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ABSTRACT 

Water quality in coastal waters is of great socio-economic concern. Human 

activities along the coast have led to an increasing number of impaired waterbodies and 

degraded ecosystems. To manage water quality issues, accurately modeling coastal water 

quality is vitally important. One traditional way to model water quality is using numerical 

models. Despite great advances in hydrodynamic modeling over the past few decades, 

water quality simulation is still challenging as the performance of water quality model 

depends on how well the complex biogeochemical processes are parameterized.  

While numerical models are the dominant tool for water quality modeling, there 

are increasing efforts in developing data-driven models in marine sciences. Several major 

challenges associated with data-driven models for coastal water quality are addressed in 

this dissertation. These challenges include difficulties in high-dimensional simulation, 

missing records in observational data, and uncertain watershed loadings.  

A data-driven model for coastal water quality is introduced in this dissertation. 

The proposed model has three major components including (1) forcing transformation 

auto-selection, (2) empirical orthogonal functions (EOF), and (3) neural network. It uses 

EOF to extract principal components of the target variable and applies a neural network 

to simulate the temporal variations of nontrivial components. Different from previous 

empirical models, the approach is able to simulate three-dimensional variations of water 

quality variables and it does not use in situ measured physical conditions but only 

external forcings as model inputs. 

The robustness of the model is verified with applications to predict temporal-

spatial distributions of key water quality variables, including dissolved oxygen (DO) and 

Chlorophyll-a (Chl-a) concentration in Chesapeake Bay. Using a major portion of 

historical shipboard monthly measurements and corresponding external forcings for 

training, the model shows good performance in terms of predicting both seasonal and 

interannual variations for the testing period.  

The model is also tested for high-resolution simulation using Visible Infrared 

Imaging Radiometer Suite (VIIRS) Chl-a data. The missing records in the satellite data 

are effectively interpolated by Data Interpolating Empirical Orthogonal Functions 

(DINEOF). An overall satisfactory model performance demonstrates that by combining 

DINEOF and machine learning, it is feasible to use data-driven models to predict high-

resolution spatiotemporal variations of water quality variables in coastal waters. 

Finally, to address the uncertainty in watershed loading, a typically important 

forcing for coastal water quality, an inverse method is introduced to estimate loading by 

combining observation and numerical model. In this method, an estuary is divided into 

multiple segments. Water and material fluxes between neighboring segments are 

computed from a set of linear equations derived from mass balance and the relationship 

between residence time and water fluxes. With sparse observational data, inversely 

estimated loadings agree well with loadings from a previously calibrated watershed 

model, demonstrating the reliability of the method. 

Overall, this dissertation highlights the potential of data-driven model for coastal 

water quality simulation. With the rapidly accumulated observational data and quick 

advances in machine learning techniques, data-driven approaches have great potential for 

water quality modeling and environmental management in the future. 
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GENERAL INTRODUCTION 

 

Water quality in coastal waters 

Water quality in coastal waters is of great socioeconomic concern to the majority 

of nations in the world. Over the 198 countries, 154 have part of their territory adjacent to 

the coastal ocean. About 40% of the population in United States live within 100 km from 

the coastline as of 2014 (NOAA, 2021). Human society relies greatly on the coastal 

ocean for food, fuel, recreational activity, marine transportation, trade, and associated 

economic activities. Overuse of the coastal seas and estuaries has led to an increasing 

number of coastal waters with impaired water quality and degraded ecosystems. 

Managing the related water quality issues and restoring the impaired coastal ecosystem 

requires a lot of resources and efforts. The “health” condition of the coastal ocean is thus 

a major concern to almost every nation. 

Extensive water quality issues emerge in the coastal ocean as a result of both 

anthropogenic activities and changing natural conditions. Deteriorated water quality 

conditions in coastal bays and oceans has been reported worldwide due to: increased 

nutrient load, land-use change, oil spills, wastewater discharge, and release of pollutants. 

The worsening condition has been reported for major water quality issues include 

eutrophication (Kemp et al., 2005), coastal hypoxia (Breitburg et al., 2018), ocean 

acidification (Portner, 2008), harmful algal bloom (Hallegraeff, 2003), bacterial infection 

(Stewart et al., 2008), and accumulation of microplastic (Wright et al., 2013). For 

instance, there have been significant changes in duration and intensity of hypoxia in 

estuaries and coastal waters during the past few decades, raising great concern from 
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environmental management agencies. Since 1950, more than 500 sites in coastal waters 

have reported hypoxic conditions, and fewer than 10% of these systems were known to 

have hypoxia before 1950 (Breitburg et al., 2018). The rapid spread of hypoxia 

worldwide is generally attributed to the increase of nutrient loading in past decades (Diaz 

and Rosenburg, 2008). In addition to anthropogenic activities, changing atmospheric 

conditions under the warming climate also likely worsens several major water quality 

problems. Recent studies suggest climate change (e.g., warming and changing wind field) 

and the resultant change in physical conditions (e.g., oxygen solubility and estuarine 

circulation) also contribute to worsened hypoxic conditions in lakes, estuaries, and 

coastal waters (Scully, 2010; Carstensen et al. 2014; Du et al., 2018). To understand how 

water quality responds to anthropogenic activities and changing oceanic-atmospheric 

conditions, accurately modeling water quality is critically important.  

Numerical model and data-driven model 

One traditional way to model water quality is using numerical model systems. A 

numerical model is a computer program that integrates primitive governing equations and 

empirical relationships to solve transport and mixing processes for a limited number of 

horizontally and vertically discrete grids in a finite domain. By parameterizing the linear 

and nonlinear relationships among different biogeochemical components and coupling 

the biogeochemical module with a hydrodynamic module, numerical model systems (e.g., 

CE‐QUAL‐ICM, Cerco, 1995; HEM3D, Park et al., 1995; FVCOM, Chen et al., 2003; 

ROMS, Shchepetkin and McWilliams, 2005; and SCHISM, Zhang et al., 2016) have 

been successfully applied in estuaries and coastal oceans for purposes of both process-

based scientific research and loading-centered water quality management. When applying 
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a numerical model to a realistic coastal ocean with complex bathymetry and time-varying 

external forcings, substantial efforts are needed to first calibrate the model. Commonly, a 

model is calibrated by comparing the model outputs to observational data. The model 

validity is thus somehow subject to the availability and representativeness of the 

observational data at a limited number of monitoring stations or at the surface layer only 

(e.g., satellite data). When a model is well-calibrated, the numerical model could be 

useful for diagnostic analysis and water quality management.  

Despite great advances in hydrodynamic over the past few decades, water quality 

modeling is still challenging. The challenges arise from several factors including but not 

limited to (1) the complexity of biogeochemical processes that regulate water quality 

variables in the water column and sediment (Fennel et al., 2006), (2) inherent errors 

associated with model structure and from the parameterization of these processes (van 

Straten, 1983), (3) the cascade of error in hydrodynamic simulation (Beck, 1987), (4) 

unavailability and uncertainty of loading data (e.g., for nutrient, sediment, and organic 

matter) (Boynton et al., 1995), (5) insufficient resolution of horizontal and vertical grids 

to resolve small scale mixing and advection, and (6) error in interpolated open boundary 

conditions particularly for boundaries in the open ocean where observational data are 

limited in both spatial coverage and temporal resolution. Improvements in water quality 

modeling will depend on the advances in our understanding of the biogeochemical 

processes, a lot of which are not yet fully explored or cannot be precisely parameterized 

with general governing equations as the underlying relationships are mostly site-specific.  

A numerical model can incorporate “known” relationships, but there are still 

extensive “unknown” or poorly recognized processes in the ecosystem system. To 
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include these unknown processes, data-driven models are more suitable. A data-driven 

model is based on analyzing the data about a system, in particular finding connections 

between the system state variables (input, internal and output variables) without explicit 

knowledge of the physical and biological behaviors of the system (Solomatine et al., 

2008). One major advantage of data-driven model is no requirement of fully 

understanding of the underlying dynamics, which makes it favorable for efficient 

forcasting and environmental management.  

While numerical models are the dominant tool for water quality modeling, there 

are increasing efforts to develop data-driven models in marine sciences, because of 

rapidly accumulated data and quick advances in data-based methods including artificial 

intelligence, computational intelligence, data mining, soft computing, and machine 

learning (see Solomatine et al., 2008 for a review of data-driven models). The data here 

refers to not only traditional shipboard survey and monitoring data at gauge stations, but 

also data from remote sensing and reanalysis oceanic-atmospheric models, which provide 

high resolution and frequency data covering a large area. By assimilating observational 

data, global or regional reliable reanalysis oceanic-atmospheric models can be a reliable 

source for external forcings as used in extensive numerical model applications. In 

addition, rapid advances in machine learning, stimulated by an increasing demand from 

industry, lead to availibility of readily applicable packages in both commercial 

programming languages such as Matlab and open-sources languages such as Python and 

R. The rapid development of the machine learning techniques, along with an increasing 

number of applications, prompts the growing demand and applications in marine science 

research and water quality management. Specifically, they have been used for remote 



5 

 

sensing (e.g., Keiner and Yan, 1998; Vilas et al., 2011), water level prediction (Bajo and 

Umgiesser, 2010; Ren et al., 2020), rainfall-runoff processes (Hsu et al., 1995; Van et al., 

2020), marsh classification (Morris et al., 2005), and algal bloom prediction (Muttil and 

Chau, 2006; Tian et al., 2017). 

Challenges in data-driven model for coastal water quality 

There are several major challenges when applying data-driven models to simulate 

coastal water quality. (1) First, previous studies tend to focus on the time series of water 

quality variable at one single location, which is a one-dimensional (1D) problem, and 

studies rarely target higher-dimensional problems. The spatial distribution, either 

horizontally or vertically, is also of great interest since water quality variables typically 

change in space. For instance, the hypoxic condition in Chesapeake Bay (Hagy et al., 

2004) and the Northern Gulf of Mexico (Rabalais et al., 2002) varies interannually and its 

spatial extent is a key metric to determine the severity of the hypoxic condition. (2) 

Second, when predicting the water quality condition at a given location, previous studies 

frequently use in situ measurements of other parameters at the same locations as the 

predictor. For instance, Ross and Stock (2019) used salinity stratification to predict the 

bottom DO. (3) Third, relevant data may have substantial missing records (e.g., blank 

area in satellite data due to cloud cover). Malfunction of instruments is inevitable, which 

will lead to at least some degree of data gaps. (4) Finally, the input forcing may have 

uncertainty. Taking nitrogen loading as an example, its value is typically given by 

discharge and nutrient concentration measurements at an upper river monitoring station. 

Not even considering the inherent error in the measurement, there are still uncertainties 

imbedded since point sources and diffuse sources from watershed feeding into the 
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downstream are typically not included. In addition, estimation of atmospheric deposition 

of nitrogen, which accounts for about 7% of the total nitrogen load (Boynton et al., 

1995), is also of great uncertainty.  

Objectives of the dissertation 

The overall objective of my dissertation is to address and discuss these 

challenges. I will propose a new data-driven approach to simulate 3D water quality by 

combining data dimension reduction method and artificial neural network. The model 

will be tested for different datasets, including long-term bi-monthly shipboard survey 

data and nearly daily high-resolution satellite data (with substantial gaps) in the 

Chesapeake Bay. Chesapeake Bay is chosen as an example coastal system to examine the 

model performance because there is comprehensive and available long-term data for both 

external forcing and target water quality variables. In addition, a method to estimate 

watershed loading by combining numerical modeling and in situ measurement will be 

introduced. Specific objectives of the enclosed four chapters are listed as follows.  

Chapter 1: A Machine-learning-based model for water quality in coastal waters, taking 

dissolved oxygen and hypoxia in Chesapeake Bay as an example. 

Objectives: To introduce and assess the performance of a data-driven model developed to 

simulate both one-dimensional bulk index and three-dimensional variations of water 

quality variables in coastal ocean. This chapter uses the vertical and horizontal 

distributions of dissolved oxygen in the mainstem of Chesapeake Bay (3D problem) and 

hypoxic volume (1D problem) as examples.  
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Chapter 2: A data-driven approach to simulate the spatiotemporal variations of 

chlorophyll-a in Chesapeake Bay. 

Objectives: To determine the feasibility of the data-driven model for a more challenging 

water quality variable (i.e., chlorophyll-a). Chlorophyll-a is known to vary in a much 

different way compared to other water quality variables (e.g., dissolved oxygen and 

salinity) that often change smoothly over time and space. The necessity of forcing 

transformation is also discussed.  

Chapter 3: Chlorophyll-a in Chesapeake Bay based on VIIRS satellite data:  

spatiotemporal variabilities and prediction with machine learning. 

Objectives: To address one key problem in a data-driven model – the missing data, which 

is especially common in remote sensing data. This chapter will discuss a promising way 

to interpolate the missing records in VIIRS satellite data. In addition, the feasibility of 

data-driven model for high-frequency simulation is examined.  

Chapter 4: An inverse approach to estimate bacterial loading into an estuary by using 

field observations and residence time. 

Objectives: To introduce a method to estimate the watershed loading using observations 

and modeled transport timescale. Loading is one major input forcing for forward 

modeling and yet typically known to have large uncertainties. The robustness of the 

method will be assessed.  
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CHAPTER 1. A MACHINE-LEARNING-BASED MODEL FOR WATER 

QUALITY IN COASTAL WATERS, TAKING DISSOLVED OXYGEN 

AND HYPOXIA IN CHESAPEAKE BAY AS AN EXAMPLE 

 

Published in Water Resources Research (2020, 56, doi: 10.1029/2020WR027227) 

Abstract: Hypoxia is a big concern in coastal waters as it affects ecosystem health, 

fishery yield, and marine water resources. Accurately modeling coastal hypoxia is still 

very challenging even with the most advanced numerical models. A data-driven model 

for coastal water quality is proposed in this study and is applied to predict the temporal-

spatial variations of dissolved oxygen (DO) and hypoxic condition in Chesapeake Bay, 

the largest estuary in United States with mean summer hypoxic zone extending about 150 

km along its main axis. The proposed model has three major components including 

empirical orthogonal functions analysis, automatic selection of forcing transformation,  

and neural network training. It first uses empirical orthogonal functions to extract the 

principal components, then applies neural network to train models for the temporal 

variations of principal components, and finally reconstructs the three-dimensional 

temporal-spatial variations of the DO. Using the first 75% of the 32-year (1985-2016) 

dataset for training, the model shows good performance for the testing period (the 

remaining 25% dataset). Selection of forcings for the first mode points to the dominant 

role of streamflow in controlling interannual variability of bay-wide DO condition. 

Different from previous empirical models, the approach is able to simulate three-

dimensional variations of water quality variables and it does not use in situ measured 

water quality variables but only external forcings as model inputs. Even though the 
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approach is used for the hypoxia problem in Chesapeake Bay, the methodology is readily 

applicable to other coastal systems that are systematically monitored. 

Keywords: big-data analysis; EOF; neural network; machine-learning; hypoxic volume 

1. INTRODUCTION 

 Hypoxia or low dissolved oxygen (DO) condition is one of the most critical 

environmental problems in coastal waters. DO concentration less than 2 mg/l is typically 

considered as the threshold for hypoxia, even though there are studies suggesting that the 

criterion should be region- and organism-specific (e.g., Vaquer-Sunyer and Duarte, 

2008). Hypoxic conditions could cause mortality of aquatic organisms, change 

biogeochemical cycles, alter the ecosystem community, and reduce fishery yield (Diaz 

and Rosenburg, 2008). Well-known hypoxic zones include the Chesapeake Bay (Kemp et 

al., 2005), Northern Gulf of Mexico (Rabalais et al., 2002; Bianchi et al., 2010), Baltic 

Sea (Conley et al., 2002), and oxygen minimum zones in tropical oceans (Karstensen et 

al., 2008). There have been significant changes in the duration and intensity of hypoxia in 

estuaries and coastal waters during the past few decades, raising great concern from 

environmental management agencies. Since 1950, more than 500 sites in coastal waters 

have reported hypoxic conditions, and fewer than 10% of these systems were known to 

have hypoxia before 1950 (Breitburg et al., 2018). The rapid spread of hypoxia 

worldwide is generally attributed to the increase of nutrient loading in past decades (Diaz 

and Rosenburg, 2008). Recent studies suggest climate change (e.g., warming and 

changing wind field) and the resultant change in physical conditions (e.g., oxygen 

solubility and estuarine circulation) also contribute to the worsened hypoxic conditions in 
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lakes, estuaries, and coastal waters (Scully, 2010; Carstensen et al., 2014; Wilson et al. 

2015; Du et al., 2018; Deng et al., 2018).  

Chesapeake Bay, the largest estuary in the United States, was noted to have 

hypoxic conditions back to the 1930s (Newcombe and Horne, 1938) and has seen an 

increase of hypoxia over the past century (Hagy et al., 2004) (Fig. 1). Climatological 

condition at an upper bay station (CB3.3C) based on a 32-year record (1985-2016) shows 

hypoxia starts in late April and ends in middle September (Fig. 2) and summer hypoxic 

area covers about 150 km along the bay’s main axis (Fig. 1c) . The seasonal hypoxia is 

generally believed to be caused by the seasonal growth-settling-decay cycle of 

phytoplankton and the significant seasonality in water column stratification and air 

temperature (Taft et al., 1980). Stimulated by the winter-spring pulse of freshwater and 

nutrient input, algae bloom in spring, resulting in a large amount of organic matter 

settling down to the bottom water in late spring. The subsequent intense DO consumption 

during the summer, together with stronger stratification and higher temperature, causes 

the imbalance of DO supply and consumption in the water column, leading to the 

depletion of bottom DO (Malone et al., 1986; Kemp et al., 2005; Shen et al., 2013).  

Hosting one of the most productive ecosystems on Earth, estuaries and coastal 

waters have received a lot of attention and are thus the hot spots for environmental 

researches. Extensive studies have been carried out to understand how DO in coastal 

waters responds to external forcings with various timescales, such as tide, freshwater 

discharge, wind, and climate variations (e.g., Scully, 2010; Hong et al., 2012; Meier et 

al., 2012; Fennel and Testa, 2019). Multiple modeling approaches ranging from statistical 

to fully mechanistic models have been introduced to simulate and predict DO in 
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Chesapeake Bay, and have led to significant advances in understanding the controlling 

factors for the hypoxia variations. Murphy et al. (2011) used regression models and 

showed the early summer hypoxic volumes in Chesapeake Bay was significantly 

correlated with stratification strength. Using a cross-wavelet analysis, Muller and Muller 

(2015) built a neural network model to predict future hypoxic volume of the bay and 

revealed an antiphase relationship between southwesterly winds and hypoxic volume. 

With a 3D numerical model and assuming a constant DO consumption rate, Scully (2010) 

identified the important control of lateral circulation induced by wind on the bottom DO 

replenishment. Using a biogeochemistry model, Da et al. (2018) demonstrated the 

comparable importance of dissolved inorganic nitrogen inputs from the atmosphere and 

from the adjacent continental shelf. A recent study by Ross and Stock (2019) used a 

machine learning technique and found the column stratification as the strongest predictor 

for bottom DO. However, it is still very challenging to accurately simulate or predict DO 

in estuarine and coastal waters due to several reasons: (1) hydrodynamics in estuarine and 

coastal waters are probably among the most complex dynamic processes on Earth as they 

are affected by not only natural processes but also anthropogenic activities and they are 

sensitive to external perturbations such as flooding and storm events; (2) long-term and 

comprehensive dataset are still not readily available for most estuaries and coastal waters 

even though more field observations have become available recently; a comprehensive 

dataset for coastal water quality covers information of essential forcings (e.g., wind, air 

temperature, and nutrient fluxes) imposed on the land-water, air-water, and estuary-ocean 

interfaces of a given coastal water body; (3) low DO problems are caused by complex 
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biochemical processes that vary spatially and temporally. Seeking new approaches to 

advance current modeling of DO is thus of great interest.   

With more available observation data and advances in machine-learning 

techniques, big-data modeling has been applied in a variety of fields. The new technique 

provides us an opportunity to improve simulation accuracy and further advance our 

understanding of environmental problems in estuarine and coastal waters. Data-driven or 

machine-learning-based modeling have already been applied for storm-surge prediction 

(Bajo and Umgiesser, 2010), rainfall-runoff processes (Hsu et al., 1995; Campolo et al., 

1999), water level and flooding prediction (Campolo et al., 1999; Chang and Chen, 2003; 

Chen et al., 2012), satellite-data retrieval (Krasnopolsky, 2007; Keiner and Yan, 1998; 

Vilas et al., 2011), marsh classification (Morris et al., 2005), and algal bloom modeling 

(Recknagel, 2001; Muttil and Chau, 2006; Shen et al., 2019). Neural network application 

has been applied in Chesapeake Bay as early as 1996 by Scardi (1996) who trained an 

empirical model for primary phytoplankton production. One of the advantages of the 

data-driven model is its computational efficiency. It requires much less computational 

power compared to complex three-dimensional mechanic models. Therefore, the 

technique will likely provide us an efficient way for predicting water quality in estuarine 

and coastal waters.  

Here, we propose a machine-learning-based data-driven model and examine its 

performance in simulating the DO condition and hypoxic volume in Chesapeake Bay. 

Systematical measurement of DO in the bay and continuous monitoring environmental 

data (e.g., wind, river discharge, air temperature, and nutrient fluxes) since 1984 were 

publically available. The comprehensive dataset in Chesapeake Bay makes the estuary a 
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perfect test site for developing data-driven models. We collected monitoring data of DO 

from the Chesapeake Bay Program (Fig. 1b) and forcing data from a variety of reliable 

and publically accessible sources to examine the applicability, robustness, and limitations 

of the data-driven model. The paper is organized as follows. Section 2 describes the 

method, including the framework of the data-driven model and data collections. Section 3 

presents the simulation of hypoxic volume and spatial-temporal variations of DO. The 

robustness and limitations of the data-driven approach, will be discussed in Section 4, 

followed by a short summary.      

2. METHODS 

2. 1 Overall framework of a proposed data-driven model 

 The proposed data-driven model includes three major components: empirical 

orthogonal functions (EOF) analysis, automatic selection of forcing transformation 

(ASFT), and machine-learning (neural network) (Fig. 3). Observed values of the target 

variable, DO in this study, are first interpolated into a defined vertical grid. The observed 

target variable, together with forcing variables, will be first split into training and testing 

datasets at the beginning. We used the first 75% for the training and the remaining 25% 

for the testing (Fig. 4). In the training dataset of the target variable, the long-term mean is 

extracted and it will be used later to reconstruct the 3D structure. An EOF analysis is 

applied to decompose the spatial and temporal components of the target variable in the 

training dataset. For each major principal component extracted from EOF, a neural 

network model is trained with input forcings selected from the ASFT module. The ASFT 

is designed to search for the proper transformation of the input forcings. After the model 
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is trained, forcings from the remaining 25% testing dataset are transformed based on the 

transformation function determined by ASFT, and the transformed forcings are put into 

the trained neural network model to predict the major EOF modes for the testing period. 

The prediction of the target variable will be obtained as the sum of predicted temporal 

values multiplying with the corresponding spatial value (also known as the map) and the 

long-term mean value. The predicted value of target variable, as a function of space and 

time, will be calculated as 

mod mod

mod 1

( , , , ) ( , , ) ( )
N

oC x y z t C Map x y z PC t
=

= +           (1) 

where Co is the long-term mean extracted from the training dataset, Map(x,y,z) and PC(t) 

are the spatial and temporal values for a given mode, respectively. N is the number of 

principal components that are trained by the neural network model. In the following 

sections, the three major components of the proposed data-driven model will be 

explained in more detail.  

2.2 EOF to reduce data dimension 

By selecting principal modes based on EOF analysis, the data dimension can be 

efficiently reduced. The EOF analysis in this study is based on the singular value 

decomposition algorithm, which decomposes the data matrix F into the following form: 

F=UDVT                                           (2) 

where U is an orthogonal matrix of temporal vectors, V is an orthogonal matrix of spatial 

eigenvectors (referred to as maps), and D is a diagonal matrix of the eigenvalues. U*D 

will give the EOF time series. The data matrix F is arranged with first dimension 
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indicating spatial location and second dimension indicates time (i.e., F(i,j) with i indicate 

the location and j indicate the time). In this study, the data matrix F has a dimension of 

800×288, representing the spatially varying values at 40 monitoring stations (monthly 

vertical profiles of DO at each station are interpolated vertically into 20 layers) over the 

24 years (1985-2008) in the training dataset.  

The major variance of the target variable can be well represented by major 

principal components. For the DO in Chesapeake Bay, our analysis below shows that the 

first EOF mode accounts for 87% of the total variance and the first five modes account 

for 93% of the variance. Instead of developing models for each station and each layer 

(40×20), we choose to fit five regression models for the first five modes to simulate the 

major variations of the target variable. This strategy will significantly enhance the 

computational efficiency without losing the major signals.   

