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ABSTRACT

The machine learning (ML) system has been an indispensable part of the ML
ecosystem in recent years. The rapid growth of ML brings new system challenges
such as the need of handling more large-scale data and computation, the require-
ments for higher execution performance, and lower resource usage, stimulating
the demand for improving ML system. General-purpose system optimization is
widely used but brings limited benefits because ML applications vary in execution
behaviors based on their algorithms, input data, and configurations. It’s di�cult
to perform comprehensive ML system optimizations without application specific
information. Therefore, domain-specific optimization, a method that optimizes
particular types of ML applications based on their unique characteristics, is neces-
sary for advanced ML systems. This dissertation performs domain-specific system
optimizations for three important ML applications: graph-based applications,
SGD-based applications, and Python-based applications.

For SGD-based applications, this dissertation proposes a lossy compression scheme
for application checkpoint constructions (called LC-Checkpoint). LC-Checkpoint
intends to simultaneously maximize the compression rate of checkpoints and
reduce the recovery cost of SGD-based training processes. Extensive experiments
show that LC-Checkpoint achieves a high compression rate with a lower recovery
cost over a state-of-the-art algorithm. For kernel regression applications, this
dissertation designs and implements a parallel software that targets to handle
million-scale datasets. The software is evaluated on two million-scale downstream
applications (i.e., equity return forecasting problem on the US stock dataset, and
image classification problem on the ImageNet dataset) to demonstrate its e�cacy
and e�ciency. For graph-based applications, this dissertation introduces ATMem,
a runtime framework to optimize application data placement on heterogeneous
memory systems. ATMem aims to maximize the fast memory (small-capacity)
utilization by placing only critical data regions that yield the highest perfor-
mance gains on the fast memory. Experimental results show that ATMem
achieves significant speedup over the baseline that places all data on slow memory
(large-capacity) with only placing a minority portion of the data on the fast memory.

The future research direction is to adapt ML algorithms for software systems/ar-
chitectures, deeply bind the design of ML algorithms to the implementation of ML
systems, to achieve optimal solutions for ML applications.
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Chapter 1

Introduction

In recent years, machine learning (ML) has achieved huge success in extensive ar-

eas including computer vision [35, 45, 18], robotics [72, 69, 113], recommendation sys-

tems [106, 68, 117], etc. With the explosive growth of ML, massive datasets, complected

algorithms, and sophisticated theories are introduced to the ML community, which leads

to much higher requirements for ML systems, e.g. the model size increased by five or-

ders of magnitude from 2018 to 2022 [126]. Appropriate optimizations on ML systems

can significantly increase the performance of ML applications and reduce their resource

usage. However, performing general-purpose optimizations is not the panacea because dif-

ferent types of ML applications have various behaviors on the systems. For example, most

deep learning applications are compute-bound but graph-based applications and recom-

mendation systems are memory-bound because of their irregular memory access patterns.

Without the application information, general-purpose system optimization provides lim-

ited benefits to ML applications.

To overcome the limitation of general-purpose optimization, domain-specific optimiza-

tion is applied for improving the ML systems [112, 2]. With applications’ information,

domain-specific optimization optimizes applications based on their unique characteristics,

bridging the gap between ML applications and ML systems.

In this dissertation, we introduce three works that perform domain-specific optimiza-
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tions for ML applications: (1) LC-Checkpoint, a lossy scheme to compress the checkpoints

for SGD-based applications; (2) a parallel software for million-scale kernel principal com-

ponent regression applications; (3) ATMem, a runtime framework to optimize the data

placement on heterogeneous memory systems for graph-based applications.

1.1 Contributions

1.1.1 E�cient Construction of Checkpoints for SGD-based Application

The e�cient construction of checkpoints/snapshots is a critical tool for training and diag-

nosing deep learning models. Producing frequent checkpoints minimizes the wasted time

for restarting failed training processes and serves as breakpoints for debugging deep learn-

ing applications. The current standard practice of constructing checkpoints that saves

the whole model state directly yields unmanageable burdens to file systems, even under

modern distributed platforms [3, 83, 89]. Attempts of storing partial model states are

also examined [108] but these works focus on recovery speed, instead of directly tackling

system issues. Therefore, a method to compress checkpoints is desired for constructing

checkpoints frequently.

We propose a lossy compression scheme for checkpoint constructions (called LC-

Checkpoint). LC-Checkpoint simultaneously maximizes the compression rate and opti-

mizes the recovery speed, under the assumption that SGD is used to train the model.

LC-Checkpoint uses an exponent-based quantization and priority promotion to store the

most crucial information for SGD to recover, and then uses a Hu↵man coding to leverage

the non-uniform distribution of the gradient scales. Our extensive experiments show that

LC-Checkpoint achieves a compression rate up to 28⇥ and recovery speedup up to 5.77⇥

over a state-of-the-art algorithm. (SCAR [108])

3



1.1.2 Parallel Software for Million-scale Exact Kernel Regression

Kernel regressions are nonlinear and interpretable models. It has wide downstream ap-

plications [17, 115, 65, 94, 61, 129, 41, 84, 142, 140] because of its robust theoretical

properties, and is shown to have a close connection to the deep neural networks [60, 96].

Nevertheless, the exact regression of large-scale kernel models using currently available

software has been notoriously di�cult because it is both compute and memory intensive

and it requires extensive tuning of hyperparameters. While in computational science dis-

tributed computing and iterative methods have been a mainstay of large-scale software,

they have not been widely adopted in kernel learning.

In this work, we design and implement a kernel principal component regression soft-

ware that handles training datasets with millions of observations. It leverages existing

high-performance computing (HPC) techniques and develops new ones that address cross-

cutting constraints between HPC and learning algorithms. It integrates three major com-

ponents: (a) a state-of-the-art parallel eigenvalue iterative solver, (b) a block matrix-vector

multiplication routine that employs both multi-threading and distributed memory paral-

lelism and can be performed on-the-fly under limited memory, and (c) a software pipeline

consisting of Python front-ends that control the HPC backbone and the hyperparameter

optimization through a boosting optimizer. We perform feasibility studies by running the

software on the entire ImageNet dataset and a large asset pricing dataset to demonstrate

its e�cacy and e�ciency.

1.1.3 Adaptive Data Placement for Graph Application on HMS

With the active development of new memory devices, such as non-volatile memories and

high-bandwidth memories [63], heterogeneous memory systems (HMS) become a promising

solution for implementing large-scale memory systems with cost, area, and power limita-

tions [62, 63, 64]. Typical HMS consists of a small-capacity high-performance memory and

a large-capacity low-performance memory. Data placement on such systems plays a crit-
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ical role in performance optimization. Existing e↵orts [36, 26, 82, 103, 134, 130, 97, 31]

explored the coarse-grained data placement in applications with dense data structures;

However, these approaches are ine�cient for graph applications due to the irregular access

patterns of graph data structures. The main challenges are: 1) coarse-grained solutions

that perform whole data structure placement may put non-critical data regions (e.g. the

data associated with low-degree vertices in graph processing) on the high performance

memory, su↵ering a waste of scarce resources; 2) the e↵ective data placement for graph

applications mostly depends on the feature of the input data, i.e., the sparsity and the

structure of a graph, and the query at each run.

We propose ATMem—a runtime framework for adaptive granularity data placement

optimization in graph applications. ATMem consists of a lightweight profiler, an analyzer

using a novel m-ary tree-based strategy to identify sampled and estimated critical data

chunks, and a high-bandwidth migration mechanism using a multi-stage multi-threaded

approach. The target of ATMem is to maximize the performance gain per byte, i.e., im-

proving fast memory utilization by only placing critical data regions that yield the highest

performance gains on it. ATMem is evaluated in five applications on two HMS hardware,

including the Intel Optane byte-addressable NVM and MCDRAM. Experimental results

show that ATMem selects 5%-18% data to be placed on high-performance memory and

achieve an average of 1.7⇥-3.4⇥ speedup on NVM-DRAM and 1.2⇥-2.0⇥ speedup on

MCDRAM-DRAM, over the baseline that places all data on the large-capacity memory.

On NVM-DRAM, ATMem achieves performance comparable to a full-DRAM system with

as low as 9%-54% slowdown.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we propose

LC-Checkpoint, a lossy compression scheme to construct checkpoint for training and

diagnosing deep learning models. In Chapter 3, we present a kernel principal compo-

5



nent regression software that handles million-scale datasets. In Chapter 4, we introduce

ATMem—a runtime framework for adaptive granularity data placement optimization in

graph applications. And in Chapter 5, we describe our conclusion and discuss future

research directions.
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Chapter 2

On E�cient Constructions of

Checkpoints

2.1 Introduction

E�cient construction of checkpoints (snapshots) has been increasingly important to deep

learning research. In the arms race of developing more accurate models, researchers utilize

heavier computing infrastructure and develop deeper and larger models. Without proper

infrastructure support, the research process inevitably becomes fragile. For example,

distributed computation fails from time to time, leading to the excessive need to re-

train models [108]. Diagnosing deep learning models also evolves to a complex procedure

partly because that the community has a better understanding of deep learning models

and produces more rules for “debugging” them. Some common errors include gradient

explosion [43], “divide by zero” [58], and dead activation. This calls for the need to

construct “breakpoints,” resembling those used in debugging computer programs, so that

researchers can conveniently jump to the state right before the model “crashes” in the

training.

Producing checkpoints frequently enables failed training process to restart with min-

imum wasted time, and serves as breakpoints for debugging models. So far the standard

7



practice of constructing checkpoints is primitive. The most common practice is to save the

model state directly, counting on that the backend system is su�ciently robust so that

this operation does not become a bottleneck [13]. Attempts of partially storing model

states are also examined [108] but these works usually focus on recovery speed, instead of

directly tackling system issues.

The most pronounced technical challenge here is that deep models are usually large, so

producing frequent checkpoints creates unmanageable burdens to both I/O and storage,

even under modern distributed platforms [3, 83, 89]. Therefore, this leads to our question:

Research Q: How can we compress model checkpoints?

We specifically aim to design a lossy compressing scheme, addressing two criteria

simultaneously. First, like standard compression problems, we need to maximize the com-

pression rate. Second, the scheme needs to be optimized for the downstream application of

training. When a model restarts from our lossy checkpoints, it needs to e�ciently resume

to the most recent state (e.g., restart from a failed process or reach the state preceding

the crash).

Compression of model states is a new technical problem that requires addressing cross-

cutting constraints from information theory, learning algorithm, and system design. We

need to leverage statistical patterns encoded in the model state and factor in how the

model states interact with a learning algorithm (more specifically, stochastic gradient

type algorithms in the deep learning setting). This means neither standard lossy compres-

sion algorithms nor recently developed model compression algorithms [48, 24, 55, 81, 86]

directly work in our setting. Standard lossy compression algorithms aim to minimize re-

construction error but our end goal is to enable a learning algorithm to “quickly recover.”

Model compression techniques aim to transform a (static) model into a simpler one while

ensuring the forecasts are not perturbed much whereas in our setting we need a reliable

coding scheme that functions well throughout the entire dynamic process of learning,

which is an orthogonal and perhaps more challenging goal. In addition, our algorithm

8



must be e�cient and scalable so that it can be executed frequently.

Our solution. To achieve our aims, we focus on a delta-encoding scheme [93], tracking

only the information on the di↵erence between two checkpoints. Under this scheme, we

examine whether we can cut the least useful information (with respect to training) from

the model state, and ensure that the remaining information is amenable for compression.

A perhaps surprising message here is that `2-norm reconstruction error for the “delta”

appears to be an ine↵ective metric for minimizing the recovery time. Instead, our algo-

rithm first removes all the parameters with inconsequential updates, and then quantizes

the remainder information. These strategies resemble those used in distributed training

with the goal of minimizing communication cost [7]. After we obtain the most significant

information for portion of parameter updates, we represent them in suitable format and

apply a Hu↵man coding to further compress these bits, so that the compression rate can

be at the information theoretic limit. This strategy resembles recent techniques for model

compression [48, 133, 99, 143, 111].

The contribution of this work includes:

• Proposal of a fundamental research question on compressing model states for training

recovery.

• Characterization of a family of compression schemes that can e�ciently track the

learning process, based on a stylized model we develop.

• Design of a lossy coding scheme with high-compression rate that integrates both

classical compression techniques and recent ones developed for distributed learning

and model compression.

• Optimization of training systems that minimizes the overhead of producing check-

points on the fly.

Our extensive evaluation demonstrates that by simultaneously leveraging techniques

from distributed training and model compression, our algorithm delivers a solution (called

LC-Checkpoint, LC refers to Lossy Compression) with a compression rate of up to 28x

9



and superior recovering time—achieving up to 5.77⇥ recovery speedup over a state-of-the-

art algorithm (SCAR).

2.2 Our approach

We now describe our compression framework. We introduce a stylized model for the learn-

ing process to facilitate the analysis of the system design trade-o↵. Then we explain our

design principles, determined by both the stylized model and our extensive experiments.

Our model. A “high-dimensional” vector u 2 Rn represents the model state. An

iterative algorithm (e.g., stochastic gradient descent) is used to gradually move the model

state vector u toward a local optimal point u⇤. Let ut be the model state at the t-th round.

In our stylized model, we assume ut performs a (drifted) random walk that converges to

u⇤. Specifically, we use the following process to model ui’s trajectory. Let L = ku0�u⇤k.

ut+1 = u⇤ + ⌘(ut � u⇤) + ✏t, (2.1)

where ⌘ and L jointly model the convergence rate of the algorithm, and ✏t is a random

noise component to reflect the stochastic nature of SGD. When ⌘ is set to be a small

constant, the model characterizes those algorithms that have linear convergence rate.

When ⌘ = (1 � 1/L), this model characterizes those algorithms whose convergence rates

are 1� 1/t [16]. While our model does not captures the detail of many SGD algorithms,

because di↵erent SGD algorithms have di↵erent convergence rate, designing a unifying

model that highlights design trade-o↵s requires us to make simplifying assumptions.

Our design principles. We next describe our design principles.

P1. Minimize irritation to SGD. When we design lossy compression scheme, a portion of

information is inevitably lost, causing performance degradation to a learning algorithm.

We find that we should not simply use `2 reconstruction error to measure degradation

of SGD. This can be best illustrated by the stylized model. For simplicity, let u⇤ = 0,

10



so ut+1 = ut � ((1� ⌘)ut + ✏t). The delta term we want to compress is ((1� ⌘)ut + ✏t).

When we use a lossy compression, it corresponds to adding an additional noise term that is

a function of ut and ✏t. So with the compression scheme, the new learning process becomes

ut+1 = ut� ((1� ⌘)ut + ✏t + f(ut, ✏t)). Observing that as long as IE[f(ut, ✏t) | ut, ✏t] = 0,

and Var(f(ut, ✏t) | ut, ✏t) is dominated (smaller than) by Var(✏t), then the convergence

quality remains unchanged, by standard results from stochastic approximation [76, 74].

