to map an entire NFA to a single thread block,

which is a group of threads that can execute a hardware barrier. This hardware barrier

can be used to step through the input stream. An application usually contains many

NFAs (Table 4.2) with different sizes. However, all thread blocks are of the same size, so

actual implementations will pack multiple NFAs into the same thread block forgoing some

NFA-level parallelism. A näıve implementation would then map an individual state to a

thread in the thread block. Each thread block then maintains two bitsets, one showing

which states are active in the current step and another identifying those that will be active

in the next step. When an active state matches the current input symbol, its successors

are set in the next active bitset (Line 13-14).

A transition table lookup combines state match and fetching successors. Prior work [36,



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 49

154, 18, 118, 37, 115, 117, 130], for example, use variants of a transition table where each

row is indexed by a symbol α and each column is indexed by a state S—an alphabet-

oriented transition table. Each entry (or cell) of the table contains the successors of

S when S matches with α. If S is a reporting state and matches with α, a report is

generated.

In our example, Figure 4.1 (b) shows an example of the transition table lookup for

the NFA shown in Figure 4.1 (a). Assume the incoming symbol is x (Figure 4.1 (b)),

and the current active states are S0 and S1. The threads assigned to the two states,

therefore, fetch the two shaded cells from the transition table. States S2 and S3 are set

to the next active bitset along with the always-active states (S0, S1 in this NFA). When

all states have processed the current input symbol, we synchronize the threads using a

syncthreads() barrier, swap the current and next active bitsets, and reset the next

active bitset (Line 15-17).

4.3 Problem and Previous Efforts

In this section, we first characterize the problem of high data movement and low compute

utilization when processing NFAs on GPUs. We discuss the high-level reasons for these

inefficiencies followed by a discussion on how previous works attempt to address them.

4.3.1 Data Movement

NFAs on general-purpose processors read from memory for three reasons: checking the

active bitset, loading the input symbols, and accessing the transition table. Of these, the

active bitset can be stored in the GPU on-chip shared memory. The input streams and

the transition table, though, reside in global memory in the previous works. Indeed, the

alphabet-oriented transition table size is O(N ·A), where N is the number of states, and

A is the size of the alphabet (256 in our work). This is too large to fit in on-chip memories

or registers.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 50

Accessing global memory for NFAs incurs performance overheads. Consider that each

thread must read the entire input stream. In the ideal case, all these requests would be

satisfied from the cache, but this is not guaranteed. It is also not possible to omit the

memory accesses caused by loading the bytes of input streams. Another source of global

memory accesses are lookups of the transition table. Each active state must, based on

the current symbol, look up a cell to identify successors to activate. Assuming 32-bit

state identifiers and an average of 4 successors to activate, each active state must read 16

additional bytes per input symbol, which is a significant overhead. With the help of our

optimizations, we shall show later that these additional reads can be reduced.

4.3.2 Compute Utilization

As nodes in an NFA are only activated based on the sequence of input symbols, many

states in an NFA are never or very rarely activated [66]. Therefore, having a one-to-

one mapping between states to threads means several inactive states would waste thread

resources leading to poor utilization and throughput. Across all the evaluated applica-

tions (Section 4.6), we observe that only a small percentage of states are active during

the execution. The average and maximum percentages of active states are 0.39% and

3.05%, respectively. Although this percentage still implies hundreds to thousands of ac-

tive states—more parallelism than a CPU could handle—a large fraction of GPU threads

are still idle.

It is instructive to examine this problem from the perspective of graph processing

algorithms. This style of NFA processing would be classified as topology-driven [75],

which is known to be work-inefficient. In those algorithms, therefore, a worklist containing

the frontier of active vertices is maintained. The threads are mapped only to the active

vertices, thus utilization is 100% since threads do only useful work. To verify the feasibility

of a worklist approach, we use the IrGL compiler [79] to generate worklist versions for

NFAs. Using a 1MB input stream, we found that in Brill, the best version achieves

114KB/s. By contrast, iNFAnt [36] achieves 143KB/s. Hence, applying the worklist



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 51

directly for NFA processing on GPU is not efficient for two reasons. First, unlike graph

processing, some states (i.e., nodes) are always active in NFA processing. Second, NFAs

require synchronization after each input symbol and perform very little work per input

symbol. Therefore, maintaining a worklist incurs high overhead and hence it is critical to

have a lightweight and efficient way to increase utilization.

4.3.3 Limitations of Prior Efforts

iNFAnt [36] uses a variant of the alphabet-oriented transition table described earlier.

The columns represent edges in the NFA, not states, and the rows continue to represent

alphabet symbols. In this table, a cell can have at most one state. For example, an

edge u → v that matches on symbol a creates a column for u, whose row for a contains

v. During execution, each column (and therefore an edge (u, v)) is mapped to a single

GPU thread. Each thread checks if its assigned state u is active in the active bitset,

and activates v if the current input symbol is a. iNFAnt does not perform any special

optimizations for data movement and utilization.

Zu et al. [154] introduce the notion of compatible groups, where the states that belong

to the same compatible group cannot be active simultaneously. This allows a compatible

group to be assigned to a single thread, improving utilization. However, this approach,

which we name NFA-CG, uses a very expensive method to compute compatible groups

– its time complexity is at least quadratic in the number of NFA states and other non-

heuristic methods are exponential. Our proposal for improving utilization is linear in the

number of states, and also achieves better utilization.

Ideally, the only memory loads should be for the input symbols. Consider a kernel

launched with T thread blocks (each containing W warps) and the length of the input

stream in symbols is L. In such a case, the number of global memory load transactions for

input only is TWL. Figure 4.2 shows the number of global load transactions for existing

works iNFAnt [36] and NFA-CG [154] normalized to the ideal case for input-only memory

transactions. On average, iNFAnt has 25× more transactions, and NFA-CG has 18× in



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 52

Bril
l

CA
V

CR
SP

R1

CR
SP

R2

APP
RNGER HM LV Pr

o

Se
qM

at
Sn

or
t
YA

RA
Bro EM

Rg0
5

Rg1 TC
P

PE
N

Geo
Mea

n
0

10

20

30

gl
d_

tr
an

sa
ct

io
ns

N
or

m
al

iz
ed

 t
o 

Id
ea

l C
as

e

iNFAnt NFA-CG

Figure 4.2: The data movement normalized to the ideal cases: two prior schemes use
25× and 18× compared to the ideal case where only the input stream is loaded. The
evaluation methodology is discussed in Section 4.6.

the evaluated applications.

4.4 Addressing the Data Movement Problem via Matchset

Analysis

In this section, we first analyze the inefficiencies associated with the alphabet-oriented

transition table. We discuss how addressing these inefficiencies can reduce off-chip accesses

and alleviate the problem of data movement.

4.4.1 Inefficiencies in the Transition Table

As discussed in Section 4.2, the existing transition table stores both the matchset and NFA

topology information. Instead of checking whether the current input symbol is present in

the matchset of the current state, it converts this computation to transition table lookups.

However, we find that the resultant transition table can no longer fit in the GPU on-chip

memory as storing the combination of matchset and NFA topology introduces redundancy

and increases sparsity.

To understand and quantify the volume of redundancy and sparsity in the transition

table, consider Figure 4.3 which shows two metrics. Redundancy is defined as the ratio



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 53

Bril
l

CA
V

CR
SP

R1

CR
SP

R2

APP
RNG ER HM LV Pr

o

Se
qM

at
Sn

or
t
YA

RA
Bro EM

Rg0
5

Rg1 TC
P

PE
N

Geo
Mea

n
0.00

0.25

0.50

0.75

1.00

Re
du

nd
an

cy
 / 

Sp
ar

si
ty

 R
at

io #Edges / #Occupied Entries #Occupied Entries / Table Size

Figure 4.3: Two metrics showing the redundancy (#edges/#occupied-entries) and spar-
sity (#occupied-entries/table-size) in the transition table. Lower is worse.

of the total number of edges across all NFAs in the application to the total number of

non-empty (or occupied) entries in the transition table. As the number of edges can only

be less than (or equal to) the number of occupied entries, a low ratio indicates higher

redundancy since an edge is stored in multiple locations of the transition table. Sparsity

is defined as the ratio of occupied entries to the total number of entries in the transition

table. A low ratio for sparsity suggests that not all transition table entries are occupied.

We observe from Figure 4.3 that on average both metrics are very low across all the

evaluated NFA applications showing that alphabet-oriented transition table wastes a lot

of memory.

From our discussion in Section 4.2, we can identify two reasons that lead to these

inefficiencies. First, an edge in the NFA can occur multiple times in the transition table.

For example, all entries in column S1 in Figure 4.1 (b) store the same value (S2, S3)

because S1 accepts a wildcard. In general, if a state accepts k symbols, all its outgoing

edges have to be stored k times. Second, in most NFA applications, a large percentage of

states only accept a few symbols. For example, the column for S0 only contains one entry

as S0 only accepts b, but the entire column has to be kept in the transition table which

makes it sparse. In conclusion, there is excessive redundancy and sparsity in the transition

table. This makes it an inefficient way to store the matchset and topology information.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 54

4.4.2 Optimization I: A New Way to Store and Access Matchset and

Topology Information (NewTran/NT)

To reduce the excessive data movement problem incurred by the transition table, we

propose a new way to store matchset and topology information. The key idea is to

create a per-node data structure that contains the node’s: a) matchset, b) outgoing edges,

and c) other miscellaneous attributes. This per-node data structure is stored only once

eliminating redundancy. Furthermore, we avoid storing the complete Cartesian product of

alphabets and states in an off-chip transition table addressing the sparsity problem. Our

proposal converts the per symbol look-ups of the transition table to a one-time memory

access per state, which makes the data movement of our scheme close to the ideal case as

shown in Section 4.3.3.

Per-node data structure. Figure 4.4 1 shows the per-node data structure NodeInfo.

We use an array of eight 32-bit integers for the 256-bit matchset (matchset, 32 bytes).

When symbol a is examined, each active thread checks for a match by checking if the

bit corresponding to a is set: matchset[a / 32] & (1 << (a % 32)). Since NVIDIA

GPUs do not support indexing into a register, the matchset must be stored in the local

memory which is private to each thread. We will show in Section 4.4.3 how we also put

the matchset in the registers when possible. We maintain 4 out edges per node in a

64-bit integer (outedges, 8 bytes), which consumes two 32-bit registers per thread. We

also need to encode the attributes of a state (as shown in Figure 4.4 2 ), so we maintain

these attributes in the 8-bit variable attributes, which consumes an additional register.

Currently, we use 5 bits of the attribute variable. Three bits record if a state is a reporting,

start, or always-active state. Two additional bits record if the matchset is complete or

complement to enable the compression optimization described in Section 4.4.3.

Matching process. The per-node data structure is fixed mapped to each thread. Before

processing the input symbols, each thread loads the per-node data structure from the

global memory. After the data structure is loaded, the thread starts to iterate over the



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 55

struct NodeInfoMC {
        uint8_t start, end;
        uint64_t outedges;
        char attributes;
};

struct MS {
        int matchset[8];
};

reporting

start

always
-active

attributes
complete

complement

2

000011110000

111000001111

Start End

Complete

Complement

Start End

3 4

struct NodeInfo {
        int matchset[8];

        uint64_t outedges;
        char attributes;
};

1

Figure 4.4: Illustrating the per-node data structure of NewTran (NT). Shaded variables
are in the local memory and others are in the registers.

input stream. Instead of looking up the transition table for determining a match, each

active state compares the incoming symbol against its matchset in the privatized NodeInfo

data structure. We still keep the double-buffered active bitset to record whether a state is

active as described in Section 4.2.2. We use an array in global memory to hold the reports

generated during the NFA processing. GPU atomic instructions are used to perform

concurrent writes to this array.

Space consumption. Each NodeInfo data structure consumes 32 + 8 + 1 = 41 bytes.

For N states, this is 41 × N bytes. The alphabet-oriented transition table, on the other

hand, requires 256 × 16 × N = 4096 × N bytes (256 is the size of the alphabet, while

16 bytes store up to 4 successor states per cell). Hence, our scheme only uses 1% space

compared to the alphabet-oriented transition table. The reduced memory consumption

enables the execution to better exploit the on-chip resources of GPU for the topology and

the matchsets of NFAs.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 56

4.4.3 Optimization II: Matchset Compression (MaC)

Figure 4.4 shows that matchset information is stored in local memory. We find additional

opportunity to compress this information to reduce the global memory transactions. To

compress the matchset information, we focus on two categories of states:

Complete state. If the matchset for a state, when viewed as a 256-bit string, contains

one continuous set of “1”s, we term that state as complete.

Complement state. If the matchset for a state is not complete, but its (bitwise) com-

plement is complete, (i.e., ∼matchset is complete), we term that state as complement.

When a state is either complete or complement, we can represent its entire matchset as

a range using only two 8-bit variables, start and end (Figure 4.4 3 ) to denote the input

symbols it matches. Then, for complete states, we can check if the incoming symbol s is

matched simply by evaluating s ≥ start && s ≤ end. For complement states, we can

simply invert the sense of the result. Thus, all accesses to the matchset can be eliminated

by converting the indirect memory read on the transition table to a pure range check

computation.

Figure 4.5 shows that a large portion of states are either complete or complement. On

average, matchset lookups for 70% of states can be replaced by range checks.

Bril
l

CA
V

CR
SP

R1

CR
SP

R2

APP
RNG ER HM LV Pr

o

Se
qM

at
Sn

or
t
YA

RA
Bro EM

Rg0
5

Rg1 TC
P

PE
N

Avg
0%

50%

100%

Pe
rc

en
ta

ge
 o

f S
ta

te
s Complete Complement Noncompressible

Figure 4.5: Percentage of states whose matchsets are complete, complement, or not
compressible.

To implement the complete/complement compression scheme, we split the NodeInfo

data structure into two structures as shown in Figure 4.4 4 , namely NodeInfoMC and MS.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 57

If a state is compressible, we only load NodeInfoMC, which uses 16 bits (start and end)

to store the matchset. If the state is not compressible, we load MS as before. Depending

on whether a state is compressible or not, we load 16 bits or 272 (16 + 256) bits for the

matchset. In general, if a fraction p of states are compressible, the average global load per

node data structure is 16p + 272(1 − p). As the majority of the states are compressible

(Figure 4.5), our matchset compression scheme uses fewer loads to the local memory while

also reducing the global memory transactions.

4.5 Addressing the Utilization Problem via Activity Anal-

ysis

In this section, we focus on addressing the problem of under-utilization as discussed earlier

in Section 4.3.2. We first analyze the activity of states and use this information for

an intelligent mapping of states to threads. The key idea is to map only the highly

active states to dedicated threads and assign resources to remaining low activity states

on-demand.

4.5.1 Analysis of Activation Frequency

It follows from Section 4.2 that always-active start states do useful work during the entire

execution. However, the activity of the other states is not clear. Figure 4.6 shows the

CDF of the activation frequency of all the non-starting states across seven representative

applications. All other evaluated applications are similar to the representative applica-

tions. We observe that for the majority of applications, 80% of non-starting states are

activated for less than 1% of the processed symbols. Similar behavior was also observed

by Liu et al. [66]. However, their study did not consider the frequency of the activity and

only evaluated whether the state is active or never-active. Our finding is that although

many states can be active at least once, the frequency of activation is usually very low.

We exploit this activity profile in GPUs and propose to map only the states that are



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 58

0% 50% 100%0%

25%

50%

75%

100%

%
 o

f S
ta

te
s

Brill

0% 50% 100%0%

25%

50%

75%

100%
CAV

0% 50% 100%0%

25%

50%

75%

100%
CRSPR1

0% 50% 100%0%

25%

50%

75%

100%
ER

0% 50% 100%
Activation Frequency

0%

25%

50%

75%

100%

%
 o

f S
ta

te
s

HM

0% 50% 100%
Activation Frequency

0%

25%

50%

75%

100%
Pro

0% 50% 100%
Activation Frequency

0%

25%

50%

75%

100%
Snort

CDF of Act. Freq.
80% of States
90% of States

Figure 4.6: The activity profile of the states. For the majority of applications, 80% of
non-starting states are activated for only less than 1% of the processed symbols.

activated frequently to the dedicated threads. Other infrequently activated states and

are assigned resources on-demand. To accomplish this, we need to answer two research

questions: (1) Given a certain mapping, how do we coordinate between fixed mapped

hot (active) states and the on-demand loaded cold (rarely active) states? (2) How do we

classify hot states and cold states? We will answer these two questions in Section 4.5.2

and Section 4.5.3, respectively.

4.5.2 Optimization III: Activity-based Processing

In this section, we discuss how we handle hot and cold states to improve the overall uti-

lization. We propose to develop a hybrid approach that uses one-one mapping (topology-

driven) for hot states and a worklist (data-driven) for the cold states. Each hot state is

given to a dedicated thread, while cold states are not assigned to any dedicated threads.

As in NT, each thread loads the NodeInfo2 data structure for its hot state before process-

ing the input stream. As described in Section 4.2.2, we store whether a hot state is active

in the per-block active bitset. Each thread also reserves space for an additional NodeInfo

data structure to be used for any cold states dynamically assigned to it during execution.