2.2 Forcing selection and transformation  

As an essential part of the data-driven model, data of external forcings were 

carefully collected. Relevant forcings were selected including nutrient loading, river 

flow, air temperature, solar radiation, and wind speed and direction. River flow and wind 

are long known to regulate the stratification, estuarine circulation, and water exchange 

between ocean and estuaries (Hagy et al., 2004; Scully, 2010; Murphy, et al., 2011), 

while nutrient loading and solar radiation are generally regarded as the dominant factors 

controlling the algal growth. The input forcings are almost the same as required by a 

three-dimensional ecosystem model (e.g., Cerco and Noel, 2013). Forcing data were 

collected from various sources, including long-term monitoring programs and reliable 

reanalysis atmospheric model outputs. River flow and nutrient loadings of the large 
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tributaries, Susquehanna, Potomac, James, and Choptank Rivers, were extracted from 

USGS (https://www.usgs.gov/). As freshwater discharge from other small tributaries are 

highly correlated with these major rivers, freshwater and nutrients from the small 

tributaries are not included. Air temperature at Chesapeake Bay Bridge Tunnel station 

(CBBT, Station ID: 8638901) was extracted from a NOAA database 

(https://tidesandcurrents.noaa.gov/), with data gaps filled with measured values from a 

nearby station Cape Henry (Station ID: 8638999). For the wind data, instead of using a 

continuous monitoring data at a limited number of NOAA stations, we used the global 

ERA5 reanalyzed wind produced by European Centre for Medium-Range Weather 

Forecasts (ECMWF: https://www.ecmwf.int/), which has a full coverage of the entire 

Chesapeake Bay with a spatial resolution of 0.25 degrees (total of 33 grid points within 

the Chesapeake Bay are selected; Fig. S1 in the supporting information) and an hourly 

temporal resolution. Reanalysis wind field from reliable atmospheric models are widely 

used for 3D hydrodynamic and water quality models (e.g., Testa et al., 2014; Ye et al., 

2018; Du et al., 2019). Taking the bay mouth station CBBT for instance, the observed 

wind is highly consistent with the ECMWF reanalysis wind (Fig. S2).  

One feature that makes the model different from previous ones (e.g., Scardi et al., 

1999; Shen et al., 2019) is that an auto-selection tool for forcing transformation is 

developed to find the suitable transformation for the model to account for underlying 

mechanisms with which water quality state variables respond to external forcings. 

Forcing transformation is a necessary preprocessing step for a data-driven model. 

Through forcing transformation, input forcings will be converted with the same temporal 

and spatial resolution, and, more importantly, some particular effects that are ubiquitous 
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in estuarine dynamics, such as time-delay effect and accumulative effect, can be 

included. For example, it is commonly agreed that summer hypoxia in Chesapeake Bay is 

attributable to January-May nutrient load instead of summer nutrient load (Murphy et al., 

2011). The DO’s responses to nutrient load are regulated by not only time-lag effect but 

also accumulative effect, which is physically meaningful as nutrients from upstream take 

months to reach middle or lower bay (Shen and Wang, 2007). In the proposed model, we 

include 7 types of time-lag, 13 types of accumulative average, and 8 types of 

transformation functions including log, exponential, Monod-type filter, and normalization 

(Table 1). In total, there are about 700 combinations of transformation. Furthermore, not 

all the input forcings are responsible for the DO variations and it is necessary to filter out 

the unnecessary forcings. The goal of ASFT module is to select the responsible forcings 

and search for the appropriate transformations for each selected forcing.  

In the ASFT module, multiple linear regression is used to find forcings and 

transformations that can maximize the performance of the model to explain the target 

variable. Set the target variable as Y(n×1) and the input forcing matrix X to be empty at 

the beginning. First, the coefficient of determination (R2) between Y and all available 

forcing variables in all available transformations are computed. The forcing variable with 

transformation that gives the largest R2 out of all possible forcings and transformations is 

selected as the first variable and stored in X (:, 1). ASFT adds the second forcing variable 

to X from the remaining forcings based on the R2 from multiple linear regressions. Note 

that during the second round of forcing selection, there will be two forcings in X, with the 

first one fixed and the second one chosen from all possible transformed value of the 

remaining forcings. The new variable will be selected only when the new R2 is larger 
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than the previous R2 by at least 0.005. This process will continue until increase of R2 is 

less than 0.005. The process is to find a set of independent variables that has largest 

contribution to the target variable, while avoiding degrading the model performance 

when including a large number of variables with high covariance among forcings. The 

multiple linear regression may not be the best method as it only considers linear 

relationships, and could be further improved in future. For the current study, it works 

well for our problem. With advances in understanding of the underlying mechanisms, 

additional transformations can be further introduced.  

2.4 Neural network 

 After selecting the forcings and corresponding transformations, neural network 

models are trained for the five primary EOF modes (Fig. 4). Artificial neural networks 

are computational models inspired by the functioning of the human brain (Scardi et al., 

1999; Paliwal and Kumar, 2009). They are composed of a number of “neurons”, the basic 

computational unit, which takes inputs (x) from other neurons or external sources, 

calculates the corresponding weight (w) for each input, sums the product of weights and 

input values (Σwx), plus bias (b), and finally passes this value (b+ Σwx) to an activation 

function (Fig. 4). A number of neurons constitute a hidden neural layer, and a network 

can have multiple hidden layers. Hyperbolic tangent sigmoid function is used as the 

activation function in this study, which converts the input value to a value ranging 

between -1 and 1. To train a neural network is to get the optimal weights and bias so that 

the cost function (i.e. the model error) approaches its minimum. Here we used the 

Levenberg-Marquardt backpropagation training function (Marquardt, 1963), which 

approaches second-order training speed without computing the Hessian matrix directly 
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and appears to be the fastest method for training moderate-sized feedforward neural 

network (Hagan and Menhaj, 1999). The Matlab Neural Network Toolbox (version 10.0) 

was used for this study. The training process will stop when any of the following 

conditions occurs: (1) number of epochs reach the defined maximum epochs (set to be 

100); (2) cost function (mean square error) is minimized to the 0; (3) performance 

gradient falls below 1e-7. For details of the algorithm of Levenberg-Marquardt method, 

readers are referred to the help document in Matlab. The algorithm is widely recognized 

and well implemented in the Matlab software.  

As mentioned in Section 2.1, the overall division of the full dataset in the 

proposed approach is configured as follows: the last 25% of data are reserved for the 

testing; the remaining 75% are used for the training. The neural network, internally, is 

also set to randomly divide the input dataset (i.e., the training dataset) into two 

independent portions, the training and validation portions, which accounts for 80% and 

20% of the input data length (i.e., 60% and 15% of the full data records), respectively. By 

default, the toolbox randomly chooses the “train” and “validate” portions for each 

training, resulting in slightly different neural network parameters and thus different 

predictions for the testing period. To address the related uncertainties, we train the neural 

network model for 100 times for each principal component, use the ensemble mean of 

these models as the final prediction, and use the standard deviation of these models’ 

predictions to quantify the uncertainties.  

We use two hidden layers, with a neuron number of N and round up of N/2 for the 

first and second hidden layers, respectively, where N is the number of input forcings. The 

number of input forcings varies for different principal EOF components and is 
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determined in the forcing selection (see Section 2.3). Sensitivity tests (not shown) 

regarding the number of hidden layers and the number of neurons do not show 

significantly different results. It is believed the forcing selection is more important than 

the hidden layer configuration for water quality problems.  

2.5 Model performance evaluation 

Besides the common statistical measures including root mean square error 

(RMSE) and coefficient of determination (R2), we also calculated model skill following 

Willmott (1981): 
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                                                          (3) 

where Xobs and Xmod are the observed and modeled variables, respectively, with the 

overbar indicating the time average. Skill provides an index of model-data agreement, 

with a skill of 1 indicating perfect agreement and 0 indicating complete disagreement. 

Skill has been widely used to evaluate the performance of numerical models (e.g., Warner 

et al., 2005). While the R2 indicates the model’s capability of capturing the seasonal trend 

and interannual variations, and RMSE indicates the overall misfit between model and 

observation, skill can be regarded as a synthesis index to evaluate both the trend 

capturing and relative misfit. 
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3. RESULTS 

3.1 EOF analysis 

  The first essential step in the proposed data-driven approach is to reduce the data-

dimension. Through the EOF analysis and interpretation with our current knowledge of 

DO dynamics, we can understand the dominant processes controlling the DO variations. 

The spatial and temporal characteristics and the possible controlling mechanism of the 

first three EOF modes will be briefly described in the following paragraphs.  

The first EOF mode is the dominant mode, accounting for 87% of the total 

variance. The map of the first mode is characterized with all positive values, meaning the 

changes in DO concentration are in phase among all the stations (Fig. 5a-b). The 

locations of higher values in the lower layer in middle to upper Bay correspond to the low 

DO region. The relative values in the map indicate the different magnitudes to which the 

DO concentration changes with time. For example, during the summer months when the 

temporal value of the first mode is negative, DO of the entire bay decreases from the 

long-term mean value and the maximum decrease occurs in the region with maximum 

map value (i.e., deep waters between 38N and 39N). The first mode has significant and 

obvious seasonality with the lowest temporal value in July, consistent with what is shown 

in Fig. 2. This is a combined result of seasonal variation in water temperature, 

stratification, organic matter abundance, and water column respiration. Since these 

environmental factors share a high covariance with each other, it is not easy to identify 

which processes dominate the first mode.  
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It is necessary to point out that the first EOF not only reflects the seasonal 

characteristics of the DO dynamics but also contains strong signals of interannual 

variability. A simple linear comparison between July values of the first EOF mode and 

hypoxic volume calculated by Bever et al. (2013) shows that 62% of the interannual 

variations of July hypoxic volume during 1985-2008 is explained by the first EOF mode 

(Fig. 5c).  

 The map of the second EOF mode is characterized with opposite values between 

surface and subsurface layer in both middle and upper bay regions, suggesting this mode 

is controlled by mechanisms that have a different impact on DO between surface and 

subsurface layers. The opposite values between surface and subsurface is remarkable in 

the middle and upper bay regions (Fig. 6b). The depth separating surface and subsurface 

is close to the long-term mean pycnocline depth, roughly at 10 m (Fig. 6b). A seasonal 

cycle is noticeable in temporal variation with maximum mean value in May and 

maximum variability in April (Fig. 6c); this pattern is similar to the chlorophyll-a 

concentration inside the bay (Fig. 6d). Spring algae bloom in Chesapeake Bay occurs as 

early as the end of winter and the spring bloom usually reaches its maximum intensity 

around April (Harding, 1994). As a result, the variability of chlorophyll-a concentration 

also has the largest variability around April (Du and Shen, 2015). Algal bloom has a 

distinctly different impact on bottom and surface DO, with increasing surface DO due to 

photosynthesis and decreasing bottom DO due to the decomposition of settled organic 

matter. Linear regression analysis between the second EOF mode and chlorophyll-a 

concentration in the previous month shows a strong correlation, with R2 of 0.35. It 

suggests a one-month time-lag response of the second EOF mode to the chlorophyll-a 
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concentration. We will show later that using the data-driven model, the R2 can be 

improved significantly to 0.95 for the second EOF mode when multiple forcings are used.  

 The third EOF mode is also characterized with opposite values between surface 

and subsurface but in the region of lower to middle bay, with maximum opposition 

around 37.8N where there is dramatic topographic change (Fig. 7b). What is unique in 

the third EOF mode is that it has two peaks in its temporal value (Fig. 7c). It is not clear 

what mechanisms are responsible to cause such unique spatial and temporal pattern. Not 

all EOF modes can be easily explained with our current knowledge. Sometimes, multiple 

mechanisms instead of a single one are responsible. In such cases, nonlinear models or 

machine learning techniques will be more suitable to explain the temporal variations. 

This is also why we try to use advanced deep-learning methods.  

3.2 Simulation of dissolved oxygen 

For the DO simulation, we trained the first five primary EOF modes. Little 

differences are found for the predicted DO in the testing period when the number of 

modes changes from five to nine. The first five modes account for 93% of the variance, 

while the first nine modes account for 95%. Including modes with minor contribution is 

believed unnecessary and may even introduce more noise to confound the major signals. 

From the training perspective, all of the five modes are well trained, with R2 larger than 

0.90 and skill over 0.95 (Fig. 8a-e). It is worthy to note that the uncertainties (indicated 

by the standard deviation of the 100 neural network models’ predictions) are almost 

negligible for the first mode and increase for later modes.  
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The performance of the model is evaluated from multiple aspects. First, we 

compared the bottom DO at each station between modeled and observed values. 

Compared to surface DO that is merely controlled by the air-sea exchange and water 

temperature, the bottom DO is affected by many more factors (e.g., stratification, organic 

matter decay, and sediment oxygen demand) and usually more difficult to simulate. 

Taking three mainstem stations (CB3.3C, CB5.2, and CB6.1, representing the upper, 

middle, and lower bay) as an example, the RMSE ranges from 0.85 to 1.64 mg/l (Fig. 9). 

The peaks of bottom DO varied from year to year and their variabilities are captured by 

the model. For instance, the peak of bottom DO at CB3.3C in early 2012 was relatively 

small (less than 10 mg/l), compared to other years (Fig. 9a). In particular, there was a 

sharp decrease of bottom DO in the fall of 2011, which was believed to be caused by the 

large freshwater input due to Hurricane Irene and the subsequent Tropical Storm Lee (Ye 

et al., 2019). The sharp decrease was noticeable at station CB3.3C, which is clearly 

captured by the model. Additionally, we calculated the model skill for the anomaly (i.e., 

the difference from the seasonal cycle) to examine the model performance in reproducing 

the deviations from seasonal cycle. The anomaly skill can be up to 0.46 (e.g., at station 

CB6.1); clearly, more efforts are needed to improve the anomaly prediction such as 

including more modes. The relatively low skill in anomaly prediction is a trade-off when 

including the entire signal of the target variable during the training stage. If one would 

like to focus on the interannual variability (say July only), one can train a model for that 

given month only, which in turn may raise another issue concerning the limited length of 

the training data.  
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The model performance at all of the 40 stations is statistically illustrated by the 

Taylor diagram (Fig. 10). The correlation coefficients at the majority of the 40 stations 

from the proposed data-driven model concentrate in 0.90-0.95. Only one station has a 

correlation coefficient less than 0.8; this station (ET4.2) is located in Chester River, a 

small tributary discharging into the upper bay. It is likely that the bottom DO poorly-

simulated at this station is more influenced by local processes. Overall, the model 

performance is comparable to previous deterministic 3D water quality models (e.g., Testa 

et al., 2014; Irby et al., 2016). For example, using a physical-biogeochemical model, 

Testa et al. (2014) show the correlation coefficient of 0.80-0.95 for the bottom DO at 

mainstem stations (see the Taylor diagram Fig. 6 in Testa et al., 2014).  Irby et al. (2016) 

compared nine numerical models in simulating the bottom DO concentration, and, using 

a similar Taylor diagram (see Fig. 8 in Irby et al., 2016), they show that the correlation 

coefficient from different models ranges from 0.8 to 0.9. With respect to the variance, the 

data-driven model predictions are close to the observation, with a mean, minimum, and 

maximum normalized standard deviation of 0.99, 0.92, and 1.07 over the 40 stations. The 

root mean square deviation (the third axes in the Taylor diagram) is around 0.3, which is 

smaller than some numerical model simulations (e.g., Testa et al., 2014). It is worth 

noting that only model performance of the bottom DO is presented here as it is typically 

more difficult to simulate accurately compared to the surface DO.  

In terms of the spatial variations, the model performance is acceptable. As 

expected, the marked seasonal variations of the spatial distribution are well predicted for 

the testing period (Fig. 11), despite the fact that the model seems to slightly 

underestimate the bottom DO. Furthermore, by comparing the spatial distribution of 



31 

 

summer DO in the testing period, it is obvious that the model captures the overall change 

of hypoxic area (Fig. 12). From year to year, the summer hypoxic area changed, with a 

minimum area in 2012 (2 mg/l contour starts from 38N) and a maximum area in 2011 (2 

mg/l contour starts from 37.6N). Observation and model predictions are consistent in the 

distribution of 2 and 4 mg/l contours along the mainstem. It is expected that there is still 

noticeable bias especially concerning the severely hypoxic area (e.g., area with DO less 

than 1 mg/L), which is also a problem for previous models, either empirical or numerical 

ones (e.g., Testa et al., 2014; Cerco and Noel, 2013; Irby et al., 2016). One of the reasons 

is that there is no signal in DO when DO becomes zero, while forcing variables are still 

varying, resulting in high uncertainty at these anoxic regions.   

It is worthy noting that in the proposed approach, the EOF spatial patterns 

extracted from the training dataset are assumed unchanged during the testing period. This 

assumption is valid if the underlying physical and biological processes have not 

undergone dramatic change, which is true except for some rare cases (e.g., when there is 

a regime shift) in which the covariance among different stations changes dramatically. In 

the case of DO in Chesapeake Bay, additional EOF analysis using the DO data in the 

testing period confirms the validity of the assumption. The spatial patterns for the first 

three EOF modes in the testing period (Fig. S3-5) are nearly identical to those in the 

training period (Fig. 5-7) despite the little differences, which can be attributed to the 

shorter records in the testing period. For practical application, both EOF analysis and 

training can be conducted dynamically as more data will become available in future to 

ensure the test period has the same spatial pattern as the training period. 
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3.3 Simulation of Hypoxic Volume 

 Similar methodology was applied to simulate the hypoxic volume in the 

Chesapeake Bay. Here we used the 28-year hypoxic volume time series (1985-2012) 

calculated by Bever et al. (2013) as the target variable. The hypoxic volume is a scalar 

index used to quantify overall DO condition in the Bay. Different from DO simulation, 

only one time series is used as the target variable and there is no need to use EOF 

analysis. The forcing selection and transformation and the model training algorithm 

applied are the same as for DO simulation. Input forcings include freshwater discharges 

and nutrient loads from major rivers, air temperature, and wind. For the training part, the 

model yields R2 of 0.96 and RMSE=0.62 km3 (Fig. 13).  

 We also conducted tests using other machine learning methods including multiple 

linear regression and decision tree with the same input forcing as used in the trained 

neural network models. Results show that the linear model (RMSE=1.46 km3) is unable 

to capture the interannual variability (especially during summer months) and it frequently 

produces negative value during the winter months (Fig. 14). On the contrary, the decision 

tree (RMSE=1.35 km3) and neural network (RMSE=1.29 km3) methods seem to have 

better performance. Particularly, the decision tree almost perfectly predicts the zero 

values. While it is hard to determine which method is always the best, nonlinear models 

are usually regarded as more suitable than linear models when dealing with water quality 

variables. It is often a good strategy to test multiple data methods and examine the 

performance difference among them. Using the ensemble mean of results from multiple 

methods could be a good option to account for the uncertainties associated with choice of 

the machine learning method.  
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4. DISCUSSION 

4.1 Robustness of data-driven model 

 Different from traditional empirical or numerical models, the data-driven model 

proposed in this study has shown advantages in several aspects. Firstly, the approach is 

purely based on reliable and systematic monitoring or reanalysis data, which avoids the 

uncertainties propagating and accumulating from base level of hydrodynamic models to 

higher level of water quality models. The error accumulation is a common issue for many 

deterministic model systems. With advanced numerical tools and data-assimilation 

techniques, performance of hydrodynamic simulation has been improved greatly over 

time. Nevertheless, errors still exist even in a high-resolution numerical hydrodynamic 

models with a high order of numerical schemes (e.g., Testa et al., 2014; Irby et al., 2016; 

Ye et al., 2019). Secondly, the proposed approach can simulate not only the temporal but 

also spatial variations by extracting the major components of the target water quality 

variable. This is very different from previous 1D empirical models (e.g., Scardi and 

Harding, 1999; Scarvia et al., 2006). Thirdly, the approach is highly computationally 

efficient, taking about 1 hour with one cpu to train the models for all the selected primary 

EOF modes. The high computational efficiency makes the data-driven model an efficient 

way for environmental research and management. Since the model uses external forcings 

as used by a traditional 3D water quality model, the data-driven approach can be used to 

predict water quality conditions under future climate scenarios in response to change in 

environmental forcing conditions, such as changes in temperature, wind, and river flow. 

The nonlinear influence of forcing conditions on water quality is implicitly inherited 

inside the data-driven model (Shen et al., 2019). However, it should be noted that such 
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predictions may only be possible when the training dataset has included the variations of 

specific forcing and that the trained model has correctly resolved the response of target 

variable to the given forcing. Finally, even though the approach is used for the DO 

problem in Chesapeake Bay, similar or same methodology is readily applicable to other 

coastal systems, as long as there is enough data to train a model with reasonable 

accuracy. How much data is enough? There is not a straight answer. The required data 

length depends on the problem to be studied and the timescale of major driving processes 

for both the biogeochemical and physical condition. The training dataset should at least 

cover multiple dominant periods during which major signals (e.g., seasonal cycle and 

interannual variations) are noticeable.  

 It is important to point out that there are a variety of data methods well developed 

for machine learning, ranging from the simplest linear regression to sophisticated 

nonlinear regression such asnearest neighbors, random tree, and support vector machine 

(Fig. S6). We tested these methods for the DO problem with the same input variables and 

target variable. Except for the K nearest neighbors, all other methods tested yield similar 

model performance, even though the neural network model appears to be slightly better 

than others (Fig. 15).  

4.2 Lessons learned 

 When using the model, one has to be cautious when collecting and transforming 

forcing data. As described in section 2, in this study, only forcing data continuously 

monitored at boundaries of the systems are used. These boundaries can be the air-sea 

interface, river boundary, and estuary-ocean interface. No data within the water body is 

used. For instance, the nutrient concentration and water salinity at mainstem stations are 



35 

 

not used, even though they are available and believed to be highly correlated with the DO 

condition. Such protocol makes the proposed method distinctly different from many 

previous studies that used the in situ measurement to represent either the physical or 

biogeochemical conditions (e.g., Scavia et al., 2006; Ross and Stock, 2019). For instance, 

to estimate the hypoxic volume, Scavia et al. (2006) used the bottom-surface difference 

of DO to calculate the vertical DO flux. Scardi and Harding (1999) used in situ measured 

parameters including chlorophyll-a concentration, salinity, and photic zone depth to train 

a neural-network model of phytoplankton primary production. Avoiding using such type 

of forcings is crucial to make the data-driven model more capable for environmental 

management.  

Another important lesson learned for the data-driven model is to choose 

appropriate transformations for each forcing. For coastal systems, especially large coastal 

systems, delayed response of water quality to change of external forcing is very common. 

For instance, Malone et al. (1988) suggest the maximum summer productivity in the 

mesohaline reach of Chesapeake Bay is caused by the recycled nutrient delivered to the 

system during the previous spring. From numerical experiments, Lee et al. (2013) 

suggests winter-spring wind could affect the summer hypoxia (i.e., with a time-lag of 4 

months) by affecting the circulation pattern and thus the transport of spring bloom 

biomass along the mainstem and between shoal and deep channel. The time-lag shall 

likely differ in different regions of a coastal system and for different processes. It is 

usually subjective in determining how long the time-lag is. The ASFT tool proposed in 

this study will ease this effort and is particularly useful when training multiple models 

using a variety of forcings.   
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We found that wind is one of the important variables for hypoxic volume 

simulation and the wind speed is first selected forcing by the ASFT module (Table S6). 

Although wind forcing is considered to only have a short-term impact, wind forcing can 

be more influential than expected for interannual dynamics. Recent studies confirm the 

great control of wind on stratification, estuarine circulation, and thus hypoxic volume 

(Scully, 2010; Shen et al., 2013; Wilson et al., 2015; Du and Shen, 2016; Jiang and Xia, 

2017; Du et al. 2018). Numerical experiments in previous studies (e.g., Hong and Shen, 

2013; Scully, 2013) suggest the vertical mixing is less sensitive to the synoptic variability 

of river discharge but more sensitive to the wind condition. Scully (2013, 2016) finds that 

the mean summer wind speed is the single-most important physical variable contributing 

to the variations of hypoxic volume. Changes in physical condition induced by changing 

wind fields in the future should be considered for the environmental and water quality 

management in Chesapeake Bay.  

The selection of forcing and transformation shall not be used directly to interpret 

the relative importance of one forcing over another because of high covariance among 

different forcings and the difficulty to isolate the influence of each forcing based on the 

correlation analysis. If two forcings are highly correlated, only the forcing with higher R2 

is selected, which is different from deterministic models. Nevertheless, the information of 

forcing selection is helpful to determine the relative complexity of each mode. For 

instance, only four forcings are selected for the first EOF mode (Table S1) while more 

than 20 forcings for second-fifth modes, suggesting higher complexity of dynamics 

responsible for these later modes.  
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Of particular interest is the forcing selection for the first EOF mode, the dominant 

mode containing not only the seasonal signal of bottom DO but also the interannual 

signal of bay-wide hypoxia (Fig. 5). The first mode is only related to air temperature, 

Susquehanna streamflow shifted by 40 days, and downwelling shortwave radiation 

shifted by 10 days (Table S1). Considering the consistency of seasonality among the first 

mode, air temperature, and solar radiation, it seems that the data model uses radiation 

and/or temperature to learn the seasonal cycle, and uses the streamflow in controlling 

interannual variability. Because nutrient loadings are highly correlated to streamflow, the 

information of nutrient loading is implicitly included. This is broadly consistent with 

other studies using either statistic or 3D numerical approaches (e.g., Hagy et al., 2004; 

Scavia et al., 2006; Testa et al., 2014).  