There are many constructs that satisfy the expectation and variance constraints. Let

us consider an example of keeping the most significant bit of ((1� ⌘)ut + ✏t) by using

standard randomized rounding [7]. Because of the nature of the rounding algorithm,

the expectation is 0. In addition, because the most significant bit is kept, the informa-

tion loss in rounding will not be greater than k ((1� ⌘)ut + ✏t) k2 = O(std(✏t)) under a

mild assumption that ✏t’s standard deviation also scales proportionally to kutk over time.

Therefore, this rounding scheme does not a↵ect the performance of the training algorithm.

In general, the 1-bit encoding is a special case of quantization. A wide family of quan-

tization schemes will satisfy the expectation and variance constraint. Our algorithm will

explore this trade-o↵.

Note also when we minimize `2 reconstruction error, this corresponds to keeping top-k

heaviest entries in ut+1 � ut.

P2. Maximize redundancies in residual information. Our compression scheme also needs

to ensure the information we keep exhibits large redundancy, as measured by entropy.

This will enable us to use traditional coding schemes such as Hu↵man code to compress

the data at the information theoretic limit.

The interplay between P1 and P2 highlights the unique structure of our compres-

sion problem. This can be best illustrated by a compression scheme called TOPN. This

compression scheme keeps the largest elements in �t. We observe (i) while this scheme

minimizes `2 reconstruction error, it does not have superior recovery time. Many other

compression schemes that possess the aforementioned properties recover equally fast, as

11
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Figure 2.1: LC-Checkpoint overview.

suggested by our stylized model. (ii) It is di�cult to perform compression for the TOPN

scheme. TOPN scheme usually needs to track 10% of all the entries in �t to be e↵ective.

The overhead of tracking the locations of these elements is surprisingly high. This is be-

cause in part that the vector is not su�ciently sparse so sparse matrix representation does

not help.

Our solution, on the other hand, carefully complies P1 and circumvents the need to

track the locations of the entries we keep and thus achieves significantly higher compression

rate.

P3. Do not use random projections and/or sketches. Notably, we discover that sketch-

based randomized projection techniques [132] harm the compression. Roughly speaking,

sketches compress information by projecting multiple numbers into one cell. While this

could speed up query time, it only irritates the gradient descent algorithm in our setting.

Consider a toy example in which ut 2 R2 and the optimal point u⇤ = (0, 10). Let

ut = (5, 5) be the current state so the gradient is along the direction (�1, 1). When

we apply sketches (say CountMin sketches), it collapses the direction (�1, 1) into a single

12



Algorithm 1 LC-CHECKPOINT-BASED SGD
Input: u⇤, u0, ⌘

1: Initialize ũ0 = u0.
2: for t = 1 to T do
3: Update model state: ut = u⇤ + ⌘(ut�1 � u⇤) + ✏

4: Compute distance: �t = ut � ũt�1

5: Quantize �t: �̃t = QUANTIZE(�t)
6: Compress �̃t by Hu↵man coding and save to disk
7: Update checkpoint state: ũt = ũt�1 + �̃t

Output: uT , {�̃t | t 2 [T ]}

point 0. When we make a query, the gradients for both coordinates are incorrect. Sketches

are more useful when the entries in the gradient vector are heterogeneous and queries need

to be answered at “line rate” (e.g., do not slow down the training [59]). Here, when a

model needs to be recovered from a checkpoint, the job is less time-sensitive. Therefore,

even we face heterogeneous parameters, it is more e↵ective to carefully disentangle crucial

information from inconsequential ones than using arbitrary random projections.

2.3 LC-Checkpoint-based SGD

We now describe our solution LC-Checkpoint (LC refers to Lossy Compression). See

Figure 2.1 for a working example and Algorithm 1 for a workflow. For simplicity, we

assume that our system maintains a checkpoint �̃t for each iteration. We slightly abuse �t

to refer to both the compressed data and the real vector it represents. It is straightforward

to downsample our operations to construct a checkpoint every k-iterations. Our solution

consists of two major components.

C1. Approximate tracking by delta-coding. At each step, our system maintains an

approximation ũt of the ground-truth state. We simply set ũt = u0+
P

it �̃i, where u0 is

the initial state of the model. Our system continuously maintains and updates ũt at the

background (line 7 in Algorithm 1). Our major compression task is to properly track the

“delta” between the approximate state and ground-truth. Specifically, the compression

13



task for the t-th iteration is �t = ut � ũt�1. See 3○ in Figure 2.1.

C2. Quantization and Hu↵man coding. This component compresses �t through two

steps, Step 1. Two-stage quantization. We first perform an exponent-based quantization,

and then a priority promotion operation. This operation intelligently drops inconsequen-

tial information between two consecutive states. Step 2. Lossless compression by Hu↵man.

Finally, the quantized distance vector is further compressed using Hu↵man coding.

One can see that to reconstruct the model state at iteration t from the checkpoints,

we may simply compute ut = u0 +
Pt

i=1 �̃t.

In what follows, Section 2.3.1 discusses C2 and Section 2.3.2 discusses additional

system-level optimizations.
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(a) Exponent distribution of �.
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(b) Exponent distribution of �̃ (3-
bit promotion).

Figure 2.2: The distribution of all elements’ exponent parts in the last convolutional
layer of AlexNet. When e equals �127, the element value is 0. The x-axis denotes the
exponent part value, and the y-axis indicates the count of elements with this value.

2.3.1 Quantization and Hu↵man coding

2.3.1.1 Two-stage Quantization

LC-Checkpoint employs a novel two-stage pipeline to quantize �t, which consists of two

main sub-steps: exponent-based quantization and priority promotion.

Exponent-based Quantization. Recall that a floating point v is represented by

v = (�1)s ⇥m⇥ 2e, where s is the sign, m is the mantissa, and e is the exponent. Recall
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that �t = ut � ũt�1 2 Rn is a high-dimensional vector we aim to encode. Our exponent-

based quantization works as follows: first, it partitions entries in � into multiple buckets

according to e and s, i.e., it assigns the elements with identical exponents and signs to

the same bucket. Our crucial observation from extensive experiments is that entries in

ut usually drift towards the same direction, so �t typically have the same sign. Next, our

algorithm represents each bucket by the average of maximum and minimum values in the

bucket.

Figure 2.1 2○ shows an example, in which, �t is quantized into five buckets (marked

with five di↵erent colors). All entries in each bucket are then represented by a unique

value.

Indexing k buckets requires log2 k bits. Because �t consists of n floating points, each

of which uses b (e.g., b 2 {32, 64}) bits, the compression rate is r = nb
n log2 k+kb .

For example, in Figure 2.1, � has 10 elements (i.e., n = 10), each of which is represented

by a single-precision floating point (i.e., b = 32). Thus, the original � has nb, i.e., 320

bits in total. Exponent-based quantization uses 5 buckets (i.e., k = 5). Thus, after

quantization, � has (10 ⇥ log 5 + 5 ⇥ 32 = 190) bits. Therefore, the compressing rate (r)

is 1.68 (i.e., 320/190).

It is critical to control the number of buckets k to achieve an optimal compression

ratio. Fortunately, the exponent-based bucketing can control k  29 for single-precision

floating point elements, and control k  212 for double-precision. 1 Our evaluation results

(Section 2.4.3) confirm that usually k < 25 su�ces. Figure 2.2a plots the distribution of

all elements’ exponent parts in the last convolutional layer of AlexNet.

Priority Promotion. We further improve the compression ratio by limiting the number

of buckets with a priority promotion approach. Our crucial observation is that when �t,i

is excessively close to 0 (i.e., ũi,t�1 is close ui,t), it is more e↵ective to batch the updates

(i.e., do not update the i-th entry of �t until it becomes substantial). Note also this

1Single-precision floating point numbers use 8 bits to store e, and together with a sign bit—that is why
k  29. Similarly, double-precision numbers use 11 bits to store e.
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is conceptually di↵erent from minimizing construction errors. Minimizing construction

errors corresponds to exactly keeping track of the heaviest entries in �t, whereas we both

remove excessively small entries and quantize large entries (as done in the previous step).

Specifically, we propose x-bit priority promotion. It keeps 2x�1 buckets with larger e only

and merges the rest buckets into one with a unique value of 0. In other words, priority

promotion updates w̃i with a larger distance to wi with a higher priority. It limits the

index of buckets within x bits.

Figure 2.1 (Priority Promotion) uses 2-bit priority promotion to control the number of

buckets under 4. It merges the green and purple buckets into a red one that is represented

by a value 0. Indexing these buckets only needs 2 bits. Figure 2.2b gives a real example

of 3-bit priority promotion for the last convolutional layer in AlexNet.

2.3.1.2 Hu↵man Coding

Finally, observing the number of elements in each bucket is highly non-uniform in most

learning processes, we use Hu↵man coding [125] to further compress the bucket. For

example, Figure 2.2a plots the distribution of all elements’ exponent parts in the last

convolutional layer of AlexNet. This distribution shows a skewed behavior,

thus more suitable for Hu↵man coding. Our crucial observation is that priority pro-

motion further aggravates the skewness of this distribution (Figure 2.2b), thus marrying

quantization with Hu↵man coding produces more than “sum of parts” benefits. Our later

evaluation validates it (Section 2.4.3).

2.3.2 System Optimizations

LC-Checkpoint also comprises several novel system-level optimizations as follows:

• Asynchronous Execution: Because only the first step of LC-Checkpoint depends

on the model state, the rest steps can run simultaneously with the next iteration of

SGD computation. This asynchronous (non-blocking) execution significantly reduces

the checkpoint overhead, and mitigates the blocking of model execution.

16



• Checkpoint Merging: To further reduce the recovery time, LC-Checkpoint employs

a helper process to merge multiple checkpoints into super-step ones, periodically. In

case of any system crash, LC-Checkpoint uses these super-step checkpoints for recovery.

• Hu↵man Code Table Caching:

The number of buckets may stay the same from one iteration to another, specifically after

priority promotion. Thus, it is possible to reuse the Hu↵man code table (with only a

simple sort of buckets according to the number of entries in each bucket) among di↵erent

iterations without any rebuilding. LC-Checkpoint comprises a lightweight cache to store

the Hu↵man code table for each buckets count.

2.4 Experiments

This section evaluates LC-Checkpoint on four typical ML applications with three bench-

mark datasets, and compares it with previous e↵orts (SCAR [108] and a TOPN mechanism

as mentioned in Section 2.2) on recovery (rework) cost, compression ratio, and execution

overhead, demonstrating the superiority of LC-Checkpoint.

2.4.1 Methodology

Evaluation Objective: This evaluation has four main objectives: (1) comparing LC-

Checkpoint’ recovery (rework) cost with previous work; (2) evaluating the compression

benefits brought by di↵erent approaches mentioned before; (3) specifically, validating the

e↵ectiveness of priority promotion; (4) confirming that LC-Checkpoint incurs low over-

head by an experiment case study. Our work is mainly compared with two state-of-the-art

e↵orts: SCAR [108] and a TOPN mechanism. SCAR partitions the parameters and up-

dates one partition in each iteration to reduce the checkpoint size. The TOPN mechanism

only updates the parameters with the top-n largest distances to the previous iteration.

The TOPN checkpoint is stored in a compressed sparse row (CSR) format.

ML Applications and Datasets: LC-Checkpoint is evaluated on four typical ML ap-
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(h) MF on Jester.

Figure 2.3: Rework cost comparison among LC-Checkpoint, SCAR, and TOPN. The
x-axis indicates the ratio of the compressed checkpoint size over the full checkpoint size.
The y-axis shows the rework iterations. The error bars indicate 95% confidence intervals,
calculated by repeating each trial 50 times.
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plications: Multinomial Logistic Regression (MLR), LeNet-5 (Lenet) [78], AlexNet [73]

and Matrix Factorization (MF). The first three applications are trained on MNIST [78]

and FashionMNIST [137] datasets. The last one, MF is trained on Jester [42] and

MovieLens10M [51].

Platforms and Evaluation Configurations: Our experiments are conducted on a

multi-core server with an Intel Xeon Gold 6138 Skylake CPU with 40 cores, each running

at 2.0 GHz, and 192 GB DDR4 memory. The training is performed on a Tesla P100 GPU

with 16GB High-bandwidth Memory (HBM).

2.4.2 Recovery/Rework Cost Comparison

This section evaluates the recovery (or rework) cost of LC-Checkpoint, particularly com-

paring it to SCAR [108] and a TOPN mechanism2.

To evaluate their rework costs fairly, we use the same checkpoint size (update size) for

all three methods. Two checkpoint sizes are tested: 5% and 10% of the full checkpoint

size3. These checkpoint sizes can be set directly for SCAR and TOPN. However, LC-

Checkpoint’s size is determined by the data distribution and thus changed dynamically. To

address this issue, LC-Checkpoint employs 2-bit and 3-bit priority promotion that control

its checkpoint size at 5% and 10%. Figure 2.4 reports more details of LC-Checkpoint’s

checkpoint size information.

Figure 2.3 compares the rework cost of three methods, SCAR, TOPN, and LC-

Checkpoint, showing that LC-Checkpoint incurs the lowest rework cost for all ML ap-

plications and datasets among them. For the 5% checkpoint test case, LC-Checkpoint

outperforms SCAR by 2.88⇥-5.77⇥, and TOPN by 2.17⇥-4.06⇥, respectively. With

10% checkpoint size, LC-Checkpoint outperforms SCAR by 1.9⇥-4.82⇥, and outperforms

TOPN by 1.52⇥-2.17⇥, respectively.

In addition, comparing two checkpoint sizes (5% v.s. 10%), LC-Checkpoint results in

2Rework (or recovery) cost is defined as the number of iterations from ũt to ut. All methods share the
same SGD computation cost for each iteration.

3Full checkpoint stores all model parameters after a specific iteration.
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(b) LeNet on MNIST.
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(d) MF on MovieLens.
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(h) MF on Jester.

Figure 2.4: The compression ratio with di↵erent compression methods. The x-axis de-
notes the bits count used in priority promotion, and the y-axis is the ratio of the checkpoint
size after compression over the one before compression. E, P, H denote “exponent-base
quantization”, “priority promotion”, and “Hu↵man coding”, respectively.
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(a) MLR on MNIST.

(b) MLR on FashionMNIST.

