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ABSTRACT

The Hubbard model is a ”paradigmatic” model in the realm of condensed matter physics.

Recently a work with various state-or-art methods established the ground state stripe or-

der near 1/8 doping and strong on-site interaction. Therefore, in this thesis, we determine

the spin and charge order of ground state of 2D doped Hubbard model in its simplest form

(with only on site repulsion and nearest-neighbor hoping) with various doping and small to

medium interaction. At half-filling, the ground state is known to be an antiferromagnetic

Mott insulator. Doping Mott insulators is believed to be relevant to the superconductiv-

ity observed in cuprates. We employ one of the state-of-art method, the auxiliary field

quantum monte-carlo (AFQMC) with self-consistently optimized gauge constraints, to sys-

tematically study this model. With carefully finite size scaling, we map out the ground

state phase diagram in terms of spin and charge order. The result shows a modulated

antiferromagnetic (AFM) order present from near half-filling to about 1/5 doping.

The doped Hubbard model is believed to be relevant to high temperature superconduc-

tivity in cuprates. We employ AFQMC together with the density matrix renormalization

group (DMRG) method to study the superconducting order parameter in the ground state

of the Hubbard model when a next-nearest-order hopping, t′, is included. Our algorithmic

advances include a more robust procedure for self-consistent constraint in AFQMC and

twist average boundary conditions which can handle finite size effects much more effec-

tively. We compute the superconducting order parameter in the ground state for a number

of parameter sets (t′, doping) and discuss its interplay with magnetic and charge orders.
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INVESTIGATION OF STRIPES, SPIN DENSITY WAVES AND

SUPERCONDUCTIVITY IN THE GROUND STATE OF THE TWO-DIMENSIONAL

HUBBARD MODEL



CHAPTER 1

Introduction

The study of quantum many body systems has been an outstanding challenge in

recent decades. Among them, the Hubbard model [4] is one of the most studied models

in condensed matter physics. It is a paradigm model like the Ising model is in statistical

physics. Although its form is simple, the Hubbard model hosts rich physics with the

variation of interaction strength, doping level, temperature, lattice geometry, and so on

[5]. What’s more, on the square lattice, it is widely believed that the Hubbard model

contains key physics which is relevant to high temperature superconductivity in cuprates

[6].

The Hamiltonian of the Hubbard model is as follows (a schematic figure shown as Fig.

1.1):

H = −t
∑
〈i,j〉;σ

c†iσcjσ − t′
∑
〈〈i,j〉〉;σ

c†iσcjσ + U
∑
i

ni↑ni↓ +
∑
i

viσniσ (1.1)

where the coordinates of the lattice site labeled i are given by ri = (ix, iy). c†iσ (ciσ)

represents the creation (annihilation) operator on site i, with σ =↑, ↓ being the spin of the

election. The operator niσ = c†iσciσ measures the number of electrons with spin σ on site i.

We denote the average hole density, or doping, in the system as h = 1−Ne/Nsite where Ne
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FIG. 1.1: A schematic figure of the 2-dimensional Hubbard model, where t,t’ denote the nearest
(next nearest) hopping and U is the repulsive energy for double occupation of a site. Up arrows
and down arrows correspond to up-spin and down-spin electrons, respectively. This figure is
originated from the article [2]

is the total number of electrons and Nsite = Lx×Ly the number of sites of the lattice. We

set t as the energy unit in this work. The first two terms in the Hubbard model represent

the kinetic energy, with first (second) term describing nearest (next nearest) hoping . We

will call the model ”pure Hubbard model” in the case t′ = 0. The third term represents

the interaction energy, and the last term is a spin-dependent potential from an external

field, which is applied to explicitly break the SU(2) symmetry. We use the external field

as a pinning field, applied to the edges, in such a way that the symmetry breaking allows

us to measure local densities as opposed to the more demanding correlation functions [7].

As we illustrate in Fig.3.4, the effects of the pinning field are negligible in the bulk of the

system. So the details of the field does not affect the characterization of the ground state.

In the general form of equation 1.1, with only a few exceptions [8, 9], this model
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cannot be solved analytically. The size of the Hibert space grows exponentially with the

system size, so straightforward numerical diagonalization is limited to small lattice sizes.

Most studies of the model nowadays depend on numerical methods. [10, 5].

When the number of electrons is same as the number of lattice (half-filling case), it

has already established that the ground state of Hubbard model has anti-ferrimagnetic

(AFM) order with mott-insulating at any finite interaction strength [11]. When holes are

added, the ground state will tell a different story, and it is believed to be important for

understanding the mechanism of high temperature superconductivity to study this ”story”

[12]. Previous study has shown different possibilities of what this ”story” is like, including

spin density waves(SDW), charge density waves(CDW) [13, 14, 15, 16], superconductivity

[17, 18]. For example, in 2017 it has shown that, near 1/8 doping, a filled stripe (wavelength

equals to reverse of doping) will be observed in the ground state, with state-of-the-art

numerical many-body correlated methods applied collaborating in this paper. [19] Since

then, more evidence has confirmed the existence of stripe order in the doped Hubbard

model [20, 21, 22].

The study of stripe order in the Hubbard model can be traced back to 1980s in Hartree-

Fock [23, 24, 25] and then 1990s in density matrix renormalization group (DMRG) [13] cal-

culations. After that, Constrained-path auxiliary-field quantum Monte-Carlo (AFMQC)

found the incommensurate SDW state with AFM order and homogeneous charge correla-

tion at intermediate interaction.[15]. In both the SDW and stripe states, a unidirectional

order is established with the AFM correlations displaying a π phase flip across nodes. The

doped holes concentrate in the nodal region of the spin modulation in the stripe phase.

The formation of the stripe results from compromise between the AFM background and

kinetic energy of the holes. Stripe order is widely observed in cuprates [26]. There is evi-

dence suggesting that the stripe order might be the origin of pseudo-gap phase of cuprates

[27] when temperature is above the superconducting transition temperature.
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However, the existence of stripe order away from 1/8 doping is still not fully under-

stood. In the early experimental studies, 1/8 doping is somehow special to cuprates[28].

Given the relationship between the Hubbard model and cuprates, we can ask a question:

”is 1/8 doping also ’special’ in the Hubbard model ? If so, how?” In this thesis we deter-

mine the ground state phase diagram of the doped Hubbard model by scanning different

doping (h) and different interaction strengths (U), with main focus on the existence of

SDW and stripe order. We will use the constrained path AFQMC method [1, 14] , with

self-consistently optimized constraint[29], to study the ground state. By calculating the

spin and charge order of the ground state for different systems sizes, and careful finite size

scaling to thermodynamic limit (TDL), we determine whether the ground state of partic-

ular interaction U and doping h has SDW phase order or not. Finally, a phase diagram is

obtained by these scanned results. We find the existence of SDW and stripe order up to

1/5 doping when interaction is strong enough.

To characterize the spin order, we measure the staggered spin density Si = 1
2
(−1)(ix+iy)〈ni↑−

ni↓〉 in the presence of the symmetry-breaking pinning field mentioned above. To charac-

terize the charge order, we measure the local hole density hi = 〈1− ni↑ − ni↓〉.

In most spin and charge calculations, a cylindrical geometry is adopted to accom-

modate the pinning fields. We study rectangular lattices with either open or periodic

boundary conditions on the longer direction (x), and either periodic or twist boundary

condition on the shorter one (y). From now on, when we present the results, unless other-

wise specified, the default will be cylindrical cells, namely open along x and periodic along

y. This allows us to study systems with a size which can accommodate one or multiple

periods of density waves or stripe order. We vary the aspect ratio of the simulation cells

to confirm the robustness of the results. In some energy and pairing order calculations, we

use periodic or twist boundary condition on both sides to further reduce the size effects.

Apart from the nature of the spin and charge order, whether superconductivity exists
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in the Hubbard model or not is a crucial question is which has drawn tremendous interest

in the field of quantum many body physics. Superconductivity seems to have a subtle

competition and/or co-existence with stripe order [30, 31, 32, 33]. Based on these facts,

and our previous pure Hubbard model study on superconductivity [33], we carry out

computations of superconductivity pairing order in the Hubbard model with next nearest

neighbor hoping t′, with two state-or-art numerical many-body methods, AFQMC together

with DMRG.

Our study employs the most recent advance in our algorithms, including a more

robust procedure for self-consistent constraint in AFQMC and twist average boundary

conditions which can handle finite size effects more effectively. As a result, we have much

better data quality. We will firstly discuss the benchmark comparison of pairing order

parameter and stripes with DMRG. Then, carefully finite size scaling is used to calculate

the superconductivity pairing order at t′ = 0.2 and t′ = −0.2 with various doping and

interaction strength U = 8t. The relation between superconductivity and stripe order is

also discussed. We find that the magnetic and charge correlations in t-prime model turn

out to be different from that of t′ = 0.

The following chapters of this thesis are organized as follows. In Chapter 2, we will

briefly introduce the AFQMC method, including algorithms, the sign problem and how to

control it, independent particle self-consistent iteration.... In Chapter 3, the stripe order

of pure Hubbard model is discussed and spin density wave phase diagram as a function of

doping δ and interaction U . Other properties like double occupancy, the conductivity will

be included in appendix C and appendix D. The superconducting pairing correlation of

t′ Hubbard model study will be discussed in Chapter 4. Finally, we summary and briefly

comment on future research in chapter 5.
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CHAPTER 2

Methodology

In this chapter, we will give a basic introduction to the AFQMC method. We will

also introduce the self-consistent procedure to improve our results.

The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical

method [34] for correlated many-electron systems, which is being increasingly applied in

lattice models, atoms, molecules, and solids [35]. However, we will use Hubbard model as

a concrete example here.

2.1 Projection

Projection with Monte-carlo sampling plays a key role in the AFQMC method. Given

the Hamiltonian of the Hubbard model in equation1.1, the ground state of the Hubbard

model can be obtained as below:

|ψ0〉 = lim
β→+∞

e−βH |ψT 〉 = (e−∆τH)n |ψT 〉 , (2.1)
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where n∆τ = β, and |ψT 〉 is the trial wave function, and ET is the variation energy

obtained by the trial wave function. The trial wave function must satisfy 〈|ψ0|ψT |〉 6= 0

in order to be projected to ground states. In AFQMC, the trial wave function is usually

represented by Slater-determinant states. In this work, unrestricted Hartree-Fock form of

trial wave function is applied. [34]

In order to separate the kinetic energy term K and potential energy term V , we use

Trotter-Suzuki decomposition [36]

(e−∆τH)n = (e−∆τ(K+V ))n = (e−
1
2

∆τKe−∆τ V e−
1
2

∆τK)n +O(∆τ 2) (2.2)

The Trotter error arises from the omission of the higher order terms. For our typical

choice of ∆τ , the value is actually small compared to other errors when the potential term

U is not very large. For very large U, we can make extrapolation to greatly reduce this.

In the next chapter, an example will be shown in the Fig. 3.11.

The kinetic term is a one-body operator, which can be easily applied to the initial

state of a Slater determinant. The potential term e−∆τV is not. In the repulsive Hubbard

model (U > 0), we use the Hubbard-Stratonvich transformation to transform the two-body

term e−∆τ V into sum of one-body terms [37, 38]

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
x=±1

1

2
e−∆τγx(ni↑−ni↓) (2.3)

where cosh(γ) = e−∆τU/2. In equation 2.3, which is referred to as spin decomposition, x is

an Ising-spin like auxiliary field.