2This can be NodeInfoMC depending on whether we turn on the matchset compression (Section 4.4.3).
We will use NodeInfo for the two cases.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 59

Execution for all input symbols takes place in two modes: first, a hot mode (which

executes all hot states) followed by a cold mode (which executes any cold states that have

been activated). If a hot state activates a cold state, it places the cold state ID in the

next cold worklist. This worklist is stored in shared on-chip memory and we use a shared

deduplication bitset to avoid duplication of state IDs in the worklist. After all hot states

have completed the processing of the input symbol, the hot mode is complete. Next,

execution switches to the cold states in the current cold worklist (CW ) populated during

the processing of the previous input symbol. If CW is empty, execution skips the cold

mode.

If CW is not empty, each thread in the thread block is assigned with one or more

states of the worklist. We distribute the elements in the worklist equally across all threads

in the thread block. A thread then processes the cold state assigned to it by loading the

NodeInfo of the cold state from global memory into the reserved cold NodeInfo. A cold-

to-hot transition is handled by set the bit of the activated hot state in the active bitset,

while a cold-to-cold transition is handled by placing activated states in the next CW if it

is not set in deduplication bitset.

Before continuing the hot mode of the next symbol, the next CW is assigned to the

CW, and we reset the tail pointer of the next CW emptying it.

Illustrative Example. Figure 4.7a illustrates our activity-based optimizations using an

example with a thread block. Assume that the hot states S0, S1 are mapped to the threads

and the cold states S2, S3 are processed through the worklists. Figure 4.7a 1 shows that

currently, we are processing the symbol x of the input stream xyz, and S0 and S1 (both

hot states) are active. Symbol x (Figure 4.7a 1 ) triggers two hot-to-cold transitions (S1

to S2 and S1 to S3, Figure 4.7a A ). S2 and S3 are pushed to the next cold worklist, by

atomically incrementing tail of next worklist (Figure 4.7a B ). After the hot mode,

the threads move to the cold mode to process the current cold worklist, which is empty.

Since there is no work in this step, the cold mode does not start. In the end of the current

step, the next cold worklist and the cold worklist are swapped and the tail pointer of the



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 60

tail_of_next_worklist

xyz1

xyz2

Thread Block

S1 S2 Next Cold Worklist
S2 S3

Cold Worklist

Hot
Mode

Cold
Mode

…

A

S1 S3

Next Cold Worklist

S2 S3

Cold Worklist…

D

S2 S3
E

Hot
Mode

Cold
Mode

Hot
Mode

Cold
Mode

Thread Block

y S2
z
S3

*
S1

b
S0

S1 S3

Cold Worklist <— Next Cold Worklist and Zero Next Cold Worklist
__syncthreads()

S1 S2

FS2 S2
Duplication

C

S3S2

B

(a) An illustrative example for our activity-based processing scheme: orange shaded states are
hot (active) states mapped to threads and cold (inactive) states are handled via worklist. The
active bitset for hot states is not shown.

Input Hot States Cold States Matched
States

Actions
Index Char Active BS

Next
Active BS

CW
Next
CW

1 x S0 S1 S0 S1 - S2 S3 S1 S1 activates S2 S3

2 y S0 S1 S0 S1 S2 S3 S2 S3 S1 S2
S1 activates S2, S3
S2 activates S2, S3

3 z S0 S1 S0 S1 S2 S3 S2 S3 S1 S3
report S3, 4
S1 enables S2 S3

(b) The complete matching process of input stream xyz using the activity-based processing
scheme. CW stands for cold worklist; BS stands for bitset.

Figure 4.7: Illustrating the activity-based processing



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 61

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
0

50

100

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
 t

o 
iN

FA
nt

Profile10% BFS10% BFS20% BFS30% HotStart HotStart_Opt

0

5000

10000

15000

#
St

at
es

 / 
#

Bl
oc

k

Figure 4.8: Throughput sensitivity to the selection of hot states. Detailed evaluation
methodology is in Section 4.6. HotStart (or HotStart Opt, an optimized version) has
the best performance among these selection schemes. Hence, we choose the always-active
start states as hot states.

next cold worklist is reset to 0 (Figure 4.7a C ).

The processing of input symbol y then begins (Figure 4.7a 2 ), with hot-to-cold transi-

tions S1 to S2 and S1 to S3 in the hot mode (Figure 4.7a D ). They are pushed to the cold

worklist. The deduplication bitset is also set. In the cold mode, two threads process the

S2 and S3 that was pushed to the CW in the previous step when we processed x. Since

S2 matches with y, it generates two cold-to-cold transitions (Figure 4.7a E ). However, by

checking the worklist deduplication bitset (Figure 4.7a F ), S2 and S3 are not pushed to

the worklist. After the cold mode, the threads in the thread block are synchronized and

the next step of the execution begins with states S0, S1, S3 and S4 as active. Figure 4.7b

summarizes the complete steps to process the xyz input stream.

4.5.3 How do we choose the hot states?

In this section, we describe three different ways to classify states as hot or cold and pick

the method that performs best empirically.

Profiling. The first scheme is based on prior work [66], which shows that the activation

frequency of NFA states in a small representative input is similar to the entire input. In

this evaluation, we use the 1KB prefix of the 1MB input as the profiling input. If a state



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 62

has an activation frequency more than a threshold in the profiling input, we consider it

as a hot state during the entire execution. In the experimental results, we use 10% as the

threshold. We have also tested other thresholds but they do not affect our conclusion.

Offloading by BFS layers. Second, we consider a percentage of states (ordered by

their BFS layers) as hot states. Users can control the percentage of states to be deemed

as hot. The assignment of hot states is an iterative process. We sort the states by their

BFS-layers and then mark them as hot states in the ascending order until the number of

hot states reaches the percentage specified by the user. This scheme relies on the topology

of the NFA and does not need any profiling information. In this experiment, we use 10%,

20%, and 30% as the percentage of the hot states.

Make start states hot—HotStart. Our third scheme only considers the always-active

start states as hot states. It does not require profiling or tuning of parameters/thresholds.

The scheme is based on the observation from Figure 4.6 that other than the always-active

starting states, the activation frequency for most other states is very low.

Experimental decision. Figure 4.8 shows the normalized throughput and utilization

numbers of the aforementioned three schemes. We make the following observations. First,

we find HotStart gives the best performance among the evaluated configurations on

average. Second, we find that the performance is correlated to the states per block, which

works as a proxy to show the utilization of GPU. As HotStart has the most states

per block, its utilization is the best among these cases. Third, for a few applications

(e.g. CRSPR1, CRSPR2), HotStart does not give the best performance, but still gives

comparable performance. This is because the activation frequency of non-starting states is

high (Figure 4.6). Therefore, the loading of the node data structure to the worklist leads

to more data movement. To summarize, HotStart gives us a simple and synergistic

solution for both data movement and utilization, while achieving the best performance

across the evaluated hot states selection schemes.

Elimination of Active Bitset. In HotStart, every activated state is in the worklist

except the always-active starting states. Hence, we remove the active bitset from the



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 63

thread block. By this simple optimization specific to HotStart, the register usage is

reduced from 70 registers to 40 registers per thread, leading to an increase of occupancy.

Figure 4.8 shows that this optimized version of HotStart (HotStart Opt) gives 77%

improvement and we use it in the rest of the experiments.

4.6 Evaluation Methodology

Evaluated Schemes. Table 4.1 summarizes the schemes that we evaluate in this pa-

per. iNFAnt [36] and NFA-CG [154] are prior works in the area of NFA Processing in

GPUs as discussed in Section 4.3.3. iNFAnt [36] maps each edge to a thread and NFA-

CG [154] maps a compatible group (a group of states) to a thread. Next, we evaluate our

schemes NT (Section 4.4.2), NT-MaC (Section 4.4.3), which dedicate each thread to each

state. They only focus on reducing data movement. Then we evaluate HotStart and

HotStart-MaC (Section 4.5), which are built using HotStart Opt and work on top of

NT and NT-MaC, respectively. They enhance utilization by mapping only always-active

start states to the threads (Section 4.5.3) without the need of profiling. To demonstrate the

effectiveness of data movement optimization, we also evaluate HotStartTT, which uses

an alphabet-oriented transition table but also applies our utilization-related optimizations.

Table 4.1: Overview of the evaluated schemes on GPU

Scheme Thread Mapping Data Movement Utilization
iNFAnt [36] Edge - -

NFA-CG [154] Compatible Group - Compatible Group
NT State Opt. I -

NT-MaC State Opt. I + Opt. II -
HotStart Hot State Opt. I Opt. III

HotStart-MaC Hot State Opt. I + Opt. II Opt. III
HotStartTT Hot State - Opt. III

AP Performance Modeling. We also compare to the automata processor (AP) [44], a

domain-specific architecture for NFA processing. Since AP is not publicly available, we use

a simple, optimistic performance model influenced by VASim [124] for AP performance

estimation. If we have n input streams each containing m symbols, each NFA must



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 64

process n×m symbols. If AP can hold C NFA states, and if the application has A NFA

states, then dA/Ce batches are required. In one AP chip, C equals to 49152. As current

AP chip is documented to run at 133MHz, a symbol needs 7.5 ns for processing. Thus,

TimeAP ideal = 7.5 · mn · dA/Ce. Since APs must be reconfigured between batches, we

add per batch reconfiguration overhead of 50 ms [126] to TimeAP ideal to obtain TimeAP .

Both these models are optimistic because we ignore other overheads of AP, such as the

time taken to record reports (i.e., matches). Earlier work has noted that this can be a

significant overhead in several applications [122]. Note that all the performance numbers

for GPUs include the report generation overhead.

Experimental Setup. We mainly use an NVIDIA Quadro P6000 GPU for evaluation.

We also report the sensitivity of our results on NVIDIA Tesla V100. We report the GPU

kernel time gathered using CUDA events. The throughput (our metric for performance)

is measured in terms of number of input symbols processed per second. Each set of ex-

periments is performed 7 times and we report 95% confidence intervals for our results

(shown as error bars). Our results/conclusions are consistent across different runs. Usu-

ally, these error bars are too small to visualize since the widest CI bar is 0.36% of the

normalized throughput bar. For a fair comparison with prior works [36, 154], our results

do not include the I/O time and data structure preparation time as prior works do not

focus on optimizing them. We expect that these overheads will be amortized over long

GPU computation time and hence we focus on optimizing the latter.

Application Configurations. We evaluate 18 applications from three different bench-

mark suites: AutomataZoo [125], Regex [31] and ANMLZoo [123]. Table 4.2 shows the

characteristics of the evaluated applications. All these applications have sufficient paral-

lelism in terms of number of states per NFA, number of NFAs (also called as connected

components [CC]). The total number of states can be in the order of millions (Table 4.2).

We use 1MB input (split into 1000 1KB input streams) for each application (except AP-

PRNG and SeqMat) to provide parallelism for input streams. Two applications (APPRNG

and SeqMat) do not have always-active start states, so we cannot feed the 1KB chunks of



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 65

Table 4.2: Characteristics of evaluated NFA applications.

Application State Info Connected Component (CC) Info
Name Abbr. #states #start #always-active #reporting #compressible #CC max CC size avg CC size

Brill [125] Brill 115549 5.1% 5.1% 5.1% 100.0% 5946 40 19.4
ClamAV [125] CAV 2374717 1.4% 1.4% 1.4% 100.0% 33171 22075 71.6

CRISPR CasOFFinder [125] CRSPR1 74000 5.4% 5.4% 2.7% 0.0% 2000 37 37.0
CRISPR CasOT [125] CRSPR2 202000 2.0% 2.0% 1.0% 0.0% 2000 101 101.0
APPRNG 4sided [125] APPRNG1 20000 5.0% 0.0% 20.0% 20.0% 1000 20 20.0
EntityResolution [125] ER 413352 2.4% 2.4% 2.4% 66.7% 10000 75 41.3
Hamming l18d3 [125] HM 108000 1.9% 1.9% 1.9% 100.0% 1000 108 108.0

Levenshtein l19d3 [125] LV 109000 3.7% 3.7% 3.7% 100.0% 1000 109 109.0
Protomata [125] Pro 24103 5.4% 5.4% 5.5% 46.6% 1309 123 18.4

SeqMatch w6p6 [125] SeqMat 51570 20.0% 0.0% 3.3% 100.0% 1719 30 30.0
Snort [125] Snort 202043 1.6% 1.2% 1.6% 51.4% 2486 4509 81.3
YARA [125] YARA 1047528 2.2% 2.2% 2.3% 98.0% 23530 1017 44.5
Bro217 [31] Bro 2312 8.1% 8.1% 8.1% 44.6% 187 84 12.4

ExactMath [31] EM 12439 2.4% 2.4% 2.4% 100.0% 297 87 41.9
Ranges05 [31] Rg05 12621 2.4% 2.4% 2.4% 99.0% 299 94 42.2
Ranges1 [31] Rg1 12464 2.4% 2.4% 2.4% 98.3% 297 96 42.0

TCP [31] TCP 19704 3.8% 3.8% 3.9% 94.0% 738 391 26.7
PowerEN [123] PEN 40513 7.1% 7.1% 8.5% 99.7% 2857 52 14.2

input to them. Hence, we evaluate them separately in Section 4.7.

Large NFAs are filtered out for NT. Most applications only have small NFAs (con-

nected components). However, ClamAV, Snort, YARA, and TCP have a few NFAs (up

to 1.5% of their total number of NFAs) that have more than 256 states. Since our NT

proposal does not support NFA size greater than thread block size, and NFA-CG could

not finish calculating compatible groups for these NFAs, we filter out the NFAs that have

more than 256 states to ensure a fair comparison. This does not apply to our HotStart

and HotStart-MaC which, like iNFAnt, support any size NFAs.

Out-degree is limited to 4. Different states can have different out degrees leading to

load imbalance in amount of work per thread. Like NFA-CG [154], we modify the NFAs

so that the outgoing edges of each state is 4 or less using an iterative algorithm. We split

each state that has an out-degree greater than 4 into two with each getting half of the

original edges, and connect the duplicates to the predecessors and successors to maintain

the semantics of the NFA. This process repeats until all states have 4 or fewer out edges.

For some graphs, this process does not terminate (e.g., a complete graph where each node

has out-degree of 5). If this process does not terminate in N steps (where N is the number

of states), the NFA is filtered out. There are 2 NFAs in ClamAV and 5 NFAs in Snort

that cannot be limited to states with out-degree ≤ 4 and hence are discarded.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 66

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
1
2
4
8

16
32
64

128
256
512

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
 t

o 
iN

FA
nt AP

AP_ideal
NT
NT-Mac
NFA-CG
HotStartTT
HotStart
HotStart-Mac

Figure 4.9: Throughput enhancement results normalized to iNFAnt. On average
HotStart-MaC achieves 26.5× speedup across 16 applications. The best GPU results
outperform an AP chip in 5 applications (CAV, YARA, Snort, LV, and Bro).

Table 4.3: Absolute throughput with our schemes (MB/s). The best performance among
GPU schemes is highlighted.

Arch config CAV YARA ER Snort CRSPR2 Brill LV HM CRSPR1 PEN Pro TCP Rg05 Rg1 EM Bro

AP
AP ideal 2.72 6.06 14.81 26.67 26.67 44.44 44.44 44.44 66.67 133.33 133.33 133.33 133.33 133.33 133.33 133.33

AP 0.36 0.82 2.14 4.21 4.21 8.16 8.16 8.16 15.38 133.33 133.33 133.33 133.33 133.33 133.33 133.33

GPU

iNFAnt [36] 0.01 0.02 0.06 0.22 0.11 0.19 0.21 0.22 0.33 0.53 0.84 0.92 1.16 1.19 1.19 6.07
NT 0.04 0.09 0.20 0.79 0.33 0.61 0.36 0.58 0.88 2.15 3.06 4.51 6.86 6.97 6.96 35.01

NT-Mac 0.04 0.09 0.17 0.67 0.27 0.57 0.37 0.56 0.73 2.07 2.53 3.71 6.05 5.90 6.72 28.16
NFA-CG [154] 0.04 0.06 0.16 1.10 0.35 0.24 2.42 0.76 1.11 1.58 1.34 9.36 20.70 26.57 26.53 28.57
HotStartTT 0.10 0.11 0.36 2.71 0.60 0.37 4.53 1.16 2.31 9.73 9.84 39.83 73.41 73.55 73.32 112.94

HotStart 1.38 0.82 0.90 7.63 0.34 0.56 8.59 0.49 0.92 16.06 4.61 59.54 103.58 102.84 104.47 145.88
HotStart-Mac 1.31 1.29 1.60 9.70 0.31 2.50 7.80 2.32 0.82 14.26 8.26 57.66 99.54 99.85 101.95 117.58

4.7 Experimental Results

Figure 4.9 shows the performance results of our schemes and the performance achieved by

AP normalized to iNFAnt. The y-axis is in log scale. Table 4.3 shows the raw throughput

achieved by our evaluated schemes. On average, HotStart-MaC gives 26.5× speedup

and HotStart gives 20.5× speedup, which achieves the best and the second-best per-

formance among all schemes. They also achieve the best performance on all applications

except CRSPR1, CRSPR2 and Pro, where HotStartTT is the fastest. Furthermore,

HotStart-MaC and HotStart are 5.3x and 4.7x faster than NFA-CG, respectively.