Figure 2.5: Evaluation on the priority of each exponent bucket. The x-axis denotes
the id of the exponent bucket that is deleted. The y-axis shows the relative error to the
ground-truth.

more stable rework cost as the checkpoint size decreasing. For example, decreasing the

checkpoint size from 10% to 5%, LC-Checkpoint has a negligible rework cost increase on

LeNet with MNIST (Figure 2.3b) and AlexNet (Figure 2.3c, 2.3g). It does not have any

rework cost change for other cases. In contrast, SCAR and TOPN increase 1.6⇥ rework

cost on average as the checkpoint size changing from 10% to 5%.

2.4.3 LC-Checkpoint Compression E↵ect Breakdown

This section evaluates and analyzes the compression e↵ect of di↵erent approaches men-

tioned before, exponent-base quantization (E), priority promotion (P), and Hu↵man cod-
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ing (H). Figure 2.4 reports the compression ratios with 2-bit and 3-bit priority promotion.

With all compression approaches, the ultimate checkpoint sizes (E+P+H) are all below 5%

with 2-bits, and below 10% with 3-bits over the uncompressed full checkpoint, i.e., the

compression rates are above 20⇥ and 10⇥, respectively.

Exponent-base quantization yields a compression ratio of 85% on average. It proves

that the exponent parts of all parameters in � span across a small range of all values

that can be represented by single precision floating-point. 15% also indicates that the

bucket number k < 25, because the average bucket number can be estimated as k =

2(32⇥15%=4.8), where 32 is the width of single precision floating-point. Priority promotion

brings 9.26% extra compression ratio on average for 2-bit and 6.23% for 3-bit. For most

cases, priority promotion with smaller bits yields more benefits for Hu↵man coding except

MF (Figure 2.4d, 2.4h). This is because MF’s parameters are sparse, thus Hu↵man coding

can reach a su�cient compression ratio without aggressive priority promotion. Across all

models (and datasets), Hu↵man coding brings 2% extra compression ratio with 2-bits

priority promotion, and 1.6% with 3-bits one on average.

2.4.4 The E↵ectiveness of Priority Promotion

This section further discusses the e↵ectiveness of priority promotion. It aims to prove that

priority promotion is able to save the majority of high priority parameters. We prove it

by showing the exponent buckets result in a larger impact on the model state when their

represented unique values are further from 0 (i.e., e is larger).

Assume � is calculated from one state u✓ to another for m iterations. Then, �im is

created by setting the parameters in the i-th exponent bucket to 0. The ground truth is

calculated as Vgt = L(u✓ + �m) where L(x) denotes the loss function. Then the relative

error is calculated as:

E
i
m =

��Vgt � L(u✓ + �
i
m)

��
2

Vgt
(2.2)

Figure 2.5 reports the result of MLR with m = 10n, n 2 [1, 6]. Both datasets (MNIST and
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FashionMNIST) on varied m prove that the elements in the buckets with the top-n largest

distance impact more on the model (denotes as a higher relative error when the bucket

represented value is set to 0).

In addition, it is possible to preserve all important buckets with only a small number

of index bits. For example, using 2-bit priority promotion (4 buckets with the last bucket

storing 0) can easily preserve the most important buckets, and using 3-bit (8 buckets) can

preserve all e↵ective buckets. This result explains why priority promotion can compress

the checkpoint with negligible accuracy loss.

Figure 2.6: MF on MovieLens25M. The x-axis denotes the iteration and the y-axis is the
model’s RMSE (Root Mean Square Error).

2.4.5 A Case Study on LC-Checkpoint’s Overhead

This section evaluates LC-Checkpoint’s execution overhead and overall impact on the

model execution using a case study, i.e., training MF on MovieLens25M [51] dataset. Each

iteration costs 91 seconds on average. LC-Checkpoint employs 3-bit priority promotion,

resulting in a checkpoint size below 10% (of the uncompressed full checkpoint size). Default

approach creates a full checkpoint every 10 iterations. A failure is triggered at the 7-th

iteration.

Figure 2.6 reports the result. LC-Checkpoint only incurs one extra iteration than the

normal execution without any failure to convergence, and saves 6 iterations compared
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to the full checkpoint method, i.e., saving 546 seconds execution time. LC-Checkpoint

introduces only less than 4 seconds (i.e., around 4%) overhead for each iteration, which is

negligible.

2.5 Related Work

Fault-tolerance is a key fundamental support for ML systems. Li et al. [83] propose a

runtime parameter replication approach for recovery. Tensorflow [3] employs periodic

checkpoint to save the model state. Other e↵orts like [50, 107] aim to support strong con-

sistency semantics. In contrast, our work relaxes the consistency guarantee of checkpoint

based on the self-correcting behavior of ML applications. With a set of lossy compres-

sion mechanisms, our work can a↵ord high frequent checkpoints, resulting in low rework

cost and fine-grained model state recovery. Similarly, Qiao et al. [108] also propose a

fault-tolerant solution (SCAR in our evaluation) based on weak consistency by partially

updating parameters. SCAR is potential to store redundant information during check-

pointing according to our evaluation, and our work aims to eliminate such redundancy by

selectively saving the distance between two states.

Model compression has been proposed to reduce model storage space and accelerate

model execution time, simultaneously. Weight pruning and weight quantization are two

important categories of model compression.

Some popular weight pruning techniques closely related to our work are summarized

as follows. Guo et al. [46] present a dynamic network surgery approach with on-the-fly

connection pruning to reducing the network complexity. Dai et al. [27] combine the growth

and the pruning phases in training to generate compact DNN architectures. Han et al. [49]

design Deep Compression, a model compression approach by combining pruning, quanti-

zation, and Hu↵man coding. Mao et al. [90] carefully explore the impact of varied pruning

granularity on model accuracy and propose a coarse-grained weight pruning approach. All

e↵ort above aims to prune model weights without compromising accuracy. Di↵erent from
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them, our work eliminates the redundancy between two checkpoints and reduces the re-

work cost during recovery by designing a reliable coding scheme working throughout the

entire dynamic process of learning.

Weight quantization is also widely used for model compression. BinaryConnect [24]

introduces the binary weight for replacing multiplication by addition and subtraction.

Binarized Neural Networks [25] also use binary weights and activations to accelerate com-

putation. Park et al. [99] propose a clustering method based on weighted entropy for

weight quantization. Leng et al. [81] formulate quantization as an optimization problem

and solve it by ADMM. Our approach also employs quantization to reduce the bits of

parameters by designing a novel exponent-based quantization technique. Moreover, our

approach emphasizes filtering the parameters with a new priority promotion method.

2.6 Summary

This work presents LC-Checkpoint, the first checkpoint scheme based on lossy compres-

sion to achieve the maximal compression rate and e�cient recovery simultaneously. It

employs a novel two-stage quantization method consisting of exponent-based quantization

and priority promotion to identify and store the most critical information for SGD to re-

cover, and leverages Hu↵man coding to further benefit from the non-uniform distribution

of gradient scales. Our evaluation demonstrates that LC-Checkpoint achieves a compres-

sion rate up to 28⇥ and recovery speedup up to 5.77⇥ over the state-of-the-art algorithm

(SCAR).
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Chapter 3

Parallel Software for Million-scale

Exact Kernel Regression

3.1 Introduction

Kernel learning refers to a set of learning algorithms that map the original features to a

possibly infinite dimensional space and use them to learn a model with tractable/convex

objectives. For example, kernel ridge and kernel principal component regression learn a

linear model in the feature map, whereas the kernel support vector machine maximizes

the margins of training data represented by the feature map. Because kernel learning

algorithms usually enjoy sound theoretical properties, they had been extensively used in a

wide range of areas such as (medical) image recognition [17, 115, 65], bioinformatics [94,

61], asset pricing [129], recommendation systems [41, 84], smart cities [142, 140], etc.

Although in recent years some major downstream “users” move to use deep-learning-

based models, applications that require interpretable models and robust reproducibility

(e.g., di↵erent “random seeds” will not result in models with di↵erent performance) still

heavily utilize kernel techniques. In addition, it was discovered recently that a neural net

with infinite width is equivalent to kernel regression using the so-called neural tangent

kernel (NTK) [60, 96]. Therefore, kernel techniques remain relevant for both specialized
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applications and a better understanding of deep learning.

This work presents the design and implementation of a software package that solves

large-scale kernel principal component regressions (KPCR). Kernel principal regression

and kernel ridge regression (KRR) are the two most widely used linear kernel models

and they often deliver similar performance [30]. We choose KPCR over KRR because

the former is more interpretable, especially when the dimension of the kept kernel map

is small but the software and techniques developed here can be easily extended to KRR,

which would require only a switch to a linear solver instead of an eigensolver.

Scaling up KPCR has been challenging for two reasons: (a) most software uses dense

eigenvalue solvers, requiring O(N3) running time and O(N2) space, whereN is the number

of observations (samples); (b) parallelization, when o↵ered, is typically performed across

di↵erent problem instances rather than to allow for larger problem sizes. However, there

is strong interest in techniques and software that handle datasets with a million or more

samples, which is at least an order of magnitude larger than what o↵-the-shelf packages like

scikit-learn are capable of. Such datasets are both conceptually and practically important.

First, many applications in finance, medicine, and vision have benchmarks with 500K to 3

million samples [136, 135]. For example, the (original) ImageNet has 1.2 million images [29]

which, to our knowledge, cannot be studied with current KRR/KPCR solvers. Second,

recent investigation on deep learning demands a scalable kernel learning solver to better

understand approximation error between NTK and di↵erent deep artechiture [96, 6]. To

address this scaling problem, a significant stream of research has focused on reducing the

time complexity of the kernel matrix through approximations [139, 32, 131, 110, 141].

The design of our software tool is independent of how the user provides the matrix-vector

multiplication and therefore it allows for use of kernel approximations. In this work,

however, we address the exact (non-approximated) kernel matrix as it is more general,

more computationally challenging, and still needed by practitioners as it obviates the

need to bound another source of error.

A software package that scales up the currently feasible problem size by more than an

27



order of magnitude must leverage multiple existing technologies. For example, iterative

methods for eigenvalues or linear systems can and have been used to bring the complexity

down to O(N2) [128] but without distributed computing, the target problem sizes would

still be infeasible. In addition, the software should employ techniques that build and apply

the kernel matrix e�ciently, include hyperparameter optimization in the pipeline, and the

eigensolver performance should be tuned for KPCR.

Our solution consists of the following components: (i) the use of a state-of-the-art

distributed-memory eigenvalue iterative solver that computes k selected eigenpairs in

O(kN2), (ii) the development of high performance computing matrix-vector multiplica-

tion routines that employ both multi-threading and distributed memory parallelism, and,

when needed, can work under limited memory by rebuilding the kernel tile-by-tile on the

fly, (iii) the development of a software pipeline consisting of two interacting Python front-

end drivers, one handling the hyperparameter optimization and the other the regression

on an HPC back-end, ensuring a fault-tolerant execution. The main contribution of the

work is the design of a software tool using novel algorithmic integration rather than the

introduction of new algorithms.

We demonstrate the e�cacy and e�ciency of the software on two million-scale down-

stream applications. First, we apply it on 2 million observations from empirical asset

pricing, a notoriously di�cult ML problem with a low signal-to-noise ratio. The fast

execution of our method allows us to implement a boosted KPCR which demonstrates

superior performance [44]. Second, we run KPCR on the entire Imagenet dataset, which

to our knowledge is the first time a linear kernel model is used to fit Imagenet. We run

this as a feasibility and stress test for our HPC software by computing tens of thousands

of eigenvectors. Although, because of O(N2) complexity, we cannot expect scalability to

sizes beyond O(107), our experiments demonstrate that we can enable the solution of a

variety of important problems with datasets of size O(105 � 107).
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3.2 Preliminaries and related work

Kernel Regression. We consider the problem of fitting a real-valued function using a

total number of N data points {xi, yi}iN , in which xi 2 RF and yi 2 R. Let k(xi,xj)

be a (positive semi-definite) kernel function that intuitively describes (dis)-similarities

between xi and xj . By Mercer’s theorem [114], there exists a feature map �(x) such

that k(xi,xj) = h�(xi),�(xj)i. Kernel regression models aim to find a linear relation

y ⇠ h�,�(x)i. Note that k(·, ·) is part of a model specification and � does not need to be

computed explicitly. In addition, the dimension of �(xi) could be infinite so regularization

is needed. When we add a regularizer of �k�k22, the model becomes kernel ridge regression

(KRR), and when we use a low rank matrix to approximate the Gram matrix K 2 RN⇥N ,

whereKi,j = k(xi, xj), the model becomes kernel principal component regression (KPCR).

It was recently shown that KRR and KPCR are mostly equivalent [30] but the latter often

is considered more interpretable because it has a smaller number of learnable parameters.

Examples of kernel functions include the Gaussian kernel k(xi,xj) = exp(��kxi � xjk2),

inner product kernel k(xi,xj) = hxi,xji, and polynomial kernel k(xi,xj) = (hxi,xji+�)d.

Neural tangent kernels (NTK) are a new family of kernel functions discovered recently that

approximate neural nets at the width limit [60]. Computing NTK usually is more resource

hungry [96].

Kernel regression can also be used to solve classification problems using standard

transformations and is found to be e↵ective [9]. A drawback is that c kernel models need

to be fitted to solve a classification with c classes.

Computational challenges. There are two major challenges.

1. Memory and computation. It takes ⇥(N2) space to store the matrix K. Fitting the

model requires us to solve a large least squares system in the form K̃↵ = y (obtained from

the dual of the MSE cost in �). In KRR, K̃ = K+�I, whereas in KPCR, K̃ is a low-rank

approximation of K. A combination of the two is also possible. The solutions can be

obtained by direct methods e.g., inverting K or K̃, or performing the SVD decomposition
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using the LAPACK library [8]. The cost of any of these computations is O(N3) which

makes it prohibitive for massive datasets.

Iterative methods have been a central tool in large scale scientific computing [10, 12] but

until recently had not received much attention in kernel learning. Based on matrix-vector

multiplication, methods such as Conjugate Gradient can solve the KRR problem iteratively

with complexity O(N2) [128], even for many di↵erent regularization parameters � [38].

The Lanczos method computes k largest eigenpairs to form a low rank approximation

K = Vk⌃kV
T
k with complexity O(kN2). Besides interpretability, the benefit of the low

rank approach is that we can later solve ↵ = Vk⌃
�1
k V

T
k y for many di↵erent y or even

combine it with many di↵erent �.

Recently, some packages for kernel regression have included a sequential version of the

restarted Lanczos method (through the ARPACK software [80]) or the Randomized SVD

method [47]. See for example [40, 100, 19, 4, 77, 91]. However, they cannot address large

scale problems that will not fit into the memory of a single server or that may require a large

number of compute nodes (or GPUs) to reduce execution time. Moreover, the optimization

of the matrix vector multiplication is critical for performance but is typically left to the

user. Other approaches avoid the solution of the entire kernel matrix by randomization,

partition, gradient descent methods, or fast multipole approximations [139, 32, 131, 110,

141] but they need to bound the distance of the obtained solutions from those of the

original problem, and they may still pose great computational demands. Although, our

software tool could be used in this case, we focus on the exact kernel solution.

