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ABSTRACT 
 

Visualizing nanoscale biological systems allows us to uncover their detailed structure 
and functions, which have major implications in the biomedical field. Super-resolution 
microscopy is a powerful tool for fluorescence imaging because, by overcoming the 
diffraction limit of light, it accesses structural detail with unprecedented spatial 
resolution. Although multicolor super-resolution imaging has been successfully 
implemented in many experiments, its efficiency is limited by reliance on spectral 
measurement for emitter identification, which limits the combinations of compatible 
probes to be used together. Blinking-based multiplexing (BBM) is a novel approach that 
circumvents the need for spectrally-distinct emitters by instead exploiting the intrinsic 
differences in their blinking dynamics, or the stochastic fluctuations in emissive and 
nonemissive intensities of single-molecules under continuous photoexcitation. We find 
that BBM is most efficiently carried out using multinomial logistic regression (LR) to 
classify hundreds blinking dynamics obtained through single-molecule spectroscopy 
(SMS). Blinking dynamics are captured for three emitters—quantum dots (QD), 
rhodamine 6G (R6G), and pyrromethene 605 (PM605)— both on glass substrate and in 
complex poly(vinyl alcohol) (PVA) matrix for analysis with LR. Our results show that LR 
rapidly generates highly accurate predictive models for a variety of emitter systems 
under many experimental conditions.  
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Chapter 1: Introduction 

1.1 Motivation: Imaging of Complex Biological Systems 

The answers to many of the world’s most urgent medical questions can be found 

by understanding the interactions between biomolecules. Uncovering key relationships 

between cellular structures such as proteins, membranes, DNA, RNA, and organelles 

facilitates research regarding disease states and healthy cellular function.1,2 By gaining 

insight into the detailed structure of a cell, its organization, composition, and 

specialized activity can be uncovered, and more highly targeted drugs are developed. 

For instance, uncovering the catalytic function of an enzyme of interest may help 

researchers better understand how to design medicines with high binding affinity to 

outcompete the binding of toxins or other harmful molecules.3 However, cellular 

components such as proteins, nuclei, membrane domains, and microtubules are 

typically on the nanometer to micrometer scale.4 The small scale of these systems 

makes probing these components challenging.  

Biological imaging through the detection of fluorescent molecules, also called 

fluorophores or emitters, is a powerful method for imaging on the nanoscale. Current 

imaging experiments are typically performed with multiple emitters so that more than 

one biological structure or component is labeled and studied. With the resulting 

multicolor images, researchers gain insight into the structure, function, and interactions 

within the sample. For instance, fluorescence images of nuclei have revealed 

heterogeneities in nuclear compartments as well as differences in chromatin 

organization based on cellular expression mechanism.5,6 The insight gained from this 
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research has the potential to inform on DNA accessibility for potential repair or 

intervention of disease states.  

 Of course, multicolor biological imaging comes with experimental and 

analytical challenges, to be discussed later in greater depth. This thesis addresses these 

limitations by focusing on the development of novel methods for improving current 

multicolor techniques. First, for greater context on the importance of this work, the 

history of fluorescence imaging and the limitations of modern techniques are explored.  

 

1.2 History of Single-Molecule Spectroscopy 

Microscopy has been used for centuries to visualize biological structures. 

Robert Hooke first discovered the presence microorganisms in 1665 when he observed 

bread molds through his microscope.7 However, early microscopes had low 

magnification and resolution, and therefore poor imaging capabilities. When measuring 

transmitted light in an optical microscope, high magnifications cause the resulting 

images to be distorted and appear as large, blurry circles called Airy disks. Even as 

developments in optics and lenses improved the performance of light microscopes over 

time, image quality continued to be hindered by the diffraction limit of light. First 

described by Ernst Abbe in 1873, the diffraction limit restricts imaging resolution.8 The 

maximum resolution is dictated by λ (2 × 𝑁𝐴)ൗ , where NA is the numerical aperture 

of the microscope and λ is the wavelength of light used for imaging.9 Therefore, for 

visible wavelengths of light, structures <200 nm cannot be resolved.4,9 The 
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shortcomings of conventional light microscopy limited the degree to which structural 

insight could be gained from micro- to nanoscale systems.  