Analysis of cases where HotStart-MaC is the best. HotStart-MaC performs

the best in YARA, ER, Snort, Brill, and HM among all GPU schemes (Table 4.3). Specifi-

cally, in these applications, HotStart-MaC achieves significant speedup — at least 27%

improvement in Snort and up to 373% improvement in HM compared to HotStart.

There are two reasons. First, in these five applications, at least 50% of their states are



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 67

compressible. Second, all of them have a large number of states. Their per-node data

structures are too large to fit into the L1 cache of the GPU, especially when many states

are handled through the worklist, reducing the size of per-node data structures yields

significant improvement.

Analysis of cases where HotStart is the best. On the other hand, HotStart-

MaC does not outperform HotStart for the rest of the applications, although the gap

is consistently within 10%. This is expected since if an application (e.g., CRSPR2) has

no compressible states HotStart-MaC will have more overhead than HotStart. How-

ever, even for an application that has many compressible states, HotStart-MaC can

perform worse than HotStart, because the overhead of converting memory accesses to

computation may outweigh the benefit. For example, in CAV, although all its states are

compressible, HotStart-MaC still has a 5% slowdown than HotStart. One reason is

the matching process in CAV only goes to very shallow parts of the NFAs, where only

very a small set of states are used frequently. In this case, very few states are swapped in

and out from the worklist, and hence the benefit of matchset compression is small.

The performance impact of increasing utilization alone. Even though Hot-

StartTT does not use NT for data movement optimization, it is 14x faster than iN-

FAnt. Compared to NFA-CG that also only has utilization optimization (based on

statically computed compatible groups), our HotStartTT is 2.7x faster since compati-

ble groups do not capture the notion of activity. HotStartTT is also the fastest scheme

in CRSPR1, CRSPR2, and Pro, since at most 46% of states in these applications are com-

pressible. In addition, as their states are activated frequently (Figure 4.6), the swap-in and

swap-out in the worklist of HotStart and HotStart-MaC incur more data movement

than HotStartTT.

The performance impact of data movement optimization. NT and NT-MaC

are 3.7x and 3.4x faster than iNFAnt respectively, however they are at least 26% worse

than NFA-CG because optimizing data movement only without considering core utiliza-

tion is not sufficient. Although our matchset compression optimization works well in



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 68

Se
qM

at

APP
RNG

Geo
Mea

n
0

2

4
Th

ro
ug

hp
ut

N
or

m
al

iz
ed

 t
o 

iN
FA

nt

NFA-CG NT NT-MaC

Figure 4.10: Throughput enhancement for the applications without always-active start
states in the single input stream scenario. Our schemes outperform NFA-CG and iNFAnt
by at least 9% and 2.6×, respectively.

HotStart-MaC, it demonstrates performance degradation when applied with pure NT.

This is because matchset compression converts memory accesses to the range checking

computation. As a result, the NT-MaC GPU kernel uses more registers than NT. If

the per-node data structures fit into L1, the loss of register resources potentially affects

performance.

Evaluation of SeqMat and APPRNG. Two applications (SeqMat, and APPRNG) do

not have always-active start states. Therefore, we do not evaluate them using HotStart

in the multiple input streams scenario. Instead, we use a 1MB input stream to evaluate

these applications. Figure 4.10 shows the performance of these applications. We compare

our data movement optimization schemes NT and NT-MaC with iNFAnt and NFA-CG.

In these two applications, we found that on average, NT and NT-MaC have 2.6x and

3.5x speedup over iNFAnt respectively. Our NT and NT-MaC schemes also show 9%

and 50% improvement over NFA-CG.

How far are we from AP? In CAV, YARA, Snort, LV, our best GPU scheme out-

performs the domain-specific AP chip by 3.8×, 1.6×, 2.3×, 1.1× (Table 4.3), because

these applications have a large number of states requiring repeated re-configurations and

re-executions on AP. Bro also has 1.1× speedup than AP. All other applications except

Pro also perform within 10× of the AP performance as they make good use of the GPU

resources, where Pro performs 12.54× worse than AP.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 69

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
0%

25%

50%

75%

100%

gl
d_

tr
an

sa
ct

io
ns

 R
ed

uc
ti

on NT NT-Mac NFA-CG HotStartTT HotStart HotStart-Mac

Figure 4.11: Effect on data movement reduction: our schemes use significantly fewer
gld transactions than prior work. For example, HotStart-MaC reduces gld transactions
by 99.3% over iNFAnt.

Effect on Data Movement Figure 4.11 shows the percentage of reduced global load

transactions compared to iNFAnt. We observe that HotStart and HotStart-MaC use

98.9% and 99.3% fewer gld transactions respectively than iNFAnt, because they opti-

mize for both data movement and utilization. Although HotStartTT does not optimize

for data movement, it uses 98.7% fewer gld transactions than iNFAnt. This is because

the utilization optimization reduces the number of thread blocks that access the transi-

tion table and the input streams. Similarly, NFA-CG uses 88.2% fewer gld transactions

than iNFAnt. With only data movement optimizations, NT and NT-MaC use 95.9%

and 96.1% fewer gld transactions than iNFAnt respectively.

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
0

5000

10000

15000

#
St

at
es

 / 
#

Bl
oc

ks NFA-CG HotStart

Figure 4.12: Effect on the number of NFA states per thread block (a proxy for compute
utilization). More states are handled per thread block in HotStart.



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 70

Effect on Utilization. We use the number of NFA states per thread block as a metric

for evaluating utilization. Figure 4.12 shows this metric for the evaluated schemes. As

we do not change the amount of work per thread, mapping more states per block implies

better utilization.

We limit our comparison of utilization to NFA-CG and our HotStart/HotStart-

MaC/HotStartTT, because NT and NT-MaC do not focus on utilization and always

map one state to a thread. Additionally, in iNFAnt, increasing the states mapped to a

thread block does not increase the useful work per thread, so we do not include it in our

comparison.

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
1
2
4
8

16
32
64

128

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
 t

o 
iN

FA
nt

NT
NT-Mac

NFA-CG
HotStartTT

HotStart
HotStart-Mac

Figure 4.13: Performance sensitivity to Volta GPU Architecture. Both HotStart-MaC
and HotStart show more than 15× speedup over iNFAnt, indicating their effectiveness
on newer GPU architectures.

We found for most of the applications, HotStart achieves better utilization than

NFA-CG, because only the always-active start states are mapped to threads, which means

they are always doing useful work. In particular, NFA-CG fails to improve utilization in

Pro, because each statically constructed compatible group only has one state in it, meaning

any pair of states can be activated at the same time due to the NFA topology and matchsets

of Pro. In contrast, by leveraging our insight into activation frequency (Figure 4.6) our

HotStart can improve utilization even for Pro.

Sensitivity to Volta Architecture. We also evaluated our mechanisms on NVIDIA

V100 GPU [9] and the results are shown in Figure 4.13. We observe a similar trend as what



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 71

has been shown in Figure 4.9—our schemes still give significant speedup. Specifically, on

average HotStart-MaC and HotStart give 16.7× and 15.0× speedup over iNFAnt,

respectively. HotStartTT gives 8.9× speedup over iNFAnt. Given that the Volta has

larger L1 caches compared to Pascal GPU, the magnitude of speedup we achieve is lower

but still very significant indicating that our data movement and utilization optimizations

are effective on newer architectures as well.

4.8 Related Work

There is a large body of work on pattern matching on CPUs [131], network processors [32],

and custom accelerators coupled to CPUs [53]. We recommend interested readers to an

excellent survey paper [140] for a broad overview of the field. Here, we restrict ourselves

to GPU/SIMD implementations of pattern matching using finite automata.

Reducing Data Movement. DFA-using engines [118, 116, 18, 128, 146] try first to

reduce the size of the state transition tables using compression [146, 27, 143], which is

often necessary to fit the DFAs in GPU global memory. However, as DFAs are serial, they

are mapped to a single thread whose on-chip resources cannot accommodate the footprint

of individual DFAs. Alphabet reduction [62, 130] reduces the size of the symbol set by

merging behaviorally-equivalent symbols and introducing an indirection table, however, it

is ineffective on large DFAs [146]. Our matchset compression technique is orthogonal to

alphabet reduction and exploits the sparsity patterns in the matchsets.

To reduce cost of memory accesses, input symbols were loaded to shared memory [128,

18], input data layout was changed [128] to avoid uncoalesced accesses, or vector loads

were used [118]. Others used k-stride NFAs [24], which consume k bytes at a time, but

can blow up the alphabet to |Σ|k. Some implementations place state transition tables in

texture memory [118] or on-chip constant memory [18]. Prior work [104] explored packet

signature matching on GPU using DFA and XFA [103] and though that work suggested

profiling hot XFA states and storing them in on-chip shared memory, it did not implement



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 72

it as the size of on-chip shared memory was too small. Both textures and on-chip constant

memory are limited in size, so large parts of the state transition tables remain in and are

accessed using global memory.

If NFA topology is fixed, memory use can be reduced by embedding the topology of the

NFA in the code [77] or inferring it from pattern-specific data [111]. The matchsets con-

tinue to be stored in global memory allowing different matchsets to be loaded at runtime.

However, this technique is most suited for fixed-topology NFAs.

Improving Utilization. NFAs are compact in size, but their non-deterministic parallel

execution requires that each thread handle a single transition [36] or a single state (this

work). To improve utilization, more states must be mapped to a single thread. In previ-

ous works [154, 146], clusters of states called compatible groups are created that contain

states that cannot be active at the same time [154] or that are likely to be active at the

same time [146]. Compatible groups are mapped to the same thread [154] (for improv-

ing utilization) or are used to limit the lookups needed [146] (for decreasing work). The

compatible groups of Zu et al. [154] improve utilization but are computationally expensive

to compute. In contrast, our schemes construct a subset of NFA nodes that are mapped

to threads at linear cost while achieving greater utilization than their compatible groups.

Compared to Yu et al. [146], we separate topology and symbol/matchset information to

limit the lookups without having to compute their notion of compatible groups.

4.9 Conclusions

In this paper, we proposed and evaluated three optimizations to significantly improve the

throughput of NFA Processing on GPUs. These optimizations address sub-optimal data

movement and low utilization, which stem from primarily two aspects: a) the matchset

and topology information is stored off-chip and accessed in an irregular fashion, b) not all

the NFA states are active all the time but still consume resources leading to GPU under-

utilization. Our first two optimizations focus on the data movement problem and allow



CHAPTER 4. ACCELERATING AUTOMATA PROCESSING ON GPU 73

the needed matchset and topology information to remain on-chip as much as possible.

Our third optimization identifies and maps only active states to dedicated threads while

less active states are processed on-demand using a worklist-based approach. Overall, we

achieve significant improvement in NFA processing throughput over the state-of-the-art

mechanisms across a wide range of emerging applications. Moreover, our optimizations

enable GPUs to outperform the domain-specific accelerator (AP) for several applications

while being within an order of magnitude of AP performance for the remainder. As a part

of our future work, we plan to close this remaining gap with the help of hardware/software

co-design optimizations.



74

Chapter 5

Generalizing Automata Processing

on GPUs by Leveraging

Symbol-level Parallelism

Finite-state automata serve as computation kernels for many application domains such as

pattern matching and data analytics. Existing approaches on GPUs exploit three levels of

parallelism in automata processing tasks: 1) input stream-level, 2) automaton-level, and

3) state-level. Among these, only state-level parallelism is intrinsic to automata. When

an automata processing task does not have enough parallelism, the computation resources

of GPU can be underutilized.

We propose AsyncAP, a low-overhead approach that exploits an additional source of

parallelism from input symbols. The matching processes mapped to GPU threads start

at different locations of the input stream in parallel. This new mapping helps in search-

ing for patterns in parallel asynchronously thereby improving the automata performance

significantly. However, theoretically, AsyncAP has higher time complexity. To under-

stand the amount of work needed in reality, our detailed characterization of synchronous

automata execution and AsyncAP demonstrates that AsyncAP only incurs 5% more

work on average across the evaluated applications.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 75

Overall, the evaluation shows that our new approach achieves up to 40× speedup on

average across 14 evaluated applications when the task does not have enough parallelism

to utilize all the GPU cores. When the task has enough parallelism to utilize GPU cores,

AsyncAP also achieves comparable performance (∼99.3%) to the state-of-the-art that

processes automata on GPUs.

5.1 Introduction

Finite automata (or Finite State Machines, FSMs) have been working as computation

kernels for many applications in different domains such as bioinfomatics [34], machine

learning [112, 93, 99, 127], intrusion detection [89, 12], and textual data analytics [52, 82].

Processing automata efficiently is extremely challenging for traditional architectures

due to irregular memory accesses and intrinsic data dependencies. The users, therefore,

resort to domain-specific accelerators based on ASICs or FPGAs [44, 47, 66, 96, 98, 107,

87, 106, 150]. For example, Micron’s Automata Processor [44, 126] repurposes DRAM

to process automata and outperforms traditional architectures by orders of magnitude.

However, these accelerators bring additional complexity to the computing systems [118],

and are slow to configure [140, 126].

By contrast, GPUs are found in many computing systems from mobile phones to data

center servers. They serve as general-purpose accelerators for performance-critical com-

putation kernels as they provide massive data-level parallelism and high memory band-

width. The computation power of GPU has scaled faster than CPUs in recent years [108].

Therefore, running automata processing tasks on GPU has attracted significant atten-

tion [36, 154, 69, 120, 146, 145].

Existing automata processing works on GPUs [36, 154, 146, 76, 69] have demonstrated

that GPU achieves better performance than CPUs. Non-deterministic Finite Automata

(NFAs) are favorable on GPU because they are compact in size [69]. Notably, GPU-

NFA [69] that optimizes data movement and compute utilization for automata processing



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 76

Table 5.1: Three levels of parallelism in NFA processing

Parallelism Source Example

Input Streams Many network packets

NFAs Many intrusion signatures

Active NFA States Non-determinism intrinsic to NFAs

achieves comparable performance to Automata Processor on a single GPU for several

applications.

An automata processing task is to find patterns defined by automata from the input

streams. To parallelize the automata processing tasks on GPUs, as Table 5.1 shows,

existing works leverage three levels of parallelism: (1) input stream level, (2) automaton-

level, and (3) state-level. First, the user can have multiple input streams to find patterns.

For example, in a network intrusion detection application, multiple network packets can

be processed in parallel. Second, multiple NFAs can be processed in parallel. For example,

since each NFA represents an interesting pattern, an application can have many patterns

to find (e.g., signatures of network intrusions). Third, non-determinism means multiple

states can be active at the same time in NFAs, so they can be processed in parallel.

Only the state-level parallelism is intrinsic to NFAs, while the other two depend on

how large the task that the user runs [88]. Tasks may have different latency requirements.

To meet the latency requirement, the user may distribute a large task into small tasks,

and use more computation resources to achieve shorter latency [150]. However, if a small

task does not have enough parallelism to utilize all GPU cores, the performance may be

sub-optimal.

To scale a small task on more computation resources, other lines of works increase the

parallelism by breaking the dependencies between adjacent input symbols, which enables

executing input chunks in parallel. Ladner and Fischer [63] use parallel prefix sum to

parallelize automata, but it leads to significantly more work. Speculation [149, 84, 148, 83]

and enumeration [74] are two categories of approaches that increase the parallelism of

automata on multi-core processors. These works are often evaluated using Deterministic



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 77

Finite Automata (DFAs) as each DFA only has one active state every step. However, using

speculation or enumeration for NFAs is difficult: 1) It is challenging to speculate which set

of states are active at every beginning of input chunks; 2) Applying enumeration on NFAs

leads to more execution paths. Further, these works are not using GPU currently because

merging results from many different execution paths requires communication across GPU

threads, which is complex to implement.

To address these problems, we propose a generic approach that increases the parallelism

of an automata processing task to make it fully utilize the GPU. The increased parallelism

needs to incur low overhead and exhibit high performance for different task sizes. To this

end, we analyze and enable Asynchronous Parallel Automata Processing, AsyncAP, a

simple and low-overhead way to exploit an additional source of parallelism of automata

processing on GPU. Like previous work [69], we focus on NFAs,1 because they are compact

in size, which is easier to fit into GPU memory. We leverage the fact that most evaluated

applications search for patterns from any position in the input streams rather than only

from the starting position. AsyncAP converts the input stream indexed by 0 to n to

many input streams where the kth input stream starts from position k of the original

input. Therefore, the matching processes mapped to different GPU threads can start

from different locations in parallel.