Our work takes a holistic approach to Kernel regression solvers, optimizing both dis-

tributed matrix vector multiplication for a given kernel and memory constraints, and the

underlying iterative solver for these problems. We employ the use of PRIMME, one of the

state-of-the-art parallel eigensolvers [120]. By adjusting block size, basis size, and other

parameters, PRIMME methods can be tuned to converge nearly optimally and its MPI

implementation can work on distributed memory computers. Other high quality packages

include SLEPc [52] and Anasazi [11], but they are much bigger and less agile, while not
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performing better than PRIMME [120].

2. Hyperparameter search and boosting. In practice, extensive hyperparameter search is

crucial, e.g., finding the optimal � of the Gaussian kernel. Search methods include discrete

grid search, Bayesian optimization, and learning curve based optimization [67]. When we

perform a search, the data is usually split into training and validation (or testing) sets,

in which the training set is used to fit a function with a specific hyperparameter set. The

quality of the fitting is determined by using the validation set to compute a score. Typical

scoring functions include MSE, classification error, and correlation between validation and

predicted outputs. Hereafter, we use T and S to denote quantities related to the training

and validation set, respectively (e.g., KT is the Gram matrix formed from the training set).

Hyperparameter search adds an extra dimension of complexity to the computational cost

of fitting a kernel model (i.e., thousands of models may need to be fitted to find a reliable

hyperparameter). Di↵erent models can be fitted independently in parallel, and this task

based parallelism can be exploited in some packages such as TensorFlow. However, we are

not aware of a software package that combines this with distributed memory, and parallel

tasks, and this is the second thrust of this work. In addition, models fitted from di↵erent

hyperparameters usually extract complementary signals. A boosting method consolidating

predictions from multiple models usually further strengthens forecasting power and is also

frequently used in practice [71].

In the following, we describe our design and implementation of a Machine Learning

software pipeline that integrates hyperparameter optimization with a high performance,

parallel regression solver, addressing the entire stack: kernel generation, matrix-vector,

and eigensolver optimization, and evaluation.

3.3 Driver Workflow

The regression and the automatic machine learning are performed by separate drivers, the

regression and evaluation driver and the hyperparameter optimization driver. Both are
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Figure 3.1: Driver architecture and interaction.

written in Python and interact with each other as shown in Fig. 3.1. The hyperparameter

optimization driver applies Bayesian optimization and boosting to find the best hyperpa-

rameters for the model. It is an iterative method that considers the history of evaluation

scores for past choices of hyperparameters, decides which hyperparameters to evaluate

next, and passes them to the regression and evaluation driver. The regression and eval-

uation driver trains the model for the requested hyperparameters, evaluates their fitness

score, and returns those scores to the hyperparameter optimization driver to continue the

optimization. We can view the hyperparameter optimization driver as a “consumer” of
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the regression and evaluation driver’s results and as an issuer of requests for more results.

The regression and evaluation driver coordinates the work requested by assigning it to

one or more parallel jobs. Decoupling the drivers into two interacting but independent

processes allows for a more flexible, fault tolerant, and scalable design. Under such an

architecture, users can switch between di↵erent hyperparameter optimization algorithms

or di↵erent evaluation methods with little e↵ort.

3.3.1 Hyperparameter optimization driver

The hyperparameter optimization driver is initialized with user-defined configurations

including Bayesian optimization parameters (e.g. hyperparameter search space and con-

vergence criteria), and directory paths for storing results needed by the regression and

evaluation driver. For each hyperparameter optimization iteration, the hyperparameter

optimization driver first identifies the hyperparameters that need to be evaluated with

Bayesian optimization based on existing observations (past evaluation results from regres-

sion and evaluation driver). Then it creates a request file containing the hyperparameters

for which the regression and evaluation driver will compute model solutions and waits for

the results. When the regression and evaluation driver finishes the evaluations and writes

them to disk, the hyperparameter optimization driver locates the result files based on

the request ID, adds the evaluation results to the existing observations with the boosting

method and updates the Bayesian optimization.

The hyperparameter optimization driver only submits new requests when a regression

and evaluation driver is available, as indicated by the existence of a READY file which

contains the process ID of the evaluation driver. After submitting a request, the hyper-

parameter optimization driver resets the status of the regression and evaluation driver by

deleting this file.
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3.3.2 Regression and evaluation driver

The regression and evaluation driver is initialized with the process ID of the hyperparame-

ter optimization driver and the paths to the training and testing data. If the entire kernel

matrix can fit in available memory, the sample distances are computed and saved to disk;

the regression solver will be generating the kernel matrix from the sample distances. Oth-

erwise, and assuming the sample data can fit in the memory of one node, the regression

solver will be performing the matrix-vector operations on the fly by regenerating portions

of the matrix from the sample data. At this point, the regression and evaluation driver

enters the request loop with the hyperparameter optimization driver, indicating that it is

ready to compute a regression model by creating the READY file containing its process

ID.

When ready, the hyperparameter optimization driver responds with a request file,

containing a list of hyperparameters for each regression model that needs to be solved.

For each hyperparameter in the request, the regression and evaluation solver (architecture

seen in Fig. 3.2) computes a model solution for each rank computed by the SVD. It then

computes a fitness score for each model solution. The regression and evaluation driver

saves to disk the model solution with the highest evaluation score and reports the location

of this information back to the hyperparmeter optimization driver in a results file for the

current request. Once the regression and evaluation driver has computed the optimal

model solutions for all requested hyperparameters, it finalizes the results file, creates a

READY file, and awaits a new request from the hyperparmater optimization driver.

3.3.3 Benefits of a two-driver workflow and fault tolerance

It is natural to address a consumer-producer workflow with a design of separate drivers.

The Bayesian optimization function can be changed to di↵erent software in any language

without a↵ecting the code of the numerical solvers and vice versa. For example, Bayesian

optimization can work with partial information and update it as new results arrive. On
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the other hand, the regression and evaluation driver can decide to launch separate parallel

jobs to evaluate di↵erent hyperparameters if the resources are available.

The hyperparameter optimization and regression and evaluation drivers implement

a checkpoint system for fault tolerance. While a driver is waiting, it can periodically

poll the OS with the process ID of the other driver program. If it determines that the

other driver has terminated, it will save its current state and terminate as well. If the

hyperparameter optimization driver has converged, or if some other error prevents it from

continuing, it saves its state, creates a terminator file and terminates itself. The regression

and evaluation driver will detect this file and follow its own shutdown procedure. Any

running regression and evaluation solvers will finalize their results which can be consumed

by the hyperparameter optimization driver when the drivers are restarted at a later time.

During a restart, the regression and evaluation driver will check if there is a request that

was incompletely processed. If it finds an incomplete results file for the last received

request, it will solve the regressions for any outstanding hyperparameters and finalize the

results file before creating the READY file.

3.4 The design of the kernel learning solver

The software architecture we described earlier is generic and can work with a variety

of hyperparameter optimization and regression software, both sequential and parallel.

In this section we describe what makes our package unique; the development of a high

performance, parallel code that solves the regression problem and forms and evaluates

its predictions. To perform at the extreme scale required for large data sets, the code

must support distributed memory parallelism. This is because a single high-end server

(a) does not have the memory to store dense matrix kernels of size more than a million,

and (b) even if the memory is available, the execution time required on one node would

be prohibitive. In addition, the code should support multi-threading on each distributed

node so that many-core or GPU environments are utilized e�ciently.
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Figure 3.2: Regression and evaluation solver.

Our implementation uses the MPI+X paradigm, with heavy use of optimized LAPACK

and BLAS multithreaded libraries. This allows easy transition from many-core to GPU

architectures, especially since our iterative eigensolver PRIMME provides a GPU interface

through MAGMA [123]. For this work, OpenMP optimizations and tuning have been
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performed for the target KNL architecture on the Stampede2 supercomputer at TACC

[119], funded by XSEDE [124]. The code is written to support both single precision and

double precision arithmetic. Mixed precision support is planned for the future.

There are three computational stages. The pre-processing stage is where the training

and testing data is read to create the training and testing kernel matrices. The Truncated

SVD stage uses the eigenvalue package PRIMME to compute a low-rank eigenspace that

su�ciently approximates and regularizes the training kernel. The third stage solves the

regression problems with the low-rank space and evaluates the score of its predictions.

3.4.1 Pre-processing

3.4.1.1 Matrix generated on-the-fly

With large scale data, the discriminating factor is the number of features F . If the number

of features is small (say F  10), the training data, xT , has low memory demands,

O(NF ) numbers, and can remain in the memory of each node. The training kernel

matrix, however, requires storage of O(N2
/p) numbers, where p is the number of nodes

in the parallel program. The matrix is used by the iterative solver in a matrix times a

block of vectors multiplication kernel (hereafter called block matvec) with time complexity

O(2bN2
/p), where b is the size of the block. Therefore, when the number of samples N is

too large to allow for storage of the entire matrix, or to do so we would need an excessive

number of nodes, we can instead keep the training set in memory and recompute the

matrix on the fly at every block matvec. This increases the block matvec complexity to

O(N2
F/p+2bN2

/p) which for F ⌧ b is a negligible increase. With this flexibility, the code

can run in much smaller processor allocations, e.g., in smaller clusters that users may have

available, and achieve higher utilization. Moreover, it allows for multiple hyperparameter

spaces to be explored in parallel on di↵erent partitions of supercomputers.

For this case of on-the-fly generation of K, the pre-processing is straightforward. De-

pending on the file system, all nodes read the training data, or one node reads it to avoid

37



disk contention and broadcasts it to all other nodes.

3.4.1.2 Matrix generated and stored

When the number of features is large (say 104 or 105), regenerating the matrix on the

fly at every iteration becomes prohibitive. In this case the matrix must be created in

the pre-processing stage. We follow the usual distribution, where node j is assigned the

task to generate a set of matrix rows with indices denoted Ij . To compute its local part

of the matrix, node j would need to compute k(xT (Ij),xT ). However, because of its

large size, xT may not be stored in local memory. We perform this in parallel with each

node storing only two sections of the data; its own xT (Ij) and a communicated xT (Im).

Specifically, a pipelined ring communication starts by every node j sending its data block

to node j + 1 and receiving the data block from node j � 1 in a non-blocking fashion. At

the same time it computes its local k(xT (Ij),xT (Ij) part of the matrix. When the new

data block arrives, the node forwards it to j + 1, posts another receive, and computes

k(xT (Ij),xT (I, j� 1). The algorithm continues for p steps, at which point all data blocks

have been seen and recorded. Since communication time O(NF ) is far smaller than

computation time O(N2
F/p), we expect it to be completely overlapped.

There are two additional computational considerations. First, for very large F , the

matrix generation cost is much larger then the time to solve the problem with the eigen-

solver. Thus, it would be useful if many more nodes were used to generate the matrix

than to solve it. However, this would create di↵erent row distributions between the two

stages. Second, the regression driver issues requests for the solution of multiple regression

problems corresponding to di↵erent hyperparameters (often in the order of 100s). For each

hyperparameter, a di↵erent kernel needs to be generated, which becomes computationally

infeasible. One solution would be to transform the Ki,j element of the current hyperpa-

rameter to the matrix element of the new hyperparameter, e.g., for the Gaussian kernel

K
�2
ij = exp(�2/�1 logK

�1
i,j). We have found this to introduce too much floating point error,

especially when storing the kernel in single precision arithmetic. A second alternative is
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the pre-processing step to store a copy of all distances kxT i�xT jk in memory from which

we can compute a kernel for any hyperparameter. This, however, doubles the memory re-

quirements and does not address the problem of di↵erent number of nodes between matrix

generation and eigensolver.

Our approach is to let the pre-processing stage write all the pair-wise distances kxT i�

xT jk2 to a file and not compute the kernel matrix explicitly. A node can then read the file

and broadcast the rows to the all the nodes in a new partition so that they can compute

locally their kernel matrix. The approach has several benefits; (a) it allows di↵erent node

distributions and partitions between pre-processing and solver; (b) does not introduce

extra floating point error in matrix creation; (c) the computation of the matrix from

distances takes less time than a matrix vector multiplication.

3.4.2 Truncated SVD

Applying a high performance iterative eigenvalue solver to compute the Truncated SVD

(TSVD) of the kernel is not a ground breaking idea. Yet, most current ML packages use

either a complete SVD decomposition through LAPACK or, the most advanced ones, have

been using sequential Lanczos or Randomized SVD methods [92]. PRIMME, as one of the

state-of-the-art eigensolvers, has been shown to scale well to massively parallel platforms

and has been used to find eigenpairs of (sparse) matrices of dimension more than a billion

[120]. It is therefore a natural choice to include as the TSVD solver in our package.

Among the several methods available in PRIMME, we choose to work with block

GD+K. This method provides near optimal convergence rate, much faster than random-

ized SVD and at least as fast as LOBPCG, depending on basis size. Because our kernel

matrices are dense, any reduction in the number of iterations translates directly to less

computing time. The second key issue is the implementation of an e�cient and scalable

block matvec. The presence of a block matvec is critical to improve the per-node compu-

tational intensity and to reduce communication latency during matvec. At the same time

if the block is too large convergence of the eigensolver deteriorates. We study the choice
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of block size in section 3.5. Denote the block matvec as KX where X is of size N ⇥ b.

3.4.2.1 Matrix generated on-the-fly

As discussed in the previous paragraph the block sizes that are optimal for our problem

are very small (often much smaller than the number of eigenvalues required). This implies

that the block matvec cannot benefit from state-of-the-art algorithms for matrix-matrix

multiplication [75, 28]. For matrix-vector multiplication, the algorithm found in ScaLA-

PACK [14] uses a 2D cyclic partitioning of the matrix elements and achieves optimal

weak scalability asymptotically. While such a choice of matvec should be provided in the

software tool, it is not su�cient for a couple of reasons.

First, the last step of the 2D algorithm involves a global reduction which cannot be

fully overlapped with computation. This may not a↵ect the asymptotic weak scalability of

the method but for smaller number of processors (a more practical regime for most users)

a fully overlapped communication might give better results. Second, when the matrix is

generated on-the-fly there is additional computation allowing even a simple 1D algorithm

to fully overlap the communication and scale perfectly to larger numbers of processors.

Therefore, we provide the alternative of a 1D approach that overlaps communication with

both generation of matrix elements and their multiplication.