4.3 Limitations of the data-driven model 

 It is important to acknowledge not only the advantages but also the limitations of 

a method. First, the accuracy of a trained model depends greatly on the length of data 

records. Even in a heavily monitored coastal system such as Chesapeake Bay, the length 

of data is still limited because of the monitoring frequency. One critical question is 

whether results of the bi-monthly surveys is representative for the monthly mean 

condition. By comparing the variability of measurement and simulation results of DO in 

Chesapeake Bay, Bever et al. (2013) demonstrated the monthly measurements need to be 

corrected in order to be spatially and temporally representative. Without enough temporal 

resolution, the EOF analysis of the existing dataset may be overwhelmed by minor 

modes, requiring more modes to be included in order to cover the major variance. 

Second, the model performance may be hampered by the unavailability of systematic 
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forcing. Monitoring instrument malfunction occurs frequently, especially after major 

extreme weather events such as hurricanes, which may result in a significant data gap. In 

these cases, reanalysis model results that assimilate observations could be good data 

sources. Taking the wind data for instance, instead of using the monitoring data, we used 

the outputs of reanalysis atmospheric models. Perhaps, the most concerning shortcoming 

is that data-driven models are not process-orientated, making them hard for process-based 

management and research. As many forcing variables are highly correlated with each 

other, the contribution of an individual forcing variable cannot be fully evaluated based 

on sensitivity tests although the model has a high predictive skill. However, it does not 

mean such models cannot be used for environmental management. Actually, there is an 

increasing need of using data-driven model for water quality management (e.g., Orougi et 

al., 2013; Chang et al. 2015; Shen et al., 2019; Ross and Stock, 2019). Shen et al. (2019) 

shows a data-driven model can be used for predicting the response of Chl-a to changes in 

nutrient loading if the appropriate parameter variables are used.  Through model 

sensitivity tests by introducing different forcings and using different transformations, the 

data-driven model could be helpful in identifying possible important factors.  

5. CONCLUSIONS 

 We present a data-driven model to efficiently and accurately simulate and predict 

DO conditions in estuarine and coastal waters. Different from previous statistical models 

that often use in situ measurements, the proposed approach relies purely on the external 

forcings, which make it more suitable for environmental assessment. Evaluation of the 

model performance suggests a high capability of data-driven model for water quality 

simulation. Based on a similar forcing dataset as required by a 3D numerical model, the 
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proposed approach predicts well the DO and hypoxic condition spatially and temporally. 

Even though the model is tested for the DO condition in Chesapeake Bay, the framework 

and methodology are readily transferable to any other coastal systems that are 

systematically monitored. Overall, this study provides a robust framework and 

methodology, upon which future research could be based. 

 With the quickly accumulated observational data and latest advances in machine-

learning techniques, the data-driven model is a promising approach with high efficiency 

for water quality modeling and environmental management in the near future. In fact, 

there is increasing interest in using machine-learning techniques for water quality 

simulations (e.g., Shen et al., 2019; Ross and Stock, 2019). There are, however, still some 

questions that remain to be further explored. For example, how to transform the forcing 

and target variable appropriately? How to faithfully extract the principal component? 

And how to determine whether noncontinuous measurements are representative for 

monthly or daily conditions? Even though this study has attempted to answer them, the 

answers may vary depending on specific problems and characteristics of the given 

estuarine and coastal system.  
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Table 1: A list of the transformation options in the data-driven model.  

Transformation Sub-types Formula 

Time-lag 

transformation 

1-7 ϕ(t)=x(t-lag), with lag ranging within 0, 10, …60 

days 

Accumulative 

transformation 

1-13 ϕ(t)=mean(x(τ)), where 𝜏 ∈ [𝑡1 − 𝑎𝑐𝑐, 𝑡2], with acc 

ranging from 0 to 120. t1 and t2 are the beginning 

and end of each month; t1=t-15 and t2=t+15.  

Regular transformation 1 ϕ=x 

 2 ϕ=log(x) 

 3 ϕ=1/x 

 4 ϕ=exp((x-mean(x))/std(x)) 

 5 ϕ=x/(p50+x), also known as Monod-type filter 

 6 ϕ=x/(p75+x) 

 7 ϕ=x/(p25+x) 

 8 ϕ=(x-mean(x))/std(x) 

Notes: x: forcing variable 

ϕ:transformed forcing variable 

t: time 

std(x):  the standard deviation of x 

min(x): the min value of x 

mean(x): the mean value of x 

P25, P50, P75: the 25, 50, and 75 percentile of x 
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Figure 1: (a) Map of North America, with a red rectangle showing the location of 

Chesapeake Bay. (b) 40 long-term (1985-present) Chesapeake Bay Program monitoring 

stations. Data at these stations have less than 10% data gap and are used in this study. (c) 

The 32-year mean of the summer (Jun-August) DO concentration along the main axis of 

the bay, with the thick magenta line denoting the 2 mg/l (i.e., hypoxia threshold).  
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Figure 2: Seasonality of the vertical profile of dissolved oxygen concentration and 

stratification at selected three mainstem stations, representing the (a) upper bay, (b) 

middle bay, and (c) lower bay, respectively (see Fig. 1 for the location of these stations). 

White lines in each panel indicate the 2 mg/l contour line, while green dots show the 

seasonal variation of stratification characterized by the difference between bottom and 

surface salinity.  
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Figure 3: A sketch diagram showing the workflow of the data-driven approach.  
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Figure 4: A sketch diagram showing the data-division scheme, the structure of a sample 

neural network, and the type of activation function used in the proposed data-driven 

model. For the data-division scheme, the full data is separated into training and testing 

sub-dataset; within the training dataset, 80% and 20% are used to “train” and “validate” 

by the neural network.  
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Figure 5: Characteristics of the first EOF mode that constitutes 86.6% of the total 

variance. (a) Horizontal distribution of bottom value; (b) the vertical distribution of the 

mode along the bay’s main axis. Color dots in (a) and filled contours in (b) share the 

same color scale. (c) Box plots showing the seasonality of the time series. (d) 

Relationship between interannual variations of July hypoxic volume (data from Bever et 

al., 2013) and the July value of temporal variation of the first EOF mode. 
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Figure 6: Characteristics of the second EOF mode. (a) Horizontal map of the bottom 

value. (b) Vertical distribution of second EOF mode along the mainstem, with gray solid 

rectangles denoting the long-term mean depth of pycnocline (determined as the depth 

where maximum salinity gradient occurs). (c) Seasonality of second EOF mode. (d) 

Relationship between chlorophyll-a averaged over middle bay stations, with each dot 

denoting the temporal value of second EOF mode at a given month and the logarithm of  

chlorophyll-a concentration in the previous month (i.e., with a one-month time-lag).  
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Figure 7: Characteristics of the third EOF mode (see caption of Fig. 5a-c).  
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Figure 8: (a-e) Model training results for each of the first five EOF modes, with R2, 

RMSE, and model skill shown in the bottom right of each panel. (f-g) Observed and 

modeled time series of first two EOF modes in the training dataset, with gray shade 

indicating the standard deviation of 100 times of neural network training. 
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Figure 9: Observation (dot) and model prediction (line) of bottom DO at three selected 

mainstem stations, (a) CB3.3C, (b) CB5.2, and (c) CB6.1. Statistical indexes for the 

model performance are shown in the text on top. Skill-a indicates the skill for the 

anomaly prediction. The depth of the three stations are 25, 30, and 12m, respectively. 

Gray shade indicates the standard deviation of 100 times of neural network training. 
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Figure 10: Taylor diagram illustrating the model performance for each of 40 stations, 

with different colors indicating stations in different regions. Only the 8-yr testing dataset 

(2009-2016) is used for the analysis. The radial distance from the origin is proportional to 

the ratio standard deviations; the azimuthal angle indicates the Pearson correlation 

coefficient; and the distance between each filled marker and the “reference” point 

indicates the centered root mean square deviation (RMSD).  
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Figure 11: Spatial comparison between observed (left panels) and modeled (right panels) 

DO along the bay’s mainstem.  
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Figure 12: Vertical profile of the summer-mean DO concentration (averaged over June-

August) along the bay’s mainstem, with black lines denoting contour of 2 and 4 mg/l. 

Only testing dataset are shown here in order to demonstrate the model’s capability in 

reproducing the spatial distribution when external forcings are provided.  
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Figure 13: Training part for the hypoxic volume simulation. (a) shows the time series for 

the last four year in training period, while (b) shows the monthly data for the entire 

training period. Only training dataset of 1985-2004 is used for the training. In (a), the 

gray shading indicates the uncertainties calculated as the standard deviation of results 

from 100 times of neural network training.  
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Figure 14: Testing part for the hypoxic volume simulation. Besides the neural network 

model, other methods including multiple linear regression, decision tree, and Bayesian 

regression are tested using the same input as in neural network.  

 

 

Figure 15: The model performance indicated by root mean square error (RMSE) and skill 

for the bottom DO. The gray bars and error bars indicate the mean and standard deviation 

of the performance over the 40 stations.  
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Figure S1: ECMWF ERA5 grid points (blue solid circles) used to get the bay-wide mean 

wind field. The ECMWF ERA5 global data has a spatial resolution of 0.25 degree for the 

wind field. The 33 grid points are within the longitude of [-76.5,-76] and latitude of [37, 

39.5].  
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Figure S2: Wind data comparison between ECMWF reanalysis wind at (76W, 37N) and 

NOAA observations at CBBT. This figure shows that the reanalysis wind is overall 

consistent with the observation.  
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Figure S3: The spatial pattern and amplitude seasonality of the first EOF mode, based on 

the DO data in the testing period. (a) shows the spatial pattern of bottom DO and (b) 

shows the vertical distribution along the bay’s mainstem. (a) and (b) share the same color 

scale.  
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Figure S4: Same as Figure S3, but for the second EOF mode. Additionally shown in (b) is 

the long-term mean pycnocline depth based on salinity profile.  
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Figure S5: Same as Figure S3, but for the third EOF mode.  
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Figure S6: Observed bottom DO at three mainstem stations and the corresponding model 

results using different data methods. The Neural Network results are the ensemble mean 

over the 100 times of predictions using the 100 trained models.  
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Table S1: Selected forcing and transformation information for mode 01 

Forcing Transform 

function 

Shifting (days) Accumulation 

(days) 

Air Temperature 1 0 15 

Susquehanna flow 1 40 35 

Downward short wave radiation 

flux 

4 10 35 

 

 

Table S2: Selected forcing and transformation information for mode 02 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Air temperature 1 50 85 

Choptank TP loading 5 0 135 

Choptank Sediment Loading 5 0 135 

Susquehanna flow 1 20 35 

Southerly wind intensity 4 10 15 

Westerly wind speed 1 40 115 

Potomac flow 4 30 85 

Northerly wind intensity 3 30 15 

Northerly wind hour 

(speed>4m/s) 

1 30 85 

James flow 6 30 135 

Choptank TN loading 4 50 65 

Susquehanna TN loading 2 10 135 

Susquehanna TP loading 7 10 135 

Easterly wind intensity 6 50 35 

Easterly hour (speed>2m/s) 2 30 95 

Westerly wind intensity 3 10 135 

Northerly wind hour 4 10 15 

Northerly wind hour 

(speed>2m/s) 

8 20 15 

Southerly wind hour 

(speed>4m/s) 

4 60 55 
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Table S3: Selected forcing and transformation information for mode 03 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Easterly wind speed 1 60 65 

Easterly wind hour (speed>2m/s) 3 0 45 

James flow 1 40 105 

Downward short wave radiation 

flux 

3 10 15 

Precipitation 6 0 15 

Choptank TP loading 4 50 125 

Westerly wind hour (speed>2m/s) 3 40 75 

Westerly wind hour (speed>4m/s) 1 40 55 

Westerly wind intensity 1 40 65 

Susquehanna flow 6 0 15 

Susquehanna TN loading 2 0 25 

Susquehanna sediment loading 4 20 55 

Easterly wind hour (speed>4m/s) 3 50 25 

Choptank sediment loading 1 50 125 

Susquehanna TP loading 1 0 55 

Northerly wind speed 4 30 95 

Northerly wind hour (speed>4m/s) 8 0 85 

Northerly wind hour (speed>2m/s) 4 20 15 

Southerly wind intensity 4 50 35 

Southerly wind hour (speed>4m/s) 3 40 65 

Southerly wind hour (speed>2m/s) 6 30 75 

Southerly wind hour 1 10 85 

Easterly wind hour 3 10 75 

Westerly wind speed 8 50 55 
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Table S4: Selected forcing and transformation information for mode 04 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Susquehann sediment loading 3 0 75 

Choptank TP loading 4 20 125 

Susquehanna TP loading 1 0 45 

Northerly wind hour 4 20 15 

Northerly wind hour (speed>2m/s) 1 0 45 

Wind speed 3 0 15 

Susquehanna TN loading 7 0 25 

Southerly wind hour (speed>2m/s) 4 30 25 

Southerly wind hour 1 10 45 

Downward short wave radiation 

flux 

3 0 15 

Westerly wind hour 6 60 115 

Precipitation 1 40 15 

Southerly wind hour (speed>4m/s) 1 10 45 

Easterly wind speed 4 20 15 

Choptank sediment loading 4 20 15 

Choptank TN loading 8 50 25 

Northerly wind hour 

(speed>4ms/s) 

1 0 35 

Northerly wind speed 4 0 25 

James TP loading 7 0 135 
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Table S5: Selected forcing and transformation information for mode 05 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Susquehanna sediment loading 3 10 135 

Southerly wind hour 1 60 135 

Southerly wind speed 4 10 25 

Westerly wind hour 3 40 15 

Northerly wind hour 3 40 135 

Northerly wind hour 

(speed>2m/s) 

6 60 95 

Northerly wind speed 4 10 15 

Air temperature 4 0 15 

Choptank TP loading 3 0 15 

Wind speed 4 30 135 

Precipitation 1 30 25 

Potomac flow 4 20 55 

James sediment loading 3 50 25 

Westerly wind speed 4 40 95 

Easterly wind hour (speed>4m/s) 1 50 135 

Southerly wind intensity 3 30 105 

Southerly wind hour 

(speed>4m/s) 

6 50 45 

Westerly wind hour 

(speed>4m/s) 

6 30 95 

Easterly wind speed 1 30 25 

Easterly wind hour (speed>2m/s) 6 40 35 

Westerly wind intensity 8 20 55 

Choptank TN loading 4 50 15 

Choptank sediment loading 1 50 95 

Potomac TN loading 4 0 15 
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Table S6: Selected forcing and transformation information for hypoxic volume 

simulation 

Forcing Transform function Shifting (days) Accumulation (days) 

Wind speed 1 0 15 

Susquehanna river flow 1 60 55 

Northerly wind hour 1 0 55 

Westerly wind hour 1 0 15 

Susquehanna TN loading 1 0 75 

Southerly wind hour 1 60 95 

Easterly wind hour 1 60 45 
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CHAPTER 2. A DATA-DRIVEN APPROACH TO SIMULATE THE 

SPATIOTEMPORAL VARIATIONS OF CHLOROPHYLL-A IN 

CHESAPEAKE BAY 

 

Published in Ocean Modelling (2021, 159, 101748). 

Abstract: Phytoplankton biomass, indicated by chlorophyll-a (Chl-a) concentration, is 

fundamentally important for aquatic ecosystems. Accurately simulating Chl-a is always 

challenging even when using state-of-the-art numerical models. We propose a data-

driven modeling framework that combines Empirical Orthogonal Function (EOF) 

analysis and machine-learning technique to tackle this problem, using Chesapeake Bay as 

an example. Through the dimension reduction with EOF, the three-dimensional (3D) 

problem can be decomposed into multiple one-dimensional (1D) problems. The 

nonlinearity of these 1D problems will be modeled with machine learning using an 

artificial neural network. Model performance in terms of spatiotemporal Chl-a variations 

with both seasonal and interannual signals is evaluated. The model performance is 

comparable or higher than 3D numerical models previously applied in Chesapeake Bay. 

Sensitivity tests reveal the necessity of forcing transformations to improve the model 

predictive skill. Instead of manually applying a transformation for each input forcing 

variable, an auto-selection procedure is adopted to choose an appropriate transformation 

from a variety of transformation options. While it is unlikely the data-approach can 

replace the traditional numerical models, we argue that data-driven approaches provide a 

promising way for future studies in coastal and estuarine systems considering the fast 

accumulation of observational data. 
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1. INTRODUCTION 

Water quality in aquatic environments such as estuaries and coastal seas is of 

great public concern. Despite many efforts, it is still difficult to accurately predict water 

quality variables – e.g., dissolved oxygen and chlorophyll-a (Chl-a) concentration – 

because their spatiotemporal variations are not only subject to physical transport and 

mixing processes, but also significantly regulated by complex biogeochemical activities 

inside the water column and at the water–sediment interface (Beck, 1987; Arhonditsis 

and Brett, 2004; Fennel et al., 2006). Nonlinearities of biochemical processes are usually 

not easy to adequately describe using simple deterministic equations with a limited 

number of state variables. As a result, simulation and prediction of water quality 

variables have long been challenging even with the help of the most sophisticated 

numerical model systems. Extensive efforts have been made to identify the major 

controlling factors by examining the linear and nonlinear relationships between kinematic 

processes through analysis of in situ measurements or laboratory experiments (e.g., Kemp 

et al., 1997; Dauer et al., 2000). Such relationships are then parameterized into numerical 

model systems (e.g., HEM3D, Park et al., 1995; FVCOM, Chen et al., 2003; ROMS, 

Shchepetkin and McWilliams, 2005; and SCHISM, Zhang et al., 2016). These models 

have been successfully applied for water quality simulations in estuaries and coastal 

oceans (e.g., Fennel et al., 2006; Cerco and Noel, 2013; Testa et al., 2014; Yang et al., 

2015). However, the accuracy of numerical model simulations greatly depends on the 

parameterization of the included kinetic processes, where large uncertainties always exist 

(van Straten, 1983; Shen, 2006; Jiang et al., 2018). Additionally, the accuracy of water 
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quality model simulation also suffers from the “cascading” or “propagation” of error 

originated in the hydrodynamic simulation (Beck, 1987). Errors generated during the 

hydrodynamic simulation will be passed to the water quality simulation, introducing 

additional uncertainties to the model accuracy in simulating water-quality state variables, 

because fundamental processes such as nutrient transport, algal growth, and oxygen 

distribution greatly depend on residence time, transport rate, and vertical mixing 

processes (Nixon et al., 1996; Lucas et al., 2009; Scully, 2010). To reduce the error, data 

assimilation has been widely used in forecast or reanalysis modeling (Ghil and Malaotte-

rizzoli, 1991).  

To manage the uncertainties associated with model structure, kinetic parameters, 

and error propagation, an alternative approach is to reduce error accumulation during the 

modeling process by relying, as much as possible, on a systematic observational dataset 

with reasonable temporal and spatial resolutions. Methods that rely purely on 

observational data are also referred to as “data-driven approaches” (Todorovski and 

Dzeroski, 2006; Shen et al., 2008; Yin et al., 2014; Yu et al., 2020). Data-driven 

approaches are not new and have been extensively used in industry (e.g., data mining and 

artificial intelligence) as well as in marine sciences (e.g., Anderson et al., 2010; Blauw et 

al., 2010; McGillicuddy, 2010; Wang and Tang, 2010; Kong et al., 2017). One data-

driven approach is linear regression, perhaps the most widely used method in almost 

every research field. However, estuarine processes are complex and usually cannot be 

simply explained using linear relationships. To resolve nonlinear relationships, 

researchers often apply some transformations to independent variables (e.g., log and 

exponential transformation) and derive a variety of empirical formulas (Cohn et al., 1992; 
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Scardi and Harding, 1999; Attrill, 2002; Brush et al., 2002). Nevertheless, the 

improvement is limited for specific variables, such as Chl-a, which is known to be a 

function of various factors including nutrients, temperature, solar radiation, water clarity, 

and flushing rate (McCarthy et al., 1977; Harding et al., 1986; Cloern, 1999; Kemp et al., 

2005). It is still challenging to simulate its spatiotemporal variations using a traditional 

empirical approach. In such cases, alternative methods are of great interest.  

Availability of rapidly accumulated monitoring data including high-frequency in 

situ measurements, remote sensing, and reanalysis numerical modeling with data 

assimilation have paved the road for data-driven models. Recently, advanced data 

analysis methods have been developed quickly along with the increasing demand for big-

data analysis. Combining these datasets and advanced methods may provide a new 

approach for predicting and understanding the variation of water quality conditions. With 

advances in monitoring techniques and the increasing availability of observational data, 

data-driven approaches are likely to have great future potential.    

One example of advanced methods is neural network, which is a major 

component of our proposed data-driven approach. Neural networks are a widely used tool 

for empirical modeling in a complex system, especially useful when addressing nonlinear 

processes even if the underlying mechanisms are unknown or not fully understood 

(Scardi, 1996). Neural network models have been applied in the fields of classification, 

pattern recognition, and signal processing. Specifically, they have been used for remote 

sensing (e.g., Keiner and Yan, 1998; Vilas et al., 2011), water level prediction (Chang 

and Chen, 2003; Bajo and Umgiesser, 2010; Chen et al., 2012), rainfall-runoff processes 

(Hsu et al., 1995; Campolo et al., 1999), marsh classification (Morris et al., 2005), and 
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algal bloom prediction (Recknagel, 2001; Muttil and Chau, 2006). Neural network 

models were applied in Chesapeake Bay as early as 1996 by Scardi (1996) to train an 

empirical model for primary phytoplankton production. Following a similar approach, 

Scardi and Harding (1999) used in situ measurement of Chl-a, depth, light, and salinity 

conditions to predict the primary production rate in Chesapeake Bay. Muller and Muller 

(2015) used a wavelet-based neural network model to predict hypoxia volume in 

Chesapeake Bay based on the Oceanic Niño Index and river flow.  

Most previous estuarine studies using data-driven models targeted a single time 

series regarding a bulk value or at a given location (e.g., Liang et al., 2015; Park et al., 

2015; Kong et al., 2017), which is a one-dimensional (1D) simulation. Higher-

dimensional modeling, however, is rarely reported in estuarine and coastal research. 

Theoretically, a higher-dimensional problem can be decomposed into a limited number of 

lower-dimensional problems, particularly for aquatic systems where materials are 

continuously exchanged vertically and horizontally. Constrained by estuarine circulations 

and regulated by the dilution process, water-quality variables (e.g., salinity, nutrient 

concentration, and dissolved oxygen) in an estuarine system typically share high 

covariance among different regions (Du et al., 2018). For a simple instance, salinity 

increases at the entrance of an estuary usually coinciding with an increase of salinity at 

the head of the estuary. It is therefore theoretically possible to decouple spatial patterns 

from temporal variations through a dimension-reduction analysis, such as empirical 

orthogonal functions (EOF), and to transform the three-dimensional (3D) problem into 

1D or two-dimensional (2D) problems.  
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The purpose of this study is to examine the feasibility of a data-driven modeling 

approach by applying it to simulate spatial and temporal variations of Chl-a in 

Chesapeake Bay, the largest estuary in the US. Chl-a is one of the most fundamental state 

variables in determining the productivity and water quality of estuarine systems, and is 

also one of the most challenging subjects in water-quality modeling. Its spatial and 

temporal variations directly affect almost every aspect of biochemical processes for any 

given estuarine system. As one of the well-studied estuarine systems, Chesapeake Bay 

has been continuously monitored over several decades with monitoring stations covering 

a relatively large portion of the bay. Since 1985, monthly or bi-monthly surveys of major 

water-quality parameters including salinity, temperature, total nitrogen, dissolved 

oxygen, and Chl-a have been carried out by the Chesapeake Bay Program (CBP, 

https://www.chesapeakebay.net). Additional monitoring data including river flow, 

nutrient load, and air temperature are also made publicly available by the National 

Oceanic and Atmospheric Administration (NOAA) and the United States Geological 

Survey (USGS). These long-term and comprehensive datasets make Chesapeake Bay a 

perfect study site to evaluate a data-driven model. 

