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ABSTRACT

Isolation is a fundamental paradigm for secure and efficient resource sharing on a
computer system. However, isolation mechanisms in traditional cloud computing
platforms are heavy-weight or just not feasible to be applied onto the computing
environment for Internet of Things(IoT). Most IoT devices have limited resources
and their servers are less powerful than cloud servers but are widely distributed
over the edge of the Internet. Revisions to the traditional isolation mechanisms are
needed in order to improve the system security and efficiency in these computing
environments.

The first project explores container-based isolation for the emerging edge computing
platforms. We show a performance issue of live migration between edge servers where
the file system transmission becomes a bottleneck. Then we propose a solution
that leverages a layered file system for synchronization before the migration starts,
avoiding the usage of impractical networking shared file system as in the traditional
solution. The evaluation shows that the migration time is reduced by 56% – 80%.

In the second project, we propose a lightweight security monitoring service for edge
computing platforms, base on the virtual machine isolation technique. Our frame-
work is designed to monitor program activities from underneath of an operating
system, which improves its transparency and avoids the cost of embedding different
monitor modules into each layer inside the operating system. Furthermore, the mon-
itor runs in a single process virtual machine which requires only ≤32MB of memory,
reduces the scheduling overhead, and saves a significant amount of physical memory,
while the performance overhead is an average of 2.7%.

In the third project, we co-design the hardware and software system stack to achieve
efficient fine-grained intra-address space isolation. We propose a systematic solution
to partition a legacy program into multiple security compartments, which we call
capsules, with isolation at byte granularity. Vulnerabilities in one capsule will not
likely affect another capsule. The isolation is guaranteed by our hardware-based
ownership types tagged to every byte in the memory. The ownership types are
initialized, propagated, and checked by combining both static and dynamic analysis
techniques. Finally, our co-design approach could remove most human refactoring
efforts while avoiding the untrustworthiness as well as the cost of the pure software
approaches.

In brief, this proposal explores a spectrum of isolation techniques and their improve-
ments for the IoT computing environment. With our explorations, we have shown
the necessity to revise the traditional isolation mechanisms in order to improve the
system efficiency and security for the edge and IoT platforms. We expect that many
more opportunities will be discovered and various kinds of revised or new isolation
mechanisms for the edge and IoT platforms will emerge soon.



TABLE OF CONTENTS

Acknowledgments x

Dedication xii

List of Tables xiii

List of Figures xv

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Efficient Live Migration across Edge Servers . . . . . . . . . . . . . . 4

1.3 Lightweight Security Monitor for Edge Servers . . . . . . . . . . . . . 5

1.4 Secure IoT Systems with Hardware Ownership Tags . . . . . . . . . . 5

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Docker Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Xen and Unikernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 gem5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Bluespec and bluesim . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 LLVM toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Privilege Separation and Isolation . . . . . . . . . . . . . . . . . . . . 10

2.8 Intra-address Space Isolation . . . . . . . . . . . . . . . . . . . . . . . 11

i



3 Efficient Live Migration across Edge Servers 12

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Offloading Service is Essential for Edge Computing . . . . . . . 16

3.3.2 Effective Edge Offloading Needs Migration for Service Handoff 16

3.3.3 Service Handoff via VM Migration is Not Practical . . . . . . . 17

3.3.4 More Efficient Migration is Achievable with Docker Containers 19

3.4 Container Storage and Migration . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Container Engines and Storage Drivers . . . . . . . . . . . . . . 20

3.4.2 Layered Storage in Docker . . . . . . . . . . . . . . . . . . . . . 21

3.4.2.1 Container Layer and Base Image Layers . . . . . . . . 21

3.4.2.2 Image Layer ID Mapping . . . . . . . . . . . . . . . . 22

3.4.2.3 Docker’s Graph Driver and Storage Driver . . . . . . . 23

3.4.3 AUFS Storage: A Case Study . . . . . . . . . . . . . . . . . . . 23

3.4.3.1 Container’s Image Layer Stack List . . . . . . . . . . . 25

3.4.3.2 Image Layer Content Directory . . . . . . . . . . . . . 26

3.4.3.3 Unified Mount Point . . . . . . . . . . . . . . . . . . . 27

3.4.3.4 Layer ID Mapping . . . . . . . . . . . . . . . . . . . . 27

3.4.3.5 Container Configuration and Runtime State . . . . . . 28

3.4.4 Docker Container Migration in Practice . . . . . . . . . . . . . 28

3.5 Offloading Service Migration on the Edge . . . . . . . . . . . . . . . . 30

3.5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1.1 Edge Controller . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1.2 Edge Nodes . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1.3 End Users . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Workflow of Service Handoff . . . . . . . . . . . . . . . . . . . 34

ii



3.5.3 Strategy to Synchronize Storage Layers . . . . . . . . . . . . . 37

3.5.4 Layer ID Remapping . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.5 Pre-Dump & Dirty Memory Synchronization . . . . . . . . . . 39

3.5.6 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.7 Parallel & Pipelined Processing . . . . . . . . . . . . . . . . . . 40

3.5.8 Multi-Mode Migration with Flexible Trade-offs . . . . . . . . . 40

3.5.9 Two-layer System-wide Isolation for Better Security . . . . . . 42

3.5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.10.1 Benefits and Applications . . . . . . . . . . . . . . . . 43

3.5.10.2 Limitations of Scope . . . . . . . . . . . . . . . . . . . 43

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Set Up and Benchmark Workloads . . . . . . . . . . . . . . . . 44

3.6.2 Evaluation of Pipeline Performance . . . . . . . . . . . . . . . . 44

3.6.3 Evaluation on Different Metrics . . . . . . . . . . . . . . . . . . 46

3.6.3.1 Evaluation of Changing Network Bandwidth . . . . . . 46

3.6.3.2 Evaluation of Changing Latency . . . . . . . . . . . . 48

3.6.3.3 Evaluation of Changing Compression Algorithms and

Options . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.3.4 Evaluation of Changing Total Iterations . . . . . . . . 50

3.6.4 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7.1 Edge Computing and Service Mobility . . . . . . . . . . . . . . 53

3.7.2 VM Migration on the Edge . . . . . . . . . . . . . . . . . . . . 53

3.7.3 Container Migration on the Edge . . . . . . . . . . . . . . . . . 54

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Lightweight Security Monitor for Edge Servers 56

iii



4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Why VMI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Why We Need Improved VMI? . . . . . . . . . . . . . . . . . . 60

4.3.2.1 The Trusted Computing Base is Large . . . . . . . . . 61

4.3.2.2 The Overhead is High for Runtime Monitoring . . . . 61

4.4 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1.1 Trusted Components . . . . . . . . . . . . . . . . . . . 62

4.4.1.2 Threat Source . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1.3 Applications that Need Small Scale Monitoring . . . . 63

4.4.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2.1 Small Code Base . . . . . . . . . . . . . . . . . . . . . 64

4.4.2.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2.3 Least Privileges . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2.4 Isolated Components . . . . . . . . . . . . . . . . . . . 65

4.4.2.5 Easy to Deploy . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2.6 Flexible with Rich Primary Mechanisms . . . . . . . . 66

4.4.3 EdgeVMI Overview . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3.1 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3.2 Actuator . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3.3 Cloud Storage and Control Center . . . . . . . . . . . 68

4.4.4 Harden the Security of Monitors . . . . . . . . . . . . . . . . . 69

4.4.4.1 Privilege Separation of Monitor and Control . . . . . . 69

4.4.4.2 Control and Information Flow Restrictions . . . . . . . 69

4.4.5 Example of Intrusion Detection . . . . . . . . . . . . . . . . . . 70

iv



4.5 EdgeVMI in Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Build Single-Purpose, Deeply Customized Monitor VMs . . . . 71

4.5.1.1 Security Policy . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1.2 Target Profile . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1.3 Mini-OS and Hypervisor API . . . . . . . . . . . . . . 72

4.5.1.4 Mini System Libraries . . . . . . . . . . . . . . . . . . 72

4.5.1.5 Critical Objects . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1.6 Monitor and Control Primitives . . . . . . . . . . . . . 73

4.5.1.7 Build Monitor VMs . . . . . . . . . . . . . . . . . . . 73

4.5.2 Raw Physical Memory Access . . . . . . . . . . . . . . . . . . . 74

4.5.3 Monitor Processor Registers . . . . . . . . . . . . . . . . . . . . 74

4.5.4 Hardware Event Monitoring . . . . . . . . . . . . . . . . . . . . 75

4.5.5 VM Life Cycle Management . . . . . . . . . . . . . . . . . . . . 75

4.5.6 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Implementation of a Prototype . . . . . . . . . . . . . . . . . . . . . . 76

4.6.1 Challenge 1: Stripping Down Libraries . . . . . . . . . . . . . . 76

4.6.2 Challenge 2: Input & Output without a File System . . . . . . 78

4.6.3 Challenge 3: Mandatory Access Control . . . . . . . . . . . . . 79

4.6.4 Components of the Sensor . . . . . . . . . . . . . . . . . . . . 80

4.6.4.1 System Libraries . . . . . . . . . . . . . . . . . . . . . 80

4.6.4.2 Target Profile . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.4.3 Knowledge Buffer . . . . . . . . . . . . . . . . . . . . . 82

4.6.4.4 VMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.4.5 VMI Cache . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.4.6 Event Channels . . . . . . . . . . . . . . . . . . . . . . 83

4.6.5 Implementation of the Actuator . . . . . . . . . . . . . . . . . 83

4.7 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



4.7.1 Reduced Attack Surface . . . . . . . . . . . . . . . . . . . . . . 84

4.7.2 MAC Isolation Based on FLASK . . . . . . . . . . . . . . . . . 85

4.7.3 Least Privilege and Privilege Separation . . . . . . . . . . . . . 86

4.7.4 Constrained Information and Control Flow . . . . . . . . . . . 86

4.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.1 Runtime Memory Overhead . . . . . . . . . . . . . . . . . . . . 87

4.8.2 Monitoring Events . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8.3 Monitoring a Process . . . . . . . . . . . . . . . . . . . . . . . 89

4.8.4 Performance Benefits from Single-Process Mini-OS . . . . . . . 89

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9.1 Hypervisor in TCB . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9.2 Semantic Gap Challenge for VMI . . . . . . . . . . . . . . . . . 92

4.9.3 Orthogonality with Other Security Solutions . . . . . . . . . . 93

4.9.4 Weakness in Large Scale Monitoring . . . . . . . . . . . . . . . 94

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.10.1 Security on Edge Servers . . . . . . . . . . . . . . . . . . . . . 94

4.10.2 Virtual Machine Introspection . . . . . . . . . . . . . . . . . . 94

4.10.3 Privilege Separation on Monolithic Systems . . . . . . . . . . . 95

4.10.4 Hardware Based Security Approaches . . . . . . . . . . . . . . 95

4.11 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 96

5 Capsule: Fine-grained Isolation and Pointer Safety with Ownership Tags 97

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Why a New Isolation Mechanism? . . . . . . . . . . . . . . . . 103

5.3.1.1 Inter- and Intra-address Space Isolation . . . . . . . . 103

vi



5.3.1.2 Drawbacks in Existing Intra-address Space Isolation . 104

5.3.1.3 Potentials in Pointer Safety Solutions . . . . . . . . . . 105

5.3.1.4 Towards Inter- and Intra-Domain Memory Safety . . . 106

5.3.2 Why Fine-grained Isolation? . . . . . . . . . . . . . . . . . . . 106

5.3.3 Why Choose Tagged Memory . . . . . . . . . . . . . . . . . . . 108

5.4 Capsule System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1.1 Efficient Domain Transition with Ubiquitous Owner-

ship Tags . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1.2 Partition Process Memory into Closure Sets . . . . . . 110

5.4.1.3 Partition Closure Set with Transition Gates . . . . . . 110

5.4.1.4 Closure Sets as Domains . . . . . . . . . . . . . . . . . 111

5.4.1.5 Achieve Intra-domain Security with Ownership Tags

for Pointers . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1.6 Lock and Key with Ownership Tags . . . . . . . . . . 112

5.4.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Capsule Overview . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.4 Ownership Tag Representations and Interpretations . . . . . . 115

5.4.4.1 Interpretation of Non-Pointer Tags . . . . . . . . . . . 116

5.4.4.2 Interpretation of Data Pointer Tags . . . . . . . . . . . 117

5.4.4.3 Interpretation for Code Pointer Tags . . . . . . . . . . 117

5.4.5 Ownership Space . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.6 Ownership Allocation and Relocation . . . . . . . . . . . . . . 118

5.4.7 Ownership Identity Concealment . . . . . . . . . . . . . . . . . 119

5.5 Secure Domain Transition . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Transient Transition . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.2 Sanitized Transition . . . . . . . . . . . . . . . . . . . . . . . . 121

vii



5.5.3 Memory Sharing Mechanisms . . . . . . . . . . . . . . . . . . . 123

5.5.4 Ownership Transfer . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.5 Memory Sharing via Object Capsules . . . . . . . . . . . . . . 124

5.5.6 Avoid Supervised Trusted Stack . . . . . . . . . . . . . . . . . . 124

5.5.7 Decentralized Call Gates . . . . . . . . . . . . . . . . . . . . . 125

5.6 Determine the Closure Set for a Capsule . . . . . . . . . . . . . . . . 126

5.6.1 Static Ownership Inference . . . . . . . . . . . . . . . . . . . . 127

5.6.2 Memory Colonization . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.3 Manual Ownership Assignment . . . . . . . . . . . . . . . . . . 129

5.6.4 Manual Conflict Resolving . . . . . . . . . . . . . . . . . . . . . 129

5.7 System Stack Extension for Ownership Tags . . . . . . . . . . . . . . 130

5.7.1 Architectural Support . . . . . . . . . . . . . . . . . . . . . . . 130

5.7.2 Toolchain Support . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8.1 Implementations for Functionality, Performance, and Feasibility 133

5.8.2 Processor Extension . . . . . . . . . . . . . . . . . . . . . . . . 134

5.8.3 Toolchain Extension . . . . . . . . . . . . . . . . . . . . . . . . 137

5.8.4 Ownership Space Management . . . . . . . . . . . . . . . . . . 138

5.8.5 Two Forms of Tagged Physical Memory . . . . . . . . . . . . . 139

5.9 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9.1 Capsule Security Features . . . . . . . . . . . . . . . . . . . . . 140

5.9.2 Spatial Pointer Safety with Bound and Ownership Check . . . 143

5.9.3 Temporal Pointer Safety with Ownership Separation . . . . . . 145

5.9.4 Code Pointer Integrity for Control Flow Protection . . . . . . . 146

5.9.5 Control Flow Defense against Malicious Capsule . . . . . . . . 147

5.9.6 Comparison in Supported Policy Examples . . . . . . . . . . . 148

5.9.7 Example: Prevent Heartbleed with Two Levels of Defenses . . . 148

viii



5.9.8 More Security Policies . . . . . . . . . . . . . . . . . . . . . . . 149

5.10 Hardware Feasibility and Performance . . . . . . . . . . . . . . . . . . 149

5.10.1 Hardware Feasibility . . . . . . . . . . . . . . . . . . . . . . . . 149

5.10.2 Memory Performance . . . . . . . . . . . . . . . . . . . . . . . 151

5.11 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.11.1 Memory Access Control . . . . . . . . . . . . . . . . . . . . . . 154

5.11.2 Isolation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 156

5.11.3 Automatic Isolation . . . . . . . . . . . . . . . . . . . . . . . . 157

5.11.4 Automatic Privilege Separation . . . . . . . . . . . . . . . . . . 158

5.11.5 Ownership in Memory . . . . . . . . . . . . . . . . . . . . . . . 160

5.11.6 Tagged Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Conclusion and Future Work 162

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 164

Vita 186

ix



ACKNOWLEDGMENTS

Studying in the US is a journey with so many exciting as well as astonishing moments
for me. My PhD pursuit here is very much blessed, by the help of so many people.

First, I thank my advisor, Prof. Qun Li, for his generous support on my research
interests, as well as his nuanced care for my living. Professionally, he has given me
many professional suggestions over the projects in my thesis as well as much free
space to pursue my interests. Thanks to the valuable freedom he allowed, I have been
able to learn what I dreamed of, especially for the interest of software-hardware co-
design project that has brought me a deeper understanding of the computer system
from bottom up. Personally, he had helped me to resolve many difficulties to adapt
the new environment here in the US.

I thank Prof. John Criswell at the University of Rochester. Working with John
opened a new world of system security for me and inspired me many new ideas that
I am still wishing to develop in the future.

I thank Dr. Ang Li at Pacific Northwest National Laboratory. Ang taught me a new
skill of how to build a complex system from scratch more efficiently and effectively
– the art of growing a minimal toy system into a full-fledged complex system with
spiral iterations.

I thank Senior Security Researcher Dr. Tamas K Lengyel. Tamas instructed me to
learn hardware events in LibVMI and many Xen internals into the deep during my
participation of google summer of code with him.

I thank many teachers and students who helped me improve over the years. To the
teachers whose classes or mentoring I have learnt a lot from: Prof. Xu Liu, Prof,
Adwait Jog, Prof. Gang Zhou, Prof. Weizhen Mao, Dr. Tim Davis, Mr. Chris
Shenefiel, Dr. Sarah Glosson, and Dr. Leslie Bohon at William & Mary, and Prof.
John Criswell, Prof. Sreepathi Pai, Prof. Chen Ding, Prof. Micheal Scott from
University of Rochester, and Prof. Robert J. Walls from Worcester Polytechnic
Institute. And many thanks to Zhuojia Shen, Jie Zhou, and Yufei Du for your
effective help on my LLVM study and our impressive collaboration during my visit.

I thank the students in our lab, Yutao Tang, Zijiang Hao, Shanhe Yi, Nancy Carter,
Cheng Li, Zeyi Tao, Yunlong Mao, and Qi Xia. You are all awesome and thank you
for the interesting discussions we have been on during our group meetings.

I thank my thesis committee members, Prof. Weizhen Mao, Prof. Adwait Jog, Prof.
Dmitry Evtyushkin, and Dr. Ang Li, for their willingness to serve in my committee,
and their helpful comments on my presentation and thesis.

x



I thank Vanessa Godwin, Jacqulyn Johnson, Dale Hayes, at our Computer Science
Department office and Eva Wong, Zabrina Williams, and Emily Bailey at Reves
Center for their prompt help with my Ph.D. program. I thank the Graduate Coor-
dinator Michelle Kiso for her prompt help during my visit at University of Rochester.

Last and most importantly, I thank my family for their constant encouragement.
Without their unconditional support, I will not be who I am today. Special thanks
to Dr. Ruiqin Tian, especially for her strong encouragement during the hard time.

xi



To my family

xii



LIST OF TABLES

3.1 Docker Container Migration Time (bandwidth 600Mbps, latency 0.4ms) 19

3.2 Docker Container Migration Time (bandwidth 15Mbps, latency 5.4ms) 19

3.3 Overall System Performance . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 VMI System Code Base in Lines of Code (LoC) . . . . . . . . . . . . 61

4.2 Libraries Ported to Mini-OS . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Code Base Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Binary Size Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Changes to the Xen hypervisor and Mini-OS kernel . . . . . . . . . . 85

4.6 Runtime Machine Memory Reduction . . . . . . . . . . . . . . . . . . 87

4.7 Overhead when Monitoring Single Process by CR3 Register Events . 90

5.1 ISA Extensions to Load Instructions . . . . . . . . . . . . . . . . . . . 134

5.2 ISA Extensions to Store Instructions . . . . . . . . . . . . . . . . . . . 135

5.3 ISA Extensions to Control Flow Instructions . . . . . . . . . . . . . . 136

5.4 ISA Extensions to Non-memory Access Instructions . . . . . . . . . . 136

5.5 New Instructions for Ownership Manipulation . . . . . . . . . . . . . 137

5.6 Features of Cross-Domain Isolation Mechanisms . . . . . . . . . . . . 141

5.7 Features of Intra-Domain Pointer Safety Mechanisms. . . . . . . . . . 142

5.8 Security Policy Examples Supported by Different Mechanisms . . . . . 148

5.9 Processor Unit Test Results . . . . . . . . . . . . . . . . . . . . . . . . 150

5.10 Memory Overhead with Shadow Table . . . . . . . . . . . . . . . . . . 152

xiii



5.11 CPU and Memory Traffic with In-Memory Tag . . . . . . . . . . . . . 153

5.12 CPU and Memory Traffic with Double-Size Caches . . . . . . . . . . . 154

xiv



LIST OF FIGURES

3.1 OpenFace Container’s Image Layer Stack . . . . . . . . . . . . . . . . 22

3.2 Docker Layered File System Structure . . . . . . . . . . . . . . . . . . 24

3.3 AUFS Work Directories in Docker’s Layered Storage . . . . . . . . . . 24

3.4 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Offloading Serivce Handoff: Before and After Migration of Offloading

Container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Overview of Edge Computing Platform . . . . . . . . . . . . . . . . . 31

3.7 Full Workflow of Offloading Service Handoff . . . . . . . . . . . . . . 34

3.8 Major Procedures of Migration . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Busybox: Time Duration of Container Migration Stages with and

without Pipelined Processing . . . . . . . . . . . . . . . . . . . . . . 45

3.10 OpenFace: Time Duration of Container Migration Stages with and

without Pipelined Processing . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Busybox: Comparison of Migration Time. . . . . . . . . . . . . . . . 48

3.12 OpenFace: Comparison of Migration Time. . . . . . . . . . . . . . . 48

3.13 Time for each iteration during a 10 iteration memory image transfer . 49

3.14 Time of Service Handoff Under Different Total Iterations. . . . . . . 50

3.15 Dirty Memory Size Analysis for OpenFace and Busybox. . . . . . . . 52

4.1 One Layer to Monitor All Layers via EdgeVMI . . . . . . . . . . . . . 67

4.2 EdgeVMI Deploy Example under Centralized Cloud Management . . 68

4.3 Run-time Workflow for Intrusion Detection and Emergency Response 70

xv



4.4 Build Single-Purpose Tiny Monitor VMs in EdgeVMI . . . . . . . . . 71

4.5 An Example implementation of Sensor VM . . . . . . . . . . . . . . 80

4.6 An Example of Actuator VM . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Time Cost With Different Number of Events . . . . . . . . . . . . . . 88

4.8 Average Throughput & Latency . . . . . . . . . . . . . . . . . . . . . 89

4.9 Time to Read Raw Memory Pages . . . . . . . . . . . . . . . . . . . . 91

5.1 Return Address Save and Restore . . . . . . . . . . . . . . . . . . . . 106

5.2 Overview of Capsules in the Memory Hierarchy . . . . . . . . . . . . 114

5.3 Tags for Non-Pointer (32-bit tag per 32-bit memory) . . . . . . . . . 115

5.4 Tags for a Data Pointer (64-bit tag per 64-bit pointer) . . . . . . . . 115

5.5 Tags for a Code Pointer (64-bit tag per 64-bit pointer) . . . . . . . . 116

5.6 An example of sanitized transition gate between two capsules. . . . . 122

5.7 Two Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 Spatial Safety for a Global Variable . . . . . . . . . . . . . . . . . . . 143

5.9 Temporal Safety for Heap Object . . . . . . . . . . . . . . . . . . . . 146

xvi



Revisiting Isolation for System Security and Efficiency
in the Era of Internet of Things



2

Chapter 1

Introduction

1.1 Motivation

Isolation is one of the fundamental paradigms since the birth of computer systems. First,

isolation plays an important rule for resource sharing on modern computing systems. For

example, resource isolation between different users on a cloud machine enables the effi-

cient sharing of the costly computing resources. Second, isolation is important to secure

computing systems. It is one of a few techniques that can defend against unknown vulnera-

bilities in the program. Program can be separated into different function modules and each

module can be isolated in a security domain. In this way, security breaches in one domain

will not likely to affect other domains. For example, isolation between the kernel and user

space in a computer system effectively reduces the risk of software vulnerabilities that are

caused by a diversity of user applications. Until now, we have seen process-based isolation,

virtual machines, Linux containers, sandboxes, software fault isolation, Intel SGX, Intel

MPK, ARM TrustZone, etc., with a variety of granularities of isolation.

However, when the Internet of Things (IoT), and edge computing platforms 1 bring

several new features to the computing environment, many traditional isolation mechanisms

become inefficient or just do not work.
1This thesis will use edge servers to refer a cluster of computing nodes (such as cloudlet servers [141])

in close proximity to the end users and IoT devices as client device that receives services from edge servers.
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On the server side, edge servers are usually not in a centralized environ-

ment as in data centers for cloud computing, and they are less powerful but

more performance sensitive than traditional cloud servers. Edge servers are mostly

deployed distributively in large geographical areas. Consequently, the network bandwidth

and latency between different edge computing nodes can be rather limited, rendering many

traditional cloud services, such as networking shared file system, live migration, etc., unre-

alistic to be used on the edge. Therefore, the first project (Chapter 3) aims to improve the

efficiency of live migration services between edge nodes. Another problem is that the pro-

tection of a large amount of small edge servers on the edge becomes challenging. Without

the centralized deployment, traditional security solutions can be inefficient to be deployed

over large geographical areas. In addition, edge servers are relatively less powerful than

high performance computers in the cloud. Therefore, traditional security solutions in the

cloud either cannot be directly deployed to the edge, due to either execution overhead or

engineering overhead. Therefore, the second project in this thesis (Chapter 4) proposes a

lightweight memory monitoring solution to improve the security of edge servers.

On the client side, IoT devices are mostly equipped with low-end processors

but require real-time response. Most IoT devices are embedded systems designed for

domain specific tasks, where many features for a general purposed design are downgraded or

simply removed. With these fundamental changes at hardware level, many traditional iso-

lation solutions on a general purpose machine are no longer suitablefor such small devices.

For example, many IoT devices does not have the Memory Management Unit (MMU) in

favor of real time response. In practice, this have resulted in almost no protection between

the applications and the OS kernel running on the same device. Therefore, IoT devices

need either revised or new isolation mechanisms in order to be trustworthy. Following this

route, our third project (Chapter 5) proposes a fine-grained isolation technique to improve

the memory safety for IoT devices.

In brief, this thesis work explores different isolation techniques on the edge servers

and IoT devices. On the server side, this thesis has resolved two problems, including
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a performance problem for live migration between container-based edge servers, and a

security monitoring problem on virtual-machine based edge servers. On the client side, this

thesis has described the need for the new fine-grained isolation technique and proposed a

software-hardware co-design solution for efficient fine-grained intra-address space isolation

on IoT systems.

1.2 Efficient Live Migration across Edge Servers

As we mentioned above, many services, such as networking shared file system, live migra-

tion, etc., are unrealistic to be used on the edge servers. Live migration has long been used

in traditional cloud computing environment. Traditional migration techniques assumes all

the file system are shared over high speed network between the source node and target

node, which means there is no need for an explicit file system synchronization during mi-

gration. However, many edge servers are deployed over the wide area network (WAN).

In such a environment, the network bandwidth and latency between different edge servers

can be rather limited. Therefore, networking shared file system is not practical for edge

servers. A naive solution would be to transfer the entire file system during live migration.

However, as expected, the delay of migration will take too long (hours) to be useful.

To resolve the issue, we have investigated the state of the art Docker container’s lay-

ered file system. We proposed a new live migration solution that does not depends on a

networking shared file system. In this solution, file system are managed in different layers

where most layers are read only. Therefore, we propose to transfer most of the read only

file system layers before migration starts, together with a base image for the runtime mem-

ory. During migration, we only need to transfer the latest updated files and dirty memory

to reduce the transmission traffic. This reduces the migration time significantly as we will

show in Chapter 3.
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1.3 Lightweight Security Monitor for Edge Servers

As we mentioned, most edge computing servers have limited resources comparing to cloud

servers. This makes them more sensitive to heavy weight monitoring solutions such as

virtual machine introspection. In addition, edge servers are distributively deployed in large

geographical areas, which makes the deployment and maintenance of security monitoring

solutions more challenging than in a centralized cloud center.

Therefore, in the second project, we propose a security monitoring solution for edge

servers. It is deeply trustworthy without the trust of entire operating system; It is light-

weight and applicable to low performance machines; It can be remotely deployed and

maintained efficiently without physical intervention on the servers. The key technique is to

build a virtual machine introspection monitor in in a minimized library operating system

(or a Unikernel as we will introduce in Section 2.2). The evaluations on our prototype

system successfully shows the effectiveness and the efficiency of our monitoring solution,

as will be described in Chapter 4.

1.4 Secure IoT Systems with Hardware Ownership Tags

The client side on edge computing platforms is composed of a various kinds of IoT devices.

These include desktop machines, laptops, mobile phones, as well as the much less powerful

embedded devices such as smart watches, smart locks, smart bands, etc. Secure and

efficient isolation between different modules on such devices are critically important for the

security defense on such devices. Intra-address space isolation is much more efficient than

virtual memory based isolation mechanisms. Therefore, it is widely used on IoT devices.

However, existing intra-address space isolation mechanisms are rather limited. First, they

usually support only a limited number of isolation domains. Second, they usually support

only coarse-grained isolation in the address space. Third, they usually partially support

pointer safety or support isolation in the address space, instead of support both of them.

Fourth, most of them require intensive changes in the legacy code in order to enforce the
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security policies.

Therefore, the third project designs and implements the Capsule system. It is an

architectural extension along with a full stack toolchain and system support. It supports

fine-grained isolation in the same address space. It also supports both temporal and spatial

pointer safety to harden the programs writen in unsafe languages such as C programming

language. It has fine-grained memory protection at the granularity of instructions and data

words. More importantly, it requires minimal porting efforts to protect legacy programs.

The prototype system is built by extending an open sourced MIPS core, with the LLVM

toolchain, and FreeBSD operating system. Evaluation shows the effectiveness of the system

as we will discuss in Chapter 5.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces some

background conceptions that are necessary to understand this work. Chapter 3 introduces

the work to improve the efficiency of container migration by leveraging the Docker layered

file system. Chapter 4 introduces the work where a lightweight virtual machine introspec-

tion framework is designed to monitor the security of edge servers. Chapter 5 presents

the Capsule system for fine-grained isolation with hardware-assisted ownership tags in the

memory. Chapter 6 concludes this thesis.
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Chapter 2

Background

2.1 Docker Containers

Docker is a set of platform as a service (PaaS) products that deliver software in packages

called containers [88] . Docker containers allows the package of the entire developing en-

vironment into container images and could be shared among different operating systems

including Linux, Windows, MacOS, etc. This allows developers to build, share and run

their applications anywhere without the hassle of setting up the new developing environ-

ment from time to time. Docker containers are based on OS-level virtualization where

different containers on the same host share the same operating sytem kernel [137].

2.2 Xen and Unikernels

Xen Hypevisor [129] is a virtual machine monitor which allows multiple commodity op-

erating systems to share the hardware on the same host in a safe and resource managed

fashion, but without sacrificing either performance or functionality [20]. Beside commodity

operating system such as Linux and Windows, Xen also supports running Unikernels such

as Mini-OS, MirageOS, etc.

A unikernel is a specialized library operating system that has only a single address

space and without kernel/user mode separation as in a regular operating system [111].



2.3. QEMU 8

It is usually built with a minimal set of modules or libraries that are required by the

functionality of the application. A unikernel could run directly on a hypervisor such as

Xen or run directly on hardware without an intervening OS.

Xen Mini-OS [127] is one of the earliest library operating system on Xen hypervisor.

It is used to build stub domains, a set of small virtual machines that disaggregate the Xen

Domain 0, and it is used as the basis for the development of Unikernels [8].