For attractive Hubbard model (U < 0), we will use the charge decomposition instead

of the spin decomposition
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e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓−1)
∑
x=±1

1

2
e−∆τγx(ni↑+ni↓−1) (2.4)

Since each two-body term can be represented by a sum of two one-body terms, the

projection will generate 2n one-body terms, which is still impossible to be computed exactly

in large systems, thus, Monte-Carlo sampling is needed.

We can write equation 2.4 in a general form:

e−∆τUni↑ni↓ =
∑
x

p(x)eô(x) (2.5)

where the ô(x) is a type of one-body operator defined by the auxiliary field x, and p(x)

is the probability of choosing x and
∑

x p(x) = 1. We then can rewrite the projection

operator by setting

B̂(x) = e−
1
2

∆τKeô(x)e−
1
2

∆τK , (2.6)

and write equation 2.1 as

|ψ0〉 =
∑
~X

P ( ~X)
n∏
i=1

B̂(xi) |ψT 〉 , (2.7)

where the vector ~X represent the choice of (x1, x2...xn) and P (~x) =
∏n

i=1 p(xi). We can

sample these ground state elements by its probabilities, and the sampled ground state can

be represented by

|ψ0〉 =
∑
k

ωk |ψk〉 (2.8)

where ωk represents the weight of kth walker.

After getting the ground state, we can measure the observable Ô by

〈Ô〉 =
〈ψT | e−βHOe−βH |ψT 〉
〈ψT | e−βHe−βH |ψT 〉

, (2.9)
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which is called back-propagation. For energy measurement and observable that commute

with Ĥ, we use the mixed estimator like below

E = 〈Ĥ〉 =
〈ψT |He−βH |ψT 〉
〈ψT | e−βH |ψT 〉

(2.10)

which is more efficient and has much smaller error bar.

Next, we will discuss more about how we calculate the probabilities and conduct the

random walk.

2.2 Auxiliary field quantum Monte-Carlo (AFQMC)

From the last section, the 2n possibilities of the next step of each walker can be sampled

by open-ended random walks. We can use a population of Nw walkers to accomplish this,

where Nw is much less than 2n . We first initialize these walkers by the trial wave function,

usually with the same weight. During the sampling, the weight of these walkers will change

with time, some walkers may be killed and some will multiply.

At the beginning, the initial state represented by these walkers can be written as

∣∣ψ(0)
〉

=
Nw∑
k=1

ω
(0)
k

∣∣∣φ(0)
k

〉
, (2.11)

where |φ(0)
k > is Slater determinant wave function. we conduct the projection by equation

2.7 in Slater determinant space. Each walker will randomly choose x with the probability

equal to p(x). Then the corresponding B̂(x) is applied to its Slater-determinant wave

function. Since the two body terms have already be decomposed into one body terms, the

operation contains only one-body terms. This will turn the current Slater-determinant
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into another Slater-determinant. [39]. For any k = 0, 1, 2.....

∣∣ψ(l+1)
〉

=
Nw∑
k=1

∑
x

p(x)B̂(x)ω
(k)
k

∣∣∣φ(l)
k

〉
=

Nw∑
k=1

ω
(l+1)
k

∣∣∣φ(l+1)
k

〉
. (2.12)

And after n steps it will become

∣∣ψ(n)
〉

=
Nw∑
k=1

ω
(n)
k

∣∣∣φ(n)
k

〉
. (2.13)

During the projection, we will multiply a constant value for the weight of each walkers

based on the Monte-Carlo sampling. After several steps, the weight of each walkers ωi

will differ. Some walkers may have very large weights and some weight value will be

particularly small, which will make the efficiency of the sampling lower. In that case,

we will introduce the population control procedure. In a word, we will split the walkers

with large weight, and eliminate the walkers will small weight with proper probability. By

doing the population control, we will preserve the overall statistic distribution and make

the weight distribution for different walkers more uniform. The more uniform the weight

distribution, the higher efficiency of sampling.

Also, in order to preserve the numerical stability in the Slater determinant, we will

apply Modified Gram-Schmidt orthogonalization to each walker every several steps. [40]

In free projection (FP), what we need to do is to project these walkers to sufficiently

long imaginary time β, and measure the energy by equation 2.10 and other observables by

equation 2.9 (back propagation). However, in general, this will become very noisy, with

an exponentially large number of walkers needed to reduce the variance.

Since electrons are Fermions, the ground state of the Fermi system will be anti-

symmetric. The stochastically projected state will be symmetric about |φ(n)〉 and −|φ(n)〉.

After sufficiently long time of projection, the walkers will have equal probability to go
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to ”positive” state |φ(n)〉 or negative state −|φ(n)〉, and the denominator of equation 2.10

and 2.9 will be close to 0, which will cause the results of measurements to have diverging

variance. This is the so called sign problem [34].

Given the conditions above, more techniques are needed to improve our algorithms.

To tackle the sigh problem, random walkers should be confined to only one kind of ”sign”.

If any particular walker has the zero overlap with the ground state at imaginary time l∆τ

〈ψ0|φ(l)〉 = 0, (2.14)

it will no longer have any contribution in the future time since for any l′ > 0

〈ψ0| e−l
′∆τH |φ(l)〉 = 0. (2.15)

Thus, we need to monitor periodically, and discard any walker that have zero overlap

with the ground state. However, we are not able to know what exactly the ground state

is. In constrained path monte carlo, we choose the trial wave state as an approximation

of the ground state, and eliminate the walkers once they have zero overlap with the trial

wave state. Systematic error is introduced in this calculation, however, the error turned

out to be very small when interaction is not very large, as we illustrate in Chapter 3.

In order to impose the constraint and reduce the variance, we introduce importance

sampling [1, 41]. We define the overlap of the ith walker with the trial wave function as

OT (φk) = 〈ψT |φk〉 . (2.16)
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Equation 2.12 can be rewritten as a formally different, but mathematical equivalent form:

∣∣∣ψ̃(l+1)
〉

=
Nw∑
k=1

∑
x

p̃(x)B̂(x)ω̃
(l)
k

∣∣∣φ̃(l)
k

〉
=

Nw∑
k=1

ω̃
(l+1)
i

∣∣∣φ̃(l+1)
k

〉
. (2.17)

The equation 2.13 will have the form

∣∣∣ψ̃(n)
〉

=
Nw∑
k=1

ω̃
(n)
k

|φ(n)
k 〉

OT (φ
(n)
k )

. (2.18)

Then, the probability of sampling each auxiliary field will be given as

p̃(x) = p(x)
〈ψT |B̂(x)|φk〉

OT (φk)
, (2.19)

which can be realized by using force bias [41]. In this way, we can have greater probability

of sampling the larger weight field, and the determinants that have zero or negative overlap

with trial wave function will be prevented from sampling, which will greatly improve our

proficiency of sampling, and brings about much smaller variance.

For energy measurement, using the mixed estimator, equation 2.10 can be written as

E =

∑Nw
k=1 ω

(n)
k EL(φk)∑Nw

k=1 ω
(n)
k

, (2.20)

where the local energy EL(φk) is written as

EL(φk) =
〈ψT |H|φk〉
OT (φk)

. (2.21)

Given the form of Hamiltonian in equation 1.1, we can calculate the one-body Green’s

function as

〈c†iσcjσ〉 =
〈ψT |c†iσcjσ|φk〉
〈ψT |φk〉

=
[
φσk [(ψσT )†φσk ]−1(ψσT )†

]
ji

(2.22)
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which can be obtained by matrix multiplication. Thus, we can calculate the kinetic energy

term.

For the interaction energy, which contains two-body operators, we can use Wick’s

theorem to reduce it into one-body forms as

〈c†i↑ci↑c
†
i↓ci↓〉 = 〈c†i↑ci↑〉〈c

†
i↓ci↓〉 − 〈c

†
i↑ci↓〉〈c

†
i↓ci↑〉. (2.23)

The second term in the right-hand side of equation should be 0 if spin ↑ and ↓ are decoupled

in the Slater determinant, and first term can be obtained by one-body calculation just like

equation 2.22.

Thus, we can measure the energy after sufficient imaginary time of projection. Even

with systematic error introduced from the constraint to control the sign problem, the

energy measurement is very accurate with very small statistical variance, especially for

closed shell systems [1]. For 4× 4 system with U = 4, the relative error between AFQMC

and exact diagonalization (ED) is within 0.5% [14]. For 4×20 system with U = 6 and 1/10

doping, which cannot be tackled by exact diagonalization(ED), the relative error between

AFQMC and DMRG is only about 0.1% [42], and the statistical uncertainty is only 0.01%

of the value if we use thousands of walkers.

The mixed estimator can only measure observables that commute with the Hamilto-

nian. For other observable, such as spin density, charge density... we need to use back-

propagation to create a so called pure estimate [1], and the results are affected more by the

choice of trial wave function. If we use the self-consistent constraint method [29], we are

able to obtain iteratively trial wave function closer to the correct state and the systematic

error will be greatly reduced. In next chapter, we will discuss this self-consistent method.
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2.3 Self-consistent constraint

In the previous section, we discussed the technique to tackle the sign problem, and

systematic error is introduced due to the choice of trial wave function to impose the exact

constraint condition approximately. Thus, better trial wave functions will lead to better

results. External methods which can produce better trial wave functions at modest cost

are limited. In this section, we will describe a technique that couples the AFQMC method

to an independent-particle calculation, which provides the trial wave function by using the

feedback of the AFQMC result.

Since we use single Slater-determinant as the trial wave function, it should be obtained

from the ground state of a one-body Hamiltonian. We rewrite the Hamiltonian of equation

1.1 as

H = K + U
∑
i

ni↑ni↓ (2.24)

where K is the one-body kinetic term that contains all the hoping and external field terms

in 1.1, under a generalized mean field approximation, we can rewrite the two body term

as below

H = K + U
∑
i

(ni↑ − 〈ni↑〉+ 〈ni↑〉)(ni↓ − 〈ni↓〉+ 〈ni↓〉), (2.25)

Where 〈niσ〉 is the expectation value of the electron density operator, and can by measured

by the previous AFQMC calculation.

Equation 2.25 can be also rewritten as:

H = K+U
∑
i

[〈ni↓〉ni↑+〈ni↑〉ni↓]+U
∑
i

(ni↑−〈ni↑〉)(ni↓−〈ni↓〉)+U
∑
i

〈ni↑〉〈ni↓〉 (2.26)

In the rewritten equation, the third term is constant and does not affect the trial wave func-

tion, the second term is treated as 0 in the mean field approximation, and the Hamiltonian
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of Hubbard model will have the approximate form

H = K + U
∑
i

[〈ni↓〉ni↑ + 〈ni↑〉ni↓] (2.27)

The self-consistent loop will be conducted as follows. First, we make an arbitrary ini-

tial trial wave function (e.g. the non-interacting trial wave function), we perform AFQMC

with it and measure the observable 〈niσ〉 using AFQMC, then we feed back these values

into equation 2.28 to generate a new trial wave function, which is used for the next step

AFQMC calculation.