The paper is organized as follows. Section 2 describes the collection of 

observational data, introduces the proposed data-driven model with focuses on its three 

major components. Section 3 presents the spatial and temporal pattern of observed Chl-a 

in Chesapeake Bay and shows the training and evaluation of the data-driven model. The 

necessity of including wind and forcing transformation, as well as the limitations and 

robustness of the data-driven model, is discussed in Section 4, followed by concluding 

remarks in Section 5.  
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2. METHODS 

2.1 Data collection 

Chesapeake Bay is a large, partially stratified estuary that extends about 320 km 

from the mouth of Susquehanna River to its entrance facing the Atlantic Ocean. Its water 

quality has been well monitored by the CBP. Thirty-five years (1985–2019) of the 

historical record of the target water-quality variable, specifically Chl-a, at the 16 

mainstem stations was extracted from the CBP database (data available at 

https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_pres

ent). The locations of the stations are shown in Fig. 1. Despite the spatial and temporal 

limitations on the sampling resolution, the available long-term monitoring dataset 

provided a reliable basis for analysis in many previous studies (e.g., Hagy et al., 2004; 

Kemp et al., 2005; Prasad et al., 2010; Murphy et al., 2011).   

As an essential part of the data-driven model, external forcing data were carefully 

collected. Only relevant forcings were used, including nutrient loading, river flow, air 

temperature, and wind speed and direction (Table 1). River flow and wind are believed to 

regulate the stratification, estuarine circulation, and water exchange between ocean and 

estuary (Scully, 2010), while nutrient loading and air temperature are generally regarded 

as dominant factors controlling algal growth. Nevertheless, the combined influence from 

these forcings on Chl-a concentration can be complex (Harding, 1994). These forcing 

inputs are nearly the same as required by a 3D numerical model (e.g., Cerco and Noel, 

2013). Forcing data were collected from a variety of reliable sources. River flow and 

nutrient loadings of the largest tributaries-Susquehanna, Potomac, James, and Choptank 

Rivers-were extracted from USGS (https://www.usgs.gov/). Air temperature at 

https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present
https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present
https://www.usgs.gov/
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Chesapeake Bay bridge-tunnel station (#8638901) was extracted from NOAA 

(https://tidesandcurrents.noaa.gov/), with data gaps being replaced with measurements at 

a nearby NOAA station, Cape Henry (#8638999). For the atmospheric data, instead of 

depending on measurements at a limited number of gauging stations, we used ERA5 

reanalysis product provided by the European Centre for Medium-Range Weather 

Forecasts (ECMWF: https://www.ecmwf.int/), which cover the entire Chesapeake Bay 

with a spatial resolution of 0.25° and hourly temporal resolution. 

2.2 Framework of the data model 

To model not only the temporal but also the spatial variations, the Chl-a profile 

data with irregular vertical resolution was first converted into a gridded 3D dataset as a 

function of (x, z, t), where x is the horizontal location along the major axis of the bay, z is 

the depth, and t is time. Considering the high covariance among mainstem stations (i.e., 

water quality at one station usually changes in pace with nearby stations), an EOF 

analysis was conducted to decompose the spatial and temporal variations and thereby 

convert the 3D variable into several 2D maps and 1D time series (Fig. 2). The 1D time 

series could then be modeled with readily available statistical and machine-learning tools 

when provided proper input forcing variables.  

The historical record of the target variable (i.e., Chla concentration) was first 

divided into two independent sub-datasets, namely training and testing datasets, with the 

former being used during the training process and the latter being used to evaluate the 

model performance. When training the model, it is important to keep the assumption that 

neither forcings nor the target variable in the testing period is known. Therefore, the 

training dataset instead of the full record was used for the EOF analysis.  

https://tidesandcurrents.noaa.gov/
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Even though it is possible to train all EOF modes, it is essential to determine how 

many principal components are nontrivial and should be modeled. To distinguish 

interpretable signals from random noise, several methods have been frequently used, 

including the Kaiser–Guttman criterion, scree plot, broken-stick model, and total variance 

method (Jackson, 1993). Here we used the broken-stick model proposed by Frontier 

(1976), which suggests that components are interpretable when their eigenvalues exceed 

the corresponding value from a broken-stick distribution. The eigenvalue for the kth 

component under the broken-stick model can be calculated as follows (Jackson, 1993):  

1N

k

i k

b
i=

=   (1)  

where N is the total number of EOF components (e.g., 320 in this study). Only 

components with an eigenvalue larger than bk will be selected.  

For each selected EOF mode, the relationship between external forcings and 

temporal variations of each mode will be established with a neural network model. The 

following sections describe in detail the three major components of the proposed data-

driven approach, i.e. EOF analysis, artificial neural network, and forcing transformation 

selection. 

2.3 EOF analysis 

EOF analysis is often used to study the principal components of a variable and 

how they change with time. An EOF uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated 

variables called principal components (Jolliffe, 2002). Depending on the covariance 
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between time series at different locations, the percentage of total variance accounted for 

by each mode varies.  

Before performing EOF analysis, the observation profile data of Chl-a were 

averaged monthly and interpolated into 20 evenly distributed vertical layers at each 

station and the long-term mean value for each grid point was subtracted. In total, there 

were 320 sampling locations (16 stations × 20 layers) and 420 records over the period of 

1985-2019. As a result, a data matrix F (420 × 320) was obtained, with each row 

representing a map for a given month and each column representing the time series of the 

variable for a given sampling location. Additionally, at each sampling location, the time 

series was normalized with its standard deviation.  

The EOF analysis in this study was based on the singular value decomposition 

algorithm, which decomposes the normalized data matrix F into the following form: 

F=UDVT  (2) 

where U is an orthogonal matrix (420 × 420) of temporal vectors, V is an orthogonal 

matrix (320× 320) of spatial vectors, and D is a diagonal matrix (420 × 320) storing the 

eigenvalues. The advantage of the EOF analysis is converting a 3D problem into multiple 

1D problems. Instead of explaining the time series at all sampling locations, we only need 

to focus on a limited number of primary modes. The number of primary modes p to be 

modeled is determined using the broken-stick method (Eq. 1). Modes other than the first 

p modes are considered as noise. The noise-free Chl-a concentration (C) can then be 

calculated as follows: 

1

( , ) ( ) ( ) ( )
p

o i i

i

C x t C x M x T t
=

= +    (3) 
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where Co is the long-term mean, M is the map calculated as V∙DT and is a function of the 

spatial location x, and T is the temporal value for a given mode as a function of time t. 

Both M and T are extracted from the EOF analysis. For prediction in the testing period, 

the predicted value of Chl-a ( C ) can be obtained similarly, with the maps kept 

unchanged but temporal components being replaced with predicted values (   T ).   

 
1

( , ) ( ) ( ) ( )
p

io i

i

C x t C x M x T t
=

= +     (4) 

It can be very challenging to model the primary modes with simple linear 

regressions, as successes of regressions greatly depend on the linearity between forcing 

and responding variables. Considering many processes in nature are nonlinear and 

generally respond to a combination of multiple forcings, an artificial neural network was 

applied to model the temporal variations of the selected primary modes.  

2.4 Artificial neural networks 

Artificial neural networks are computational models inspired by the functioning 

of human brain (Scardi, 1996; Paliwal and Kumar, 2009). They are composed of numbers 

of “neurons”, the basic computational unit that takes inputs (x) from other neurons or 

external sources, calculates the corresponding weight (w) for each input, sums the 

product of weights and input values (Σwx), plus bias (b), and finally passes this value (b+ 

Σwx) to an activation function. The outcome of the activation function is used as input 

for the next layer of neurons. Here the Levenberg-Marquardt backpropagation training 

function (Marquardt, 1963) was used, which approaches second-order training speed 

without computing the Hessian matrix directly and appears to be the fastest method for 

training moderate-sized feedforward neural networks (Hagan and Menhaj, 1999). The 
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Matlab Neural Network Toolbox (version 10.0) was used for this study. The training 

process will stop when any of the following conditions occurs: (1) number of epochs 

reach the defined maximum epochs (set to be 100); (2) cost function (mean square error) 

is minimized to the 0; and (3) performance gradient falls below 1e-7. For details of the 

algorithm of the Levenberg-Marquardt method, readers are referred to the help document 

in Matlab. The algorithm is widely recognized and well implemented in the Matlab 

toolbox. 

It is worth noting that there are several uncertainty sources associated with the 

neural network and these uncertainties need to be considered when using the trained 

models for prediction. First, the neural network toolbox is set to randomly divide the 

input data (i.e., forcing data and target variable data for the training period) into “train-,” 

“validate-,” and “test-” parts. These three parts are set to account for 70%, 15%, and 15% 

of the input data, respectively. Second, weights and bias are commonly randomly 

initialized. Because of the randomness in data division and initialization of weights and 

bias, model predictions in both training and testing periods varies slightly from each 

training. To account for these uncertainties, we trained the neural network model 100 

times for each principal component, used the ensemble mean of these models as the final 

prediction, and used the standard deviation of these models’ predictions to quantify the 

uncertainties. 

To improve model performance, multiple hidden layers of neurons are usually 

used. After testing the model by including different numbers of hidden layers, little 

change in model performance was found when more than two hidden layers were used. 

Therefore, two hidden layers were used in the model to obtain a balance of accuracy and 
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computational efficiency. The number of hidden neurons in each layer was automatically 

adjusted based on the number of input variables. The total numbers of neurons in the first 

and second layers were set as n and rounding of n/2, respectively, where n is the number 

of input variables. 

2.5 Forcing transformation selections 

One of the difficulties is selecting relevant forcings as input variables for the 

neural networks. Because each EOF mode usually relates to different underlying physical 

and biological processes or represents different regions, the response of each EOF mode 

to each input forcing varies. For example, a mode representing the upper estuary Chl-a 

variations will respond to flow and nutrient loading much faster than the mode that 

represents the lower estuary. A time-delay of response needs to be considered due to the 

transport processes of water and nutrients. Additionally, forcings sometimes affect 

estuarine dynamics through an accumulative manner. For instance, the growth of 

plankton in the bay is commonly believed to be linked to the loading over several prior 

months instead of a particular month (Scavia et al., 2006). To account for this effect, an 

accumulative moving average need to be applied for the forcings. In practice, we applied 

different lengths of accumulative average, including 30, 60, 90, 120, and 150 days, which 

are corresponding to different transport timescales for water moving from upstream to 

different regions of the bay (Shen and Wang, 2007).  

 Considering the unknown relationship between forcings and EOF modes, it is 

impractical to choose the transformations manually for each selected EOF mode. To this 

end, a process called “transformation auto-selection” is included in the method, in which 

forcings are transformed by multiple methods (e.g., accumulative average, time-delay, 
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and log transform, see Tables 2 and 3) and an appropriate transformation is selected 

automatically. The procedure included (1) transforming each input forcing variable with 

one of the functions listed in Table 2; (2) performing different moving averages for each 

transformed variable (Table 3); and (3) conducting different time-shifts for each 

transformed and moving averaged variable (Table 3). There are more than 200 

combinations for each forcing, but only one type of transformation that improved and 

maximized model performance is selected. The target variable is set as y (n×1) and the 

input forcing matrix X is empty at the beginning. First, the coefficients of determination 

(R2) between y and all available forcing variables in all available transformations were 

computed. The forcing variable with a transformation that gives the maximum R2 is 

selected as the first input variable and stored in X (:, 1). The second forcing variable 

added to X is selected from the remaining forcings based on the R2 from multiple linear 

regressions. The new forcing variable that most increased the R2 is added. This process 

continued until R2 does not increase by at least 0.005. This threshold is used to exclude 

forcings that made little contribution. Even though using linear regression analysis to 

determine the transformation is not the perfect option, such auto-selection gives an 

overall reasonable model performance (shown later). The selected forcing and 

transformation for each of the nine modes can be found in supplemental materials (Table 

S1–S9). More discussion on the necessity of transformation is presented in Section 4.3. 

For each mode, input forcings are selected independently. There is no limit of the 

input forcings, but considering the availability of the data length and its relevance with 

Chl-a, we only chose those that are well known as influencing forcings according to 

previous numerical modeling studies (e.g., Cerco and Noel, 2013; Testa et al., 2014). 



89 

 

Several protocols need to be followed when choosing external forcings. First, no in situ 

measurements along the mainstem of the bay were used. It is not rational to model Chl-a 

if one can measure the in situ values of other environmental parameters such as salinity, 

water temperature, and total nitrogen. Instead, forcings that are regarded as “external” 

(e.g., wind, river discharge, and air temperature) were chosen (Table 1). Second, it is 

essential to ensure that the length of external forcings is equal or greater than the length 

of the target variable. Third, specific pre-processing may be needed for some input 

forcings. For example, wind hour was calculated to quantify the accumulative impact of 

wind blowing from a ±45° window of a given direction (e.g., easterly, westerly, northerly, 

and southerly) regardless of the wind speed. To account for wind speed, wind strength 

from each direction (unit, h m /s) was also computed as the product of wind hour and 

wind speed. In addition, we also calculated the wind hour when wind speed exceeded 2 

or 4 m/s, considering that wind will be especially effective when its speed exceeds a 

certain value. Fourth, to be consistent with the temporal resolution of the target variable, 

all the forcing data were monthly averaged. For flow and nutrient loadings, not every 

river was used. Instead representative discharges and loadings from upstream discharge 

(Susquehanna River), large tributaries (e.g., Potomac and James Rivers), and small 

tributaries (e.g., Choptank River) were chosen.  

2.6 Model performance index calculation  

 In addition to the common statistical measures, including root mean square error 

(RMSE) and correlation coefficient (R), model skill was also calculated following 

Willmott (1981): 
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where Xobs and Xmod are the observed and modeled variables, respectively, with the 

overbar indicating the time average. Skill provides an index of model–data agreement, 

with a skill of 1 indicating perfect agreement and 0 indicating complete disagreement. 

The skill has been widely used to evaluate the performance of numerical models (e.g., 

Warner et al., 2005; Du et al., 2019). While R indicates the model’s capability of 

capturing the seasonal or interannual trends and RMSE indicates the overall bias between 

model and observation, skill can be regarded as a synthesis index to evaluate both the 

trend capturing and relative bias.   

Furthermore, the correlation coefficient and skill were also calculated for the 

anomaly to discount the influence of seasonality on the overall model performance. To 

obtain the anomalies, the seasonal cycle signal at each station and each layer based on the 

training dataset was subtracted for both the observed and predicted values in the testing 

period.  

2.7 Sensitivity test 

 Wind plays an important role in water quality through modulating stratification, 

vertical mixing, longitudinal and lateral circulation, and water renewal in an estuary 

(Scully, 2010; Du and Shen, 2015). It is unknown whether wind will affect the intensity 

and extent of algal bloom. A sensitivity test with respect to the inclusion of wind force 

was conducted to answer this question by examining the difference between model 

performance with and without wind force.  
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 Additional testing to illustrate the necessity of transformations was carried out by 

forcing the model with input variables that were not transformed. Even though input 

forcings were transformed by the activation function within the neural network, some 

important effects associated with estuarine dynamics such as time lagging and 

accumulative effect are not well included inside the neural network. Results from the 

sensitivity tests were compared to the base run (i.e., with wind and transformations) and 

their performance differences were illustrated by Taylor diagram (Taylor, 2001).  

3. RESULTS 

3.1 Long-term mean and EOF modes for Chl-a 

 It is worthwhile to describe the long-term mean because it provides the 

background condition upon which the distribution of Chl-a concentration varies spatially. 

The long-term mean Chl-a concentration ranged within 5–15 μg/l, with a higher value in 

the upper bay and near the surface layers (Fig. 3). The spatial pattern shares great 

similarities with the distribution of nitrogen concentration (Du and Shen, 2017), 

demonstrating the potential influence of nutrient concentration. Nitrogen limitation is 

evident in Chesapeake Bay, particularly during the summer, and the impact of nitrogen 

limitation increases from the upper bay to the lower bay (Fisher et al., 1992; Fisher et al., 

1999). The vertical gradient (i.e., larger value at the surface and smaller value at the 

bottom) suggests a light limitation for algal growth at all locations. The maximum value 

occurred at 39°N, or CB3.3C, while the minimum value was observed at the bay mouth 

and the northernmost end of the bay. The maximum value occurred just below the 

downstream limit of the estuarine turbidity maximum zone, which is typically located 
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above 39.13N (Malpezzi et al., 2013). The location of the maximum Chl-a concentration 

suggests that the algal growth was likely regulated by both nutrients and light conditions. 

At 39N where nutrient levels were high and light conditions were sufficient, the 

accumulation of phytoplankton biomass was greatly favored (Keller et al., 2014). Roman 

et al. (2005), through a high-resolution sampling over 1995–2002, also found a persistent 

maximum in phytoplankton biomass occurring in the upper bay and attributed it to the 

physical and topographic discontinuities in this region.  

3.2 Spatial and seasonal pattern of primary modes 

 More interesting is the spatial pattern and temporal variations of the primary EOF 

modes. The first four primary modes accounte for 45%, 17%, 8%, and 6% of the total 

variance, respectively. Due to the orthogonal nature, spatial patterns (hereafter referred to 

as maps) and time series differed from one another (Fig. 4). The first and second modes 

feature the spring algal bloom, but for different regions. The third and fourth modes seem 

to highlight the summer bloom. It is not the primary purpose of this study to distinguish 

the possible processes contributing to each mode. However, through an EOF analysis, 

one could identify the likely dominant processes accounting for the spatial and temporal 

variations, which will be further discussed in Section 4.1.     

3.3 Determine the number of modes to explain 

 Using the broken-stick method, the number of interpretable components for Chl-a 

in Chesapeake Bay was determined to be nine, based on the fact that the first nine EOF 

modes have eigenvalues greater than that under the broken-stick distribution (Fig. 5). The 

residual values after subtracting the summation of the first nine modes and long-term 

mean from the original values are considered as noise, and they are not correlated among 
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different locations. The first nine EOF modes accounted for 88% of the total variance. 

Note that the number of primary components to be modeled is determined based on the 

training dataset and it is assumed this number also applied to the testing period.  

3.4 Model training 

The long-term dataset was separated into two parts: a training dataset (the first 

80% of the dataset, i.e., 1985–2013) and a testing dataset (the last 20% of the dataset, i.e., 

2014–2019). The training dataset was used to train the model, while the testing dataset 

was used to evaluate the prediction skill of the trained model. Using the neural network, 

each of the primary modes was well trained by various input forcings, with model skill 

exceeding 0.52 for all the modes (Fig. 6). We acknowledge that the model is not perfect 

for every mode as there are still variations not explained by the input forcings, for several 

following reasons. First, some nutrient sources were not included in the input forcings, 

such as the atmospheric deposition, point sources along the shoreline, and coastal ocean 

input. These sources could contribute to 30-40% of the total nitrogen load (Boynton et 

al., 1995). However, there were limited available data regarding these nutrient sources 

and therefore they were not included in the model. Another reason is the temporal 

limitation of the observation. The monthly or bi-monthly measurement might not be able 

to represent the monthly mean condition, particularly for regions with large temporal 

variabilities (Bever et al., 2013).  

3.5 Model performance in testing period 

The model predicts well the variability in different regions, i.e., larger variability 

in the upper bay and smaller variability in the lower bay (Fig. 7). For the subsurface Chl-

a, the RMSE range is 7– 12 μg/l, with a larger RMSE in the upper bay. Correlation 
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coefficient (~ 0.8) and model skill (~ 0.8) are both high in the middle and upper bay 

stations, with exception of the upper-most station CB2.2. The model skill at the lower bay 

stations is relatively lower (0.14–0.72), partly because Chl-a in the lower bay is also 

controlled by coastal ocean conditions (e.g., nutrient concentration), which were not 

included in the model due to lack of observations. Recent studies (e.g., Du and Shen, 

2017; Da et al., 2018) suggest the nutrient conditions in the open ocean can be influential, 

especially for the lower bay, as large bottom inflow can efficiently move the oceanic 

water into the bay. As nutrient concentration in the lower bay is relatively small, changes 

in nutrient level in the coastal ocean can thus have more impact in this region than the 

middle-upper bay, where riverine nutrients dominate. The lower performance in the 

lower bay can be also attributed to the decreasing variability of Chl-a when moving from 

the upper bay to the lower bay. For example, at the bay mouth station CB7.3, the 

concentration of Chl-a was typically below 10 μg/l, which was about one order less than 

the value in the middle and upper bay.  

The seasonal patterns of Chl-a were also well-predicted and the pattern varied 

greatly among different seasons in terms of the magnitude and vertical gradient. Chl-a 

was much greater during winter and spring compared to summer and fall (Fig. 8). 

Interestingly, the vertical gradient followed an upward direction (i.e., decrease upward) 

during winter, weaker in spring, and downward in summer and fall. The upward gradient 

in winter and spring is unique in Chesapeake Bay, particularly during winter, whereas the 

vertical gradient during spring is weak except in the upper bay (>39°N). The exact 

underlying mechanism for such vertical distribution during winter is not well- known. It 
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could be caused by the combination of several processes, including settling of algae, 

landward bottom inflow, and/or lateral circulations.  

Not only does the model predict well the seasonal cycle of Chl-a, it also 

reasonably predicts the interannual variability (Fig. 9). Of the five years (2014-2018) in 

the testing period, the observed spring Chl-a was characterized with a maximum value in 

the bottom of the upper bay for three years (2014–2016), suggesting effective bottom 

trapping near the turbidity maximum zone. Chl-a in the spring of 2016–2017 was much 

smaller and showed no marked bloom, likely caused by a lower nutrient level or a more 

dispersive hydrodynamic condition. There were significant interannual variabilities and 

the model is able to capture this interannual signal.  

Overall, the model predictions are satisfactory for both spatial and temporal 

variations of Chl-a in Chesapeake Bay. The performance is comparable or better than the 

sophisticated 3D numerical models that have been applied for Chesapeake Bay (e.g., 

Cerco and Meyers, 2000; Li et al., 2009; Cerco and Noel, 2013; Testa et al., 2014; Yang 

et al., 2015). Using a physical–biogeochemical coupling model, Testa et al. (2014) 

simulated Chl-a with a mean correlation coefficient of 0.6 between model and 

observation. In another numerical modeling study (Feng et al., 2015), the correlation 

coefficient for Chl-a had a mean value of 0.3 when averaged over the mainstem 

monitoring stations. Irby et al. (2016) compared the performance of eight numerical 

models (all applied for Chesapeake Bay) in simulating salinity, temperature, dissolved 

oxygen, and Chl-a. They showed that all the numerical models had a low skill in 

predicting Chl-a compared to other water-quality variables. For the bottom Chl-a, the 

correlation coefficient from different models ranged within 0.1–0.6. In comparison, our 
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data-driven model had a correlation coefficient of about 0.75 when averaged over all 16 

stations (Fig. 10). Furthermore, it seems all the numerical models greatly underestimate 

the variability of the bottom Chl-a, with the standard deviation about less than half of the 

true value (Testa et al. 2014; Feng et al., 2015; Irby et al. 2016). Even though most of 

these numerical models were designed for simulating the dissolved oxygen, there is no 

doubt that Chl-a simulation is extremely challenging even using the most advanced 

numerical model systems.  

4. DISCUSSION 

4.1 Possible mechanisms revealed by EOF analysis  

 It is of interest to understand the dominant processes that regulate the temporal 

and spatial distribution of a given water quality variable, and EOF analysis can serve as a 

useful tool for such a purpose. This strategy has been extensively used in many studies. 

For example, Scully (2016) performed an EOF analysis for the dissolved oxygen in 

Chesapeake Bay and attributed the second mode to the bathymetry discontinuity-induced 

convergence. Du et al. (2018) used EOF to identify the key external parameters including 

water temperature and Chl-a concentration for the first primary mode of dissolved 

oxygen in Chesapeake Bay.  

 Our analysis shows that the first and second modes, together, contributed to 64% 

of the total variance of Chl-a. The temporal values of both first and second EOF modes 

show clear seasonality, with peaks in April and March, respectively (Fig. 4b, d). The first 

mode is characterized with positive spatial value throughout the entire bay, meaning 

changes in Chl-a in this mode are in phase over the entire bay. Differently, the second 
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mode highlights a strong variability in the subsurface water of the upper bay. It is 

conceivable that the first and second modes accounted for the major seasonal bloom, 

particularly the spring bloom. The second mode leads the first one by about one month, 

suggesting that the spring bloom occurrs first in the upper bay with maximum bloom in 

March and then the algal bloom extends to the entire bay, reaching its maximum in April. 

Although the spring bloom has been commonly recognized in previous studies (e.g. 

Harding 1994; Keller et al., 2014), it is interesting to find the different timing of algal 

bloom in different regions.  