2.3 QEMU

QEMU [22] is a generic and open source machine emulator and virtualizer. As a machine

emulator, QEMU can run operating systems and programs written for one architecture

(e.g. a MIPS processor) on a different machine (e.g. an x86 PC). By using dynamic

translation, it achieves very good performance. It can be extended for fast evaluating the

functionality of a new architecture design. However, QEMU cannot be used to measure

the performance of the new architecture design because it lacks the architectural timing

measurements (Gem5 can be used instead). In addition, QEMU can also be used as a

virtualizer, where it could execute the guest code directly on the host CPU by multiplexing

the resources of the host machine (e.g., using the KVM [97] kernel module in Linux).

2.4 gem5 Simulator

The gem5 simulator [5] is a modular platform for computer system architecture research. It

could simulate system-level architecture as well as processor microarchitecture. It supports

multiple processor models such as ARM, x86, RISC-V, SPARC, and Alpha, where each

model can be extended with new functionalities for research purposes.

On the gem5 platform, users could composite a full stack computer system by combining

the models for the CPU, cache, and the memory, as well as disk images for booting. Users

could also play with only partial of the system. For example, gem5 can replay CPU traces

or memory traces to evaluate the performance of the memory system without a CPU model
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or virtual address translation models.

2.5 Bluespec and bluesim

Bluespec [119] is a high-level hardware description language (HDL) in develop since 2000.

Now it has been used in production designs like RISC-V cores Flute [4], Piccolo [9], and

Toooba [10]. It has a powerful type system that can prevent errors prior to synthesis

time. In addition to the System Verilog-like syntax, it also comes with syntactic flavor

of the Haskell functional programming language and both flavors are interchangeable.

The Bluespec compiler emits standard Verilog so it can be compatible with any synthesis

toolchain.

In addition to using other simulators for Verilog descriptions, Bluespec also comes with

its own cycle simulator bluesim. The compiled hardware description could be linked into

bluesim simulation environment and an executable binary will be generated. When the

binary is executed, the hardware module is simulated.

2.6 LLVM toolchain

LLVM [7] is a collection of modular and reusable compiler and toolchain technologies. It

uses Clang [3] as front-end for C language family (C, C++, Objective C/C++, OpenCL,

CUDA, and RenderScript). Clang can be extended to support user annotations in the

source code. The front-end compiles the source code into LLVM intermediate code repre-

sentation (LLVM IR), or LLVM bitcode. Then LLVM core libraries could provide a various

of analysis and optimizations on LLVM bitcode so that they do not depend on the source

code or the target.

LLVM code generator (codegen) is the backend which translates LLVM IR into target

specific machine code. The code generator in LLVM contains multiple stages(or passes

in LLVM): instruction selection, register allocation, scheduling, code layout optimization,

and assembly emission. LLVM uses its own linker LLD [6] as drop-in replacement for
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the default system linkers. Linkers are responsible to generate executable file by linking

multiple object files generated by the LLVM. LLD supports Link-Time Optimization(LTO)

and allows LLVM to do whole program optimization during linking. LLD supports a wide

range of binary formats including ELF(Unix), PE/COFF(Windows), Mach-O(macOS) and

WebAssembly.

2.7 Privilege Separation and Isolation

Privilege separation [138] is an important line of defense against unknown vulnerabilities in

a system. In a privilege separated system, a program is partitioned into multiple isolated

security domains and each keeps its least privileges that are just enough to do its tasks.

In such a system, security breaches in one domain will not likely affect other domains.

Privilege separation has been widely used in modern computer systems to ensure the

secure sharing of the computer resources such as CPU, memory, storage, etc. For exam-

ple, different processes are isolated inside an operating system so that different users and

different programs won’t interfere with each other erroneously. Another example is that

inside the address space of a single process, user memory and kernel memory are separated

and isolated by the operating system.

In this thesis, the term of privilege separation and isolation can be interchangeable

when they are used to refer to partitioning a program in general. However, we also differ-

entiate isolation from privilege separation in terms of the emphasized stage during program

partition. We will use privilege separation to refer to the process to analyze the program

and find out which module should be separated with other modules in a program. This

process is usually determined by the security semantic of the program, and is irrelevant to

what kind of isolation mechanisms will be used. On the other hand, we will use isolation

to refer to the process where a list of separated modules and their security requirements

are given as input, and these modules will be isolated into different protection domains by

leveraging certain kinds of isolation mechanisms. This process is mostly focused on how
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to leverage specific isolation mechanisms to enforce the domain isolation, and the security

requirements and how to separate the program modules are assumed to be known facts.

2.8 Intra-address Space Isolation

Intra-address space isolation is used to separate privileges inside the same process, usually

used to isolate different modules or libraries inside a single user program or inside an

operating system kernel. For example, Software Fault Isolation(SFI) [159] and its derived

techniques, such as Native Client [173], BGI [33], etc., are pure software solution can be

used to partition the entire address space into different isolated memory regions. In these

techniques, every memory accesses are checked either statically or dynamically to ensure

the memory address being accessed is valid (does not cross the given boundary).

There are also hardware assisted isolation mechanisms such as CPU Rings [144], Intel

SGX [47], MPK [90], and ARM TrustZone [16], ARM MPU [17], etc. Hardware assistance

could help to reduce the overhead significantly comparing to the pure software based so-

lutions. In these mechanisms, the memory accesses are checked either by checking the

permission bits in the page table entry (CPU Rings, Intel SGX, Intel MPK, and ARM

TrustZone) or other hardware supported permission descriptors (ARM MPU). These tech-

niques vary in how they manage the format of permission bits and how to switch the

execution between different protection domains.
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Chapter 3

Efficient Live Migration across Edge

Servers

3.1 Overview

Mobile users across edge networks require seamless migration of offloading services. Edge

computing platforms must smoothly support these service transfers and keep pace with

user movements around the network. However, live migration of offloading services in

the wide area network poses significant service handoff challenges in the edge computing

environment. In this work, we propose an edge computing platform architecture which

supports seamless migration of offloading services while also keeping the moving mobile

user “in service” with its nearest edge server. We identify a critical problem in the state-of-

the-art tool for Docker container migration. Based on our systematic study of the Docker

container storage system, we propose to leverage the layered nature of the storage system

to reduce file system synchronization overhead, without dependence on the distributed file

system. In contrast to the state-of-the-art service handoff method in the edge environment,

our system yields a 80%(56%) reduction in handoff time under 5Mbps(20Mbps) network

bandwidth conditions.
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3.2 Introduction

Edge computing has become a prominent concept in many leading studies and technologies

in recent years [24, 37, 83, 84, 85, 125, 140, 141, 152, 174, 175, 176]. Since edge servers

are in close proximity to the mobile end user, higher quality of services (QoS) could be

provided than was possible with the traditional cloud platform [125, 140]. End users

benefit from edge services by offloading their heavy duty computations to nearby edge

servers [14, 53, 101, 107]. Then the end user experience with cloud services will achieve

higher bandwidth, lower latency, as well as greater computational power.

One of the key challenges for edge computing is keeping quality of service guarantees

better than traditional cloud services while offloading services to the end user’s nearest edge

server. However, when the end user moves away from the nearby edge server, the quality

of service will significantly decreases due to the deteriorating network connection. Ideally,

when the end user moves, the services on the edge server should also be live migrated to

a new nearby server. Therefore, efficient live migration is vital to enable the mobility of

edge services in the edge computing environment.

Several approaches have been investigated to live migrate offloading services on the

edge. Virtual machine (VM) handoff [80, 81] divides VM images into two stacked overlays

based on VM synthesis [141]. During migration, only the overlay on the top is transferred

from the source to the target server instead of the whole VM image volume. This signifi-

cantly reduces data transfer size during migration. However, a virtual machine overlay can

be tens or hundreds of megabytes in size, thus the total handoff time is still relatively long

for latency sensitive applications. For example, OpenFace [14], a face recognition service,

will cost 247 seconds to migrate on a 5Mbps wide area network (WAN), which barely meets

the requirements of a responsive user experience. Additionally, VM overlays are hard to

maintain, and are not widely available in the industrial or academic world.

In contrast, the widely deployed Docker platform raises the possibility of high speed

service handoffs on the network edge. Docker [88] has gained popularity in the indus-
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trial cloud. It employs layered storage inside containers, enabling fast packaging, sharing,

and shipping of any application as a container. Live migration of Docker containers is

achievable. For example, P.Haul [65] supports live migration containers on Docker 1.9.0

and 1.10.0. They are developed based on a user level process checkpoint and restore tool

CRIU [52]. But P.Haul will transfer the whole container file system in a bundle during the

migration, regardless of storage layers, which could induce errors as well as high network

overhead.

In exploring an efficient container migration strategy tailored for edge computing, we

focus on reducing the file system transfer size by leveraging Docker’s layered storage ar-

chitecture. Docker’s storage allows only the top storage layer to be changed during the

whole life cycle of the container. All layers underlying the top layer will not be changed.

Therefore, we propose to share the underlying storage layers before container migration

begins, and only transfer the top layer during the migration itself.

In this work, we build a system which allows efficient live migration of offloading services

on the edge. Offloading services are running inside Docker containers. The system will

reduce the transferred file volumes by leveraging layered storage in the Docker platform.

Our work addressed following challenges during this project:

First, the internals of Docker storage management must be carefully studied. Few

studies have been published regarding Docker storage. Reading the raw source code enables

better understanding of the inner infrastructure.

Second, an efficient way to take advantage of Docker’s layered storage must be carefully

designed to avoid file system redundancy. We found that Docker creates a random number

as local identification for each image layer downloaded from the cloud. As a result, if

two Docker hosts download the same image layer from the same storage repository, these

layers will have different reference identification numbers. Therefore, when we migrate

a container from one Docker host to another, we must recognize whether there are any

image layers with different local identification numbers yet having the same content, thus

avoiding transfer of redundant image layers during the container migration.
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Third, besides the file system, we also need to optimize transmission of the raw memory

pages, used to restore the live status of the offloading service. Binary data are different in

format then the file system, and thus must be treated separately.

Last, in terms of end user experience, we need to reduce the user-experienced connection

interruption during service migration. It is possible that user-experienced interruption

interval could be shorter than the actual migration time through a well designed migration

process strategy. Ideally, our goal is seamless service handoff wherein users will not notice

that their offloading service has been migrated to a new edge server.

We propose a framework that enables high speed offloading service migration across

edge servers over WAN. During migration, only the top storage layer and the incremental

runtime memory is transferred. The total migration time and user perceived service in-

terruption are significantly reduced. The contributions of this work are listed as below (a

preliminary version of this work appeared in [109]):

• We have investigated the current status of container migration and identified perfor-

mance problems.

• We have analyzed Docker storage management based on the AUFS storage driver,

and studied the internal image stacking methodology.

• We have designed a framework that enables efficient live migration of offloading

services by sharing common storage layers across Docker hosts.

• A prototype of our system has been implemented. Evaluation shows significant

performance improvement with our design, up tp 80% on 5Mbps networks.

We will briefly introduce the motivation of this work in Section 3.3. Section 3.4 reports

the systematic study of Docker storage management, and the problems of previous Docker

migration tools. Section 3.5 discusses the design of our system infrastructure. In Section

3.6, the prototype system is evaluated. Section 3.7 discusses related work, and Section 3.8

concludes this work.
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3.3 Motivation

In this section, we seek to answer the following questions: Why do edge applications need

offloading of computation? Why is service migration needed in edge computing? Why

do not use VM-based migration and why do we seek to perform migration via Docker

containers?

3.3.1 Offloading Service is Essential for Edge Computing

With the rapid development of edge computing, many applications have been created to

take advantage of the computation power available from the edge.

For example, edge computing provides powerful support for many emerging augmented

reality (AR) applications with local object tracking, and local AR content caching [85, 141].

It can be used to offer consumer or enterprise propositions, such as tourist information,

sporting event information, advertisements, etc.. The Gabriel platform [82] is designed

within the context of wearable cognitive assistance applications using a Glass-like wearable

device, such as Lego Assistant, Drawing Assistant, or Ping-pong Assistant. OpenFace

[14] is a real-time mobile face recognition program based on a deep neural network. The

OpenFace client sends pictures captured by the camera to a nearby edge server. The server

runs a face recognition service that analyzes the picture and sends symbolic feedback to the

user in real time. More edge applications can be found in [83, 84, 140, 174, 175]. In brief,

applications on the edge not only demand intensive computations, or high bandwidth, but

also require real time response.

3.3.2 Effective Edge Offloading Needs Migration for Service Handoff

As mentioned previously, highly responsive services rely upon relatively short network

distances between the end user and the edge server. However, when the end user moves

farther away from its current edge server, offloading performance benefits will be dramat-

ically diminished.
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In the centralized cloud infrastructure, mobility of end users is well supported since

end users are connected to the centralized cloud server through WAN. However, in the

edge computing infrastructure, mobile devices connect to nearby edge servers with high

bandwidth and low latency connections, usually via a LAN. Therefore, when the mobile

device moves farther away from its edge server, the connection will suffer from higher

latency, or may even become totally interrupted.

In order to be continuously served by a nearby edge server, the offloading computation

service should migrate to a new edge server that is closer to the end user’s new location

than the current server. We regard this process as a service handoff from the current

edge server to the new edge server. This is similar to the handover mechanism in cellular

networks, wherein a moving user connects to the nearest available base station, maintaining

connectivity to the cellular network with minimal interruption.

However, there exists one key difference between the cellular network handover and the

edge server handoff. In cellular networks, changing a base station for the mobile client is

as simple as rebuilding a wireless connection. Most runtime service states are not stored

on the base station but are saved either on mobile client, or on the cloud. Therefore, after

re-connection, the runtime state can be seamlessly resumed through the new connection.

In the edge infrastructure, mobile devices use edge servers to offload resource-hungry

or computation-intensive computations. This means that the edge server needs to hold all

the states of the offloading workloads. During the service handoff from one edge server to

another, all the runtime states of offloading workloads need to be transferred to the new

edge server. Therefore, fast live migration of offloading services across edge servers is a

primary requirement for edge computing.

3.3.3 Service Handoff via VM Migration is Not Practical

One possible solution is to use virtual machine (VM) live migration [40] to migrate a VM

from one edge server to another in order to seamlessly transfer the offloading workloads.

However, this approach has already been shown to be not suitable for edge computing



3.3. MOTIVATION 18

environments in [80]. First, live migration and service handoff are optimized according

to different performance metrics. While live migration aims to reduce downtime of the

VM, service handoff aims to reduce the total time from the time when handoff request is

issued to the completion time of the migration. This is well discussed in [80]. Second, live

migration is originally designed for high performance data centers with high bandwidth

networks. However, this is not possible for edge servers which are deployed over the

WAN. Furthermore, live migration relies on network-based storage sharing so only run-

time memory state is transferred and not storage data. Apparently, network-based storage

sharing across the edge computing infrastructure is not feasible due to its widely distributed

nature and low WAN bandwidth between edge servers.

In order to enable handoff across edge computing servers, much research has focused

on VM migration [80, 141]. However, the total handoff time is still several minutes on

a WAN network. For example, it is shown that it requires 245.5 seconds to migrate a

running OpenFace instance under 5Mbps bandwidth (50ms latency) network in [80].

One of the reasons for the long latency of handoff is the large transfer size during the

VM migration. VM synthesis can reduce the image size by splitting images into multiple

layers, and only transferring the application-specific layer. However, the total transferred

size is still in the magnitude of tens, or even hundreds of megabytes. This is because

the application layer is encapsulated with the whole application, including both the static

binary programs and runtime memory data. We think this is an unnecessary cost.

On the other hand, the deployment of the VM synthesis system is challenging for the

legacy system. In order to enable VM synthesis, the VM hypervisor needs to be patched

to track dirty memory at runtime. Also, storage of VM images must be adapted to Linux

FUSE interfaces in order to track file system changes inside running VMs. Those two

changes are hard to deploy in practice since they change the behavior of legacy hypervisors

and file systems, along with lots of performance overhead being added.
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App Total time Down time FS Size Total Size
Busybox 7.54 s 3.49 s 140 KB 290KB
OpenFace 26.19 s 5.02 s 2.0 GB 2.17GB

Table 3.1: Docker Container Migration Time (bandwidth 600Mbps, latency 0.4ms)

App Total time Down time FS Size Total Size
Busybox 133.11s 9s 140 KB 290KB
OpenFace ∼ 3200s 153.82s 2.0G 2.17G

Table 3.2: Docker Container Migration Time (bandwidth 15Mbps, latency 5.4ms)

3.3.4 More Efficient Migration is Achievable with Docker Containers

Since VM migration poses significant performance problems to the seamless handoff of

edge services, container live migration has gained recognition for being lightweight and its

ability to maintain a certain degree of isolation.

In addition, Docker containers support layered storage. Each container image references

a list of read-only storage layers that represent file system differences. Layers are stacked

hierarchically and union mounted as a container’s root file system [87]. Layered storage

enables fast packaging and shipping of any application as a lightweight container based

upon sharing of common layers.

These layered images have the potential for fast container migration by avoiding trans-

fer of common image layers between two migration nodes. With container images located

in cloud storage (such as DockerHub [86]), all the container images are available through

the centralized image server. Before migration starts, an edge server has the opportunity

to download the system and application images as the container base image stack. There-

fore, we can avoid the transfer of the container’s base image during the actual migration

process.

Apparently, the migration of Docker containers can be accomplished with smaller trans-

fer file sizes than with VM migration. However, as of this writing, no tools are available for

container migration on the edge environment. Container migration tools for data centers

can not be directly applied to the edge of WAN network.



3.4. CONTAINER STORAGE AND MIGRATION 20

Table 3.1 and Table 3.2 shows our experiment with previous container migration solu-

tion under two different network environments. Table 3.1 indicates that migration could

be done in 7.54 seconds for Busybox, and 26.19 seconds for OpenFace. The network con-

nection between the two hosts has 600 Mbps bandwidth with latency of 0.4 milliseconds.

However, when the network bandwidth reduces to 15 Mbps and latency increases to

5.4 ms, container migration performance becomes unacceptable. Table 3.2 shows that the

migration of the Busybox container takes 133.11 seconds with transferred size as small as

290 Kilobytes and OpenFace takes about 3200 seconds with 2 Gigabytes data transferred.

We find that one of the key factors causing this poor performance is the large size of

the container’s transmitted file system. In this work, we propose to reduce transmission

size by leveraging the layered storage provided in Docker.

3.4 Container Storage and Migration

In this section, we discuss the inner details of container storage and the problems we

found in the latest migration tool. We take Docker as an example container engine and

AUFS as its storage system. Docker is becoming more popular and widely adopted in the

industrial world. However, as of this writing, the technical details of Docker layered storage

management are still not well-documented. Therefore, in this work, we first investigate

the inner details of the Docker layered storage system, and then leverage that layering to

speed up Docker container migration.

3.4.1 Container Engines and Storage Drivers

In general, Linux container engines support multiple kinds of file storage systems. For

example, the Docker engine supports AUFS, Btrfs, OverlayFS, etc. [87]. LXC engine

supports Btrfs, LVM, overlayFS, etc. [76]. OpenVZ containers can directly run on native

ext3 file system for high performance, or Virtuozzo as networking distributed storage [123].

Some of them inherently support layered storage for easy sharing of container images, such
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as Docker and rkt [45]. Others, such as OpenVZ, solely support regular file systems to

achieve fast native performance. We leverage the layered storage of Docker containers for

efficient container migration. This strategy is also applicable to other container engines

supporting layered image formats, such as rkt. However, the details of layer management

techniques can vary across different container engines, thus each engine requires customiza-

tion to enable image layer sharing.

Different storage drivers can define their own container image formats, thus making

container migration with differing storage drivers a challenging task. It must be recognized

that with the efforts of the Open Container Inititive (OCI) [89], the format and structure

of the container image is evolving towards a common standard across multiple container

engines. For example, both rkt and Docker can support OCI images, and the container

image could be migrated between rkt and Docker hosts [46].

Docker leverages the copy-on-write (CoW) features of underlying storage drivers, such

as AUFS or overlay2. Rkt supports Docker images consistent with OCI specifications

thus it can leverage the image layers for sharing. Since Docker manages container image

inherently and is one of the most popular industrialized container engines, we adopt Docker

as our experimental container engine to migrate containers on the edge.

3.4.2 Layered Storage in Docker

A Docker container is created on top of a Docker image which has multiple layers of

storage. Each Docker image references a list of read-only layers that represent file system

differences. Layers are stacked on top of each other and will be union mounted to the

container’s root file system [87].

3.4.2.1 Container Layer and Base Image Layers

When a new container is created, a new, thin, writable storage layer is created on top of

the underlying read-only stack of image layers. The new layer on the top is called the

container layer. All changes made to the container – such as creation, modification, or
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febfb1642ebeb25857bf2a9c558bf695R/W

fac86d61dfe33f821e8d0e7660473381RO

984034c1bb9c62ac63fff949a70d1c06RO
......

80db20d8e37dc3795b17e0e59930a408RO

Figure 3.1: OpenFace Container’s Image Layer Stack

deletion of any file – are written to this container layer [87].

For example, Figure 3.1 shows the stacked image layers of OpenFace. Container’s rootfs

ID is febfb1642ebeb25857bf2a9c558bf695 1. The dashed box on the top is the writable

(R/W) layer – container layer, and all the underlying layers are readonly (RO), which are

called base image layers. To resolve the access request for a file name, the storage driver

will search the file name in order from the top layer towards the bottom layer. The first

copy of the file will be returned for accessing, regardless of any other copies with the same

file name in the underlying layers.

3.4.2.2 Image Layer ID Mapping

Since Docker 1.10, all images and layers are addressed by secure content SHA256 hash [87].

This content addressable design enables better sharing of layers by allowing many images

to freely share their layers locally even if they don’t come from the same build. It also

improves security by avoiding name collisions, and assuring data integrity across Docker

local hosts and cloud registries [102].

By investigating the source code of Docker and its storage structure, we find that there

is an image layer ID mapping relationship which is not well documented. If the same image

is downloaded from the same build on the cloud, Docker will map the original layer IDs to

a randomly generated ID, called cache ID. Every image layer’s original ID will be replaced

with a unique cache ID. From then on, the Docker daemon will address the image layer
1SHA256 ID has 64 hexadecimal characters, here we truncate it to 32 hexadecimal characters in order

to save space.
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by this cache ID when it creates, starts, stops, checkpoints, or restores a container.

As a result, if two Docker hosts download the same image layer from the same repos-

itory, these layers will have different cache IDs. Therefore, when we migrate a container

from one Docker host to another, we must find out whether those image layers with dif-

ferent IDs are actually referencing the same content. This is necessary to avoid redundant

transfers of image layers during container migration.

3.4.2.3 Docker’s Graph Driver and Storage Driver

Note that the mismatching of image layer cache IDs seems to be a flawed Docker design

when it comes to container migration. However, this design is actually the image layer

caching mechanism designed for the graph driver in the Docker runtime [67]. All image

layers in Docker are managed via a global graph driver, which maintains a union mounted

root file system tree for each container by caching all the image layers from the storage

driver. The graph driver will randomly generate a cache ID for each image layer. The cache

of image layers is built while the docker pull or docker build commands are executed.

The Docker engine maintains the link between the content addressable layer ID and its

cache ID, so that it knows where to locate the layer content on disk.

In order to get more details about Docker’s content addressable images, we investigated

the source code along with one of its most popular storage drivers, AUFS. Other storage

drivers such as Btrfs, Device Mapper, OverlayFS, and ZFS, implement management of

image layers and container layers in unique ways. Our framework could be extended to

those drivers. Due to limited time and space, we focused on experiments with AUFS. The

following section presents our findings about Docker’s AUFS storage driver.

3.4.3 AUFS Storage: A Case Study

We conduct our experiments with Docker version 1.10 and the default AUFS storage

driver. Therefore, our case study demonstrates management of multiple image layers from

an AUFS point of view. For the latest Docker version (docker-20.10 as of this writing), it
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/var/lib/docker/0.0/

containers

<conID1>

config.v2.json

<conID2>

aufs/ image/aufs/layerdb/sha256

<O-layerID>

cache-id parent ...

Figure 3.2: Docker Layered File System Structure
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<layer ID2>/
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hosts

Figure 3.3: AUFS Work Directories in Docker’s Layered Storage

is recommended to use overlay2 when possible [62]. Note that the actual directory tree

structure described in this section is no longer valid for overlay2. However, the general

principles of image layer organization and access remain the same as introduced above.

The scheme in this work provides a guideline to interact with the image layer addressing

operations of the Docker runtime graph driver [67] which is not tightly bound to the un-

derlying storage drivers. Therefore, it could be extended to overlay2 with straightforward

engineering efforts, consisting mostly of updating directory names.

AUFS storage driver exposes Docker container storage as a union mounted file system.

Union mount is a way of combining different directories into one directory in such a way

that it appears to contain the contents from all of them [121]. AUFS uses union mount to

merge all image layers together and presents them as one single read-only view. If there

are duplicate identities (i.e. file names) in different layers, only the one on the highest

layer is accessible.
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Figure 3.2 and 3.3 illustrate the Docker storage structure based on the AUFS driver.

A blue box stands for a directory and a white box stands for a file. The root directory of

Docker storage is by default defined as /var/lib/docker/0.0/. We will use ‘.’ to represent

this common directory in the following discussion. The AUFS driver’s work directory is

located at ./aufs/. AUFS mainly uses three directories to manage image layers:

1. Layer directory (./aufs/layers/): This contains the metadata that describes how

storage layers are stacked together;

2. Diff directory (./aufs/diff/): This stores the content data for every layer, where each

layer is put in one subdirectory;

3. Mount directory (./aufs/mnt/): This contains the mount point of the root file system

for the container.

When the Docker daemon starts or restores a container, it will query the IDs of all

image layers stored at the Layer directory. Then it will get the content of image layers

by searching the Diff directory. Finally all image layers are union mounted together to

the Mount directory. After this, the container will have a single view of its complete file

system.

Note that the mount point for a container’s root file system is only available when

the container is running. If the container stops, all the image layers will be unmounted

from this mount point. Then the mount point will become an empty directory. Therefore,

during migration, we cannot synchronize the container’s root file system directly, or the

container’s layers will not be mounted or unmounted correctly on the target node.

3.4.3.1 Container’s Image Layer Stack List

We know that each Docker image contains several image layers. Those image layers are

addressed by their layer IDs. Each Docker image has a list of layer IDs in the order of how

they stacked from top to bottom. There are two files, ./aufs/layers/<rootfs ID>-init and
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./aufs/layers/<rootfs ID>, both of which store a list of layer IDs. The former stores IDs

of all initial image layers when the container is created. The latter stores IDs of the newly

created layers in addition to the initial layers. In Figure 3.3, we use ./aufs/layers/<rootfs

ID>(-init) as a simplified notion of the two files.

For example, for the container OpenFace with rootfs ID of febfb1642ebeb25857bf2a9c55-

8bf695, it’s initial layer stack is stored in the file ./aufs/layers/febfb1642ebeb25857bf2a9c-

558bf695-init. It contains all layers in the downloaded container image bamos/openface2.

These layers will be read-only throughtout the whole life cycle of the container. Once a

new layer is created, i.e. the container layer, the layer ID will be listed on the top line of

the file ./aufs/layers/febfb1642ebeb25857bf2a9c558bf695.

When the Docker daemon starts or restores a container, it will refer to those two files

to get a list of all underlying Docker image layer IDs and the container layer ID. Then it

will resolve those addressable IDs and union mount all those layers together in the specific

order. After this, the container will get the full view of its root file system under the root

mount point. We find that the two files behaves like an important handler for the union

file system of the container. If any of the two file is missing or corrupted, the container

will not be able to union mount the root file system correctly.

3.4.3.2 Image Layer Content Directory

AUFS manages the content of image layers in the directory of ./aufs/diff/. The directory

./aufs/diff/<layer ID>/ stores all the files inside the specific layer identified by its <layer

ID>. This can be either a readonly image layer or a container layer that is newly created.

If <layer ID> is the same as <rootfs ID> of a container, then this directory is where the

content of container layer stores, i.e. all the file system changes of the container will be

stored in this directory.
2https://hub.docker.com/r/bamos/openface/.
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3.4.3.3 Unified Mount Point

The directory ./aufs/mnt/<rootfs ID>/ is the mount point of the container’s root file

system. All file system layers are union mounted to this folder and provide a single file

system view for the container. For example, as shown in Figure 3.3, when a container is

created based on a Linux image, its mount point will contain the root directory contents

like /usr/, /home/, /boot/, etc. All those directories are mounted from its underlying

storage layers, including both the read only image layers downloaded from the registry

and the newly created container layer. Since this directory is a mount point for a running

container’s file system, it will be only available when the container is running. If the

container stops running, all the image layers will be unmounted from this mount point. So

it will become an empty directory.

3.4.3.4 Layer ID Mapping

Until now, the layer IDs we have discussed above are just local SHA256 IDs, or what we

call cache IDs, which are generated dynamically when each image layer is downloaded by

docker pull command. From then on, Docker daemon will address the image layer using

the cache ID instead of its original layer ID (noted as O-layerID in this work).

We find the Docker storage system maintains a mapping relationship between the

original layer IDs and its cache IDs. As shown in Figure 3.2, all the cached IDs of image

layers are stored in the directory ./image/aufs/layerdb/sha256/. For example, the file

./image/aufs/layerdb/sha256/<O-layerID>/cache-id stores the cache ID of the image with

original ID <O-layerID>. If a hash ID fac86d61dfe33f821e8d0e7660473381 is stored in

the file of ./image/aufs/layerdb/sha256/6384c447ddd6cd859f9be3b53f8b015c/cache-id, this

means there is an image layer with an original ID of 6384c447ddd6cd859f9be3b53f8b015c

and its cache ID is fac86d61dfe33f821e8d0e7660473381.
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3.4.3.5 Container Configuration and Runtime State

There are several directories that store the configuration files and runtime data. As shown

in Figure 3.3, the directory /var/lib/docker/0.0/containers/<conID> contains the config-

uration files for each container. For example, from the JavaScript object notation (JSON)

file config.v2.json, we can find the container’s creation time, the command that was run

when the container was created, etc.

/var/run/docker/execdriver/native/

<conID1>

state.json

<conID2>

state.json

Figure 3.4: Runtime Data for Containers

Figure 3.4 shows the runtime data directory for each container. For one container

with ID of <conID>, there will be a JSON file state.json that stores the runtime state

of the container. For example, the initial process ID of the container is identified by

key “init_process_pid ”, and the root file system mount point path can be found via key

“rootfs”. There are also some runtime cgroup and namespace meta data, etc.

3.4.4 Docker Container Migration in Practice

There is no official migration tool for Docker containers as of this writing, yet many

enthusiastic developers have constructed tools for specific versions of Docker. These tools

have demonstrated the feasibility of Docker container migration. For example, P.Haul

[65] supports migration of Docker-1.9.0-dev, and Boucher [26] extends P.Haul to support

Docker 1.10-dev migration. However, both methods simply transfer all the files located

under the mount point of a container’s root file system. At that point, the files in the root

directory are actually a composition of all container image layers. Both methods ignore

the underlying storage layers. This will cause the following problems:

1. It will corrupt the layered file system inside the container after restoration on the
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target server. The tool simply transfers the whole file system into one directory on

the destination, ignoring all underlying layer information. After restoration on the

target host, the container cannot be properly maintained by the Docker daemon,

which will fail when it tries to mount, or unmount the underlying image layers.

2. It substantially reduces the efficiency and robustness of migration. The tool synchro-

nizes the whole file system using the Linux rsync command while the container is

still running. First, running rsync command on a whole file system is slow due to

the large amount of files, especially during the first run. Second, file contention is

possible when process of container and the process of rsync attempt to access the

same file and one of them is write. Contention causes synchronization errors which

result in migration errors.

To verify our claim, we have conducted experiments to migrate containers over different

network connections. Our experiments use one simple container, Busybox, and one com-

plex application, OpenFace, to conduct edge server offloading. Busybox is a stripped-down

set of Unix tools in a single executable file. It has a tiny file system inside the container.