In 1845, an alternative imaging technique emerged when Sir Frederik William 

Herschel first reported on fluorescence. He observed that a transparent quinine solution 

emitted blue light when exposed to UV rays from the sun.10 Researchers soon realized 

the potential of measuring emitted light for visualizing biological structures, as 

measuring signal that originates from the sample itself led to higher sensitivity and 

image contrast than transmitted or reflected light. The first fluorescence microscopes 

were developed in the early 1900s and were used to visualize biological structures using 

rudimentary fluorescent labeling techniques.11  Image quality improved in the ‘40s and 

‘50s when the advent of fluorescent antibody labeling allowed for greater specificity in 

tagging structures and Marvin Minsky built the first confocal microscope.11–13 This 

instrument utilizes two pinhole apertures—one to focus the light source to a diffraction-

limited spot on the plane of the sample and the other in front of the detector—to scan 

and detect emission from samples one point at a time. Although the full potential of 

confocal microscopy was not realized until after the invention of lasers, this 

development marked a major milestone in imaging. 

Early optical measurements were taken at the bulk level, meaning that 

information was collected for an entire ensemble of molecules at once, and the resulting 

data described the average behavior of all the fluorophores. Due to the small size of 

individual molecules and the limited sensitivity of instruments at the time, studying 

single molecules was long considered an impossibility. Many believed that single 
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particles could only be evaluated in thought experiments and not in a physical 

laboratory. In fact, in the mid twentieth century, Schrödinger wrote “… it is fair to state 

that we are not experimenting with single particles, any more than we can raise 

Ichthyosauria in the zoo.”14 Eventually, in the 1980s, researchers started to gain direct 

access to nanoscale systems with advancements such as spectroscopy of single ions 

and electrons and the advent of scanning tunneling microscopy, but these experiments 

were only possible under vacuum.15–17 The first optical detection of single molecules 

in condensed matter was reported in 1989, with the measurement of absorption spectra 

of pentacene in p-terphenyl host crystal at low temperatures.18 These measurements, 

however, were collected using laser frequency-modulation spectroscopy (FMS), which 

suffered from poor signal-to-noise. The following year, Michel Orrit and Jacky Bernard 

made a significant breakthrough with the first fluorescence detection of single 

molecules in the same system.19 Using a single wavelength, a laser was scanned across 

a pentacene sample, and single molecules were identified by measuring their emission 

with better signal to noise than FMS. With the inspiration and experimental foundation 

of these studies, as well as developments in lasers and highly sensitive cameras and 

detectors, the field of single-molecule spectroscopy (SMS) based on fluorescence 

detection emerged.4 

Since its discovery in 1989, SMS has proved invaluable in several contexts, 

including uncovering new phenomena, nanoreporting, tracking, and localization. One 

important discovery that came out of SMS was the observation of blinking, a 

phenomenon on which much of thesis is based. Blinking refers to stochastic 
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fluctuations in the emissive intensity of a single molecule under continuous laser 

excitation. These changes occur as the molecule transitions between emissive and 

nonemissive states, also called “on” (bright) or “off” (dark) states, respectively. 

Historically, blinking has been modeled as a three-level system (Figure 1) where 

intersystem crossing (ISC) to a triplet state 

interrupts fluorescence until the electron 

returns to the ground state.20,21 In reality, 

dark states may arise from other processes, 

including proton transfer, electron transfer, 

quenching, and conformational changes, 

depending on the fluorophore and substrate 

properties.20,22–24 An emitter undergoes 

blinking until it becomes photobleached, meaning it has undergone an irreversible 

photochemical change that alters its excitation spectrum or renders it entirely 

nonfluorescent. Studying an emitter’s photobleaching time and the durations of 

emissive and nonemissive events can reveal the photophysical mechanisms responsible 

for blinking.22,23,25 

The discovery of blinking led to another application of SMS called 

nanoreporting. Single molecules are considered nanoreporters because their behavior 

relies on the conditions of the local environment; variations in solvent, substrate, 

molecular orientation, and excitation power are just a few of many factors that may 

influence a fluorophore’s behavior.4,9 Nanoreporting gives SMS the power to uncover 

 
Figure 1. Energy level diagram 
demonstrating blinking involving the first 
triplet state (T1). The singlet ground (S0) 
and first excited (S1) states translate to 
“on” events, and transitions to T1 result in 
“off” events. 
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heterogeneities within samples that are otherwise hidden by ensemble averaging. 