It is worth pointing out the noticeable vertical difference in the spatial pattern of 

the first two EOF modes, both of which were characterized with a higher value at the 

bottom and a smaller value at the surface, indicating a larger variability (or more 

sensitive response) at the bottom than at the surface. Particularly, in the second mode, 

Chl-a concentration varies greatly at the bottom of the upper bay, compared to any other 

region. Such a spatial pattern is partially attributable to the sensitivity of sediment 

resuspension and accumulation at the water–sediment interface near the turbidity 

maximum zone. Keller et al. (2014) suggested that an efficient entrapment of 

phytoplankton and phytoplankton-derived organic matter occurs near the turbidity 

maximum zone. Contrary to our common understanding that algae generally concentrate 

in the upper column due to light attenuation, it is the subsurface layer that had a larger 

variability and this applied to the entire bay. Even after including the long-term mean 

value, the subsurface concentrations of Chl-a were generally larger than the surface 

concentration (Fig. 9).  
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4.2 Necessity to include wind  

 The sensitivity test without including the wind forcings shows that the model’s 

performance is weakened. Without wind forcings, the overall performance is reduced for 

both the training and testing (Figs. 11and 12). Surface stress posed by the wind field can 

alter not only barotropic but also baroclinic processes. It affects Chl-a through several 

processes. First, wind could change the estuarine circulations, including both longitudinal 

and lateral circulations (Chen and Sanford, 2009; Scully, 2010; Li and Li, 2011). Change 

of circulation affects the along-bay and cross-bay water- and nutrient-exchange. 

Dispersion of the phytoplankton patches follows the water movement and circulations. A 

stronger downstream flow moves the surface water faster toward downstream and 

enhances the compensated bottom inflow, resulting in a smaller residence time and thus 

faster flushing (Shen and Wang, 2007; Du and Shen, 2016). A smaller residence time can 

inhibit algal blooms (Lucas et al., 2009; Qin and Shen, 2019). Second, wind forcing 

introduces external energy for vertical mixing. Stronger wind tends to enlarge the vertical 

mixing layer, whose thickness is known to affect the accumulation rate of biomass due to 

light attenuation and plankton biomass loss (e.g., due to predation or respiration) (Roman 

et al., 2005). Third, wind forcing can replenish the upper water column with the supply of 

nutrients from bottom layers after destratification (Miller et al., 2006). Such nutrient 

sources can be very important during summer, during which euphoric water is usually 

nutrient-limited after spring blooms (Fisher et al., 1992). Finally, wind-induced 

resuspension of plankton previously settled at the water–sediment interface can also 

directly affect Chl-a concentration in the water column. Schelske et al. (1995), based on 
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observations in Lake Apopka, Florida, showed that Chl-a concentrations >100 μg/l were 

highly correlated with wind speed primarily due to the resuspension of meroplankton.  

 Linear relationships between wind forcing and key hydrodynamic processes have 

been identified in previous studies (e.g., Scully, 2010). In practice, researchers usually 

decompose the wind into different directions. One of the most commonly used strategies 

is to respectively calculate wind hour, wind speed, and wind strength for southerly, 

northerly, westerly, and easterly components. This strategy was adopted in the wind data 

preprocessing for our Chesapeake Bay Chl-a application.  

4.3 Necessity to apply transformations for the input forcings 

 Transformations are usually needed to obtain a better model performance, which 

applies to not only wind forcing but also other input forcings (Shen et al., 2019). Scardi et 

al. (1999) showed that their neural network-based model has performance enhancement 

when applying a log transformation to the input variables. However, performance 

enhancement does not necessarily occur for every case of applying a log transformation. 

For example, Maher and Eyre (2011) showed that a log transformation does not improve 

their model performance.  

 A sensitivity run without applying any transformation of the input forcings gave 

the poorest model performance, compared to the base run and sensitivity run without 

wind (Figs. 11and12). One noticeable change in the model performance is that the 

standard deviation is much larger than the other two runs (Fig. 11f).  

 Several processes warrant the necessity of including the transformation. First, it is 

known that nutrients from the primary diffusive source (i.e., Susquehanna River) take 
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months to be transported to the middle and lower portions of the bay (Shen and Wang, 

2007). Even for the source from major ambient tributaries (e.g., Potomac, James, and 

Choptank Rivers), it also takes tens of days for nutrients released from the headwaters to 

merge into the mainstem bay. It is therefore essential to apply a time-shifting 

transformation for nutrient and freshwater loading. Not only the nutrients and freshwater 

loading, but any forcings influencing the transport processes might also need a time-

shifting transformation. For example, a northeasterly wind in the winter is related to the 

summer hypoxia, and the underlying mechanism is believed to lie in the accumulation of 

organic matter in the lower bay due to the enhanced estuarine circulation under a 

northeasterly wind (Lee et al., 2013). Second, many input forcings change the physical–

biological condition through an accumulation process. Multiple-month accumulative 

amounts of nutrients or freshwater load are generally considered to be more related with 

the spring algal bloom and summer hypoxic volume in Chesapeake Bay (Scavia et al., 

2006).  

However, it will be challenging and not practically sound to manually set 

transforming for each forcing and each mode, as there are too many forcings to be 

included and many modes to be explained. The effectiveness of any transformation 

depends on the input forcings and the relationship between the dependent and 

independent variables. Providing a series of transformation options and making the model 

select the best relevant one seems to be a good way to circumvent such obstacles. 

Therefore, we used an auto-selection procedure for the transformation step.  



101 

 

4.4 Robustness and limitation of the data-driven approach 

The accuracy of the prediction and the success of the model rely greatly on the 

record length of both the forcing data and the measurement of target parameters. High 

integrity of the data in Chesapeake Bay is one of the reasons for the success of the model 

application. As the monitoring program continues, the length of records will increase 

steadily in the future, which will lead to more accurate model predictions. The increasing 

data volume in the future will make the data-driven approach more promising.  

 Nevertheless, it does not mean this approach is not suitable for a coastal system 

with measurements of limited duration. The limitation of time span can be compensated 

by a higher measurement frequency. Daily, hourly, or even minute-by-minute data can 

now be easily obtained through in situ measurements, remote sensing, or hindcast 

numerical results. For example, Chl-a concentration data from remote sensing (e.g., 

MODIS and VIIRS) is available daily. Even considering the cloud-induced lousy signal, 

a weekly average will give reasonable coverages. For each year, it is possible to get 52 

weekly measurements per year, leading to data accumulation at a much faster pace and 

therefore a shorter time-span requirement when applying a data-driven approach. In 

coastal waters, the seasonal cycle usually plays an important role in physical and 

biological dynamics and therefore it is recommended to have data with length at least 

longer than a year.  

It is noteworthy that the model performance is likely hampered by the temporal 

resolution of Chl-a measurements in Chesapeake Bay as well as the missing forcing data 

regarding the point source loading, coastal ocean input, and atmospheric deposition. Such 

types of limitations not only exist in our model but also for other 3D numerical models. 
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The limited temporal resolution of Chl-a in situ measurement may cause the proposed 

model to have difficulty in predicting the anomaly (i.e., the residual after subtracting the 

seasonal mean) of Chl-a in Chesapeake Bay. For the nine stations shown in Fig. 7, the 

anomaly correlation coefficient ranges within 0.2–0.6. The relatively low anomaly 

correlations do not necessarily indicate that the model is useless considering that Chl-a is 

extremely difficult to model in estuarine and coastal waters because Chl-a is affected by 

not only the fluid dynamics but also complex biogeochemical processes (Testa et al., 

2014), for which uncertainties are relatively large.  

Using similar inputs including river discharge, nutrient loading, and atmospheric 

forcing as required for a hydrodynamic-ecosystem model, the data-based model has a 

much better computational efficiency. The neural network itself does not consume too 

much time, but the filtering of the input forcings to obtain a set of relevant forcings and 

appropriate transformations does. The time consumed depends greatly on the number of 

input forcings and the number of transformations, as well as the length of records. The 

influence of the input forcings is usually nonlinear, and thus numerous transformations 

are recommended, including exponential, log, square, inverse, and time-shifting 

transformations (Table 2).  

Perhaps the most crucial advantage of the data-driven approach is that it has less 

error accumulation. For numerical model systems, the success of the water-quality model 

greatly depends on the reliability of hydrodynamic model and the parameterization of 

various processes to obtain a numerical solution with discrete resolution in space and 

time. Inevitably, these errors tend to accumulate over time and from the hydrodynamic 

level to the upper ecosystem level. The data-driven approach proposed in this study could 
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be an alternative and efficient tool circumventing this type of error. The same concept 

can also be applied to some similar fields, such as dissolved oxygen, dissolved organic 

matter, and turbidity, considering the high similarities in their controlling mechanisms in 

an estuary.   

5. CONCLUSIONS 

This study introduced a data-driven approach for water-quality modeling by 

combining EOF analysis and neural network and converting the 3D problem into multiple 

1D problems. The overall performance of this data-driven approach in modeling the 

spatial-temporal variations of Chl-a in Chesapeake Bay is comparable or even better than 

sophisticated 3D numerical models, all of which have difficulty in accurately modeling 

the variations of Chl-a. The approach could be useful as a tool to predict the response of 

an estuarine ecosystem to changes in environmental conditions. 

We are not suggesting that the data-approach is better than the numerical models; 

however, we argue that data-driven approaches provide a promising way for future 

studies in coastal and estuarine systems considering the fast accumulation of data from a 

variety of monitoring programs. This study demonstrates that the dynamics of Chl-a, 

which is highly variable temporally and spatially and extremely challenging to simulate, 

can be reasonably predicted by a data-driven approach. Because of the nonlinear nature 

of ecosystem processes, modeling of water quality is always challenging, even with the 

help of sophisticated 3D numerical model systems. The approach presented here provides 

an alternative way to circumvent the error cascading in a numerical model and 

uncertainties induced by the not well-parameterized biogeochemical processes. By 
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combining EOF analysis and the neural network, this study highlights the potential of 

developing data-driven models for complex 3D problems in estuaries and coasts. With 

high-frequency monitoring data and rapidly advancing machine-learning techniques, the 

data-driven approaches are likely to be more frequently used in future estuarine studies.  
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Table 1: Input and output variables for the neural network 

Variable Data frequency Source 

Input forcing   

Air temperature Hourly NOAA tidal gauge station 

measurement at CBBT 

River discharges from Susquehanna, 

Potomac, James, and Choptank Rivers 

Daily USGS 

TN, TP loading for Susquehanna, 

Potomac, James, and Choptank Rivers 

Monthly USGS 

Solar radiation 3-hourly NCEP 

Wind (speed, direction, wind hour) hourly ECMWF 

Output variable   

Time series of each EOF mode Monthly  

 

Table2: Eight transformations used for the data-driven model 

Transformation Formula 

1 X = x 

2 X = log(x) 

3 X = 1/x 

4 X = exp((x-mean(x))/std(x)) 

5 X = x/(p50+x) 

6 X = x/(p75+x) 

7 X = x/(p25+x) 

8 X = (x-mean(x))/std(x) 
std(x):  the standard deviation of x 

mean(x): the mean value of x 

P25, P50, P75: the 25, 50, and 75 percentile of x 

 

Table 3: A summary of transformations, shiftings, and average periods for each forcing  

Forcing Transformations Shifting (days) Average period (days) 

Air Temperature 1, 2, 3, 4, 6 0–60 30–90 

Flow 1–7 0–60 30–150 

TN, TP 1–7 0–60 30–150 

Solar 1–8 0–60 30–150 

Wind 1–8, wind hour, 

wind strength 

0–60 30–150 
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Figure 1: Map of Chesapeake Bay. Chesapeake Bay Program monitoring stations are 

marked with rectangles, with yellow, red, and purple colors for the lower, middle, and 

upper bay stations, respectively. Four major tributaries (i.e., James, Potomac, 

Susquehanna, and Choptank Rivers) are marked as text in the map, with their 

corresponding USGS gauge station marked with triangles. The NOAA gauge station at 

the bay mouth is marked with a solid circle. Bathymetry data is based on U.S. Coastal 

Relief Model generated by the National Geophysical Data Center 

(https://www.ngdc.noaa.gov).  

 

https://www.ngdc.noaa.gov/
https://www.ngdc.noaa.gov/
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Figure 2: A diagram showing the framework of the proposed data-driven model. 
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Figure 3: Long-term mean of Chl-a concentration (averaged over 1985-2019) along the 

mainstem of Chesapeake Bay. For each station, the observed vertical profiles are 

interpolated into 20 layers (white dots). The values are in the unit of μg/l.    
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Figure 4: Spatial patterns (left panels) and seasonalities (right panels) of the first four 

EOF modes for Chl-a along the mainstem channel.  
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Figure 5: Eigenvalues from the EOF analysis of Chl-a data in training period (solid 

circles) and from the broken-stick distribution (squares).  
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Figure 6: Scatterplots of predicted values against observed values for each mode, with R2 

and model skill shown in text. Only the training dataset was used for this plot.  
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Figure 7: Predicted model results and the observed value of subsurface Chl-a at selected 

mainstem stations. Only the testing dataset was used for this plot. The gray shades 

indicate the uncertainties of model predictions; they denote the standard deviation of 100 

neural network predictions. Correlation coefficient (R), root mean square error (RMSE), 

and model skill are shown in text. Also shown in text are the correlation coefficient and 

skill for the anomalies, denoted as R-a and skill-a. Missing prediction after September 

2018 is because of the lack of nutrient load data. 
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Figure 8: Seasonal pattern of Chl-a from observation and model prediction for the testing 

period. Note the difference in magnitude and spatial distribution of Chl-a (e.g.., very 

large Chl-a in the bottom during winter and spring, while smaller magnitude but larger in 

the surface during summer and fall).  
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Figure 9: Comparison of spring Chl-a between observation and modeling results for the 

testing period.   
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Figure 10: Taylor diagram showing performance in subsurface Chl-a from different 

models. The data from previous models are based on fig. 6 in Testa et al. (2014), fig. 5 in 

Feng et al. (2015), and fig. 8 in Irby et al. (2016). The radial distance from the origin is 

proportional to the ratio standard deviations; the azimuthal angle indicates the Pearson 

correlation coefficient; and the distance between the each filled marker and the 

“reference” point (marked with a cross) indicates the centered root mean square 

deviation. 
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Figure 11: Taylor diagrams showing the model performance in simulating subsurface 

Chl-a at each of the 16 stations from base run and two sensitivity tests. Top and bottom 

panels for the training and testing dataset, respectively. (a, d) a base run with full 

forcings; (b, e) a run without wind; and (c, f) a run without performing transformation of 

input forcings.  

  



130 

 

 

Figure 12: Model’s training performance for different runs (indicated by different colors). 

The median values of a given statistic metric over 16 monitoring stations are shown with 

solid circles while the 25th and 75th percentiles are shown with error bars.  
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Table S1: Forcing and corresponding transformations used to model 1st principal 

component. See table 2 in the main article for details of transformation functions.  

Forcing Transform function Shifting (days) Accumulation (days) 

Solar radiation 3 60 55 

James flow 1 0 45 

Potomac TP loading 3 50 95 

Westerly wind speed 4 4 15 

James TP loading 3 0 105 

Potomac TN loading 4 0 105 

Potomac flow 4 60 55 

James sediment loading 6 0 75 
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Table S2: Forcing and corresponding transformations used to model 2nd principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Air temperature 7 30 15 

Susquehanna flow 8 10 15 

Solar radiation 3 0 135 

James TP loading 3 50 125 

Choptank TN loading 4 50 35 

Potomac TN loading 4 0 115 

Susquehanna sediment 

loading 

2 0 45 

 

 

Table S3: Forcing and corresponding transformations used to model 3rd principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Solar radiation 4 10 55 

Choptank sediment loading 6 10 135 

Susquehanna sediment 

loading 

5 20 15 

Potomac flow 4 50 15 

Potomac sediment loading 1 0 25 

Air temperature 7 10 25 

Choptank TN loading 4 0 55 

Northerly hour 1 5 15 

Susquehanna flow 4 50 55 

Susquehanna TP loading 4 40 135 

Choptank TP loading 4 50 125 

James flow 1 10 25 

Potomac TP loading 3 20 15 
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Table S4: Forcing and corresponding transformations used to model 4th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Solar radiation 1 0 35 

Potomac flow 4 40 85 

Susquehanna TP loading 7 0 45 

Air temperature 3 40 35 

James TP loading 3 50 125 

Potomac sediment loading 6 50 15 

Susquehanna flow 1 0 45 

Choptank TN loading 6 50 125 

Choptank sediment 

loading 

1 0 135 

Potomac TN loading 6 50 125 

 

 

Table S5: Forcing and corresponding transformations used to model 5th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

James sediment loading 6 50 25 

James TP loading 6 50 15 

Easterly wind speed2_hour 4 1 15 

Easterly wind hour 4 0 15 

Northerly hour 

(speed>4m/s) 

3 5 15 

Southerly wind intensity 3 1 15 

Susquehanna TP loading 4 40 135 

Susquehanna flow 4 50 75 

Southerly wind speed 2 5 15 

Potomac TN loading 4 50 15 

Potomac sediment loading 4 50 15 

Choptank TN loading 4 50 35 
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Table S6: Forcing and corresponding transformations used to model 6th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

James sediment loading 6 0 115 

James flow 1 30 55 

Potomac sediment loading 6 50 25 

Susquehanna sediment 

loading 

5 50 15 

Susquehanna TP loading 5 50 15 

Easterly wind hour 

(speed>4) 

3 3 15 

James TP loading 4 0 15 

 

 

Table S7: Forcing and corresponding transformations used to model 7th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Choptank TN loading 4 0 75 

Choptank sediment loading 1 50 15 

Susquehanna sediment 

loading 

4 40 135 

Susquehanna flow 4 50 55 

James sediment loading 1 50 15 

James TP loading 7 50 65 

Potomac TP loading 3 50 15 

Potomac flow 4 50 15 

Susquehanna TN loading 3 50 65 

Susquehanna TP loading 2 50 15 

James flow 6 40 15 

James TN loading 2 20 125 

Air temperature 7 0 135 

Potomac sediment loading 4 50 15 
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Table S8: Forcing and corresponding transformations used to model 8th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

James TP loading 1 20 15 

Susquehanna flow 1 20 15 

Susquehanna TN loading 1 0 55 

Easterly wind speed 6 5 15 

Potomac TP loading 4 20 35 

Choptank TN loading 4 0 15 

James sediment loading 1 20 25 

Choptank TP loading 1 20 35 

Susquehanna sediment 

loading 

1 50 25 

Easterly wind intensity 6 5 15 

 

Table S9: Forcing and corresponding transformations used to model 9th principal 

component. 

Forcing Transform 

function 

Shifting 

(days) 

Accumulation 

(days) 

Westerly wind hour 

(speed>4m/s) 

3 5 15 

James TN loading 1 20 65 

Susquehanna flow 4 50 135 

Susquehanna sediment 

loading 

4 20 125 

Air temperature 7 0 135 

Choptank sediment loading 4 0 15 

Potomac flow 4 10 135 

James sediment loading 6 50 25 

Choptank TN loading 4 50 25 

Potomac TP loading 5 50 15 
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CHAPTER 3. CHLOROPHYLL-A IN CHESAPEAKE BAY BASED ON 

VIIRS SATELLITE DATA:  SPATIOTEMPORAL VARIABILITIES AND 

PREDICTION WITH MACHINE LEARNING 

 

Abstract: Chlorophyll-a concentration (Chl-a) is practically used to indicate the 

abundance of phytoplankton biomass, a fundamental component of aquatic ecosystems. 

Its spatiotemporal distribution is strongly related to the ecosystem dynamics. Compared 

to conventional low-frequency shipboard measurements at a limited number of sampling 

locations, satellite data provides a better coverage for a synoptic view of Chl-a 

variabilities, particularly in large coastal systems such as Chesapeake Bay. Here we use 

Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data from 2011 to 2018 to 

analyze the Chl-a variability in Chesapeake Bay. The reliability of the satellite data is 

confirmed by its good agreement (R2=0.56) with shipboard measurements. Analysis 

results show seasonality of Chl-a varies in different regions, with maxima occurring in 

spring for regions near mouth of major tributaries, winter near the bay entrance, and 

summer elsewhere. There are two seasonal peaks associated with spring and summer 

blooms. Data Interpolating Empirical Orthogonal Functions (DINEOF) is used to 

efficiently estimate the missing records. A machine-learning-based data-driven model is 

developed to simulate Chl-a distribution.  Driven by external forcing including river 

discharge, nutrient loadings, solar radiation, wind, and air temperature, the data-driven 

model shows an overall satisfactory performance in reproducing the spatiotemporal 

variations of Chl-a, with a bay-wide averaged root mean square error of 1.85 ug/l. By 

combining DINEOF and machine learning, this study demonstrates the potential of 
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useing data-driven model to predict high-resolution spatiotemporal variations of water 

quality in coastal waters.  

Keywords: remote sensing; machine learning; data-driven model; phytoplankton; 

Chesapeake Bay 

 

1. INTRODUCTION 

Phytoplankton biomass is a fundamental component of aquatic ecosystems and 

typically indicated by Chlorophyll-a (Chl-a) concentration. Chl-a is thus a key water 

quality index in estuarine and coastal waters. High Chl-a, mostly caused by excessive 

nutrient load, wastewater input, and warming climate (Harding et al., 2016), is closely 

related to coastal hypoxia (Kemp et al., 2005), loss of submerged aquatic vegetation 

(Orth et al., 2010), and blooms of toxic cyanobacteria (Tango and Butler, 2008). Chl-a 

can be measured or estimated in multiple ways, including in situ sampling, continuous 

fluorescence-based measurement, and remote sensing. These methods have different 

advantages and limitations in terms of data accuracy, spatial coverage and temporal 

resolution. In situ sampling and then laboratory analysis is still a typical routine for field 

surveys and probably the most precise way to measure Chl-a. However, this method is 

effort-intensive and time-consuming (Abbas et al., 2019); the resulting data often have 

poor spatial and temporal coverage. These limitations also apply to continuous 

fluorescence-based measurement at a fixed station. In contrast, remote sensing data, 

especially those satellite-based, provide a better spatial coverage and permit a more 
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synoptic assessment of larger-scale ocean dynamics. Drawbacks of satellite data are its 

accuracy and that only surface values are available.   

Recent advances in remote sensing provide us valuable opportunities to examine 

the detailed spatial variabilities and understand the associated phytoplankton dynamics. 

Different from salinity or temperature that often smoothly changes over time and space in 

non-eddy coastal seas, Chl-a can be highly patchy (Martin et al., 2002), primarily because 

algae grow and aggregate in short timescale (days) and their concentration are sensitive 

to not only temperature, salinity, and nutrient, but also spatially varying flushing 

capacities (Lucas et al., 2009; Qin and Shen, 2021). As a result, the traditional shipboard 

measurements, conducted monthly or bimonthly at a limited number of stations as in 

prominent oceanic monitoring programs, could be insufficient to represent the mean 

condition of Chl-a over a long period (e.g., month) or a large area. Nevertheless, the 

“snapshot” data of Chl-a are still widely used to validate numerical models. Because of 

the high variability of Chl-a, numerical models often have poor performance in Chl-a 

simulation compared to other water quality state variables (e.g., Testa et al., 2014; Feng 

et al., 2015; Irby et al., 2016). Assessment of model performance is complicated by the 

fact that the horizontal discretion of space in a numerical model is much larger than the 

area represented by a monitoring station. For instance, numerical models (e.g., Testa et 

al., 2014; Du and Shen, 2016) applied to Chesapeake Bay have spatial resolution on the 

order of 1000 m. Spatially averaged Chl-a will be more suitable reference to compare 

with numerical simulations. Therefore, a bay-wide distribution of Chl-a, revealed from 

high-resolution satellite data, will be of great interest to the modeling community.  
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In this study, we analyze the spatial and temporal variations of Chl-a based on 

Visible Infrared Imaging Radiometer Suite (VIIRS) data (Zheng and DiGiacomo, 2017). 

This dataset has a nearly daily frequency and a spatial resolution of 750 m and the 

accuracy of Chl-a concentration has been proved to be superior than other satellite 

products (Zheng and DiGiacomo, 2017), such as Sea-Viewing Wide Field-of-View 

Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), and Moderate 

Resolution Imaging Spectroradiometer (MOIDS). The data are available since late 2011. 

Reliability of the data is verified with existing long record of monthly shipboard 

measurements by Chesapeake Bay Program (https://www.chesapeakebay.net).    

Inspired by rapid accumulation of satellite data and recent advances in machine 

learning technology for water quality simulation (Muller and Muller, 2015; Yu et al, 

2020), we investigate the capability of machine-learning-based data-driven model for 

high resolution simulations. The data-driven model developed by Yu and Shen (2021) 

has shown a good performance in simulating the vertical and along-channel variability of 

Chl-a along the main axis of Chesapeake Bay. The purpose of this study is to further test 

the feasibility of applying the data-driven model to simulate Chl-a using high-resolution 

satellite data and to examine what temporal scales that the data model is able to simulate 

with reasonable accuracy. Compared to the simulation of Chl-a at a limited number of 

monitoring stations, simulating bay-wide Chl-a using satellite data will encounter a major 

challenge raised by its high variability in both space and time, as well as extensive gaps 

in satellite data. We will discuss a promising method and the necessity to fill these data 

gaps.  

https://www.chesapeakebay.net/
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2. MATERIALS AND METHODS 

2.1. In situ observational measurements 

Long-term (1985-2019) shipboard measurements at 37 mainstem stations in 

Chesapeake Bay are collected to verify the satellite data and to examine the variability of 

Chl-a. Since 1985, water quality parameters including salinity, temperature, nutrient, and 

Chl-a have been measured by ship surveys carried out monthly or bi-monthly (data 

available at https://www.chesapeakebay.net). Locations of the stations are shown in Fig. 