OpenFace [14] is an application that dispatches images from mobile devices to the edge

server, which executes the face recognition task, and sends back a text string with the

name of the person. The OpenFace container has a huge file system, approximately 2

Gigabytes.

Table 3.1 indicates that migration could be done within 10 seconds for Busybox, and

within 30 seconds for OpenFace. The network between these two virtual hosts has a 1

Gbps bandwidth and latency of 0.4 milliseconds, transferring 2.17 GB data within a short

time. We further test container migration over a network with bandwidth of 15 Mbps and

latency of 5.4ms. Table 3.2 shows that migration of the Busybox container takes 133.11

seconds with transfer sizes as small as 290 Kilobytes. Migrating OpenFace requires to

transfer more than 2 Gigabytes data and takes about 3200 seconds.

As previously stated, poor performance is caused by transferring large files comprising
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the complete file system. This performance is worse than the state-of-the-art VM migration

solution we mentioned above. Migration of VMs could avoid transferring a large portion

of the file system by sharing the base VM images [80], which will finish migration within

several minutes.

Therefore, we require a new tool to efficiently migrate Docker containers, avoiding

unnecessary transmission of common image layers. This new tool should leverage the

layered file system to transfer the container layer only during service handoff.

3.5 Offloading Service Migration on the Edge

Edge Server
VM A

Offloading
Container

Docker

Edge Server
VM B

Docker

WAN

LAN1

moving

(a) Before Migration

Edge Server
VM A

Docker

Edge Server
VM B

Offloading
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Docker

WAN

LAN2

moving

(b) After Migration

Figure 3.5: Offloading Serivce Handoff: Before and After Migration of Offloading Con-
tainer.

In this section, we introduce the design of our service hand-off framework based on

Docker container migration. First, we provide a simple usage scenario, then we present

an overview of the system architecture in Section 3.5.1. Second, we enumerate work-

flow steps performed during service handoff in Section 3.5.2. Third, in Section 3.5.3 and

3.5.4, we discuss our methodology for storage synchronization based on Docker image
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Figure 3.6: Overview of Edge Computing Platform

layer sharing between two edge servers. Finally, in Section 3.5.5, 3.5.6, and 3.5.7, we show

how to further speed up the migration process through memory difference transfers, file

compression, pipelined and parallel processing during Docker container migration.

3.5.1 System Overview

Figure 3.5 shows an exemplar usage scenario of offloading service hand-off based on con-

tainer migration. In this example, the end user offloads workloads to an edge server to

achieve real-time face recognition (OpenFace [14]). The mobile client continuously reads

images from the camera and sends them to the edge server. The edge server runs the facial

recognition application in a container, processes the images with a deep neural network

algorithm, and finally sends each recognition result back to the client.

All containers are running inside VMs (see VM A, VM B in Figure 3.5). The combina-
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tion of containers and VMs controls the isolation between applications at different levels

and enables applications to scale up deployment more easily.

All offloaded computations are executed inside containers, which we call the offloading

container. When the user moves beyond the reach of server A and reaches the service area

of edge server B, its offloading computation shall be migrated from server A to server B.

This is done via migration of the offloading container, where all runtime memory states as

well as associated storage data should be synchronized to the target server B.

In order to support both the mobility of end users and the mobility of its corresponding

offloading services on the edge server, we have designed a specialized edge computing plat-

form. Figure 3.6 provides an overview of our edge platform and its three-level computing

architecture. The first level is the traditional cloud platform architecture. The second level

consists of the edge nodes distributed over a WAN network in close proximity to end users.

The third level consists of mobile clients from end users who request offloading services

from nearby edge servers.

3.5.1.1 Edge Controller

The first level contains four services running in the centralized edge controller that manages

offloading services across all edge servers (or edge server clusters) on the WAN network.

These four services are:

Offloading Service Scheduler : This is responsible for scheduling offloading services

across edge servers. The parameters of scheduling include but are not limited to 1) physical

locations of end users and edge servers; 2) workloads of edge servers; 3) end user perceived

bandwidth and latency, etc.

Edge Server/Clusters Monitor : This is responsible for communicating with the dis-

tributed edge servers or clusters, and collecting performance data, runtime metadata for

offloading services, and end user metadata. The collected data is used to make scheduling

decisions.

Container/VM Image Service: This is the storage service for edge servers. It distributes
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container and VM images to the edge server for fast deployment as well as for data backup.

Backup data can be saved as container volumes [61] to enable faster deployment and sharing

among distributed edge servers.

Authentication Service: This is used to authenticate the identities of both edge servers

and end users.

3.5.1.2 Edge Nodes

The second level in Figure 3.6 consists of the distributed edge nodes. An edge node could

be a single edge server or a cluster of edge servers. Each edge node runs four services which

are:

Container Orchestration Service and VM Orchestration Service: The two are virtual-

ization resource orchestration services. They are used to spawn and manage the life cycle

of containers and VMs. Each end user could be assigned one or more VMs to build an

isolated computing environment. Then by spawning containers inside the VM, the end

user creates offloading services.

Offloading Services: This is a set of container instances that execute the end user’s

offloading workloads.

Offloading Controller : This is responsible for managing the services inside the edge

node. It could limit the number of user-spawned containers, balance workloads inside

the cluster, etc. It also uploads the latest performance data to the Edge Controller in

the cloud. Performance data includes offloading service states inside the edge node, and

identification of the latest data volumes that require backup on the cloud.

3.5.1.3 End Users

The third level of our edge platform is comprised of the end user population. End users

are traditional mobile clients running applications on Android, iOS, Windows, or Linux

mobile devices, or embedded IoT devices. Our design will not modify the mobile client

applications. The progress of offloading service handoff will be transparent to end users.
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The mobile device can use WiFi or LTE to access the Edge Nodes or Edge Controller.

3.5.2 Workflow of Service Handoff
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Figure 3.7: Full Workflow of Offloading Service Handoff

Figure 3.7 shows the design details of our architecture broken into individual migration

steps. The source server is the edge server currently providing end user computational

services. The target server is the gaining server. Computational services are transferring

from the source to the target server. Details of these steps are described below:

S1 Synchronize Base Image Layers. Offloading services are started by creating a

container on the source server. Once the container is started on the source server,

the base image layers for that container will also be downloaded to additional nearby

potential target servers. This is to begin preparation for subsequent end user move-

ments.

S2 Pre-dump Container. Before the migration request is issued, one or more memory

snapshots will be synchronized to the all potential target servers without interrupting
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the offloading service.

S3 Migration Request Received on Source Server. Live migration of the offload-

ing is triggered by the migration request. The request is initiated by the cloud control

center.

S4 Image Layer Synchronization. Images layers on the two edge servers are com-

pared with each other by remapping the cacheIDs back to the original IDs. Only the

different image layers are transferred.

S5 Memory Difference Transmission. The container on the source server will be

checkpointed to get a snapshot of memory. Multiple snapshots can be taken in

different time slots. Two consecutive snapshots will be compared to get dirty memory.

The dirty memory is then transmitted to the target server and re-assembled at the

target server.

S6 Stop Container. Once the dirty memory and file system difference are small

enough, such that they can be transferred in a tolerable amount of time, the con-

tainer on the source server will be stopped and the latest dirty memory and files will

be sent to the target edge server.

S7 Container Layer Synchronization. After the container is stopped, storage on

the source server will not be changed by the container. Thus we can send the latest

container layer to the target server. At the same time, all metadata files, such as

JSON files logging the container’s runtime states and configuration files, are also

transferred to the target server.

S8 Docker Daemon Reload. On the target server, Docker daemon will be reloaded

after receiving container configuration files from the source server. After reloading,

the target node will have source configurations loaded into the runtime database.
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S9 Restore Container. After the target server receives the latest runtime memory and

files, the target container can be restored with the most recent runtime states. The

migration is now finished at the target server and the user begins receiving services

from this new edge server. At the same time, the target server will go to step S1 to

prepare the next iteration of service migration in the future.

S10 Clean Up Source Node. Finally, the source node will clean up by removing the

footprints of the offloading container. Clean up time should be carefully chosen

based on user movement patterns. It could be more efficient to retain and update

the footprint containers if the user moves back in the future.

Service Running on Source Server (S1 S2)

Migration Request (S3)

Ready to
Migrate ?

Container Image
Layers Comparison (S4)

Transfer Diff Layers (S4)

Snapshot Memory (S5)

Transfer Dirty
Memory (S5)

Migrate (S5-S9)

Service Running on Target Server

no no
yes

Figure 3.8: Major Procedures of Migration

Figure 3.8 provides a simple overview of the major migration procedures. We assume

that before migration starts, both the source and target edge servers have the application

base images downloaded. Once the migration request is received on the source server,
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multiple iterations of transferring image layers and memory images/differences will be

proceeded until the migration is done. File system images and memory snapshots are

transferred in parallel to improve efficiency. The number of iterations needed can be

determined empirically based on the actual offloading environment and the application’s

tolerance for service delay.

3.5.3 Strategy to Synchronize Storage Layers

Storage layer matching can either be implemented within the existing architecture of the

container runtime, or provided as a third party tool without change to the underlying con-

tainer architecture. Changing the container architecture will enable the built-in migration

capabilities thus improve the efficiency and usability. However, users must update their

container engine in order to benefit from the modified migration feature. Updating the

software stack can be destructive in a complex environment, where the release of modified

software packages usually takes a long time due to extensive testing requirements. A third

party migration tool offers the advantage of faster migration feature implementation since

no changes are made to the existing container engine. This is also a good option for a test

environment.

In this section, we implement our migration feature as a third party tool. Of course,

after the migration feature is well established, it can be embedded into the container

architecture by changing the respective part of the container. One example is the graph

driver of Docker [67]. One solution is to patch the graph driver by simply replacing the

randomly generated cache ID with the actual content addressable hash ID of the image

layer, or generate a different hash ID by hashing the same image layer content from a

different hash algorithm. We leave such tool extensions to future work.

A running container’s layered storage is composed of one writable container layer and

several read only base image layers. The container layer stores all the files created or

modified by the newly created container. As long as the container is running, this layer is

subject to change. So we postpone the synchronization of the container layer to the point
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after the source container is stopped (in step S7).

All base image layers inside containers are read only, and are synchronized as early as

possible. There are two kinds of base image layers. The first, and most common type are

base image layers downloaded by docker pull commands from centralized image registries

such as Docker Hub. The second type of image layer is created by the local Docker host

by saving the current container layer as one read-only image layer via docker commit

command.

Image layers from the centralized image registry should be downloaded before migration

starts, thus download time is amortized (in step S1). This also reduces network traffic

between the source and target edge servers. For locally created base image layers, we

transfer each such image layer as it is created (in step S4), regardless if the migration has

started or not.

3.5.4 Layer ID Remapping

As mentioned previously, an image downloaded from the common registry to multiple

edge servers will have different cache IDs exposed at each edge server’s Docker runtime. In

order to efficiently share these common images across different edge servers, image layers

need to be matched based upon the original IDs instead of the cache IDs. To remap

image cache IDs without changing the Docker graph driver, we design a third party tool to

match the randomly generated cache IDs to original layer IDs. We first remap the cache

IDs to original IDs on two different edge servers. Then the original IDs are compared via

communication between the two edge servers. The image layers are the same if they have

identical original IDs.

After the common image layers are found, we map the original IDs back to the local

cache IDs on the target server. Then we update the migrated container with the new

cache IDs on the target server. Thus, the common image layers on the migrated container

will be reset with the new cache IDs that are addressable to the Docker daemon on the

target server. When we restore the container in the future, the file system will be mounted
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correctly from the shared image layers on the target server.

For the original IDs that don’t match between the two hosts, we treat them as new

image layers, and add them to a waiting list for transfer in step S7.

3.5.5 Pre-Dump & Dirty Memory Synchronization

In order to reduce transferred memory image size during hand-off, we first checkpoint the

source container and then dump a snapshot of container memory in step S2. This could

happen as soon as the container is created, or we could dump memory when the most

frequently used binary programs of the application are loaded into memory. This snapshot

of memory will serve as the base memory image for the migration.

After the base memory image is dumped, it is transferred immediately to the target

server. We assume that the transfer will be finished before hand-off starts. This is reason-

able since we can send the base memory image as soon as the container starts. After the

container starts, and before the hand-off begins, the nearby edge servers start to download

the application’s container images. We process those two steps in parallel to reduce total

transfer time. This is further discussed in section 3.5.7. Upon hand-off start, we have the

base memory image of the container already loaded on the target server.

3.5.6 Data Transfer

There are four types of data that require transfer: layer stack information, the thin writable

container layer, container metadata files, and snapshots of container memory and memory

differences. Some of the data is in the form of string messages, such as layer stack infor-

mation. Some data are in plain text files, such as most file contents and configuration files.

Memory snapshots, and memory differences are stored as binary files. Adapting to the file

types, we design different data transfer strategies.

Layer stack information consists of a list of SHA256 ID strings. This is sent as a

socket message via UNIX RPC API implementation in [65]. Note that data compression

is not efficient for this information because the overhead of compression outweighs the
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transmission efficiency benefits for those short strings.

For other data types, including the container writable layer, meta data files, dump

memory images, and image differences, we use bzip2 for compression before sending out

via authorized ssh connection.

3.5.7 Parallel & Pipelined Processing

With the help of parallel and pipelined processing, we could further reduce the total

migration time.

First, starting a container will trigger two events to run in parallel: a) on the edge

servers near the end user, downloading images from centralized registry, and b) on the

source node, pre-dumping & sending base memory images to the potential target servers.

Those two processes could be run at the same time in order to reduce the total time of

step S1 and S2.

Second, daemon reload in step S8 is required on the target host. It could be triggered

immediately after S7 and be paralleled with step S5, when the source server is sending

the memory difference to the target host. Step S7 cannot be paralleled with S8, because

daemon reload on the target host requires the configuration data files sent in step S7.

Third, in step S7, we use compression to send all files in the container layer over an

authorized SSH connection between the source and target host. The compression and

transfer of the container layer can be pipelined using Linux pipes.

Lastly, in step S5, we need to obtain memory differences by comparing the base memory

images with the images in the new snapshot, then we send the differences to the target and

patch the differences to the base memory image on the target host. This whole process

could also be piplined using Linux pipes.

3.5.8 Multi-Mode Migration with Flexible Trade-offs

Service handoff efficiency is affected by many system environment factors. They include:

1) the network conditions between two edge servers; 2) the network conditions between
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end user and edge server; 3) the available resources on the edge servers, such as available

CPU power. Taking these factors into consideration, we use different strategies to improve

the efficiency of service handoff. We combine different metrics to dynamically adapt to

various system environments.

The metrics we use to determine our strategies include:

1) Realtime Bandwidth and Latency: This includes the real time bandwidth and latency

between the source and target edge servers, as well as between the end user and two

edge servers.

2) Compression Options: We have a set of compression algorithms and options available

for use. Different algorithms with different options require different CPU power and

take differing amounts of computation time.

3) Number of Iterations: This defines the maximum number of iterations invoked for

memory pre-dumping and storage checkpointing before handoff starts.

The end user’s high quality of service is the ultimate optimization goal. Instead of

providing a concrete goal for optimization under different environments and requirements,

we provide multiple possible settings to enable users or developers to customize their own

strategies performing tradeoffs between differing environmental factors and user require-

ments. The optimization goals we define for service handoff are:

1) Interruption Time: This is the time from user disconnection from their service on

the source server to the time when the user is reconnected to their service on the

target server.

2) Service Downtime: This is the time duration of the last iteration of the container

migration. During this time interval, the service instance on the source node is

stopped.

3) Total Migration Time: This is used to represent the total time of all iterations of

container migration.
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Number of Iterations needs to be carefully determined to optimize the quality of services

for end users. If bandwidth is low, the time each iteration takes will be longer. So our

system tends to use fewer iterations to checkpoint storage and memory. Fewer iterations

mean each batch of dirty storage and memory transfers will be in large volume. Therefore,

during the last iteration for service handoff, it will migrate the container in a relatively

longer time, while the total handoff time at the last iteration might be less.

If bandwidth is high, more iterations could be done in a relatively short time. Then

our system tends to use more iterations to send storage and memory differences. Generally

the first iteration takes the longest time, say T1. The second iteration will take a shorter

time, because it only transfers the dirty memory generated since T1, say it takes T2, thus

T2 < T1. Then the third iteration will usually cost less time, because the dirty memory

generated since T2, is smaller than the dirty memory generated since T1. Therefore, each

iteration will usually take less and less time. The last iteration’s time can be minimized

by increasing the total iteration number. This is how the live migration is done inside

traditional data centers.

However, for live migration in an edge network, we need to consider user mobility. If

we set too many iterations, it will add up to the total migration time. During this time,

if the user is moving far away from its original edge server, the quality of service will

also degrade despite the minimization of service downtime. Therefore we need to control

the total iterations performed commensurate with user mobility and network bandwidth.

Similarly, Compression options also need to be carefully choosen in order to optimize the

service handoff process.

3.5.9 Two-layer System-wide Isolation for Better Security

It is critical to minimize security risks posed to offloading services running on the edge

servers. Isolation between different services could provide a certain level of security. Our

framework provides an isolated running environment for the offloading service via two

layers of the system virtualization hierarchy. Different services can be isolated by running
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inside different Linux containers, and different containers are allowed to be further isolated

by running in different virtual machines.

More thorough security solutions need to be designed before this framework can be

deployed in a real world environment. These solutions include, but are not limited to

efficient runtime monitoring, secure system updating, etc. We leave security enhancements

for future work and focus on performance evaluation of our services.

3.5.10 Discussion

In this section, we discuss the benefits of overall system and its extended applications, and

then clarify the limitations of the scope of this work.

3.5.10.1 Benefits and Applications

In this work, we propose an efficient service migration scheme based on sharing layers of

the container storage, and explore several key metrics that can be used to tune migration

performance. Metrics on the edge server, such as bandwidth, latency, host environment,

etc., are provided to the cloud center to support decisions towards optimal performance.

Cloud centers could utilize those metrics to make migration go/no-go decisions, schedule

the timing of migrations, decide which target servers to choose as migration destinations

in order to minimize service interruptions.

3.5.10.2 Limitations of Scope

Note that the theoretical proof of our performance optimization scheme is out of scope

of this chapter. In the architecture of our edge platform, we separate the optimization

problem into two tasks, one for distributed edge, and one for centralized cloud. The first

one is to collect performance data from edge servers; The second one is to evaluate the

performance and make optimization decisions at the cloud center. This work focuses on

the edge nodes, where metrics of performance are collected. Therefore, the decision process

of the cloud center is out of the scope of this work.
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3.6 Evaluation

In this section, we introduce our evaluation experiments and report the results from the fol-

lowing investigations: 1) How can container migration performance be affected by pipeline

processing? 2) How can customized metrics such as network bandwidth, latency, file com-

pression options, and total iteration numbers, affect the migration performance? 3) Will

our system perform better than state-of-the-art solutions?

3.6.1 Set Up and Benchmark Workloads

Migration scenarios are set up by using two VMs, each running a Docker instance. Docker

containers are migrated from the Docker host on the source VM to the Docker host on the

target VM.

In order to test our system running across WANs , we emulated low network bandwidths

ranging from 5Mbps to 45Mbps. Consistent with the average latency observed on the

Internet [132], we set the fixed latency of 50ms to emulate the WAN environment for edge

computing. Since edge computing environments can also be adapted to LAN networks, we

also tested several higher bandwidths, ranging from 50Mpbs to 500Mpbs. Latency during

these tests was set to 6ms, the average observed latency on the author’s university LAN.

Linux Traffic Control (tc [28]) was used to control network traffic.

For the offloading workloads, we chose Busybox as a simple workload to show the func-

tionality of the system, and demonstrate non-avoidable system overhead when performing

container migration. In order to show offloading service handoff comparable to real world

applications, we chose OpenFace as a sample workload.

3.6.2 Evaluation of Pipeline Performance

In order to demonstrate the effectiveness of pipelined processing, we tested pipeline pro-

cessing with two time consuming steps: imgDiff and imgSend, where imgDiff receives

memory difference files, and imgSend sends memory difference files to the target server
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Figure 3.9: Busybox: Time Duration of Container Migration Stages with and without
Pipelined Processing
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Figure 3.10: OpenFace: Time Duration of Container Migration Stages with and without
Pipelined Processing

during migration. Figure 3.9 and Figure 3.10 report the timing benefits we achieved by

incorporating pipelined processing. From the figure, we can see that, without pipelined
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processing, most time costs are incurred by receiving and sending the memory difference

files. After applying pipelined processing, we save 5 ∼ 8 seconds during OpenFace migra-

tion. Busybox also saves a certain amount of time with pipelined processing.

3.6.3 Evaluation on Different Metrics

In this section, we will evaluate the service handoff time observed under different con-

figurations of our pre-defined four metrics: 1) network bandwidth; 2) network latency;

3) compression options; 4) number of iterations. In order to evaluate the implication of

different configurations, we design contrast experiments for each metric. For example, to

evaluate network bandwidth effects, we keep other metrics constant in each experiment.

3.6.3.1 Evaluation of Changing Network Bandwidth

Table 3.3 and Figure 3.10 show an overview of the performance of our system under

different network bandwidth conditions. Latency is set to 50ms, total number of iterations

is set to 2, and the compression option is set to level 6.

In Table 3.3, Handoff time is from the time the source server receives a migration

request until the offloading container is successfully restored on the target server. Down

time is from the time when the container is stopped on the source server to the time when

the container is restored on the target server. Pre-Transfer Size is the transferred size

before handoff starts, i.e., from step S1 until the beginning of step S3. Final-Transfer

Size is the transferred size during handoff, i.e., from step S3 until the end of final step S9.

Average of 10 runs and relative standard deviations (RSDs, in parentheses) are reported.

From Table 3.3 and Figure 3.10 we can conclude that in general the higher bandwidth

we have, the faster the handoff process. However, when the bandwidth improves to a

relatively high value, the benefit of bandwidth expansion diminishes gradually. For exam-

ple, when the bandwidth increases from 5 Mbps to 10 Mbps, handoff time reduces from

50 seconds to less than 30 seconds, which yields more than 40% improvement. However,

when the bandwidth exceeds 50 Mbps, it becomes harder to reach higher throughput by
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Band-
width
(Mbps)

Handoff
Time(s)

Down
Time(s)

Pre-Transfer
Size (MB)

Final-
Transfer Size

(MB)
B
us
yb

ox
5 3.2 (7.3%) 2.8 (7.9%) 0.01 (0.2%) 0.03 (0.3%)
10 3.1 (1.8%) 2.7 (1.6%) 0.01 (0.2%) 0.03 (0.6%)
15 3.2 (1.4%) 2.8 (1.6%) 0.01 (0.5%) 0.03 (0.9%)
20 3.2 (1.6%) 2.8 (1.8%) 0.01 (0.3%) 0.03 (0.4%)
25 3.1 (1.6%) 2.7 (1.8%) 0.01 (0.2%) 0.03 (0.9%)
30 3.2 (1.4%) 2.8 (1.2%) 0.01 (0.3%) 0.03 (0.5%)
35 3.1 (3.5%) 2.7 (3.3%) 0.01 (0.3%) 0.03 (0.6%)
40 3.1 (3.4%) 2.7 (3.5%) 0.01 (0.2%) 0.03 (0.5%)
45 3.2 (1.9%) 2.7 (1.8%) 0.01 (0.2%) 0.03 (0.8%)
50 3.2 (1.7%) 2.7 (1.6%) 0.01 (0.2%) 0.03 (2.7%)
100 3.2 (1.6%) 2.7 (1.4%) 0.01 (0.3%) 0.03 (0.4%)
200 3.1 (1.8%) 2.7 (1.8%) 0.01 (0.1%) 0.03 (0.5%)
500 3.2 (2.0%) 2.8 (2.2%) 0.01 (0.2%) 0.03 (0.4%)

O
pe

nF
ac
e

5 48.9 (12.6%) 48.1 (12.7%) 115.2 (6.1%) 22.6 (13.0%)
10 28.5 (6.9%) 27.9 (7.0%) 119.4 (3.5%) 22.2 (10.9%)
15 21.5 (9.1%) 20.9 (9.4%) 116.0 (7.3%) 22.1 (11.1%)
20 17.8 (8.6%) 17.3 (8.9%) 116.0 (6.9%) 21.2 (12.0%)
25 17.4 (11.5%) 16.8 (12.0%) 114.3 (7.6%) 23.7 (14.8%)
30 15.8 (7.5%) 15.1 (7.4%) 119.3 (2.5%) 22.7 (9.3%)
35 14.7 (13.6%) 14.0 (14.3%) 116.8 (5.9%) 22.2 (15.6%)
40 14.0 (7.3%) 13.4 (7.6%) 112.5 (8.1%) 23.0 (8.8%)
45 13.3 (8.6%) 12.6 (9.1%) 111.9 (9.1%) 22.6 (11.7%)
50 13.4 (10.7%) 12.8 (11.1%) 115.2 (5.3%) 23.2 (5.3%)
100 10.7 (9.6%) 10.1 (10.1%) 117.2 (2.4%) 21.6 (10.8%)
200 10.2 (12.9%) 9.6 (13.5%) 116.8 (2.4%) 20.6 (17.6%)
500 10.9 (5.6%) 10.3 (5.9%) 117.4 (1.5%) 23.0 (3.9%)

Table 3.3: Overall System Performance

simply increasing the bandwidth. This effect can be caused by limited hardware resources,

such as CPU power or heavy disk workloads. When the transfer data rate of the network

becomes high, the CPU power used for compression and the machine disk storage become

the bottlenecks.

Note that migration time of Busybox seems to be unrelated to the bandwidths in Table

3.3. This is due to the very small transferred file size, therefore transmission is finished

very quickly regardless of network bandwidth.
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Figure 3.11: Busybox: Comparison of Migration Time.
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Figure 3.12: OpenFace: Comparison of Migration Time.

3.6.3.2 Evaluation of Changing Latency

Figure 3.11 and Figure 3.12 illustrate migration performance for BusyBox and OpenFace,

respectively, under bandwidth from 5 Mbps to 500 Mbps, and latency of 50ms and 6ms,
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with 2 total iterations and level 6 compression. It shows a tiny difference when experiencing

different latencies. This implies our system is suitable for a wide range of network latencies.

3.6.3.3 Evaluation of Changing Compression Algorithms and Options
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Figure 3.13: Time for each iteration during a 10 iteration memory image transfer

In Figure 3.13, each curve shows an average of 5 runs with the same experimental

setup. Each run consists of the time of 10 iterations, where the first nine are memory

difference transfer time before the final handoff starts. The 10th iteration equates to the

final handoff time. Each figure shows different bandwidths, with no compression and with
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level 9 compression. Each data point is an average of 5 runnings with the same experiment

parameters. Figure 3.13a shows the time of 10 iterations at the bandwidth of 10Mbps.

We can see that with level 9 compression, we get slightly better performance than with no

compression. However, for higher bandwidths, such as in Figure 3.13b - 3.13d, it is hard

to conclude whether level 9 compression option is better than the no compression option.

Apparently, the higher the bandwidth we have, there are more chances that level 9

compression will induce more performance overhead. This is because when bandwidth is

high, the CPU power we use to perform compression becomes the bottleneck. This also

explains why with increasing iterations, level 9 compression poses greater workloads than

the no compression option. When we do more and more iterations for the same container,

we have to checkpoint and restore the container again and again. These activities consume

many computing resources and create high workloads for the host machine‘s CPU.

Therefore, it is necessary to make the compression option flexible and choose a appro-

priate compression level suitable for the edge server’s available hardware resources.

3.6.3.4 Evaluation of Changing Total Iterations
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Figure 3.14: Time of Service Handoff Under Different Total Iterations.
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Figure 3.14 shows the handoff time when we use differing numbers of total iterations

to transfer the memory image difference before handoff starts. The experiment is done

on OpenFace application. Figure 3.14a shows level 9 compression of the transferred data

during handoff. Figure 3.14b shows the result when no compression is used during handoff.

Each point is an average of 5 runs with the same parameters.

We make two key observations from the figure: a) With total iteration numbers of

three or more, it is rare to have a better performance than the set up with only two total

iterations. b) With more total iterations, the final handoff time proves to be longer in

most cases.

These observations can be explained by the special memory footprint pattern we shown

for OpenFace/Busybox in Figure 3.15. Figure 3.15a and 3.15b show the memory size for

total 11 dumps (0-10 at x-axis) for OpenFace and Busybox, respectively. Figure 3.15c and

3.15d show dirty memory size between each of dump 1 to dump 10 and the original dump 0,

as well as dirty memory size between two adjacent dumps. We can see that no matter how

many iterations we checkpoint OpenFace or Busybox, the footprint size in main memory

changes little. Although their memory is continuously changing, the changes reside in

specific areas: a 4KB area for Busybox, and a 25MB area for OpenFace.

Therefore, no matter how many iterations we perform to synchronize memory difference

before handoff, at the end we will have to transfer a similar amount of dirty memory.

Additionally, more iterations pose higher workload pressures for the hardware. Therefore,

in most cases for OpenFace, it usually does not help to increase iterations.

However, this does not mean we do not need more than two iterations for all applica-

tions. If the memory footprint size of the application increases linearly over time, we can

get smaller memory differences with more iterations. Thus we can save more time by using

more iterations.
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Figure 3.15: Dirty Memory Size Analysis for OpenFace and Busybox.

3.6.4 Overall Performance

From Table 3.3 and Figure 3.12 , we can see the OpenFace offloading container can be

migrated within 49 seconds under the lowest bandwidth 5Mbps with 50 ms latency, where

VM based solution in [80] will take 247 seconds. The relative standard deviations in Table

3.3 show the robustness of our experimental results. In summary, our system reduces the
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total handoff time by 56% ∼ 80% compared to the state-of-the-art work of VM handoff

[80] on edge computing platforms.

3.7 Related Work

3.7.1 Edge Computing and Service Mobility

Many leading studies and technologies in recent years have discussed the benefits and

challenges of edge computing. Satyanarayanan [141] proposes cloudlet as one of the ear-

liest conceptions of edge nodes for offloading end-user computation. Fog computing [24]

and Mobile Edge Computing [85, 125] are proposed with similar ideas whereby resource-

rich server nodes are placed in close proximity to end users. The idea of edge computing

has been found to offer more responsive services as well as higher scalability than cloud

platforms [125, 140], thus improving quality of service (QoS) significantly. Several com-

putation offloading schemes from mobile devices to edge servers have been investigated

[14, 53, 101, 107]. By offloading to a nearby server, end users will experience services with

higher bandwidth, lower latency, as well as higher computation power with less energy

consumption on the mobile device.

3.7.2 VM Migration on the Edge

VM handoff solutions based on VM migration have been proposed by Kiryong [80, 81]

and Machen [110]. The VM synthesis technique [141] divides huge VM images into a

base VM image and a relatively small overlay image for one specific application. Based

on the work of VM synthesis, Kiryong [80] proposed VM handoff across cloudlet servers

(alias of edge servers). While it reduces transfer size and migration time compared to the

traditional VM live migration solution, the total transfer size is still relatively large for a

WAN environment. Furthermore, the proposed system requires changes to hypervisor and

VMs, which were hard to maintain, and not widely available in the industrial or academic

world.
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A similar VM-based technique has been proposed by Machen et al. [110]. VM images

are organized into 2 or 3 layers by pseudo-incremental layering, then layers are synchronized

by using the rsync incremental file synchronization feature. However, it must duplicate

the base layer to compose an incremental layer, causing unnecessary performance overhead.

Furthermore, the rsync command will cause file contention problems while the service is

running, as we discussed in section 3.4.4.