Overall, our new mapping helps in searching for patterns in parallel thereby improving

the automata performance significantly. However, theoretically, AsyncAP has a higher

time complexity, because, in the worst case, an input stream with n symbols needs to

be read O(n2) times. Nevertheless, this upper bound may not reflect the real cases for

two reasons. First, due to mismatches (when no state is active in a thread), the amount

of work in practice is application- and input-dependent. Second, the implementation on

GPU may bring useless work, but the time complexity only shows the useful work upper

bound. To the best of our knowledge, no prior work has analyzed the different sources of

works in practice.

1We use “automata” in the paper to refer to Non-determistic Finite Automata (NFAs), if not specified.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 78

To this end, we perform a systematic characterization on previous synchronous au-

tomata processing (e.g., GPU-NFA [69]) and AsyncAP to understand the amount of

work in practice. Our characterization by emulation analyzes both useful work (i.e., num-

ber of matches between states and input symbols) and useless work caused by idle threads

due to the synchronizations by thread block or SIMD execution. Our key finding is that

while AsyncAP has worse time complexity than the synchronous execution of automata,

the amount of useful work in AsyncAP is only 5% more than the traditional synchronous

execution on average across the evaluated applications. We conclude that AsyncAP has

the potential to work as an approach to increase the parallelism of automata tasks with

low-overhead in real cases.

To show the effectiveness of AsyncAP, we evaluate AsyncAP in scenarios with differ-

ent amounts of parallelism. Under the scenarios where enough parallelism is not present to

utilize GPU cores, AsyncAP achieves 5× to 40× speedup on average across 14 evaluated

applications, respectively. When the original parallelism of the automata task is enough

to utilize GPU cores, AsyncAP achieves comparable performance as the state-of-the-art

prior work showing that its implementation incurs low overhead. In one of the evaluated

applications, AsyncAP can have extreme slowdown due to extreme long patterns. How-

ever, our study shows the extreme long patterns are not frequent. If they happen, we

discuss simple ways to avoid or detect them to prevent slowdown.

In summary, this paper makes the following contributions:

• We analyze and find that the prior work cannot adapt to automata processing tasks

with different amounts of parallelism.

• We propose AsyncAP, a simple and low-overhead way to execute automata on

GPUs that exploits an additional source of parallelism.

• We perform detailed characterization of synchronous execution and AsyncAP to

understand the amount of work in real cases. Different from its theoretical upper

bound, AsyncAP only incurs marginal extra work on average across the evaluated



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 79

applications.

• Evaluation results demonstrate that AsyncAP achieves 5× to 40× speedup when

the existing parallelism is not enough to utilize all GPU cores. In other cases,

AsyncAP is comparable to the state-of-the-art automata processing works on GPU

regardless of the parallelism levels.

5.2 Background

A finite automaton is a mathematical model of computation in which the computations

are abstracted as finite number of states and transitions. Two representations of finite

automaton are widely used: deterministic finite automaton (DFA) and non-deterministic

finite automaton (NFA). Although DFAs are simpler in transitions as only one active state

is allowed, DFA execution is embarrassingly serial, and DFAs can be exponentially larger

than equivalent NFAs. In this work, we focus on NFA2 because of its compact nature and

support of more parallelism.

NFA An NFA can be represented as a directed graph, where nodes represent states,

edges represent state transitions. Each state has a matchset that contains the symbols it

can accept. An automaton has one or more starting states (Figure 5.1, shown in hexagons)

and reporting states (Figure 5.1, shown in double circles).

Types of Starting States If an NFA searches for patterns that appear regardless of the

starting position in the input stream, it has only all-input starting states [5] that are active

at every symbol in the input stream. For example, a pattern /apple/ searches “apple”

in the text no matter from which position of the text it starts. An NFA equivalent to

it contains only all-input starting states. On the contrary, an NFA equivalent to pattern

2We focus on Glushkov NFAs [51], which are ε−free and the matchset is on the node instead of on the
edge. Any NFA that accepts a non-empty string can be transformed into an equivalent Glushkov NFA.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 80

/^apple/ contains start-of-input starting states, as it requires “apple” appears only in the

first position.

*

x

ya
S0 S1

S2

S3
Figure 5.1: Illustrating an NFA that accepts a*.x*y. S0 and S1 are all-input starting
states, which are always active in the execution.

How States are Matched Initially, only the starting states are active. The symbols

of the input stream are fed into the NFA one by one. The active states match with

the incoming symbol. If the incoming symbol falls into the matchset of an active state,

the active state becomes a matched state. If a reporting state is matched, a report is

generated showing an interesting pattern is identified. The matched states then activates

their successors. This process continues until all the symbols of the input stream are

consumed.

5.3 Asynchronous Parallel Automata Processing on GPUs

This section first introduces the motivation of proposing a new approach to process au-

tomata on GPU and then describes the implementation details.

5.3.1 Why do we need a new way to process Automata on GPUs?

In order to understand the need of AsyncAP, we revisit the existing works of automata

processing on CPUs, GPUs and accelerators. Table 5.2 categorizes the existing works for

automata (both DFA and NFA) processing into three categories based on input stream

accessibility, number of NFAs, and input streams. We make the following observations.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 81

Table 5.2: Categorization of Prior Works

Type #Streams #Automata HW Utilization Challenges Examples

Buffered Many Many Oversubscribed Throughput
GPU-NFA [69]
NFA-CG [154]

Buffered Single Few Underutilized Scalability
Speculation [55, 84, 149]
/Enumeration [74]

Streaming Single/Few Few/Many Underutilized Latency
Multi-stride [29]
Graph Transformation [147]
HW Accelerators [66, 96]

Throughput-focused works are not scalable The first category (the first row in the

table) considers the high parallelism case when the task requires more resources than the

hardware can provide. Therefore, the main focus of this type of work is to find the bottle-

neck of automata processing in oversubscribed hardware. Typical optimizations include

data movement and hardware utilization optimizations. For example, NFA-CG [154] cal-

culates compatible groups of NFA states to enhance the thread utilization of GPU. GPU-

NFA [69] proposed new data structures to reduce the data movement, and map hot and

cold states differently to increase the GPU thread utilization. However, these approaches

only use the levels of parallelism from the automata processing tasks. When the task does

not have enough parallelism, these approaches cannot utilize all GPU cores.

Scalability-focused works have higher overhead The second category (the second

row in the table) focuses on the scalability issue in a low parallelism case of automata

processing. Since dependencies exist across input symbols, when the task does not have

enough parallelism, the compute units of the hardware are underutilized. Thus, the exist-

ing works [84, 148, 149, 74] add additional parallelism by chunking the input stream and

making each chunk of the input stream run in parallel. To keep the correctness, they must

handle the dependencies correctly. To this end, they either speculate which states are ac-

tive or enumerate all execution paths starting from every state. However, such approaches

are difficult to adapt for NFAs, because speculating or enumerating on state combinations

of NFAs are needed leading to more overhead.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 82

Streaming-focused works only optimize for latency The third category (stream-

ing, the third row of the table) considers the case that the input stream does not sup-

port random access. They optimize automata processing only for the per-symbol la-

tency. The domain-specific accelerators for automata processing often fall into this cate-

gory [66, 96, 97, 98, 44, 48, 107, 106, 94, 95, 142]. Most of them use in-memory processing

to reduce the latency caused by data movement through the memory hierarchy. Other

works such as constructing multi-stride automata [35, 24, 29] or automata compression [28]

also reduce the per-symbol latency by graph transformation. These software optimizations

are complementary to most of the other works.

Therefore, no single prior work is generic for all scenarios as of automata processing

tasks with various parallelism. A scalable and high-performance scheme on GPU for all

automata tasks is required.

5.3.2 Overview of Asynchronous Parallel Automata Processing

Figure 5.2 compares the traditional synchronous execution of automata processing with

our proposed asynchronous automata processing on GPU. First, Figure 5.2 ( a ) shows the

basic idea of synchronous execution. The NFAs states are mapped to the GPU threads

( 1 ). The thread block reads the symbols from the input stream ( 2 ). A thread block

barrier ( syncthreads()) ensures that all states have finished the current symbol before

moving to the next symbol. When the thread block reads a symbol, it is broadcast to the

entire thread block and matches with the active NFA states. The successors of the matched

states will be added to the next active worklist before processing the next symbol. Overall,

the total number of threads (or thread blocks) depends on the number of NFAs and the

number of input streams—the two numbers come from the automata processing task.

When the total number of thread blocks cannot achieve its full theoretical occupancy [14],

the task is not able to utilize all cores of GPU.

To address this issue, the basic idea AsyncAP is to increase the parallelism of au-

tomata on GPU. AsyncAP separates the execution paths for each symbol of the input



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 83

Thread Block

S0
T0

In
pu

t S
tre

am

a

Thread Block

NFA 0 NFA 0 NFA 0

…
1

4

Ti
m

e

b

…

>K@

J

I

H

G

F

E

D

Barriers

S1 S2

T0 T1T1 T2

H

J K

G L O

Q

Q

J

K

M

L

O

M

G

Q

P

O

L

M

N O

N

I

I

E

I

G

P

LF

I

L

O

K

J

N

F

P

I

K

M S

N

H

K

K

K

R

D

J

L

J

H

N

RM

K

G

L

N

M

M

J

P

J

H

F

L

E

I

H

…

2

3

5

Figure 5.2: Revisiting traditional synchronous automata processing on GPU (a) and the
basic idea of AsyncAP (b). The executions try to find pattern def in an input stream
abcdefg...

stream to gain parallelism (Figure 5.2 ( b )), namely symbol-level parallelism. Therefore,

all the starting states of the NFAs in this approach must be all-input starting states.

We map each symbol of the input stream to each thread. All threads process the same

automaton ( 3 ). Since we start from every position of the input stream, we disable the

all-input starting states such that they are only active at the first symbol of their threads.

This is the same as converting them to start-of-input starting states. We match them

from every symbol of the input stream, making the results equivalent to their original

semantics.

When the matching process begins, thread i reads the input stream independently

from input position i to the end of the input stream ( 4 ). We disable the all-input (always

active) starting states. As a result, when there is no active state in a thread, the thread

finishes ( 5 ). For example, in Figure 5.2 ( b ), thread 3 has active states from positions



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 84

3 and 5 of the input stream (def), but mismatches at position 6 (g), so the thread is

terminated at position 6. Other threads do not match in the beginning, so they finish

when matching the first symbols mapped to them. The work of each thread depends on

when the pattern that it is matching with ends.

Applicability of AsyncAP We investigate all applications in two benchmark suites,

ANMLZoo [123] and AutomataZoo [125]. Among 12 applications in ANMLZoo, all appli-

cations except SPM and Fermi contain NFAs with only all-input starting states. Among the

13 applications of AutomataZoo, all applications except SeqMat and APPRNG contain only

NFAs with all-input starting states. AsyncAP applies to the NFAs that only have all-

input starting states. Based on this observation, we conclude that AsyncAP is applicable

for most of the applications in the existing benchmarks suites.

5.3.3 Design and Implementation

There are many points in the design space of implementing an automata processing scheme

on GPU. We examine the major decisions below.

NFA Data Structures Two ways are commonly seen in the literature to store the

topology of the NFAs. First, most prior works [154, 36] use an alphabet-oriented transition

table to store the topology of the NFAs. It is a two-dimension table T where the rows

are indexed by the alphabet, and the columns are indexed by the states. For example,

T[‘a’][S] stores which states are matched when the incoming symbol is ‘a’ and S is the

matched state currently. Second, other works [76, 69] use per-node data structures similar

to Compressed Sparse Rows (CSR) that decouples the alphabet and the states. With

matchset compression [69], such data structure reduces the data movement as it resides

in GPU registers when possible. In the best case, the matching process does not require

reading global memory to proceed.

We observe that using a transition table is significantly more efficient in AsyncAP



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 85

because there is not much reuse on the all-input states. The per-node data structure is

larger because it stores matchsets separately. When they are not put into registers and

have been reused frequently, more data movement is needed. We also choose to run each

NFA in a kernel launch based on experiments (described later), so the transition table of

each NFA is small to better utilize GPU caches. We conclude that the transition table

works better in AsyncAP, and hence we use it in our scheme.

Per-thread Worklist Each thread in AsyncAP works asynchronously maintaining a

private worklist. A simple way to do so is to use double-buffered arrays that are private

to each thread. However, such private arrays are in the local memory. Although local

memory can also utilize the cache hierarchy in recent generations of GPUs, the worklist

arrays compete for the cache space with other data structures (e.g., transition table). This

affects latency and degrades the performance significantly. We observe that for most of

the symbols, the worklist size is small. Therefore, we implement hybrid worklists whose

first 16 elements are stored on shared memory. When any of them overflows, it starts to

write to local memory. Figure 5.4 shows that this optimization (AsyncShrWL) has a better

median, 25th and 75th percentile performance for the evaluated applications.

Active WL

Matched WL

Match

Next
Active

WL

Expand

Next
Matched

WL

MatchEx
ba

nd
M
at
ch

2

1

3

Figure 5.3: Worklist holds active states or matched states. WL stands for worklist.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 86

What is in the Worklists? Whether worklists hold active states or matched states

affects the matching process. Figure 5.3 illustrates them. If a worklist holds active states,

when one of the active states matches the incoming symbol ( 1 ), it activates its successors

before the next symbol comes ( 2 ). If a worklist holds matched states, it matches the

next symbol with all its successors one by one and pushes the matched successors to

the worklist in the next symbol ( 3 ). GPU-NFA [69] holds active states in its worklists

because it retains hot states to registers. When a match happens, this way does not need

to access matchset of each state. However, we found that holding matched states performs

significantly better in AsyncAP, because AsyncAP disables the all-input states, so these

hot states are not reused across threads.

One-Kernel-One-Automaton or One-Kernel-Many-Automata AsyncAP ex-

ploits symbol-level parallelism, so even 1MB input stream can utilize all GPU threads

in high-end GPUs. It is always sufficient for GPU regardless of the other levels of par-

allelism. As a result, we have the option of running only one automaton with a kernel

launch. Essentially, this trades NFA-level parallelism for smaller transition tables (a few

MBs), as the largest NFA we evaluated has ∼200 states (in CAV). Figure 5.4 shows that

one automaton per kernel launch (AsyncBase) has a higher median throughput than a

kernel that executes all NFAs in one launch (AsyncMergeCC).

AsyncBase AsyncShrWL AsyncMergeCC
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut

1e8

Figure 5.4: Performance of Selected Implementations of AsyncAP. Evaluation method-
ology is described in Section 5.5.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 87

K
K+1
K+2
…

Thread K

Sx   Sy

Sx Sy

Su Sv

next

current

Su Sv

3

5

4
6

In
pu

t S
tre

am

NFAs
transition

tables
1 2 31

…

launch 2
4

GPU

Figure 5.5: Illustrating our implementation of AsyncAP

Execution of AsyncAP Figure 5.5 illustrates the execution of AsyncAP. On the host

side, NFAs are executed in a one NFA one kernel fashion ( 1 ). Each NFA is launched on

a different CUDA stream to allow concurrent kernel execution ( 2 ). To zoom in a thread

k, it starts execution from position k of the input stream. Suppose the current location

is k + 2 ( 3 ), and the current worklist contains matched states Su and Sv ( 4 ). In the

worklists, the shaded portion shows that the first few (4 in our implementation) elements

are stored in shared memory, and the later elements are stored in local memory. Then,

two cells of the transition table are accessed ( 5 ), and the matched states are then pushed

to the next worklist ( 6 ). This finishes processing the current symbol at k + 2. When the

current worklist is empty, the execution finishes.

5.3.4 Analysis

Correctness We analyze why AsyncAP can generate the same reports as synchronous

automata processing on GPU. The basic idea is to show synchronous execution and Asyn-

cAP have the same set of active states at any position of the input stream.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 88

Suppose the all-input starting state of the NFA is s0. It is always active. Let the

set of active states for the NFA at position p as Sp (Sp must contain s0 for any p).

expand(Sp, input [p]) is a function that takes Sp and input [p] (input symbol at position p),

and calculate what are the active states based on Sp and the incoming symbol. We omit

input [p] part because the value of p depends on the order that the function is called. For

example, if expand is nested called k times, then p = k. In the synchronous execution,

since all starting states are all-input, Sp+1 is calculated by using Sp and the starting state

s0 to match with the incoming symbol input[p].

Sp+1 = expand(Sp, input [p+ 1]) ∪ {s0} (5.1)

= expand . . . (expand(expand︸ ︷︷ ︸
p times

({s0}) ∪ {s0})) ∪ {s0}) ∪ {s0} (5.2)

= expand . . .︸ ︷︷ ︸
p times

({s0}) ∪ expand . . .︸ ︷︷ ︸
p−1 times

({s0}) ∪ . . . expand({s0}) ∪ ({s0}) (5.3)

Here, the first line shows the synchronous execution, and the last equation describes

the process of AsyncAP. This proves that we will have the same active set of states

in position p + 1 (i.e., Sp+1). Since the reports are generated when reporting states are

matched, AsyncAP generates the same results as synchronous execution does.

Table 5.3: Comparison of Time Complexity. n: number of symbols; m number of states.