Since in the mean field approximation, the interaction between two particles are always

over-estimated, we use Ueff instead of U in the self-consistent loop, where Ueff is usually

smaller than U . Equation 2.27 will have the form

H = K + U
∑
i

[Ueff〈ni↓〉ni↑ + 〈ni↑〉ni↓] (2.28)

The Ueff is determined in the self-consistent process to make the densities of mean field

solution as close to the AFQMC results as possible. In other words, we vary Ueff to

minimize the following terms:

δ =
∑
i,σ

|〈n̂i,σ〉IP − 〈n̂i,σ〉QMC | (2.29)

After equilibrium, the Ueff value and QMC densities will converge, and the results

will be more accurate. In next chapter, we will use an example to illustrate this.

There is another approach for constructing the trial wave function by the input value

of AFQMC in the self-consistent procedure. We obtain the one-body density matrix ρQMC ,

and in order to find a Slater-determinant that closest to the density matrix, we diagonalize
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ρQMC to produce natural orbitals. Practically, we can make the density matrix Hermi-

tian by averaging the original matrix and its conjugate transpose. The diagonalizition

procedure can be written as:

1

2
[ρQMC + (ρQMC)†] = V ΛV † (2.30)

Λ is the diagonal matrix whose eigenvalues are arranged from smallest to largest, and V

are eigenvectors arranged correspondingly to the eigenvalues of Λ. We take the Nσ leading

eigenvectors in V corresponding to the Nσ largest eigenvalues to construct the Slater-

determinant for the trial wave function. Up electrons and down electrons are calculated

separately.

The results turn out to be very similar to the self-consistent approach mentioned

before, which will be illustrated in the next chapter.
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CHAPTER 3

Ground state phase diagram of the

2D repulsive pure Hubbard model

In this chapter, we will have a detailed investigation in spin and charge density of the

ground state of 2D doped Hubbard model in its simplest form (t′ = 0), using the methods

mentioned in the chapter 2. We will systemically this model as a function of interaction

strength U and doping δ, and with carefully finite size scaling, we map out the ground

state phase diagram in terms of spin and charge order.

3.1 Benchmark example

We first take the 20× 4 cylinder with U = 6 and h = 0.1 as an example to illustrate

the method and provide a sense of its procedure and accuracy. For a narrow cylindrical

system such as this one, DMRG [43, 44] can provide highly accurate results for benchmark.

A pinning field is applied at the edges of the cylinder to induce local antiferromagnetic

order: vi↓ = −vi↑ = 1
2
(−1)ix+iyvp for ix = 1 and ix = Lx. The strength of the pinning field
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is vp = 0.5 here.

The result for the staggered spin density is shown in Fig. 3.1. We start the self-

consistent iteration with the free-electron (Ueff = 0) trial wave-function. The energy from

the free-electron trial wave-function is −66.82(1), which is very close to the exact (DMRG)

energy of −66.74(1). However, the staggered spin density from the free-electron trial wave-

function displays some significant discrepancies with respect to the exact result as seen in

Fig. 3.1. As detailed in [29], we set up a self-consistent loop which uses the CP-AFQMC

solution to determine a mean-field solution with an effective U , Ueff , which minimizes the

difference between its density (or density matrix) and that from AFQMC. This solution

(which has broken spin symmetry) is used as the new trial wave function, and the process

is iterated to convergence. After 6 iterations, the CP-AFQMC results are indistinguishable

from the exact results, consistent with previous studies [29]. The result for hole density is

shown in Fig. 3.2. There is still noticeable discrepancy in the converged local hole densities,

but the pattern is the same as the exact DMRG results.

It can be also shown that natural orbital self-consistent methods, which generates next

step trial wave function by whole density matrix diagonalization, get the similar results

as our original method. Fig 3.3 shows the difference between two self-consistent iteration

method, their values have a tiny discrepancy, but both spin and charge pattern are exactly

the same. These two methods can be considered equivalent in many cases.

In Fig. 3.4, we study the effect of the strength of the pinning field on the results. The

system is a 32× 6 cylinder with U = 6 and δ = 1/8. Pinning fields are applied on the two

edges, similar to the setup in the previous example. The strength of pinning field, vp, is

now varied by a factor of 4, from 0.2 to 0.8. We see that both the staggered spin density

and hole density remain nearly the same in the “bulk” of the system. This validation

shows the viability of probing long-range order with local pinning fields (provided that

sufficiently large system sizes can be studied).
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FIG. 3.1: The staggered spin density (−1)ix+iySz(i) along x-direction for 20 × 4 system with
1/10 doping and U = 6 in the self-consistent CP-AFQMC calculation. Results are averaged
over different rows (iy values). After convergence, the CP-AFQMC result agrees well with the
accurate DMRG results (black line).

We have also tested the case with charge pinning field alone and simultaneous spin

and charge pinning field, the results are consistent with those obtained with spin pinning

field only. An example is shown in Fig. 3.5

3.2 Finite size scaling

At each set of system parameters (U , h), we probe the order in a range of (large)

lattice sizes. A true ground-state long-range order will persist with increasing system size,
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FIG. 3.2: The corresponding hole density in the same system as in Fig. 3.1: 20×4 cylinder with
1/10 doping and U = 6. There is noticeable discrepancy in the self-consistent CP-AFQMC hole
density from the accurate DMRG result (black line). However the stripe structure is the same.
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FIG. 3.3: Insensitivity of the long-range order to the choice of self-consistent method. Method
1 is the independent particle self-consistent method, and method 2 is the natural orbital self-
consistent method. Although two results have a little discrepancy in spin and charge density,
they get exactly the same spin and charge pattern.
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FIG. 3.4: Insensitivity of the long-range order to the strength of the spin local pinning field.
Staggered spin density (up) and hole density (down) are shown for a 32× 6 cylinder with 1/8
doping and U = 6. The strengths of the pinning field ranges from 0.2 to 0.8. Converged results
from self-consistent CP-AFQMC are shown for each system. The pinning field has little effect
on the spin and hole density, especially in the “bulk” of the system.
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FIG. 3.5: Insensitivity of the long-range order to the strength of the local pinning field. Stag-
gered spin density (up) and hole density (down) are shown for a 32×6 cylinder with 1/8 doping
and U = 6. The strengths of the pinning field ranges from 0.2 to 0.8. Converged results from
self-consistent CP-AFQMC are shown for each system. The pinning field has little effect on the
spin and hole density, especially in the “bulk” of the system.
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FIG. 3.6: Presence and absence of long-range order with supercell system size. The staggered
spin density is shown for two interaction strengths, U = 2 (top) and U = 4 (bottom), at
h = 1/12 doping, each for a sequence of supercell sizes. All results are for cylinders with width
8, and the staggered spin densities are plotted along the long (x) direction. As the length of
the cylinder is increased, the staggered spin density vanishes for U = 2 but remains a constant
for U = 4.
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while a short-range correlation induced by the local pinning field will die out as the system

size grows. This is shown in Fig. 3.6, in which the spin orders are computed in width-8

cylinders at δ = 1/12 doping, with U = 2 and U = 4, respectively. At U = 2 the spin

density in the “bulk” of the system appears to tend to zero as the length of the system

is increased, while it is almost unchanged at U = 4 for Lx from 24 to 72, displaying a

spin-density wave (SDW) with a consistent wavelength.

As a more quantitative probe of the order, we calculate the spin structure factor

Ss(k) = 1
N

∑
ri
eik·ri〈ni↑−ni↓〉, where k = (kx, ky), with kx = nx 2π/Lx and ky = ny 2π/Ly

(nx ∈ [0, Lx) and ny ∈ [0, Ly) are integers). The results are shown in Fig. 3.7. At U = 4,

a peak is seen in the spin structure factor at kp = ((1− δ)π, π), i.e., (11
12
π, π) in this case,

which agrees with the wave-length of the SDW in Fig. 3.6. The height of the peak grows

with the system size, and saturates among the larger supercells. At U = 2, a smaller peak

is also present at kp. However, the value of the peak decays as system size Lx is increased.

We next perform a finite size scaling of the values of the spin structure factor at

kp (the peak position). In order to reach the TDL, we extrapolate Ss(kp), first as a

function of the width(Ly) of the system, followed by an extrapolation as a function of the

length(Lx). This procedure is shown in Fig. 3.8. At U = 2 (left panel), the extrapolated

values for Lx = 24, 48, and 72 are 0.060(1), 0.029(5), and 0.018(3) respectively, while

at U = 4 (middle panel), the corresponding values are 0.120(5), 0.117(6), and 0.125(3).

Extrapolations of these results with Lx yield the following values of the spin structure

factor at the TDL: −0.003(5) at U = 2 and 0.123(9) at U = 4. From these results we

conclude that, for doping δ = 1/12, a spin order is absent at U = 2 but present at U = 4.

(These two points are indicated as points A and B in the phase diagram in Fig. 3.12.)

We systematically apply this procedure to determine the presence of order for each set of

Hamiltonian parameters, hence an estimate of the critical interaction strength Uc for the

appearance of an SDW or stripe order, and map out a phase diagram for U . 12.
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FIG. 3.7: Spin structure factor Ss(kx, π) for a variety of simulation cell sizes, at two interaction
strengths, U = 2 (top) and U = 4 (bottom). All systems are at δ = 1/12 doping. A peak is
seen at kx = 11

12π. With the increase of systems size, the peak descreases and vanishes at U = 2
but increases and saturates at U = 4. Note the different vertical scales in the two panels.
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FIG. 3.8: Finite size scaling of the spin structure factors in Fig. 3.7. An extrapolation with Ly

is performed for each set of cylinders with the same length, shown in the left panel for U = 2
and middle panel for U = 4. This is followed by an extrapolation with respect to the length of
the cylinders, Lx, shown in the right panel for both U values. At the TDL, the peak value of
the spin structure factor vanishes for U = 2, while it reaches a finite value for U = 4.
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3.3 Determining the wavelength of the collective modes

We find that a modulated spin order appears for doping values up to about δ ∼

1/5, often accompanied by charge orders. We will further discuss the properties of these

collective modes and provide a detailed phase diagram below.

Here we describe our investigation of the wavelength of the collective mode in the

spin and charge order in the ground state. We first illustrate the procedure using the

case of δ = 1/12 and U = 4 as an example. In Fig. 3.9, we vary the length of the

cylinder (hence also Ne, in order to maintain the same δ) while keeping the width fixed

at Ly = 6. A pinning field of strength vp = 0.5 is applied only at the left edge (ix = 1)

and periodic boundary condition (PBC) is used along x direction. For y direction, twist

average boundary condition (TABC) is used to further reduce the finite size effects [45].

From Fig. 3.9, we see that the staggered spin density becomes strongest, and frustration

is minimized when Lx = 24. The corresponding charge order also forms a regular wave

with hole density peaks at the nodal position of the spin order. This is consistent with a

wavelength of 2/δ for the SDW and 1/δ for the CDW. At larger interaction strengths, the

SDW evolves into a stripe order [15], and our results suggest that the stripes are filled. We

use this procedure, combined with finite-size scaling as discussed in Sec. 3.2, to establish

the order in the TDL and determine its wavelength. More examples are shown in the

appendix.