3.7.3 Container Migration on the Edge

Linux containers provide lightweight OS-level virtualization by running a group of processes

in an isolated environment. Container runtime is a tool that provides an easy-to-use API

for managing containers by abstracting away the low-level technical details of namespaces

and cgroups. Such tools include LXC [104], runC [72], rkt [45], OpenVZ [122], Docker [88],

etc. Different container runtimes have different scenarios of usage. For example, LXC only

cares about full system containers and does not care about the kind of application running

inside the container, while Docker aims to encapsulate a specific application within the

container.

Migration of containers becomes possible when CRIU [52] supports the checkpoint/re-

store functionality for Linux processes. Now CRIU supports the checkpoint and restore of

containers for OpenVZ, LXC, and Docker.

Based on CRIU, OpenVZ now supports migration of containers [65]. It is claimed

that migration could be done within 5 seconds [156]. However, OpenVZ uses a distributed

storage system [123], where all files are shared across a high bandwidth network. Due to the

limited WAN bandwidth for edge servers, it is not possible to deploy distributed storage.

Therefore, the migration technique of OpenVZ containers is not suitable for service handoff

on edge computing platforms.

Qiu [131] proposes a solution to live migrating LXC containers in data center environ-

ments. However, LXC regards containers as a whole system container, and there is no

layered storage. As a result, during container migration, all contents of the file system for
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that container must be migrated together, along with all memory states.

Machen et al. in [110] also proposes live migration of containers with layer support

based on the rsync incremental feature in addition to their VM-based migration technique.

However, their container-based solution only supports predefined 2 or 3 layers of the whole

system, while Docker inherently supports more flexible amounts of storage layers. Again,

it is also possible to encounter the rsync file contention problem when synchronizing the

file system while the container is running. Furthermore, duplication of base layers could

incur more performance overhead.

For Docker containers, P.Haul has examples supporting docker-1.9.0 [65] and docker-

1.10 [26]. However, they both transmit the entire file system of the container, regardless

of the underlying layered storage. This makes the migration unsatisfactorily slow across

the edges of the WAN. And as we mentioned in Section 3.4.4, it also has compatibility

issues with Docker storage system and can not avoid the file contention problem while

synchronizing with rsync command.

3.8 Conclusion

We propose a framework that enhances the mobility of edge services in a three-layer edge

computing environment. Leveraging the Docker container layered file system, we eliminate

transfers of redundant sizable portions of the application file system. By transferring the

base memory image ahead of the handoff, and transferring only the incremental memory

difference when migration starts, we further reduce the transfer size during migration.

Our prototype system is implemented and thoroughly evaluated under different system

configurations. Finally, the hand-off time is reduced by 56% ∼ 80% compared to the

state-of-the-art VM handoff for edge computing platforms. Our implementation is open

sourced at https://github.com/tupipa/p.haul/tree/docker-1.10-dev.

https://github.com/tupipa/p.haul/tree/docker-1.10-dev
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Chapter 4

Lightweight Security Monitor for

Edge Servers

4.1 Overview

Edge computing promises higher bandwidth and lower latency to end-users. However, most

edge computing servers have limited resources comparing to cloud servers. This makes

them more sensitive to heavy weight monitoring solutions such as virtual machine intro-

spection (VMI). In addition, edge servers are distributively deployed in large geographical

areas, which makes the deployment of security monitoring solutions more challenging than

in a centralized cloud center.

In this work, we propose EdgeVMI , a framework to monitor and control services run-

ning on edge servers with the VMI technique. It is efficient to run on less powerful edge

servers and is easy to deploy and maintain over large geographical areas. The key of our

contribution is to build the monitor in a lightweight virtual machine running with a library

operating system. It improves the security of the system by reducing its trusted computing

base. It reduces the performance overhead by running the single-process virtual machine

and by leveraging hardware events to monitor memory accesses. In addition, the mini-

mized binary size and the small memory footprints of the monitor also reduce the runtime



4.2. INTRODUCTION 57

overhead, as well as the deployment efforts.

Inspired by unikernels, we implement a stripped down version of the state-of-the-art

VMI library in a minimized operating system. Based on our tiny VMI library, we build our

monitor with only the necessary system modules, libraries, and functionalities for specific

monitor tasks. To reduce the security risk of the monitoring behavior, we separate the

monitor into two isolated modules: one acts as a sensor to collect security information

and another acts as an actuator to conduct control commands. Our evaluation shows the

effectiveness and the efficiency of the monitoring system, with an average performance

overhead of 2.7%.

4.2 Introduction

Edge computing platforms distribute servers much closer to end users, thus mobile clients

can enjoy higher bandwidth and lower latency. Comparing to cloud servers, edge servers

are less powerful, more sensitive on latencies and bandwidth, and are deloyed decentralized

over the WAN instead of the centralized deployment in the LAN network. These differences

introduce new challenges for the security monitoring of services running on the edge servers.

First, security monitoring of cloud services can cause prohibitive overhead on edge

servers. Cloud environments host high performance computers with adequate power, and

thus are more tolerable for performance overhead of traditional monitoring operations

[12, 15, 68, 69]. However, edge servers usually have limited computing resources as well

as power supply, which renders the expensive security monitoring solutions in the cloud

unpractical for edge servers.

Second, detailed whole system monitoring are not always necessary in edge computing

environment. For example, on edge servers that are running algorithms for image process-

ing, facial recognition, object tracking, etc., the data of images or videos are usually public

data. Even if the data is private, some of them can be at lower risk when the data is hard

to be leaked to the cloud due to its large size and the limited network bandwidths. There-
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fore, the monitor of edge services should be able to run elastic monitoring, where most of

time, a small scale monitoring would be enough and if needed, a larger scale monitoring

can be lifted.

Third, the wide distribution of edge servers calls for efficient deployment in scale.

The deployment of security solutions in large cloud data centers usually requires much

engineering efforts and thus the deployment is hard to scale. However, given the large

number of small clusters of edge servers and their geographical distribution, as well as

the real time service requirement, it is is unlikely to manage these computing stations in

the same fashion as the ones used in cloud data centers. The highly heterogeneous edge

environment would make the deployment and maintenance rather complicated and budget

burning. Therefore, the cost efficiency model in centralized cloud is no longer valid for

edge platform.

In order to meet the aforementioned challenges, it is critical to provide a dedicated

security framework that has low overhead, elastic monitoring capability, as well as effort-

less deployment on edge computing platforms. In this project, we present a framework,

EdgeVMI , to meet these requirements. Our monitor is built with a unikernel [111] system,

where all unnecessary software modules are eliminated in the system. More specifically,

we adopt the state-of-the-art virtual machine introspection (VMI) technique which allows

transparent and trustworthy monitoring from underlying of a commercial operating sys-

tem. To the best of the author’s knowledge, this is the first work to introduce a lightweight

VMI in Unikernels for runtime security monitoring on constrained platforms such as edge

servers.

The contributions of this work are briefly listed below:

• A lightweight monitoring virtual machine is designed to monitor security critical

components residing in any software layers of a target virtual machine. The target

virtual machines being monitored run commercial operating systems such as Win-

dows, Linux, etc.
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• We build the monitor with a stripped-down version of the state-of-the-art VMI li-

brary by removing its heavy-weight dependencies on the operating system as well

as the large user-space libraries, which reduces the attack surface but also improves

performance, as well as reduces the package size during deployment.

• Strict control flow and data flow policies are designed across interfaces between dif-

ferent modules in the monitoring framework. These policies define mandatory access

control constraints over the interfaces between the monitor and target, as well as the

interfaces between different modules inside the monitor.

• A fast deployment pipeline is designed with user customization, building, shipment,

plugin, and monitoring, where an optional feedback loop can be used between differ-

ent stages to control the monitoring behaviors.

• We build the prototype system and evaluation shows an average overhead of 2.7% for

the passive event based monitoring. The performance of the primary VMI operations

are improved by more than 30% comparing with the state-of-the-art.

Section 4.3 presents how we identified the research problem and discusses its impor-

tance. Section 4.4 discusses our threat model, design goals, and system overview, with

an example of intrusion detection to show the workflow of the framework. Section 4.5

introduces how to build, run, and deploy our monitoring framework. Section 4.6 discusses

the implementation challenges and major modules of EdgeVMI . We evaluate the system

in Section 4.7 for its security and Section 4.8 for its performance. Then we discuss the

limitations and possible improvement in Section 4.9. Section 4.10 presents the related work

and Section 4.11 presents concluding remarks.

4.3 Motivation

We discuss our motivation by answering the following questions: a) Why VMI solution is

a good option for edge security monitoring? b) Why we need to improve VMI to meet the
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requirement of edge environment?

4.3.1 Why VMI?

Virtual machine introspection [74] has been widely used for malware analysis and computer

forensics in the last decades [35, 74, 91, 92, 126, 150, 178]. Leveraging VMI technique,

one can reconstruct the semantic details of a running virtual machine by viewing its raw

memory, hardware events, and the states of the vCPU registers [128].

The widely distributed infrastructure and emerging new applications running on the

edge environment pose new security requirement for edge platforms. Security monitoring

solutions on the edge platform need to have low overhead and be trustworthy. The following

features of VMI can benefit the monitoring operations on edge servers:

1. Transparency. Most malwares are sensitive to its environment and can hide them-

selves after intrusion into the victim. However, memory accesses to a guest VM’s

memory via VMI are transparent to the entire OS where the malware is running.

Therefore, VMI-based monitoring is hard to be detected by malwares [92, 103].

2. Efficient Hardware Assisted Monitoring. Traditional software based VMI op-

erations can be overwhelming where the memory might be scanned periodically and

the raw memory must be reconstructed in order to identify any risks. However, with

the event support in recent processors, we are able to monitor the memory events in

a more efficient way that does not need periodical scan.

4.3.2 Why We Need Improved VMI?

To answer why we need to improve VMI, we now discuss the two problems of current VMI

techniques we have identified: a) The trusted computing base is large; b) The overhead is

high for runtime monitoring.
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Table 4.1: VMI System Code Base in Lines of Code (LoC)

EdgeVMI EdgeVMI
+ Mini-OS LibVMI LibVMI +

Linux

27.2K 54.7K 31.0K 15M

4.3.2.1 The Trusted Computing Base is Large

LibVMI [126] is a popular library for VMI operations on commercial operation systems,

including both Windows and Linux. It is built in a traditional operating system that is

usually privileged with large code base, such as Dom 0 in Xen, or the host OS of KVM.

Table 4.1 shows the line of code (LoC)1 of our proposed system versus the state-of-the-art

LibVMI system. It is clear that the introspection functionalities with the Linux operating

system all together will expose a large attack surface for the platform.

4.3.2.2 The Overhead is High for Runtime Monitoring

VMI is originally designed for offline malware analysis, not online monitoring at regular

execution time. Since malwares are assumed to be in any forms, the analysis logic needs

to support all kinds of behaviors from any kind of code. For example, one might need to

track down all the CPU or memory traces in order to analysis the instruction sequence

or memory behavior of a malware. Apparently, such monitoring operations are too heavy

weight to be deployed online.

In addition, running the monitor in a large commercial operating system can also

introduce overhead. First, memory resources on the system can be easily exhausted. For

example, a 64-bit Linux VM would normally require 4GB memory. This overhead is

high for an edge server, especially when we want to run multiple different monitor VMs.

Second, CPU resources can be wasted by the OS itself. OS itself run several kernel services

to maintain its own functionality regardless the applications, which can occupy CPU time.
1All lines of code (LoC) in this report are counting only code, without comments nor blank lines, with

data generated by the tool Cloc (https://github.com/AlDanial/cloc).

https://github.com/AlDanial/cloc
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Third, there will be a double-scheduling overhead to run a process in such VMs. For

example, when we run a single monitoring processes inside a Linux VM, the OS will need

to do scheduling in order to run the monitor, given that the underlying hypervisor also

needs a scheduler to run that VM. Fourth, it is apparent that the disk size of the VM

image can be extremely high. For example, Linux VM image with the VMI application

is at least two to three hundreds of megabytes, which can increase network traffic during

deployment as well as booting delays when being executed.

Therefore, we aim to design a lightweight version of VMI with functionalities specialized

for security policies and use a minimized library operating system (i.e., unikernel [95, 111,

127]) to build our monitor.

4.4 Design Overview

In this section, we first present the threat model. Then we discuss the design goals of

the system. Next we introduce the overview of EdgeVMI . Finally we discuss its security

enhancements and show an example of intrusion detection.

4.4.1 Threat Model

Here we introduce the security assumptions and define the scope of problems in this frame-

work. We first discuss the assumptions in terms of the secure and unsecure components

on the edge platform. Then we define our targeted application scenarios.

4.4.1.1 Trusted Components

The target VM in this work is a guest VM that provides services to end users. Target VMs

are assumed to be securely booted with trusted booting [39, 77, 112]. During booting,

all the software stack of the system in execution are checked for their integrity, including

all the operating system kernels and applications running inside the VMs. If the attacker

modifies the virtual machine images and try to boot the system, we assume it will be
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detected and prevented by trusted booting.

We assume the hypervisor provides strict isolation between VMs. EdgeVMI can get

the execution states of target VMs by communicating with hypervisor interfaces. There

is no direct communication channel between target VMs and the VMs running EdgeVMI .

Therefore, if the guest OS is compromised, the data observed from EdgeVMI is still trust-

worthy.

We assume the service providers on the cloud are trusted. They play an important role

on the cloud control center to remotely manage the edge servers. They are also responsible

for the deployment and maintenance of the physical edge servers. How to protect the users

from a malicious service providers in the cloud is out of the scope of this work.

We assume internet connections between the mobile devices, the edge, and the cloud

are protected against leakage, corruption, or denial of service.

4.4.1.2 Threat Source

After securely booted, malicious parties might leverage vulnerabilities in the applications

or the OS kernel to gain unauthorized access to the data inside the target VM, or gain

control over the entire OS. Therefore, we assume the entire target VM in execution to be

controlled by malicious party. This includes the applications and operating system kernels

running inside the target VM. Attacks where the hypervisor, or its underlying physical

hardware is controlled by malicious parties are out of the scope of this work.

4.4.1.3 Applications that Need Small Scale Monitoring

Our framework aims to provide small scale monitoring for specific edge applications. Small

scale monitoring is practical for many edge services. First, end-users tend to offloading

only the computation intensive tasks, such as facial recognition, image/video processing,

etc. Second, the processing of private data and security critical code can be kept in the

private devices, such as smart phones or IoT devices owned by users. Therefore, EdgeVMI

aims to provide small scale system monitoring for the protection of possible small amount
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of security critical data or code stored on the edge servers. EdgeVMI has the capability to

monitor the entire program, such as analyzing the entire execution traces for an application,

but this is not suggested for its high performance overhead. This limited scope allows

EdgeVMI to effectively ignore most of the execution traces and runtime memory states

that are not in the monitoring range defined by the user.

4.4.2 Design Goals

EdgeVMI framework aims to be a minimized system tailored for low level security moni-

toring and control on edge platforms. To make it practical and efficient, we recognize the

following key properties we need to achieve:

4.4.2.1 Small Code Base

A minimized code base will keep the TCB of the monitoring system as small as possible

thus reduce the attack surface. Using a small operating system can reduce the code base

significantly. For example, Xen Mini-OS has 27.5K lines of code (LoC), while Linux kernel

has about 147K LoC (version 4.16), and a fully functioned Linux system with all the

drivers and architecture support has reached more than 15+ million lines of code [49]. A

small binary package with no dependencies to outside dynamic libraries would also reduce

the attack surface of the system as well as improve the performance. Therefore, our system

design should try to be as self-contained as possible by reducing the dependencies to outside

system libraries.

4.4.2.2 Transparency

As we introduce in section 4.3, rootkits or malwares are likely to be stealthy by detecting the

existence of the monitor and hiding themselves from being detected. While VMI is prone

to be stealthy, we still need to carefully design the framework to make it as transparent as

possible. One strategy is to design the monitor with minimal interference with the target
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system. Ideally, the monitor operations should never interfere with the execution of the

monitored system.

4.4.2.3 Least Privileges

Least privilege is one of fundamental principles for secure system design [138]. It requires

that in a particular abstraction layer of a computing environment, every module (such

as a process, a user, or a program) must be able to access only the information and

resources that are necessary for its legitimate purpose [138, 139, 142, 143]. Monitoring the

raw physical memory of an OS requires higher privileges than the OS. If the privileged

monitor is not carefully administrated, it will have a high risk to cause a crash or undesired

damages to the entire software and hardware system. Therefore, our framework as a low

level monitor and controller, should be strictly constrained with limited capabilities.

4.4.2.4 Isolated Components

Our framework consists of two categories of operations, one for data collection and one

for control operations. Data collection operations only query the data from target system

and will not change any runtime states of the target, just like a sensor observing the

environmental statistics. On the other hand, the control operations at low level of the

system, such as start or stop a VM, will change the runtime states of the target system,

but don’t need much detailed information from inside the target system. Therefore, it is

reasonable to design our system containing two isolated components. Each has minimal

privileges that are just enough to conduct the two different categories of operations.

Furthermore, by isolation and least privilege, our framework could get partial trust-

worthiness even if one of the components got compromised. This is essential for intrusion

detection scenarios. Since we aims to find out abnormal behaviors after the system got

compromised, a privilege separated system design would improve the trustworthiness under

risky environments.
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4.4.2.5 Easy to Deploy

In order to make our framework easy to deploy, we aim to build and ship images with

minimal package size and leverage the cloud center as a centralized management spot to

distribute the monitoring VMs. In addition, we aim to design the control operations on

the distributed edge with as little human interference as possible. Then, on edge servers,

the deployment and maintenance of the VM monitors should also be automated such that

the on site deployment and maintenance over large geographical areas could be avoided.

4.4.2.6 Flexible with Rich Primary Mechanisms

At low level of a system, such as raw machine memory or processor register states, the

semantic view of the high level information is limited. More efforts much be done to

reconstruct the high level information, such as the process name in execution, etc. Since

our framework is designed to live at a low level interface for more specific monitoring

services, it should provide basic mechanisms to provide a rich set of low level library

interfaces for high level monitoring operations to reconstruct the semantic view and build

their own security policies for monitoring.

4.4.3 EdgeVMI Overview

Figure 4.1 gives an overview of the monitoring framework. EdgeVMI monitor executes

directly on top of a type-1 hypervisor (such as Xen). It can introspect into the multiple

layers inside the target VM, such as the Linux kernel, containers, processes running in the

VM. All monitoring operations are done without direct communication with the target

VM. Instead, we achieve this via the application binary interfaces (ABIs) provided by the

hypervisor to receive hardware event notifications and inspect the virtualized hardware

registers and memory.

Figure 4.2 shows the high level view of the monitoring network for EdgeVMI framework.

Multiple edge servers are distributed across the wide area network (WAN). Each edge server
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Figure 4.1: One Layer to Monitor All Layers via EdgeVMI .

runs multiple Target VMs. Target VMs provide services for end users. Inside the Target

VMs are running traditional operating systems such as Linux, Windows, etc. Two monitor

VMs called Sensor and Actuator are running a minimal operating system with tailored

functionalities for specific purpose of monitor and control respectively. Monitors on edge

servers are connected via a centralized control center on the cloud, which can take sanity

checks on their requests and make control decisions based on the collected information.

The Sensor VM and Actuator VM do not directly talk to each other in order to retain the

strict isolation and reduce the overall risk that might be caused by unknown bugs in any

of them.

4.4.3.1 Sensor

Sensor is the component to collect low level information by accessing the raw physical

memory, virtual CPU register values, or by receiving hardware event callbacks. One or

more Sensors can be deployed to observe different low level information of one target VM.

Each Sensor can be built with a dedicated single purposed functionality to keep it as small

as possible. On the other hand, one Sensor can be used to monitor multiple different target

VMs.
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Figure 4.2: EdgeVMI Deploy Example under Centralized Cloud Management

4.4.3.2 Actuator

The Actuator is the component that receives commands from the cloud center and controls

the life cycle of a VM running on the edge server. The VMs that the Actuator controls

include target VMs which host end-users’ applications, as well as the Sensor VMs that

are conducting various kinds of monitor operations on the server. The control operations

it could conduct is designed to be only life cycle management, such as to start/stop,

pause/resume VMs, and download/deploy VM images. All operations must be triggered

by command messages that is verified to be originated from the trusted control center in

the cloud.

4.4.3.3 Cloud Storage and Control Center

EdgeVMI uses a centralized storage system for fast deployment of VM images across

distributed edge servers. It has a cloud control center to analyze the low level runtime

information collected from the Sensors on edge servers. The control center is also respon-

sible to make decisions about the intrusion detection analysis and send explicit commands
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to the Actuators to execute the decision.

4.4.4 Harden the Security of Monitors

Monitors are usually privileged software, which can be easily exposed as attacking target

by malicious parties. Therefore, the secure design of a monitor is critically important. In

EdgeVMI , in addition to reducing the attacking surface by minimizing its code base, it is

also hardened by more strategies including privilege separation, constrained information

and control flows.

4.4.4.1 Privilege Separation of Monitor and Control

As shown in Figure 4.2, EdgeVMI is separated into two categories of VMs, the Sensors and

Actuators, in order to constrain the effects of bugs in any of them. This meets the principle

of privilege separation and least privilege to design secure systems. Each of the Sensors

and Actuators has its own specialized functionalities and its privileges are limited only for

the pre-defined purposes of monitoring or control. There are no interfaces they can talk

directly to each other between the EdgeVMI VMs. This retains the strict isolation between

each monitor module, which helps to constrain the risk of unknown vulnerabilities in any

of them. Their communications, instead, need to go through the control center on the

cloud, which can take sanity checks on their requests as well as their collected information.

4.4.4.2 Control and Information Flow Restrictions

As shown in Figure 4.2, the data and control flow patterns are all with single direction.

With data flows in a single direction between two directly-connected components, the

isolation between the two is more strictly preserved, which improves the security of the

entire system. For example, the data of runtime states flows from the Sensor to the cloud

control center. Sensor have to be privileged to be able to observe all the runtime states

of the target VMs. But in order to change the behavior of the target system, the monitor

does not rely on the functionality of the Sensor, but another isolated VM Actuator instead.
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4.4.5 Example of Intrusion Detection

Figure 4.3: Run-time Workflow for Intrusion Detection and Emergency Response

Figure 4.3 shows an example control flow of intrusion detection and the response process

in EdgeVMI . We assume the target VM encountered a memory corruption attach that is

caused by a malicious process and the integrity of a critical data in the memory has been

compromised.

Initially, one of the Sensor VMs is pre-built with capabilities of monitoring the critical

region that the malware has changed, such as interrupt tables, or keyboard drivers, etc. It

is achieved by observing a predefined memory region of the target VM’s physical memory

as well as the hardware event triggers registered during the booting process of the Sensor.

Once any of the monitored memory regions is changed, the corresponding Sensor VM

will be notified. Then the Sensor VM will verify the change against the security policies

it is built with. Once it decides the change might be malicious, a report will be sent to the

control center. Then the control center will take further analysis.

The control center has a broader view of edge environments by observing multiple edge

services’ states as well as the service usage history for the end users. Therefore, based on

the report received from the Sensor VM and the control center’s previous knowledge about

the execution environment, control center will determine whether there is an intrusion on

the edge server.
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Once the intrusion is detected at the cloud, response commands will be sent to the

Actuator VM, where the the life cycle of target VMs or Sensor VMs might be updated

accordingly. After the response commands are completed, EdgeVMI will reach to a new

and starting state, where a new iteration of monitoring and control will be in place.

4.5 EdgeVMI in Deployment

EdgeVMI enables developers to build a set of single-purpose tiny VM monitors with ease.

It provides low level system mechanisms in order to compose complex monitoring poli-

cies. These mechanisms include the monitoring of raw physical memory access, hardware

events, and VM life cycle management. In addition, the framework also supports fast VM

deployment over distributed servers.

4.5.1 Build Single-Purpose, Deeply Customized Monitor VMs

Figure 4.4: Build Single-Purpose Tiny Monitor VMs in EdgeVMI

Figure 4.4 presents an overview of the workflow in order to build a monitor using our

toolchain in EdgeVMI . Key steps include the identification of security critical objects at

runtime, and selecting monitor and control primitives to enforce specific security policies.



4.5. EDGEVMI IN DEPLOYMENT 72

4.5.1.1 Security Policy

Security policy are usually defined by developers or users in terms of the security critical

modules in the target VM. The policy will specify the portion of the target VM that needs

to be monitored, the rules to evaluate the risk, as well as the actions that need to be taken

once the risk condition is detected. For example, a password confidentiality policy will

need to specify a) where the password is stored in the system, b) under which condition

the system will consider the password is in the danger of being leaked, and c) how to

response once the password is in danger.

4.5.1.2 Target Profile

Target profile contains the metadata from the operating system kernel as well as the ap-

plications which will help to reconstruct the semantic information of the target from the

raw binary contents. These include the configuration of the target VM, the symbol table

from its OS kernel, and debugging information from the applications’ binary, etc.

4.5.1.3 Mini-OS and Hypervisor API

Mini-OS and Hypervisor API together are leveraged to build our monitor primitives and

control primitives. More specifically, we leverage the memory management and hardware

event dispatching interfaces from the hypervisor. Mini-OS provides us the the minimal

execution environment in order to run applications on top of the hypervisor without the

commercial operating system intervened.

4.5.1.4 Mini System Libraries

Mini System Libraries are our own stripped down version of several system libraries, such

as the lightweight version of LibVMI [126], the stripped GLib [170], etc. They are used in

order to resolve the library dependencies of the monitoring functionalities.
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4.5.1.5 Critical Objects

Critical objects are the actual substances monitored by EdgeVMI at runtime. For example,

if we need to audit the authentication process on edge servers, the critical objects can be

the password related code and data. The critical objects can either be statically identified,

or dynamically identified during execution by parsing the raw memory content. This can

be done by combining the security policy, target profile, and the target source code. If the

source code and the profile information of the target are not available, EdgeVMI can still

work but will probably generate false negatives or positives during the identification of the

object. However, the problem to improve the accuracy under such conditions is out of the

scope of this work.

4.5.1.6 Monitor and Control Primitives

Monitor and control primitives are a set of simple operation units, where each one pro-

vides a basic functionality. The primitive’s functionality can not be divided into smaller

functionalities, or will be meaningless in terms of the monitor or control functionality, thus

we call it a primitive. For example, read_event(addr_start, addr_end, proc_id, . . . ) is a

primitive which could be used to monitor a memory region defined by the start address

and end address, [addr_start, addr_end], within the process identified by proc_id. If any

of the memory in this region is read in the process, the monitor will be notified by this

primitive. Different primitives can be composed together in order to implement a complex

function for monitor or control.

4.5.1.7 Build Monitor VMs

Finally, according to the identified critical objects, we could determine which kinds of

primitives we need to use. Then the required primitives along with the target object

information can be automatically built into the library OS along with their required portion

of the VMI libarry. The final executable binary can be made pretty small which saves
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memory resources as well as computing resources, as we will see in Section 4.8.

4.5.2 Raw Physical Memory Access

Modern hypervisors virtualize the machine memory to provide different views of physical

memory for different guest operating systems to run on. Basically it provides another

layer of memory virtualization in addition to the traditional memory virtualization inside

the operating system. To access the memory, a virtual address (virtualized by guest OS)

of an application is translated to a machine address of a VM by the guest OS inside the

VM; then the physical address (virtualized by hypervisor) of the VM is translated to the

machine address (actual hardware address) by the hypervisor.

In EdgeVMI , we leverage the virtualization of machine memory by the hypervisor to

enable one guest VM to access another guest VM’s physical memory. This is done by

requesting the hypervisor to map the target VM’s physical memory pages into the monitor

VM’s memory. The mapping operation is transparent for target VM since it is operated at

the hypervisor layer and no changes are made to the target VM’s view of its main memory

or execution states.

4.5.3 Monitor Processor Registers

Registers of virtual processors can also be obtained directly by observing the target VM’s

physical memory, since all these will be saved into the memory after the target VM is not

occupying the real processor (due to the scheduling of the hypervisor). Furthermore, most

modern hardware support events notification when the given hardware registers or memory

region are read, written, or executed. The register information could be used to monitor

specific system calls, the process start, stop, and context switch, as well as to traverse the

address space of processes to get rich semantic view of the activities of an application. For

example, on x86 platform, we could monitor the processes’ context switches by monitoring

the change of control register of CR3.
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4.5.4 Hardware Event Monitoring

As we mentioned above, modern hardware support events notification whenever any hard-

ware registers or memory regions are read, written, or executed. In addition, modern

hypervisors themselves also have their rich event support for efficient communication be-

tween the guest VMs and the hypervisor, such as event channels on the Xen hypervisor

[129]. EdgeVMI utilizes these features to monitor a various kinds of low level events. For

example, a Sensor VM is able to receive notification when a specific page in memory has

been read, written, or executed, with the event support from Xen hypervisor.

The asynchronous communication in event based monitoring is more efficient com-

pared to traditional synchronous way where memory must be synchronized or periodically

scanned in order to state memory changes.

4.5.5 VM Life Cycle Management

The Actuator of EdgeVMI is designed to manage the life cycle of guest VMs, including both

the target VMs and the monitor VMs. This is the way for EdgeVMI to take emergency

response to the possible intrusion. In our design, life cycle management includes only

operations that can impact the life cycle directly, such as start/stop, pause/resume, or

create/destroy a virtual machine. Each Actuator is limited to operate only the virtual

machines running on the same hypervisor with itself.

4.5.6 Deployment

We aim to build, package, and ship the monitor images in an efficient way for fast de-

ployment and efficient maintenance over the widely distributed edge environments. Since

Sensors are usually tailored for a dedicated monitoring functionality, it will be specifically

built with the exact functionalities being used, without any unused functionalities or mod-

ules. Actuators are tailored for controlling all the guest VMs on a native edge server. It

will be deployed together with the installation of the hypervisor.
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For both Sensors and Actuators, once they are deployed, no further changes, such as

updating, reconfiguration, or reconnect to another target VMs or reconnect to another

cloud center are allowed during their normal operation life cycles. The only time we can

change the Sensor is when its target VMs have all been destroyed. The only time we

can update the Actuator is when the hypervisor is changed or updated. This model of

life cycle management simplifies deployment and maintenance and also close the door for

many possible attack sources.

4.6 Implementation of a Prototype

A prototype system is built to better understand its implementation difficulties, perfor-

mance, as well as its effectiveness of EdgeVMI . We choose Xen [20] as an example imple-

mentation in our prototype. EdgeVMI can also be extended to other hypervisors such as

KVM [97], Bareflank [19], etc.

For the choice of the library OS, we use Xen Mini-OS [127] as an example implemen-

tation for its inherent compatibility with the Xen hypervisor. However, the Sensor and

Actuator VMs of EdgeVMI are designed for a general library OS (or unikernel [111]), thus

they are portable to many others which support the C language, such as Exokernel [66],

Rumpkernel [95], IncludeOS [27], etc.

4.6.1 Challenge 1: Stripping Down Libraries

In order to enable VMI operations in a minimized library OS, we need to port several

library dependencies into the OS kernel. However, in a plain library OS, there is usually

no development libraries available. This is especially true for the Mini-OS in Xen, with

absence of the libc (library for C language), which is a fundamental development library

for C programs and many other libraries.

Combining the developing efforts as well as the system efficiency, we might choose one

of the following solution for each library in order to port them into our Mini-OS:
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1. Manually porting the library in the brute force way. This requires the most effort,

where we will manually port most code base of a library into the new library OS.

This is used when a library is not compatible with the OS but a large portion of it

is needed in our system. This is used for the VMI library as we will discuss below in

4.6.4.4.

2. Manually create a lightweight version of the library. This requires relatively less

effort than above. It is used when a lightweight version of the library is not available.

Usually those libraries are very large but only a small portion of it is in use in our

system, such as the GLib [170], which we will discuss below in 4.6.4.1.

3. Cross compiling an existing lightweight version of the library. This requires the least

effort. We choose this only for small, important libraries, such as libc, or libraries

that are better not to be changed, such as libxenctrl. We will discuss these further

in 4.6.4.1.