Each node is responsible for about N/p rows of K and stores the corresponding rows

of X. In this case, we have the flexibility to generate the local matrix tile by tile, so that

the tile fits in local memory and its size depends on the performance of SGEMM (the

BLAS sequential matrix-matrix multiplication function).

Based on this 1D row distribution, a simple pipelined algorithm multiplies the parts of

X that have arrived to the node while communicating in a non-blocking fashion the parts

of X that will be needed next. We can perform the ring communication of the blocks

X(Im) while overlapping the computation with only the first tile in the local set of rows.

After the first tile has been computed, X is resident in its entirety on each node, and

the rest of the tiles can be generated and multiplied without communication. With large
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number of features F this is su�cient.

A more scalable approach is to perform the multiplication of the local Ij rows in p

groups of I1, . . . , Ip columns, also through a pipelined ring communication of the block

vectors X(I1), . . . , X(Ip). The benefit is that we can overlap the entire generation of the

matrix section K(Ij , Im) with communication.

It is relatively simple to model the performance of this algorithm, say for single pre-

cision arithmetic. At each step, every processor will eventually generate, regardless of

tile size, a N/p ⇥ N/p section, multiply it with the Nb/p block of vectors, while com-

municating Nb/p words. Generating the section takes O((N/p)2(3F + 15)) operations,

where F is the number of features based on which the distance is calculated and 15 is

an average number of flops required for computing the exponential. Assuming that this

computation can achieve a rate of g0 GFLOPs, the time to do this computation on a node

is O((N/p)2(3F + 15)/g0). Assuming SGEMM achieves a rate of g GFLOPs, the time to

compute the block matvec of this section on a node is O(2(N/p)2b/g). In our experiments

we observed g ⇡ 2g0, so we will use this relation in the model.

At the same time, we send O(bN/p) single precision numbers, or O(32bN/p) bits,

to the next numbered processor and receive an equal amount from the previous one.

Assuming that the network allows this ring communication to proceed without contention

(as is the case on the fat tree topology of the Omni-Path network of Stampede2) then the

communication time required for this step is O(32bN/(pw)), where w Gbps is the network

bandwidth. The ratio of compute time over communication time is then greater than one,

i.e., communication fully overlapped, if

p <
Nw

16g

✓
3F + 15

b
+ 1

◆
. (3.1)

Notice that increasing the block size b beyond the one that achieves peak SGEMM perfor-

mance is reducing the scalability of the algorithm. In fact the optimal block size should

be the smallest b for which communication is fully overlapped. With respect to scalability
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for N = 106, for the worst case where F = 0 and the ratio w/g < 10�3, full overlapping

of communication should be achieved up to 62 nodes.

3.4.2.2 Matrix in memory

For smaller number of nodes, the 1D method above continues to be competitive. For

larger number of processors, a 2D algorithms as the one in ScaLAPACK can be used. The

stored distances can be redistributed to the nodes in any desired distribution, including

the required 2D block cyclical partitioning.

3.4.2.3 Initial guesses across hyperparameters

A significant advantage of PRIMME is that it can use multiple initial guesses to converge

faster to the required eigenspace [120]. Since PRIMME is called repeatedly for a sequence

of hyperparameters, the eigenvectors computed from a previous K
�i can be passed as

initial guesses to the K
�i+1 . The quality of these guesses depends on the closeness of �i

to �i+1. Therefore, hyperparameters should be processed in a sorted order. However, also

the rank ki depends on each �i, with smaller hyperparameters requiring a computation

of much smaller ranks. For this reason, we solve the corresponding eigenproblems such

that larger hyperparameters that require a larger rank k are executed first. Thus, two

successive kernel matrices will have the smallest distance and the computed rank of the

previous matrix will always provide enough initial guesses for the following problem. We

have followed this technique with the Gaussian kernel, where solving the kernels in order

of decreasing � yields between 30-40% speedup.

3.4.2.4 Choosing the rank of TSVD

Choosing the optimal rank k of the eigenspace is a central problem in statistics and

Machine Learning. The role of the eigenspace is to act as a regularizer to the noise inherent

in the data, which is typically unknown. Often, experts would have some idea on a lower

bound of the smallest eigenvalue to be included in the eigenspace, e.g., �k � �. Other
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times, they would relate the �k to the norm of kKk, e.g., � = kKk10�4. PRIMME has an

option for a user provided function that implements any desired stopping criterion [120].

Our software implements the above criteria based on a user provided �. This functionality

also allows us to combine stopping PRIMME with the evaluation of a current low rank

space. If at a certain point during the iteration, k eigenpairs have converged, we can

evaluate them against a set of testing data (see next subsection) and decide whether more

eigenpairs need to be computed. This functionality is currently under development but it

has been provisioned in the design of the software.

3.4.3 Computing predictions and evaluations

Having obtained a low rank approximation of the training kernel KT ⇡ V ⌃V T , we can

solve the linear regression problems ↵ = V ⌃�1
V

T
Y where Y is the single vector of training

responses in regression, while in classification Y has a number of columns equal to the

number of classes. As V and Y are distributed by rows, the V
T
Y involves one global

reduction, while other computations are performed in parallel. The predictions are formed

as a matrix vector multiplication with the testing kernel matrix ypredict = KS↵. The

algorithm for this multiplication depends on the size of KS . If the number of rows of KS

is small, it can be distributed by columns and the matvec performed as a set of inner

products with a global reduction. If the number of rows is large, we can use the same

algorithm as the block matvec with KT .

Usually, the rank yielding the optimal evaluation is not known and therefore we would

like to check the predictions for many or all ranks i = 1, . . . , k. To avoid recomputing

the low rank regression for each i, we can update ↵
(i) from the solution at the lower rank

↵
(i) = ↵

(i�1) + �
�1
i ViV

T
i Y . The computation involves only level-1 BLAS for regression

and level-2 BLAS for classification, as well as one synchronization point, but the time is

constant for any i = 1, . . . , k.

Finally, ypredict needs to be evaluated against the user provided known responses for

the testing data yS . Such responses could be reserved at the start or could be part of
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a cross validation scheme. We currently provide functions that compute the MSE and

correlation of ypredict with yS . For classification we provide a metric that discretizes the

real values in ypredict to identify the class it corresponds to and compares this with the

classes in ys. We plan to also implement the t-statistic and Sharpe metrics. Ultimately the

evaluation function depends on the specific problem and therefore a user-defined function

can be provided to do the evaluation.

3.5 Evaluating performance

3.5.1 Matrix generated on the fly

When the matrix is generated on the fly during each matvec, we have to decide on the size

of the tile and on the block size which determines not only the single node performance

but also the performance of the pipelined matvec algorithm.

Figure 3.3 studies performance trade o↵s on a single KNL node. The top two subplots

show the execution time and the TFLOPs achieved for a variety of block and tile sizes.

Di↵erent blocks are plotted with di↵erent lines, and the block size is annotated at the ends

of the line. The red vertical bars depict the time or TFLOPs of the tile generation, which is

part of the matvec. Clearly, for small block sizes, most of the time is spent generating the

tile, while large block sizes take more time but multiply more vectors and thus amortize

the tile generation. The subplot on the right shows that the tile generation gets better

performance for smaller tile sizes, while the SGEMM performance prefers tile sizes around

512 to 1280. Performance peaks with block size 128. The third subplot reports the matvec

time per block vector multiplied. The best overall performance occurs with tile sizes 768

to 1280 and block sizes 128 and 256 respectively. Given similar matvec times, a smaller

block should be preferred in order to reduce the overall runtime of the eigensolver.

Based on the above, we report timings of the regression and evaluation solver on one

of the data sets of the stock data in Table 3.1. This is large data set of almost 2 million

points, for which 150 eigenvalues are computed. We use a large block size of 150, which
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Figure 3.3: Matvec e�ciency as a function of tile size and block size. The overlayed
numerals indicate the block size, the red bars indicate the overhead of the tile generation.

reduces as eigenvalues converge. We see that matvec takes the vast majority of the time,

but the total execution time is reasonable, allowing the solution of regression problems for

a series of hyperparameters �.

3.5.2 Matrix in memory

For the ImageNet dataset, the number of features (150528) and the size of the matrix

(1281167) make the regeneration of the matrix from the training data prohibitive. There-

fore, we use the methods in the software that distributes the entire matrix over the nodes.

A minimum number of 128 Stampede2 nodes were necessary to store the matrix. For

each new hyperparameter in the optimization, the inter-distances between points are read
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Stage Time
pre-processing Read data once negligible

SVD # sing. values computed 150
Computation # outer iterations 15

# single vector MVs 1304
Total time 204.2 sec
Matvec time 189.1 sec
Tile generation 31.8 sec

Ortho time 1.4 sec
AllReduce time 10.3 sec

Low rank Regress x = Vk⌃
�1
k V

T
k y

regression Predict and evaluate x

and evaluation Total: 36.1 sec

Table 3.1: PRIMME execution statistics on 64 KNL nodes (4352 cores) for one of the
data sets of the stock data with dimension 1996975, with � = 190, which yields a more
di�cult eigenvalue problem, and with (variable) block size 150. The matrix is generated
on the fly with a tile size of 1280. Low rank regression is performed incrementally per
rank.

from disc and the kernel is recomputed. Next, we study the timings for each stage of this

process as shown in Table 3.2.

In the pre-processing stage, we first read the training and testing data and distribute

it over the nodes. Then, we run the pipelined tile generation algorithm to compute the

local part of the matrix, and finally, write the local matrix of each node to the parallel

file system. Clearly, the time is dominated by the generation of the matrix, while the

corresponding communication is completely overlapped. Reading the training data and

writing the resulting matrix tiles takes less than 10% of the pre-processing time. Because

one node reads from disk and redistributes, this I/O time is not scalable as it is not

reduced by using more nodes, but it is a cost that any ML method must occur on this

machine. However, this operation trivially scales on hardware platforms where each node

has a local disk that can hold the desired partition for I/O.

Once the kernel matrix has been generated, our optimization pipeline executes a se-

quence of calls to PRIMME. The cost of the hyperparameter optimization part of the

program is negligible. Using the Gaussian kernel for the ImageNet data set gave the best
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Stage Time
Pre-processing Read and distribute data 1439 sec

Pipelined tile generation 27050 sec
Communication overhead <3 sec

Write matrix tiles to PFS 410 sec
Total: 29305 sec

SVD # sing. values computed 19000
computation # outer iterations 336

# single vector MVs 73863
Read matrix from PFS 404.4 sec
Total PRIMME time 2665.7 sec
Matvec time 1686.9 sec
Ortho time 652.8 sec
AllReduce time 416.8 sec

Low rank Regress Vk⌃
�1
k V

T
k Y and

regression evaluate per rank 9.25 sec
and evaluation (size(Y ,2)=1000)

Table 3.2: PRIMME execution statistics on 128 KNL nodes (8704 cores) for the entire
ImageNet of dimension 1281167, with � = 10�5 and block size = 256. The number of
classes is 1000 so low rank regression solves Y with 1000 columns. This is performed
incrementally per rank. The evaluation was stopped before rank 19000 was reached.

results for hyperparameters � ⇡ 10�5. However, the very small spectral decay of this

kernel required the computation of a very large number of eigenpairs, as shown in Table

3.2. This number of eigenpairs is one of the largest reported in the iterative eigenmethods

literature, and the only one we are aware of that works with a dense matrix of size of more

than a million. For comparison, the EigenExa code is a Petascale dense eigensolver and

was recently reported to have diagonalized the first million size dense matrix on the K su-

percomputer in 3464 seconds using 663,552 cores and achieving 1.7 PFLOPs [56]. Instead,

by using an iterative method we can compute 1.5% of the spectrum in 2666 seconds, on

8704 cores of Stampede 2[119], attaining around 100 TFLOPs for the entire PRIMME

run.

More importantly, we do not expect regression problems to require the computation

of so many eigenvalues. Machine Learning users would want to use a kernel that displays

a fast spectral decay for their problem, requiring just a small number of eigenvalues that
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can be solved far more e�ciently (as in Table 3.1). What the experiment shows, however,

is that our software enables this investigation even in extreme cases in an e�cient and

robust way.

Looking closer at the timings of Table 3.2, we see that for every eigenvalue problem

404.4 seconds are spent reading the distances to create the kernel locally. Although this

is a small part of this problem, it would dominate the execution time for kernels that only

require 10-100 eigenpairs. In that case, it is advisable to increase the number of nodes to

allow a copy of the distances to be stored in memory so that the matrix is recomputed

for every new hyperparameter. The smaller memory footprint of the eigenvectors in that

case will moderate the increase in the number of nodes.

PRIMME timings show the computation of a single eigenproblem to take less than

an hour. This in itself is remarkable. Orthogonalization takes about 25% of the total

execution time. This is expected as its complexity grows as O(k2N) where k is the number

of eigenvalues. To contrast, orthogonalization for our stock data took less than 0.5% of

total time. Randomized methods that avoid orthogonalization have been proposed [95]

but their robust implementation is still under investigation and the potential benefits are

limited. The AllReduce time, which is needed in orthogonalization and in PRIMME inner

products, took a 416.8 seconds which is reasonable considering the 19,000 eigenvectors.

The last stage is the low rank regression and evaluation for each wanted rank. Notice

that because there are 1000 classes in ImageNet, regression has to solve 1000 linear systems

per rank. This is performed with level-2 BLAS and we update for each rank. If all 19000

ranks were needed to be evaluated, this stage would take more than 175000 seconds.

However, by monitoring the accuracy that each rank produces, we can stop the evaluations

early when evaluation scores cease to increase.
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3.6 Model Accuracy

To show the merit of developing software that combines a high performance, large scale

kernel regression optimization with a boosting optimizer, we apply it on the equity return

forecasting problem and validate its e↵ectiveness by comparing the obtained accuracy

with some widely used machine learning baselines. The goal is not to compare computing

performance but to show that making kernel methods computationally feasible adds a

competitive tool to the arsenal of machine learning methods.

Universe 50 1000 3000
Train 35108 700253 2004030
Test 2848 56808 163652

Kernel 4.6GB 1.78TB 14.6TB

Table 3.3: The training/testing datasets sample sizes and estimated kernel memory
footprint for di↵erent universes.

3.6.1 Methodology

In the equity return problem, we are usually interested in stocks within a specific universe

(e.g., SP500 or Russell3000) and denote the number of stocks in the universe as n. We

assume the equity market proceeds in periods. Let yi,t 2 R be the return of stock i at

the t-th period, and yt = (y1,t, . . . , yn,t) 2 Rd. Our goal is to forecast yt based on all

information available up to period t� 1.