Recent studies from DMRG [46] and the minimally entangled typical thermal states

(METTS) [27] methods have found half-filled stripes in width-4 cylinders. For example,

at U = 12 half-filled stripes are identified as the ground state for all doping values below

∼ 1/9 [46], while from METTS δ = 1/16 at U = 10 is seen to exhibit half-filled stripe

order at very low temperatures [27]. Our calculations suggest that, in the pure Hubbard

model, the half-filled stripe state appears to be special to width-4 cylinders, and we see
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filled stripes become the ground state in wider cylinders. In Fig. 3.10, we show an example

of δ = 1/12 and U = 12, in four different simulation cells — two with-4 cylinders, 24× 4

and 48 × 4, and two width-8 cylinders 24 × 8 and 48 × 8. Each calculation is performed

following the same procedure that we have outlined. We see that the half-filled stripe

is indeed the ground state for width-4 cylinders upon convergence of the self-consistent

AFQMC. For width-8 cylinders, however, the ground state corresponds to filled stripes.

We also compare the computed energies of half-filled and filled stripes at U = 12 and

δ = 1/12 in Table. 3.3. We find that the energy for half-filled stripe is lower than that of

the filled stripe in width-4 systems but this trend is reversed in width-8 systems. These

results indicate that the half-filled stripes in width-4 cylinder are affected by finite size

effects, and the stripe are filled at the TDL.

Recent studies in larger cells, for example using variational Monte Carlo [20], have

suggested that the spin order might show wavelengths of α/δ, where α is neither 1 (half-

filled) nor 2 (filled), for instance displaying a metallic state with α being a fraction. We

searched in a few such cases but did not find a stripe state with fractional α. Below we

show an example at U = 8 and δ = 1/12. We computed the energies using trial wave

functions with several different wavelengths, without invoking the self-consistency loop in

the constraint. (In these cases the QMC results turned to stay with the same wavelength,

indicating that such a state is close in energy to the true ground state, as seen from the

results below.) PBC is applied along both directions and the pinning field is removed, in

order to allow direct comparison of the energies. As seen in Table 3.3, in the 48×6 lattice,

the energy from the 2/3 filled stripe state (λ = 8) is slightly lower than filled stripe state

(λ = 12), and both state are lower than half-filled stripe state (λ = 6), which is consistent

with the result obtained in Ref. [20]. (Note that the best variational wave function gives

an energy that is ∼ 0.013t per site higher.) In the 48× 8 lattice, the energies of the filled

and 2/3 filled stripe state are almost degenerate. We next performed a calculation with
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a trial wave function constructed from a linear combination of all three states, and the

result is a filled stripe state. We thus conclude that, to within our resolution, the ground

state is a filled stripe state.

There are other systems with different doping provide the same conclusion above,

these result are included in the appendix A.

lattice half-filled stripe filled stripe
24× 4 -0.5639(1) -0.5630(1)
48× 4 -0.5583(2) -0.5569(2)
24× 8 -0.5596(2) -0.5613(2)
48× 8 -0.5532(2) -0.5541(2)

TABLE 3.1: Comparison of the computed total energies (per site) in the half-filled and filled
stripe states at U = 12 and δ = 1/12, in cylinders with widths 4 and 8, and lengths 24 and
48. The system setup is the same as in Fig. 3.10. Half-filled stripe state has lower energy in
width-4 systems but higher energy in width-8 systems. A correction has been applied to the
energies to account for finite Trotter step size [1].

lattice λ = 6 λ = 8 λ = 12
48× 6 -0.6820(2) -0.6862(2) -0.6855(2)
48× 8 -0.6821(2) -0.6854(2) -0.6852(2)

TABLE 3.2: Comparison of the energy per site in the half-filled (λ = 6), 2/3 filled (λ = 8) and
filled (λ = 12) stripe states at U = 8 and δ = 1/12 in two different lattice sizes. Fully periodic
supercells are studied here, with no pinning fields. Half-filled stripe state has the highest energy
in both systems. The 2/3-filled stripe state has the lowest energy in the width-6 supercell, while
its energy is indistinguishable from that of the filled stripe state in the width-8 supercell. Both
self-consistency and the use of a linear combination of trial wavefunctions with different stripe
fillings lead to the filled stripe state as the ground state.

3.4 Phase diagram

Using the procedure described in the previous section, we map out the phase diagram

of the spin and charge orders in the ground state of the pure two-dimensional Hubbard

model (t′ = 0) in the TDL, from weak (U ∼ 0) to fairly strong (U ∼ 12). The results

are summarized in Fig. 3.12. We find that, up to a doping value of δ ∼ 0.2, there exists
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FIG. 3.9: Staggered spin (top panel) and hole (bottom) densities at δ = 1/12 doping and U = 4,
in width-6 cylinders as the length Lx is varied. Results are omitted at the left edge (ix = 1),
where the pinning field is applied. When Lx is commensurate with the expected wavelengths
for spin and charge orders (1/δ and 2/δ), the spin and charge density waves are least frustrated
and have the largest amplitude.
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1/12 doping. By the linear extrapolation of the result with ∆τ2, we can greatly reduce the
Trotter error and get more precise energy calculation.
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a critical interaction strength Uc(δ), above which the system exhibits a collective mode of

a modulated AFM order. The spin order has wavelength 2/δ, and is accompanied by a

charge order of wavelength 1/δ, in which the hole density tends to be higher at the nodes

of the spin order.

At weaker U (above Uc(δ)) or larger doping, the charge order is weak. In these states

the hole density is not vanishingly small at the node of spin order; in fact the hole density

remains substantial throughout space and only shows a slow-varying wave with modest

peaks at the nodes of the modulated AFM. We have referred to such states as SDWs

(which can have charge order). As the interaction strength is increased and the doping is

reduced, the SDW states evolve into stripe states, where the holes become more and more

localized at the nodes. The distinction between the SDW and stripe states is not absolute,

but it is important to emphasize that a modulated AFM order can exist with two different

kinds of behaviors for the holes: mobile and wavelike vs. localized and particle-like [15].

In Fig. 3.12, green squares represent parameters which lead to a ground state with

SDW or stripe order in the TDL, while red circles represent those which do not. Within

Hartree-Fock diagonal stripes are found to be more stable than linear (along x- or y-

direction) stripes at large U [3]; diagonal stripes were also found to be close in energy

with linear stripe state in the doped t-J model [16, 47]. We searched for diagonal stripes

in the Hubbard model in the parameter regime studied here, but did not find them to

be the ground state. (More details are given in the appendix.) Note that results from

an inhomogeneous dynamical mean-field theory (iDMFT) study [48] are in reasonable

agreement with our results.

Based on our results, we show an estimate for the phase boundary as a solid black

line in Fig. 3.12, whose position is not to be taken literally but which is bracketed by the

data points around it.

From the results, we see that the critical interaction strength Uc(δ) increase with the
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doping level δ. Nothing special is seen around the doping value of δ = 1/8. The SDW or

stripe order persists from small doping near half-filling to doping level as large as 1/5.

As discussed in more detail in Sec. 3.3, we did not find phase separation or non-filled

SDW/stripe orders which survived in our finite-size scaling procedure. This of course does

not completely rule out such phases, because of the delicate nature of the different com-

peting states and sensitivity to finite-size and other effects, as well as possible systematic

errors in the calculation. However, it does provide a rather stringent screening of other

possible states, given the high accuracy and extensive nature of these calculations. In the

appendix B, we also investigate the possibility of existence of the diagonal stripe at small

δ and large interaction.

Next we will show some examples of parameter scans of phase diagram. In Fig. 3.13,

we show how the spin and charge orders evolve as a function of U at fixed doping δ = 1/12.

The system is a cylinder with size 8 × 48. A modulated AFM order develops only when

U ≥ 4. Similarly, in Fig. 3.14, we show the results of a scan at fixed interaction strength

U = 6, in systems of size Lx × 6, with Lx from 32 to 48 to accommodate 1/4, 1/8 1/10,

and 1/12 doping. As can be seen, no order is present until δ ≤ 1/8.

Other than the stripe and spin density wave study of the pure Hubbard model, we

also investigate the double occupancy, and the conductivity of Hubbard model. These

results are included in the appendix C and D.

The computing is mostly carried out at the Flatiron Institute, with message passing

interface (MPI). The estimated computational time various by several factors, the number

of walkers, the system size, etc... The largest system we have conducted in the stripe

study is 72× 12, with 1/12doping and U = 4t. The running time for each iteration is 32

hours, with 1024 cores and 2 walkers distributed on each core. Usually, It takes less than

30 minutes to run a small system like 16× 4, and several hours to run a medium system

like 32× 8
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FIG. 3.12: Phase diagram of spin and charge orders in the pure Hubbard model. The black
curve gives a rough estimation of the phase boundary based on the green squares representing
parameters with modulated AFM spin and charge order and red cycles representing those
without. The black dashed curve is the phase boundary from unrestricted Hartree-Fock [3] for
reference. A (U = 2, δ = 1/12) and B (U = 4, δ = 1/12) denote the two examples shown in
Figs. 3.6, 3.7, and 3.8.
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FIG. 3.13: Staggered spin (up) and hole (down) density at 1/12 doping for different U values.
We can find that the stripe order develops only with U ≥ 4.
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FIG. 3.14: taggered spin (up) and hole (down) density at U = 6 for different dopings. We can
find that the stripe order only develops with δ ≤ 1/8.
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CHAPTER 4

Superconductivity pairing order in

Hubbard model with next nearest

hoping

In the previous chapter, we focus mainly on the stripes and spin/charge density waves

of the pure Hubbard model. In this chapter, following the previous study on supercon-

ducting pairing order of the pure Huubard model [33], we further investigate the super-

conducting pairing order of the t′ Hubbard model.

4.1 Computation of the pairing order parameter

The understanding of high-temperature superconductivity in materials, such as the

cuprates, is of highly interest among theoretical condensed matter physicists. Hubbard

model, along with its sister model, the t-J model [49], were argued to be paradigmatic

models for the study of this problem in the early years. Many properties, like charge
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density waves which we studied carefully in the previous chapter, can be mirrored to the

Hubbard model.

The long range order in superconductivity itself is a very delicate property that needs

to be carefully treated. Highly accurate numerical methods are required, and that is why it

is one of the greatest challenges in the modern condensed matter physics. The relationship

between stripes and pairing is more subtle and controversial. Some studies give positive

arguments about its co-existence with a stripes order [31, 50], while others advance counter

arguments [51, 52]. In Mingpu Qin’s paper, the dx2−y2 wave superconducting order is ac-

tually short-ranged at the interaction and doping region related to cuprates[33], regardless

of whether it has spin density wave or not in the thermal dynamic limit [42]. This result

indicates that the pure Hubbard model is not sufficient to describe the superconducting

behavior of electrons, and additional terms (like next nearest hoping) is required.

First, we again introduce the Hamiltonian of the t′ Hubbard model

H = −t
∑
〈i,j〉;σ

ĉ†iσ ĉjσ − t′
∑
〈〈i,j〉〉;σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ − µ
∑
i

n̂iσ (4.1)

where the last term of the equation includes the chemical potential.