After stripped down or cross compiled, all libraries in Mini-OS are statically linked

to make it a single self-contained binary package. Note that we do not choose to simply

cross-compile all the required libraries into the Min-OS, even though it is feasible in most

cases. This is because cross compiling some large libraries into the system will increase the

trusted computing base of the monitor which will increase the security risk of the system.

In addition, including lots of unused library functions will be a waste of the memory

and will increase the binary size of the final executable, which will potentially reduce the

performance of the monitor system.

Table 4.2 shows an overview of our porting efforts for different libraries. For LibVMI,

we have manually ported all of its key functionalities into the Mini-OS, with a total of 80

files and 20.6K lines of code (LoC) being patched into Mini-OS. We have manually crafted

a lightweight version of GLib with 19 new files and 2.1K lines of code being added to Mini-

OS. For other essential libraries, such as newlib, json-c, libiconv, lwip, libxenctrl,
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Table 4.2: Libraries Ported to Mini-OS

Library Porting
Method

Files
Ported

LoC
Patched

LibVMI Manual
(All) 80 20.6K

GLib Manual
(Partial) 19 2.1K

newlib, json-c,
libiconv, lwip,
libxenctrl,
libxenstore

Cross
Compile

1
(Makefile) 321

and libxenstore, we have cross compiled them into Mini-OS by modifying the building

commands in the corresponding Makefile.

4.6.2 Challenge 2: Input & Output without a File System

VMI operations need multiple input files to assist the reconstruction of the semantic views

from the raw memory of the target VM. These files include the kernel symbol file, VM

configuration file, application debugging information, etc. But Mini-OS does not have a

file system. It is possible to build a file system into the Mini-OS, but it will be a waste

of memory space in order to support just a few files. Therefore, we choose to find an

alternative solution.

There are multiple possible solutions to feed information to Mini-OS on the Xen plat-

form. It could go through the network interface, hypervisor interface, or hard-coded the in-

formation statically by the compiler. Network interface could potentially introduce threat-

ens from the Internet. Using the hypervisor interface will require to add more functionality

to the hypervisor, which will make the solution not compatible with legacy hypervisors and

reduce its portability during delopyment. Therefore, we choose the hard-coded solution for

input files. We use Linux command xxd to encode the file as C language string variables

and cross compile it into the library OS and interpret the strings as files via fmemopen
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interface from the C library. For output, we use the internet interface to communicate

with the control center in the cloud.

4.6.3 Challenge 3: Mandatory Access Control

In our design, Sensor VMs require the privileges of read-only access over the target VM’s

physical memory and the Actuator VM needs privileged permissions to control the life

cycle of the guest VMs, but without access to the memory content of any guest VM. To

reduce the security impact, Sensors and the Actuator also need to be isolated with the

least privileges. However, by default, the hypervisor does not allow one VM to access the

memory of another VM. To enable the new access patterns, we design new communication

channels between VMs by updating the FLASK [154] policy in Xen Security Module (XSM)

[41].

FLASK (Flux Advanced Security Kernel), has its origins in several trusted operating

system research projects, best known through its expression in Security-Enhanced Linux

(SELinux) [154]. XSM can group VMs by assigning different FLASK type labels to different

guest VMs. Then each type of VMs could be assigned with different permissions. In our

prototype, three new VM type labels are created for Sensor, Actuator, and Target VMs,

respectively as domSensor_t, domActuator_t, and domTarget_t. Then between each

two VM types, we define clearly how many permissions are allowed. The permission is

defined by whether a type of VM could execute the hypercall or not. For example, the

rule:

allow domSensor_t domTarget_t:mmu {map_read};

declares that a Sensor VM (labeled as domSensor_t) could execute a map_read hyper-

call to read the raw memory of the target guest (labeled as domTarget_t). In total, we

have granted 15 hypercalls to the Sensor VM type in order for it to monitor a target VM’s

raw memory. The Actuator VM type has 8 hypercall permissions.
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4.6.4 Components of the Sensor

Figure 4.5: An Example implementation of Sensor VM

Figure 4.5 shows the composition of the Sensor implementation. It passively monitors

the target VM: Changes in the physical memory can generate hardware events by which

the Sensor will be notified. It contains several components which we will discuss below.

4.6.4.1 System Libraries

System Libraries are dependency libraries for VMI component as well as other components.

They can be classified into 3 categories:

1. Libraries for data structure utilities. These libraries provide advanced data structures

such as linked list, hash tables, etc. These libraries are essential to achieve high

performance for the monitor operations. For example, VMI operations rely on several

advanced data structures that reside in GLib [170]. However, as we mentioned before,

there is no lightweight libraries available in Mini-OS environment that could provide

these advanced data structure utilities. Therefore, we have developed our own utility
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Figure 4.6: An Example of Actuator VM

libraries.

2. Libraries of Mini-OS kernel. These are libraries for a program to interact with the

Mini-OS kernel, such as newlib and lwip. The newlib is a C library intended

for use on embedded systems [94]. The lwip is a widely used open source TCP/IP

stack implementation that is designed for embedded systems [63]. These two libraries

provide fundamental support to develop new functionalities in Mini-OS.

3. Libraries of hypervisor. These are libraries to interact with the hypervisor, such as

libxenctrl, libxenstore on Xen. These libraries include hypercall interfaces for the

Mini-OS kernel or the applications in the Mini-OS to directly communicate with the

hypervisor. To monitor the events and memory states, as well as to manage the life

cycle of VMs on the hypervisor, all require to issue hypercalls via these libraries.

4.6.4.2 Target Profile

Target Profile contains the pre-known information about the operating system or applica-

tions running in the target VM. For example, in order to monitor a certain memory region

in kernel space, it is necessary to know the actual memory layout of the kernel. This can

be done by importing the kernel symbol information into the Sensor ’s target profile com-
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ponent. In addition, we also support using the Rekall profile 2 to introspect into Windows

OS kernel and applications.

4.6.4.3 Knowledge Buffer

Knowledge Buffer is provided to cache the semantic reconstruction results. It helps to

avoid duplicated semantic reconstruction operations for the same requests. For example, if

we receive a request to query whether there is a process exist or not, we will trigger a series

of VMI operations to search the raw memory of the target VM. Then we will reconstruct

a full list of the processes with their properties such as process ID and names, etc. After

this, we can response to the query. At the same time, we can also store the reconstructed

semantic views, here the full list of processes, into the buffer. Then if we receive a second

similar query command, we could return the result by just querying this Knowledge Buffer.

Note that the information in the Knowledge Buffer should be always up to date. This

means we will have an overhead of keeping these latest knowledge. For example, to keep

the full list of processes up to date, we will need to update the knowledge whenever there

is a process exit or created.

4.6.4.4 VMI

The VMI component in Figure 4.5 is a stripped down version of LibVMI [128]. LibVMI

is designed to run on Linux or MacOS, while the most used platform is on the Linux. In

order to enable VMI operations with Xen Mini-OS, we have stripped down LibVMI to

run with the system interfaces of the Mini-OS. The changes we have made are mainly the

library dependencies. All the dynamic library dependencies in LibVMI are replaced with

their static alternatives. Some library dependencies, such as GLib [170] we will introduce

below, is too large to meet our minimization goal, so we manually implement a lightweight

version of GLib as replacement.
2Rekall Forensics: http://www.rekall-forensic.com/

http://www.rekall-forensic.com/
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4.6.4.5 VMI Cache

VMI Cache is used to improve the performance of VMI operations by avoiding duplicate

introspection operations into the physical memory. For example, to locate a virtual address

for certain processes, or the kernel threads, users need to first traverse the kernel data

structure to locate the raw page tables of a certain process, then traverse the page tables to

translate the address by itself. This can be time consuming and resource hungry operations.

In order to mitigate this, we use a cache structure to provide the latest recent translated,

or queried addresses for fast access.

Note that both the VMI Cache and Knowledge Buffer store the introspected informa-

tion to improve the performance. The difference is that VMI Cache aims to cache the raw

memory information while the Knowledge Buffer is designed to store semantic views of the

target. In addition, the VMI Cache is more frequently updated and easier to be out-dated

than the semantic information stored in the Knowledge Buffer.

4.6.4.6 Event Channels

The module of Event Channels provides interfaces to register event channels and interfaces

to create and execute the event handlers. The type of events is determined by the underly-

ing processor architecture as well as the hypervisor. For example, on x86 architecture, the

processor supports the monitoring event of CR3 register. We could register CR3 events so

that any changes to the register will trigger the event handler registered by this module.

Then the event handler will conduct further analysis on the event.

4.6.5 Implementation of the Actuator

Figure 4.6 shows an overview of the Actuator architecture. It serves as the interface for

life-cycle management of guest VMs, such as restart, create, or destroy, where the guest

VM could be a Sensor VM or target VM. Actuator has a more lightweight structure which

benefits from its simple obligations in the system. It has dependencies to some system



4.7. SECURITY EVALUATION 84

Table 4.3: Code Base Reduction

LibVMI EdgeVMI Reduction LibVMI +
Linux

EdgeVMI
+ Mini-OS Reduction

LoC 31.0K 27.2K -12.26% 15M 54.7K -99.63%

Table 4.4: Binary Size Reduction

LibVMI +
Linux

EdgeVMI
+ Mini-OS Reduction

25GB 7.2MB -99.97%

libraries for Mini-OS kernel interactions and networking, such as newlib, and lwip. It

also needs the hypervisor interfaces to conduct the command to control the life cycle of a

guest VM.

4.7 Security Evaluation

In our threat model, EdgeVMI is secured by trusted booting technologies and a trusted

hypervisor provides basic isolation and authorization of different VMs on the edge server.

Networking between cloud center and the edge server are protected by assumed secure

internet protocols. Both the secure and insecure aspects of EdgeVMI are discussed in

more details below.

4.7.1 Reduced Attack Surface

First, the administration operating system, such as Domain 0 on Xen, is out of our TCB.

By design, EdgeVMI only directly interacts with Hypervisors for memory acquisition and

events acquiring. It does not depends on any of the guest operating system, including

the well known ‘privileged domain‘, such as Domain 0 in Xen. In this sense, our design

significantly reduces the size of TCB.

Second, the unikernel in EdgeVMI is minimized to contain only necessary function-
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Table 4.5: Changes to the Xen hypervisor and Mini-OS kernel

Total LoC LoC
changed Total Files Files

Changed

Xen Code
Base 157.4k 495 7977 1(added)

6(modified)

Mini-OS
Kernel Base 27.5K 49 227 3(modified)

alities for monitoring purposes. Table 4.3 shows code base size of both EdgeVMI and

the traditional LibVMI system and Table 4.4 shows the final executable size. EdgeVMI

itself has 27.2K lines of code, which is smaller than the LoC of LibVMI (31.0K), reduced

by 12.26%. However, when combining them with the underlying operating system, we

could see a more significant reduction of code base: from 15 million lines of code reduced

to 54.7K lines of code, reduced by 99.64%. The final executable size are also reduced

significantly by 99.97%.

Third, our code base changes to the Xen hypervisor and the original Mini-OS kernel

code are minimal, as shown in Table 4.5. We only modified 6 files and added 1 file to the

Xen code base; and modified 3 Mini-OS kernel files, a very small portion of the total code

base. This avoids the possible errors being introduced into the kernels.

4.7.2 MAC Isolation Based on FLASK

In EdgeVMI , both the Sensors and Actuators are isolated by Mandatory Access Control.

This is enforced by Xen Security Module via FLASK style policy. Permissions are only

granted to the object when there are policies explicitly defined. Non-defined permissions

will be rejected by default. This might limited the usability for the system because system

administrators have to define the policies by themselves before deploying applications.

However, we argue that in EdgeVMI , isolation policies between the guest VMs are relatively

simple and thus easy to develop and deploy. This is because that the permission required

by VMI operations are very clean and simple. It has a coarse grained object with a VM as
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a basic element, instead of individual files or programs. Therefore, comparing with existing

FLASK permission management on a regular operating system, our security policies can

be more effortless to develop.

4.7.3 Least Privilege and Privilege Separation

EdgeVMI protects itself by limiting each of its components with simple operations and

least privileges. We have carefully chosen a stable set of permissions for each part of

EdgeVMI . More specifically, Actuator can only operate on the life cycle of VMs, and no

internal information of the VM are exposed to it. Sensors only have permissions to read

from the raw physical memory of a VM, while no permissions that will change the state

of VM are granted to them. With such a setup, other portion of our system could still be

trustworthy even if any of the guest VM are compromised.

4.7.4 Constrained Information and Control Flow

Communications between the edge nodes and cloud center, and the modules inside

EdgeVMI are all implemented with single directed flow of data and control. The con-

strained communication graph is hard-coded into the binary package and there no options

to alter the information flow or control flow directions. Even if one node in the communi-

cation path is compromised, the information leak or damage caused will be constrained to

be minimal.

4.8 Performance Evaluation

This section evaluates the runtime overhead of monitoring operations. We first highlight

the ultra low memory consumption of EdgeVMI . Next we show the performance overhead

of the VMI operations in the minimized operating system with both micro-benchmarks

and macro-benchmarks. Finally, we show the performance benefits gained by running

monitoring operations in a dedicated single-process VM rather than a traditional VM.
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Table 4.6: Runtime Machine Memory Reduction

LibVMI +
Linux

EdgeVMI
+ Mini-OS Reduction

Minmal Size 1GB 32MB - 96.9%

Regular Size 4GB 32MB -99.2%

The prototype of EdgeVMI is implemented on top of Xen Hypervisor. Domain 0 and

Target Guest VM are running 64-bit Ubuntu. Hardware setups are as following: Intel Core

i3-6100 @ 3.7GHz (Skylake) with 3M L3 Cache, 16GB DDR4 main memory. Domain 0 is

given 10 GB memory, and Target VM is given 4 GB memory. EdgeVMI VMs are given 32

MB memory each. We follow the official Xen building environment setups and use GCC

as our compiler.

4.8.1 Runtime Memory Overhead

The runtime memory consumption of EdgeVMI monitor VMs is measured based on their

machine memory occupation which is usually acquired from the host machine before one

VM starts. Table 4.6 shows the overall memory allocation by the monitor VMs of EdgeVMI

and LibVMI. Both Actuator VM and Sensor VM of EdgeVMI is allocated with 32MB of

memory while LibVMI has 4GB as regular size and 1GB as minimal size. Since LibVMI is

running in Dom0 on Xen, which is 64-bit Linux OS, thus is allocated with 4GB memory

to allow regular performance. The case of minimal 1GB memory for Dom0 would be a

pretty slow experience for 64-bit OS even thought it is still executable. Therefore, we

can conclude that EdgeVMI would occupy much less memory resources and will introduce

much less memory footprint than traditional VMI techniques in a traditional OS.

4.8.2 Monitoring Events

Event monitoring is evaluated with our stress testing benchmark. We manually craft

benchmarks to trigger events in the hardware and then catch the events in our EdgeVMI
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Figure 4.7: Time Cost With Different Number of Events

Sensor VMs. By triggering the events consecutively and we could see how fast an event

could be handled in the monitor. Figure 4.7 and 4.8 show the scalability evaluation of

event handling in EdgeVMI . From Figure 4.7, we can see that the absolute time being cost

increases linearly when the number of events increases. This means linear scalability for

the event trigger and return (after handled). From Figure 4.8, we can see that the average

throughput of the event handling does not change much when the number of the events

increases. Since the handler just do minimal work, the throughput reflects the maximum

capability of EdgeVMI to handle events.

In brief, the time cost is proportional to the number of events captured in EdgeVMI .

Throughput and latency is relatively stable under different number of events. Therefore,

the event driven monitoring solution scales well and does not depends on the number

of events generated in hardware. Note that during the experiment, the event handler is

defined to be an empty function (with no workload) in order to show the plain overhead

of the event trigger and return routine.
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Figure 4.8: Average Throughput & Latency

4.8.3 Monitoring a Process

To evaluate the system with macro-benchmark, we have crafted a process monitoring

benchmark which monitors the process creation activities and run LMBench in the target

VM when the monitor is in execution. The process is monitored by registering an event

handler on register CR3 on x86 machine. Whenever this register is written on the tar-

get guest VM, the CPU will generate events and the Sensor VM will be notified. The

event handler will print information to the screen inside the EdgeVMI Sensor. Table 4.7

shows the performance of LMBench with an average of 2.7% overhead during the process

monitoring is under execution.

4.8.4 Performance Benefits from Single-Process Mini-OS

By implementing our VMI operation in the Mini-OS, we could improve the efficiency of

VMI operations. First, there is a double scheduling problem in the traditional hypervisor-

based computing platform, where the hypervisor schedule time slots for the OS kernel and

then the OS kernel schedules time slots for the processes running in it. This means that

every time slot for the application needs at least two times of scheduling. However, our
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Table 4.7: Overhead when Monitoring Single Process by CR3 Register Events

Test Native EdgeVMI Overhead

Simple syscall 0.0386 0.0411 1.065

Simple read 0.0981 0.1005 1.024

Simple write 0.0682 0.0681 0.999

Simple stat 0.3257 0.3265 1.002

Simple fstat 0.0939 0.0928 0.988

Simple open/close 0.7853 0.7808 0.994

Select on 10 fd’s 0.175 0.176 1.006

Select on 100 fd’s 0.696 0.695 1.000

Select on 250 fd’s 1.547 1.547 1.000

Select on 500 fd’s 2.966 2.967 1.000

Select on 10 tcp fd’s 0.196 0.199 1.015

Select on 100 tcp fd’s 1.850 1.859 1.005

Select on 250 tcp fd’s 4.611 4.613 1.000

Select on 500 tcp fd’s 9.238 9.054 0.980

Signal handler
installation 0.107 0.1075 1.005

Signal handler overhead 0.7595 0.7589 0.999

Protection fault 0.3283 0.3134 0.955

Pipe latency 15.4613 16.5223 1.069

AF_UNIX sock stream
latency 14.0761 15.0909 1.072

Process fork+exit 69.2 87.3016 1.262

Process fork+execve 75.6757 85.7619 1.133

Average Overhead - - 1.027

monitor runs in a lightweight single-process VM. This means that there is no need for

the OS kernel to do the scheduling. As long as the hypervisor allocates time slots for the

monitor VM, the monitor functions could be executed directly without waiting for the OS
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to schedule it. This will potentially improve the performance of the monitor operations

in our monitor VMs. Second, small memory footprints in our monitor VMs also could

improve the architectural cache hit ratios and potentially improve the performance.

To verify our claim, we compare our monitor VMs with the traditional LibVMI frame-

work. Figure 4.9 shows average time of reading one page when 500 consecutive virtual

memory pages of the kernel process are traversed. On average, EdgeVMI costs 3.7 mi-

croseconds while LibVMI costs 5.7 microseconds introspecting one memory page. It in-

cludes the time traversing the entire page table to translate a virtual address to physical

address. We can see the average time cost of EdgeVMI are 30% less than LibVMI.
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Figure 4.9: Time to Read Raw Memory Pages

4.9 Discussion

This section we discuss more challenges and possible improvements of EdgeVMI framework,

wishing to spark more research ideas.
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4.9.1 Hypervisor in TCB

The only piece of software we have to trust is the hypervisor. Currently the monitor VMs

have been granted some privileges that originally are only designed for the hypervisor. But

the hypervisor still holds the same privileges or even more privileges than the monitor.

This is similar to the case where the traditional system auditing software residing inside

the operating system gains some critical privileges that are originally only designed for the

OS kernel, such as accesses to the entire file system, etc., but the OS kernel still holds all

the privileges. Therefore, our monitor framework falls back to face the traditional ‘same-

layer‘ or ‘peer‘ monitoring problem. This means a compromised hypervisor will render the

monitoring operation not trustworthy.

However, the design of EdgeVMI can be extended by lowering itself one layer down so

that it can directly talk with hardware just as the hypervisor do and effectively remove

hypervisor from TCB. The feasibility have been shown in NoHype [96], where dedicated

hardware resources can be pre-allocated at booting time and isolation is enforced during

entire lifetime of virtual machines.

Furthermore, letting EdgeVMI directly talk with hypervisor can apparently improve

the monitoring efficiency since it removes the indirection via hypercalls. In addition,

with our static compilation and selectively composition of functional modules, unnecessary

functionalities will not be included as they do in hypervisors, which will furthur improves

its efficiency. We put this style of support to EdgeVMI as our future work.

4.9.2 Semantic Gap Challenge for VMI

The view of raw memory bits limits the visibility to the target VM’s states, and recon-

structing high level information from the raw binary streams can be difficult and will incur

high overhead. This is well known as the problem of semantic gap [35]. Recent tools and

frameworks such as Volatility [161] are able to discover high level semantic information

but can incur high overhead, thus cannot be directly deployed for runtime monitoring on
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low performance edge servers.

Although EdgeVMI is designed to provide low level mechanisms to avoid the high

performance overhead of reconstructing a rich semantic of processes, control centers in the

cloud is still facing the semantic gap [35] problem. In order to make the intrusion detection

more efficient and effective. Security policies need to be carefully designed according to

the features of different kinds of memory corruption attacks, such that intrusion could be

detected without a full reconstruction of the semantic view.

On the other hand, if more complicated semantic reconstruction is necessary, EdgeVMI

could allow user to offload the semantic reconstruction task to the cloud. Apparently, this

will cause another trade-off consideration between the reconstruction of raw binary memory

and the amount of transferred data over the network. In general, more binary information

are reconstructed, less data will be transferred while more performance overhead will be

induced. How to make this trade off suitable for a certain edge server system is another

challenge left to future work.

4.9.3 Orthogonality with Other Security Solutions

Framework of EdgeVMI is compatible with a various kinds of system security solutions

to further improve the security of the system. EdgeVMI is assumed to be integrated

with trusted booting [77, 112] as an necessary protection strategy. Additionally, hardware

extensions such as Intel SGX [21, 145], RISC-V Sanctum [48], can be used to protect user

applications under malicious OS. It is also possible to extend EdgeVMI security model

where Sensors and Actuator can be protected when the hypervisor is not trusted [47].

EdgeVMI can also be extended to new hypervisor archtectures, such as Bareflank [19],

which will make EdgeVMI support a broader spectrum of platforms. Emerging security

solutions such as machine learning [73] could also help to learn and recognize the raw

memory patterns for intrusion detection via the low level data collected by Sensors in

EdgeVMI .
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4.9.4 Weakness in Large Scale Monitoring

EdgeVMI can only protect the objects being monitored. Data that goes out of monitoring

scope can not be protected. Users who need a large scale monitoring, such as the all

the memory read and write operations across the entire application or operating system,

would not be practical even though it is possible. This is due to the inherently high

overhead of monitoring via VMI techniques, where the monitor operation happens at the

lowest level, raw binary instructions and raw memory read writes, and the high volume

of instruction and memory requests stream would quickly overwhelm the the speed of the

semantic reconstruction progress.

4.10 Related Work

4.10.1 Security on Edge Servers

Security on the edge environment has been widely discussed in the recent literature

[136, 152, 176]. The decentralized feature of edge servers poses great challenges to the

security and privacy protection on the edge nodes. Shi [152] and Yi [176] discuss the

missing of efficient tools to protect data privacy and security at the edge of the network.

Roman [136] recognizes that most intrusion detection system has been designed for cen-

tralized computing instead of edge computing and fully autonomous security mechanisms

are critical important for edge computing.

4.10.2 Virtual Machine Introspection

The idea of virtual machine introspection (VMI) was first introduced by Garfinkel and

Rosenblum [74] as a way for intrusion detection. VMI has inspired many research works

on the security enhancement of virtualization platforms, where an operating system is

protected or checked in the hypervisor [36, 60, 92, 113, 148, 178]. Specifically, a system

library, LibVMI [126] was proposed to simplify the development of VMI applications. The
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source code is freely available and further promotes forward the security solutions based

on VMI techniques. However, it has to be installed inside a privileged host running Linux

operating system, which has large TCB and memory footprints. This work ports it to a

minimized operating system, which achieves a significant smaller TCB and footprints.

4.10.3 Privilege Separation on Monolithic Systems

Disaggregation of the monolithic system such as operating systems or hypervisors, such as

µ-kernel [105], seL4 [98], Xoar [42], and Xen [115, 151], can improve the security by isolating

different modules in the system. However, as a general purpose computing platform,

those systems need to manage the communication between a large amount of isolated

components. This introduces more performance overhead compared to their monolithic

counterparts. In this work, we do not aim to build a general purpose computing platform,

instead, we are building the system with a single purpose of security monitoring, such

as intrusion detection, or service auditing. Therefore, the number of components of our

system is relatively small and the communication between them can be made efficient.

4.10.4 Hardware Based Security Approaches

Hardware assisted security solutions moves root of trust into as lower level as possible,

ideally in a specialized piece of hardware [34]. Then the burden of users’ trust could be

relieved from certain part of the system, especially from the vulnerable prone portion of a

software stack or firmware. The effectiveness have been discussed in recent researches such

as Scone [18], Haven [21], and VC3 [145], etc., where they eliminate the trust to OS by

leveraging different hardware extensions such as Intel SGX [47]. This spectrum of solutions

allow user to trust only his own application and the underlying piece of hardware. Similar

solution can also be applied to the hypervisor such as in NoHype [96] which eliminated

the trust on the hypervisor after the system securely booted with the help of hardware

virtualization techniques.

However, hardware have limited logic budgets when facing complex security policies,
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which in turn delegates many security critical tasks back to software layers, resulting in a

sophisticated multi-layer system stack for security tasks. In this project, we present our

observation that such a complex chain of trust can be prohibitive for the emerging edge

computing servers. EdgeVMI is our solution for trustworthy but less costly monitoring on

such platforms.

4.11 Conclusion and Future Work

In conclusion, we propose EdgeVMI , a low level monitoring framework in a minimized

library operating system to monitor a commercial operating system inside a VM on edge

servers. EdgeVMI provides a rich set of low level mechanisms to monitor and control VMs

via lightweight VMI technique. EdgeVMI is designed with minimized components. Each

component is designed with least privileges. Strict isolations are enforced between different

components via MAC policies. A prototype has been implemented and evaluation shows

the efficiency and effectiveness of the monitor system. The VMI implementation in this

work is open sourced at https://tinyvmi.github.io/.

https://tinyvmi.github.io/
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Chapter 5

Capsule: Fine-grained Isolation and

Pointer Safety with Ownership Tags

5.1 Overview

Isolation and pointer safety defense are two design strategies to build more secure computer

systems. Isolation solutions can prevent illegal memory accesses across different protection

domains, while pointer safety can prevent illegal memory accesses caused by type safety

errors, usually inside the same protection domain. Many research efforts have been devoted

to the architectural support for isolation and pointer safety, such as Intel SGX/MPK/MPX,

ARM TrustZone/MPU, Capability Hardware Enhanced RISC Instructions (CHERI), etc.

However, existing approaches either limit to a few number of security domains, or can only

protect coarse grained memory, or support only one protection strategy (spatial/temporal

pointer safety or isolation), or require tremendous porting efforts in order to protect legacy

programs.

Therefore, this work proposes Capsule, a new architectural extension, along with the

full stack toolchain and system supports, to enable both fine-grained isolation and pointer

safety defense to protect legacy programs. It supports virtually unlimited number of pro-

tection domains that is proportional to the number of addresses in the address space. It
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protects fine-grained memory at the granularity of instructions and data words. And more

importantly, it requires minimal porting efforts to protect legacy programs. In a Cap-

sule-enabled process, different protection domains can be isolated into multiple privilege-

separated domains called capsules. Each capsule is fingerprinted by a unique ownership

identity, which is tagged to every instruction and data word that belongs to the capsule.

The processor ensures that the memory in one capsule cannot be directly accessed by an-

other capsule, thus guarantees the isolation between different protection domains. Pointers

in each capsule are also protected with both temporal and spatial safety policies, which

provides intra-domain security. A prototype system is implemented by extending a popu-

lar MIPS processor along with the corresponding LLVM-based toolchain. In addition, two

tagged memory models are implemented and evaluated to explore its performance bot-

tlenecks. Evaluations on FreeBSD with several benchmarks show that Capsule provides

effortless backward compatibility and can successfully enforce inter-domain isolation as

well as intra-domain pointer safety with moderate performance overhead.

5.2 Introduction

Programs written in unsafe languages such as C/C++ are prone to have memory safety

issues [155], which makes the programs especially hard to be made trustworthy. This

situation can be tracked back to the historical co-evolution of the C language and the

hardware design back in the 1970s [38, 114, 135]. The ignorance of distinguishing different

kinds of data in the memory from the processor’s design has contributed to much of these

error-prone consequences. To defend against these memory safety vulnerabilities, pointer

safety and isolation are two kind of mainstream solutions.

Pointer safety defenses can protect memory object against illegal pointer dereferences

caused by type safety errors at the language level [58, 78, 100, 116, 117, 118, 164, 171, 180].

However, existing pointer safety solutions require changes to the memory layout of the

program to store metadata for the pointer and/or the object it points to, such as the



5.2. INTRODUCTION 99

bound information of pointers [116], or key and lock [117] on the pointer and the object.

The change of the memory layout can result in compatibility issues with legacy code.

In addition, from the performance side, fat-pointer based solutions are hard to be made

efficient given no or limited hardware support. For example, the full pointer safety solution

in BOGO [180] has 1.6x slow down on average, which is based on Intel MPX [90] with very

limited hardware support (only 4 registers to store pointer metadata).

Second, domain isolation is an important line of defense against unknown memory

vulnerabilities. This is achieved by applying the principle of privilege separation in a

computer system [138]. A privilege separated system is partitioned into several isolated

protection domains so that security breaches in one domain will not affect other domains.

Intra-address space isolation is an important category of isolation that is widely used to

create protection domains inside an address space. For example, CPU Rings [144], Intel

SGX [47], Intel MPK [90], and ARM TrustZone [13, 16], ARMMPU [17], etc., are hardware

extensions that support intra-address space isolation. They achieve isolation based on

page table permissions, or permissions on other forms of memory region descriptors such

as segment descriptors [56, 90] or ARM MPU registers [17]. However, these solutions suffer

from one or more drawbacks below: (i) intensive manual changes to the legacy code are

required in order to leverage these mechanisms; (ii) frequent domain switches on these

isolation mechanisms will cause high overhead due to sophisticated context switches (e.g.

35x overhead for ECall/OCall in Intel SGX [181]); (iii) many of them only support a small

number of isolation domains, such as 4 domains for x86 CPU Rings and 8 or 12 domains

on ARM MPU [16]; (iv) the granularity of the isolation is still large, for instance, at page

granularity on page table based mechanisms.

In contrast, pointer safety solutions can achieve finer granularity of protection which is

at the object level, while with fewer manual changes to the legacy code, such as HardBound

[58], SoftBound [116], and CHERI [164, 165, 168]. However, pointer safety solutions are

originally designed for spatial or temporal pointer protections inside the same protection

domain, and not for the isolation between different protection domains. This make it a good
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fit to avoid programming errors such as buffer overflows but unsuitable to isolate malicious

code which may contain arbitrary instructions. One reason is that pointer metadata based

permissions cannot not control non-pointer memory content such as most instructions and

non-address-taken variables. This makes it not suitable to isolate a memory region that

contains both pointer and non-pointer content. Even though CHERI compartmentalization

shows the possibility of domain isolation by introducing the capability sealing mechanism

[165, 168], its backward compatibility is mostly sacrificed: legacy control flow instructions

are not allowed to cross domain boundaries and sealing and unsealing the program modules

are mostly manually done. Therefore, the engineering effort to partition legacy programs

with CHERI is non-negligible, where the legacy code needs to be the heavily retrofitted in

order to leverage the new library interfaces for isolation (or compartmentalization).