Ensemble averaging obscures the true shape of a distribution because it only offers 

insight regarding the mean properties of the emitter. In other words, the true distribution 

of a particular emitter property may be skewed to either side, approximately normal, 

uniform, bimodal, etc., but the average value gives no indication of the full distribution 

underlying the average. By probing molecules individually, SMS allows researchers to 

build up distributions one molecule at a time, giving deeper insight into molecular 

behavior and the complex local environment.  

SMS nanoreporting can be used to reveal both static and dynamic properties of 

emitters or tagged systems. For instance, protein folding and unfolding can be analyzed 

using Förster resonance energy transfer (FRET) to detect conformational changes on 

the order of angstroms.26 In one single-molecule confocal microscopy study, 

researchers determined the distance between flavin, a fluorescent protein, and a nearby 

quenching tyrosine residue through fluorescence decay measurements taken under 

various experimental conditions.27 Flavin adenine dinucleotide (FAD), one variety of 

the protein, plays a role in DNA synthesis through its reduction by protonated 

nicotinamide adenine dinucleotide (NADH), an important molecule in energy 

production. FAD is fluorescent in its oxidized form but not when it is reduced to FADH. 

Therefore, the observation of fluorescence indicates a reversible redox reaction taking 

place. Taking advantage of this flip between emissive and nonemissive forms, the 

enzymatic kinetics of FAD reduction have been tracked to determine the impacts of 
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conformation on catalytic rate and efficiency.28 This example describes just one of 

many biological processes that has been enlightened using SMS nanoreporting. 

SMS is also commonly used for tracking and localization. By detecting the 

fluorescence given off by an individual emitter, its position in space and time can be 

estimated. This application is useful for monitoring the movement of emitters or tagged 

structures over time. Tracking has elucidated many nanoscale processes, including 

shuttling proteins and viruses across cell membranes, DNA repair, and drug delivery.29–

33 In addition to informing on dynamic processes, SMS can be used to localize static 

emitters on fluorescently tagged structures. Conventional fluorescence microscopy 

may be used for such visualization, but image quality is limited by the diffraction limit 

of light. Therefore, emitters, which are each approximately 1 nm in size, appear as 

large, blurry spots known as the point-spread function (PSF) of the microscope.9 To 

overcome this challenge, super-resolution imaging (SRI) was developed to create 

images of nanoscale systems with unprecedented spatial resolution.  

 

1.3 Super-Resolution Imaging 

 Super-resolution microscopy overcomes the diffraction limit through precise 

localization of single fluorescent probes.34,35 The concept of SRI is that a nanoscale 

structure of interest is densely labeled with fluorescent probes, and these single-

molecules are individually localized through their emission after illuminating the 

sample with laser excitation. The selected emitters may be organic dyes, fluorescent 

proteins, semiconductor nanoparticles, or fluorescent oligonucleotides depending on 
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the method employed and the conditions of the experiment.4,36–39 If all the emitters on 

a tagged structure were to fluoresce simultaneously, as in previous imaging techniques, 

their PSFs would overlap, and no single molecules could be resolved.4 To avoid this 

issue, SRI utilizes an active control mechanism, which can be either chemical or optical 

in nature, to limit the number of emitters that are detected at once and temporarily allow 

for spatial resolution of adjacent molecules. For two fluorophores in close proximity, 

if one fluoresces while the other is dark, only one PSF will be detected, and the 

molecules will temporarily be spatially resolved. Processes such as blinking, 

photoactivation, photoswitching, and photobleaching are commonly used to limit the 

number of molecules that emit at any given moment.4,40–44 Once PSFs of single emitter 

are detected, they are fit to an appropriate function, typically a 2D Gaussian, and their 

locations can be estimated at the center with low uncertainty.4 Consequently, the width 

of the PSFs shrinks considerably, and emitters can be localized with precision on the 

order of tens (instead of hundreds) of nanometers. After localizing each of the detected 

molecules, a pointillistic image of the structure of interest can be constructed based on 

the analytically-determined positions.45  

There are many approaches to super-resolution microscopy that have been 

utilized for imaging experiments. The general principles described above for the 

creation of a reconstructed image stay relatively consistent for each, but the active 

control mechanisms vary between techniques. One of the early forms of super-

resolution imaging, which was developed in 1994, is stimulated emission depletion 