Also, as before, we again employ two complementary, state-of-the-art methods, density

matrix renormalization group (DMRG) method and auxiliary field quantum Monte-Carlo

method (AFQMC), to compute the superconducting pairing correlations of the Hubbard

model.

To study the superconducting properties of Hubbard model, we use the pairing order

parameter. The Hamiltonian for the pairing order parameter is defined as

∆i,j = 〈(∆̂ij + ∆̂†ij)/2〉 (4.2)
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Where the 〈〉 means the expectation value and ∆̂ij denotes the pairing order operator on

nearest neighbor sites ij:

∆̂ij =
ĉi↑ĉj↓ − ĉi↓ĉj↑√

2
(4.3)

To include the pairing order parameter, we need to add a superconducting(SC) field

term in Hamiltonian. That is:

Ĥp = −
∑
<i,j>

hijp
∆̂ij + ∆̂†ij

2
(4.4)

In this study, the amplitude of the pairing order field hijp is constant across all the lattice

sites, given by hp, and the sign is positive with the vertical bond (along y direction) and

negative with horizonal bond (along x direction). By this way, we can probe the d-wave

pairing field dx2−y2 .

In AFQMC study, like double occupancy calculation in Appendix C, the supercon-

ducting pairing order is also obtained from the total energy calculation with the Hellmann-

Feynman theorem:

∆(hp) = 〈d(H +Hp)

dhp
〉|ψ0(hp)> =

dE(hp)

dhp
(4.5)

where |ψ0(hp) > represents the ground state of the Hamiltonian Ĥ + Ĥp with pairing field

amplitude hp.

4.1.1 Particle hole transformation

Since c†iσ and ciσ represents the creation and annihilation operators for an electron

with spin σ at the i th lattice, the particle-hole transformation is the following:

ĉ†i↑ → d̂†i↑ (4.6)
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ĉi↑ → d̂i↑ (4.7)

ĉ†i↓ → d̂i↓(−1)i (4.8)

ĉi↓ → d̂†i↓(−1)i (4.9)

After this transformation, the Hamiltonian term in equation 4.1 will be represented

as

H = −t
∑
〈i,j〉

(d̂†i↑d̂j↑+d̂
†
i↓d̂j↓)−t

′
∑
〈〈i,j〉〉

(d̂†i↑d̂j↑−d̂
†
i↓d̂j↓)+U

∑
i

(m̂i↑−m̂i↑m̂i↓)−µ
∑
i

(m̂i↑+1−m̂i↓)

(4.10)

Where m̂iσ = d̂†iσd̂iσ.

Then, the pairing operator ∆ij (∆†ij) in equation 4.4 can be expressed as

∆ij =
(−1)j+1d̂†j↓d̂i↑ − (−1)id̂†i↓d̂j↑√

2
(4.11)

∆†ij =
(−1)j+1d̂†i↑d̂j↓ − (−1)id̂†j↑d̂i↓√

2
(4.12)

Which keeps the “creation” and “annihilation” operator balanced. In this new Hamil-

tonian, the sign of the interaction strength is flipped from positive to negative, which de-

scribe an ”attractive” interaction. Therefore, we can use a 2N × Ne matrix to represent

the Slater-determinants in CP-AFQMC calculation, and each orbital is actually a mixture

of up and down orbitals in the original form. In the spin balanced model (number of up

and down electrons equal, Sz = 0), it can be inferred that Ne = N .
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4.1.2 Twist average boundary condition

The twist average boundary condition (TABC) is more complicated to implement.

For this boundary condition, when a particle wrap around the periodic boundary, it will

also pick up a phase shift θx

ψ(r1 + Lx̂, r2, ...rN) = eiθxψ(r1, r2, ...rN) (4.13)

There are two ways of picking up a phase. One way (type A) is picking up a phase

only when a particle crosses the boundary, and the other way (type B) is to split the phase

over all the lattices evenly. I will express both ways with a 1-D condition. With L lattices

and phase difference θ, we have

c†L+x,σ = eiθc†x,σ(x = 1, 2......N) (4.14)

cL+x,σ = e−iθcx,σ(x = 1, 2......N) (4.15)

In the first way (type A), we have c†x+1,σ = c†x,σ for x in 1 ≤ x ≤ N − 1 and c†x+1,σ =

eiθc†x,σ for x = N , while in the second way, we have c†x+1,σ = ei
θ
L c†x,σ for all xs. The

annihilation operator is treated in a similar way.

The pairing operator in equation 4.11 can be rewritten as

∆̂x,x+1 =
ĉx,↑ĉx+1,↓ − ĉx,↓ĉx+1,↑√

2
(x 6= L) (4.16)

and

∆̂L,1 =
ĉL,↑ĉ1,↓ − ĉL,↓ĉ1,↑√

2
e−iθ (4.17)
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When using the particle hole transformation, we have

d̂L+1,↑ = ĉL+1,↑ = ĉ1,↑e
−iθ = d̂1,↑e

−iθ (4.18)

d̂L+1,↓ = (−1)L+1ĉ†L+1,↓ = (−1)L+1ĉ†1,↓e
iθ = d̂1,↓e

iθ (4.19)

d̂†L+1,↑ = ĉ†L+1,↑ = ĉ†1,↑e
iθ = d̂†1,↑e

iθ (4.20)

d̂†L+1,↓ = (−1)L+1ĉL+1,↓ = (−1)L+1ĉ1,↓e
−iθ = d̂†1,↓e

−iθ (4.21)

In the case of the −U Hubbard model, we shall choose θ↑ = θ and θ↓ = −θ

Now, we can see how the pairing order parameter transforms in the −U Hubbard

model. Consider the equation 4.11 again, we have

∆L,1 =
(−1)L+1+1d̂†L+1,↓d̂L,↑ − (−1)Ld̂†L↓d̂L+1,↑√

2
=

(−1)Ld̂†1,↓d̂L,↑ − (−1)Ld̂†L↓d̂1,↑√
2

e−iθ

(4.22)

and

∆†L,1 =
(−1)Ld̂†L,↑d̂1,↓ − (−1)Ld̂†1,↑d̂L,↓√

2
eiθ (4.23)

Thus, we can use these formula above to conduct the pairing order computation.

In the second way (type B), we use ¯̂c† (¯̂c) rather than ĉ† (ĉ) to represent the creation

(annihilation) operator. We have

¯̂cxσ = ĉxσe
i(x−1) θ

L (2 ≤ x ≤ L+ 1) (4.24)

¯̂c†xσ = ĉ†xσe
−i(x−1) θ

L (2 ≤ x ≤ L+ 1) (4.25)

And at the boundary we require ¯̂cL+1,σ = ¯̂c1,σ and ¯̂c†L+1,σ = ¯̂c†1,σ
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TBC energy per site pairing order per site density
Type A -1.15861112 0.01108939 0.82422077
Type B -1.15861112 0.01108939 0.82422077

TABLE 4.1: benchmark comparison of a non-interacting system using two types of twist bound-
ary conditions, type A (picking up a phase only when particles cross the boundary) and type
B (splitting the phase over all the lattice cites evenly). The system is 20× 4, t′ = −0.2t, with
chemical potential µ = 0.8 and twist angle kx = 1.2994π, ky = 0.6026π. These results shows
two type of boundary conditions are equivalent.

Then the pairing operator equation 4.11 can be written as

∆̂x,x+1 =
¯̂cx,↑e

−i(x−1) θ
L ¯̂cx+1,↓e

−ix θ
L − ¯̂cx,↓e

−i(x−1) θ
L ¯̂cx+1,↑e

−ix θ
L

√
2

=
¯̂cx,↑¯̂cx+1,↓ − ¯̂cx,↓¯̂cx+1,↑√

2
e−i(2x−1) θ

L

(4.26)

Next, we go back to the −U model, and we plug in

¯̂c†x↑ →
¯̂
d†x↑

¯̂cx↑ → ¯̂
dx↑ ¯̂c†x↓ →

¯̂
dx↓(−1)x ¯̂cx↓ → ¯̂

d†x↓(−1)x (4.27)

to obtain

∆x,x+1 =
(−1)x+1 ¯̂

d†x+1,↓
¯̂
dx,↑ − (−1)x

¯̂
d†x,↓

¯̂
dx+1,↑√

2
ei(2x−1) θ

L (4.28)

∆†x,x+1 =
(−1)x+1 ¯̂

d†x,↑
¯̂
dx+1,↓ − (−1)x

¯̂
d†x+1,↑

¯̂
dx,↓√

2
e−i(2x−1) θ

L (4.29)

Above is the twisted version of the one-dimension Hamiltonian with pairing field after

the particle-hole transformation. We can obtain higher dimension Hamiltonian similarly.

In fact, the two ways of distributing the phase are equivalent, which means in exactly

the same model, changing the way of distributing the phase from type A (picking up a

phase only when particle cross the boundary) to type B (splitting the phase over all the

lattices evenly) or from type B to type A will not change any of the observables in the

system. One model example is shown in Table 4.1.
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4.1.3 AFQMC approach with self-consistent constraint

After introducing the particle hole transformation, the AFQMC method can imple-

ment the pairing order with Hamiltonian 4.1 and 4.4. Instead of using back-propagation

to obtain the pairing order parameter directly, we use the Hellman-Feynman theorem, as

discussed in equation 4.5, which leads to much more accurate results.

The traditional way of computing the derivative in equation 4.5 is using finite dif-

ference ∆(hp) = (E(hp − δ) − E(hp + δ))/(2δ) + O(δ2), as done in article [33]. However,

this way requires much more accurate AFQMC calculation, since a very small δ leads to a

diverging uncertainty, and a large δ leads to a finite difference error. To obtain smoother

results, we compute the pairing order using the derivative of the fitted energy curve.

For each hp, we fit the energy curve with quadratic function using four nearby points,

E(hp − (2i − 3)δ)(i = 0, 1, 2, 3), or five nearby points, E(hp − (2i − 4)δ)(i = 0, 1, 2, 3, 4).

The total uncertainty is obtained from the combination of fitting error and QMC errors.

Similar to the independent-particle self-consistent constraint used to obtain spin and

hole density in Chapter 3, we also develop a similar self-consistent procedure for the paring

order parameter calculation.

The trial wave function used in obtaining the ground state of H+Hp(hp) is the ground

state of the non-interacting Hamiltonian with pairing field αhp.

Hnon(αhp) = −t
∑
〈i,j〉

(d†i↑dj↑+d
†
i↓dj↓)−t

′
∑
〈〈i,j〉〉

(d†i↑dj↑−d
†
i↓dj↓)−µ

∑
i

(mi↑+1−mi↓)+Hp(αhp)

(4.30)

where Hp is given by equation 4.4.

In each iteration, µ is constant during all iterations. α is a an extra parameter
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determined by the self-consistent procedure and is determined by minimizing

∆′ =
∑
hp

|∆H(hp)−∆Hnon(αhp)| (4.31)

Thus, the whole self-consistent procedure is the following: First, we set up H and

corresponding non-interacting Hamiltonian Hnon using different µ that target the same

density, and an arbitrary αinit value for Hnon. We obtain the ground state of Hnon(hp, α)

for the trial wave function of each hp energy calculation. Then, we obtain the QMC

energy results, calculating the pairing order using equation 4.5 and find a new α value to

minimize the difference (as equation 4.31 states). We repeat step one using αnew value,

until it converges. Finally, we output the last step for the energy and pairing order result.