To mitigate above challenges, we explore a new tagged architecture where each small

chunk (e.g. 4 bytes) of memory are distinguished by an ownership tag. Our ownership

tags not only can be used to enhance pointer safety, but also be used to isolate the address

space into different protection domains. More importantly, switching protection domains

can be done efficiently with no heavy context switches and safely via legacy control flow

instructions. And furthermore, by incorporating the new design of the underlying hardware

and software stack, our system maintains good backward compatibility and removes most

the retrofitting efforts of the legacy code.

Contributions of this work are listed as below:

1. We have proposed a method for backward-compatible fine-grained intra-address space

isolation at the granularity of instructions and data words. In this method, program

modules can be encapsulated in almost any size with no changes to the legacy memory

layout: A protection domain can be as small as only containing a single variable along

with a few instructions, and each piece of memory for this domain can be allocated

anywhere in the address space without having to be continuous.

2. We have proposed a new model of execution entity, capsule, where each capsule (as a
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protection domain) is defined by a set of data words along with a set of instructions

that can access the data. The runtime memory and execution context of the capsule

is constrained only by the unique ownership tag on each data word and instruction,

without using the page table permissions, privilege levels, etc. More importantly, the

privileges that each capsule holds are also determined only by its set of instructions

and data, which eases both the static analysis as well as dynamic enforcement of

privileges for each protection domain (Section 5.4).

3. To support both inter-domain isolation and intra-domain pointer safety, we have de-

signed three ownership tag representations. Cross-domain isolation can be guaran-

teed by ownership identities stored in the ownership tags, while inter-domain pointer

safety can be achieved by the pointer metadata stored in the ownership tags for

pointers. (Section 5.4.3).

4. To avoid heavy weight cross-domain call (such as syscall style calls), we have de-

signed two domain transition modes between capsules: transient transition without

context switches and sanitized transition that can avoid the overhead of heavy mem-

ory context switch and have no dependence on a supervised trusted stack (as used

in user/kernel transition in Unix). The new design helps to improve cross-domain

efficiency as well as to eliminate the single point failure of the trusted stack (Section

5.5).

5. We have proposed an automatic isolation method to determine the boundary of

capsules by combining static ownership analysis and dynamic ownership propagation.

Given the hints to the separated modules of a program, our compiler will reason about

the ownership tags for every instructions and memory objects during compilation.

During execution, the processor will propagate ownership to non-tagged memory

content based on our memory colonization rules (Section 5.6).

6. We have designed a full stack system extension that supports the notion of owner-
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ship tags, including the hardware processor, memory hierarchy, compiler toolchain,

operating system, and user applications. Processor pipeline is extended to process

the ownership tags to make sure that the ownership of the instruction matches the

ownership of the memory it accesses. The entire memory hierarchy, including caches,

main memory, as well as the binary executable files, are seamlessly extended with

ownership tags (Section 5.7). The compiler toolchain and operating system are ex-

tended to generate and load executable files with ownership tags. Finally, legacy

code in user applications can also be annotated as hints for security critical data or

codes in a program.

7. A full-stack prototype system is built by extending a popular open sourced MIPS

architecture (Section 5.8). We have built emulators on QEMU running FreeBSD

for functional evaluation. We have built two memory models on Gem5 simulator to

evaluate the performance impact. We have also extended a Verilog implementation

of MIPS R4000 processor to evaluate the hardware feasibility. Evaluation shows

that Capsule can effectively enforce fine-grained isolation as well as pointer safety

for legacy programs, with negligible porting efforts posed to developers (Section 5.9).

The performance of our tagged memory implementation is evaluated with overhead

of 0.51x to 0.74x in adapting legacy programs to run in capsules (Section 5.10).

Section 5.3 introduces our motivation. Section 5.4 presents an overview of the system

design. Section 5.6 discusses our methods of how to determine the boundary of capsules

by static ownership analysis and dynamic ownership propagation. Section 5.5 provides

different modes of capsules interactions via different domain transition gates and memory

sharing mechanisms. Section 5.7 introduces our design of the system stack to enable own-

ership tags by extending the processor architecture as well as the corresponding toolchain.

Section 5.8 discusses the implementation details of our prototype system. Section 5.9 eval-

uates the security properties of our design. Section 5.10 evaluates the feasibility and the

performance of our design. Section 5.11 discusses the related work. Section 5.12 concludes
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the project.

5.3 Motivation

In this section we will discuss our motivations with more details from the following aspects:

1) Why we need a new isolation mechanism? 2) Why we want fine-grained isolation? 3)

Why we choose tagged memory?

5.3.1 Why a New Isolation Mechanism?

Privilege separation have long been praised as one of the fundamental principles to improve

system security since 1970s [138]. It is an effective strategy to defense against unknown

bugs in a system, both in the operating system design and in the applications’ design.

Isolation is an important technique to implement the privilege separation for a software

system. This is usually achieved by separating a program into different function modules,

each representing a security domain. Each domain is then assigned with the least privileges

to do its tasks and communications between different domains are strictly checked. In a

privilege separated system, security breaches in one domain will not affect other domains.

Isolation techniques can be generally classified into two categories based on their scope of

isolation: inter-address space isolation and intra-address space isolation.

5.3.1.1 Inter- and Intra-address Space Isolation

Inter-address space isolation prevents accesses from one address space to another space.

They are build upon process-derived memory model, such as user processes, Linux Con-

tainers, as well as virtual machines. However, inter-address space isolation has a relatively

large granularity for isolation, i.e. one address space at its smallest. Security breaches

where vulnerabilities and critical data resides in the same address space cannot be con-

tained by these techniques.

In contrast, intra-address space isolation prevents access between two domains inside
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the same address space, such as segmentation, capabilities, as well as page table permis-

sions, etc. Different with the inter-address space isolation, intra-address space isolation

does not need to change to a different address space during the domain switch. There-

fore, it has much better performance than the inter-address space isolation. In addition,

many emerging low-end IoT devices, such as ARM Cortex-M architectures, do not support

virtual memory management and thus cannot implement inter-address space isolation ef-

ficiently. Therefore, intra-address space isolation becomes an important line of defense for

such small devices.

5.3.1.2 Drawbacks in Existing Intra-address Space Isolation

Compiler and OS based isolation mechanisms can enable intra-address space isolation,

such as SFI [159], SVA [51], Nested Kernel [54], Wedge [23], etc. But the number of

security domains is still rather limited. More importantly, pure software solutions are easy

to be affected by programming bugs in the large software code base when the system is

lack of hardware assistance for security. Futhermore, pure software solutions are prone to

introduce high overhead without hardware accelaration.

To mitigate this, several hardware assisted intra-address space isolation mechanisms

have been built to provide a higher level of trust while reduce the runtime overhead, such

as CPU Rings [144], Intel SGX, Intel MPK [90], ARM TrustZone [13], ARM MPU [17],

etc. However, most of them suffer one or more drawbacks below, which prevents them from

being widely deployed efficiently in practice. First, many of them only support a small

number of isolated domains. For example, traditional CPU Rings only support up to 4 rings

(on x86) and usually 2 of them are used, ARM MPU [17] only supports 8 or 12 domains,

and Intel MPK [90] only supports 16 domains. These make them unsuitable to be used

where many more domains are needed in order to contain possible vulnerabilities into its

smallest domain [33, 133, 173]. Second, most of them require intensive manual changes to

the source code. One reason is that they all rely on the page-table permission mechanisms.

The configuration of page-table permissions for the memory requires deep understanding of
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the application logic and intensive manual changes to the source code, which makes it hard

to be automated. For example, enabling Intel SGX enclaves in a system [18, 47, 145, 162]

can be rather complicated even though they provide new library and system interfaces for

the developers to adopt. Finally, in all these architectural supports, the granularity of

these isolation mechanisms is still large, for instance, at page granularity in its smallest.

This makes them unsuitable to isolate different memory objects that live on the same page.

5.3.1.3 Potentials in Pointer Safety Solutions

More flexible granularity at object level can be achived based on pointer safety solutions,

such as HardBound [58], SoftBound [116], Intel MPX [124, 180], and CHERI [164, 165, 168].

The adoption of legacy programs for such solutions can be potentially made easy by adding

compilation toolchain support along with none or minimal hardware extensions.

Unfortunately, fat-pointer solutions are mostly designed for spatial or temporal pointer

safety, and are not easy to extend them to support isolation of protection domains [165,

168]. One reason is that fat-pointer based permissions cannot not control non-pointer

memory content and thus cannot be directly used to isolate a memory region which contain

both pointer- and non-pointer-derived content. Therefore, special mechanisms need to be

designed in order to support isolation via fat-pointers. For example, CHERI [164, 165,

168, 171] extends their pointer safety defense (with memory capability) to support isolation

(with object capability). It is achieved by introducing the capability sealing mechanism for

object capabilities. However, in CHERI, legacy control flow instructions are not allowed

to cross domain boundaries. Developers must manually sealing and unsealing the specific

program modules with their new instructions or the new library interfaces for isolation.

Therefore, its backward compatibility is mostly sacrificed and the engineering effort to port

legacy programs is non-negligible, where the legacy code needs to be the heavily retrofitted

in order to leverage the new mechanisms for isolation.

In addition, exiting pointer safety solutions require changes to the memory layout,

especially for the representation of pointers in the program, which results in compatibility
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issues with legacy code. Furthermore, from the performance side, fat-pointer solutions

tend to incur high runtime overhead due to limitd hardware support. For example, Intel

MPX has 1.6x slow down on average as shown in BOGO [180] for full pointer safety, where

only 4 hardware registers are available to store bound information.

5.3.1.4 Towards Inter- and Intra-Domain Memory Safety

Combing all above (5.3.1.1 - 5.3.1.3), we aim to design a system that can divide an address

space into any number of privilege separated domains as needed with fine-grained isolation

at the granularity of instructions and data words. It should handle both pointer and non-

pointer memory contents and provide both inter-domain isolation as well as intra-domain

pointer safety. More importantly, it should keep the human refactoring of legacy programs

to be minimal by moving more responsibility onto the architecture and compiler toolchain.

5.3.2 Why Fine-grained Isolation?

1 # prologue
2 daddiu $sp, $sp, −48 # allocate stack frame
3 sd $ra, 40($sp) # save return address
4 ...
5 # function body... # buggy or malicious
6 # epilogue
7 ...
8 ld $ra, 40($sp) # restore return address
9 daddiu $sp, $sp, 48 # free stack frame

Figure 5.1: Return Address Save and Restore

Fine-grained isolation can constrain a software vulnerability in its minimal scope. Mem-

ory safety bugs in a program can live anywhere in the address space and affect arbitrary

places in the same address space if not well isolated. On the other hand, the instructions

and variables involved in the memory safety violations can occupy a variable size of mem-

ory with one or more memory locations, either contiguously or sparsely placed. Therefore,



5.3. MOTIVATION 107

it is necessary to be able to protect the memory at its finest granularity, as well as to

protect memory object at different sizes with different layouts.

Listing 5.1 shows our motivated example for fine-grained isolation in MIPS assembly.

Upon a (non-tail) call into the callee function, the return address will be saved to the

stack (line 3) in the function prologue (preparation code before the function body starts).

Then at the function epilogue (restoring code after the function body ends), the return

address must be restored from the stack (line 8) in order to return to the caller. It

is well known that the return address being saved and restored on the stack needs to

be protected from corruption. Otherwise, attackers might leverage the corrupted return

address to conduct control-flow hijacking attacks such as Return Oriented Programming

(ROP) [31, 32, 43, 55, 75], signal oriented programming (SOP) [25], etc. To protect the

return address, we could separate the return address from the rest of the application code.

However, existing isolation mechanisms are mostly coarse-grained and will be inefficient

to protect small objects such as the return addresses on each stack frame. For example,

shadow stack [30] can be used to protect the return addresses. One might use traditional

privilege levels (or CPU Rings) to isolate the shadow stack [160], but it incurs high overhead

due to the frequent domain crossings between the shadow stack and the regular stack.

Efficient shadow stack [182] can be implemented on ARM processors [16, 17] by using a

special set of instructions (unprivileged load and stores) to access regular memory and

another set of instructions (privileged loads and stores) to access the shadow stack. But

since only two sets of instructions (privileged and unprivileged) are available for use, this

isolation technique on ARM only supports two isolation domains.

Therefore, we need a new fine-grained isolation mechanisms to protect small objects.

We aim to make it efficient to execute without heavy context switch for domain crossing.

We aim to support unlimited number of security domains so that we can protect a various

kinds of different memory objects or regions.
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5.3.3 Why Choose Tagged Memory

One of the major reasons for current memory safety issues is inherited from the unawareness

of security context in hardware. Under von Neumann architecture, processor treats raw

memory as plain integers, and it is the programmer’s responsibility to direct the processor

how to interpret the memory bits. This free programming style assumed programmers

understood the machines very well and it was their responsibility to avoid errors. This has

enabled advanced programmers to write efficient code in the past. However, with both the

hardware and the software systems are getting more complicated, it becomes unrealistic

by relying solely on programmers themselves to avoid errors. New safe languages have

been seen to put restrictions on the free capability of programming, but at cost of the

performance with the lack of the underlying hardware support.

On the other hand, new hardware extensions, such as tagged architectures in the 1970s

[70, 71, 169], and the state-of-the-art CHERI [164, 168, 171], have been proposed to bind

semantic meanings to memory in order to distinguish different memory contents, such as

pointers and non-pointers, type information, etc. However, these designs either heavily

rely on a certain architecture or require heavy retrofitting efforts to the legacy programs.

For example, CHERI extension distinguishes pointer and non-pointer with a 1-bit tag for

every 256-bit memory, but it extends the pointer representation from 64-bit to 256-bit

or 128-bit [164, 168, 171]. This could introduces incompatibility with legacy programs,

especially when the capability-enabled application are linked with non-capability-enabled

libraries.

Therefore, this work seek for an alternative implementation of the tagged memory

with better backward compatibility. It should maintain backward compatibility without

changing the legacy memory layout (i.e., pointers will be still 64-bit in our system). This

will in turn make the adaption efforts of legacy programs to be minimal.
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5.4 Capsule System Overview

This section first introduces our key insights for this work, then discuss the threat model

with the scope of the work. Next, it presents an overview of capsule, the abstract ownership,

and different categories of capsules according to the private data it protects. Next, we

discuss the extension of the system stack to enforce ownership rules. Lastly, we explain

our strategy of determining the closure set for a capsule by combining static and dynamic

information.

5.4.1 Key Observations

This work is inspired by our several key observations listed below where we have found

many new security features that can be enabled by leveraging the ubiquitous tags as the

ownership for every instructions and data words in the memory:

5.4.1.1 Efficient Domain Transition with Ubiquitous Ownership Tags

With ubiquitous ownership tags in memory, more efficient and secure tran-

sition gate can be designed comparing to traditional system call gates. We

observe that after we apply ubiquitous ownership for each memory chunk, memory access

privileges are constrained by these ownership tags and there will be no need to switch a

complex context for a protection domain, including the stack pointers, page table views or

page table permissions, etc. In addition, the communication between protection domains

can be made more efficient by manipulating ownership tags instead of copying the actual

data as used in system call gates. Therefore, more efficient transition gates can be de-

signed with ubiquitous ownership tags in memory. Similar observations can be found in

Intel MPK deployment [157], where different page table entries are given a 4-bit tag and

domain transition can be as easy as updating a register (PKRU). We can leverage efficient

ownership mechanisms for data sharing and the need of context switching of the processor

states can be removed. These gates also allow mutually distrusted domains switches with-
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out a centralized supervisor in the OS (Section 5.5.2), which again improves performance

and also avoids the risks of single point failure where a trusted stack must be used.

5.4.1.2 Partition Process Memory into Closure Sets

Data and instructions in the same address space can be grouped into two or

more disjoint closure sets. A closure set here is defined as a set of instructions and data

words which meets two requirements: (1) All data accessed by an instruction in the set is

in the set, and (2) All instructions that access a piece of data in the set are in the same

set. For example, in the traditional process model, data and code can be divided into

two disjoint closure sets: one set running in kernel mode and another set running in user

mode. All memory accessed by a user instruction will always have the user’s permission.

On the other hand, all instructions access the user’s data can be restricted to be user-only

instructions. Although by default all instructions in kernel mode can access user memory,

this can be restricted such that the kernel will never directly access user’s memory. This

has been shown possible in SVA [51] and Virtual Ghost [50], where a sanitization layer is

added to avoid any direct kernel access of the protected user data. Inspired by the above

observations and related works, we thus aim to craft out more isolated domains based on

closure sets of instructions and data.

5.4.1.3 Partition Closure Set with Transition Gates

One closure set of instruction and data can be partitioned into two closure sets

by going through a special transition gate for sanitizing the communication

channel. To achieve fine-grained isolation, we might need to separate one large closure

set into two or more smaller ones, while keeping necessary communications between the

separated sets.

For example, if we partitioned a set into two closure sets, each with different functions

and their data. But a pointer-derived parameter is passed (e.g. via a call instruction)

from one set to another, the pointer being passed across the boundary will probably cause
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data leakage or break the functionality of the original closure set before separation. So the

transition between the two new sets would require special operations to cross the boundary

between them. In such cases, a special transition gate can be used so that the chunk of

memory being passed via pointer parameters can be made available from one set to another

set, but without the authorization to both sets at the same time.

5.4.1.4 Closure Sets as Domains

Based on above observations, we define each closure set as an isolated domain, which we

call capsule. Each capsule holds least privilege that operates on a fixed set of memory

defined by the closure set. In this way, memory access errors in one capsule will not affect

other capsules in the process. Capsule can be used as general isolation mechanisms for

different program modules. It can also be used to implement lock and key mechanisms

to protect heap objects from temporal pointer safety vulnerabilities. Furthermore, spatial

safety inside the same domain can also be defensed by the fat-pointer style ownership tags

for pointer variables.

5.4.1.5 Achieve Intra-domain Security with Ownership Tags for Pointers

By defining special interpretation for ownership tags of pointers, we can im-

plement fat-pointer like solutions to improve in-domain security. Since we will

check the ownership of instruction against the ownership tag of the memory object it ac-

cesses, thus the ownership tag for the pointer that points to this object is ignored during

this check. Therefore, we could store object metadata in the ownership tag of pointers

to improve in-domain security. For example, by storing object size information in the

tags, we could implement spatial pointer safety defense similar to these in the traditional

fat-pointer approaches.
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5.4.1.6 Lock and Key with Ownership Tags

Lock and key mechanisms for temporal pointer safety defense can also be

achieved by encapsulating the heap objects in its own scope using capsules.

Lock and key mechanisms assigns a key to the subject (such as a pointer or instruction)

and a lock on the object (such as a heap object). When the subject tries to access an

object, it will only success when the key matches the lock. With our ownership tags, the

key can be implemented as the ownership tag for an instruction, and the lock can be im-

plemented as the tag for the heap object. Therefore, the temporary safety defense could

be implemented using capsules. For example, we might encapsulate 1) the code at the

allocation site, 2) the code that accesses the heap object, 3) the heap object, and 4) the

code at free site all together into one capsule. Then, if the object is freed and the memory

is then re-allocated to other portion of the program (here will be another capsule), then

the old capsule has no legal ownership to access that memory again, even if it could still

hold a dangling pointer pointing to that location.

5.4.2 Threat Model

In brief, we aims to provide a security solution that could combine domain isolation and

pointer safety in one hardware extension. By fine-grained isolation, software vulnerabilities

or malicious code will be contained in a minimized security domain and will not affect other

security domains, thus achieving inter-domain security. By pointer safety defense, pointer

vulnerabilities in one domain could be prevented from being exploited, thus achieving

intra-domain security.

In this work, the software vulnerabilities are programming errors that will cause infor-

mation leakage or data corruption that does not reflect the original programming intention

of developers. For example, the vulnerability can be caused by triggering undefined be-

haviors in a low level programming language, such as buffer overflows, use-after-free, in C

programming language. Or it can be caused by malicious code from third party programs.



5.4. CAPSULE SYSTEM OVERVIEW 113

For example, a third-party library that have backdoors to steal or corrupt data that should

not be accessed by the library based on the semantics of the program source code.

We will assume the processor is correctly implemented to follow our ownership require-

ments (see 5.7). We assume code sections are readonly and cannot be modified by the

attacker. We also assume the program loading process behaves correctly during program

start. We also assume the compiler is trusted in this work. Removing compiler from

trusted computing base (as in SVA [51]) can be done by using a simple type checker to

ensure correct isolation between capsules, but this is out of the scope of this work.

5.4.3 Capsule Overview

The idea of capsule is largely borrowed from the program encapsulation feature of object

oriented programming languages, where each object of a certain type (or class) is encap-

sulated with its own data and code and other type of object cannot access its private

data except going through explicitly defined interfaces. However these high level language

features will not hold at machine code level, thus can be vulnerable if any module in the

program is written in unsafe language or even assembly code. In this chapter, we seek to

enable program encapsulation in non-OOP languages such as C programming language by

a software-hardware co-design approach which can provide a stronger guarantee of isolation

as well as pointer safety in machine code level.

We use capsule to name a security domain which consists of a set of instructions and

data words with same security requirements (thus same set of privileges). A process contain

several capsules and each of them represents one security domain inside the process.

Figure 5.2 shows the memory layout of runtime capsules in the system memory hi-

erarchy. The figure shows two capsules in a runtime system. We use different color to

represent different ownership identities. Memory content of each capsule is tagged with a

unique color, one black and one red. Processor caches are extended with ownership tags

for cached data/instructions, such that processor’s data access and instruction fetch from

the caches will always have the ownership tag ready at the same transaction.
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Figure 5.2: Overview of Capsules in the Memory Hierarchy

Note that white colored regions represent the memory that do not belong to any capsule

and thus are regarded not protected (or shared by all parties). However, white regions

might be tagged during execution upon any capsule’s access. This is one of the dynamic

ownership propagation rules in our processor to mitigate the weakness of static analysis

capability. We will discuss this with more details in Section 5.6.

We can see that memory belongs to one capsule in a process can be sparsely distributed

in a process’s address space, i.e., they do not need to be contiguous. This design allows

the legacy memory layout of the process is kept unchanged, which helps to maintain the

backward compatibility with the legacy programs. This is one of the main benefits of using

ownership tags at the granularity of instructions and data words.

The ownership tags of virtual memory is implemented in physical memory. As shown

in Figure 5.2, entire physical memory is divided into small chunks, and each chunk contains

a colored tag and the original memory for the program. The tag access is transparent for

the program, which means tags are not directly addressable in a program. Instead, the
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processor is responsible to manage the access of tags. For example, on an 64-bit machine,

if the byte address of a 64-bit word in the program is x, then processor will transparently

convert this physical address to 2x as the program word’s new memory address, and 2x+8

as the address of the tag data for this word.

Ownership IDs in the physical memory is cached in the processor cache hierarchy,

such as (L1) instruction cache, data cache, and L2 cache. This allows the processor to

simultaneously access the ownership IDs along with regular instructions or data words.

In addition, similar to the tag cache in CHERI [93], our processor also have a dedicated

last level cache for ownership tags, which helps to speed up the tag access. Regarding

the number of ownership bits for each 32-bit available memory, we expect that different

security policies might need different bits of ownership tags. Therefore, we make our system

to be configurable from 1 bit to 32 bits in the hardware design stage. (However, once the

processor is built, the bit width will be fixed.)

5.4.4 Ownership Tag Representations and Interpretations

0

flag

Ownership

0 Ownership
03031

Figure 5.3: Tags for Non-Pointer (32-bit tag per 32-bit memory)

0

flag

Offset

1 Size
03031

Figure 5.4: Tags for a Data Pointer (64-bit tag per 64-bit pointer)

Inside the address space, the memory content can be generally classified as non-pointers

and pointers. Non-pointers are memory content that are not interpreted as addresses.
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Figure 5.5: Tags for a Code Pointer (64-bit tag per 64-bit pointer)

Pointers are a special kind of data that store memory addresses. These addresses are used

by the program to access different memory locations inside the address space. The pointer

that refer to the location of a code snippet or an instruction is called a code pointer (or

function pointer). The pointer that refer to regular non-executable memory content is

called a data pointer. Distinguishing pointers and non-pointers, as well as data pointers

and code pointers in the memory, plays an important role in many strategies to defend

against memory safety problems [116, 155, 168].

Capsule system distinguishes them utilizing a flag on ownership tags, as shown in Figure

5.3 - 5.5. Our prototype system implements a 32-bit tag for every 32-bit memory content,

in order to comply with the 32-bit instruction width in MIPS64 architecture. However, all

tags are accessed on 64-bit alignment, which complies with the 64-bit architecture. During

interpretation, tags for pointers (64-bit width) are interpreted as a 64-bit bundled tag, and

tags for non-pointers are interpreted as two 32-bit tags individually. In order to achieve

this, we use a 2-bit flag in the 64-bit bundled tag as shown in Figure 5.3 - 5.5.

5.4.4.1 Interpretation of Non-Pointer Tags

If a 64-bit application memory chunk is not a pointer, we call the tag for this chunk of

memory a non-pointer tag. As shown in Figure 5.3, Non-pointer tag has the flag bits of 00.

Each 32-bit data word has a 31-bit ownership identity stored in its tag. The two chunks

of 32-bit non-pointer memory are allowed to have different ownership identities, i.e. they

can belong to different capsules. Instructions accessing this chunk of memory must also

have the same ownership identity.
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5.4.4.2 Interpretation of Data Pointer Tags

Flag of 10 means this is a bundled 64-bit tag for a data pointer, as shown in Figure 5.4.

This tag contains the size and offset information of the 64-bit pointer. As discussed in

our insights, non-executable memory referred by data pointers are already protected via

ownership tags on the instruction and the memory object, where the processor will ensure

that their ownership tags will match. Therefore, data pointers do not need to be protected.

They might be overwritten to arbitrary value, but the data access instruction will still fail

if the ownership of the instruction does not match the ownership of the memory object.

However, pointers are prone to cause spatial memory safety issues, such as buffer overflows.

Therefore, here we incorporate pointer’s bound information along with it and the processor

will check the bound during runtime. This is similar to the spatial safety defense in the

fat pointer approaches [78, 100, 116, 118].

5.4.4.3 Interpretation for Code Pointer Tags

Figure 5.5 shows a 64-bit tag for a code pointer flagged by 11. The bundled tag contains

an ownership identity and the rest 31 bits are reserved. A code pointer represents an

address of an instruction that the processor can branch to. Different with data pointers,

a corrupted code pointer can diverge control flow to illegal code snippets. Calling into

illegal code snippets might trick the one capsule to share its private memory to the callee

capsule. Considering this, we assign ownership identity to the code pointer so that the

code pointer can be protected as private data in a capsule. This also allows the code

pointers themselves being encapsulated in a different capsule with the instructions being

pointed to. For example, we can assign unique ownership only to the return addresses of

a function in order to defend against return oriented programming (ROP) attacks, which

we will discuss in Section 5.5.
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5.4.5 Ownership Space

Each ownership identity is an integer value. We maintain a flat ownership space where

every ownership is treated as a unique entity identity with no hierarchy relationships as the

type inheritance in the OOP language, nor the master-slave relationship as in user-kernel

domain separation. This simplification allow us to build more efficient and highly scalable

program partition, where we can automatically maintain the consistency of the ownership

assignment across the system as well as using concealment of the ownership IDs to enhance

the security.

5.4.6 Ownership Allocation and Relocation

In a capsule-enabled system, ownership IDs can be managed by several parties, such as

programmers, compilers, the linker, loader, language libraries, the operating system, as well

as the processor. Each of them might have the authority to determine the ownership ID

for certain memory objects, either statically (during compilation) or dynamically (during

binary loading). Therefore, it is important to maintain the consistency of ownership space

between these parties and avoid potential conflicts with previously allocated ownership

IDs.

To simplify the problem, we maintain a flat ownership space across the system and

provide mechanisms to reuse ownership IDs as well as resolve collisions via ownership

relocation. The problem is very similar to manage the addresses of different objects in

a process’s address space. With our relocation mechanism, each party could allocate

ownership IDs in the entire ownership space and any ownership conflicts between different

memory objects will be resolved via relocation. The implementation details can be found

in Section 5.8.
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5.4.7 Ownership Identity Concealment

Forged ownership can be dangerous. For example, if capsule identified as A forges the

ownership of another capsule B, and reset its own code’s ownership from A to B. Then

the capsule A’s code will be executed with full access to capsule B’s memory. Therefore, as

security critical resources, the ownership ID of one capsule should not be directly updated

by other capsules, nor by itself.

To defend forged ownership attacks, we propose the concealment of the ownership IDs

by combining several approaches: First, programmers are not allowed to use ownership

manipulation instructions that can set the ownership of variables or instructions. This will

ensure that the regular capsules contains application code and data will not be able to di-

rectly manipulate ownership tags during execution, including the ownership of itself (Note

that developers still write application code that assign static ownership via annotations).

Second, we maintain a flat ownership space and compiler tool chain can randomize the

ownership at a various of stages: compilation, linking, as well as program loading: all the

ownership IDs being assigned can be randomized via ownership relocation such that the

integer values of ownership identities can all be randomized without changing the original

separation semantics. Third, we do not provide ISA interfaces for the programmer to get

the ownership ID of the memory. Therefore, an malicious capsule has no way to predict

the concrete value of the ownership IDs, even of its own.

5.5 Secure Domain Transition

As discussed in our insights, as long as every part of memory is statically tagged with

a certain ownership, and the system ensures that only the instruction with the same

ownership as the memory can have access, the domain transition between capsules can

be as simple as just updating the program counter without any context switch of CPU

states or memory regions. However, we find that tagging every instruction and reasoning

about the ownership for all data words and instructions is not practical due to many corner
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cases that the static analysis cannot handle, such as the difficulty of pointer-to analysis for

pointer intensive applications. In addition, because the requirements of some applications,

the ownership being assigned to certain data might need to be changed during runtime in

order for the data to be shared between different capsules.

Therefore, we define domain transition in two forms: transient transition and sanitized

transition. Transient transition happens between capsules where the ownership IDs of each

piece of data and instructions in the capsules are fixed without any changes during the

lifetime of the process. Apparently, for such capsules, domain switch does not need to save

or restore the CPU context, nor updating any memory mappings. This category of capsule

will cause almost no overhead during domain switch.

Sanitized transition happens when memory sharing between the caller and callee are

required. For example, a memory buffer being passed across the boundary of two capsule.

In this case, a special sanitizing gate will come to intervene to make sure that only the data

being explicitly passed following the semantic of the source code will be accessed by the

callee capsule. We now discuss the two transition modes in more details in the following

sections.

5.5.1 Transient Transition

After the address of the first instruction in the callee capsule is loaded into the program

counter and the ownership tag of the instruction is loaded into processor simultaneously, a

transient domain transition is done. Transient transition does not go through a call gate,

thus it can achieve fast domain crossing without context switching. No ownership tag will

be changed or updated during this switch. As we discussed before, this only works with

capsules that have no need to change the ownership of any private memory during control

transfer.

For example, to protect the return address on the stack, we can create a capsule to just

encapsulate two instructions and one memory location: the return address on the stack.

This is possible because each return address on the stack is supposed to be accessed by
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only two instructions: one instruction to push it on the stack, another is load it from stack

and put it to the program counter register. It is easy to see that the ownership of both

the data and instructions are fixed and there is no need to change them (except for the

initialization and reset). Therefore, a regular program counter update will be enough to

transfer in or out this capsule, and the processor will ensure that as long as the data is

valid (not being cleared), no other instructions will be able to change it.

5.5.2 Sanitized Transition

Sanitized transition between capsules will go through a special call gate to handle cases

where a private data of the caller capsule needs to be shared with the callee capsule, or

in the reversal direction of sharing. A call gate is designed for sanitizing the parameters

being passed over. Sanitizing process might include ownership transfer of the memory

region being passed and control flow transfer from a caller capsule to a callee capsule. The

call gate will update the ownership or duplicate the data being passed to the callee capsule.