Synchronous Execution AsyncAP

Lower Bound Ω(n) Ω(n)

Upper Bound O(mn) O(mn2)

Time Complexity We calculate the total time complexity of AsyncAP. In the best

case, all the threads only read one symbol and then mismatch. The time complexity lower

bound is Ω(n), where n is the number of symbols in the input stream. At the worst case,

thread at position i (0 ≤ i < n) needs to match with n− i symbols. To sum up, they have

read O(n2) symbols. At each position, at most, all the m states can be active. Therefore,



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 89

the time complexity is O(mn2), which is higher than synchronous execution (Table 5.3).

However, in Section 5.4, we will show by characterizing actual applications that this worst

case is unlikely in practice.

5.4 Characterization of Synchronous Automata Processing

and AsyncAP

To show the potential of AsyncAP in practice, in this section, we characterize both

synchronous execution and AsyncAP on GPU. First, we study how different the pat-

terns are identified from synchronous execution and AsyncAP. Second, we characterize

synchronous execution and AsyncAP to compare how they utilize the GPU from three

aspects: 1) useful work, 2) useless work, and 3) work imbalance.

5.4.1 Applications Configurations

We show the applications evaluated in this work. Similar to prior work on GPU [69],

we evaluate 15 applications from three benchmark suites, ANMLZoo [123], Automata-

Zoo [125], and RegEx [31]. To keep the NFA-level parallelism the same for all applications,

we sample 256 NFAs for each of them uniformly at random. We set the random seed to

1234 to ensure the results are reproducible. We also change the random seed to other

numbers and observe that the results are similar. Table 5.4 shows the basic information

of the evaluated applications. Each application has one representative input stream col-

lected by the benchmark suites. We use the first 1MB input stream to characterize those

applications as suggested by prior work [69].

5.4.2 Comparison of Identified Patterns

First, we generalize the definition of pattern.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 90

Table 5.4: Overview of Evaluated Applications

App. Abbr. Avg. NFA Size Total States

Brill Brill 19.55 5005
Bro217 Bro217 12.36 2312
CRISPR CasOFFinder CRISPR2 37.00 9472
CRISPR CasOT CRISPR1 101.00 25856
ClamAV CAV 70.05 17932
EntityResolution ER 41.62 10656
ExactMatch EMatch 41.38 10594
Hamming l18d3 HM 108.00 27648
PowerEN PEN 14.78 3783
RandomForest RF 31.00 7936
Ranges05 Rg05 42.36 10843
Ranges1 Rg1 41.75 10688
Snort Snort 77.76 19906
TCP TCP 24.73 6331
YARA YARA 36.45 9331

Definition of a “Pattern” When a reporting state is activated, a pattern is identified.

However, this definition of pattern does not characterize the case of mismatch, which

is very common [69]. Even when an automaton cannot recognize a pattern from the

input stream, the automaton might have matched with several contiguous symbols of the

input stream. Therefore, we generalize the definition of a pattern to include the case of

mismatches. We define a pattern as the contiguous symbols where the starting position

is when the starting state is matched, and the ending position is when there is no active

non-starting state. For example, if automaton /apple/ tries to match with input stream

application, appl is the pattern that can be identified starting from position 0.

We compare the patterns identified by synchronous execution and AsyncAP. Fig-

ure 5.6 shows an illustrative example of the patterns identified by synchronous execu-

tion (e.g., GPU-NFA) and AsyncAP. Suppose the NFA identifies (a|p)+le ( 1 ). Fig-

ure 5.6 ( 2 ) shows the synchronous execution. The pattern P1 in the input stream are

shaded. On the contrary, Figure 5.6 ( 3 ) shows the patterns identified by AsyncAP.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 91

epa p l
P1

1 a|p l e ep lpa
P1

2 e
l
p
p

e

p
l e

l

/(a|p)+le/

3S0 S1 S2

Figure 5.6: Synchronous execution identifies disjoint patterns; Patterns identified by
different threads in asynchronous execution may overlap.

Pattern P1 is discovered by three execution paths ( 1 ) and these execution paths stop at

the same position (therefore, the reports are the same). In summary, synchronous execu-

tion only matches apple (5 symbols), but AsyncAP matches apple, pple, and ple (12

symbols in total). AsyncAP captures overlapped patterns ending in the same location,

leading to more work.

How many overlapped patterns can be identified depends on both the au-

tomata and input streams Consider an extreme case: if we have an NFA that has

only one state accepting *, and has a self-loop, all the patterns starting from different

locations of the input stream are overlapped. In this case, AsyncAP reaches its theoret-

ical upper bound of work. However, since NFAs in real applications identify meaningful

patterns in real inputs, we will study what happens in this practical case.

0
0.2
0.4
0.6
0.8
1

Br
ill

Sn
or
t

CA
V

CR
IS
PR

2

CR
IS
PR

1

HM ER RF

Br
o2

17

EM
at
ch

Rg
05 Rg
1

TC
P

PE
N

YA
RA

G
M
ea
nPa

tt
er

n 
O

ve
rla

p 
Ra

tio

Figure 5.7: Ratio of Overlapped Patterns (R) in Evaluated Applications



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 92

Measuring the Overlapped Patterns To study how common the overlapped patterns

are in the evaluated applications, we define a metric: R = 1 − length of disjoint pattern
length of all pattern . R is

in the range of 0 to 1. The more the value is, the more portion of overlapped patterns are

identified by AsyncAP.

Figure 5.7 shows the results about the ratio of overlapped patterns across the evaluated

applications. We observe that on average, R = 0.31, showing that the sum of the lengths

of overlapped patterns is 31% longer. Many applications have R closing to 0, indicating

that no overlapped pattern happens in AsyncAP. However, a few applications (e.g.,

CRISPR1, CRISPR2, Hamming) have a large R, indicating they have a large portion of

overlapped patterns.

5.4.3 Characterization of Work by Emulation

Table 5.5: Characteristics of applications based on our execution models: Our key ob-
servations: (1) The GPU utilization depends on applications. (2) Although AsyncAP
has higher time complexity, in reality only 5% more useful work is needed on average.
(3) Most applications balance the work across threads well, but rarely the work is severely
imbalanced.

App.
Util.
AsyncAP

Util.
GPU-NFA

AsyncAP
GPU-NFA
Useful Work

AsyncAP
GPU-NFA
Total Work

Imb.
Ratio

Brill 0.18 0.89 1.00 4.87 0.07
Snort 0.61 0.53 1.95 1.70 0.000176

ClamAV 0.90 0.67 1.00 0.74 0.09
CRISPR2 0.47 0.89 1.00 1.89 0.32
CRISPR1 0.50 0.96 1.00 1.91 0.31
HM 0.59 0.93 1.00 1.59 0.44
ER 0.27 0.85 1.00 3.18 0.10
RF 0.22 0.60 1.00 2.69 0.02
Bro217 0.64 0.76 1.00 1.17 0.03
EMatch 0.67 0.57 1.00 0.86 0.04
Rg05 0.68 0.57 1.00 0.84 0.02
Rg1 0.67 0.57 1.00 0.85 0.02
TCP 0.58 0.52 1.01 0.89 0.000358

PEN 0.29 0.52 1.04 1.91 0.000002

YARA 0.86 0.56 1.00 0.66 0.01



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 93

In this section, we compare the synchronous and asynchronous automata processing

on GPU in terms of work—which is comprised of useful work and useless work.

Useful Work In every iteration of automata execution, the states match with the in-

coming symbol of the input stream, and decide what to do next (e.g., expand to their

successors, generate reports). We define the number of matches as useful work: When an

active state matches with the incoming symbol, we count it as a unit of useful work.

Useless Work By contrast, useless work is due to either thread block synchronization or

warp synchronization. If a thread is waiting for other threads matching with an incoming

symbol for synchronization, we count the activity of the idle thread as a unit of useless

work.

Although one can easily collect GPU utilization results from existing profilers [15, 16,

17], simulators [26, 60], or emulators [46], these tools cannot differentiate the useful work

and useless work specific to automata processing on GPU. Therefore, we emulate them

by execution models based on their simplified implementation ideas on GPU.

TID 31 7650 2 4
H
C
H
C

Useless WorkMatch Hot States Match Cold States

Time
(1)

31 7650 2 4TID
Input
Stream

Symbol of Pattern

(2)

Figure 5.8: Illustrating the Execution Models of Synchronous (GPU-NFA) and Asyn-
chronous (AsyncAP) Automata Processing on GPU

Figure 5.8 illustrates our proposed execution models of synchronous and asynchronous

(AsyncAP) Automata Processing on GPU. We use GPU-NFA [69] as a representative



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 94

approach of synchronous automata processing on GPU. Each cell in the figure is either a

unit of useful work or useless work.

Model of Synchronous Automata Processing Figure 5.8 (1) shows the execution of

GPU-NFA. Each thread of GPU (TID) is mapped to a hot state. The execution contains

two stages: hot stage and cold stage. The hot states mapped statically to threads match

with the incoming symbol at the hot stage. Next, the threads process the elements in

the worklist before the thread block synchronization. However, the worklist may not

contain enough active states for all threads to process. As the implementation uses static

scheduling, when several threads are matching with incoming symbols, other threads in

the same thread block are idle, waiting for synchronization (grey cells). These idle threads

are doing useless work in GPU-NFA. We use block size 256 in our emulation, which is

also used in GPU execution because it can reach the highest GPU occupancy.

Model of AsyncAP Figure 5.8 (2) shows the execution model of AsyncAP. Each

thread (TID) is mapped to an input position. The thread runs until no state is active.

Thus, the threads run for a different number of symbols depending on the lengths of

patterns in the threads. Due to the SIMD execution of GPU, the threads within a warp

are synchronized implicitly. When a thread is processing a long pattern, other threads in

the same warp are idle (shown in grey-shaded cells). These grey shaded cells are useless

work in AsyncAP. We use 32 as the warp size, which is the same as NVIDIA GPUs [9].

We emulate the two execution models to compare three aspects of GPU-NFA and

AsyncAP. First, to study the real cases compared to theoretical time complexity, we

compare GPU-NFA and AsyncAP in terms of useful work (Section 5.4.4). Second, we

study how much useless work is in their implementations (Section 5.4.5). Third, we study

how the total work is balanced across GPU threads (Section 5.4.6).



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 95

5.4.4 Comparison of Useful Work

Table 5.5 shows the results based on our execution models.

How does each one utilize GPU? The first two columns show the utilization ratio of

useful work in AsyncAP and GPU-NFA, respectively. The utilization ratio is calculated

by Amount of useful work
Amount of total work . The larger the value is, the more utilized the GPU is. We observe

that the ratio of useful work is 0.49 and 0.67 in AsyncAP and GPU-NFA on average

(geometric mean) across the evaluated applications, respectively. The utilization ratio is

also application-dependent. For example, for a number of applications (e.g., YARA, Rg1,

CAV), AsyncAP has done a larger utilization ratio. We conclude that the various lengths

of patterns may affect the utilization of AsyncAP.

Comparison of Useful Work The third column of Table 5.5 shows the

useful work ratio comparing AsyncAP with GPU-NFA. It is calculated by

Amount of useful work in AsyncAP
Amount of useful work in GPU-NFA . AsyncAP can have more useful work than GPU-NFA

because it can identify overlapped patterns (shown in Section 5.4.2).

For all evaluated applications, the useful work is far from achieving the upper bound

of AsyncAP’s time complexity (shown in Table 5.3). On average (geometric mean),

we observe that AsyncAP only requires 5% more useful work than GPU-NFA across

the evaluated applications. For most of the applications (11 out of 15), AsyncAP only

requires less than 0.1% of useful work compared with GPU-NFA. We observed that the

only outlier is Snort, in which AsyncAP needs 95% more useful work. Different from

the theoretical time complexity, the marginal extra useful work required by AsyncAP

indicates asynchronous execution of automata is potentially efficient in practice.

5.4.5 Comparison of Total Work

The fourth column shows the total work ratio of AsyncAP and GPU-NFA calculated by

Amount of total work in AsyncAP
Amount of total work in GPU-NFA . We observe the total work is highly application-dependent.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 96

Compared to GPU-NFA, Brill and ER use multiple times of total work in AsyncAP

(4.9× and 3.2× of GPU-NFA, respectively). On the other hand, for applications such

as CAV and YARA, AsyncAP uses around 30% less total work than GPU-NFA. On

average, AsyncAP requires 44% more total work. More total work is due to two reasons.

First, AsyncAP requires more useful work because of overlapped patterns. Second, the

various lengths of patterns and the implicit warp synchronization lead to useless work.

We will further compare the total work with their actual performance in Section 5.5.2.

5.4.6 How balance the work is in AsyncAP?

GPU-NFA balances the works in a thread block level. However, how the work is balanced

in AsyncAP depends on the pattern characteristics of applications.

Therefore, we measure how the work is distributed across threads in AsyncAP. We

define Imb. Ratio = Sum of Work of Warps
Sum of Max Work of Warps . The smaller the value is, the more imbalance

the work is in the warps. We observe that the thread imbalance situation is various across

the applications. A few applications such as CRISPR1 and HM have very balanced work

across threads. Most of the applications have Imb. Ratio greater than 0.01, indicating

that ∼100 warps with less work can offset a warp with a lot of work. On the other hand,

PEN has a dramatically small value (orders of magnitude smaller than the values of other

applications), showing its threads are extremely imbalanced.

We do not apply software-based load balance to AsyncAP because it requires syn-

chronization of threads, which causes more latency for every step. Nevertheless, the thread

block scheduler can balance the work in a coarse-grain way by assigning a new block, and

AsyncAP has a bigger pool of thread blocks as it increases the parallelism.

We conclude that most of the applications distribute the work across threads well, but

in a rare case, the work is extremely imbalanced.

In summary, by the characterization of GPU-NFA and AsyncAP, we observe that

AsyncAP needs a moderate amount of more useful work and total work compared with

the synchronous execution, and has a fair work balance for most evaluated applications.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 97

The observed characteristics of AsyncAP enable it to work as an alternative way for

adapting GPU automata processing to different task sizes.

5.5 Evaluation

This section first describes our evaluation configurations. Next, we discuss the performance

results of AsyncAP.

5.5.1 Evaluation Configurations

Evaluated Schemes We compare our schemes with two synchronous execution schemes

proposed by prior work – GPU-NFA [69]: Sync HS (HotStart [69]) and Sync HC (NT-

MaC-ACP [69]). The latter supports the flexible placement of hot and cold states to

threads. All the programs are compiled with nvcc 11.0 with O3.

Hardware Platforms We primarily use an NVIDIA Quadro P6000 GPU for evaluation.

We also perform a sensitivity study on an NVIDIA A100 GPU to show the effectiveness

for other GPU architectures.

Performance Measurement We use throughput to measure the performance, where

throughput = Number of symbols
Time . We do not consider the time of copying NFAs and input

streams to GPU, but we have confirmed this only incurs negligible (less than 10%) over-

head. Before launching kernels, we moved them to GPU. We measure the end-to-end time

from launching the first kernel to the end of execution where the reported are copied back

to the host. Each set of experiments is performed 3 times and we report 95% confidence

intervals for our results (shown as error bars).

Evaluated Scenarios We evaluate our approach for automata processing tasks with

different amounts of parallelism. Since NFAs have different runtime characteristics, to

better control the parallelism, we vary the number of input streams. We study three



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 98

scenarios, low (1 input stream), medium (15 input streams), and high parallelism (240

input streams). The low parallelism only has one input stream, which is evaluated in most

of the prior works that focus on automata parallelization (such as speculation/enumeration

techniques). The medium parallelism scenario is a case when the parallelism is not enough

to utilize all the computation resources. Since our evaluated GPU has 30 stream multi-

processors (SMs), we use half of the number of SMs as the number of input streams. Last,

the evaluated GPU supports 240 thread blocks running on the stream multiprocessors

(SMs), so we consider the scenario with 240 input streams as high parallelism as it requires

at least 240 thread blocks.

5.5.2 Experimental Results

We describe the performance results under different scenarios. Table 5.6 shows the abso-

lute performance of evaluated applications in different scenarios.

To simplify the discussion, we exclude the application, PEN, from this section and

discuss it separately.

Low and Medium Parallelism In this scenario, the approaches of GPU-NFA only

need one thread block to execute the NFAs on an input stream. Thus, originally, it severely

underutilized GPU cores. Figure 5.9a shows the throughput obtained from this scenario.

We found that AsyncAP achieves 40× speedup for the evaluated applications on average.

Figure 5.9b shows that 4.5× speedup is achieved on average in the medium parallelism

scenario. We conclude that for all applications AsyncAP achieves significant speedup

showing its effectiveness in increasing the parallelism of automata processing tasks.