The detailed procedure is visualized in Fig. 4.1.

In fact, it turns out that the converged α value is independent of the initial αinit value

chosen. We take an example of a 16 × 4 cylinder with U = 8, t′ = −0.2t and δ = 1/4

to illustrate our procedure and accuracy with DMRG. In order to target the 1/4 doping,

a fixed value of chemical potential µ = 0.8 is used in both the DMRG and AFQMC

calculations. The results for the pairing order parameter ∆ are shown in Fig. 4.2.

Besides, we can see the perfect agreement of pairing order with DMRG in Fig. 4.2.

The energy per site obtained by QMC with hp = 0.156 is −1.5071(1) in both cases, while

the corresponding DMRG result is −1.5017. With only 0.36% of discrepancy, we can see

that AFQMC has good agreement with DMRG.

With a robust procedure and good agreement with DMRG in the example case, we

can move on to investigate systems with both t′ = 0.2 and t′ = −0.2 with various dopings.
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FIG. 4.1: The detailed self-consistent iteration procedure for calculating pairing order for each
hp.
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FIG. 4.2: The example of 16 × 4 cylinder with U = 8, t′ = −0.2t and δ = 1/4 to illustrate
our procedure and accuracy with DMRG. Top: the iteration procedure using initial α = 0.1.
Bottom: iteration procedure using initial α = 1.0. It turns out that final pairing order and
α value is independent of the initial value chosen, and have excellent agreement with DMRG
calculation.
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4.2 Benchmark study with AFQMC and DMRG

Previously we introduce a background description of the pairing order parameter

calculation and our most advanced self-consistent iteration procedure. In this section, we

will use our procedure to investigate the superconducting pairing correlation for various

dopings with both t′ = 0.2t and t′ = −0.2t. As we discussed in the previous chapter,

systematic error is introduced in the AFQMC calculation due to treating the Fermi sign

problem approximately. Therefore, comparisons with DMRG method on width-4 system

is essential. In the previous section, we obtained an excellent agreement with DMRG for

t′ = −0.2t with 1/4 doping system, but more benchmark comparisons are needed. All

results, from now on, are with interaction strength U = 8t.

The overall comparison is promising, though there are some disagreement between

the two methods in a few cases. However these discrepancies can all be explained by

competition between the ground state and the nearest excited states, and these have little

effect on the finite size scaling extrapolation.

4.2.1 t’=-0.2t

In Fig. 4.2, we see the excellent agreement for 1/4 doping, but a discrepancy appear

with DMRG increases at 1/5 doping, 20× 4 lattice. The results are shown in Fig.4.3

This discrepancy can be explained by the intertwined states near the ground state.

In the DMRG calculation, there is a small kink between the pairing field hp = 0.12 and

hp = 0.13. This kink can be explained by the competition between two different states.

They have different pairing order parameter but very close energies, since in the lower panel

of Fig. 4.3 , no energy kink is observed anywhere including the ”kinked” pairing order

parameter area, and the excited state energy is at most 0.05% higher than the ground state

(at hp = 0). In the AFQMC calculation, we find no order parameter kink, and the paring
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FIG. 4.3: The AFQMC and DMRG energy and pairing order result for 1/5 doping and t′ = −0.2
with PBC. Although the discrepancy between DMRG and QMC is greater than that for 1/4
doping, we find that two states are competing in DMRG, with very close energy (only 0.2%
relative error). In fact, AFQMC is more consistent with the first excited state of DMRG with
hp < 0.12, while AFQMC agrees better with DMRG ground state with hp > 0.13
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order parameter is more consistent with the first excited state of DMRG with pairing field

hp < 0.12 while agrees better with DMRG ground state with pairing field hp > 0.13.

This behavior also happens in 4-width systems with different twist boundary con-

dition. Fig. 4.4 shows the pairing order parameter with pairing field hp = 0.205 with

different twists. Left is the PBC result, and right is anti-PBC result. The figure shows

that the QMC and DMRG ground and first few excited states ranges overlap, or at least

are very close to each other. The twist average order parameter value for this pairing

field is 0.054(3) for DMRG and 0.052(3) for QMC, which means the discrepancies between

DMRG and QMC on each twist bond cancel each other out when using a twist average

value for this system.

Next, we compare the twist average order parameter results for other hp results, and

thus eventually we have twist boundary conditions along both the x and y direction instead

of only y, to further reduce finite size effects. We then do calculations on wider systems,

from 4 legs to 6,8..... up to 16 legs. These results are shown in Fig. 4.5. It turns out

that twist average DMRG on cylindrical 20× 4 systems have excellent overall agreement

with AFQMC, and the twist average value 20 × 4 cylinder system is nearly the same as

systems with both sides periodic, which means a length of 20 is long enough for finite size

scaling. However, the finite size effect on the width of system is crucial, since there is huge

difference between 20× 4 and 20× 16 twist average results.

The stripe order of the ground state for the same doping and the same t′ = −0.2 but

without superconducting pairing field is also studied. As with the previous spin density

wave study, the magnetic pinning fields vp = 0.25 are also added on the shorter side of the

cylinder to break the symmetry. Figure 4.6 shows the comparison. As a result, all figures

with both methods show a stripe pattern, but the wavelength of DMRG and QMC with

PBC is different. It turns out that in QMC, the energy of the stripe state, which is same

as DMRG, is only 0.001 above the energy of the ground state, which thus indicate the the
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FIG. 4.4: The pairing order parameter for each twist value in the y direction with pairing field
hp = 0.205. The twists in the y direction ranges for 0(PBC) to π(Anti-PBC). The red shaded
area is where the first few QMC excited states falls, while black dashed line is the DMRG
first excited state. The figure shows that the QMC and DMRG ground and first few excited
states range overlaps, or at least they are very close to each other. The twist average order
parameter value for this pairing field is 0.054(3) for DMRG and 0.052(3) for QMC, which means
the discrepancies between DMRG and QMC on each twist bond cancel each other out when
using twist average value for this system.
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FIG. 4.5: The twist average order parameter results on different lattice sizes and different
boundary condition, with t′ = −0.2t and 1/5 doping. The twist average DMRG on a cylinder
20×4 system have excellent overall agreement with AFQMC, and the twist average value 20×4
cylinder system is nearly the same as systems with both sides periodic, which means 20 is long
enough for finite size scaling. However, the finite size effect from the width of system is crucial,
since there is huge difference between 20× 4 and 20× 16 twist average results.
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competition between ground state and excited state in the PBC lattice. In the anti-PBC

lattice calculation, the DMRG and QMC results have excellent agreement.

Overall, we have excellent agreement on the pairing order for QMC and DMRG for

1/4 doping. Although we have a noticeable discrepancy between DMRG and QMC in the

PBC lattice with 1/5 doping, for both the spin and superconducting patterns, there is

good evidence that it is a matter of competition between the ground and excited states.

Next we show that this discrepancy has little impact when using finite size scaling with

twist averaged boundary conditions.

4.2.2 t’=0.2t

Past research using DMRG in the t-J model, one of the Hubbard descendants model,

shows that superconductivity may exists with next nearest hoping t′ = 0.2t [53], which

makes further investigation on this t′ important.

The benchmark comparison of this t′ is excellent on the PBC lattice with both 1/5

doping and 1/8 doping, which is shown in Fig. 4.7. However, the finite size effect is

significant in 16 × 4 and 16 × 6 cylinder. With 1/8 doping, it turns out that PBC and

anti-PBC give absolutely different responses with the same pairing field. Both QMC and

DMRG state on the 16 × 4 cylinder, system with anti-PBC have much stronger super-

conducting properties than system with PBC. While, in 16 × 6, system with PBC have

stronger superconducting properties than that with APBC. These results are included in

Fig.4.8

We investigate the fluctuation of the pairing order parameter for different twist angles,

due to the same pairing field, the results will be shown in Fig.4.9. We can see things become

reversal in width 4 and width 6 systems. In width 4 systems, PBC system have stronger

superconducting properties and it goes down quickly as twist angle ky increase, while in 6
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FIG. 4.6: The staggered spin density benchmark comparison of DMRG and QMC results for 1/5
doping with t′ = −0.2t, with PBC(above) and Anti-PBC(below). The magnetic pinning fields
vp = 0.25 are added on both periodic sides of the PBC lattice, and only one side in Anti-PBC
lattice. As a result, all figures with both methods shows stripe pattern, but the wavelength for
DMRG and QMC with PBC are different. It turns out that in QMC, the energy of the stripe
state, which is same as DMRG, is only 0.001 above the energy of the ground state. In APBC
calculation, the DMRG and QMC have excellent agreement.
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FIG. 4.7: The bencmark comparison of DMRG and QMC result for 1/8 doping (upper panel)
and 1/5 doping (lower panel) with t′ = 0.2t, with lattice sizes 16× 4 and 20× 4 and both PBC.
Both methods have good agreement at both doping.
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FIG. 4.8: The benchmark comparison of DMRG and QMC result for 1/8 doping with t′ = 0.2t,
with PBC and Anti-PBC. The upper panel shows the 16× 4 result and the lower panel shows
the 16 × 6 results. In this figure, both DMRG and AFQMC shows stronger superconducting
properties in PBC lattice of 4 legs cylinder, and Anti-PBC lattice in 6 legs cylinder.
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systems, there is a sharp peak at ky = π, which corresponds to anti-PBC system.

On the other hand, the pairing order fluctuation is smaller in 6 legs system, because

the wider system have smaller size effect. This is shown in both figure 4.9 and 4.8, with

both AFQMC and DMRG methods. However, the discrepancy become larger in Anti-PBC

in both 4 and 6 legs system, which means more efforts are needed to further this.

For the stripe study, like t′ = −0.2 study, we also plot the staggered spin density

result of DMRG and QMC, details are shown in Fig.4.10. Both figure shows the excellent

agreement, and the different spin pattern (AFM from PBC and filled stripe from Anti-

PBC) indicates the large finite size effects on the 16 × 4 cylinder. All these results show

the importance and necessity of finite size scaling in our study.

4.3 Finite size scaling of pairing order parameter

After benchmark comparison with DMRG, we now move on to finite size scaling with

AFQMC. Figure 4.5 has already shown that finite size scaling is critical in obtaining the

thermaldynamic limit for the pairing order parameter in response of pairing field, especially

in the shorter y direction. We would continue take this as an example to show our detailed

steps.