This will avoid the possible data breaches due to undefined behaviors in the code, thus

make sure that only the data being explicitly passed following the semantic of the source

code will be accessed by the callee capsule.

An example implementation of the sanitized transition gate is to built it on the top

of transient transitions with assistance of several pre-defined capsules. The outcome of a

sanitized transition behaves similar to traditional context switches in a kernel-user switch

via system call gates, but in an unsupervised way while with more flexibility: 1) the gate

is patched to every function call site; 2) the gate can be customized for different call sites

according to the ownership of the potential targets.

Figure 5.6 shows an example of cross-domain call via sanitized transition, where a

pointer data pointing to a stack object in capsule A (function foo) is being passed to

capsule B (function libBar). (Note that it might be possible to encapsulate the data

along with all instructions that access it as a standalone capsule; However, here we assume

finding all instructions to access data is impossible due to the weakness of static analysis,
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Capsule A

stack ...
data

heap

text

foo(){
int data[n];
libBar(data);

}

Capsule B

data
x

libBar(int* x){
doBar(x);

}

Call Gate:

1. Transition to CapsuleRet: save return address;
2. Transition to CapsulePara: update ownership;

3. Transition to Capsule B.

loadAddr()
storeAddr()
return addr

CapsuleRet

retSan()
callSan()
parameters

CapsulePara

Return Gate:
1. Transition to CapsulePara: update ownership;

2. Transition to CapsuleRet: restore return address;
3. Transition to Capsule A

Figure 5.6: An example of sanitized transition gate between two capsules.

and the ownership of data is being dynamically assigned, thus we need ownership transfer

for Capsule B to access.)

As shown in Figure 5.6, the sanitized transition is done by going through two predefined

capsules, each transition step is done by simply updating the program counter thus can be

regarded as transient transition. Overall, the goal of these special capsules is to ensure only

eligible memory should be accessed by the instructions in the caller and callee following

the source code semantics:

CapsuleRet encapsulates the return address into a minimalized domain such that only

the dedicated instructions in the function prologue and epilogue could save and restore

the return address to dedicated stack entry, avoiding potential corruptions by any other

instructions in a function.

CapsulePara minimizes the exposure of the private memory of both caller and callee

capsules while keep the original functionality. The shared memory being passed can be

sanitized in the following ways: 1) update the ownership tags of the shared memory; 2)

duplicate the memory content but with new ownership. If the shared memory is being

passed by only updating the tags, then the caller capsule will lose the ownership to this

piece of data. If data is being passed by copying the data with new tags, the ownership of
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the original data is not changed, thus still accessible for the caller capsule. More details

about these memory sharing mechanisms will be discussed in the following section.

5.5.3 Memory Sharing Mechanisms

By default, each byte of memory is assumed to be private to only one capsule. However,

communications between different capsules are sometimes necessary for the program to

run normally. To enable data sharing as well as code reuse between different capsules, we

design three different memory sharing mechanisms: sharing via memory duplication,

ownership transfer, and dedicated object capsules, each with their own advantages and

disadvantages in terms of runtime efficiency and burden to the compiler and programmers.

For memory duplication, the memory will be copied from the caller capsule to the callee

capsule so that the callee can gain access. This can be used to support small sized memory

contents being passed between capsules, where the consistency between the copies are not

required, such as pass-by-value function arguments in most programming languages. How-

ever, for large and complex memory objects, such as most pointer arguments, duplication

of the memory objects can result in high performance overhead or even change the program

behaviour. Therefore, we have the following two mechanisms to mitigate this.

5.5.4 Ownership Transfer

An ownership transfer allows private memory to be passed from one capsule to another

capsule by updating the ownership tags. After transfer, the source capsule will give up

its future access. Ownership transfer only happens in the domain transition gate where

data from one capsule need to be transferred to another. The ownership transfer routine

is predefined and must be strictly reasoned to ensure no abuse to the ownership transfer

operations are possible from any other capsule.

For pointers being passed, updating the ownership of corresponding object can be

challenging. To do so, we will need to decide the size information for the object being

pointed to. However, the size of the object can be hard to find out via pure static analysis
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in the compiler. And it will also be error-prone if we require programmers to provide the

size as arguments. Fortunately, we can get the size information of the object dynamically

via simple program instrumentation and maintain metadata information for the pointers

at runtime. Similar work has been shown effective for this solution such as HardBound

[58], SoftBound [116], and CHERI architecture [168]. Therefore, we can leverage similar

techniques to reason about the pointer and its size so that we can pass pointer based object

between capsules without breaking the system.

5.5.5 Memory Sharing via Object Capsules

Apparently, both duplication and ownership transfer require intrusive changes to the orig-

inal code and can cause extra memory requests resulting in runtime overhead. This means

that if the object being passed is big in size or contain a dense list of pointers, or just

being passed back and forth for many times, both solutions will hurt the performance

dramatically.

To mitigate this, we can create a dedicated capsule which holds the shared object as

well as all the instructions that access the object, then this capsule could be passed as

arguments without overhead of data duplication or ownership transfer. Note that, the

dedicated capsule holding the shared object can hold instructions from different functions,

but not necessarily all the instructions of these functions. This is one unique feature of our

fine-grained ownership in contrast to existing coarse-grained privilege management (such

as page table permissions), as well as pointer-based object protections.

5.5.6 Avoid Supervised Trusted Stack

Proper switch between isolated domains require two essential property: data protection

and control flow integrity. As we discussed above, data protection during domain switch

can be made more efficient by leveraging ownership with more options of memory sharing,

and it is not always necessary to save and restore the processor context during the switch.

To ensure the control flow integrity, one can use a supervised trusted stack in the OS
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kernel and allow each capsule to make a system call to do transition. However, this require

the trust of the big kernel code base, and it is well known that frequent context switches

between user and kernel will result in high overhead. Therefore, to avoid the kernel’s

supervision, we propose to leverage the ubiquitous ownership assigned to the memory to

protect the control flow. The key point is to protect the control flow critical data in

dedicated capsules and ensure only legal instructions could update these data.

Control flow integrity contain two folds: forward control flow and the backward control

flow. The critical data involved are function addresses and return addresses. For forward

control flow, we protect one or more target function addresses with dedicated capsules,

which can effectively limits which instruction have the privilege to change the function

addresses that are stored in the memory. Similarly, backward transition is protected via

the dedicated capsule that protects the return address, such as the CapsuleRet shown in

Figure 5.6.

5.5.7 Decentralized Call Gates

The traditional call gate, such as the system call gate on most contemporary architectures,

enables the system to audit the cross domain calls in a centralized place, which lives in

a fixed location and serves as the only gate for all domain transitions. However, from

the security perspective, centralized call gate is a potential single failure point for the

entire system. In addition, centralized gate usually provides a general logic for saving

and restoring almost all the runtime states of domains, widely known as context switch,

which can become a performance bottleneck if a marvelous amount of cross-domain calls

are requested.

In contrast, our call gate between capsules are decentralized: Every capsule is accom-

panied with its own call gate which is emitted as a part of the calling convention. This

design will avoid the single-point failure and also provides more optimization opportunities

based on the specific properties of the calling site.
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5.6 Determine the Closure Set for a Capsule

Memory objects and instructions are grouped into the same capsule by assigning the same

ownership identity tags to their corresponding memory location. In order to determine

the ownership identity for each piece of the memory content, we provide assistance to

the developers by combining three approaches: a) compiler support with static ownership

inference; b) dynamically propagate ownership information during execution to expand

the closure set of a capsule; and c) source code annotation on critical data and code.

Algorithm 1 Static Ownership Inference
1: procedure InferOwnership(Module)
2: for all Global ∈Module do
3: Global.owner = newOwnerID()

4: for all Function ∈Module do
5: InferFuncOwnership(Function)
6: procedure InferFuncOwnership(Func)
7: for all LocalV ar ∈ Func do
8: LocalV ar.owner = newOwnerID()

9: for all Instr ∈ Func do
10: if Global ∈ Instr.Operands then
11: Instr.owner ← Global.owner
12: else if Pointer ∈ Instr.Operands then
13: if Pointer == &LocalV ar then
14: Instr.owner ?← LocalV ar.owner
15: else if Pointer == Param then
16: Instr.owner ← Param.owner
17: else if LocalV ar ∈ Instr.Operands then
18: Instr.owner ← LocalV ar.owner
19: for all FlowInstr ∈ Func and FlowInstr.owner! = Target.owner do
20: if ShouldMerge(Target, FlowInstr) then
21: Merge(Target.owner, FlowInstr.owner)
22: else
23: AddGate(Target, FlowInstr)

In brief, static analysis with the optional user annotations initialize the ownership of

the code and data during compilation, while partial of the contents might left with no

owners after compilation. After the program is loaded in the memory, the processor will

propagate the ownership by first-touch first-own manner upon a memory access, which
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eventually ensures the protected memory of the capsule will always be a closure set.

5.6.1 Static Ownership Inference

The procedure of static ownership inference is shown in Algorithm 1. It starts from tracking

different memory objects located either on the function stack frame, heap or global memory

regions, and create a closure set for each memory object. Then it tracks all the instructions

in a module that accesses each memory objects and put them into a closure set that

contains the memory object. During the analysis, two closure sets might be merged if one

instruction is found to access objects in two closure sets.

For cases where it is not possible to find all instructions that access the object, or not

possible to find all the objects an instruction accesses, the static algorithm will not assign

ownership to the instruction or memory object, and the ownership assignment will be done

dynamically by the processor as we will discuss below.

In addition to the ownership inference on existing variables and instructions, compiler

can also introduce transformations to the code to create new capsules. The transformation

will be conservative so that it will not break the system functionalities, or introduce too

much overhead. For example, if a pointer passed in from one function to another, it

will first try to group these two functions into one capsule, so that it avoids the possible

overhead of updating tags.

5.6.2 Memory Colonization

However, purely relying on static analysis is not enough to find out the ownership ID for

all instructions and data word in the memory. And relying on user annotation to assign

ownership IDs will pose too much requirements on human efforts. Therefore we propose

dynamic ownership propagation by the first-touch-first-own (FTFO) rule, which we call

Memory Colonization: when an instruction accesses a memory object, if an instruction

has ownership and the memory object does not, then the memory object will be assigned

with the instruction’s ownership. This colonization rule also works where an ownership of



5.6. DETERMINE THE CLOSURE SET FOR A CAPSULE 128

a memory object is assigned to an ownership-free instruction. The stage of dynamic prop-

agation moves portion of the ownership reasoning responsibility down to the architectural

side who inherently has all the runtime information. Note that during execution, false pos-

itives can happen where unexpected ownership violations are triggered as a result of too

restrictive encapsulations. Whether the violations are false positives are highly depends on

the actual semantic context of the applications. But these false positives can be avoided

by adding user annotations to explicitly encapsulate the program module. The dynamic

propagation rules are listed as below:

1. During execution, if an instruction with non-zero ownership tags accesses a piece of

data without ownership, the processor will update the ownership of the data to be

the same as the instruction’s ownership.

2. If the instruction does not have ownership but the data it accesses has non-zero

ownership, the processor will update the ownership of the instruction to be the same

as the ownership of the data.

3. If both the data and instruction have no ownership being assigned, the processor will

assume they do not belong to any capsule, and their ownership will not be changed.

Semantically, the memory with no ownership is not protected by the ownership sys-

tem.

4. Once the ownership is assigned to a memory chunk, it should remain unchanged

throughout the life of the process with only limited exceptions for certain kind of

data, where their ownership can be transferred from one capsule to another. But the

ownership transfer operations are not visible to the program to avoid breaking the

safety property by programmers. We will discuss the ownership transfer in Section

5.5.2.
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5.6.3 Manual Ownership Assignment

We provide a set of user annotation syntax for developers to partition a program at different

granularity of a program. Developers can put annotations to a certain portion of code or

data and isolate them with the rest of the program. Right now, we support annotations

to at the granularity of a compilation module, a function, an instruction/statement, or a

certain variable.

In addition to the various granularity capability, another advantage of our partition

annotations is that developers do not need to specify which portion of the program should

be private to the current capsule, and which portion should be shared between certain

capsules, which greatly reduces the adoption efforts. This is achieved by our compiler

tool-chain support along with the hardware ownership propagation support via memory

colonization.

5.6.4 Manual Conflict Resolving

It is possible that the ownership initialization and propagation result in false positive policy

violations due to incorrect boundary definitions for the closure sets. In such a case, user

annotation could direct the compiler explicitly to assign ownership IDs to some critical

variables or instructions such that the false positive violations can be avoided. In addition,

developers could also place annotations on the source code to assign ownership IDs to the

variables to support security requirements that are specific to applications. Warnings will

be issued if there is conflicts between the security policy and the implementation. For

example, conflicts can happen if developers explicitly annotated two objects with different

ownership IDs, but the compiler founds that it is risky or impossible to split the two objects

into two capsules, (such as because a same store instruction operates on the two objects).
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5.7 System Stack Extension for Ownership Tags

The goal of our extensions to the the contemporary system is to enforce the following

ownership rule:

Upon a memory access instruction, the memory access is granted only when the own-

ership of the instruction matches the ownership of the memory it accesses.

To achieve this, we propose to assign ownership values to the memory at the granularity

of instructions and data words. However, adding the ubiquitous ownership information to

the entire address space is challenging. One of the challenges is how to store and check the

ownership with as less refactoring of the legacy software as possible. In this section, we

present two key points of our solutions: 1) The architectural design of the legacy processor

is slightly extended to store and operate ownership tags in the shadow memory partition;

2) Compiler-based tool chain is extended to seamlessly infer ownership and generating

binary files with ownership information.

5.7.1 Architectural Support

First, the ISA semantics of legacy memory access instructions, including load, store, and

instruction fetch related instructions, are extended as following: Ownership of the accessed

memory will be loaded at the same time when the instruction load any memory content

into the processor; Ownership tags will also be checked before write back stage of the

load instruction and before the memory write request is send out to the cache for store

instructions; Ownership tags for the instruction will be loaded into the process when the

instruction is fetched; Ownership tags can also be updated at runtime based on propagation

rules (Section 5.6).

Second, in addition to memory access instructions, we also need to extend the control

flow instructions, such as call and return instructions to support the ownership checking

between callers and callees. If the caller and callee are in different capsules, necessary

domain transition operations will be conducted to ensure the security as well as the func-
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tionality. For example, we can extend the semantics of legacy call and return instruction

pair by adding the following logic: check the ownership ID of caller instruction and callee

instruction, if they are the same ownership, do control flow transfer in the traditional way;

if they hold different ownership, do control flow transfer by going through a special gate,

which will be discussed in Section 5.5.

Third, to seamless enable the ownership tags, we extended the system memory with

ownership tags that are transparent to developers. The entire memory hierarchy including

registers, caches, and physical memory, as well as binary files are extended. Joannou et. al

[93] surveys several forms of tag storage methods, such as expanding word width, or using a

shadow table, etc. Expanding word with stores tag bits in place the tagged memory object,

for example, expand 32-bit word to 36-bit word by adding an extra 4-bit tag. Shadow table

stores tag bits in a dedicated DRAM partition that is separated from the memory objects

being tagged. Expanding the width is ideal option, but lacks the real world hardware

support, while shadow table partition can fit into existing memory systems, but could

cause high DRAM access overhead. In this work, we have explored both forms of storage

in order to explore Capsule’s performance for different scenarios.

5.7.2 Toolchain Support

The compiler based toolchain needs to be extended to support ownership. First, the

compiler parses user annotations and set ownership values for code or data as directed

in the program’s source code. Second, in addition to user annotation, the compiler also

needs to reason about program properties and infer ownership automatically, so that we

can enable certain security policies without user annotations (such as stack/heap object

protections). This also requires the compiler to understand security policies and invoke

corresponding analysis and instrumentation passes, such as the pass for return address

protection in Section 5.5.1.

Third, the compiler needs to add ownership sections in the object files it generates,

to store ownership tags for corresponding instructions and data in the binary. Internally,
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compiler will maintain and propagate the ownership information properly throughout its

pipelines (such as IR code generation, instruction selection/lowering, machine code assem-

bling, machine code emission, etc.) and composite proper binary sections (e.g. .owner-

ship.text section for the instructions in .text section, and .ownership.data for global

values in .data sections).

Fourth, the compiler needs to support a few new ownership instructions, specifically, the

capcolorset, capcolormatch. The capcolorset instruction can be used to initialize the

ownership tags during program start and capcolormatch explicitly directs the processor

to check ownership during cross-capsule calls.

Last but not least, the linker and loader need to be extended to recognize the ownership

sections (such as .ownership.text) from object files. It will merge the relocatable object

files (such as main.o), and do proper relocation operations for the ownership sections, so

that the ownership is properly tagged to the right instructions and data. Final executable

will also be patched with the ownership initialization routines that will be executed at

program start (such as code in .init section). During program loading, the ownership

section needs to be loaded together with the regular text or data sections. In addition,

whenever a new page is mapped into address space (for example, during program loading),

the ownership tags in the needs to be initialized.

5.8 Implementation

Our prototype system contains 1) a processor extension supporting ownership tags checking

and manipulation; 2) tagged physical memory to store ownership tags in the memory

hierarchy including registers, caches, and main memory; 3) an LLVM based toolchain to

infer ownership statically and instrument legacy code to enforce ownership at runtime, and

finally generate binary executables with ownership information; 4) a set of example security

policies that can be enforced without any user refactoring efforts as well as customized

security policies that require minimal user annotation on security critical parts of the
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program.

5.8.1 Implementations for Functionality, Performance, and Feasibility

We build and evaluate our hardware system in combination of both system emulators

(QEMU) and architectural simulators (Gem5), as well as the synthesizable RTL codes (in

Verilog), to evaluate the system from different aspects:

1. QEMU emulator is extended to evaluate functional correctness as well as secure

properties of the Capsule system. It contains a functional MIPS ISA extension, a

shadow table based tagged memory model. It is fully compatible with our OS and

compiler extensions.

2. Tagged memory models are also implemented in Gem5 simulator to evaluate the the

performance of the tagged memory accesses. It contains a modified CPU extension

with tag access patterns along with two memory models with ownership tags. The

memory models are able to replay memory traces generated by the QEMU or CPU

traces generated by GEM5.

3. An open sourced 64-bit MIPS R4000 implementation (BERI [167]) is adapted with

our ownership design and we use it to evaluate the feasibility of the hardware adop-

tion. The processor is a single core with L1 instruction and data cache, L2 cache,

written in Bluespec [2]. Each L1 cache is 16K, direct-mapped, write-through, and

physically indexed. The L2 cache is shared between instruction and data and is

configured to be 64K, 4-way set associative, write-back, and physically indexed. The

new instructions are implemented as CP2 instructions.

We build our compiler toolchain based on the latest LLVM 11.0 and the operating

system is FreeBSD 13.0.
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Table 5.1: ISA Extensions to Load Instructions

Load Instructions Extension Description

Format:

ld $rd, $rs

Example Instructions:

ld, lwu, lld, ldl, ldr,
lhe, lhue, lhu, lbe, lb,
lbue, lbu, lwle, lwl,
lw, lwre, lwr, lle, ll

1. Load the ownership of source memory at [$rs].

2. Compare the ownership of source memory at [$rs] against the
ownership of this instruction.

(a) If the ownership values are non-zeros and different, throw
exception;

(b) If one of them are zero ownership, update the zero-
ownership value as the other non-zero value.

3. Check the tag of the source register $rs:

(a) If the tag of source register $rs contains non-zero ownership
(code pointer tag), and its different with the ownership of
the memory at [$rs], throw exception;

(b) If the tag of source register $rs contain object size informa-
tion (data pointer tag), and the value of $rs is out of the
range, throw exception;

(c) Otherwise, continue normal execution;

4. Load the memory tag at [$rs] and write back the ownership as
the tag of register $rd.

5.8.2 Processor Extension

As shown in Table 5.1 - 5.4, we extend the ISA semantics of legacy instructions to interpret

and enforce ownership rules, including store, load, and control flow instructions, as well

as non-memory access instructions. We also added two new instructions to initialize and

explicitly check the ownership in the program, listed in Table 5.5.

Load instructions: Table 5.1 describes the extension logic to the set of load instruc-

tions. Upon every memory load, the processor will check that whether the ownership tag

of the target data chunk matches the load instruction’s ownership tag. A mismatch will

be an ownership violation.

Store instructions: Table 5.2 describes how we extend the store instructions. Upon

every memory store, the processor will ensure that the target memory chunk has the same
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Table 5.2: ISA Extensions to Store Instructions

Store Instructions Extension Description

Format:

st $rs, $rd

Example Instructions:

st, sdl, sdr, swe, sw,
sh, sbe, sb, swle, swl,
she, swre, swr

1. Load the ownership of destination memory at [$rd].

2. Compare the ownership of the memory at [$rd] against the own-
ership of the current instruction:

(a) If the ownership values are non-zeros and different, throw
exception;

(b) If one of them are zero ownership, update the zero-
ownership value as the other non-zero value;

(c) Otherwise, continue normal exeuction;

3. Check the tag of the destination register $rd:

(a) If the tag of destination register $rd contains non-zero own-
ership (code pointer tag), and its different with the owner-
ship of the memory at [$rd], throw exception;

(b) If the tag of destination register $rd contain object size in-
formation (data pointer tag), and the value of $rd is out of
the range, throw exception;

(c) Otherwise, continue normal execution;

4. Store the tag of the register $rs as the tag of memory at [$rd]
(command issued at memory access stage).

ownership tag as the instruction. However, if the ownership value of the data is empty(such

as 0), the store instruction will set the data’s ownership the same as the instruction. This

will be a convenient way to initialize the the ownership of data newly allocated on the

stack or heap.

Control Flow Instructions: Table 5.3 describes the extension logic to the legacy

control flow instructions. Instructions loaded from the memory into the processor will also

load the ownership tag into the processor. More specifically, upon every update of the

program counter register the ownership tag of this register will also be updated as the

ownership tag for that instruction in the memory. All legacy control flow instructions,

such as call and jump, will also being checked, such that the target code has the matching

ownership with the control flow instruction.
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Table 5.3: ISA Extensions to Control Flow Instructions

Instructions Extension Description

Format:

inst target

Example Instructions:

j, jal, jr, jalr, beq, bne

• Check the ownership of the target instruction and the ownership
of this branch instruction;

1. If values are different and one of them is zero ownership,
update the zero ownership as the other non-zero one;

2. If both values are the same, either zero, or non-zero, con-
tinue normal execution.

3. If both values are non-zero, but different, throw exception.

Table 5.4: ISA Extensions to Non-memory Access Instructions

Instructions Extension Description

Format:
inst {$[regs]|[imm]}

Example Instructions:
mov,movn
add, sub,mul, div
and, or, nor, slt

• Check the ownership of each register operator against the owner-
ship of this branch instruction:

1. If both values are the same, continue normal execution;

2. If values are different and one of them is zero ownership,
update the zero ownership as the other non-zero one;

3. If values are different, throw exception.

Non-memory Access Instructions: Table 5.4 lists the extended logic to non-

memory access instructions. Basically, for all non-memory access instructions, we update

them to apply the ownership propagate rules. For example, based on the rule of First-

Touch-First-Own (FTFO), we could update the ownership tag for the register operands.

For operands that are not registers (such as immediate values), we do not process the

ownership information since these content are not tagged.

New Instructions: As shown in Table 5.5, we add three new instructions to support

direct memory tag process:

• OwnershipSet(paddr, size, ownership) (instruction capcolorset): this is an
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Table 5.5: New Instructions for Ownership Manipulation

Capsule Instruction Description

capcolorset $rd, $rs, $rt Set the ownership as $rt for memory object at address starting
at [$rd] with size as $rs.

capcolormatch $rd, $r1, $r2 Set $rd = 0 if the ownership of the memory at [$r1] and [$r2]
do not match; Otherwise, set $rd = 1.

capbcolormatch $rd, offset Branch to offset offset if the ownership of this instruction matches
with the target memory at [$rd]

instruction to update the ownership ID of the memory chunk at specified address

and size.

• OwnershipMatch(result, paddr1, paddr2) (instruction capcolormatch): this

new instruction can be used to explicitly check whether two given memory chunks

addressed by r1 and r2 have the same ownership ID.

• BranchIfOwnershipMatch(target, offset) (instruction capbcolormatch): this

new instruction can be used to branch to a certain offset when the given memory

address have the same ownership ID as this instruction.

5.8.3 Toolchain Extension

We build our toolchain based on LLVM infrastructure. Several tools are extended to

support capsule ownership, including the clang frontend, backend, linker, loader, etc. This

section explains how we extend the toolchain to initialize, propagate, and generating codes

with capsule ownership information in the compilation pipelines, including passes that

can automatically infer ownership values in order to automatically enforce certain security

policies without user annotation.

Here is a list of important changes to the toolchain:

1. Clang support: We extended clang front-end to parse user annotation on the source

code and pass the information down to the LLVM IR representations during clang

code generation.
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2. LLVM IR support: We create LLVM passes to reason about the ownership of memory

objects and instructions according to ownership propagation rules. We also create

passes to initialize the ownership values based on given security policies.

3. LLVM CodeGen pipeline support:

(a) We updated the CodeGen passes to hand over ownership values from LLVM IR

layer to LLVM DAG Nodes and finally to Machine Instruction (MIR) layer while

going through the pipeline stage of instruction selection, instruction scheduling

and formation (DAGISel), machine code optimization (MIR).

(b) At final stage of machine code emission, we emit instructions (e.g., to section

.text) and global values (to section .data) with their ownership information. A

new section will be created for each section with ownership tags. For example,

.ownership.text for the code section .text.

4. LLVM LLD support: During linking stage, the LLD is adapted to do necessary

relocation to the ownership information corresponding to the relocation of its orig-

inal sections it is mapping to. For example, relocate the .ownership.text section

while the corresponding .text is relocated. The final executable or loadable object

will contain a synthetic ownership section .capsule which is a combination of all

.ownership.x sections in the list of input object files.

5.8.4 Ownership Space Management

A 32-bit ownership ID is implemented for every 32-bit memory chunk in our prototype

system. User annotations in the source files can use arbitrary ownership IDs, but will

probably be relocated during compilation to maintain the flat ownership space over all the

capsules being created internally in the compiler. Before linking, different object files can

have same ownership IDs being assigned, similar to the virtual address assignment inside

each object file. Then, during the linkage time, the linker need to be able to resolve the
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ownership conflicts and do necessary relocation where necessary. Each ownership entry in

the object file has flags that direct the linker to take proper actions on resolving the conflict.

If two object files have ownership entries that being assigned with a same ownership ID

and the ownership entry is flagged with MERGE, then the two entries will be merged into

one in the output file. Otherwise, one of the entry will be updated with a new ownership

ID.

5.8.5 Two Forms of Tagged Physical Memory

DRAM

Tag Cache

L2$

I$ D$

CPU

(a) Shadow Memory Tagging

DRAM

L2$

I$ D$

CPU

(b) In-Memory Tagging

Figure 5.7: Two Memory Models

To explore the performance impact, our tagged memory are implemented in two forms:

1) memory tags in a shadow memory table in a dedicated physical memory partition as

shown in Figure 5.7(a), and 2) in-memory tags where every 32 bit of memory is directly

extended to store its 32 bit tag as shown in Figure 5.7(b).

Shadow memory table has similar implementation as the tagged memory in CHERI

[164, 171]. But in contrast to the tagged memory in CHERI, we also tagged the instructions

cache in addition to the data cache at L1 cache, and we use 32-bit tags per 32-bit memory

instead of 1-bit tag per 128 bits (or 256 bits) memory used in CHERI. In addition, the

interpretation of the tags for pointers and non-pointer data are different with CHERI as
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we have discussed in Figure 5.3 - 5.5.

Ownership tags is implemented in physical memory instead of the virtual memory. This

is in consistency with the strategy of physical memory based processor caching approach

which avoids the a various of addressing issues for virtual memory based caches. In ad-

dition, the ownership tags can be efficient in performance when implemented in physical

memory along with the existing cache support in the physical address space.

5.9 Security Evaluation

The Capsule provides basic mechanisms to enhance memory safety of the computer system.

It is designed to support as many security policies as possible. In this section, we will first

compare our mechanisms with serveral state-of-the-art memory safety solutions. Then we

present several exemplar security policies we can implement based on Capsule, from both

the aspect of inter-domain isolation and intra-domain pointer safety.

5.9.1 Capsule Security Features

Table 5.6 shows an overview of Capsule’s advantages over a collections of state-of-the-art

isolation mechanisms and Table 5.7 shows the comparison with several general memory

protection mechanisms. We have four major advantages (More details of the related mech-

anisms will be discussed later in Section 5.11).

First, as shown in Table 5.6, Capsule framework is the only one that could enforce

memory isolation at the granularity of both data word and instruction. Comparing to BGI

[33] which can isolate a single data word by interposing every write instructions, Capsule

in addition is capable to isolate a single instruction by the ownership tag, not just the

data word. This enables Capsule to seamlessly isolate different instructions inside a single

function, for example, during the protection of return address on the stack. As shown in

BGI [33], The fine-grained isolation helps to avoid wasting memory space and keep the

legacy memory layout unchanged, in contrast to the traditional page-table based memory
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Table 5.6: Features of Cross-Domain Isolation Mechanisms

Process
Model

CPU
Ring

Intel
SGX

Intel
MPK

ARM
MPU SFI BGI CHERI Capsule

Architectural Ext.      # #   

G
ra
nu

la
ri
ty Instruction # # # # # # # #  

Word # # # # # #  #  

Sub-Object # # # # # #    

Object # # # # # #    

Page #     #    

Region #         

Auto. Isolation # # # # # #  #  

Ctx. Free Call # # #  # #  #  

Function Part. # # # # # # # #  

Kernel Part. # # # # #   #  

Application Part.       #   

Unlimited Domains  #  # # # #   

Read Isolation      # # #  

Write Isolation      # #   

Untrusted OS # #  # #  # #  

Mutual Untrusted  #     # #  

Malicious Code       # #  

B
ac
kw

ar
d

C
om

pa
ti
bi
lit
y Legacy

Code/API   # # # #  #  

Legacy
Layout   # # # # # #  

New ISA #     # #   

protections. This also enables Capsule to protect a tiny memory location (such as return

address, or a single element in a struct) without using any dedicated mechanisms that only

target a single kind of vulnerability (such as stack canary, shadow stack, etc).

Second, Capsule supports automated deployment of isolation, where most of the mech-

anisms in Table 5.6 cannot (except BGI [33]). Our framework requires minimal or none

user annotations and supports automated boundary discovery for program partitions by

combining both the static and dynamic information. All other isolation mechanisms are

mostly built on top of isolation interfaces that the compiler cannot understand, such as the
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Table 5.7: Features of Intra-Domain Pointer Safety Mechanisms.

Intel
MPX

Java
VM

Hard-
Bound

Soft-
Bound CETS CHERI ARM

MTE Capsule

Spatial Safety     #  G#  

Temporal Safety   # #   G#  

Trust Root in Hardware  #  # #    

B
ac
kw

ar
d

C
om

pa
ti
bi
lit
y Legacy

Code/API  #  # #    

Legacy
Layout  #    #   

New ISA    # #    

Support Separation # # # # #  #  

operating system interfaces or a new set of library interfaces. Although these interfaces

for separation are generic to any applications, the adoption to the legacy programs still

heavily relies on human efforts. However, Capsule create a new separation mechanism

based on the ownership of every memory word, which is simple enough to be lowered into

the language level concepts and can be easily understood by the compiler as well as the

underlying hardware. This brings a higher level of automation and backward compatibility

during the deployment of Capsule framework. Comparing with the automated isolation in

BGI [33], we do not reply on a new secure library interfaces and compiler instrumentation

to every memory access and redirect them to go through a access control list checking

that can cause high overhead when the number of checks increases (this directs BGI not

to check all the memory reads [33]).