(STED) confocal laser scanning microscopy.13 In this method, an excitation laser is 
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used to spur fluorescence in a focused area on the structure of interest. A second, 

doughnut-shaped laser creates a tight circle around the excitation source and forces the 

molecules it hits to the ground state by inducing stimulated emission.46,47 The redder 

wavelength, or lower energy, of the depletion laser causes the fluorophores to undergo 

stimulated emission rather than excitation. While in the ground state, the molecules 

will not fluoresce, so a single molecule at the center of the ring can be localized without 

any overlapping signal. Despite success in utilizing STED due to the high degree of 

active control over fluorescence, the technique comes with a few disadvantages.48–50 

The high power of the depletion laser may cause molecular photobleaching, meaning 

the affected emitters can no longer fluoresce and will no longer be detected, decreasing 

image quality. Additionally, live biological systems are sensitive to intense light, so the 

structures of interest may be damaged.36  

To improve upon the limitations of STED, another class of imaging techniques 

called single-molecule localization microscopy (SMLM) was developed.51 SMLM 

allows for spatial resolution of emitters through active control mechanisms such as 

photoactivation, photoswitching, and blinking (Figure 2). Whereas STED localizes 

 
Figure 2. Principle of SMLM. (A) A nanoscale structure of interest is labeled with 
fluorophores. (B) Emission is detected from individual molecules through an active control 
mechanism (e.g., photoactivation, photoswitching, or blinking), which (C) allows for 
precise localization. (D) After many data points are collected, a reconstructed image reveals 
structural intricacies. 
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fluorophores one at a time through confocal scanning of a well-defined region, SMLM 

utilizes wide-field acquisition to collect data on small subsets of emitters at once.13 

Eliminating the need for a depletion laser source for single point localization (as seen 

in STED) reduces the amount of active control available over blinking, but, as a 

tradeoff, simplifies experimental design and reduces sample destruction.  

Multiple methods fall underneath the category of SMLM. Photoactivated 

localization microscopy (PALM) and stochastic optical reconstruction microscopy 

(STORM) are two examples of SMLM techniques that follow similar procedures. Both 

techniques rely on photoactivation, photodeactivation (i.e., photobleaching), and 

photoconversion to reduce the density of molecules fluorescing at once.13 A difference 

between the two methods is the type of emitter employed: fluorescent proteins for 

PALM and organic fluorophores for STORM.36,52 Additionally, with STORM, data 

acquisition is quickened by simultaneously photoactivating and imaging the 

fluorophores, whereas these steps are performed sequentially in PALM.53 Points 

accumulation for imaging in nanoscale topography (PAINT), a third variety of SMLM, 

induces blinking from the binding and unbinding events of fluorophores on the 

structure being imaged.4,37 When bound, the molecules fluoresce, and they enter a dark 

state upon unbinding. Often, the emitters of choice are fluorescent oligonucleotides, or 

short single-stranded DNA coupled to fluorophores. In this case, there are docking 

strands attached to the structure of interest, and the fluorescently-labeled imaging 

strand transiently binds to them.37 The fact that the emissive events of DNA-PAINT 
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rely on binding rather than blinking and molecular photophysics sets this SMLM 

technique apart from the others. 

 

1.4 Challenges with Multicolor SMLM 

Although much can be learned from single-fluorophore studies, the 

advancement of the biological imaging field relies on the implementation of multicolor 

imaging. By imaging multiple cellular components at once, researchers gain greater 

insight into their structure, functions, and interactions. However, this endeavor is much 

more challenging than single-probe imaging, as more than one distinct emitter must be 

used. Although several groups have demonstrated successful implementation of 

multicolor imaging techniques, multiple obstacles currently stand in the way of 

streamlining the effectiveness and efficiency of these experiments.4,49  

One complicating factor is that despite the wide array of available fluorescent 

probes, finding suitable combinations of these emitters is challenging. Ideally, the 

fluorophores should be compatible under the same experimental conditions, including 

solvent and excitation power. Additionally, the fluorophores must be distinguishable 