High Parallelism To show that AsyncAP adapts to all scenarios in terms of paral-

lelism, we compare AsyncAP with GPU-NFA when the GPU is fully utilized. Figure 5.9c

show our results. Overall, we observe that AsyncAP achieves 99.3% of the performance

compared to Sync HS, the fastest evaluated implementation of GPU-NFA, on average



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 99

CAV

CRISP
R2

Brill
Sn

ort

CRISP
R1 HM ER RF

Bro2
17

EM
atc

h
Rg0

5
Rg1 TC

P
YA

RA
Mea

n

100

101

Sp
ee

du
p

Sync_HS Sync_HC Async

(a) Low Parallelism

CAV

CRISP
R2

Brill
Sn

ort

CRISP
R1 HM ER RF

Bro2
17

EM
atc

h
Rg0

5
Rg1 TC

P
YA

RA
Mea

n
0

2

4

6

8

Sp
ee

du
p

Sync_HS Sync_HC Async

(b) Medium Parallelism

CAV

CRISP
R2

Brill
Sn

ort

CRISP
R1 HM ER RF

Bro2
17

EM
atc

h
Rg0

5
Rg1 TC

P
YA

RA
Mea

n
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Sync_HS Sync_HC Async

(c) High Parallelism

Figure 5.9: Performance of synchronous and asynchronous automata executions on GPU
under different amounts of parallelism

across the evaluated applications. AsyncAP achieve up to 3.4× speedup over GPU-

NFA (CRISPR1). Although CRISPR1, CRISPR2, HM, and Snort have more total work



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 100

in AsyncAP (up to 1.95× than GPU-NFA), AsyncAP still significantly outperforms

GPU-NFA in these applications. To further study the reason, we observe that Asyn-

cAP has more advantages in these applications that have more activation or have longer

average pattern lengths (will be demonstrated in Table 5.7), showing the lower overhead

of state matching without synchronization.

On the other hand, AsyncAP has a slowdown in several applications due to two

reasons: First, a few applications such as Brill and ER have more total work (4.9× and

3.2×, respectively) in AsyncAP. As a result, AsyncAP achieves around 37% performance

of GPU-NFA in ER and 38% in Brill, but the slowdown is lighter than the incurred

more total work in AsyncAP. Second, applications, such as EMatch, Rg05, Rg1, and

TCP, although do not need more work in AsyncAP, have a slowdown because their

characteristics are favorable for GPU-NFA. We further investigate these applications

and observe that the matching processes do not go deeper in their NFAs. Also, the all-

input starting states of them have compressible matchsets, on which GPU-NFA applied

matchset compression, so GPU-NFA achieves better performance for them in the full

parallelism scenario.

Table 5.6: Absolute throughput (in MB/s) of evaluated applications under the scenarios
with different amounts of parallelism.

Scenario Scheme
Application

Brill Bro217 CAV CRISPR1 CRISPR2 EMatch ER HM PEN RF Rg05 Rg1 Snort TCP YARA

Low
AsyncAP 14.66 52.93 55.48 13.71 19.48 38.13 28.28 12.99 0.30 64.60 39.68 38.83 19.47 11.60 51.33
Sync HS 0.57 0.89 1.60 0.20 0.35 1.12 1.31 0.21 0.77 0.93 1.06 1.09 0.55 0.92 0.78

Medium
AsyncAP 18.32 77.38 99.22 16.99 24.53 63.59 38.82 15.80 0.28 120.53 64.54 63.68 50.45 54.77 84.27
Sync HS 8.59 13.36 24.11 2.90 5.29 16.91 19.48 3.06 11.46 13.81 15.94 16.46 8.22 13.80 11.64

High
AsyncAP 19.19 103.65 114.23 17.43 25.64 71.84 41.43 16.25 1.94 139.56 73.35 71.94 59.69 74.70 95.99
Sync HS 49.38 95.30 148.31 5.14 12.41 113.94 110.00 10.14 83.79 97.12 108.15 110.82 41.98 82.47 74.79

Comparison with Oracular Speculation A speculation mechanism for automata

processing needs two components: 1) Speculation component decides the state to start

for each input stream chunk; 2) The matching component to handle all the input stream

chunks and the starting states. Currently, no prior speculation scheme is implemented on

GPU, so we perform an oracular case study. We suppose the speculation component is

oracular, and use GPU-NFA, the state-of-the-art scheme on GPU, as the matching com-



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 101

ponent for the input stream chunks. This ideal speculation scenario is equivalent to having

more input streams for free. Figure 5.9 (3) is a proxy comparison between AsyncAP and

the ideal speculation. In conclusion, AsyncAP achieves comparable performance to ideal

speculation with GPU-NFA [69] as the matching component.

CAV

CRISP
R2

Brill
Sn

ort

CRISP
R1 HM ER RF

Bro2
17

EM
atc

h
Rg0

5
Rg1 TC

P
YA

RA
Mea

n

100

101

102

Sp
ee

du
p

Sync_HS Sync_HC Async

(a) Low Parallelism

CAV

CRISP
R2

Brill
Sn

ort

CRISP
R1 HM ER RF

Bro2
17

EM
atc

h
Rg0

5
Rg1 TC

P
YA

RA
Mea

n
0

1

2

3

4

Sp
ee

du
p

Sync_HS Sync_HC Async

(b) High Parallelism

Figure 5.10: Performance sensitivity to Ampere GPU Architecture

Sensitivity to Ampere Architecture We perform high parallelism and low parallelism

scenarios on NVIDIA A100 GPU. Since A100 has 108 SMs, we use 864 (108 × 8) input

streams in the high parallelism scenario. Figure 5.10 demonstrates the performance re-

sults. In the low parallelism scenario, we observe that several applications (e.g., CRISPR2,

CRISPR1, and HM) achieve better speedup compared to the P6000 GPU because more



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 102

cores benefit from increased parallelism. For example, CRISPR1 achieves 120× speedup

in A100 compared to 70× speedup in P6000. However, compared with Figure 5.9a, a few

applications achieve lower speedup (e.g., 21.1× vs. 34.6× speedup in CAV, and 47.2× vs.

65.9× speedup in YARA) than the results on P6000 GPU. We found that most matchsets

of them are compressible (i.e., matchset compression in GPU-NFA are applied). Hence,

GPU-NFA obtains better performance due to lower latency in A100. On average, Asyn-

cAP achieves 36.5× speedup (y-axis is in log-scale). In the high parallelism scenario,

AsyncAP achieves 98.4% throughput compared to GPU-NFA on average across the 14

evaluated applications. We conclude that AsyncAP is also effective in the A100 GPU.

5.5.3 Analysis of Pattern Lengths

Slowdown of PEN Figure 5.11 shows that AsyncAP has an extreme slowdown in PEN

in all scenarios. The slowdown is because PEN has very long patterns, so the matching

processes get stalled at certain states.

Low Medium High
0

10

20

30

40

Sl
ow

do
wn

Sync_HS
Sync_HC
Async

Figure 5.11: Slowdown of PEN

We further examine the patterns of applications to understand the slowdown. Table 5.7

shows the pattern lengths characteristics.

We observe that most applications have very short patterns, and have a small stan-

dard deviation. Applications that have larger average pattern lengths (e.g., CRISPR1,

CRISPR2, HM) are more likely to achieve better performance in AsyncAP because longer



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 103

Table 5.7: Pattern Lengths of Applications

App. Max. Len. Avg. Len. SD.

Brill 75 1.591 2.044
Bro217 46 1.034 0.274
CRISPR2 16 2.667 0.943
CRISPR1 24 4.016 1.257
CAV 13 1.004 0.069
ER 22 1.136 0.542
EMatch 42 1.020 0.232
HM 19 5.333 1.333
PEN 923049 1.053 142.436
RF 1 1.000 0.000
Rg05 46 1.020 0.230
Rg1 46 1.022 0.239
Snort 9558 1.313 6.828
TCP 1108 1.022 1.102
YARA 27 1.125 0.350

patterns indicate more frequent activation. When non-starting states are activated fre-

quently, the worklist used in GPU-NFA needs to read the per-node data structure of

NFAs, which causes a huge data movement overhead. However, a few applications can

have very long patterns (e.g., PEN, Snort), but these two have significantly different stan-

dard deviations (142.4 and 6.8, respectively), leading to their different performance results.

When the number of warps that execute on shorter patterns can offset the warps for long

patterns, the performance degradation is not much (e.g., Snort). If the number of thread

blocks with short patterns cannot offset the thread blocks with extreme long patterns, the

performance drops significantly (PEN) due to imbalance.

In summary, AsyncAP performs well in all scenarios when the pattern lengths are

moderate but can lead to slowdown when the patterns are extremely long.

How likely is it for the pattern to be long? To study how common the long patterns

are, we classify the NFAs into four types by static analysis on NFA graphs, as NFAs are

also direct graphs on which the state transitions follow the edges.

1. The first type can generate patterns with infinite lengths when going through a cycle



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 104

Brill

Bro2
17

CRISP
R2

CRISP
R1

CAV ER
EM

atc
h HM PE

N RF
Rg0

5
Rg1

Sn
ort TC

P
YA

RA
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f N

FA
 T

yp
es

Infinite P.L. when Repeated Patt. 
Any
Finite P.L. 
Infinite P.L. when Stuck

Figure 5.12: Large portion of NFAs can never have infinite long patterns.

containing more than one state (the NFA graph has no state with self-loop but has

back edges).

2. The second type can generate any lengths of patterns (the NFA graph has both back

edge and self-loop).

3. The third type only generates patterns with finite lengths (the NFA graphs are

directed acyclic graphs).

4. The fourth type can generate patterns with infinite lengths only when the matching

process is stuck on the same state (the NFA graph has no back edge but has self-

loops).

Figure 5.12 shows the results for the applications (Here, NFAs are not sampled. The

sampled case also shows a very similar figure). We observe that a large portion of the NFAs

can only generate patterns with finite lengths. In other applications, although statically it

is possible to have very long patterns, they do not have long patterns when executing a

real input stream (see Table 5.7). Although most NFAs in PEN belong to the third type,

the NFAs generate long patterns are in the fourth type. For example, state 26986 that



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 105

accepts [x00-x09x0b-xff] has a self-loop. The matching process is stalled at this state

leading to an extremely long pattern.

Addressing Slowdown caused by Long Patterns We use a simple but effective way

to dynamically detect the extreme slowdown. A thread of AsyncAP terminates when it

has no matched states. We set another limit to the termination condition that when the

current loop exceeds a pre-defined length the thread is terminated.

Low Medium High
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sl
ow

do
wn

Sync_HS
Sync_HC
Async_PL1000

Figure 5.13: When limiting the pattern length to 1K, PEN does not exhibit slowdown
(i.e., slowdown is less than 1).

Figure 5.13 demonstrates that when we apply the long pattern detection and termi-

nation on AsyncAP, AsyncAP has speedup in all cases for PEN (slowdown is less than

1) compared to schemes in GPU-NFA. While such an early termination mechanism may

omit reports, those long patterns did not trigger any reporting state in the case of PEN.

5.6 Related Work

This section summarizes prior works into two categories. First, we discuss how prior works

maps automata processing to hardware resources. Second, we discuss existing works that

increase the parallelism of automata.



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 106

5.6.1 Mapping Automata to Computation Resources

To parallelize the automata processing, the program needs to map automata to com-

putation resources. Vasiliadis et al. [118] and Gregex [128] use GPU threads to handle

different network packets (i.e., input stream level parallelism). Smith et al. [105] merges

DFAs (and extended DFAs) with a 64MB memory budget and executes them in batches on

GPU threads. Tran et al. [114] use each warp to handle a pair of NFA and input stream.

HyperScan [131] maps NFA states to SIMD lanes of CPU and uses parallel bit operations

of SIMD to calculate the next states of NFA. Prior work by Vu [120] maps threads to

state vectors and performs vector and matrix multiplication to leverage bit-parallelism of

NFAs. iNFAnt [36] and Nourian et al. [76] map state transitions to threads. Nourian et

al. also propose compiler-based schemes to map the traversals of NFAs to the code of

GPUs [77] or FPGAs [78], but these approaches are limited to fixed-topology NFAs.

These works treat all states equally, neglecting the matching activity of automata

states. Zu et al. [154] statically groups the states that can never be grouped into compatible

groups, and map the compatible groups to threads to increase the GPU utilization. GPU-

NFA [69] classifies the states to hot and cold and maps the hot states to threads.

In contrast, AsyncAP maps input symbols to GPU threads. Since the input stream

is long enough, the mapping of our approach increases the parallelism.

5.6.2 Increasing Parallelism of Automata

A large body of work focuses on how to break dependencies across symbols to gain more

parallelism. The approaches can be categorized as prefix-sum parallelization [63], enu-

meration [74], speculation [149, 148, 83, 85], or hybrid methods of them [55, 138]. All

of these works assume the computational resources are more than the requirement of the

parallelism coming from the original task (i.e., automata level, input stream level, and

state-level parallelism). Speculation is more work-efficient than prefix-sum parallelization

and enumeration [149].



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 107

All the aforementioned works focus on DFAs because they are simpler in transitions,

which makes it easier to speculate or apply path merging [74] in enumeration schemes.

Also, since these works are not available on GPU due to the complexity of GPU imple-

mentation, we do not compare AsyncAP with them directly. Nevertheless, we compared

AsyncAP with an ideal speculation approach that uses GPU-NFA as matching processes

in Section 5.5.2 and found AsyncAP has comparable performance as an ideal speculation

approach.

The separation of execution paths of AsyncAP can also be treated as a variant of

enumeration. However, traditional enumeration schemes enumerate the active states at

the beginning of each chunk. The matching processes need to be synchronized because they

need to discard the incorrect results from the enumeration of active states. In contrast,

AsyncAP enumerates the starting positions of the input stream to gain parallelism and

does not require synchronization to guarantee correctness. As a result, AsyncAP is

more scalable when the processor becomes larger, or the user distributes the workloads to

multiple devices. The limitation of AsyncAP is that it only applies to all-input starting

states.

No prior works adapt to tasks with different levels of parallelism, whereas we have

demonstrated in this paper that AsyncAP work well for all levels of parallelism and

incurs low overhead.

5.7 Conclusions

With each generation, GPUs are becoming more capable and equipped with more com-

pute/memory resources. However, not all automata tasks bring enough parallelism to

utilize these GPUs well.

We propose a lightweight approach to increase the parallelism of automata processing

on GPUs. The new approach scales with the input stream and is able to search pat-

terns in parallel asynchronously. However, theoretically, such an approach can generate



CHAPTER 5. GENERALIZING AUTOMATA PROCESSING ON GPU 108

additional work. We study the amount of work in real applications and observe that

our approach only incurs marginal extra work compared to the traditional synchronous

automata processing on GPUs.

The increased parallelism enabled by our new mapping approach reduces the under-

utilization of GPU cores – leading to significant speedup when parallelism of the task does

not saturate the GPU. When the task has enough parallelism, our approach performs

comparably to the state-of-the-art NFA processing engine on GPU.



Chapter 6

Conclusions and Future Work

6.1 Summary of Dissertation Contributions

Achieving high throughput in large-scale automata processing is challenging. CPUs are

not ideal for this problem because of their limited parallelism and memory bandwidth.

Mainstream solutions include the use of domain-specific accelerators or general-purpose

accelerators. However, both of them have their inefficiencies, leading to hardware un-

derutilization. To solve such underutilization, in this dissertation, we make the following

contributions:

Addressing the Underutilization of the Domain-specific Accelerator. Although

Automata Processor is orders of magnitude faster than von Neumann architectures, we

show that the AP is underutilized because it fails to leverage the runtime characteristics

of the automata. This underutilization leads to suboptimal performance as well as perfor-

mance per area. We address the problem via software/hardware co-design optimizations

which result in a new mode of AP. With marginal hardware overhead, our approaches

achieve significant speedup as well as performance per area.

Reducing the Gap between General-purpose Accelerators and Domain-specific

Accelerators. Domain-specific accelerators are fast but have limited availability. Fur-

ther, too many heterogeneous accelerators lead to more complex computing systems. We,

109



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 110

therefore, focus on the general-purpose accelerator, GPU, which provides massive par-

allelism and very high memory bandwidth in commodity processors. We identified two

major throughput bottlenecks. By our proposed optimizations, we achieve significant im-

provement in automata processing throughput over state-of-the-art mechanisms across a

wide range of emerging applications. Moreover, our optimizations enable GPUs to out-

perform the domain-specific accelerator (AP) for several applications while being within

an order of magnitude of AP performance for the remainder.

Adapting Automata Processing to Different Task Sizes on GPU. GPU is be-

coming more capable in computation and memory resources. However, existing works

that leverage three levels of parallelism of automata cannot always utilize GPU cores well.

To adapt to different task sizes with a more generic scheme, we propose AsyncAP, a

new approach that processes automata asynchronously on GPU. Our approach exploits

an additional source of parallelism, symbol-level parallelism, that scales with the length of

an input stream. The new approach has more theoretical time complexity, however, our

characterization shows that it only incurs 5% more work. The evaluation shows up to 40×

speedup is obtained because of the increased parallelism on average across 14 applications.

Further, the new approach achieves comparable performance to the state-of-the-art GPU

automata processing engine when the GPU is fully used.

6.2 Future Research Directions

Our future work targets to bridge the performance/energy-efficiency gap between DSAs

and general-purpose accelerators (e.g., GPUs).