In our experiments, we use seven years of equity data from the US market. We use

three consecutive years of data for training and the following three months for testing. For

each test year, we examine three di↵erent universes. Each universe consists of Top N stocks

in trading volume (during the training period) with n 2 {50, 1000, 3000}. Table 3.3 shows

the sample sizes and estimated kernel sizes of di↵erent universes. We retrain the model

for each test year and each universe. We use past 1-day returns and past 3-months dollar

volume as features and next 1-day returns as the response (i.e. each equity market period

consists of one day). All returns are the ”log-transform” of all open-to-open returns. Our
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Universe 50 1000 3000
Year 2015 2016 2017 2018 2015 2016 2017 2018 2015 2016 2017 2018
Lasso 0.0168 0.0471 0.0307 0.0171 0.0161 0.0160 0.0336 0.0136 0.0186 0.0213 0.0133 0.0140
Ridge 0.0104 0.0471 0.0065 0.0301 0.0044 0.0156 0.0301 0.0006 0.0152 0.0152 0.0115 0.0111
GBRT 0.0576 0.0703 0.0476 0.0588 0.0261 0.0180 0.0432 0.0285 0.0194 0.0362 0.0162 0.0135
MLP 0.0311 0.0267 0.0185 0.0356 0.0190 0.0067 0.0179 0.0117 0.0175 0.0309 0.0154 0.0176
LSTM 0.0258 0.0371 0.0236 0.0493 0.0138 0.0037 0.0104 0.0155 0.0162 0.0147 0.0143 0.0152
KPCR 0.0563 0.0602 0.0565 0.0673 0.0344 0.0183 0.0055 0.0253 0.0169 0.0274 0.0175 0.0183

B-KPCR 0.0929 0.0944 0.1035 0.1001 0.0356 0.0249 0.0069 0.0296 0.0231 0.0310 0.0218 0.0220

Table 3.4: A summary of accuracy results for equity return forecasting problem. Results
are presented in testing correlations. Bold numbers denote the highest accuracy for each
year. B-KPCR denotes the KPCR with boosting method.

baselines include linear regression (”Lasso” [122] and ”Ridge” [54]), GBRT [37], MLP [105]

and LSTM [53]. We apply correlation as the metric because it is more suitable than MSE

in our setting.

In addition, the equity return forecasting problem usually has very small signal-to-

noise. For example, a model for predicting the next 1-day return can start profiting when

its r
2 score is only 2 ⇥ 10�4 (i.e., 2 basis points). This means a boosting approach that

aggregates forecasts from multiple models is needed.

3.6.2 Results

Table 3.4 shows the accuracy results of three universes. Firstly, linear regressions perform

worst among benchmarks as expected. Secondly, deep learning models also do not achieve

the best accuracy despite being more powerful than linear models. This is because, com-

pared to other methods, deep learning models have complex structures with many more

hyperparameters to tune (e.g. layer number of the model, the type and parameters of

each layer, etc), while each hyperparameter is expensive to evaluate (re-train the model

and test the accuracy on the dataset). Finally, KPCR consistently outperforms all other

models on most datasets, and the boosting method is able to dramatically improve the

accuracy of KPCR. This highlights the importance of our e�cient KPCR solver because

many KPCR instances with di↵erent hyperparameters need to be solved for the boosting

method.
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3.7 Conclusion

There is an important set of downstream applications that depend on the solution of the

Kernel Principal Component Regression for datasets of size more than a million observa-

tions. Yet, current software packages cannot scale to this size.

In this work, we designed and implemented a software solution that includes a front-

end pipeline that handles the hyperparameter optimization and check-pointing, and a

high performance backbone based on an e�cient block matrix-vector multiplication and

a state-of-the-art eigensolver. All algorithms are implemented to achieve high single-node

performance and to overlap as much communication as possible. The software can run

even when the matrix cannot be stored in its entirety.

As a feasibility study we were able to apply KPCR for the first time on the entire

ImageNet dataset with an adverse kernel that stress-tested the eigensolver capabilities.

Experiments on an even larger asset pricing dataset showed that with proper hyperpa-

rameter optimization KPCR outperforms other models.
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Chapter 4

ATMem: Adaptive Data

Placement in Graph Applications

on Heterogeneous Memories

4.1 Introduction

Memory technologies are advancing fast, and new memory devices that feature high-

performance, high-density, or low-power are emerging [62, 63, 64]. Recently, 3D-stacked

memories, such as Hybrid Memory Cube (HMC) [23] and HBM [63], and byte-addressable

non-volatile memories (NVM) have become commercially available. These new memory

devices, together with the conventional DRAM technology, make heterogeneous memory

system (HMS) a feasible solution for building large-scale systems under the limited area,

power, and cost budget.

A typical HMS consists of a high-performance memory and a large-capacity memory,

where the high-performance memory has a smaller capacity, and yields higher memory

bandwidth and/or lower memory latency than the large-capacity memory. Consider two

popular HMS examples. The 2nd Gen IntelR○ XeonR○ Scalable processor supports up

to 6 TB Optane byte-addressable NVM and up to 384 GB DDR4 DRAM on a single
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machine [101]. Another example is the Intel Knights Landing (KNL) processor with up

to 192 GB DRAM and 16 GB MCDRAM [118]. While DRAM is the high-performance

memory compared to the Intel Optane NVM, providing three times bandwidth of NVM, it

becomes the high-capacity memory on KNL, where MCDRAM provides nearly four times

bandwidth of DRAM.

On HMS, data placement plays an essential role in performance optimization. There

have been extensive e↵orts for tackling this challenge [31, 97, 36, 26, 82]. The general

optimization strategy tries to place critical data onto the high-performance memory.

Some specialized optimization also tries to utilize memory bandwidth on both memo-

ries concurrently, which is only feasible on architectures providing independent mem-

ory channels to each memory. State-of-the-art optimization techniques have explored

coarse-grained solutions that place whole data structures onto the high-performance mem-

ory [36, 26, 82, 103, 134, 130, 97, 31]. However, these approaches are ine�cient for graph

applications—a more challenging class of applications that have massive data structures

with skewed access patterns.

Graph applications play significant roles in a spectrum of fields ranging from bioinfor-

matics, scientific computing, social network, to machine learning and data mining. The

current solutions face two main challenges. First, whole data structure placement might

move non-critical data regions with few reuses, e.g. the data associated with low-degree

vertices in graph processing, to high-performance memory, resulting in a waste of scarce

resource. For instance, applications running on servers need to share all resources, result-

ing in even smaller high-performance memory available to an application. Second, due to

the data-driven behavior of graph applications, e↵ective data placement largely depends

on the feature of input data, i.e., the sparsity and the structure of a graph, and also the

query at each run.

Relying on the application programmer to explicitly manage data placement is only

feasible at a coarse granularity, i.e., changing the placement of a whole data structure.

Even so, it is a tedious and error-prone process, especially for large-scale applications.
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Moreover, a statically managed placement may not be portable when applications are

running on a di↵erent system. Thus, an optimal decision may include feedback from the

application behavior on the underlying hardware into consideration. These challenges

require a dynamic solution and fine-grained data placement scheme to address.

This work proposes ATMem as a data placement optimization framework to tackle

these challenges in graph applications. ATMem enables adaptive granularity in manag-

ing data placement on HMS with three novel designs. First, ATMem enables adaptive

data chunk profiling for subsequent partial data structure placement. The ultimate goal

is to achieve the maximum performance gain per byte, i.e., improving fast memory uti-

lization by only placing critical data regions that yield the highest performance gains on

it. This is especially meaningful for server machines with multiple applications competing

for precious fast memory. Second, ATMem supports lightweight sampling-based profiling

and more importantly, enhances the analysis of sampling results with a novel tree-based

information patching procedure to promote prospective data chunks into the critical cat-

egory. Third, ATMem supports high-bandwidth data migration between memories at the

application level without changes to operating systems or hardware.

The main contributions of this work are as follows:

• It proposes a lightweight profiler that uses hardware sampling to identify access

patterns to data chunks of adaptive granularity.

• It employs a local relative ranking strategy to select critical regions inside data struc-

tures based on sampling results.

• It employs a novel m-ary tree-based strategy to promote prospective data chunks into

critical based on a global relative adaption.

• It designs a multi-stage multi-threaded migration strategy at the application level to

enable high-bandwidth data migration and reduce TLB misses.

• We provide the implementation in a framework called ATMem and evaluate in five

applications on two HMS hardware, including the state-of-the-art byte-addressable
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NVM.

ATMem is evaluated in five graph applications on real NVM-DRAM and MCDRAM-

DRAM hardware. Our evaluation results show that by selecting 5%-18% data onto high-

performance memory, ATMem achieves an average of 1.7⇥-3.4⇥ speedup on NVM-DRAM

and 1.2⇥-2.0⇥ speedup on MCDRAM-DRAM, compared to the baseline that places all

data on the large-capacity memory. On NVM-DRAM, ATMem achieves performance

comparable to a full-DRAM system with as low as 9%-54%. ATMem also enables 2.07⇥-

5.32⇥ faster data migration than the system service.

4.2 Background and Motivation

This section introduces the architecture of systems under consideration, the target work-

load, and the limitations of existing solutions. It also presents a preliminary study on real

hardware (including the state-of-art Intel Optane byte-addressable NVM).

4.2.1 Heterogeneous Memory Systems

This work considers heterogeneous memory systems that place a small-capacity high-

performance memory side-by-side to a low-performance large-capacity memory. The lat-

est 2nd Gen IntelR○ XeonR○ Scalable processor can work with up to 6 TB Optane byte-

addressable NVM of 39 GB/s bandwidth and 384 GB DRAM of 104 GB/s bandwidth [101].

Another example is the Intel Knights Landing (KNL) processor that has 96 GB DRAM

next to 16 GB MCDRAM of 400 GB/s bandwidth [118]. We conduct preliminary studies

on real hardware and find that application performance on di↵erent memories can have a

much larger gap than that predicted by emulators [34, 134, 102].

Figure 4.1a and 4.1b report the slowdown when data are placed on the large-capacity

memory compared to that on high-performance memory. The Intel Optane NVM has three

times latency and 38% bandwidth of DRAM [101]. However, application performance

could slow down by up to 10⇥ (Figure 4.1a). MCDRAM has a limited capacity and system
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(a) Normalized execution time with data placement on the Intel Optane byte-addressable
NVM as to that with data on DRAM.
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(b) Normalized execution time with data placement on DRAM as to that with data
preferably placed on MCDRAM.

Figure 4.1: Compare the performance of five applications on two HMS using di↵erent
data placement for five datasets.

solutions like ‘numactl -p’ might choose less critical data onto high-performance memory,

reducing performance improvement. These results highlight prospective benefits from

fine-grained data placement that selects critical regions into high-performance memory.

Objective I: our work identifies critical data chunks inside a data object and only

migrates them onto high-performance memory for e�cient memory utilization.
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4.2.2 Graph Applications

Graph applications, such as data analytic workload, often exhibit data-driven access pat-

tern and have low data locality. Contemporary computer systems use highly optimized

caches to keep frequently used data close to processing units. Such optimization, however,

has shown its inadequacy for graph applications [98]. With low data reuse, the overhead

of managing hardware cache might even hurt application performance. The opportunity

in optimizing data placement stems from dense (hot) regions and sparse (cold) regions

in data that drive accesses. Our work identifies these regions dynamically and manages

them in the high-performance memory explicitly at the application level.

The application-level approach requires to address several challenges, specifically com-

pared to system-level or architecture solutions. First, it lacks the full statistics of page

accesses as the operating system have. Second, it cannot flexibly modify the hardware

units on an existing platform. Thus, ATMem utilizes the widely available hardware coun-

ters to develop a sampling profiler for estimating dense regions in data. Unlike a system

solution that usually operates at page-size granularity, ATMem adapts the size of data

chunks, i.e., the basic unit of a data structure, to reduce metadata and migration over-

head. Moreover, a sampling-based approach has to trade o↵ overhead and accuracy. Even

a high-frequency sampling approach cannot guarantee to capture all the information. AT-

Mem proposes a tree-based clustering strategy to “patch up” information that is likely

missed due to sampling.

Objective II: our work uses low-overhead sampling profiling and addresses possible

information loss in samples to estimate critical data regions.

4.2.3 Migration Mechanism

On state-of-the-art heterogeneous memory systems, di↵erent memories, e.g., NVM and

DRAM, are exposed to CPU as separate non-uniform memory access (NUMA) nodes [101].

In this way, traditional system services for NUMA control, i.e., mbind, can be used for
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migrating data from one memory to another. As pointed out by previous works [87, 138],

the current system service is ine�cient for heterogeneous memory systems. The migration

mechanism is often single-threaded, which cannot exploit the high bandwidth supported by

the hardware. Also, the data movement procedure is long and blocking, with substantial

overhead spent for enforcing correctness for system-wide reliability. An application-level

approach has the opportunity to bypass some of these overhead given su�cient application

knowledge. Another side-e↵ect from the standard service is the increased TLB misses

after migration. While previous works have proposed solutions in the operating systems

or hardware, we develop a multi-stage multi-threaded migration strategy to tackle these

challenges at the application level on an existing platform.

Objective III: our work improves data migration between memories at application

level without changes in hardware or operating systems.

4.3 Overview of ATMem

API	
int	*d0=	atmem_malloc(s0);	

int	*d1=	atmem_malloc(s1);	

compute();	

...	

d0	

Sampling	memory	access	from	hardware	counters	

Profiler	

Tree-based	global	promotion	estimates	prospective	data	chunks	

Sampled	critical	data	chunks	

Estimated	prospective	data	chunks	

	

Analyzer	

Multi-threaded	Migration	

Optimizer	

Large-capacity	memory	

High-performance	memory	

...	

9	

4	 2	 3	

2	 1	 1	 1	 0	 1	 2	 1	 0	

...	
d1	

...	

...	

d0	

d1	

d1	

...	

Access	Pattern	

Re-allocate	+	Remapping	

...	

Figure 4.2: The overview of ATMem framework.

ATMem consists of three main components (as illustrated in Figure 4.2): a profiler,

an analyzer, and an optimizer. First, ATMem profiler employs low-overhead hardware-

counter based sampling to learn access patterns in an application. Second, based on the

collected samples, ATMem analyzer identifies critical data chunks (of adaptive granularity)

by a global relative ranking scheme. ATMem analyzer addresses one common challenge in

sampling-based approaches, i.e., the loss in sampled information. The analyzer utilizes an

m-ary tree-based strategy to “patch up” information to estimate potentially critical data
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chunks. Finally, ATMem optimizer performs a multi-stage multi-threaded migration to

move both sampled and estimated critical data chunks onto high-performance memory.

Section 4.4 introduces the design of these components in details.

4.4 Design of ATMem

This section describes the design of ATMem in identifying critical data regions of adap-

tive granularity, predicting prospective data regions, and migrating data regions at high

bandwidth between memories.