1a. Despite the spatial and temporal limitations on sampling resolution, this dataset has 

provided a reliable basis in previous studies (e.g., Hagy et al., 2004; Kemp et al., 2005; 

Murphy et al., 2011). 

Chl-a at these mainstem stations were measured at a minimum of two layers, one 

at the surface and the other near the bottom. Only surface data are used to compare with 

satellite-derived Chl-a. To examine the variability of Chl-a, long-term mean, standard 

deviation, relative standard deviation, and seasonal mean are calculated for each station. 

The relative standard deviation is calculated as the standard deviation normalized by the 

mean.  

2.2 Satellite data 

           Following Zheng and DiGiacomo (2017), phytoplankton component of the total 

light absorption coefficient of water is extracted using a generalized stacked-constraints 

model (GSCM). The total light absorption coefficient of water is derived from satellite 

remote-sensing reflectance using the Quasi-Analytical Algorithm (Lee et al., 2002). The 

GSCM has been applied to Chesapeake Bay and results show significant improved 

https://www.chesapeakebay.net/what/downloads/cbp_water_quality_database_1984_present
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accuracy of satellite-derived Chl-a. However, the cost is reduced data availability because 

GSCM provides no feasible solutions when the light absorption coefficient of water is 

subject to large errors in areas such as the highly turbid upper bay. 

 The VIIRS satellite data (2011-2018) have a spatial resolution of 750 m. Its high-

resolution permits examination of the lateral variations across the bay’s mainstem and 

within major tributaries (Fig. 1b-c). For this study, Chl-a is averaged over all available 

days within a 7-day interval and gridded into a prescribed mesh grid (resolution of 

0.015×0.015 degree, from 75.5W to 77W in longitude and from 36.8N to 39.6N in 

latitude). A null value is assigned when there is no data within the 7–day period at any 

given grid. Comparison between in situ measurements and 7-day averaged satellite data 

(within a 3-day window of the observation date and within 750 m radius from the 

monitoring station) shows a good agreement, with R2 of 0.56 and RMSE of 4.7 ug/l (Fig. 

1d). 

 The extracted pixel-based Chl-a data have substantial gaps. Even after 7-day 

averaging, there are still areas with gap percentage greater than 50%. These areas are 

excluded from analysis. In total, there are 4813 grid points with gap percentage less than 

50% in the study region (see Fig. 1a for the region of interest). On average, these selected 

grid points have about 20% of gaps. The gaps have noticeable seasonality, with persistent 

high percentage in specific months. For instance, in April, the gap is more than 30% over 

the study period (Fig. 2).  

To simulate the spatiotemporal variations of Chl-a with a data-driven model, no 

data gaps are allowed (Yu and Shen, 2021). One choice is to remove grids that have data 
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gaps, which, however, will result in much less sampling points, leading to poor spatial 

coverage. Another choice is to interpolate the missing records. Interpolation is possible 

when the variable shares covariance either spatially or temporally. The method we use to 

interpolate the missing data is described below. 

2.3 DINEOF 

 Data Interpolating Empirical Orthogonal Functions (DINEOF) is an EOF-based 

method to fill in missing data from geophysical fields (Beckers and Rixon, 2003). The 

procedure fills gaps by iteratively decomposing the data field via Singular Value 

Decomposition (SVD) until the best solution is found. This is done by progressively 

including more EOF modes in the truncated reconstruction until minimization of error 

converges between interpolated values and reference values.  

A procedure is briefly described here, with the algorithm shown in Fig. 3, which 

depicts two major loops: one to get optimal estimation under a given number of modes; 

and the other to determine the optimal number of EOF modes. For detail descriptions, 

readers are referred to Beckers and Rixen (2003) and Alvera-Azcárate et al. (2016). 

Assume the original data matrix as X, with Xij being the value at location i at moment j, 

and there are missing data points with (i,j) belonging to I1. A randomly selected subset of 

non-missing data with (i,j) belonging to I2 is used as reference (1% of records are used in 

this study). First, the long-term mean is removed from the dataset. Second, for data points 

in I1 and I2, zero values are assigned to generate a new Matrix X0. A SVD 

decomposition of matrix X0 gives the first estimate of the spatial and temporal eigen 

vectors U and V as well as their singular values D (the diagonal matrix).  
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UDV*= X0                                                                 (1) 

X0 will be updated with truncated reconstruction using the obtained EOF eigen 

vectors for both data points in I1 and I2.  

( ) ( ) ( )* ,  ,  2N N Nij ij
i j= 0X U D V I1 I                    (2) 

The “truncated” here refers to the practice of using a limited number of EOF modes (N) 

instead of all modes. After step (2), root mean square error (RMSE) between true value 

and interpolated value in reference dataset (I2) will be calculated. 

( ) ( )0

2
/ ,  ,mRMSE X X i j= − I2                           (3) 

By repeating step (1-3),  the RMSE will decrease with more iterations. For a given 

number of modes, these steps will be repeated until the RMSE does not decrease by a 

predefined value (1×10-5 is used in this study). To determine the optimal number of 

modes (denoted by N) used in the truncated reconstruction, the above loop will start with 

N=1. When the RMSE decreases but by less than the prescribed criterion with additional 

iteration, N increases by 1. If the RMSE starts to increase after increasing N by 1, the 

entire procedure stops. The optimal number of modes is N-1.    

 Robustness of the method has been demonstrated by extensive applications for 

satellite data (e.g., Alvera-Azcárate et al., 2016; Hilborn and Costa, 2018; Yang et al., 

2021). In this study, we run DINEOF with open-source language R (code available at 

http://modb.oce.ulg.ac.be/mediawiki/index.php/DINEOF). For 7-day averaged satellite 

data, the optimal number of EOF modes is 16. The RMSE between reference records and 
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interpolated values decreases greatly when the number of modes increases from 1 to 9, 

while RMSE decreases negligibly after 10 modes (Fig. 4). An experiment is conducted to 

verify the interpolation. We randomly set 1% of records with null values and these 

records are independent dataset different from the internal reference records used during 

DINEOF. The interpolated data for the missing records is then compared to the true 

values (values before being masked as null). Results show DINEOF can estimate the 

missing records with acceptable error, with RMSE of 1.78 ug/l (Fig. 5). The error can be 

more than 10 ug/l when Chl-a is extremely large (Fig. 5). The gap-free data will be used 

to train and verify a data-driven model.  

2.4 Data-driven model 

A data-driven model introduced by Yu and Shen (2021) is applied to simulate the 

spatial and temporal variations of Chl-a. The data-driven model comprises three major 

components: empirical orthogonal function (EOF), artificial neural network, and forcing 

transformation auto-selection. EOF is applied to reduce the dimension of data by 

extracting the spatial pattern and temporal variations of principal components. The 

temporal variations of principal components will be simulated by artificial neural 

network. Distinguished from previous studies that use in situ measurements of other 

water quality parameters as inputs (e.g., Scardi and Harding, 1999; Soro et al, 2020), the 

data-driven model here uses only external forcings, include river flow and nutrient 

loadings from large tributaries (data from USGS, https://www.usgs.gov), air temperature 

(measured at Chesapeake Bay Bridge-Tunnel station; data from NOAA database 

https://tidesandcurrents.noaa.gov/), solar radiation and wind (in global ERA5 reanalyzed 

product from European Centre for Medium‐Range Weather Forecasts, 
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https://www.ecmwf.int). Details of the model description and procedures can be found in 

Yu and Shen (2021). Simulating the satellite-derived Chl-a in this study is a follow-up of 

Yu and Shen (2021) to demonstrate the capability of the data-driven model to predict 

high-resolution, large-scale variations of Chl-a in coastal systems. 

3. RESULTS 

3.1 In situ monitoring data 

The historical shipboard measurements of Chl-a show a similar pattern for mean, 

standard deviation, and relative standard deviation (Fig. 6). All of them have a higher 

value in the middle-upper bay, specifically the region between 38.5N-39N, and lower 

value in the upper-most region close to Susquehanna River outflow and in the lower bay. 

Low values in the upper-most region is likely caused by turbidity-induced light limitation 

(Harding et al., 1992; Zhang et al., 2021). In addition, there are noticeable lateral 

variabilities, with larger Chl-a at stations in shallow shoals rather than the deep channel. 

Furthermore, the pattern is persistent between the 35-year and the 8-year period from 

2011-2018 (when satellite data are available) (Fig. 7).   

It is worth to note the high variability at these upper bay stations, which may be 

attributed to the fluctuation of turbidity maximum zone induced by changing river 

discharge, wind forcing, and estuarine circulation (Sanford et al., 2001). When the 

turbidity maximum zone shifts northward, more stations will be exposed to a better light 

condition that favors the growth of phytoplankton. Stations within the turbidity maximum 

zone fluctuation area presumably have higher temporal variability of light condition and 

thus Chl-a concentration.  

https://www.ecmwf.int/
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Another interesting fact is the spatial heterogeneity in Chl-a seasonality indicated by 

climatological monthly means. Different from the conventional understanding that spring 

bloom dominates in Chesapeake Bay, more than half of the monitoring stations (18 of the 

37 stations) have a larger peak of Chl-a in summer months, while 13 stations have a 

larger peak of Chl-a in spring months (Fig. 6d). Near the bay entrance, Chl-a has a weak 

peak in late fall or winter. The spatially varying seasonality suggests that there are likely 

different limiting factors controlling algal bloom in different regions of the bay (Zhang et 

al., 2021). In particular, the summer bloom may be attributed to longer and stronger solar 

radiation, up-lift of pycnocline induced by surface heating and freshening following 

spring high flow, thinner surface mixing layer, and upward nutrient flux associated with 

seasonal hypoxia during summertime. 

3.2 Satellite data 

The 8-year mean of Chl-a satellite data show a similar spatial pattern as in the 

observation, but with clearer and detailed lateral distributions (Fig. 8). Mean Chl-a 

increases from the bay mouth to the upper bay, with noticeable larger values near both 

east and west shallow shoals compared to the deep channel (Fig. 8a). This lateral 

distribution is consistent with observation. However, some differences between the two 

datasets are also noticeable. For instance, the maximum mean Chl-a near 39N exceeds 20 

ug/l in shipboard measurement, while not in the satellite data. This difference is not 

unexpected, since the model used to extract Chl-a from satellite data is known to be 

imperfect and the satellite data only cover a short period, not necessarily including 

extremely high or low Chl-a values. In addition, extreme high values of Chl-a are often 
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regarded as outliers when fitting the empirical conversion function with which Chl-a 

concentration is estimated from the light reflectance in remote sensing data.  

 Variability of Chl-a, indicated by RSTD, has two high-value regions, one in the 

upper bay and the other in the coastal ocean (Fig. 8c). A relatively high variability is 

found in the middle-bay right off the Potomac River mouth, which is not captured by the 

observational dataset primarily due to limited monitoring efforts in this region. The high 

variability of Chl-a in this region may be attributed to hydrodynamic interaction between 

the mainstem and tributaries, which is known to play a key role in exchange of soluble 

materials (e.g., dissolved oxygen) within the estuarine system (Kuo and Neilson, 1987). It 

is worth noting that the RSTD of satellite data is relatively smaller than that from 

observational data, largely because satellite data is averaged over a certain period (7-day) 

and over a certain area (~1.0 km in the case of gridded satellite data), while observation 

data are based on measurements once or twice each month and at a particular location.  

 With the high-resolution data, we can map the timing of algal bloom. For each 

grid, the climatological monthly mean is calculated and the month with peak mean Chl-a 

is determined. The timing of peak Chl-a exhibits interesting spatial patterns, largely 

consistent with the Chl-a observations (Fig. 8d). Spring peak occurs in the upper bay, 

inside the lower Potomac River, off the Potomac River mouth, and near the James River 

mouth. Summer peak occurs mainly in the upper bay (38-39N) and lower bay (37-

37.5N). Spring-peak regions share one key factor: they are close to the mouth of major 

tributaries (e.g., Susquehanna, Potomac, Rappahannock, York, James, and Choptank 

Rivers). Note that the spring peak does not occur near Patuxent and Chester Rivers (the 

other two major tributaries), which coincides with the fact that these two rivers have the 
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smallest mean river discharge among major tributaries. The peak time seems to be 

regulated by discharge and corresponds to the time when riverine nutrients reach to the 

given location. For those spring bloom-dominated areas, the larger nutrient level in spring 

likely overwhelm the better light condition in summer. These areas may also experience 

summer bloom, but the summer Chl-a concentrations are typically smaller. Timing of 

bloom are possibly induced by transport processes and nutrient supply. It will take 100-

300 days for riverine material discharged from Susquehanna River to reach the lower 

bay; the transport time varies depending on flow regimes and wind field (Shen and 

Wang, 2007).  

 The seasonality of satellite-derived Chl-a is characterized with clearly larger value 

in spring and summer, compared to the other two seasons (Fig. 9; Fig. 10). The overall 

along-bay and across-bay distribution seems persistent throughout the year. The spring 

bloom is a well-known ecological feature in Chesapeake Bay; it results from the stimulus 

of spring high flow after snowmelt in watersheds that feed the major rivers (Harding and 

Perry, 1997). The summer bloom is believed as a secondary bloom fueled by nutrients 

released from sediment and recycled nutrients in the water column (Malone et al., 1996; 

Kemp et al., 2005). We propose here that the summer bloom can be dominant for regions 

when the nutrient level is subject to prolonged transport.  

 The two-peak seasonal characteristic is more obvious from EOF analysis (Fig.11). 

The first EOF mode, accounting for 32% of the total variance, features positive spatial 

values throughout the entire bay, meaning that bay-wide Chl-a changes in phase. The 

mode has clear seasonality with two peaks, one in March and the other in July. A similar 

EOF analysis was conducted by Yu and Shen (2021) based on in situ Chl-a at 16 



149 

 

mainstem stations (no station at shallow shoals included). Their analysis shows that the 

first mode is featured with only one peak in March. The remarkable differences between 

these two EOF analyses suggest the important contribution of shallow shoals in the 

overall variance. It is likely that the summer peak will be more significant when 

including shallow shoals.   

3.3 Simulation Chl-a with data-driven model 

 The temporal variations of a limited number of principal components are 

simulated by the data-driven model. The first step is to determine how many modes are 

non-trivial and worth to be included. DINEOF analysis shows that starting from mode 17, 

RMSE increases (Fig. 4). It suggests modes after 16 is largely noise, and unlikely to add 

a meaningful contribution to the overall variance. However, when using more than 10 

modes, the RMSE decreases negligibly. Therefore, we include 10 modes in the data-

driven model. These 10 modes account for 80% of the total variance. The spatial and 

seasonal variation for the first 4 modes can be found in Fig. 11. The first mode shows in-

phase variations of Chl-a throughout the bay. High variations of Chl-a is located in the 

upper estuary and the variability gradually decreases toward lower bay. The second mode 

has out-of-phase variations between upper bay and middle-lower bay. The third mode 

features high variability in middle bay where the variation is opposed to both upper and 

lower bay. The fourth mode represents the variability in the upper bay. It can be expected 

that the response of each mode to external forcings will be different.  

The temporal variations of each of the 10 modes are simulated using neural 

network that takes external forcings as inputs. For each mode, the datasets, including 

inputs and outputs, are divided into two sub-dataset, with the first 75% of records for 
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training and the other 25% for prediction. Considering the randomness in initialization of 

neural-network parameters, the outcome (or prediction) differs for each training even 

with the same inputs. To address this uncertainty, we train the model 50 times for each 

mode. The uncertainty is much larger than that in the dissolved oxygen simulation (Yu et 

al., 2020). Nonetheless, the model is well trained for the training period (Fig. 12).   

Model performance for the testing period (2017-2018) is more meaningful, as 

input forcing and target variable in the testing period do not involve during training in 

any aspect. The overall spatial pattern of modeled Chl-a anomalies (relative to the long-

term mean) and full signal agree well with that in satellite-observed Chl-a (see two 

example date representing spring and fall in Fig. 13). The seasonal variability is well 

captured, despite discrepancies in some regions. More importantly, the data-driven model 

reproduces the strong contrast of Chl-a concentration between the bay and the adjacent 

coastal ocean. As expected, the data-driven model, no matter how well-tuned, will not 

capture every detail of Chl-a's spatial variations. For instance, the model captures the 

spring bloom (e.g., in April of 2017), but the predicted magnitude is less than 

observation.  

 Comparisons of time series at selected six stations (Fig. 14) show that the model 

performance seems to decrease toward the upper bay. In the lower bay (e.g., station 

CB6.2 and CB7.3), the model well captures the seasonal and interannual variations of 

satellite Chl-a (Fig. 14). Model performance is also satisfactory in the middle bay. 

However, the model has difficulty reproducing the high variability in the upper bay (e.g., 

station CB3.3C). The spatial heterogeneity of model performance suggests that the upper 

bay Chl-a is less predictable compared to that in lower bay. Error of satellite data due to 
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high turbidity in the upper bay is likely a factor leading to the lower performance in that 

region.   

The model performance varies spatially, as indicated by the root mean square 

error (RMSE) and the relative error (RE) between predicted and observed Chl-a. 

Calculated RE and RMSE show noticeable spatial heterogeneity, with the worst 

performance in the eastern shoals between 37.5N and 38.5N and in the upper bay. 

Averaged over all the grids, RMSE is around 1.85 ug/l (Fig. 15). 

4. DISCUSSION 

4.1 In situ observation vs satellite data 

Comparison between in situ observation and satellite data has confirmed the 

reliability of the satellite data in terms of several aspects, including the lateral difference 

between shoals and the deep channel, longitudinal trend from the upper bay to lower bay, 

and the peak timing. However, we acknowledge that there are noticeable differences in 

the magnitude of temporal variability between these two different datasets. A major 

difference is in the bay-wide averaged standard deviation of monthly mean Chl-a, which 

is 8.8 ug/l in in situ measurements compared to 3.3 ug/l in satellite data. The smaller 

variability in satellite data may be attributed to three possible factors. (1) Satellite data 

are 7-day averaged, opposed to monthly (sometimes bi-monthly) sampling frequency in 

CBP data. (2) Each record of satellite data represents an average over a finite area; the 

area is determined by the horizontal resolution; for the VIIRS data, the area is 750 m × 

750 m. (3) there is an inherent error when estimating Chl-a from satellite data, with 

extremely low or high values likely to be excluded when establishing the conversion 
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function (Zheng et al., 2015).  If averaging over a finite area, the variability of true Chl-a 

tends to be smaller.  

 Both satellite data and in situ measurements demonstrate a remarkable difference 

between the deep channel and flanking shoals. The underlying mechanisms can be further 

explored if given more information of nutrient, salinity, and temperature vertical profiles 

in both shoals and deep channel. Even though it is beyond the scope of this study to 

uncover the exact mechanisms, it is worth noting the possible factors that may contribute 

to such a pattern. First, water in the deep channel is more dispersive and moving faster 

during each tidal cycle (Xiong et al., 2020), which is less favorable for phytoplankton to 

aggregate in the mainstem comparing to shoals. Tidal waters with stronger flushing 

capacity are known to have less chance for algal bloom (Lucas et al., 2009; Qin and Shen 

2021). Second, the vertical mixing layer is about 10 m at the deep channel (Yu et al., 

2020) while the majority of shoals is less than this depth. If with same light and nutrient 

supply, there is a larger chance that phytoplankton grows and accumulates to a thinner 

water column in shoals. In another word, the shoal water is less “dispersive” in vertical 

direction. Third, nutrient released from seafloor is more accessible to phytoplankton in 

shallow water because vertical mixing is much strong. In contrast, the persistent 

pycnocline at the deep channel will limit the vertical nutrient flux from bottom to surface. 

4.2 Dealing with data gaps 

 There are several major challenges in high-resolution simulation of water quality 

variables in both data-driven and numerical models. Success of numerical model relies on 

accurate prediction of local hydrodynamics and comprehensive parameterization of 

biogeochemical processes, while for data-driven model, the integrity of data itself (both 
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input forcing and target variable) is particularly important. One problem for satellite Chl-

a data is substantial data gaps, especially in coastal waters because of terrestrial 

substances (such as minerals and humus) that are optically significant but do not covary 

with phytoplankton (Zheng and DiGiacomo, 2017). Taking VIIRS Chl-a data in 

Chesapeake Bay as an example, gaps are still noticeable (~20%) even after a 7-day 

blending. Data gaps in coastal regions tend to appear more frequently in a specific season 

due to seasonal atmospheric and turbidity condition. For instance, the bay-wide satellite 

data show persistent high data gaps in April and May, with gap percentage frequently 

exceeding 30% (Fig. 2).  

It has been shown that DINEOF provides a reasonable estimation of the missing 

data (Fig. 4). One major advantage of DINEOF is that the interpolation does not need any 

prior knowledge of the correlation between data points (Beckers and Rixen, 2003). The 

cost is that a large amount of data points and record length at each data points are needed, 

which is not an issue for satellite data. DINEOF is therefore suitable for interpolating 

missing records in satellite data. Furthermore, the auto-detection of optimal number of 

EOF mode provides an effective way to determine how many modes to simulate in the 

data-driven model. Broken-stick method (Yu and Shen, 2020) suggests 33 modes are 

needed, which is much more than the optimal number determined by DINEOF. The 

DINEOF-based optimal mode selection is more suitable for the data-driven model 

considering the gappy nature of the satellite data. It is worth noting that extreme high 

values from the original data are generally underestimated by DINEOF (Fig. 5), which 

also contributes to the less variability of satellite Chl-a (Fig. 8).  

4.3 Higher frequency simulation 
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For water quality variables in coastal waters, the dominant frequency could be 

hourly, daily, or monthly depending on how quickly the underlying processes respond to 

external forcings. For instance, nutrient level in the lower bay typically responds to wind 

or river discharge-induced perturbations (with dominant frequency of several days) in a 

much slower manner compared to temperature or salinity. While nutrient level is a key 

factor controlling the growth of phytoplankton, variations of Chl-a concentration are 

subject to a variety of factors including water temperature, vertical mixing, horizontal 

dispersion, light condition, and abundance of predators. These factors have a wide 

spectrum of frequencies ranging from hourly to monthly and need to be considered when 

simulating Chl-a. Ideally, hourly or daily simulations are preferred when modelling Chl-

a. However, several limiting factors make such high-frequency simulations extremely 

difficult. First, despite daily frequency, satellite data have large gaps if not blended over a 

period of multiple days. About 600 over the available ~2000 days have data gaps less 

than 50%, meaning only 30% of satellite images cover half of the bay. Second, some 

external forcings are not available in daily frequency. For instance, nutrient loading data 

used for the model is available from USGS on a monthly basis. Using monthly nutrient 

input to simulate daily Chl-a variations will likely result in poorer model performance.  

We conducted two simulations using monthly and daily Chl-a data and compared 

the model performance to that using 7-day average. Missing records in Chl-a data for 

these two simulations are also interpolated using DINEOF. For daily data, we only use 

those images with data gap less than 50%. Same forcings and model settings are applied 

for these two simulations. The model has the best performance using monthly data while 

it has the worst performance using daily data (Fig. 16-17).  Monthly simulation has the 
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smallest RMSE and RE when averaged over the domain of interest (Fig. 16). 

Specifically, RMSE in the upper bay is largely reduced compared to the 7-day simulation 

(Fig. 15). For daily simulation, RMSE is also high in the upper bay, but the RMSE is 

smaller in tributaries including James and Potomac River, which results in a slightly 

smaller overall RMSE when compared with the 7-day simulation (Fig. 17). However, the 

RE in daily simulation is extremely high in several regions including areas near the bay 

mouth, the upper bay, and eastern shoals at 38N. The overall model performance is 

shown in Fig. 18. RE decreases from daily to 7-day and to monthly. While the monthly 

simulation has the best model performance, the monthly mean will omit a major portion 

of Chl-a variability. Using 7-day average for Chl-a simulation is a balance of the model 

performance and data representativeness.  

5. CONCLUSIONS 

Analysis of recently available high-resolution satellite data demonstrates the 

spatial heterogeneity of mean Chl-a concentration, its variability, and the peak timing. 

Patterns revealed by satellite data are consistent with that of long-term monitoring data at 

a limited number of stations, suggesting the reliability of the satellite data. Both satellite 

data and long-term monitoring data show that: 

1. Both mean and variability of Chl-a are higher in shallow shoals than in the deep channel.  

2. There are two seasonal peaks of Chl-a in the upper and middle bay, with spring peak 

near major river outflow and summer peak elsewhere.  
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Compared to low-frequency shipboard measurements at a limited number of 

monitoring stations, we believe satellite-derived Chl-a is suitable to serve as a reliable 

reference for assessment of numerical models performance. 