For automata processing, in this dissertation, while we have proposed and implemented

many optimizations for automata processing on GPUs, as well as different ways to map

automata to GPU resources, our approaches do not exhaust all combinations of them. Due

to the diversity of GPUs and automata applications, generating a specific combination of

optimizations can enable the various automata applications to utilize different GPUs more



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 111

efficiently. Our future work will develop an automatic way to generate the combinations

of optimizations and evaluate them on GPUs.

We will also broaden the research domain to other irregular computations such as

graphs, bioinformatics algorithms, and neural architecture search.

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF)

grants (#1657336 and #1750667). This work was performed in part using computing

facilities at William & Mary. The Quadro P6000 GPU was donated by NVIDIA.



112

Bibliography

[1] Project Brainwave. https://www.microsoft.com/en-us/research/project/

project-brainwave/.

[2] PROJECT TRILLIUM. https://www.arm.com/products/silicon-ip-cpu/

machine-learning/project-trillium.

[3] The NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org/.

[4] Google Pixel Visual Core. https://en.wikichip.org/wiki/google/pixel_

visual_core, 2017.

[5] ANML Documentation. http://www.micronautomata.com/documentation/anml_

documentation/c_D480_design_notes.html, 2018.

[6] Clamav net. https://www.clamav.net/, 2018.

[7] CUDA C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/, 2019.

[8] GNU Grep. https://www.gnu.org/software/grep/, 2019.

[9] NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.nvidia.

com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf,

2019.

[10] Snort. https://snort.org/, 2019.

https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
http://nvdla.org/
https://en.wikichip.org/wiki/google/pixel_visual_core
https://en.wikichip.org/wiki/google/pixel_visual_core
http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
https://www.clamav.net/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.gnu.org/software/grep/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://snort.org/


BIBLIOGRAPHY 113

[11] The Lex & Yacc Page. http://dinosaur.compilertools.net, 2019.

[12] The Zeek Network Security Monitor. https://www.zeek.org, 2019.

[13] YARA: The pattern matching swiss knife for malware researchers. https://

virustotal.github.io/yara/, 2019.

[14] CUDA Occupancy Calculator. https://docs.nvidia.com/cuda/

cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls, 2021.

[15] NVIDIA Nsight Compute. https://docs.nvidia.com/cuda/

profiler-users-guide/, 2021.

[16] NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-compute,

2021.

[17] NVIDIA Visual Profiler. https://developer.nvidia.com/

nvidia-visual-profiler, 2021.

[18] Manel Abdellatif, Chamseddine Talhi, Abdelawahab Hamou-Lhadj, and

Michel Dagenais. On the Use of Mobile GPU for Accelerating Malware Detection

Using Trace Analysis. In Proceedings of the Symposium on Reliable Distributed

Systems Workshop (SRDSW), 2015.

[19] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos,

Venkatraman Govindaraju, Venkatanathan Varadarajan, Cagri Balke-

sen, Georgios Giannikis, Charlie Roth, Nipun Agarwal, and Eric Sed-

lar. A Many-core Architecture for In-memory Data Processing. In Proceedings of

International Symposium on Microarchitecture (MICRO), 2017.

[20] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer,

M. Stan, and K. Skadron. MNCaRT: An Open-Source, Multi-Architecture

Automata-Processing Research and Execution Ecosystem. IEEE Computer Archi-

tecture Letters (CAL), 2018.

http://dinosaur.compilertools.net
https://www.zeek.org
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler


BIBLIOGRAPHY 114

[21] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi,

Kevin Skadron, Westley Weimer, and Reetuparna Das. ASPEN: A Scal-

able In-SRAM Architecture for Pushdown Automata. In Proceedings of the Inter-

national Symposium on Microarchitecture (MICRO), 2018.

[22] P. Ashar, S. Devadas, and A. R. Newton. A Unified Approach to the Decom-

position and Re-decomposition of Sequential Machines. In Proceedings of the Design

Automation Conference (DAC), 1990.

[23] Pranav Ashar, Srinivas Devadas, and A. Richard Newton. Finite State

Machine Decomposition, pages 117–168. Springer US, 1992.

[24] Matteo Avalle, Fulvio Risso, and Riccardo Sisto. Scalable Algorithms for

NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs. IEEE/ACM

Transactions on Networking (ToN), 2016.

[25] John Backus. Can Programming Be Liberated from the Von Neumann Style?:

A Functional Style and Its Algebra of Programs. Commun. ACM, 21(8):613–641,

August 1978.

[26] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt.

Analyzing CUDA Workloads Using a Detailed GPU Simulator. In ISPASS, 2009.

[27] Michela Becchi and Srihari Cadambi. Memory-Efficient Regular Expression

Search Using State Merging. In Proceedings of the International Conference on

Computer Communications (INFOCOM), 2007.

[28] Michela Becchi and Patrick Crowley. An Improved Algorithm to Accelerate

Regular Expression Evaluation. In Proceedings of the 3rd ACM/IEEE Symposium

on Architecture for Networking and Communications Systems (ANCS), 2007.



BIBLIOGRAPHY 115

[29] Michela Becchi and Patrick Crowley. Efficient Regular Expression Evalu-

ation: Theory to Practice. In Proceedings of the Symposium on Architectures for

Networking and Communications Systems (ANCS), 2008.

[30] Michela Becchi, Mark Franklin, and Patrick Crowley. A Workload for

Evaluating Deep Packet Inspection Architectures. In Proceedings of the International

Symposium on Workload Characterization (IISWC), 2008.

[31] Michela Becchi, Mark Franklin, and Patrick Crowley. A Workload for

Evaluating Deep Packet Inspection Architectures. In Proceedings of the International

Symposium on Workload Characterization (IISWC), 2008.

[32] Michela Becchi, Charlie Wiseman, and Patrick Crowley. Evaluating Reg-

ular Expression Matching Engines on Network and General Purpose Processors. In

Proceedings of the Symposium on Architectures for Networking and Communications

Systems (ANCS), 2009.

[33] C. Bo, K. Wang, J. J. Fox, and K. Skadron. Entity resolution acceleration

using the automata processor. In Proceedings of the International Conference on

Big Data (BigData), 2016.

[34] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. Searching

for Potential gRNA Off-Target Sites for CRISPR/Cas9 using Automata Processing

across Different Platforms. In Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA), 2018.

[35] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A Scalable

Architecture For High-Throughput Regular-Expression Pattern Matching. In Pro-

ceedings of the International Symposium on Computer Architecture (ISCA), 2006.



BIBLIOGRAPHY 116

[36] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo

Sisto. iNFAnt: NFA Pattern Matching on GPGPU Devices. ACM SIGCOMM

Computer Communication Review (CCR), 2010.

[37] Yeim-Kuan Chang and Yu-Hao Tseng. Fast and Memory Efficient NFA Pattern

Matching using GPU. In Proceedings of the International Conference on Commu-

nications, Computation, Networks and Technologies (INNOV), 2016.

[38] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. EffiSha:

A Software Framework for Enabling Efficient Preemptive Scheduling of GPU. In

Proceedings of the Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2017.

[39] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. DianNao: A Small-footprint High-throughput Accel-

erator for Ubiquitous Machine-learning. In Proceedings of the International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2014.

[40] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, and O. Temam. DaDianNao: A Machine-Learning Supercomputer. In

Proceedings of the International Symposium on Microarchitecture (MICRO), 2014.

[41] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John

Sartori. Bespoke Processors for Applications with Ultra-low Area and Power Con-

straints. In Proceedings of the International Symposium on Computer Architecture

(ISCA), 2017.

[42] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. MIT Press, Cambridge, MA, USA, 1990.



BIBLIOGRAPHY 117

[43] Russ Cox. Regular Expression Matching can be Simple and Fast. https://swtch.

com/~rsc/regexp/regexp1.html, 2007.

[44] Paul Dlugosch, Dave Brown, Paul Glendenning, Leventhal Leventhal,

and Harold Noyes. An Efficient and Scalable Semiconductor Architecture for

Parallel Automata Processing. IEEE Transactions on Parallel and Distributed Sys-

tems (TPDS), 2014.

[45] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao

Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDianNao: Shifting

Vision Processing Closer to the Sensor. In Proceedings of the International Sympo-

sium on Computer Architecture (ISCA), 2015.

[46] Amr S. Elhelw and Sreepathi Pai. Horus: A Modular GPU Emulator Frame-

work. In Proceedings of the IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2020.

[47] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien.

Fast Support for Unstructured Data Processing: The Unified Automata Processor.

In Proceedings of the International Symposium on Microarchitecture (MICRO), 2015.

[48] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien.

Fast Support for Unstructured Data Processing: The Unified Automata Processor.

In Proceedings of the International Symposium on Microarchitecture (MICRO), 2015.

[49] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw, and

S. Narayanasamy. GenAx: A Genome Sequencing Accelerator. In Proceedings of

the International Symposium on Computer Architecture (ISCA), 2018.

[50] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi,

Hongzhong Zheng, Bob Brennan, and Christos Kozyrakis. DRAF: A

https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html


BIBLIOGRAPHY 118

Low-power DRAM-based Reconfigurable Acceleration Fabric. In Proceedings of the

International Symposium on Computer Architecture (ISCA), 2016.

[51] Victor Mikhaylovich Glushkov. The Abstract Theory of Automata. Russian

Mathematical Surveys, 16(5):1, 1961.

[52] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and

Dan Suciu. Processing XML Streams with Deterministic Automata and Stream

Indexes. ACM Transactions on Database Systems, 2004.

[53] Timothy Heil, Anil Krishna, Nicholas Lindberg, Farnaz Toussi, and

Steven Vanderwiel. Architecture and Performance of the Hardware Accelerators

in IBM’s PowerEN Processor. ACM Transactions on Parallel Computing (TOPC),

2014.

[54] Mohamed Assem Ibrahim, Hongyuan Liu, Onur Kayiran, and Adwait Jog.

Analyzing and Leveraging Remote-Core Bandwidth for Enhanced Performance in

GPUs. In Proceedings of the International Conference on Parallel Architectures and

Compilation Techniques (PACT), 2019.

[55] Peng Jiang and Gagan Agrawal. Combining SIMD and Many/Multi-Core Par-

allelism for Finite State Machines with Enumerative Speculation. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2017.

[56] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das. Orchestrated Scheduling and

Prefetching for GPGPUs. In Proceedings of the 40th Annual International Sympo-

sium on Computer Architecture (ISCA), 2013.

[57] Adwait Jog, Onur Kayiran, Nachiappan C. Nachiappan, Asit K. Mishra,

Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.



BIBLIOGRAPHY 119

Das. OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving

GPGPU Performance. In ASPLOS, 2013.

[58] Norman P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Pro-

cessing Unit. In Proceedings of the International Symposium on Computer Architec-

ture (ISCA), 2017.

[59] R. Karakchi, L. O. Richards, and J. D. Bakos. A Dynamically Reconfigurable

Automata Processor Overlay. In Proceedings of the International Conference on

ReConFigurable Computing and FPGAs (ReConFig), 2017.

[60] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G.

Rogers. Accel-Sim: An Extensible Simulation Framework for Validated GPU Mod-

eling. In Proceedings of the ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), 2020.

[61] HyunJin Kim and Kang-Il Choi. A Pipelined Non-Deterministic Finite

Automaton-Based String Matching Scheme Using Merged State Transitions in an

FPGA. PLOS ONE, 11, 2016.

[62] Sailesh Kumar, Jonathan Turner, and John Williams. Advanced Algo-

rithms for Fast and Scalable Deep Packet Inspection. In Proceedings of the Sympo-

sium on Architecture for Networking and Communications Systems (ANCS), 2006.

[63] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation.

Journal of the ACM (JACM), 1980.

[64] Huanxin Lin, Cho-Li Wang, and Hongyuan Liu. On-GPU Thread-data

Remapping for Branch Divergence Reduction. ACM Transactions on Architecture

and Code Optimization (TACO), 15(3):1–24, 2018.

[65] Z. Lin, L. Nyland, and H. Zhou. Enabling Efficient Preemption for SIMT Ar-

chitectures with Lightweight Context Switching. In Proceedings of the International



BIBLIOGRAPHY 120

Conference for High Performance Computing, Networking, Storage and Analysis

(SC), 2016.

[66] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and Ad-

wait Jog. Architectural Support for Efficient Large-Scale Automata Processing. In

Proceedings of the International Symposium on Microarchitecture (MICRO), 2018.

c© 2018 IEEE. Reprinted, with permission.

[67] Hongyuan Liu, King Tin Lam, Huanxin Lin, Cho-Li Wang, and Jun-

chao Ma. Lightweight Dependency Checking for Parallelizing Loops with Non-

Deterministic Dependency on GPU. In Proceedings of the International Conference

on Parallel and Distributed Systems (ICPADS), 2016.

[68] Hongyuan Liu, Bogdan Nicolae, Sheng Di, Franck Cappello, and Ad-

wait Jog. Accelerating DNN Architecture Search at Scale Using Selective Weight

Transfer. In Proceedings of the IEEE International Conference on Cluster Comput-

ing, 2021.

[69] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. Why GPUs are Slow at

Executing NFAs and How to Make Them Faster. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’20, page 251–265, New York, NY, USA, 2020.

Association for Computing Machinery. doi:10.1145/3373376.3378471.

[70] Y. Liu, S. Sezer, and J. McCanny. NFA Decomposition and Multiprocess-

ing Architecture for Parallel Regular Expression Processing. In Proceedings of the

International SOC Conference, 2009.

[71] Paul Merolla, John Arthur, Filipp Akopyan, Nabil Imam, Rajit

Manohar, and Dharmendra S Modha. A Digital Neurosynaptic Core using

Embedded Crossbar Memory with 45pJ per Spike in 45nm. In IEEE Custom Inte-

grated Circuits Conference (CICC), 2011.

http://dx.doi.org/10.1145/3373376.3378471


BIBLIOGRAPHY 121

[72] José C. Monteiro and Arlindo L. Oliveira. Finite state machine decompo-

sition for low power. In Proceedings of the Design Automation Conference (DAC),

1998.

[73] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data Processing on

FPGAs. Proceedings of the VLDB Endowment, 2009.

[74] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-

parallel Finite-state Machines. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems (ASP-

LOS), 2014.

[75] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Data-Driven Versus

Topology-driven Irregular Computations on GPUs. In Proceedings of the Interna-

tional Symposium on Parallel and Distributed Processing (IPDPS), 2013.

[76] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and

Michela Becchi. Demystifying Automata Processing: GPUs, FPGAs or Micron’s

AP? In Proceedings of the International Conference on Supercomputing (ICS), 2017.

[77] Marziyeh Nourian, Hancheng Wu, and Michela Becchi. A Compiler Frame-

work for Fixed-Topology Non-Deterministic Finite Automata on SIMD Platforms.

In Proceedings of the International Conference on Parallel and Distributed Systems

(ICPADS), 2018.

[78] Marziyeh Nourian, Mostafa Eghbali Zarch, and Michela Becchi. Op-

timizing Complex OpenCL Code for FPGA: A Case Study on Finite Automata

Traversal. In Proceedings of the IEEE 26th International Conference on Parallel

and Distributed Systems (ICPADS), 2020.

[79] Sreepathi Pai and Keshav Pingali. A Compiler for Throughput Optimization

of Graph Algorithms on GPUs. In Proceedings of the International Conference on



BIBLIOGRAPHY 122

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

2016.

[80] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Col-

laborative Preemption for Multitasking on a Shared GPU. In Proceedings of the

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2015.

[81] Mateja Putic, A. J. Varshneya, and Mircea R. Stan. Hierarchical Temporal

Memory on the Automata Processor. IEEE Micro, 2017.

[82] Junqiao Qiu, Lin Jiang, and Zhijia Zhao. Challenging Sequential Bitstream

Processing via Principled Bitwise Speculation. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2020.

[83] Junqiao Qiu, Xiaofan Sun, Amir Hossein Nodehi Sabet, and Zhijia Zhao.

Scalable FSM Parallelization via Path Fusion and Higher-Order Speculation. In

Proceedings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2021.

[84] Junqiao Qiu, Zhijia Zhao, and Bin Ren. Microspec: Speculation-centric fine-

grained parallelization for fsm computations. In Proceedings of the 2016 Interna-

tional Conference on Parallel Architectures and Compilation (PACT), 2016.

[85] Junqiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon

Song. Enabling Scalability-sensitive Speculative Parallelization for FSM Compu-

tations. In Proceedings of the International Conference on Supercomputing (ICS),

2017.

[86] Junqiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon

Song. Enabling Scalability-sensitive Speculative Parallelization for FSM Compu-



BIBLIOGRAPHY 123

tations. In Proceedings of the International Conference on Supercomputing (ICS).

ACM, 2017.

[87] Reza Rahimi, Elaheh Sadredini, Mircea Stan, and Kevin Skadron. Grape-

fruit: An Open-Source, Full-Stack, and Customizable Automata Processing on FP-

GAs. In Proceedings of the IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2020.