In Fig.4.11, we use a system with U = 8, t′ = −0.2t and 1/5 doping as an example to

show the extrapolation result to thermaldynamic limit. First, we calculate twist average

results for the pairing order parameter with respect to the pairing field, with various

lattice sizes from 16 × 4 to 16 × 20. Then, the extrapolation with respect to the inverse

of the system width 1/Ly is performed with same hp, and the resulting pairing order

parameter ∆∞(hp) is shown on the left. Then, in third figure, both linear and quadratic

extrapolation of hp are performed to obtain ∆∞(0), with results 0.016(2) (linear) and

0.015(3) (quadratic). Thanks to our latest advanced algorithm, we have much better
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FIG. 4.9: The benchmark comparison of DMRG and QMC result for 1/8 doping with t′ = 0.2t,
with pairing field strengths hp = 0.021 and hp = 0.134 at each twist value. The upper panel
shows 16 × 4 result and the lower panel shows 16 × 6 results. In this figure, both QMC and
DMRG shows a sharp peak at ky = 0 in the 4 legs cylinder, and ky = π in the 6 legs cylinder.
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FIG. 4.10: The staggered spin density benchmark comparison of DMRG and QMC results for
1/8 doping with t′ = 0.2t, with PBC(above) and Anti-PBC(below). Magnetic pinning fields
vp = 0.25 are added on both periodic sides in both figures. Both figure shows the excellent
agreement between DMRG and AFQMC.
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data quality than previous t′ = 0 calculation. [33]. Most data points are within one

error bar away from the extrapolation in the second and third figures, which both show

the robustness of our extrapolation. These results shows there are good prospects for

superconductivity exists in the Hubbard model with U = 8, t′ = −0.2t and 1/5 doping.

Another example, with positive t′ = 0.2t and 1/8 doping, is shown in Fig .4.12. It

follows the same procedure as above, but gives a different result. The superconducting

pairing order at infinite lattice without pairing field ∆∞(0) is 0.006(3) with linear ex-

trapolation and 0.006(4) with quadratic extrapolation, which is much weaker than the

t′ = −0.2t and 1/5 doping system.

We also conduct simulations with different dopings for both t′ = 0.2t and t′ = −0.2t,

with all the results included in the Fig. 4.13. Overall, the superconductivity pairing

order at t′ = −0.2t is stronger than that at t′ = 0.2t, which seems in contradiction with

the previous DMRG investigation with t-J model [53]. This research, however, has not

concluded, and more efforts is needed to further understand these systems.

4.4 Stripe order and its relationship with supercon-

ductivity in t’ model

In previous studies, superconductivity seems to have a subtle competition and/or co-

existence with stripe order [30, 31, 32, 33]. In the previous chapter, we already showed that

with the sufficient interaction U , stripe order would exists as the form of filled stripes in

the ground state of pure Hubbard model. However, with next nearest hopping, the stripe

pattern may change, and phase separation could occur. Thus, it is necessary to study the

stripe order of both t′ = 0.2t and t′ = −0.2t model.

First, we compute the spin density pattern for t′ = −0.2t and t′ = 0.2 lattice. The
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FIG. 4.11: Finite size scaling of the pairing order parameter with t′ = −0.2t and 1/5 doping.
The top plot shows the twist average results for the pairing order parameter due to the pairing
field in various lattice sizes(cyl represents cylinder boundary condition), and the middle plot
is the linear extrapolation results from the top plot, which is performed with respect to the
inverse of system width 1/Ly. The resulting pairing order parameter ∆∞(hp) is shown on
the left. Then, in the bottom plot, for each hp, both linear and quadratic extrapolation are
performed to obtain ∆∞(0), with results 0.016(2) and 0.015(3). These results shows significant
evidence for superconductivity exists in the Hubbard U = 8, t′ = −0.2t and 1/5 doping system.
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FIG. 4.12: Finite size scaling of the pairing order parameter with t′ = −0.2t and 1/5 doping.
The top plot shows the twist average results for the pairing order parameter due to the pairing
field in various lattice sizes(cyl represents cylinder boundary condition), and the middle plot
is the linear extrapolation results from the top plot, which is performed with respect to the
inverse of system width 1/Ly. The resulting pairing order parameter ∆∞(hp) is shown on
the left. Then, in the bottom plot, for each hp, both linear and quadratic extrapolation are
performed to obtain ∆∞(0), with results 0.006(4) and 0.006(3). These results shows little
superconducting pairing order in Hubbard U = 8, t′ = 0.2t and 1/8 doping system.

65



1/3 1/5 1/8 0 1/8 1/5 1/4 1/3
(doping)

0.01

0.02

0.03

pa
iri

ng
 o

rd
er

 p
ar

am
et

er

t ′ = 0.2
t ′ = + 0.2

FIG. 4.13: The pairing order parameter ∆∞(0) for each doping with t′ = 0.2t and t′−0.2t. The
plot indicates that at t′ = −0.2t, superconductivity pairing is stronger than that of t′ = 0.2t.
Besides, both t′ = 0.2t and t′ − 0.2t see vanishing superconducting order with the doping
increases above 1/4 doping.
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FIG. 4.14: Staggered spin density of 1/5 doping and t′ = −0.2t with various lattice sizes, from
20× 6 to 40× 8. We can see spin density wave exists, which the wavelength 1.5/h is different
from pure Hubbard model with 2/h
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Fig.4.14 shows the staggered spin density of 1/5 doping and t′ = −0.2t with various

lattice sizes, from 20 × 6 to 40 × 8. In these figures, we can see that the modulated

antiferromagnetic(AFM) order persists with t′ = −0.2t and U = 8, from 16× 6 to 32× 8,

similar to our previous investigation at pure Hubbard model. However, the wavelength of

the spin density wave is about 1.5/h, which is different from that of pure Hubbard model.

Similar spin density wave with wavelength about 1.5/h can be also observed for a lattice

with t′ = −0.2t with 1/8 doping.
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FIG. 4.15: Staggered spin density for 1/8 doping and t′ = −0.2t with various lattice sizes, from
16 × 6 to 32 × 8. We can see spin density wave exists, but the wavelength is 1.5/h, which is
different from pure Hubbard model with 2/h

Notably, for t′ = 0.2t, we cannot see the stable stripe pattern. The 16×4 lattice shows

AFM order with PBC, but with anti-PBC, the ground state sees clearly filled stripes. With

wider systems, from 16× 6 to 32× 8, we also observe different ground state spin patterns.

These results are shown in Fig. 4.16.
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FIG. 4.16: Staggered spin density for 1/8 doping and t′ = 0.2 with various lattice sizes, from
16× 6 to 32× 8. No clear common spin pattern is observed in these lattice sizes
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In order to observe the behavior of the stripe/SDW order with the superconductivity

pairing order, we add magnetic pinning fields on all lattices to further strengthen the

amplitude of the spin density to see the variation of pairing order. We take 16×4 cylinder

with 1/8 doping and t′ = 0.2t as an example, since Fig. 4.10 QMC results shows excellent

agreement with DMRG. We add a AFM type spin pinning field in lattice with PBC,

and filled stripe type pinning to a lattice with anti-PBC (consistent with their ground

state spin type). The results are shown in Fig. 4.17. After the pinning fields added,

the QMC agreement with DMRG becomes better, but the relationship of the stripe order

with superconducting pairing order is unclear, since in the PBC lattice, the growth of the

spin density pattern contributes to the growth of the pairing order. On the contrary, in

Anti-PBC lattice, the growth of the spin density results in the pairing order to decrease.

In all, we can see that the existence of next nearest hopping changes the ground state

spin and stripe pattern of Hubbard model. The ground state is no longer a 2/h spin

density wave or filled stripes. For t′ = −0.2t the wavelength of the stripe pattern changes,

and for t′ = 0.2t the stripe pattern vanishes. The relationship of the stripe order with the

superconducting pairing order is intriguing and requiring further study to understand how

they relate to each other.

The computing is mostly carried out at the Flatiron Institute, with message passing

interface (MPI). The estimated computational time various by several factors, the number

of walkers, the system size, etc... The largest system we have conducted in the supercon-

ducting study is 20× 16, with 1/5 doping and U = 8t. The running time for each k-point

is 16 hours, with 40 walkers distributed on each core and 256 cores for each k-point, and 10

k-points for each system. Usually, given the computational resources we have, it usually

takes less than 12 hours to fully conduct a small system (like 16× 4) run, and about one

or two weeks to fully run a large system like 20× 16.
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FIG. 4.17: The superconducting pairing order for PBC (upper) and APBC (lower) in 16 ×
4 cylinder with 1/8 doping and t′ = 0.2. The red solid curve is the original QMC result
while orange dashed lines represents the results with spin-like pinning fields similar with the
ground state spin pattern added on all of the lattices. The results shows better agreement with
DMRG after the spin-like pinning fields added, but the relationship of the stripe order with the
superconducting pairing order is unclear, since in the PBC lattice, the growth of spin density
pattern contributes to the growth of pairing order, while in the Anti-PBC lattice, the growth
of spin density waves occurs as the pairing order decreasing.
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CHAPTER 5

Summary and perspective

In this thesis, our main focus is on the stripes, spin/charge density waves and super-

conducting pairing order in the 2D doped repulsive Hubbard model, which have already

drawn great interests in the realm of condensed matter physics. We use one of the most

accurate methods - auxiliary field quantum monte-carlo (AFQMC) method, with our most

recent advanced algorithm. Excellent benchmark comparison with density matrix renor-

malization group (DMRG) makes our results convincing.

We systemically study the stripes and spin density waves in the doped 2D Hubbard

model with only nearest hoping. Modulated SDW or stripe orders are found to exists for

sufficient large interaction U with doping δ up to 1/5. The period of the SDW(CDW) is

found to be 2/δ (1/δ ). After carefully performing finite size scaling to large simulation

cells sizes, we mapped out the ground state phase diagram as a function of U and δ.

Apart from the stripe order, we also investigate double occupancy and effective hoping

of the Hubbard model. We measure the conductivity of the Hubbard model by calculating

the charge gap and quantum metric tensor. Both the charge gap and quantum metric

tensor results indicate that the Hubbard model is conducting in the paramagnetic state
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(without stripe order). However, the quantum metric tensor calculation cannot determine

whether this model is conductive or not.

Following the precedent study of “pure” Hubbard model [33], we further investigate

the superconducting pairing correlation of the Hubbard model with next nearest hoping,

as well as the stripe order. Our algorithmic advances include a more robust procedure for

self-consistent constraints in AFQMC and twist average boundary conditions which can

handle finite size effects more effectively. As a result, we see much stronger superconducting

pairing order in t′ = −0.2t than that of t′ = 0.2t, though more study is still needed to

consolidate this result. We compute the superconducting order parameter in the ground

state for a number of parameter sets (t′, δ) and discuss its interplay with magnetic and

charge orders.

In the future, we will further study the Hubbard model with next nearest hoping.

And, hopefully, obtain the stripe ground state phase diagram as a function of U , δ and

t′. For investigating superconducting, we will also study models with t′ other than -0.2

and 0.2. More advanced techniques will also be developed for calculating properties more

precisely.
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APPENDIX A

Additional filling of stripes

In the Fig. 3.9, we vary the length of the cylinder (hence also Ne, in order to maintain

the same δ) while keeping the width fixed at 6 and see the staggered spin density became

strongest and fluctuation is minimized at length 24, The corresponding charge order also

forms a regular wave with hole density peaks at the nodal position of the spin order. This

is consistent with the conclusion that SDW wavelength 2 δ and CDW wavelength 1 δ.