through spectral measurement, meaning their emission spectra must be distinct (i.e., 

separated by >100 nm) in order to limit spectral crosstalk.54 To resolve this issue, 

researchers typically image each emitter sequentially, which requires multiple laser 

excitation sources and adds significantly to data collection time and cost.55–57 Some 

studies have attempted to circumvent these numerous issues by using methods such as 

combinatorial labeling and spectral barcoding as well as signal demixing from a single 
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spectral channel, but these advances have not helped to expand the limited set of 

compatible high-performance emitters.2,58,59  

Another potential alternative to the limited palette of fluorophores for 

multicolor imaging is the use of DNA-PAINT. With his technique, fluorescent events 

occur due to binding events rather than intrinsic dye photoswitching properties, which 

makes it compatible to be used with a wider selection of fluorophores. However, this 

technique has several complications, such notoriously long data acquisition times and 

nonspecific binding.37,57,60 Consequently, there is a need for alternative multicolor 

imaging methods that involve faster, simpler experimental and analytical demands as 

well as an expansive library of available fluorescent probes. This thesis describes the 

study of single-molecule blinking dynamics for the development of blinking-based 

multiplexing (BBM), a novel imaging tool that eliminates the issues of current 

multicolor imaging techniques. 

 

1.5 Methods 

Although BBM is intended for use in SMLM, all experiments described in this 

work are carried out using the available instrumentation: a confocal fluorescence 

microscope. Despite being a diffraction-limited technique, thus limiting its resolution, 

confocal microscopy is capable of probing single-emitter blinking dynamics so long as 

they are spatially isolated.  
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1.5.1 Single-Molecule Confocal Microscopy 

In a single-molecule confocal experiment, individual emitters are detected by 

their fluorescence under continuous laser excitation on a confocal microscope. To 

ensure that only one emitter is studied at a time, samples are diluted to nanomolar 

concentrations. The resulting solutions are spin coated onto glass slides, which are 

secured onto a custom-

designed flow cell and placed 

onto a piezoelectric stage 

above the objective. A 

schematic of a confocal 

microscope setup is depicted 

in Figure 3. The collimated 

laser beam is directed into the 

microscope, where it passes 

sequentially through an 

excitation filter, a dichroic beam splitter, and an objective to reach the sample. The 

objective focuses the collimated light to a diffraction-limited spot at the sample. The 

numerical aperture (NA) of the objective dictates the instrument’s ability to gather light 

and therefore impacts the maximum achievable resolution. For instance, a NA of 1.3 

and an excitation wavelength of 532 nm gives a theoretical diffraction limit of ~200 

nm. When the focused laser beam reaches the sample, emitters are excited and emit 

red-shifted fluorescence. The emitted photons pass back down through the objective 

 
Figure 3. Schematic of a confocal microscope setup for 
a single-molecule experiment. 
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and the beam splitter before reaching an emission filter, which blocks out all 

wavelengths as energetic or more energetic than the excitation source. Lastly, the 

emission is directed to an avalanche photodiode detector (APD).  

Using a piezoelectric stage to induce fine, precise movement in the sample, a 

10-100 μm² area of the sample is raster 

scanned. The resulting image visualizes the 

emission at each point in the scan in units of 

photons per bin time (typically 10-100 ms). 

A representative image of quantum dots 

(QD) immobilized on a glass substrate is 

shown in Figure 4, where each colored 

circle, bright and dim alike, is a diffraction-

limited spot of a single emitter.  

 

1.5.2 Single-Molecule Blinking Dynamics 

Measuring blinking dynamics at each diffraction-limited spot confirms the 

presence of single emitters and probes their photophysical behavior. Blinking dynamics 

are obtained through the collection of blinking traces (Figure 5), which are graphs 

measuring emission dynamics from a single molecule over time in units of counts per 

bin time. High emission counts indicate that the emitter is in a bright state, whereas low 

or baseline counts indicate a dark state or the occurrence of photobleaching. The traces 

are analyzed using change point detection (CPD) analysis, as simple thresholding does 

 
Figure 4. A representative 6x6μm false-
colored image of 0.8 nM QD on glass. 
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not hold the same accuracy and detail in 

determining emissive events.24,61 CPD uses 

generalized likelihood tests to determine 

statistically significant fluctuations in 

intensity levels, which gives the capability 

not only to determine whether a molecule is 

“on” or “off” but also to detect smaller 

segments within the larger intervals.62 An 

interval refers to the entire length of time 

that a molecule is either on or off, whereas a 

segment refers to the length of time a molecule remains at a single intensity within said 

interval. Consequently, segments are less than or equal to intervals in length. The blue 

overlay in Figure 5 visually depicts the on/off segments/intervals determined by CPD. 