Third, Capsule is the only hardware extension that supports context-free cross domain

calls (where software solutions SFI [159] and BGI [33] also support). The security of

the separation is achieved by creating ubiquitous ownership identities for every smallest

element in memory. With each piece of memory content has its own ownership identities, we

could easily switch the processor’s execution from one domain to another without updating

all the processor’s current state and other domain related data structures, such as stack

switches, extra copies, page table updates, etc. It is still safe because the access control
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of memory contents does not depends on any processor’s state, nor any domain related

data structures stored in memory (such as page table permissions), but only depends on

the ownership identity of the memory, which is transparent to the running applications.

These benefits are similar in BGI [33] since every byte in memory have a access control

list to contorl its permissions. But BGI [33] only prevents writes and indirect jumps, does

not prevent illegal read across domains. SFI [159] does not require context switches but

number of domains are rather limited since the size and the placement of the isolated

memory regions needs to be carefully designed in order to be fit into a convenient check in

serveral instructions. More importantly, BGI and SFI rely purely on software, thus trusted

root lacks insurance from the hardware.

In the following, we evaluate the security features of the capsule design with more

detailed memory safety policies we can enforce.

5.9.2 Spatial Pointer Safety with Bound and Ownership Check

1 OWNERSHIP(111)
2 uint8_t global_int[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}; /∗ developer assigned ownership, 111 ∗/
3 char global_secret[] = "This is a secret.\n"; /∗ compiler assigned ownership, e.g. 112 ∗/
4 int user_get_global(int index){
5 //buffer overwrite if index>16
6 // ownership and pointer bound will both be checked.
7 return global_int[index]; /∗ generated instructions has compiler inferred ownership, 111 ∗/
8 }
9

Figure 5.8: Spatial Safety for a Global Variable

Capsule guarantees spatial safety for both global values and local values, including the

objects stored in the global section (e.g., .data), as well as these on the stack and the heap.

The object can either be address-taken or not address-taken. Address-taken objects will

be protected by both the ownership tags on instructions and the object words, as well as

the data pointer tags which prevents out-of-bound pointer references. Non-address-taken
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objects will be protected by only the ownership tags.

Figure 5.8 shows a code snippet where a buffer overflow could happen at line 7 but

can be prevented in Capsule. Global variable global_int and global_secret will be assigned

with different ownership tags, 111 and 112, respectively. The ownership could be given

either by program annotation or by the compiler.

The array global_int is accessed via a pointer (thus address-taken) inside the function

user_get_global, thus the corresponding object bound information will be tagged to the

pointer. In addition, instructions accessing the global_int will also be tagged with corre-

sponding ownership identity inferred by the compiler (here 111). Therefore at line 7, there

will be two checks that could prevent the illegal access to the array of global_int :

1. Check by Bound: after the address is computed at line 7, and before the address is

used to issue a memory request, the processor will check whether the resulting address

is within the bound. If it is out of bound, the processor will throw an exception.

2. Check by Ownership: The ownership of the load instruction at line 7 could be

checked against the ownership of the object at that address. If the address points to

global_secret, the instruction will fail. Note that this requires to load the ownership

tag of the target address before the actual data is accessed.

In our implementation, both checks will be used for pointer derived memory access, such as

ones in this example. And for non-pointer derived accesses, only the former check will be

in use. The spatial safety for objects on the stack, as well as on the heap are also protected

with the same policies. Note that the spatial safety achieved by ownership checks are

limited by the scope of capsules it is living in. If different non-address taken objects have

the same ownership, then spatial safety between these non-address taken objects cannot

be guaranteed. This problem should be negligible since the access of non-address taken

objects can be easily checked during compilation time.
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5.9.3 Temporal Pointer Safety with Ownership Separation

Temporal safety errors can happen both on the heap and the stack, such as use after frees

and double frees on the heap, as well as dangling pointer dereferences into the deallocated

stack frame [117, 155]. These can be generally classified as two forms: dangling pointer ref-

erences to deallocated stack/heap objects and dangling pointer dereferences to re-allocated

heap objects.

In Capsule, the ownership of the deallocated stack frame or heap objects will have

different ownership tags with the executing instructions. Therefore, dangling dereferences

to deallocated memory will be prevented by ownership checks. In the following, we will

show that Capsule ownership tags are also effective to protect dangling references to re-

allocated heap objects.

The dynamic memory management interfaces such as malloc()/free() in libc is up-

dated to support ownership. The code changes to these interfaces implementation are

negligible. For example, only one instruction is inserted after the malloc()/free() call

site to initialize the ownership tags for the allocated heap objects.

Every heap objects will be allocated with its ownership identity corresponding to the

allocation site. The ownership of the allocated memory will be initialized before the object

is returned to the caller. Upon an instruction that accesses a heap object, the ownership of

the instruction will be checked against the ownership of the object. Therefore, if a chunk

of heap memory is freed by current capsule and reallocated to another capsule, current

capsule cannot access it anymore, which prevents user-after-free bugs. Before the object

is freed, the ownership will be checked that the caller has the right ownership to free the

object, which prevents double-free bugs. After the object is freed, the ownership tags to

the corresponding memory will be cleared.

Listing 5.9 shows a code snippet for temporal safety defense. At line 7, the call to

malloc() will return an object with an ownership tag. At line 9, the call to free() will

clear the ownership tags for the object. At line 10, a new allocation is requested and the
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1 void init_array(int ∗ptr, int size){
2 for (int i=0; i<size; i++)
3 ptr[i] = i∗2+1; // bound + ownership check
4 }
5

6 int main(){
7 int ∗ptr = (int∗) malloc(size ∗sizeof(int)); /∗ ownership tagged for the object ∗/
8 init_array(ptr, size);
9 free(ptr); /∗ ownership checked, then cleared ∗/

10 int ∗ptr2 = (int∗) malloc(size ∗sizeof(int)); /∗ new ownership tagged for the new object ∗/
11 ∗ptr; /∗ ownership does not match, exception ∗/
12 free(ptr); /∗ ownership does not match, exception ∗/
13 return 0;
14 }
15

Figure 5.9: Temporal Safety for Heap Object

memory region is tagged with a new ownership identity. A use-after-free in line 11, and

a double-free at line 12. Both cases are detected by checking the ownership tags in the

processor at runtime.

5.9.4 Code Pointer Integrity for Control Flow Protection

Code Pointer Integrity or Code Pointer Separation (CPI/CPS) [99] is shown to be effective

in practice to defend against control flow hijacks. It provides stronger security guarantee

than Control Flow Integrity (CFI) [11, 120, 177, 179], which is recently to be shown

ineffective [32, 55, 75].

CPI/CPS stores all code pointers in a safe region and prevents attackers from forging

code pointers by leveraging memory vulnerabilities. However, the safe region in original

CPI lives in a dedicated memory protected with special designs, such as segmentation,

SFI, etc. This requires program instrumentation to redirect all the original code pointer

related accesses to the safe memory region, along with runtime support that facilitates the

pointer accesses at runtime. Even the Code Pointer Separation (CPS) could reduce some

code pointer related redirection, it still require the safe region to be separated from the
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original memory, which means the original memory storing code pointers are wasted.

However, with Capsule, the safe region in CPI/CPS could be easily implemented by

tagging the region with a dedicated ownership. But in contrast, we support more smaller

safe regions that can be protected with different domain identities instead of treating them

as a single protected domain, which further improves the security of the design by stricter

isolation. In addition, the redirection to all the code pointer access instructions in the

original CPI/CPS are not needed – all code pointer access instructions just need to be

tagged with the same ownership of the code pointers. In this way, we could protect the

code pointer integrity in place without allocating a special memory region to store the

critical pointers with access redirection.

5.9.5 Control Flow Defense against Malicious Capsule

CPI/CPS based control flow protection are designed to defense memory safety program-

ming bugs but cannot defense against malicious code [99]. In Capsule system, we support

running arbitrary malicious code in a capsule, similar to the isolation between sandboxes

or kernel/user isolation in an OS. Cross domain calls between a malicious capsule and the

victim capsule are protected by preventing arbitrary branches or returns from a malicious

capsule into the middle of another victim capsule. Return addresses are already protected

with our return address capsule, as we already discussed in the section 5.5.1. Now we

discuss how to prevent a malicious capsule (with arbitrary code) jumping into another

capsule in an arbitrary place.

We can pad to the head of each legal entry point with a dummy instruction that is

tagged with the same ownership as the branch instruction. Therefore, branch instructions

that wish to jump into this entry must have the same ownership as the this dummy target

instruction. In this way, the control flow instructions will be allowed only to jump to the

given target instruction at the function header. A malicious capsule will be unable to jump

to a wrong function or jump into the middle of any instructions inside a capsule.
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Table 5.8: Security Policy Examples Supported by Different Mechanisms

Isolation Pointer Safety

Return
Address
Isolation

Code
Pointer
Isolation

Heap
Object
Isolation

Malicious
Code

Isolation

Spatial
Safety

Temporal
Safety

Intel MPX # # # #   

Java VM # # # #   

HardBound # # # #  #

SoftBound # # # #  #

CETS # # # #   

ARM MTE # # # # G# G#

Intel CET [149]   # # # #

CFI [11] # # # # # #

CPI/CPS [99]   # # # #

Process Model # # #  # #

CPU Rings # # #  # #

Intel SGX # # #  # #

Intel MPK # # #  # #

ARM MPU # # #  # #

SFI # # #  G# #

BGI # # # # G# #

CHERI # #     

Capsule       

5.9.6 Comparison in Supported Policy Examples

Table 5.8 lists several state-of-the-art isolation and pointer safety mechanisms both from

the academic and industry. We can see that only Capsule system could support all the

policy examples. This is achieved by our systematic software-hardware co-design and the

ubiquitous ownership tags in the memory that most other mechanisms do not have.

5.9.7 Example: Prevent Heartbleed with Two Levels of Defenses

The HeartBleed [1, 64] vulnerability is a simple example to show our defencing effectiveness

in real world attack scenarios. Heartbleed allows an attacker to reveal up to 64kB of

memory to a connected client or server by sending a specially crafted heartbeat packets.
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A missing bounds check in the handling of the TLS heartbeat extension can be leveraged

to over read the memory.

In our Capsule system, the illegal accesses to memory objects can be prevented by two

levels of our defenses: the spatial pointer safety check and the heap object isolation. First,

each pointer pointing to the heap is tagged with based and bound information. So when

the pointer is out of bound and dereferenced, an out-of-bound exception will be thrown

by the processor. Secondly, after a heap object is allocated (e.g., via malloc), the heap

object is tagged with a unique ownership. Instructions that access this object will also be

tagged with the same ownership, either during compilation (via static ownership inference)

or during execution (via memory colonization). Therefore, if the any of these instruction

overflows to access illegal memory objects that are not tagged with the same ownership, it

will be detected and prevented by the processor. Similarly, any illegal instructions that have

different ownership tags cannot access these heap objects. The former defense prevents

out-of-bound programming errors, while the latter defense helps to prevent malicious code

or arbitrarily faked pointers being used to corrupt the heap object.

5.9.8 More Security Policies

In addition to the memory safety issues shown above, it is also notable that capsule system

is able to enforce more flexible security policies. Given the rich ownership namespace (up

to 32-bit tag for every 32-bit memory), we are expecting more use cases will be developed.

For example, a stronger control flow integrity policy could be made possible to avoid control

flow hijacks shown in [32, 55, 75]. We leave these in future work.

5.10 Hardware Feasibility and Performance

5.10.1 Hardware Feasibility

In addition to run our experiments on simulators, we also implemented the hardware

using Bluespec hardware description language, which is built on top of the CHERI-MIPS
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Table 5.9: Processor Unit Test Results

failure error pass pass ratio

BERI 49 277 2120 86.6%

Capsule-DCache 49 277 2120 86.6%

Capsule-Full 61 343 2042 83.5%

processor. The implementation of the hardware prototype is evaluation directed and not

fully functional.

The processor ships with a unit test suite which is a composition of Bluespec simulator,

the MIPS toolchain, and the Python Nose test framework. The test suite contains 2446

unit tests, each is testing a different ISA interface features. The original processor will

pass 277 failures and 49 errors where most of them are due to certain processor features

(such as FPU) are disabled during testing. Then we gradually add ownership tag support

to the processor: first add to data cache, L2 cache, and tag cache; then we extend tag to

the instruction cache as last step.

Table 5.9 shows the result from running the test suite before and after we add our

changes to the processor. We can see that original BERI has a pass ratio of 86.6% due

to certain processor features are disabled. Then after we add the ownership tag support

to the L1 data cache, L2 cache, as well as tag cache (Capsule-DCache), it ends up the

same failure ratio. However, when we add ownership tag to the L1 instruction cache,

and implemented a full fledged ownership checking logic in the processor (Capsule-Full),

certain functions start to fail. This is because our ownership tags is not fully compatible

with the CHERI-MIPS architecture, where a 1-bit tag is used to tag whether this memory

location is stored a pointer or not. Therefore, when a memory location is a pointer and is

tagged by the BERI processor, our ownership tag operation in the processor will interfere

with it.

However, this does not happen in our simulator since we explicitly implemented the

simulator such that we do not have conflict with the original BERI simulation. We can



5.10. HARDWARE FEASIBILITY AND PERFORMANCE 151

either do it by simply disable the CHERI feature in the simulator or by adding simple

bit manipulations to avoid the interference. However, this can be non-trivial to do in the

hardware implementation and not necessary for the feasibility verification. Therefore we

left this to our future work.

5.10.2 Memory Performance

It is easy to see that our hardware changes to the processor is negligible in terms of perfor-

mance impact, except the tagged memory we have added to the processor. This is because

every memory access instruction or instruction fetch will now have two physical memory

requests, one for original memory content, and another for memory tags. Therefore, our

primary evaluation focuses on the memory overhead caused by ownership tag accesses.

In the processor implementation, both the L1 instruction and data cache, as well as L2

cache are extended to hold ownership tags along with every data blocks. A last level tag

cache is added to store only recently accessed tags. All memory request will go through the

last level cache component but only tags are processed here and regular non-tag memory

requests will be simply forwarded without querying the tag cache. Therefore, the perfor-

mance overhead can be observed from the memory traffic between the main memory and

the last level tag cache.

To evaluate the memory overhead, we collect all the memory traces generated by the

processor from QEMU simulator, converting them from virtual addresses to physical ad-

dresses, and then replay these traces on Gem5 simulator. We implemented our own cache

models on the Gem5 memory simulator. One model simulates a shadow table based tag

implementation and the other simulates the in-memory tag implementation. Both models

contain L1 and L2 cache and use Traffic Generator in Gem5 as the driver to replay the

traces and collect the results. For the in-memory model, we also added another configura-

tion with double size cache capacity to explore the performance bottle neck.

Table 5.10 shows the result we collected for the shadow table based tag implementation.

The Baseline is the original program execution with no capsule ownerships. The Tagged
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Table 5.10: Memory Overhead with Shadow Table

Baseline Tagged Cache avg
+%

stage warmup iters warmup +% iters +%

CPU R
Latency(ticks) 5373.45 5373.24 11013.71 104.97 10993.76 104.60 104.78

CPU W
Latency (ticks) 3157.66 3157.83 5812.05 84.06 5802.15 83.74 83.90

CPU Packets
(#) 32648658 32648657 32648658 0.00 32648657 0.00 0.00

Memory R
Requests (#) 1034021 1033936 2034159 96.72 2030620 96.40 96.56

Memory W
Requests (#) 1025823 1033933 1947978 89.89 2024220 95.78 92.84

Memory
Packets (#) 3093868 3101808 6021753 94.64 6091860 96.40 95.52

Memory Traffic
(bytes) 131830016 132343616 254856768 93.32 259509760 96.09 94.71

Cache column shows the data for the configured tagged memory hierarchy with the main

memory being partitioned into a shadow table and regular memory. Each trace is replayed

for three times consecutively by Gem5. The first time is for system warm up. The table

shows the following two iterations of run, as in column iter 1 and iter 2 along with the

percentage of increase.

From the first two rows of Table 5.10, we could see that the CPU latency has the

average overhead from 83.9% for CPU writes and 104.78 % for CPU reads. The number

of CPU packets does not change because each regular packet is extended with memory tag

thus there is not need to issue standalone packet just for the tag. The numbers of memory

read and write requests, as well as the memory traffic are almost doubled. This traffic

happens at the interfaces between the main memory and the last level cache. The traffic is

doubled because every regular memory request will additionally request its memory tags

that resides in another memory partition. The address of the two requests are usually far

away and hard to be pre-fetched or optimized.
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Table 5.11: CPU and Memory Traffic with In-Memory Tag

Baseline Cache with In-Memory Tags

Stage iter 1 iter 2 iter 1 +% iter 2 +%

CPU R
Latency (ticks) 5373.25 5373.25 9763.81 81.71 9763.81 81.71

CPU W
Latency (ticks) 3157.84 3157.84 5105.49 61.68 5105.49 61.68

CPU R
Request (#) 2230288 2230288 2230288 0 2230288 0

CPU W
Request (#) 30418370 30418370 30418369 0 30418369 0

Memory R
Requests (#) 1033937 1033937 2016316 95.01 2016316 95.01

Memory W
Requests (#) 1033934 1033934 2016305 95.01 2016305 95.01

Mem Traffic
(bytes) 132343744 132343744 258087744 95.01 258087744 95.01

Table 5.11 shows the results of our second cache model – in-memory tag implementa-

tion. From the first two rows, we can see the average CPU read/write latency drops to

81.71%/61.68% compared to 104.78%/83.90% of the shadow table implementation. This

is because that in the in-memory tag implementation, the address of the tag request is

adjacent with the regular memory request, which can usually be served by a single cache

hit or a single memory access, instead of two cache hits or two memory accesses as in the

shadow table-based implementation.

However, the in-memory tag implementation still incurs much overhead

(81.71%/61.68%). To understand the bottleneck, we reconfigured the memory model with

double-size cache (L1 and L2). The result is shown in Table 5.12. From the result, we

can see the CPU latency overhead has decreased a little bit, from (81.71%/61.68%) to

74.70%/51.12%, so as the memory traffic, down from 95.01% to 81.71%. This tells us the

cache size might not contribute to the high overhead in the in-memory tag models. We

expect the performance bottleneck lies in the fixed memory bus width, where both the
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Table 5.12: CPU and Memory Traffic with Double-Size Caches

Baseline Double-Size Cache

Stage iter 1 iter 2 iter 1 +% iter 2 +%

CPU R
Latency (ticks) 5373.25 5373.25 9387.30 74.70 9387.30 74.70

CPU W
Latency (ticks) 3157.84 3157.84 4772.00 51.12 4772.00 51.12

CPU R
Request (#) 2230288 2230288 2230288 0 2230288 0

CPU W
Request (#) 30418370 30418370 30418369 0 30418369 0

Memory R
Requests (#) 1033937 1033937 1878746 81.71 1878746 81.71

Memory W
Requests (#) 1033934 1033934 1878742 81.71 1878742 81.71

Mem Traffic
(bytes) 132343744 132343744 240479232 81.71 240479232 81.71

tag values and regular memory values are sharing the same bus. So we suggest to expand

the width of the memory bus to improve the overall performance.

5.11 Related Work

Below we discuss existing memory protection mechanisms including pointer protections in

Section 5.11.1, and then isolation mechanisms in Section 5.11.2. Separation strategies will

be discussed in Section 5.11.4. Then we discuss related work on memory ownership (in

Section 5.11.5), and systems with memory tags (in Section 5.11.6).

5.11.1 Memory Access Control

Access control mechanisms for memory safety have been evolving very slowly. The most

traditional solution are memory segmentation and page table based memory management,

where the memory space are divided into a set of segments or pages and each one can have

different permissions on it, such as permission bit for read, write, and execute, or privilege
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bit, etc.

Page table based memory protection has been widely adopted in contemporary ma-

chines. Most of them have hardware extensions, such as TLB, that support the page

permission check. Built on top of the page management, we have seen several hardware

extensions that enforces domain isolation, such as CPU Rings [144] to separate user and

kernel space using the privilege level bit on each page, and Intel SGX [47] to build enclaves

inside an application by creating special pages in the Enclave Page Cache (EPC).

But page granularity does not fit very well when we need to protect small objects on the

same page, or large objects that occupy many pages. While the traditional segmentation

based memory protection might help, but many of its inherent problems (such as fragmen-

tation) have prevented it from being widely used today. Therefore, several object-oriented

memory protection solutions, such as those used in Java VM [158], HardBound [58], Soft-

Bound [116], CETS [117], Intel MPX [124], CHERI [134], and In-Fat Pointer [172], etc.,

have been used as complement to the limitation of page-based protections. These solution

rely on the fact that objects that needs protection are usually accessed via pointers, and

thus they can be protected by checking the metadata of the pointers, such as bound size,

permissions, etc.

However, we argue that memory protection at finer granularity, such as instruction

and data word, is useful for many use cases in privilege separation, which these page level

or object level protection solution cannot provide. For example, as shown in Program-

mandering [108], developers might need to separate a single function without rewriting

the function into two functions. Another example is the need of sub-object protection,

as discussed in CHERI [134, 166] and In-Fat Pointer [172], where an element of a data

structure might have different permissions as its parent and thus need to be managed

separately. But both of them only handle pointers as sub-objects, and does not handle

non-pointer sub-objects.

Therefore, none of existing solutions support the access control of a single instruction

or data word. Our Capsule framework is the first solution that can be used to meet this
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requirement.

5.11.2 Isolation Mechanisms

Saltzer and Schroeder’s 1975 article [138] listed the privilege separation and least privilege

as fundamental system design principles to improve security. Based on the underlying

isolation mechanisms, we classify isolation solutions into four groups: a) Isolation by

processes, with process management by OS kernel; b) Isolation by memory pages,

with page permission managed either by OS kernel or application, along with hardware

assistance for efficiency; c) Isolation by address validation, with permission check

code instrumented into the program by the compiler; d) Isolation by object oriented

memory access control, with permission embedded as object metadata.

Process-based separation model is the most widely used one. The pioneer work on priv-

ilege separation to prevent privilege escalation was purely done manually by rewriting the

single process OpenSSH into two different processes [130]. Most recent privilege separa-

tion work, such as Privtrans [29], Wedge [23], Chromium [133], Capsicum [163], lwC [106],

SOAAP [79], Program-mandering [108], create security domains using separated processes.

Isolation mechanisms built on top of page permissions are also very popular. The most

widely used one should be the CPU Ring-style solution [144], first introduced in the Multics

[44], which creates hierarchical protection domains in the address space. This is usually

enforced by assigning one privilege bit in the page table entry. However, the number of

domains is limited and the hierarchical protection does not support mutually untrusted

domains. Many recent isolation techniques, such as Intel SGX [47], Intel MPK [90], and

ARM TrustZone [16], are also built upon the page-based memory permission management.

Address validation is another mechanism used for domain isolation, which relies on

checking the address range as permission check. Many widely used Software Fault Isolation

(SFI) [159] techniques rely on the address validation. They usually leverage compiler

instrumentation to insert address pattern checking before every memory access, such as

Native Client [146, 173]. However, the number of address patterns that can be used for
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checking is limited by the width of the address and the size of the memory region must be

power of 2. For example, Native Client [173] and its portable version [146] only supports

two domains – trusted and untrusted, with one domain with 1 GB memory and another

with 3 GB.

Recently, object-oriented memory access control is found to be useful for domain iso-

lation. For example, the compartmentalization using object capabilities in CHERI [168]

platform can seal the code and data together into one compartment, which creates one

security domain, whose memory content is hiding against other objects and can only be

accessed via predefined interfaces. However, components in the object are defined based

on their pointer representations, which means that the non-pointer memory contents can

be hard to be encapsulated in some cases, especially when we need to separate a single

instruction or data word inside a function. In addition, CHERI’s compartments have to

be created manually by programming with a dedicated library. The interfaces between

different compartments are also need to be created carefully to maintain its functionality.

Overall, above solutions either only support coarse grained isolation, or a limited num-

ber of domains, or cannot build mutually untrusted domains, or the refactoring efforts to

the legacy programs during adoption remains high. In contrast, Capsule tries to avoid

their disadvantages and push the limits of their capabilities further, which can a) isolate

memory at finest granularity of instruction and data word; b) support mutually untrusted

domains, both in kernel and user space; c) reduce the manual refactoring efforts by compiler

assistance; d) provide context free domain switches.

5.11.3 Automatic Isolation

Here we use isolation to refer to the process where a list of separated modules and their

security requirements are given as input, then these modules will be isolated into different

security domains by leveraging certain kinds of isolation mechanisms. This process is

mostly focused on how to leverage specific isolation mechanisms to enforce the domain

isolation, and the security requirements or how to separate the programs are assumed to
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be known facts. In this sense, automatic isolation have been explored in several research

works.

BGI [33] is one of the pioneer efforts to pursue the automation of the isolation process.

It leverages compiler techniques to isolate untrusted kernel drivers automatically by instru-

menting the kernel drivers with pre-defined wrapper functions. However, the underlying

permission check depends on a software implemented access control list for every pointer,

which could cause high overhead if the number of the checked pointers increases, which re-

sults in only supports 16 isolated domains are supported. In addition, it supports only for

the isolation of different Windows kernel drivers, which leverages the special programming

interfaces of kernel drivers. This make it hard to be generally applicable to finer grained

isolation inside the kernel nor for the isolation of general user applications.

5.11.4 Automatic Privilege Separation

Here we use privilege separation specifically to refer to the process to analyze the program

and find out which module should be separated with other modules in a program. This

process is usually determined by the security semantic of the program, and is irrelevant to

what kind of isolation mechanisms will be used.

Privilege separation are mostly done manually as in [130], where developers rewrite

the program into several separated partitions or smaller sub-programs for separation. The

engineering process can be divided into two steps: boundary discovery and isolation

implementation [108]. The automation of boundary discovery and separation implemen-

tation are both challenging tasks. There have been pioneering work exploring automated

boundary discovery but rarely do we see research work that is able to support the automa-

tion of separation implementation.

Boundary discovery refers to the problem of grouping each piece of the program into

a proper partition, including how many partition of the program should be divided, to

meet specific requirements. As an open problem, it has attracted many pioneering work

in the past decades. For example, Privtrans [29] used static analysis and C-to-C compiler



5.11. RELATED WORK 159

transformation to partition the input source code into two programs: one as monitor

and another one as the slave. SOAAP [79] provides the reasoning capability of complex

applications to find possible program partitions based on user annotations. Program-

mandering [108] proposes to partition a single processed program into two processes based

on a control flow graph of the program and provides several options for user to choose

from. However, they do not automate the separation implementation, which means lots

of manual changes to the legacy code are still required in order to separate the program

after partition is discovered.

Separation implementation refers to the step when the program is actually instrumented

in order to separate the given multiple modules where each module contains its list of

source code (such as functions and global variables in PM [108], or driver source code in

BGI [33], or untrusted native code in Native Client [146, 173]). Unfortunately, all existing

domain isolation solutions [23, 29, 54, 79, 130, 146, 159, 162, 164, 165, 168, 173] heavily

relies on manually refactoring of the legacy program to leverage the separation logic or

services. For example, Native Client [173] requires the developer to rewrite the program

by replacing system services by NaCl trampolines. CHERI compartmentalization [168]

requires developers to rewrite the program using libcheri interfaces to create compartments.

Although BGI [33] did not require manual code changes, it could not be used for domain

isolation.

In contrast, Capsule does not require legacy code changes during the separation im-

plementation stage, which means we could fully automate this step. This reason we can

achieve this is very similar to the BGI [33] framework where byte-granularity access con-

trol is used to enforce type safety, as well as the isolation of kernel drivers. We both have

the capability of access control at byte granularity of the memory and switching between

different memory domains does not require the interposition of a special programming

interfaces.
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5.11.5 Ownership in Memory

Latest Rust programming language shows the powerful idea of ownership to protect mem-

ory from being corrupted. However, using new languages can be hard for legacy programs,

especially for large scale programs such as operating systems and device drivers, etc.

Wedge [23] also proposes ownership management for the protection of memory for

application and provides a set of interface for developers to use. Although the design does

not depends on a specific language, it does depends on the implementation of the operating

system, as well as heavy refactoring of the legacy programs.

5.11.6 Tagged Memory

Memory Tagging has been explored both in early and contemporary days. Early tagged

architectures can date back to 1960s-70s [71], such as LISP machines [169], Rice Computer

[70], etc. Each of them using tag for a various kinds of purposes, such as flagging pointers

or non-pointers, type information, or debugging information, etc.

Many latest architecture designs also embrace tagged memory to improve security.

ARM Memory Tagging Extension(MTE) [57] provides a 4-bit tag to every 16-byte regular

memory as well as a 4-bit tag to every pointer, then it implements a lock and key mecha-

nisms to defend against both temporal and spatial pointer safety issues. However, due to

the limited number of bit width, the protection is probabilistic, where different objects that

share the same tag value could still be overflowed or corrupted with spatial or temporal

vulnerabilities.

Intel MPX, PUMP [59], HDFI [153], CHERI [164, 168], etc. hardware supported ad-

dress sanitizer HWASAN [147], etc. Although some of them can be used to implement

isolation, such as CHERI and PUMP, none of them can be adopted without much refac-

toring efforts on the legacy programs.
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5.12 Conclusion

To summarize, this chapter reports our work in exploring fine-grained domain isolation by

embedding the security oriented ownership conception to the entire system stack, from the

applications, operating system, compiler tool chain down to the hardware processor. We

extended the processor’s legacy ISA to process ownership tags and designed our toolchain

and system extensions to seamless support ownership based domain isolation for legacy

applications. We have built our prototype system Capsule and evaluation shows it is ef-

fective to defense against many kinds of memory safety issues. However, the performance

evaluation shows that the current implementation has several drawbacks that can be im-

proved, such as the memory subsystem. With more improvement to our Capsule system,

we believe more performance optimizations can be made to reach a practical system and

more security guarantees are possible with new security policies being developed.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The new computing environments, such as edge and IoT environment, require more efficient

and more effective isolation mechanisms to be proposed. This thesis work describes and

resolves multiple problems of the traditional isolation mechanisms that have prevented

them to be used in the edge and IoT environment. These include the problem of live

migration across edge servers, the security monitoring problem on edge servers, and the

fine-grained isolation problem on IoT devices.

With our explorations, we have learned the necessity to revise the traditional isolation

mechanisms based on the specific requirements of the edge and IoT environments. These

requirements are largely originated from the new features in the new environment, such as

bandwidth and latency conditions, the new efficiency requirements, the available security

features, and the new hardware constraints, etc. More importantly, to compose an efficient

system, all these new features and requirements must be considered in combination instead

of only optimizing one of them. This has resulted in a deeply optimized system stack,

usually including both the software and the hardware, that aims to serve specific tasks.

To summarize, we can see that emerging new computing paradigm brings new oppor-

tunities of revising the traditional isolation techniques. This thesis only explores a small
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subset of these opportunities. We expect that many more opportunities will be discovered

and a various kinds of new isolation mechanisms or revisions for the edge and IoT platforms

will come soon.

6.2 Future Work

The problems illustrated in this thesis are resolved but the underlying technologies will

not stop evolving. With more and more new application scenarios emerging, such as

autonomous driving, drone delivery, etc., along with new hardware platforms being built,

such as AI processors, FPGA soft cores, RISC-V cores, etc., it is becoming more and

more effortless to compose new computer platform with brand new hardware and software

stacks. In the future, many newly designed systems will emerge with deeply customized

software and hardware for various of domain specific tasks. Given this trend, we will

need more innovations to compose efficient and effective isolation mechanisms for secure

resource sharing on these heterogeneous devices and applications. Therefore, in addition

to this thesis, it is urgent to continue revisiting the traditional isolation techniques. Then

we will be able to revise them or propose new isolation mechanisms to meet the new

requirements for these emerging applications.
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