4.4.1 Adaptive Data Chunks

The basic unit of data management in ATMem is called data chunk. Data chunk is an

adaptive unit such that a data object (DOi) is composed of N equal-sized data chunks

(DCij , j = 1..N), while data chunks in di↵erent data objects can have di↵erent sizes.

Figure 4.2 (Profiler panel) illustrates two chunk sizes in d0 and d1, respectively. ATMem

adjusts the granularity of a data chunkDCij based on the size of the data objectDOi. This

adaptive data chunk design has two main advantages. First, it breaks down a (potentially)

large data object into finer-grained segments. By comparing the priority of data chunks

inside a data object, ATMem can separate critical data chunks from non-critical data

chunks. These critical data chunks correspond to dense (hot) regions of a data structure

that has non-uniform access patterns, which is common in irregular applications. Second,

ATMem can control the profiling overhead by managing the number of data chunks, i.e.,

coarsening the granularity of data chunks. Each collected sample in the profiling stage will

be associated with a data chunk. Thus, changing the granularity of data chunks a↵ects

the metadata and profiling overhead directly.
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4.4.2 Hybrid Local Selection

The first stage of ATMem analyzer employs a local relative ranking to select critical data

chunks for each data object. These selected data chunks are called sampled selection to

be distinguished from the estimated selection in a later stage. Equation 4.1 quantifies the

metric of local priority (PRlocal) for a data chunk DCij that represents the j-th data chunk

in data object DOi. ATMem uses the number of missed reads from the last-level cache

LLCmr as an indicator of priority and normalizes it to the size of a data chunk (Size).

Note that the normalization is necessary for global relative ranking among di↵erent data

objects in a later stage.

PRlocal(DCij) =
LLCmr(DCij)

Size(DCij)
(4.1)

✓(DOi) = max(Pn,↵maxPR,minPR/Freqsample) (4.2)

CAT (DCij) =

8
>><

>>:

1, if PRlocal(DCij) � ✓

0, otherwise

(4.3)

ATMem combines the conventional top-N selection with a derivative-based classifica-

tion to select the threshold value of ✓. In Equation 4.3, data chunks with priority score

(PR) higher than the threshold ✓ has categorization (CAT) 1, i.e., critical. A top-N se-

lection chooses a fixed ratio of data chunks that have the highest PRlocal score in a data

object, i.e., the n-th percentile Pn in Equation 4.2. However, a fixed selection is ine�cient

in two scenarios. First, a highly skewed access distribution has a high concentration in

a small number of data chunks. In this case, the top N
2 % data chunks have significantly

higher priority than the next N
2 % data chunks. Thus, selecting the second N

2 % data

chunks may not bring much improvement. On the contrary, in a relatively even distribu-

tion, the top N% data chunks may not have quantitatively significant di↵erence compared

to data chunks after them, i.e., more than N% data chunks should be selected. ATMem

employs a derivative-based search, similar to a k-means clustering technique, to adjust the

threshold value by quantifying the changes relative to the highest priority score (maxPR).
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Additionally, ATMem includes a theoretical minimum priority for a given data chunk size

and adjusts for the sampling rate denoted as Freqsampling.

4.4.3 Tree-based Global Promotion

The second stage in ATMem analyzer considers the global view of all data objects and

adapts the selection to reflect the relative importance of these data objects. ATMem con-

structs an m-ary tree for each data object to perform estimated selection. This procedure

promotes data chunks that are not in sampled selection into prospective critical. ATMem

adjusts the selection with two parameters, i.e., m and the threshold value of tree ratio

(TR). This tree-based promotion helps “patch up” information that is likely missed due

to sampling-based profiling. Similar approaches have shown e↵ectiveness for prefetching

data from CPU memory into GPU memory [39]. Additionally, the promotion can merge

multiple discrete segments into a continuous one, which improves the e�ciency of mi-

grating data between memories. Figure 4.2 (the middle panel) illustrates an example of

a ternary tree derived for data object d1. The leaf nodes in red represent critical data

chunks from the sampled selection. In the remainder of this section, we introduce three

main steps in the tree-based global promotion.

4.4.3.1 Tree Construction

ATMem analyzer uses the classification results in the first stage to construct an m-ary

tree for each data object. A data chunk has value of either 1 (critical) or 0 (non-critical)

from Equation 4.3. These data chunks correspond to the leaf nodes of the tree. Each leaf

node has the value from its corresponding data chunk. Figure 4.3a illustrates an example

tree constructed from the eight data chunks in DOi. Each critical data chunk (in red)

becomes a leaf node of value 1. From bottom-up, ATMem creates internal nodes of the

tree. Each internal node carries value as the sum of its children nodes.

Tree ratio (TR) of an internal node is defined as the ratio between its value and the

number of its descendant leaf nodes. In Figure 4.3b, node N11 has four leaf nodes and its
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(a) Construct a m-ary tree from the data chunks in DOi.
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(c) Promote prospective data chunks from top-down.

Figure 4.3: Three stages in a tree-based global promotion: construction, bottom-up
calculation of tree ratio (TR), and top-down promotion.
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TR is calculated as 3/4. Tree ratio is a metric that quantifies the likelihood of critical data

chunks in a range of memory space. Here, the range of memory space depends on the level

of a node. For instance, the root node N0 covers the entire address space of DOi, while

the node N100 only covers the first quarter address space. ATMem adjusts m to control

the range of memory space represented by an internal node as well as the sensitivity to a

threshold value of tree ratio. For instance, a quad-tree can have more threshold values of

tree ratio than a binary tree.

4.4.3.2 Global Adaptive TR Threshold

ATMem uses the tree ratio as an indicator for whether the sampled non-critical data

chunks (yellow arrows in Figure 4.3) could still be important but not captured in the

sampling. Also, a small gap in a large continuous address space can be “patched up” to

improve data migration because launching multiple migrations would have higher overhead

than a single migration. A naive design would use a fixed threshold value for tree ratio

(✓(TRi)) such that if an internal node has TR value higher than the threshold value, all

its non-critical children will be promoted to critical.

W (DOi) =

PN
j=1 PRlocal(DCij) · CAT (DCij)

PN
j=1CAT (DCij)

(4.4)

✓(TRi)
0 = ✏+

✓(TRi) · (maxW �W (DOi))

kminW �maxWk (4.5)

ATMem adjusts the threshold value for each data object based on its global relative

ranking. The adapted threshold value (✓(TRi)0 in Equation 4.5) mitigates influence from

di↵erent sampling frequencies, applications, data sets, and platforms. ATMem calculates

the averaged priority of a data object in Equation 4.4 denoted as its weight (W ). Weight

quantifies the significance of selected data chunks, where a data structure of fewer critical

data chunks with high priority has a higher weight than a data structure of more critical

data chunks with low priority. From Equation 4.5, a large weight value would decrease the

tree ratio threshold, causing the top-down promotion procedure (to be introduced next)
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to promote more non-critical data chunks. ATMem calculates the weight space as the gap

between the minimum and maximum weight of all data structures. It also includes ✏ as

a theoretical minimum threshold value that depends on the value of m. For instance, an

octree would have ✏ = 0.125 as a meaningful lower bound.

4.4.3.3 Top-down Promotion

ATMem uses the threshold value of tree ratio from Equation 4.5 to promote prospective

data chunks into estimated selection. Each data object may be assigned a di↵erent thresh-

old value after the global adaptive ranking. ATMem starts traversing from the root node

and performs a breadth-first search to find an internal node with tree ratio higher than

the threshold value. Starting from that node, ATMem tries to “patch up” data chunks

on its descendant leaf nodes. For example, in Figure 4.3c, the data object has a threshold

value of 0.5, and the node N11 has a tree ratio of 0.75. Next, ATMem identifies those

N11’s children nodes whose tree ratio are lower than the threshold value, i.e., the node

N110. ATMem promotes the right children node with zero tree ratio to be estimated crit-

ical. This top-down promotion procedure results in a single continuous region in the data

object DOi to be placed on high-performance memory.

4.4.4 Data Placement Optimization

ATMem uses the decision from the analyzer to optimize data placement at the application

level. In particular, ATMem changes the physical memory of the selected data chunks to

high-performance memory without changing the virtual memory address of the data ob-

ject. This partial migration of a data object minimizes the modifications to the application

source code.

Figure 4.4 illustrates three main steps of the multi-stage multi-threaded data migration

approach. In this example, a data object has a virtual memory address from 0x10000000

to the low end of the yellow box. The system has two types of physical memories, as

indicated in blue and red in the physical address space. Each segment in the address
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Figure 4.4: Fast migration at application level using staging bu↵ers and multi-threaded
data copy.

space represents a physical page. ATMem analyzer has determined that the data chunks

in the yellow box, denoted as a source region, should be placed on high-performance

memory.

In the first step, ATMem uses multiple threads to copy the value in the source region

to a staging bu↵er concurrently. The staging bu↵er is physically located on the target

physical memory, as indicated by the mapping (black arrows Figure 4.4a) to red pages

in physical space. After that, ATMem remaps the virtual address of the source region to

point to (empty) physical pages on the target memory (Figure 4.4b). Note that no data

movement occurs in this stage and the virtual address space of the data object remains

intact. Finally, in Figure 4.4c, ATMem uses multiple threads to copy the stored value

from the staging bu↵er to the yellow region. The whole procedure has data moved twice,

i.e., one between two memories and one within the same memory. ATMem adjusts the

concurrency for data copy to exploit memory bandwidth supported by the hardware.

4.5 Implementation and Optimization

We implement ATMem as a runtime library for general heterogeneous memory systems.

ATMem uses precise address sampling for profiling and provides a set of API for registering

data structures and initiating data migration.
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4.5.1 Hardware Supported Sampling

ATMem profiler uses hardware counters for low-overhead profiling. In particular, ATMem

relies on the precise address sampling capability supported by hardware to collect the

memory addresses of data accesses and correlates them to data chunks [121]. Currently,

ATMem is implemented on performance monitoring units (PMU) with processor event-

based sampling (PEBS) on Intel processors [57]. ATMem can be easily extended to other

processors with similar features, e.g., AMD processor [33].

ATMem automatically adjusts the sampling frequency of PMUs at runtime. Before en-

abling PMUs, ATMem combines the size and number of all data chunks and the number of

application threads to adjust an empirical sampling rate on a given platform. This adap-

tion avoids unnecessarily high sampling frequency while also ensures e�cient information

collection.

4.5.2 API

ATMem provides a minimal set of API (Listing 4.1) for easy adoption in existing appli-

cations. The main purpose of the interface is to inform ATMem runtime about the data

objects so that ATMem can link the collected memory address to data objects. Upon reg-

istration using atmem malloc(), ATMem runtime internally determines the granularity

of the data chunks for that data structure. Code transformation that converts memory

allocation routines from malloc-like functions to atmem alloc() is also feasible. However,

programmers could use application knowledge to improve this decision.

Listing 4.1: API for registering, profiling and optimization.

1 void *atmem_malloc (size_t);

2 void atmem_free (void *);

3 void atmem_profiling_start();

4 void atmem_profiling_stop();

5 void atmem_optimize();

ATMem profiler monitors PMU on cores and aggregated data for analysis for multi-
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Table 4.1: Experiment Platform Specifications.

NVM-DRAM Testbed
Model IntelR○ XeonR○ Platinum 8260L
Processor 2nd Gen IntelR○ XeonR○ Scalable processor
Core 2.4 GHz, 3.9 GHz Turbo frequency
Cache 32 KB d-cache and 32 KB i-cache, 1 MB private L2, 35.75 MB shared L3
Memory 96 GB DDR4 DRAM and 768 GB Optane DC NVDIMM per socket

MCDRAM-DRAM Testbed
Model IntelR○ XeonR○ Phi 7200
Processor 2nd Gen IntelR○ Xeon PhiTM processor
Core 1.1 GHz, 1.7 GHz Turbo frequency
Cache 32 KB d-cache and 32 KB i-cache, 512 KB private L2
Memory 16 GB MCDRAM and 96 GB DDR4 DRAM

threaded applications. One possible optimization is to monitor only a subset of PMUs,

which is beyond the scope of this work. Currently, ATMem requires programmers to

indicate when to start migrating data, i.e., atmem optimize(). Future works on compiler

optimization could automatically insert this function based on static analysis.

4.6 Experimental Setup

Our evaluation is performed on two real hardware testbeds. The first testbed is the 2nd

Gen IntelR○ XeonR○ Scalable processor platform that features the Intel Optane byte-

addressable NVM and DDR4 DRAM. Table 4.1 summarizes the configurations. The

Optane NVM is configured in App Direct mode and exposed to CPUs as a NUMA node.

DRAM and NVM on the same socket share six memory channels that operate 2400 GT/s,

i.e., a theoretical peak bandwidth of 115 GB/s. Our experiment uses 48 hardware threads

and memories on one socket to eliminate the reported NUMA issues [101]. The second

testbed is the Inter Knights Landing Xeon Phi processor (KNL) [118] that features 256

hardware threads, 16 GB high-bandwidth 3D MCDRAM and 96 GB DDR4 DRAM. MC-

DRAM is configured in flat mode.

We use SIMD implementation of five irregular applications [104], i.e., breadth-first
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Table 4.2: Characteristics of graph inputs.

Graphs Number of Vertices Number of Edges

pokec 1.6 M 30.6 M
rmat24 16.8 M 268.4 M
twitter 41.7 M 1.5 B
rmat27 134.2 M 2.1 B

friendster 68.3 M 2.1 B

search (BFS), single-source shortest path (SSSP), PageRank (PR), betweenness centrality

(BC), and connected components (CC) for evaluation. BFS, SSSP, PR, BC, and CC use a

mixture of five graphs, including pokec, rMat24, twitter (twt), rMat27, and Friendster

(friend). Table 4.2 shows these graphs’ vertices count and edges count, e.g., Friendster

network dataset [1] contains 68.3M vertices and 2.1B edges.

Applications were compiled by the Intel C++ Compiler (icc 19.0.2.187) with -O3

option and AVX512 flag. For each test, ATMem turns on hardware profiling in the first

iteration and migrates data before the second iteration starts. The evaluation uses the

benchmark run time from the second iteration as the optimized execution time. On

both platforms, data to memory binding is controlled by ‘numactl’ in libnuma [70]. The

experiments are repeated ten times and the average time is reported.

4.7 Evaluation

In this section, we first present the overall performance of ATMem in five graph

applications using five data sets on two testbeds. Next, we perform a sensitivity test to

evaluate the e↵ectiveness of tree ratio in selecting data chunks. Finally, we compare the

multi-stage multi-threaded migration strategy with the standard system service.
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4.7.1 Overall Performance

This section evaluates the performance improvement from ATMem adaptive data place-

ment. In particular, we compare the performance of applications on each testbed with

the two reference performance. On the NVM-DRAM system, the baseline places data on

the Intel Optane NVM (blue bars in Figure 4.5) while the ideal reference places all data

in the DDR4 DRAM (green bars in Figure 4.5). On the MCDRAM-DRAM system, the

baseline places all data in the DDR4 DRAM. We cannot have an ideal reference where

all data is placed in MCDRAM due to its limited capacity and the large data sets in use.