From these determinations, CPD outputs fourteen statistics that give insight into the 

photophysical properties of the emitter, including average on and off segment and 

interval times, average intensity (or photon counts), and switching frequency (the 

number of segment or interval events per second).  

 

1.6 Thesis Outline 

 This thesis describes the use of blinking dynamics of three spectrally-

overlapped emitters— quantum dots (QD), rhodamine 6G (R6G), and pyrromethene 

605 (PM605)—for the development of a new multicolor imaging tool: blinking-based 

 
Figure 5. A representative blinking trace 
of a single CdSe/ZnS quantum dot on a 
glass substrate. The black line represents 
the raw data of photon emission per 
dwell time, and the blue overlay shows 
the on/off segments and intervals 
detected by CPD. The number of distinct 
intensity levels is displayed in the top 
right corner. 



16 
 

multiplexing (BBM). Chapter 2 delves into the creation of BBM with a QD/R6G 

system and refinement with machine learning techniques to ensure rapid, accurate, and 

generalizable methodology. Chapter 3 investigates the application of BBM to emitters 

in a complex polymer environment to establish its viability for use in biological 

applications. Furthermore, the chapter uses blinking dynamics to identify the 

photophysical mechanism behind PM605 blinking and introduces this fluorophore as a 

third probe for use in BBM. 
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Chapter II: Blinking-Based Multiplexing for Classifying Spectrally-Overlapped 

Emitters 

2.1 Introduction 

Optical imaging of biological systems is a powerful tool for visualizing 

nanoscale structures. With greater insight into these structures, such as proteins, 

organelles, or even entire cells, we can better understand their functions and purposes 

in the body as well as their complex and dynamic interactions with other elements of 

the system.1,2 Such insights allow for deeper knowledge of the origin of disease states 

and possible treatments for the cure or prevention of illness. Although imaging can be 

performed with conventional light microscopy, these experiments suffer from poor 

sensitivity and resolution due to the diffraction limit of light.3,4 Over the 20th century, 

however, significant advancements and developments in microscope, detector, and 

laser technology have ameliorated these issues. The emergence of single-molecule 

spectroscopy (SMS) highlights the enhanced sensitivity of modern instruments, as 

these studies allow for the detection of emission from just one molecule at a time. 

Additionally, SMS has led to the discovery of unusual photophysical phenomena such 

as blinking. Defined as the random fluctuations in emissive intensity of a single emitter 

under continuous laser excitation, blinking has made substantial impacts on the 

advancement of fluorescence imaging. 

Until recently, blinking has been most commonly exploited for two key 

purposes: (1) to report on heterogeneities in the local environment and (2) to localize 

the precise position of individual emitters. The former is often referred to as 
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“nanoreporting” because molecules’ behavior, which is dependent on the local 

environment, is manifested through their blinking dynamics. Probing the behavior of 

individual fluorophores informs upon heterogeneities and changes that would 

otherwise be hidden in a bulk measurement. For instance, blinking experiments have 

been used to study protein folding, electron transfer dynamics, and nanophotonics.5–9 

The latter use of blinking, localization, has significant applications in imaging, as it is 

utilized heavily in super-resolution imaging (SRI) techniques such as stochastic optical 

reconstruction microscopy (STORM).10 These techniques allow researchers to move 

beyond the diffraction limit and probe nanoscale systems with unprecedented spatial 

resolution.11,12 In STORM, individual emitters are localized through the detection of 

their stochastic emission. Blinking is essential here because it ensures that only a subset 

of isolated emitters fluoresce at once, allowing for accurate localization. 