Below are the Additional results shown in Fig.A.1, Fig.A.2 and Fig.A.3. These results

correspond to h = 1/10 doping and U = 5, h = 1/8 doping and U = 6, and h = 1/6 doping

and U = 8.
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FIG. A.1: Staggered spin (top panel) and hole (bottom) densities at δ = 1/10 doping and
U = 5, in width-6 cylinders as the length Lx is varied. Results are omitted at the left edge
(ix = 1), where the pinning field is applied. When Lx is commensurate with the expected
wavelengths for spin and charge orders (1/δ and 2/δ), the spin and charge density waves are
least frustrated and have the largest amplitude.
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FIG. A.2: Staggered spin (top panel) and hole (bottom) densities at δ = 1/8 doping and U = 6,
in width-6 cylinders as the length Lx is varied. Results are omitted at the left edge (ix = 1),
where the pinning field is applied. When Lx is commensurate with the expected wavelengths
for spin and charge orders (1/δ and 2/δ), the spin and charge density waves are least frustrated
and have the largest amplitude.
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FIG. A.3: Staggered spin (top panel) and hole (bottom) densities at δ = 1/6 doping and U = 8,
in width-6 cylinders as the length Lx is varied. Results are omitted at the left edge (ix = 1),
where the pinning field is applied. When Lx is commensurate with the expected wavelengths
for spin and charge orders (1/δ and 2/δ), the spin and charge density waves are least frustrated
and have the largest amplitude.
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APPENDIX B

Diagonal vs. linear stripes

In Hartree-Fock calculations, stripe states in the diagonal direction were observed at

small doping and large U [3]. Diagonal stripe states were also found to be close in energy

with linear stripe state in the doped t-J model [16, 47]. In Table. B, we list the comparison

of energy for linear stripe and diagonal stripe state at U = 12 for 1/16, 1/24, and 1/32

dopings. The energies are calculated with TABC to minimize the finite size effect [45].

As we can see in Table. B, in our calculations the linear stripe order always has a lower

energy than the diagonal stripe for doping as low as δ = 1/32.
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doping 1/16 1/24 1/32
lattice 32× 8 48× 6 64× 6

linear stripe -0.5095(1) -0.4611(1) -0.4371(2)
diagonal stripe -0.5076(1) -0.4565(1) -0.4362(1)

TABLE B.1: Energy comparison for linear and diagonal stripe states at U = 12. We can see
linear stripe state always has lower energy.
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APPENDIX C

Double occupancy and effective

doping of model

The double occupancy of Hubbard model D = 〈
∑

i ni↑ni↓〉/N measure the overall

probabilities of two electrons of opposite doping occupy the same lattice. Since the in-

teraction U describe the punishment given when two electron come together, it is very

natural to conclude that double occupancy will decrease as U increases. Also, when the

doping increases, the electrons have more freedom, which will lower the probability of two

electrons coming together. Thus, it is also natural to refer that double occupancy will

decrease with doping.

However, is there any quantitative relation between U and doping? What we are

interested in the most is not any finite lattice, but thermodynamic limit. Instead of using

the extrapolation of various sizes of the lattices, which is very time consuming, we use

twist average boundary condition of a single large lattice. We also use Hellman-Feynman

theorem to obtain the double occupancy from energies rather than back propagation, which

has much larger errorbar.
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Given the Hamiltonian of Hubbard model in equtaion (1.1), we obtain the double

occupancy from the total energy calculations:

D(U) ≡ 〈dH
dU
〉 =

dE(U)

dU
(C.1)

In this method, we can avoid using back-propagation, which causes greater system

error and fluctuations. The higher accurate results is obtained by the derivative of energy.

To compute the derivative of energy, we use the following equation, which δ is chosen to

be sufficiently small to ensure the error is smaller than statistical error.

dE(U)

dU
=

9

8δ
(E(U + δ)− E(U − δ) + E(U − 2δ) + E(U + 2δ)) +O(δ4) (C.2)

This method is also used in the computation of pairing order in Chapter 5.

First, we would like to prove the correctness of this method and our AFQMC accuracy,

the Fig.C.1 shows the comparison of double occupancy of Hubbard model at half-filling,

between AFQMC and Metropolis. In half-filling case, due to the particle hole symmetry,

the metropolis works and can get highly accurate results without any system error, since

the metropolis does not set any constraint in path.

The double occupancy with increased U and different doping is shown in Fig.C.2

We also show the effective hoping with respect to doping and U, which the effective

hoping teff is defined as

teff
t

=
〈K〉U
〈K〉U=0

=
E(U)− UdE(U)/dU

E(0)
(C.3)

The effective hoping result is shown in Fig.C.3

Below is the detailed result of Fig.C.2, the table is to be filled later

81



1 2 3 4 5 6 7 8
U

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

do
ub

le
 o

cc
up

an
cy

Metropolics
AFQMC

FIG. C.1: The comparison of double occupancy of Hubbard model at half-filling, between
AFQMC and Metropolis, which can get results without system error since t does not constraint
the path. The results the highly accuracy of double occupancy calculation.
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FIG. C.2: Double occupancy of pure Hubbard model with respect to U in different doping.
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FIG. C.3: Effetive hoping of pure Hubbard model with respect to U in different doping.
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doping 0 1/12 1/8 1/6 1/5 1/4
U=0.0 0.2500 0.2101 0.1914 0.1736 0.1600 0.1406
U=0.4 0.2397(1) 0.2003(1) 0.1819(1) 0.1645(1) 0.1513(1) 0.1324(1)
U=0.8 0.2291(2) 0.1905(1) 0.1724(1) 0.1556(1) 0.1427(1) 0.1245(0)
U=1.2 0.2179(4) 0.1806(1) 0.163(1) 0.1466(1) 0.1342(1) 0.1167(0)
U=1.6 0.2054(6) 0.1704(1) 0.1534(1) 0.1378(1) 0.1258(1) 0.1090(1)
U=2.0 0.1921(5) 0.1599(0) 0.1436(1) 0.1288(1) 0.1174(1) 0.1016(1)
U=2.4 0.1780(4) 0.1493(1) 0.1339(1) 0.1198(1) 0.1091(1) 0.0942(1)
U=2.8 0.1643(3) 0.1385(1) 0.1241(1) 0.1109(2) 0.1009(2) 0.0871(1)
U=3.2 0.1503(3) 0.1280(2) 0.1146(1) 0.1023(2) 0.0929(2) 0.0801(1)
U=3.6 0.1382(4) 0.1177(2) 0.1054(2) 0.0939(2) 0.0854(2) 0.0737(1)
U=4.0 0.1260(5) 0.1081(2) 0.0968(2) 0.0862(2) 0.0783(2) 0.0675(2)
U=4.4 0.1156(6) 0.0991(3) 0.0885(2) 0.0790(3) 0.0718(2) 0.0619(2)
U=4.8 0.1055(5) 0.0904(4) 0.0812(2) 0.0724(3) 0.0656(2) 0.0568(2)
U=5.2 0.0969(5) 0.0831(4) 0.0744(3) 0.0663(3) 0.0604(2) 0.0521(2)
U=5.6 0.0882(5) 0.0761(5) 0.0682(3) 0.0611(3) 0.0553(2) 0.0480(2)
U=6.0 0.0805(7) 0.0698(5) 0.0630(3) 0.0562(3) 0.0510(2) 0.0441(2)
U=6.4 0.0750(7) 0.0643(5) 0.0577(3) 0.0518(3) 0.0471(2) 0.0408(2)
U=6.8 0.0680(6) 0.0594(5) 0.0534(3) 0.0480(3) 0.0435(3) 0.0378(2)
U=7.2 0.0637(6) 0.0547(6) 0.0492(3) 0.0443(3) 0.0404(2) 0.0350(2)
U=7.6 0.0582(6) 0.0504(6) 0.0459(4) 0.0411(3) 0.0376(3) 0.0327(2)
U=8.0 0.0537(7) 0.0472(6) 0.0426(4) 0.0384(3) 0.0349(3) 0.0303(2)

TABLE C.1: Detailed double occupancy result in Fig.C.2
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APPENDIX D

Conductivity of model

Apart from the double occupancy of Hubbard model, it is also crucial to decide

the conductivity of the Hubbard model. Is the positive U pure Hubbard conductor or

insulator? There are several ways of determining the conductivity of the model. One way

is to calculate the charge gap, which is defined as

∆ =
1

2
(E(Ne + 1)−E(Ne)) +

1

2
(E(Ne − 1)−E(Ne)) =

E(Ne + 1) + E(Ne − 1)

2
−E(Ne)

(D.1)

Where Ne is number of electrons.

The non-zero charge gap in infinite lattice indicates the insulation of Hubbard model,

especially in the half-filling case [11]. The charge gap in the doped case is as below.

We illustrate several examples, one indicates absence of SDW state in the TDL and

others in with SDW, which is shown in Fig.3.12. The charge gap of these examples is

shown in Fig.D.1. In these examples, we can see the all systems, whether SDW exists or

not, show that charge gap become zero with the increase of system size, which indicates

Hubbard model is conductive regardless of the existence of SDW.
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FIG. D.1: The charge gap of several examples, one (U=3, 1/7 doping) is paramagnetic in the
TDL and others (U=4.5 with 1/10 doping, U=5 with 1/8 doping, U=6 with 1/7 doping, U=7
with 1/6 doping) indicates the existence of SDW in the TDL according to the Fig.refphase-
diagram. All results are with-8 cylinder. With the increase of size, all results, whether have
SDW or not, see the charge gap vanishes to zero. This indicates the conductive state of doped
Hubbard model, regardless the existence of SDW.
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Besides the charge gap calculation, we also have the Quantum metric tensor calcula-

tion to depict the conductivity. In the cylinder boundary condition, we have the location

operator as

r̂ =
N∑
i=1

ri (D.2)

And the quantum metric tensor is defined as

ηαβ = 〈ψ0|r̂αr̂β|ψ0〉 − 〈ψ0|r̂α|ψ0〉〈ψ0|r̂β|ψ0〉 (D.3)

Where α and β is the dimension of the lattice model. In cylinder boundary condition,

we calculate the ηxx since we have open boundary condition in x . More details about

this equation can be found in Raffaele Resta’s paper [54]. In the conductor, we expect

the diverge ηxx value with the increase of the length of cylinder, while in the insulator, we

expect the converge value.

The figure D.2 below is the quantum metric tensor calculation in different systems.

In the systems that SDW is absent in TDL, we observe clearly diverge value of quantum

metric tensor (QM tensor) with the increase of cylinder length (x-direction), which has

strong indication that the doped Hubbard models which are paramagnetic, are conductor.

However, we cannot decide quantitatively if QM tensor value converge when SDW is

present. We cannot decide whether systems are conducting or not based on our present

QM tensor data. However, we can see the QM tensor value is much smaller when U is

increased, and the behavior is more like converging. The probability of SDW state is

insulating, is higher than that of paramagnetic state.

In all, for the paramagnetic state, both charge gap and QM tensor calculation indicates

the conducting state of the Hubbard model in the TDL. However, in the SDW state, the

charge gap indicates that it is conductor, but QM tensor calculation shows the possibility
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FIG. D.2: The quantum metric tensor (QM tensor) of all the systems. The lower panel includes
systems that have SDW in TDL, while systems which is paramagnetic in TDL is included in the
upper panel. We observe clearly diverge QM tensor value in the upper panel, which indicates the
strong conductivity in the paramagnetic model. However, although the value is much smaller,
we cannot decide quantitatively whether the QM tensor value converge in the lower panel. Thus
we cannot decide whether system is conducting or not in our present QM tensor data.
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of insulator, and we cannot safely determine the conductivity in the state which SDW

presents.
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