We also implemente DINEOF into the existing data-driven model to address the 

issue of substantial gaps in satellite data. Sensitivity tests confirm that DINEOF is an 

appropriate way to fill data gaps with reasonable accuracy. The model is applied to 

simulate high spatial resolution satellite-based Chl-a concentration. The overall model 

performance for predicting both spatial and temporal variation of Chl-a is satisfactory. 

This study demonstrates the feasibility of data-driven model for high-resolution water 

quality simulations.  
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Figure 1: (a) Chesapeake Bay Program monitoring stations in the mainstem. (b) A sample 

snapshot of VIIRS Chl-a data (unit in ug/l) on Feb-28, 2014. (c) A zoom-in view of the 

satellite data. (d) Comparison between satellite data and shipboard measurements.  
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Figure 2: Gap percentage of the 7-day blended Chl-a satellite data. The gap percentage 

for every 7 days is calculated as the number of grids with valid value divided by the total 

number of grids (i.e., 4813). 
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Figure 3: A diagram showing the algorithm of DINEOF. The algorithm is comprised of 

two loops, the inner loop to estimate the missing value with the given number of EOF 

modes and the other loop to determine the optimal number of EOF modes.  
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Figure 4: Determination of the necessary EOF modes to include in the data-driven model 

based on DINEOF analysis. 
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Figure 5: Performance of DINEOF in estimating the “missing” data. The “missing” data 

(i.e., the true value) are manually and randomly selected from the existing satellite data.  
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Figure 6: (a-d) Mean, standard deviation, relative standard deviation, and month of peak 

Chl-a at mainstem stations. (e) Three example stations showing different seasonality in 

different regions of the bay.  
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Figure 7: Same as Fig. 5 but using the observation data over a shorter period from 2012 

to 2018, which is the time span of the satellite data.   
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Figure 8: (a-d) Mean, standard deviation, relative standard deviation, and month of peak 

Chl-a revealed from the satellite data. In (d) the peak month based on shipboard 

measurements are shown with black circles filled with color.  

 

 

Figure 9: Seasonal mean of Chl-a from the satellite data.  
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Figure 10: Seasonality of mean Chl a averaged over the entire bay and in different sub-

regions of the bay, based on 2011-2018 satellite data. The different sub-regions are 

marked with colored polygons in the left panel.  
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Figure 11: The spatial map and seasonal variations of the first 4 EOF modes. The up-right 

insets show the seasonality of the temporal variations, with error bars indicating the 25-

75 percentiles and solid circles indicating the median value.  

 

 

 

Figure 12: Model performance with the training dataset. The black dots are the median of 

the 50 predictions based on 50 neural network models. The error bars are for the 25 and 

75 percentiles of the prediction; the error bars indicate the  uncertainty associated with 

the neural network model.  
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Figure 13: Comparison of satellite observed (upper panels) and data-driven model 

predicted (lower panels) Chl-a concentration at selected two dates during the testing 

period. The anomaly is the deviations from the long-term mean (see Fig. 8a for the long-

term mean).  
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Figure 14: Comparison between model predicted Chl-a, satellite data, and in situ 

measurements from Chesapeake Bay Program (CBP).  
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Figure 15: Performance of the data-driven model indicated by the calculated root mean 

square error (RMSE) and relative error (RE) for each grid point. The top-right insets are 

the histograms of RMSE (or RE) over the 4813 grids.  
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Figure 16: Same as figure 15, but for a simulation with monthly-averaged satellite data.  
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Figure 17: Same as fig. 15 but for simulation with daily satelllite data. Only those days 

with data gap <50% are used. The data gaps are interpolated with DINEOF.  
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Figure 18: Comparison of model performance with cumulative density function plots for 

the three simulations (with daily, 7-day averaged, and monthly-averaged data).  
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CHAPTER 4. AN INVERSE APPROACH TO ESTIMATE BACTERIAL 

LOADING INTO AN ESTUARY BY USING FIELD OBSERVATIONS 

AND RESIDENCE TIME 

 

Published in Marine Environmental Research (2021, 166, 105263) 

Abstract: Pathogens, whose abundance is often measured by the concentration of fecal 

indicator bacterium, is listed as the top cause of waterbody impairments in the United 

States. An accurate estimation of the bacterial loading from watershed is thus 

fundamentally important for water quality management. Despite advances in watershed 

modeling, accurate estimation of bacterial load is still very challenging due to large 

uncertainties associated with bacterial sources, accumulation, and removal in the 

watershed. We introduce an inverse method using field-measuredbacterial concentrations 

and numerical model-calculated residence time to estimate the bacterial loading from the 

drainage basin. In this method, an estuary is divided into multiple segments. Water and 

bacterial fluxes between neighboring segments are computed from a set of linear 

equations derived based on mass balance equation and the relationship between residence 

time and water fluxes. Loading to each segment can then be estimated by combining the 

computed water fluxes and observed bacterial concentrations. The approach accounts for 

seasonal and interannual variations in hydrodynamics due to tide, river discharge, and 

estuarine circulations. The method was applied to Nassawadox Creek, a sub-estuary of 

Chesapeake Bay, where fecal coliform concentrations at 46 stations were continuously 

monitored. The method is verified by the high consistency between estimated loading and 

presumably known input loading in numerical experiments with either constant or time-
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varying input loadings. With sparse observational data, the inversely estimated loadings 

agree well with the loadings from a previously calibrated watershed model, 

demonstrating the reliability of the method. The inverse approach can be used to cross-

check the result of watershed models and assess changes in watershed condition. The 

method is also readily applicable to other types of materials, such as inorganic nutrients. 

Keywords: residence time; bacterial modeling; loading assessment; fecal coliform; 

coastal water; inverse model 

1. INTRODUCTION 

 Pathogen violation is one of the primary causes of water impairments in the 

United States. According to the United States Environmental Protection Agency 

(USEPA), a total of 9,874 water bodies was listed as impaired due to pathogen violation 

in 2016 (USEPA, 2019). As it is often infeasible to measure the abundance of all 

pathogens (e.g., viruses, bacteria, and protozoa) in the water due to their large diversity 

and low concentration (which means a large volume of water is required to measure the 

pathogen concentration), the abundance of indicator bacteria (e.g., fecal coliform, 

Escherichia coli [E. coli], and Enterococci) is practically used as water quality metrics 

(Brauwere et al., 2014; Jang et al., 2017). Fecal coliform (FC) is one of the commonly 

used indicator bacteria groups for evaluating microbiological water quality, especially in 

shellfish growing waters. Environmental agencies keep monitoring the concentrations of 

the indicator bacteria to ensure the quality of drinking water, waterbody’s suitability for 

recreational activities and/or shellfish harvest. To mitigate the pathogen-induced 

impairment, total maximum daily load projects have been extensively conducted in the 
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past decades (e.g., He et al., 2007; Cho et al., 2016). Information regarding the source 

and abundance of indicator bacteria is, therefore, fundamentally important for 

environmental assessment and water quality management.  

 Despite the latest advances in watershed models and water quality models (e.g., 

Shen et al., 2005a; Arnold et al., 2012; Sobel et al., 2017; Plew et al., 2018), uncertainties 

in bacteria loading estimation are still a major factor limiting efficient water quality 

assessment. The uncertainties partially result from source diversity and the episodic 

nature of bacterial loading. Bacteria discharges are from point sources or non-point 

sources (also called diffuse sources). While point sources are relatively easy to identify 

and monitor under normal conditions, non-point sources are hard to accurately quantify 

(Brauwere et al., 2014). Point sources are permitted pollutant loads derived from 

individual sources (e.g., wastewater treatment plants) and discharged at designated 

locations. However, large uncertainties may also exist for point sources. For instance, FC 

concentration from wastewater treatment plants is generally controlled but unpredictable 

during storm events as a result of a shortened circuit of raw sewage (Passerat et al., 

2011). Nonpoint sources are from various sources over a relatively large land area (e.g., 

manure application on agricultural land, and wildlife and pets’ feces excretion), which are 

the dominant pollutant sources in most cases. Accumulation or removal of FC is 

controlled by the hydro-biogeochemical processes during the transport from land to 

receiving water. Land-deposited FC loading can be determined by a watershed model that 

incorporates the surface runoff, bacterial accumulation rate on land, land-use, and the 

density of contributors (mainly animals) on each land-use (e.g., Servais et al., 2007; 

Ferguson et al., 2008). Typically, the animal density and bacteria accumulation rate are 
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assumed constant for each land use. However, in reality, the density of the contributors is 

spatially and temporally variable, and hard to predict. In addition, direct input from 

waterfowls (e.g., geese, duck on the open water) is almost impossible to accurately 

quantify. To obtain a reasonable loading in many total maximum daily load projects, 

watershed models are usually calibrated through iterative trial-and-error learning based 

on the comparison between observations and model results (Shen et al., 2005b). Such 

processes are time-consuming and subjective. Therefore, an alternative and efficient way 

to estimate the bacterial loading is of great interest to water quality management.  

 Several alternative methods to estimate the loading by utilizing the monitoring 

data have been proposed by previous studies. Shen et al. (2006) treated the non-point 

source as parameters in a three-dimensional model and used a modified Gauss-Newton 

method for optimal estimation of the loads. By integrating the limited observational data, 

Bayesian methods have been used to estimate the unknown parameters in a watershed 

model or water quality model (e.g., Gronewold et al., 2009; Shen and Zhao, 2009; Shen 

and Zhao, 2010; Chen et al., 2012). These approaches are, however, rarely used to 

estimate long-term time-varying loadings, because computation cost is high using 3D 

model, while Bayesian methods are difficult to apply to estuaries with complex geometry 

and hydrodynamic transport processes. Shen et al. (2005b) used a tidal prism model to 

calculate the FC maximum daily load from the watershed to meet water quality criteria 

based on a trial-and-error method for a coastal embayment. Tidal prism model is a simple 

model compared to two-, three-dimensional hydrodynamic models and can be efficiently 

used for coastal embayments (Kuo et al., 2005). Basic assumptions when applying a tidal 

prism model are: (i) the tide rises and falls simultaneously throughout the system, (ii) the 
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system is in hydrodynamic equilibrium, and (iii) the segment with a length less than local 

tidal excursion is completely mixed during the high tide (Kuo et al., 2005). These 

assumptions are, however, usually invalid for coastal waters that are usually not well 

mixed. Strict segmentation is also required in a tidal-prism model, which limits its 

applicability to large estuaries with complex geometry. 

 Here, we present a new method to inversely estimate the bacterial loading based 

on observed bacterial concentrations and calculated residence time. The proposed method 

is derived based on bacterial and water mass balance, and the relationship between 

residence time and exchange fluxes. Its applicability is not limited by the strict 

assumptions as required in a tidal-prism model. The method is validated by an application 

for Nassawadox Creek, a sub-estuary of Chesapeake Bay, where FC concentrations at 46 

stations have been monitored for multiple years. The new approach is applicable to other 

coastal systems, facilitating the local or regional water quality management. The 

advantages and disadvantages of the method are also discussed. 

2. METHOD 

2.1 Inverse method to estimate loading 

 When an estuary is divided into multiple segments, within a given segment i, the 

subtidal mass balance equation for a substance is:  

i i
i ji j ij i i i i

j neighbors j neighbors

dCV
L Q C Q C K V C

dt = =

= + − −       (1) 
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where C is the concentration, V is the volume, Q is the flux, and K is the net removal rate 

(including die-off, settling, resuspension, etc.) and the subscript index denotes the 

segment number. Qij is outflux from segment i to neighboring segment j, and  Qji  is 

influx from neighboring segment j to segment i. From Equation (1), one can inversely 

estimate the loading Li if given the value of C, V, Q, K. As C, V, and K can be obtained 

from measurement, the remaining question is how to obtain the water fluxes between 

segments.  

 The effective exchange fluxex between segments can be calculated from the mean 

residence time (τ), a bulk transport timescale characterizing the overall exchange between 

a domain of interest and the adjacent waters (Delhez, 2006; Du et al., 2018). The 

effective outflux form each segment i (Qi,out) can be computed as the ratio of volume to 

the mean residence time.  

 
,

j

/i out ij i i

neighbors

Q Q V 
=

= =     (2) 

where ,i outQ  is the sum of outflux from segment i to all its neighboring segments. A 

smaller residence time corresponds to a larger Qi,out and stronger flushing. The equation 

resembles the water mass balance equation using the flushing time or e-folding time 

(Takeoka, 1984; Monsen et al., 2002). E-folding time is the time needed for material 

concentration to decrease to the e-1 (~0.37) of its initial value and is equal to the mean 

residence time for a well-mixed system. For a well-mixed system under a steady-state 

condition, Equation (2) can be derived (see Appendix A1). It is also verified for time-

dependent problems (Xiong et al., 2021) and applicable for quasi-steady-state conditions, 

e.g., under which the hydrodynamics can be regarded as steady after removing high-
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frequency components (e.g., tidal signal). Note that the flux is not necessarily equal to the 

surface outflux or bottom influx as in a typical two-layer estuarine circulation. Instead, 

they are effective exchange fluxes between neighboring segments. Depending on the 

structure of segment connectivity, Qi, out is comprised of one or multiple components. 

Taking the simple case in Fig. 1a as an example, for segment 2, Q2,out=Q21+Q23. For the 

three boxes in Fig. 1a, there are four unknown Q (i.e., Q12, Q21, Q23, and Q32). To solve 

them, another two equations are needed, which can be derived from mass balance of 

water (i.e., the total influx equal to the total outflux).  

 , ,i in i outQ Q=      (3) 

where Qi,in includes not only the flux between segments but also the river discharge,  

,i in i ji

j neighbors

Q R Q
=

= +       (4)  

When there are n segments, there will be (n-1)×2 unknown fluxes and (n-1)×2 equations. 

This applies to not only the case with aligned segments but also to cases with more 

complex segmentation configurations (e.g., a segment connected by a number of 

neighboring segments; Fig. 1b). The fluxes can be obtained by solving the multiple (2n-

2) linear equations as long as the residence time and river discharge for each segments 

are known. These equations can be solved by matrix computation. The multiple linear 

equations can be expressed as,  

AX b=      (5) 
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where X is a vector of the unknown water fluxes, A is the matrix denoting the coefficient 

with values of either 1 or -1, and b is the right-hand side term comprised with values of 

either /V   or river discharge.   

 After obtaining the fluxes, with known C, K, V, one can then calculate the loading 

based on Equation (1). The workflow for the application of this inverse method is 

illustrated in Fig. 2. To obtain the fluxes, a numerical hydrodynamic model is usually 

recommended to calculate the residence time, even though the residence time can also be 

calculated through other methods, such as geochemical tracer method (Bouchaou et al., 

2008), tidal prism method (Sheldon and Alber, 2006), freshwater fraction method (Huang 

and Spaulding, 2002), isohaline-based salt exchange method (MacCready, 2011). Note 

that when using tidal prism-based methods, one can estiamte downstream flux at the 

segment’s downstream boudanry, and the other fluxes can be obtratined if computation 

follows the order from upstream to downstream. The method and the workflow are 

straightforward, but cautions should be taken regarding the temporal variability of 

residence time and fluxes due to the combined effect of wind, river flow, and open 

boundary conditions. The uncertainty associated with the time-varying residence time 

will be further discussed in Section 4.1.  

2.2 Estimate the net bacterial removal rate 

 One key parameter in the above method is the net removal rate, K. It depends on 

multiple factors including water temperature, salinity, suspended sediment concentration, 

and solar radiation. It can also be determined using observed spatial distribution of 

bacterial concentration from upstream to downstram and calculated transport timescale, 

following the method proposed in Du et al. (2020). Considering an exponentially 
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decreasing trend of bacterial concentration from its release location to downstream, K is 

calculated as 

  
L

K




−
=      (6)  

where the β is the slope between the logarithm of bacterial concentration and distance 

from the upstream, and ϕ is the transit time a water parcel needs to move over the 

distance of L from upstream to downstream. The transit time can be easily calculated as 

the freshwater age at a given downstream boundary, with age tracer being continuously 

released at the headwater of the river.  

2.3 Application and verification of the method in a realistic estuary 

To validate the method, we applied the method to a realistic estuary, Nassawadox 

Creek, a sub-estuary located on the eastern bank of lower Chesapeake Bay. It is 8 km 

long from its mouth to the head, with width varying from 300 m in the upper reach to 900 

m in the lower reach and a drainage area of 76 km2. The mainstem is joined by several 

smaller tributaries, forming a small estuarine system. Using the inverse modeling method, 

the loading discharging into each tributary can be estimated systematically; the 

application can thus serve as a good example to demonstrate the capability of the inverse 

method. More importantly, the Department of Shellfish Sanitation of Virginia has been 

monitoring the FC concentrations at 46 stations for almost every month since 1985. We 

used the data between 2007 and 2012. A total of 57 cruise surveys (nearly monthly) were 

conducted during this period. The FC concentrations in water samples collected during 

this period were measured based on the membrane filtration method with mTEC as the 

culture media, which improves the accuracy compared to the traditional most-probable-
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number statistical method (Grant et al., 1997). This is an excellent dataset to test the 

proposed inverse approach. 

 The estuary was divided into 12 segments (Fig. 3b). We used a validated 

hydrodynamic model to compute the mean residence time for each segment (Du et al., 

2020). To verify the inverse approach, three methods were used. First, we utilized the 

intermittent observation at the 46 stations inside the Nassawadox Creek and estimated the 

bacterial loading. The estimated loadings were compared with results from a previously-

calibrated watershed model that was also applied for this estuary (Shen et al., 2005b). 

Second, a set of numerical experiments with constant FC loadings were conducted and 

we used the modeled FC output as “observed FC” to inversely estimate the loading, 

which was then compared with the presumably known loading (i.e., the constant loading 

input to the 3D numerical model). This approach is often used to validate an inverse 

model (Shen et al., 2006). Finally, the loading were calculated based on a realistic model 

run with temporally varying FC loading (from a watershed model). To mimic in situ 

sampling, bacterial concentration at the middle of eachsegment was extracted from model 

outputs for every 30 days. This experiment is to determine whether the inverse method is 

valid when estimating loading based on concentrations at a limited number of sampling 

stations by examining the deviations of the estimated loadings from the true loadings.  

2.3.1 Hydrodynamic model 

  The Environmental Fluid Dynamics Computer Code (EFDC) (Hamrick, 1992) 

was used for this study to compute residence time and simulate FC transport in the 

Nassawadox Creek. EFDC is a general-purpose modeling package for simulating one-, 
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two-, and three-dimensional flow and transport in surface water systems including rivers, 

lakes, estuaries, reservoirs, wetlands, and coastal oceans.   

For the Nassawadox Creek, a curvilinear orthogonal grid was used, with grid 

resolution ranging from 200 m at the open boundary to 20 m inside the creek. The model 

grids is carefully aligned with the shoreline (Fig. 3a). The bathymetry is based on the 3-

arc second resolution Coastal Relief Model 

(https://www.ngdc.noaa.gov/mgg/coastal/crm.html, last access: January 1, 2021).  

 The model is driven by the river discharge enforced at the head of all the 

tributaries, tide at the open boundary, and reanalysis atmospheric forcing from NCEP 

(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html, last 

access: January 1, 2021). The model has been well calibrated for hydrodynamics (Du et 

al., 2020).  

2.3.2 Residence time calculation 

 For Nassawadox, we divided the entire domain into 12 segments, with one 

segment for each of the eight tributaries and four segments for the mainstem. Residence 

time for each segment was calculated based on the adjoint method proposed by Delhez 

(2006). Different from the traditional particle tracking method, the adjoint method (or 

backward method) takes into account the diffusion and can simulate the temporally and 

spatially varying residence time with one single model run, which is computationally 

efficient. The residence time, denoted by θ as a function of location x and time t, is 

calculated through 

https://www.ngdc.noaa.gov/mgg/coastal/crm.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html
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where v is the velocity vector, κ is the symmetric diffusion tensor, and 

 1     
( ) 0    
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
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

=
       (8) 

where ω is the domain of interest (or the segments in this study). By specifying the ω, the 

EFDC model will allow computing the residence time for any defined segment. The 

adjoint method has been implemented into the EFDC model by Du and Shen (2016) and 

used to calculate the residence time in Chesapeake Bay in several previous studies (e.g., 

Du et al., 2017; Xiong et al., 2021). To calculate the residence time, we first run the 

hydrodynamic model and saved the half-hourly output of hydrodynamic fields including 

velocity, eddy diffusivity, surface elevation. Equation (7) was then computed backward 

from the end to the beginning of the simulation period based on the saved hydrodynamic 

output.  

 The distribution of 6-yr (2007-2012) mean residence time in each segment is 

shown in Fig. 3b. The mean residence time is high in the tributaries while low along the 

mainstem, with the smallest value near the mouth and the largest value at segments 7 and 

8. Such distribution is related to the strength of the tidal current inside the bay, and the 

size of each segment. The magnitude of tidal current decreases greatly from the mouth 

toward upstream (not shown). The tidal current amplitude can be up to 0.35 m/s near the 

mouth while usually less than 0.05 m/s inside the tributaries. A stronger tidal current and 

tidal mixing near the mouth will lead to a faster flushing, resulting in a shorter residence 
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time. Consequently, the flux is large (on the order of 100 m3/s) between mainstem boxes 

while much smaller (on the order of 1 m3/s) between tributaries and the mainstem. 

2.3.3 Experiments with hypothetical loading 

 To verify the inverse method, we treated model-calculated FC concentrations as 

observations. Eight numerical experiments using long-term mean constant river flow and 

constant FC loading (25, 50, 75, 100, 125, 150, 175, and 200% of long-term mean 

loading, respectively) were conducted. The net removal rate was set as 0.5 d-1 based on 

previous model calibration and observation data analysis (Du et al., 2020). For this 

experiment, the removal rate can be set as any number and it will not affect the loading 

calculation as long as both the 3D model and the inverse method use the same value of 

the removal rate. 

 Additional validation is conducted by comparing the realistic temporal varying 

daily “known loading” from the watershed model with the inversely estimated loading 

based on realistic model simulation results. The loading is inversely calculated for every 

30 days, using the mean concentration and mean residence time averaged over the same 

period. Simulated vertical mean concentration at the middle of each segment was used as 

observed FC concentration (C) and the system was assumed to be under the dynamically 

quasi-steady-state with dC/dt=0. The inversely calculated loading (Linv) was then 

compared with the known loading (Lo).   
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2.4 Method performance evaluation 

Besides the common statistical measures including root mean square error 

(RMSE) and coefficient of determination (R2), we also calculated skill following 

Willmott (1981): 

2

mod

2

mod

1
( )

obs

obs obs obs

X X
Skill

X X X X

−
= −

− + −




                                                          (9) 

where Xobs and Xmod are the observed and modeled variables, respectively, with the 

overbar indicating the time average. Skill provides an index of model-data agreement, 

with a skill of 1 indicating perfect agreement and 0 indicating complete disagreement. 

Skill has been widely used to evaluate the performance of numerical models (e.g., Warner 

et al., 2005) and data-driven models (e.g., Yu et al., 2020). While the R2 indicates the 

model’s capability of capturing the seasonal trend and interannual variations, and RMSE 

indicates the overall misfit between model and observation, skill can be regarded as a 

synthesis index to evaluate both the trend capturing and relative misfit. 

3 RESULTS 

3.1 Estimation of net removal rate 

 Based on the observational spatial distribution of bacterial concentration and 

calculated transit time, the net removal rate at three major tributaries (i.e., segment #5, 7, 

and 8) were separately calculated (using Equation (6)). These three tributaries were 

selected because there are multiple stations in these tributaries, which allow a statistically 

meaningful estimation of the parameter β. Note that not every cruise will result in a valid 
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estimation of K. When the logged bacterial concentrations do not follow a linearly 

decreasing trend from upstream to downstream, the estimation of K is deemed unreliable, 

as it indicates that there are likely additional unaccounted lateral sources (Du et al., 

2020). There were a total of 50 estimations of K over the period of 2007-2012.  

 The estimated K varies temporally and follows roughly a normal distribution. The 

estimated K varies from 0.27 to 0.86 d-1, with 25th and 75th percentiles of 0.43 and 0.63 d-

1, respectively. The estimated K falls into the normal range of FC die-off rate as measured 

in the laboratory (e.g., Bowie et al., 1985; Auer and Niehaus, 1993). A normal 

distribution, with a mean of 0.52 d-1 and a standard deviation of 0.14 d-1, was used to fit 

the estimated K (Fig. 4). The normal distribution will be used to address the uncertainties 

in K when inversely estimate the loading. In the next section, we calculated the bacterial 

loading 100 times with 100 different K values based on this fitted normal distribution.  

3.2 Method verification: comparison with a watershed model 

 The inverse method was first applied to estimate the loading based on observed 

bacterial concentration and calculated residence time. FC concentrations within each 

segment were averaged when applying the inverse method. Comparing the inversely 

estimated loading with the loading from a previously calibrated watershed model (Shen et 

al., 2005b) over the same period shows an overall good agreement between the two 

methods, in terms of their frequency distribution (Fig. 5), even though there are more 

occurrences of small loading from the watershed model compared to the inverse method. 