[88] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and

W. Schulte. SIMD parallelization of applications that traverse irregular data

structures. In Proceedings of the International Symposium on Code Generation and

Optimization (CGO), 2013.

[89] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Pro-

ceedings of the USENIX Conference on System Administration (LISA), 1999.

[90] I. Roy and S. Aluru. Finding Motifs in Biological Sequences Using the Micron

Automata Processor. In Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS), 2014.

[91] I. Roy, N. Jammula, and S. Aluru. Algorithmic Techniques for Solving Graph

Problems on the Automata Processor. In Proceedings of the International Parallel

and Distributed Processing Symposium (IPDPS), 2016.

[92] Indranil Roy. Algorithmic Techniques for the Micron Automata Processor. PhD

thesis, Georgia Institute of Technology, 2015.

[93] Elaheh Sadredini, Deyuan Guo, Chunkun Bo, Reza Rahimi, Kevin

Skadron, and Hongning Wang. A Scalable Solution for Rule-Based Part-

of-Speech Tagging on Novel Hardware Accelerators. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), 2018.



BIBLIOGRAPHY 124

[94] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and

Kevin Skadron. FlexAmata: A Universal and Efficient Adaption of Applications

to Spatial Automata Processing Accelerators. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), New York, NY, USA, 2020. Association for Comput-

ing Machinery. doi:10.1145/3373376.3378459.

[95] Elaheh Sadredini, Reza Rahimi, Lenjani Marzieh, Stan Mircea, and

Skadron Kevin. Impala: Algorithm/Architecture Co-Design for In-Memory Multi-

Stride Pattern Matching. In Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA), 2020.

[96] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mohsen Imani, and

Kevin Skadron. Sunder: Enabling Low-Overhead and Scalable Near-Data Pattern

Matching Acceleration. In Proceedings of the International Symposium on Microar-

chitecture (MICRO), 2021.

[97] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin

Skadron. A Scalable and Efficient In-Memory Interconnect Architecture for Au-

tomata Processing. IEEE Computer Architecture Letters (CAL), 2019.

[98] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin

Skadron. eAP: A Scalable and Efficient in Memory Accelerator for Automata

Processing. In Proceedings of the International Symposium on Microarchitecture

(MICRO), 2019.

[99] Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. Frequent

Subtree Mining on the Automata Processor: Challenges and Opportunities. In

Proceedings of the International Conference on Supercomputing (ICS), 2017.

http://dx.doi.org/10.1145/3373376.3378459


BIBLIOGRAPHY 125

[100] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Ac-

celerating Pattern Matching Queries in Hybrid CPU-FPGA Architectures. In Pro-

ceedings of the International Conference on Management of Data (SIGMOD), 2017.

[101] Michael Sipser. Introduction to the Theory of Computation. International Thom-

son Publishing, 1st edition, 1996.

[102] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,

2012.

[103] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating

the Big Bang: Fast and Scalable Deep Packet Inspection with Extended Finite Au-

tomata. In Proceedings of the ACM SIGCOMM Conference on Data Communication

(SIGCOMM), 2008.

[104] Randy Smith, Neelam Goyal, Justin Ormont, Karthikeyan Sankar-

alingam, and Cristian Estan. Evaluating GPUs for network packet signature

matching. In Proceedings of the International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2009.

[105] Randy Smith, Neelam Goyal, Justin Ormont, Karthikeyan Sankar-

alingam, and Cristian Estan. Evaluating GPUs for Network Packet Signature

Matching. In Proceedings of the IEEE International Symposium on Performance

Analysis of Systems and Software, 2009.

[106] Arun Subramaniyan and Reetuparna Das. Parallel Automata Processor.

In Proceedings of the International Symposium on Computer Architecture (ISCA),

2017.

[107] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian,

David Blaauw, Dennis Sylvester, and Reetuparna Das. Cache Automaton.

In Proceedings of the International Symposium on Microarchitecture (MICRO), 2017.



BIBLIOGRAPHY 126

[108] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli. Summa-

rizing CPU and GPU Design Trends with Product Data, 2020.

[109] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and

M. Valero. Enabling Preemptive Multiprogramming on GPUs. In Proceedings

of the International Symposium on Computer Architecture (ISCA), 2014.

[110] Olivier Temam. A Defect-tolerant Accelerator for Emerging High-performance

Applications. In Proceedings of the International Symposium on Computer Archi-

tecture (ISCA), 2012.

[111] Andrew Todd, Marziyeh Nourian, and Michela Becchi. A Memory-

Efficient GPU Method for Hamming and Levenshtein Distance Similarity. In Pro-

ceedings of the International Conference on High Performance Computing (HiPC),

2017.

[112] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glenden-

ning. Towards machine learning on the Automata Processor. In Proceedings of the

International Conference on High Performance Computing (HiPC), 2016.

[113] Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glenden-

ning. Towards machine learning on the Automata Processor. In Proceedings of the

International Conference on High Performance Computing (HiPC), 2016.

[114] Tuan Tu Tran, Yongchao Liu, and Bertil Schmidt. Bit-parallel approximate

pattern matching: Kepler GPU versus Xeon Phi. Parallel Computing, 54:128–138,

2016.

[115] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evange-

los P. Markatos, and Sotiris Ioannidis. Gnort: High Performance Network

Intrusion Detection Using Graphics Processors. In Proceedings of the International

Symposium on Recent Advances in Intrusion Detection (RAID), 2008.



BIBLIOGRAPHY 127

[116] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and

Sotiris Ioannidis. GASPP: A gpu-accelerated stateful packet processing frame-

work. In 2014 USENIX Annual Technical Conference (ATC), 2014.

[117] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evan-

gelos P Markatos, and Sotiris Ioannidis. Regular Expression Matching on

Graphics Hardware for Intrusion Detection. In Proceedings of the International

Symposium on Recent Advances in Intrusion Detection (RAID), 2009.

[118] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Par-

allelization and characterization of pattern matching using GPUs. In Proceedings of

the International Symposium on Workload Characterization (IISWC), 2011.

[119] Lucas Vespa and Ning Weng. Deterministic Finite Automata Characterization

and Optimization for Scalable Pattern Matching. ACM Transactions on Architecture

and Code Optimization (TACO), 2011.

[120] Kien Chi Vu. Accelerating bit-based finite automaton on a GPGPU device. 2020.

[121] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan,

and K. Skadron. Generating efficient and high-quality pseudo-random behavior on

Automata Processors. In Proceedings of the International Conference on Computer

Design (ICCD), 2016.

[122] Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and

Mitigating Output Reporting Bottlenecks in Spatial Automata Processing Architec-

tures. In Proceedings of the International Symposium on High-Performance Com-

puter Architecture (HPCA), 2018.

[123] Jack Wadden, Vinh Dang, Nathan Brunelle, Tom Tracy II, Deyuan Guo,

Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan,

and Kevin Skadron. ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in



BIBLIOGRAPHY 128

Automata Processing Engines and Architectures. In Proceedings of the International

Symposium on Workload Characterization (IISWC), 2016.

[124] Jack Wadden and Kevin Skadron. VASim: An Open Virtual Automata Sim-

ulator for Automata Processing Application and Architecture Research. Technical

Report CS2016-03, University of Virginia, 2016.

[125] Jack Wadden, Tom Tracy II, Elaheh Sadredini, Lingzi Wu, Chunkun Bo,

Jesse Du, Yizhou Wei, Matthew Wallace, Jeffrey Udall, Mircea Stan,

and Kevin Skadron. AutomataZoo: A Modern Automata Processing Benchmark

Suite. In Proceedings of the International Symposium on Workload Characterization

(IISWC), 2018.

[126] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh

Sadredini, Tommy Tracy, Jack Wadden, Mircea Stan, and Kevin

Skadron. An Overview of Micron’s Automata Processor. In Proceedings of the

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2016.

[127] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential Pattern Mining

with the Micron Automata Processor. In Proceedings of the International Conference

on Computing Frontiers (CF), 2016.

[128] Lei Wang, Shuhui Chen, Yong Tang, and Jinshu Su. Gregex: GPU Based

High Speed Regular Expression Matching Engine. In Proceedings of the International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,

2011.

[129] Qihan Wang, Wei Niu, Li Chen, Ruoming Jin, and Bin Ren. HEALS: A

Parallel eALS Recommendation System on CPU/GPU Heterogeneous Platforms.

In HiPC, 2021.



BIBLIOGRAPHY 129

[130] Xiang Wang. Techniques for Efficient Regular Expression Matching across Hard-

ware Architectures. Master’s thesis, University of Missouri–Columbia, 2014.

[131] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Lang-

dale, Jiayu Hu, and Heqing Zhu. Hyperscan: A fast multi-pattern regex

matcher for modern cpus. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2019.

[132] Qiong Wu, Christopher G. Brinton, Zheng Zhang, Andrea Pizzofer-

rato, Mihai Cucuringu, and Zhenming Liu. Equity2Vec: End-to-end Deep

Learning Framework for Cross-sectional Asset Pricing. In ICAIF, 2021.

[133] Qiong Wu, Adam Hare, Sirui Wang, Yuwei Tu, Zhenming Liu, Christo-

pher G Brinton, and Yanhua Li. BATS: A Spectral Biclustering Approach to

Single Document Topic Modeling and Segmentation. TIST, 2021.

[134] Qiong Wu, Wen-Ling Hsu, Tan Xu, Zhenming Liu, George Ma, Guy Ja-

cobson, and Shuai Zhao. Speaking with Actions—Learning Customer Journey

Behavior. In ICSC, 2019.

[135] Qiong Wu, Lucas C. K. Hui, C. Y. Yeung, and T. W. Chim. Early Car

Collision Prediction in VANET. In Proceedings of the International Conference on

Connected Vehicles and Expo (ICCVE), 2015.

[136] Qiong Wu and Zhenming Liu. Rosella: A Self-Driving Distributed Scheduler for

Heterogeneous Clusters. In Proceedings of the International Conference on Mobility,

Sensing and Networking (MSN), 2021.

[137] Qiong Wu, Felix M.F. Wong, Yanhua Li, Zhenming Liu, and Varun

Kanade. Adaptive Reduced Rank Regression. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2020.



BIBLIOGRAPHY 130

[138] Yang Xia, Peng Jiang, and Gagan Agrawal. Scaling out Speculative Ex-

ecution of Finite-State Machines with Parallel Merge. In Proceedings of the 25th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2020.

[139] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan. REAPR: Re-

configurable engine for automata processing. In Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL), 2017.

[140] Chengcheng Xu, Shuhui Chen, Jinshu Su, Siu Ming Yiu, and Lucas

Chi Kwong Hui. A Survey on Regular Expression Matching for Deep Packet

Inspection: Applications, Algorithms, and Hardware Platforms. IEEE Communica-

tions Surveys Tutorials, 2016.

[141] Liu Yang, Rezwana Karim, Vinod Ganapathy, and Randy Smith. Improv-

ing NFA-based Signature Matching using Ordered Binary Decision Diagrams. In

International Workshop on Recent Advances in Intrusion Detection, 2010.

[142] Yi-Hua Yang and Viktor Prasanna. High-performance and compact architec-

ture for regular expression matching on fpga. IEEE Transactions on Computers,

2012.

[143] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.

Katz. Fast and Memory-efficient Regular Expression Matching for Deep Packet

Inspection. In Proceedings of the Symposium on Architecture for Networking and

Communications Systems (ANCS), 2006.

[144] X. Yu, K. Hou, H. Wang, and W. C. Feng. Robotomata: A Framework

for Approximate Pattern Matching of Big Data on an Automata Processor. In

Proceedings of the International Conference on Big Data (BigData), 2017.



BIBLIOGRAPHY 131

[145] Xiaodong Yu and Michela Becchi. Exploring Different Automata Represen-

tations for Efficient Regular Expression Matching on GPUs. In Proceedings of the

Principles and Practice of Parallel Programming (PPoPP), 2013.

[146] Xiaodong Yu and Michela Becchi. GPU Acceleration of Regular Expression

Matching for Large Datasets: Exploring the Implementation Space. In Proceedings

of the International Conference on Computing Frontiers (CF), 2013.

[147] Xiaodong Yu, Wu-chun Feng, Danfeng Yao, and Michela Becchi. O3FA:

A scalable finite automata-based pattern-matching engine for out-of-order deep

packet inspection. In Proceedings of the 2016 ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems (ANCS), 2016.

[148] Zhijia Zhao and Xipeng Shen. On-the-Fly Principled Speculation for FSM Par-

allelization. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2015.

[149] Zhijia Zhao, Bo Wu, and Xipeng Shen. Challenging the “Embarrassingly Se-

quential”: Parallelizing Finite State Machine-based Computations Through Princi-

pled Speculation. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2014.

[150] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and

Justine Sherry. Achieving 100Gbps Intrusion Prevention on a Single Server.

In Proceedings of the 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2020.

[151] K. Zhou, J. Wadden, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron.

Regular expression acceleration on the micron automata processor: Brill tagging as

a case study. In Proceedings of the International Conference on Big Data (BigData),

2015.



BIBLIOGRAPHY 132

[152] Keira Zhou, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and Kevin

Skadron. Brill tagging on the Micron Automata Processor. In Proceedings of the

International Conference on Semantic Computing (ICSC), 2015.

[153] Youwei Zhuo, Jinglei Cheng, Qinyi Luo, Jidong Zhai, Yanzhi Wang,

Zhongzhi Luan, and Xuehai Qian. CSE: Convergence Set Based Enumerative

FSM. In Proceedings of the International Symposium on Microarchitecture (MI-

CRO), 2018.

[154] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng,

and Qunfeng Dong. GPU-based NFA Implementation for Memory Efficient High

Speed Regular Expression Matching. In Proceedings of the Symposium on Principles

and Practice of Parallel Programming (PPoPP), 2012.



133

VITA

Hongyuan Liu

Hongyuan Liu is a Ph.D. candidate in the Department of Computer Science at William

& Mary under the supervision of Professor Adwait Jog. Hongyuan’s research interests

lie in the broad area of computer architecture, emphasizing domain-specific accelerators

and GPUs. His Ph.D. research has been published in MICRO 2018, ASPLOS 2020, and

CLUSTER 2021. Hongyuan interned with Intel in Fall 2019, and worked as a visiting

student with Argonne National Lab in Spring 2021. Before joining William & Mary, he

received his bachelor’s degree from Shandong University and master’s degree from the

University of Hong Kong.


	Techniques For Accelerating Large-Scale Automata Processing
	Recommended Citation

	Introduction
	Towards Efficient Large-scale Automata Accelerator
	Reducing the Gap between GPGPU and Automata Accelerator
	Designing and Analyzing a Generic Automata Processing Scheme on GPU
	Dissertation Organization

	Background
	Automata
	Automata Processor
	Graphics Processing Units (GPUs)

	Architectural Support for Efficient Large-Scale Automata Processing
	Introduction
	Background and Terminology
	NFA-based Pattern Matching
	Baseline Automata Processor (AP) 

	Motivation and Analysis
	Topological Order and Normalized Depth
	Analysis of Normalized Depth and Enabled NFA States
	Analysis of Performance Benefits

	Design and Implementation of NFA Partitioning
	Profiling-based Hot/Cold State Prediction
	Where to Partition?
	How to Partition?
	Discussion

	Hardware Support for Intermediate Report Handling and Partitioned NFA Processing
	Analysis of New Execution Modes for AP
	Implementation Details

	Evaluation Methodology
	Applications
	Experimental Setup

	Experimental Results
	Related work
	Conclusions

	Why GPUs are Slow at Executing NFAs and How to Make them Faster
	Introduction
	Background
	Pattern Matching via NFAs
	NFA Processing on GPUs

	Problem and Previous Efforts
	Data Movement
	Compute Utilization
	Limitations of Prior Efforts

	Addressing the Data Movement Problem via Matchset Analysis
	Inefficiencies in the Transition Table
	Optimization I: A New Way to Store and Access Matchset and Topology Information (NewTran/NT)
	Optimization II: Matchset Compression (MaC)

	Addressing the Utilization Problem via Activity Analysis
	Analysis of Activation Frequency
	Optimization III: Activity-based Processing
	How do we choose the hot states?

	Evaluation Methodology
	Experimental Results
	Related Work
	Conclusions

	Generalizing Automata Processing on GPUs by Leveraging Symbol-level Parallelism
	Introduction
	Background
	Asynchronous Parallel Automata Processing on GPUs
	Why do we need a new way to process Automata on GPUs?
	Overview of Asynchronous Parallel Automata Processing
	Design and Implementation
	Analysis

	Characterization of Synchronous Automata Processing and AsyncAP
	Applications Configurations
	Comparison of Identified Patterns
	Characterization of Work by Emulation
	Comparison of Useful Work
	Comparison of Total Work
	How balance the work is in AsyncAP?

	Evaluation
	Evaluation Configurations
	Experimental Results
	Analysis of Pattern Lengths

	Related Work
	Mapping Automata to Computation Resources
	Increasing Parallelism of Automata

	Conclusions

	Conclusions and Future Work
	Summary of Dissertation Contributions
	Future Research Directions

	Bibliography
	Vita