Thus, we use the MCDRAM preferred NUMA policy provided by libnuma, i.e., ‘numactl

-p MCDRAM’ (denoted as MCDRAM-p) as the ideal reference.

Table 4.3: ATMem performance on NVM-DRAM testbed compared to an all-DRAM
ideal case

Slowdown BFS SSSP PR BC CC
Min. 25% 26% 24% 9% 54%
Max. 2.4⇥ 2.0⇥ 3.0⇥ 1.8⇥ 2.0⇥

On the NVM-DRAM testbed, ATMem can e↵ectively bridge the performance gap

between NVM and DRAM with a low requirement on DRAM capacity. Figure 4.5 presents

the execution time of applications on this NVM-DRAM testbed. This result shows that

data placement by ATMem significantly reduces the execution time compared to the all-

NVM baseline, reaching 1.25⇥-8.4⇥ improvements—this is calculated from the first bar

(blue) and second bar (red) in Figure 4.5. In Table 4.3, we compare ATMem with the

ideal case where all data is placed in DRAM. ATMem can either achieve comparable

performance or reduce the performance gap in Figure 4.1a significantly. For instance,

SSSP with Friendster dataset using ATMem data placement is only 26% slower than

placing all data in DRAM. Note that ATMem solution only places 12% data in DRAM

(as shown in Figure 4.7). Figure 4.7 also reports the ratio of data that is placed by ATMem

on high-performance memory for other applications. This ratio is calculated by the data
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Figure 4.5: Execution time on NVM-DRAM testbed: NVM-only, NVM-DRAM with
ATMem, and DRAM-only.

placed on the high-performance memory (DRAM in this case) over the total data size.

On the MCDRAM-DRAM testbed, a similar trend is preserved between the ATMem

data placement and the baseline all-DRAM case, i.e., ATMem data placement can signifi-

cantly outperform the baseline, achieving 1.1⇥-3⇥ execution time speedup with only plac-

ing a small portion of data (3.8%-18.2%) on high-performance MCDRAM. An interesting

result comes from the superior performance of ATMem compared to the ideal reference. In

Figure 4.6, ATMem placement significantly reduces the execution time for large datasets

like Friendster and rMat27, compared to MCDRAM-p option. For Friendster, ATMem
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Figure 4.6: Execution time on MCDRAM-DRAM testbed: DRAM-only, DRAM-
MCDRAM with ATMem, and MCDRAM-p.

reaches up to 2.79⇥ improvement in BFS with only 15% data in MCDRAM. Figure 4.8

reports the ratio of data that is placed by ATMem on high-performance MCDRAM for

all applications.

4.7.2 Impact of Data Ratio

ATMem uses the tree ratio threshold value to tradeo↵ the data size on the high-

performance (but small) memory with performance improvement. An optimal tradeo↵

would reach a data ratio beyond which performance improvement is not proportional to
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Figure 4.7: Data ratio on NVM-DRAM testbed: Data ratio is calculated by DRAM data
size over total size.

the increased data size on high-performance memory. We evaluate the e↵ectiveness of the

ATMem tree ratio by manually sweeping ✏ values in Equation 4.5. Consequently, ATMem

would place di↵erent data ratios on high-performance memory. Figure 4.9 and 4.10 report

the performance sensitivity to data ratio on two testbeds using the BFS benchmark.

ATMem consistently reaches the optimal tradeo↵ between performance and data ra-

tio in all tested data sets. In Figure 4.9 and 4.10, there exist optimal regions in each

dataset, where most data points are gathered. On the left of this region, increasing data

size could still bring significant performance improvement. Beyond this region, however,

the performance only shows minimal changes, even when the data ratio is substantially

increased. For instance, Twitter dataset on NVM-DRAM testbed (Figure 4.9d) stabilizes

at approximately 15% data ratio. Further migrating data to DRAM only gains negligibly.

Overall, the results indicate that ATMem can e↵ectively detect the dense regions in graph
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Figure 4.8: Data ratio on MCDRAM-DRAM testbed: Data ratio is calculated by MC-
DRAM data size over total size.

applications to achieve near ideal performance using small memory capacity.

MCDRAM-DRAM testbed has limited capacity on the high-bandwidth memory, un-

able to accommodate all data in rMat27, Twitter, and Friendster in BFS. Thus, the

maximum data ratio in Figure 4.10 is less than one. We notice that placing data size near

the memory capacity, i.e., 16 GB, could sometimes lower performance. Instead, the AT-

Mem identifies optimal regions much smaller than the capacity, avoiding this peformance

degradation. The experimental results also indicate that the e�cient detection and place-

ment of dense regions in graph applications is essential for performance optimization on

heterogeneous memory systems.
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Figure 4.9: Data ratio impact on performance on NVM-DRAM testbed for BFS: x-axis
is the data ratio placed in DRAM.

4.7.3 Data Migration

We evaluate the e↵ectiveness of the multi-stage multi-threaded migration in ATMem by

comparing it to the system service mbind. In this experiment, each benchmark has two

versions of implementation using the two mechanisms, respectively. Table 4.4 reports

the number of TLB misses after migration and the time spent in migration using mbind

implementation, as normalized to that using our ATMem approach.

The results demonstrate that our ATMem approach dramatically reduces the number

of TLB misses after data migration on both testbeds. The improvement in TLB misses on

the NVM-DRAM testbed is considerably higher than that on MCDRAM-DRAM testbed.

However, the data migration time on MCDRAM-DRAM shows higher speedup than that

on the NVM-DRAM testbed. On NVM-DRAM testbed, ATMem reduces the data mi-

gration by 1.3⇥-2.7⇥ (average 2.07⇥), as compared to mbind. On MCDRAM-DRAM

testbed, ATMem manages to achieve 3.0⇥-8.2⇥ (average 5.32⇥) improvement. The dif-

ferent bandwidth of source memories on the two testbeds likely causes this di↵erence.

Migration from NVM to DRAM is bottlenecked at the read bandwidth of the Intel Op-
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Figure 4.10: Data ratio impact on performance on MCDRAM-DRAM testbed for BFS:
x-axis is the data ratio placed in MCDRAM.

tane NVM, while data migration from DRAM to MCDRAM can exploit the bandwidth

of DRAM. The Intel Optane NVM read bandwidth is reported to be 39 GB/s [101] while

DRAM on KNL platform can reach 90 GB/s bandwidth [118].

Table 4.4: Reduction in TLB Misses and migration time by the multi-stages multi-
threaded approach compared to mbind in PR.

Dataset
NVM-DRAM MCDRAM-DRAM

TLB misses Time TLB misses Time
pokec 2.09⇥ 1.32⇥ 2.00⇥ 8.26⇥
rmat24 73.62⇥ 2.71⇥ 2.53⇥ 4.42⇥
rmat27 15.77⇥ 2.66⇥ 1.17⇥ 5.71⇥
twitter 1.16⇥ 1.94⇥ 1.64⇥ 3.08⇥

friendster 12.26⇥ 1.72⇥ 1.25⇥ 5.16⇥
Avg. 20.98⇥ 2.07⇥ 1.72⇥ 5.32⇥
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4.7.4 Overhead Analysis

The overhead of ATMem comes from two sources: profiling and data movement. With

the help of the hardware PMU, ATMem incurs minor overhead during profiling, i.e., less

than 10% of the first iteration. The data movement overhead depends on the amount of

data selected for migration.

The number of iterations required to amortize ATMem’s overhead is decided by the

kernel and the input data. In our experiments, most benchmarks can get enough benefits

to compensate the overhead caused by ATMem within a few iterations. For example, data

movement operation incurs 37% overhead for SSSP with Friendster dataset on HBM for

the first (single) iteration. Since ATMem brings over 50% speedup for a single iteration

in SSSP, the overhead is amortized after only one more iteration.

4.8 Related Work

Heterogeneous memory systems have been extensively studied recently. Before real hard-

ware became available, many prior e↵orts used emulators and simulators [109, 79, 34,

134, 127, 88, 85]. Constraint by the gap between emulation and real commodity hard-

ware, some previous findings may need to be revisited. For this consideration, ATMem is

evaluated on two real hardware. The following works are related to ATMem.

Data placement. [130] employs a data-centric analysis and a di↵erential analysis

to profile and associate each data structure with varied latency and bandwidth configura-

tions. [34] classifies the memory access pattern of each memory region into three classes

using an Intel Pin tool. It aims to maximize the overall data placement benefit with

a greedy algorithm. [116] provides guidance for data placement by collecting memory

traces with Intel Pin-based o✏ine profiling tool. Above works employ o✏ine profiling.

More recently, [134] proposes Tahoe, a run-time PMU based data placement tool. Tahoe

also uses LLC miss as the main metric to identify the data placement benefit of each data

structure. It targets the whole data structure placement. These works do not target graph
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applications and thus, not considering adaptive granularity or dynamics as ATMem.

Data movement. [87] introduces a new OS-service for asynchronous memory move-

ment with hardware acceleration. Similar e↵orts in [66, 5, 138, 15] also intend to optimize

memory movement at either operating system or architecture level. As system-level ser-

vices, their solutions need to ensure performance reliability at the cost of extra overhead.

While they target future operating system or architecture, ATMem leverages application

knowledge by using an application-level mechanism to improve migration on the existing

systems.

Data placement on GPUs. Modern GPUs also feature heterogeneous memories,

i.e., high-bandwidth GDDR or HBM on the device and DRAM on the host. [116] introduces

a Pin based o✏ine profiling tool. [20] proposes a memory specification language to guide

data placement on GPUs. Extending our approach on GPUs requires special consideration

in CPU-GPU links and data coherence and GPU execution model.

4.9 Discussion

This section discusses some current limitations and possible generalization in the future

work.

Limitations. First, ATMem currently focuses on the performance aspect. Our fu-

ture work will extend the heuristic in data management to guarantee data consistency

(particularly for NVM) when on demand. Second, some HMS architecture could sup-

port aggregated bandwidth from memories. For instance, KNL has independent memory

channels to MCDRAM and DRAM respectively. In contrast, the Intel Optane NVM is

sharing memory channels with DRAM. ATMem will continue enhance placement decisions

to utilize both memory bandwidth when supported by the architecture. Third, ATMem

migrates data during the iterations of graph execution. Using advanced compiler analysis

to automatically insert ATMem API between iterations could overlap the data movement.
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Generalization. Although ATMem is specifically presented as an HMS management

framework for graph applications, it also works well for other irregular applications or even

regular ones because its profiling and data migration mechanisms are generally applicable

to any applications. We also evaluated ATMem on sparse matrix computations, such as

SpMV, and it achieved similar results as the graph applications. Data accesses in regular

applications are more uniformly distributed so that adjusting data chunks to equal size

of the whole data structure results in the same data placement as exiting coarse-grained

solutions.

4.10 Summary

Active development in new memory devices brings heterogeneous memory systems as a

solution to address the scaling challenge in DRAM. E�cient data placement in graph

applications on heterogeneous memory systems needs to leverage the advantage of each

memory while avoiding their limitations. This work proposes ATMem, an adaptive-grained

runtime framework that consists of a lightweight profiler based on hardware sampling, a

novel analyzer using m-ary tree-based heuristics to classify and predict data regions, and

a high-bandwidth migration mechanism at the application level.

ATMem is evaluated on two real heterogeneous memory systems including the lat-

est Intel Optane NVM, with five graph applications. The experimental results show

that ATMem can achieves an average of 1.7⇥-3.4⇥ speedup on NVM-DRAM and 1.2⇥-

2.0⇥ speedup on MCDRAM-DRAM over the baseline by selecting merely 5%-18% data

onto high-performance memory. ATMem also helps to bridge the gap between NVM

and DRAM on the NVM-DRAM machine, achieving a comparable performance to the

case that places all data in the high-performance DRAM. ATMem data migration also

outperforms the system service with 2.07⇥-5.32⇥ speedup.
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Chapter 5

Conclusion and Future Research

Directions

5.0.1 Summary of Dissertation Contributions

Under the rapid development of machine learning (ML), ML applications with larger scale

and higher complexity arise, demanding more optimized ML systems. Compare to general-

purpose optimization, domain-specific optimization is a more e↵ective method for building

advanced ML systems, because it makes specialized system optimizations for a particular

type of ML application based on its characteristics. Following this direction, in this

dissertation, we present three works to perform domain-specific ML system optimizations

for three di↵erent types of ML applications.

Checkpoint Construction Optimization for SGD-based Applications. We

present LC-Checkpoint, a lossy scheme to compress checkpoints of SGD-based Appli-

cations. LC-Checkpoint is a delta-encoding scheme that only tracks the information on

the di↵erence between two checkpoints. It obtains the most significant information and

represents them in a suitable format with an exponent-based quantization and a priority

promotion method. At last, it applies a Hu↵man coding to further compress the bits.

This work is accepted to ICML’20 [21].
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Parallel Software for Million-scale Exact Kernel Regression. We present a

software solution for kernel regression applications to handle million-scale datasets. It

integrates a state-of-the-art parallel eigenvalue iterative solver, an advance block-based

matrix-vector multiplication routine, and a software pipeline that coordinates the hyper-

parameter optimizer and the HPC back-end. The software is e�cient and robust, which

has been proved by testing on the ImageNet dataset and a large asset pricing dataset.

This work is under-reviewing by an HPC conference.

Memory Data Placement Optimization for Graph-based Applications. We

present ATMem—a runtime framework for adaptive granularity data placement optimiza-

tion in graph applications. ATMem enables adaptive data chunk profiling for subsequent

partial data structure placement, and identifies the critical regions inside data structures

by applying a local relative ranking strategy and a tree-based promoting method. At

last, it uses a multi-stage multi-threaded migration strategy at the application level to

enable high-bandwidth data migration and reduce TLB misses. This work is accepted to

CGO’20 [22].

5.0.2 Future Directions

Our future work targets to further bridge the gap between ML systems and ML applica-

tions by customizing the ML algorithms. In this dissertation, although we perform e↵ec-

tive optimizations for multiple types of ML applications by leveraging the application’s

domain knowledge, domain-specific system optimization is not a comprehensive solution

for ML applications. Combining the ML application information without modifying the

ML algorithms limits us from further improving the ML systems. Our future work will

adjust the ML algorithms for software systems/architectures, deeply bind the design of

ML algorithms to the implementation of ML systems, to achieve optimal solutions for ML

applications.
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