In Shen et al. (2005b), the watershed model for Nassawadox Creek was calibrated against 

the observations based on the best match between model results and observations to seek 

the least RMSE, which is a common practice for watershed model calibration. Using the 
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watershed model loading as a reference does not mean the watershed model is accurate. 

In the watershed model, there are also large uncertainties that are related to a variety of 

parameters or input data such as bacterial accumulation rate, land-use, and precipitation 

rate. The purpose of the comparison is to show that the inverse model can achieve a 

similar accuracy and frequency distribution as from a watershed modeling approach.  

 It is noticeable that, with different K, the estimated loading varies substantially 

(Fig. 5c). This is because the last term in Equation (1) dominates the bacterial budget in 

Nasawadox Creek where the tidal current is weak and exchange between neighboring 

segments is limited. The uncertainty associated with K and residence time will be further 

discussed in the discussion section.  

3.3 Method verification: based on numerical experiments  

 A more accurate way to verify the inverse method is to conduct numerical 

simulation with “known” loadings (Lo) and a prescribed removal rate. The input loading 

can be constant or time-varying. We conducted tracer simulations with specified loading 

discharged from each subwatershed based on previous watershed model results. A 

constant K of 0.5 d-1 was used. The simulated tracer concentration and residence time 

were obtained to inversely calculate the input loading. For the constant loading scenarios, 

eight loadings were tested, including 25, 50, 75, 100, 125, 150, 175, and 200% of long-

term mean loading. The inversely calculated loadings (Linv) are nearly identical to the 

input loading for all major tributaries despite small bias (Fig. 6).  

 For the time-varying loading scenarios, the input loading varies over time, based 

on the outputs of watershed model. The 30-day mean tracer concentration at the middle 
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of each segment was used to mimic realistic sampling practice. The concentration was 

sampled at the same frequency as in situ measurements. It is shown that there isa good 

agreement between Lo and the ensemble mean of Linv (Fig. 7). Because we used only one 

sample station for each segment and mean residence time over every 30 days while the 

watershed model loading varies every day, some differences between Lo and Linv are 

expected. For instance, the estimated loading is biased from the input loading when the 

loading is high (Fig. 7). The discrepancies can be attributed to several factors. First, value 

at the middle of the segment was used as the segment-mean value. For realistic 

application, it is impractical to sample the entire segment and we sample in a way 

mimicking realistic practice. The sampled value may bias the true mean value of bacterial 

concentration in the given segment. Second, there may be a time-lag between the change 

of loading and the change of bacterial concentration. It may take days for water parcels to 

move from the head of a tributary to the mainstem (Du et al., 2020). As a result, a high 

value of bacterial concentration (which will lead to higher estimated loading) may not 

necessarily correspond to a high loading for the same given period. Nevertheless, the 

overall variations of Lo and Linv match well with each other. The high value of skill and 

R2, and low RMSE suggest the method is reliable.  

4. DISCUSSION 

 Both realistic and idealized numerical experiments for Nassawadox Creek 

confirm the reliability of the proposed inverse method. Even though the initial motivation 

of introducing the method is to estimate bacterial loading, the method is readily 

applicable to other types of estuarine materials, such as dissolved inorganic nutrients. 

Like other methods to estimate watershed loadings (e.g., using watershed model), the 
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proposed method also has its limitations and its results are with uncertainties, which will 

be discussed in the following Sections.  

4.1 Uncertainty associated with residence time and K 

One of the challenges in assessing water quality conditions in estuaries arises 

from the model uncertainties. There are large uncertainties associated with unknown 

sources and time-varying decay rate of riverine materials (e.g., nutrients and bacteria) in 

the receiving waters. When using the inverse approach, the major uncertainties come 

from the decay rate and residence time. Residence time varies with time, due to changing 

transport processes regulated by time-varying tidal mixing, freshwater input, and 

atmospheric forcing. A smaller residence time indicates a larger flushing capability and 

will result in smaller bacterial concentrations given the same bacterial load. The temporal 

variability of the residence time over the monthly scale has already been considered in 

the above analysis, but residence time’s daily variability was not included. Its impact will 

be shown in the following uncertainty analysis. The decay rate of bacteria varies and is 

affected by a variety of factors including temperature, irradiance, sediment settling, and 

resuspension. Among these, irradiance and temperature are generally considered the most 

important (Esham and Sizemore, 1998; Xu et al., 2002; Menon et al., 2003). It is 

commonly agreed that a higher temperature or irradiance tends to result in a larger die-off 

rate (e.g., Chigbu et al., 2005). Selection of K is important for the proposed inverse 

method.Using in situ observations to estimate K is a good approach to determine the 

range of K values and to evaluate the influence of uncertainties associated with the K. 

Nevertheless, the variability of decay rate for a specific region is usually much smaller 

than that of bacterial loading, which magnitude could vary in several orders.  
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To understand the relative influence of uncertainties associated with K, we 

calculated the loading inversely 100 times with different K values, with each K value 

randomly drawn from the fitted normal distribution. The frequency distribution for the 

estimated loadings with different K values are shown in Fig.6.   

  We also compared the influences of uncertainties associated with residence time 

and K on the estimated loadings. For each month, we calculated the loading using time-

varying residence time and constant K to examine the influence of uncertainties 

associated with residence time; using constant residence time and a set of K values 

(randomly drawn from a normal distribution with a mean of 0.52 d-1 and standard 

deviation of 0.14 d-1) to examine the influence of uncertainties associated with K value; 

and using varying residence time and varying K to examine the combined influences of 

uncertainties in K and residence time. For each month, there will be 120 residence time 

values (four values per day) and 100 K values to be tested. Results show that the 

influence of residence time-induced uncertainties is much smaller than of K induced 

uncertainties (Fig. 8). The combined uncertainties associated with K and residence time 

has nearly identical impact compared to K uncertainties alone (not shown). A larger range 

of K will certainly result in larger uncertainty. Since a standard deviation of 0.14 d-1 is a 

conservative value for K in natural waters (Bellair et al., 1977), it is fair to claim that 

uncertainties in the inversely calculated results can be mostly attributed to the K value 

instead of residence time for the Nassawadox Creek.  
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4.2 Broad applications of the inverse method  

 Using bacterial loading as an example, we show here that the proposed inverse 

method is an efficient alternative way to estimate watershed loading. This method takes 

advantage of the observations and the hydrodynamic model. The hydrodynamic models 

are nowadays relatively accurate to reproduce well the water movement and water 

exchange. The observations are assumed errorless although it may be not the case for 

bacteria concentrations as the bacterial loadings may vary dramatically over a short 

period. However, the error of measurements can be included in the uncertainty analysis.  

 The proposed method can be useful in multiple ways. First, it can be used to 

crosscheck the watershed model and thus calibrate the watershed model. Different from 

the traditional calibration method by back-forth running the watershed model and 

numerical model for the receiving water, which is tedious and time-consuming (Shen et 

al., 2006), one can use the inverse method to quickly adjust the spatially and seasonally 

varying parameters in watershed models. Using watershed models to estimate loadings 

suffers greatly from the uncertainties in animal distribution and seasonality of animal 

density (Jamieson et al., 2004; Jeong et al., 2019), and there is still no easy way to 

address this problem. While the inversely estimated loading also suffers from its limited 

temporal resolution, combining both two results is likely to give more reliable results.  

 Second, the inverse method can be used as an alternative way to estimate the 

loading if a watershed model is not available due to reasons such as lacking essential data 

of bacterial sources, spatially varying precipitation, domestic and wild animal density, 

and accurate land-use. Lacking watershed model input data (e.g., precipitation, animal 

density) is a common problem for bacterial pollution assessment. In such cases, the 
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inverse method could be a cost-effective and efficient option. With observational data at 

limited monitoring stations and an estimation of the residence time of a given waterbody, 

one can easily determine the bacterial loading and identify the bacterial sources.  

As many remediations have been implemented in the watershed, the effectiveness 

of these efforts needs to be evaluated. This inverse method can be used to examine 

whether the watershed loading changes in the desired way following remediation efforts.  

 Lastly, the method can be used for other bacterial indicators (e.g., E. coli, and 

Enterococci) and riverine materials as well, such as total nitrogen (TN), phosphate, and 

heavy metal, etc. The mass transport for these materials follows the same rules as for the 

bacteria. The only difference is the removal rate. The removal rate of these materials 

differs from each other due to different sedimentation and biological uptaking. For 

instance, TN in the Chesapeake Bay has a removal rate of 0.001 d-1 on average (Dettman, 

2001) and its net removal rate is related to the complicated sedimentation and plankton 

uptaking.  

 To use this approach, two independent datasets are needed: (1) the measured 

concentration of bacteria or other materials of interest, (2) the time-varying residence 

time for each segment. Constant residence time is acceptable when the residence time 

does not change dramatically. As shown in Section 4.1, for the Nassawadox Creek, the 

temporal variability of residence time has little impact on the final estimations of the 

loading because the water exchange in the system is more controlled by tidal exchange 

instead of freshwater inputs. For coastal bays where hydrodynamics are dominated by 

freshwater input and where freshwater input varies seasonally (e.g, Mobile Bay; Du et al., 
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2018), the temporal variability of residence time cannot be ignored. For coastal bays with 

large volume and relatively stable sub-tidal exchange such as Chesapeake Bay where the 

two-layer subtidal exchange is prominent (Xiong et al., 2021), the residence time 

variability of shorter-timescale (e.g., daily) may be less important. 

4.3 Limitations of the inverse method 

Some restrictions shall be noted when applying the inverse method. The inverse 

method is based on the assumption that water or material in each segment is well-mixed. 

In reality, estuaries are usually not well-mixed due to the stratification induced by the 

riverine buoyancy. However, it doesn’t mean the method is not suitable for the partially 

mixed or stratified estuaries as long as the fluxes and concentrations are representative of 

the entire segment. In these cases, multiple monitoring stations are needed to obtain a 

segment-mean value of tracer concentration.  

It is also necessary to point out that residence time could vary with time. 

Residence time is a function of river flow, tide, and wind force, and therefore usually 

varies seasonally and interannually. Besides the adjoint method as used for the 

Nassawadox, residence time can be calculated by other methods, such as the tidal prism 

method (Kuo et al., 2005; Andutta, et al., 2014), freshwater fractional method (Knudsen, 

1900), analytical method based on double diffusion equations (Choi and Lee, 2004), and 

isohaline based method (MacCready, 2011). We applied the adjoint method with a 

hydrodynamic model because of its efficiency as one single model run can provide 

spatial and temporal varying residence time with high accuracy.  
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The resolution of the results from the inverse method depends directly on the 

measurement accuracy and frequency. To obtain results with a higher temporal 

resolution, it is necessary to have continuous and higher frequency data.  

5. CONCLUSIONS 

 We introduced a simple inverse method using observation data and residence time 

to estimate bacteria loading. We conducted a series of experiments to demonstrate the 

mothod is reliable. The method is computationally efficient and has the capability to 

estimate the long-term time-varying loadings for multiple connected estuarine segments. 

Using residence time instead of the tidal prism makes the method more suitable for 

estuarine water quality studies, as the tidal prism method is limited by its restricted 

segmentation scheme and high uncertainties associated with return ratio.  

 Regarding the accelerating change of land-use and great uncertainties in bacteria 

sources, bacterial concentration could vary significantly in an estuary and it may be not a 

good strategy to rely solely on land-use information and mean condition for time-

sensitive environmental assessment. While the method has its limitations, it is shown to 

have high potential if given reliable residence time and continuous monitoring data with 

sufficient resolution.   
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APPENDIX A1:  

Assuming (1) a well-mixed box with an initial tracer concentration C0 and without 

additional internal source or sink, and (2) that an outflux Qout is constant throughout the 

time, the tracer mass transport equation follows 

( )
( )out

dVC t
Q C t

dt
= −       (A1) 

The solution of A1 is  

0

outQ
t

VC C e
−

=       (A2) 

The mean residence time (τ) can be expressed with the remnant function as (Takeoka, 

1984), 

0
( )r t dt


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where r(t) is the ratio of material remaining inside the waterbody at time t to its initial 

total mass,  

0
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C t
r t
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By combining A2-A4, the mean residence time can be solved as 
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Therefore, Qout can be regarded as the effective outflux corresponding to the mean 

residence time of the given box.  

 

  



203 

 

REFERENCES 

Andutta, F.P., Ridd, P.V., Deleersnijder, E., Pradle, D. (2014). Contaminant exchange 

rates in estuaries – New formulae accounting for advection and dispersion. Progress 

in Oceanography, 120, 139-153.  

Arnold, J. G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, 

R., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M. K. 

(2012). SWAT: model use, calibration, and validation. Transaction of the ASABE 

55, 1491-1508.  

Auer, M.T., Niehaus, S.L. (1993). Modeling fecal coliform bacteria-I. Field and laboratory 

determination of loss kinetics. Water Research, 27, 693–701.  

Bellair, J.T., Parr-Smith, G.A., Wallis, I.G. (1977). Significance of diurnal variations in fecal 

coliform die-off rates in the design of ocean outfalls. Journal of the Water Pollution 

Control Federation, 49, 2022-2030. 

Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp G.L., 

Johnson, K.M., Chan, P.W.H., Gherini, S.A., Chamberlain, C.E. (1985). Rates, 

constants, and kinetics formulations in surface water quality modeling (2nd edition). 

EPA/600/3-85/040, Environmental Research Laboratory, U.S. Environmental Protection 

Agency, Athens, GA.  

Bouchaou, L., Michelot, J.L., Vengosh, A., Hsissou, Y., Qurtobi, M., Gaye, C.B., Bullen, 

T.D., Zuppi, G.M. (2008). Application of multiple isotopic and geochemical tracers 

for investigation of recharge, salinization, and residence time of water in the Souss – 

Massa aquifer, southwest of Morocco. Journal of Hydrology, 352, 267–287.  



204 

 

Brauwere, A.De, Ouattara, N.K., Servais, P. (2014). Modeling fecal indicator bacteria 

concentrations in natural surface waters : A review. Critical Reviews in 

Environmental Science and Technology, 44, 2380–2453.  

Chen, D., Dahlgren, R.A., Shen, Y., Lu, J. (2012). A Bayesian approach for calculating 

variable total maximum daily loads and uncertainty assessment. Science of the Total 

Environment, 430, 59–67.  

Chigbu, P., Gordon, S., Strange, T.R. (2005). Fecal coliform bacteria disappearance rates 

in a north-central Gulf of Mexico estuary. Estuarine, Coastal and Shelf Science, 65, 

309–318.  

Cho, K.H., Pachepsky, Y.A., Kim, M., Pyo, J., Park, M., Kim, Y.M., Kim, J.W., Kim, 

J.H. (2016). Modeling seasonal variability of fecal coliform in natural surface waters 

using the modified SWAT. Journal of Hydrology, 535, 377–385.  

Choi, K.W., Lee, J.H.W. (2004). Numerical determination of flushing time for stratified 

water bodies. Journal of Marine Systems, 50, 263-281.  

Delhez, E.J.M. (2006). Transient residence and exposure times. Ocean Science, 2(1), 1–9. 

Dettmann, E.H. (2001). Effect of water residence time on annual export and 

denitrification of nitrogen in estuaries: A model analysis. Estuaries, 24, 481–490.  

Du, J., Park, K., Shen, J., Dzwonkowski, B., Yu, X., Yoon, B. Il (2018). Role of 

baroclinic processes on flushing characteristics in a highly stratified estuarine 

system, Mobile Bay, Alabama. Journal of Geophysical Research: Oceans, 123, 1–

20.  

Du, J., Shen, J. (2016). Water residence time in Chesapeake Bay for 1980 – 2012. 

Journal of Marine Systems, 164, 101–111.  



205 

 

Du, J., Shen, J., Bilkovic, D.M., Hershner, C.H., Sisson, M. (2017). A numerical 

modeling approach to predict the effect of a storm surge barrier on hydrodynamics 

and long-term transport processes in a partially mixed estuary. Estuaries and Coasts, 

40, 387-403 

Du, J., Shen, J., Park, K., Yu, X., Ye, F., Qin, Q., Xiong, J., Chen, Y. (2020). Using 

observed bacteria concentration and modeled transit time under an analytical 

framework to estimate overall removal rate of fecal coliform in an estuary. arXiv 

preprint, arXiv:2001.07603. https://arxiv.org/abs/2001.07603  

Esham, E.C., Sizemore, R.K. (1998). Evaluation of two techniques: mFC and mTEC for 

determining distributions of fecal pollution in small, North Carolina tidal creeks. 

Water, Air, & Soil Pollution, 106, 179–197.  

Ferguson, C.M., Charles, K., Deere, D.A., Ferguson, C.M., Charles, K., & Deere, D.A. 

(2008). Quantification of microbial sources in drinking-water catchments. Critical 

Reviews in Environmental Science and Technology, 39, 1–40.  

Grant, M.A. (1997). A new membrane filtration medium for simultaneous detection and 

enumeration of Escherichia coli and total coliforms. Applied and Environmental 

Microbiology, 63, 3526-3530.  

Gronewold, A.D., Qian, S.S., Wolpert, R.L., Reckhow, K.H. (2009). Calibrating and 

validating bacterial water quality models : A Bayesian approach. Water Research, 

43(10), 2688–2698.  

Hamrick, J.M. (1992). A three-dimensional environmental fluid dynamics computer 

code: Theoretical and computational aspects. The College of William and Mary, 

https://arxiv.org/abs/2001.07603


206 

 

Virginia Institute of Marine Science, (Special Paper 317), 63. 

https://doi.org/10.21220/v5tt6c 

He, L., Lu, J., Shi, W. (2007). Variability of fecal indicator bacteria in flowing and 

ponded waters in southern California : Implications for bacterial TMDL 

development and implementation. Water Research, 41, 3132–3140.  

Huang, W., Spaulding, M. (2002). Modelling residence-time response to freshwater input 

in Apalachicola Bay, Florida, USA. Hydrological Processes, 16(15), 3051–3064.  

Jamieson, R., Gordon, R., Joy, D., Lee, H. (2004). Assessing microbial pollution of rural 

surface waters: A review of current watershed scale modeling approaches. 

Agriculture Water Management, 70, 1–17.  

Jang, J., Hur, H., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., Ishii, S. (2017). 

Environmental Escherichia coli : Ecology and public health implications - a review. 

Journal of Applied Microbiology, 123, 570–581.  

Jeong, J., Wagner, K., Flores, J.J., Cawthon, T., Her, Y., Osorio, J., Yen, H. (2019). 

Linking watershed modeling and bacterial source tracking to better assess E . coli 

sources. Science of the Total Environment, 648, 164–175.  

Knudsen, M. (1900). Ein Hydrographische Lehrsatz. Annalen der Hydrographie und 

Marinen Meteorologie, 28, 316-320. 

Kuo, A. Y., Park, P., Kim, S.G., Lin, J. (2005). A tidal prism water quality model for 

small coastal basins. Coastal Management, 33, 101–117. 

MacCready, P. (2011). Calculating estuarine exchange flow using isohaline coordinates. 

Journal of Physical Oceanography, 41(6), 1116–1124.  



207 

 

Menon, P., Billen, G., Servais, P. (2003). Mortality rates of autochthonous and fecal 

bacteria in natural aquatic ecosystems. Water Research, 37, 4151–4158.  

Monsen, N.E., Cloern, J.E., Lucas, L.V., &Monismith, S.G. (2002). The use of flushing 

time, residence time, and age as transport time scales. Limnology and 

Oceanography, 47(5), 1545–1553.  

Passerat, J., Ouattara, N.K., Mouchel, J.M., Rocher, V., Servais, P. (2011). Impact of an 

intense combined sewer overflow event on the microbiological water quality of the 

Seine River. Water Research, 45(2), 893–903.  

Plew, D.R. (2018). Using simple dilution models to predict New Zealand estuarine water 

quality. Estuaries and Coasts, 41, 1643–1659. 

Servais, P., Garcia-armisen, T., George, I., Billen, G. (2007). Fecal bacteria in the rivers 

of the Seine drainage network (France): Sources , fate and modelling. Science of the 

Total Environment, 375, 152–167.  

Sheldon, J.E., Alber, M. (2006). The calculation of estuarine turnover times using 

freshwater fraction and tidal prism models: A critical evaluation. Estuaries and 

Coasts, 29(1), 133–146.  

Shen, J., Parker, P., Riverson, J. (2005a). A new approach for a windows-based 

watershed modeling system based on a database-supporting architecture. 

Environmental Modelling Software, 20, 1127-1138. 

Shen, J., Sun, S., & Wang, T. (2005b). Development of the fecal coliform total maximum 

daily load using Loading Simulation Program C++ and tidal prism model in 

estuarine shellfish growing areas: A case study in the Nassawadox coastal 



208 

 

embayment, Virginia. Journal of Environmental Science and Health, Part A, 40(9), 

1791–1807.  

Shen, J., Jia, J., Sisson, G.M. (2006). Inverse estimation of nonpoint sources of fecal 

coliform for establishing allowable load for Wye River, Maryland. Water Research, 

40, 3333–3342.  

Shen, J., Zhao, Y., (2009). A Bayesian approach for estimating bacterial nonpoint source 

loading in an estuary with limited observations. Journal of Environmental Science 

and Health, Part A, 44, 1574–1584.  

Shen, J., Zhao, Y. (2010). Combined Bayesian statistics and load duration curve method 

for bacteria nonpoint source loading estimation. Water Research, 44(1), 77–84.  

Sobel, R.S., Rifai, H.S., Petersen, C.M. (2017). Integration of tidal prism model and 

HSPF for simulating indicator bacteria in coastal watersheds. Estuarine, Coastal and 

Shelf Science, 196, 248–257.  

Takeoka, H. (1984). Fundamental concepts of exchange and transport time scales in a 

coastal sea. Continental Shelf Research, 3(3), 311–326.  

USEPA. (2019). National summary of impaired waters and TMDL information. 

https://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T (last 

accessed on January 1, 2021) 

Warner, J.C., Geyer, W.R., Lerczak, J.A. (2005). Numerical modeling of an estuary: A 

comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110, 1–

13. 

Willmott, C. (1981). On the validation of models. Physical Geography, 2(2), 184–194. 



209 

 

Xiong, J., Shen, J., Qin, Q., Du, J. (2021). Water exchange and its relationships with 

external forcings and residence time in Chesapeake Bay. Journal of Marine Systems, 

215, 103497 

Xu, P., Brissaud, F., Fazio, A. (2002). Non-steady-state modelling of fecal coliform 

removal in deep tertiary lagoons. Water Research, 36, 3074–3082.  

Yu, X.. Shen, J., Du, J. (2020). A machine-learning-based model for water quality in 

coastal waters, taking dissolved oxygen and hypoxia in Chesapeake Bay as an 

example. Water Resource Research, 56, e2020WR027227 

  



210 

 

  

Figure 1: Sketch diagrams showing the water exchange between segments. (a) Sketch 

diagram showing the vertical velocity structure and water exchange between downstream 

and upstream. (b) Sketch diagram showing the water inflow and outflow for a given 

segment connected by a limited number of neighboring segments.  
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Figure 2: A sketch diagram showing the workflow of the inverse method application for 

an estuary.  
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Figure 3: (a) Bacterial monitoring stations (black triangles) and numerical model grids, 

with filled color denoting the water depth. (b) The 6-yr mean residence time for the 12 

segments, with the mean value and standard deviation shown with text in the top left. 
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Figure 4: (a) Frequency distribution of estimated net removal rate of Fecal Coliform, K. 

(b) A normal distribution to fit the distribution of estimated K. The mean (μ) and standard 

deviation (σ) for the normal distribution are shown in text in the plot.  

  



214 

 

 

Figure 5: Comparison of the loading between inverse method and watershed model. (a) 

The histogram of watershed loading for all the 8 tributaries (total sample number 

57×8=456). (b) The histogram for inversely estimated loading for all the 8 tributaries 

(total sample number 45600).The inverse method has been applied 100 times with 

randomly selected K values drawn from a normal distribution (μ=0.52, ϭ=0.14). (c) 

Cumulative distribution function comparison between watershed loading and inversely 

estimate loading based on different K value, with bold red line indicating the ensemble 

mean of the 100 times of calculation.  
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Figure 6: Model validation based on idealized numerical experiments with constant FC 

loadings for each of the eight tributaries (segment 1-8). For each numerical experiment, 

there is one estimated loading based on the mean bacterial concentration averaged over 

the entire simulation period.  
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Figure 7: Model validation by comparing model input loading (a.k.a., known loading) 

and the inversely calculated loading based on model-calculated FC concentration for the 

eight tributaries (i.e., segment 1-8). Each data point represents a monthly mean value 

(total number of data points N=72). Statistical numbers are shown in text, including root 

mean square error (RMSE), R2, and skill. 
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Figure 8: Total loadings discharging into the entire estuarine system and their 

uncertainties (represented with the 95% confidence) induced by removal rate (K) and 

residence time (RT). The time series here has the same frequency of field measurements 

(nearly monthly with some occasional gaps).  
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