Currently, multicolor imaging relies on measuring spectral color to distinguish 

emission signals. To limit the misidentification of emitters due to overlapping 

fluorescence signal, an issue called spectral crosstalk, the selected probes must have 

distinct emission spectra (i.e., separation of at least 50-100 nm).13 Consequently, there 

are few combinations of compatible, high-performance probes that can be used together 

in an imaging experiment. To circumvent the complications of crosstalk, multicolor 

images are often created using sequential imaging. Localizing emitters one class at a 

time accommodates for any differences in experimental conditions that may hinder 

simultaneous data collection (e.g., solvent, excitation power, or excitation wavelength) 

and ensures more accurate results. Unfortunately, this stepwise method also adds 
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significantly to the time and complexity of an experiment. With these challenges in 

mind, the Wustholz group sought to use its expertise in blinking experiments to develop 

simpler means for distinguishing emitters. 

In 2022, we pushed beyond the boundaries of traditional blinking experiments 

by proposing a third use for blinking: emitter identification in multicolor imaging.14 

Blinking-based multiplexing (BBM) 

eliminates the experimental demands 

of sequential imaging by facilitating 

automated differentiation of 

spectrally-overlapped emitters with 

just one excitation source (Figure 1). 

Since spectrally-overlapped probes 

absorb and emit at similar 

wavelengths, the emitters cannot be 

distinguished via their emission color. 

However, the Wustholz group, with over a decade of studying single-molecule 

blinking, observed qualitative dissimilarities in the blinking traces of spectrally-

overlapped fluorophores. BBM exploits these differences in the intrinsic blinking 

behavior of various emitters to overcome the limitations of current multicolor imaging 

techniques. 

BBM does not require that emitters are spectrally separated, but it does require 

that their blinking dynamics are distinct. To demonstrate the principle of BBM, 

 
Figure 1. BBM concept. (A) Two classes of 
spectrally overlapped emitters exhibit distinct 
blinking behavior. (B) The distributions of this 
behavior are quantified to develop a metric for 
classification. (C) The original emission image 
can be color coded according to the results of 
metric analysis. 
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rhodamine 6G (R6G), an organic dye, and 

core-shell CdSe/ZnS quantum dots (QD), a 

type of semiconductor nanoparticle, are 

selected as the initial emitter system. These 

two emitters are an optimal choice for initial 

BBM proof-of-concept because they are 

commercially available, spectrally overlapped (Figure 2), and known to exhibit 

different photophysical mechanisms for blinking.15,16 In this chapter, the development, 

testing, and refinement of the BBM method are described for R6G and QD on glass 

before moving on to test BBM in more complex systems in Chapter 3. 

 

2.2 Methods 

2.2.1 Materials and Sample Preparation 

R6G (Acros Organics, 99%) and QD (Invitrogen, Qdot 565 ITK carboxyl 

quantum dots, 8 μM solution in borate buffer) were used as received. All glassware 

was cleaned in a base bath (~1 M KOH) for 12-24 h and rinsed with ultrapure water 

(ThermoScientific, EasyPure II, 18.2 MΩ cm). Microscope coverslips (Fisher 

Scientific, 12-545-102) were base bathed for 12-24 h, rinsed with ultrapure water, and 

dried with clean air (Wilkerson, X06-02-000). Stock solutions were prepared in 

ultrapure water and sonicated for 1-2 min before use. QD and R6G stock solutions were 

diluted stepwise to ~1 nM concentrations to achieve appropriate labeling densities for 

single-molecule studies. Samples were prepared by spin coating 35 μL of the resulting 

 
Figure 2. Emission spectra of QD and 
R6G are significantly overlapped. 
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solution onto a clean glass coverslip using a spin coater (Laurell Technologies, WS-

400-6NPP-LITE) operating at 3000 rpm with a 5 s acceleration time and a 30 s spin 

time. 

 

2.2.2 Single-Molecule Spectroscopy and Data Analysis 

For single-molecule experiments, samples were mounted onto a custom 

aluminum flow cell (approximately 1.5" × 3" × 0.5", equipped with Tygon tubing) and 

flushed with dry nitrogen gas (Airgas, 100%). The secured flow cell was placed on a 

nanopositioning stage (Physik Instrument, LP E545) atop an inverted confocal 

microscope (Nikon, TiU). A high numerical aperture (NA) 100x oil-immersion 

objective (Nikon Plan Fluor, NA = 1.3) focused laser excitation at 532 nm (Spectra 

Physics, Excelsior) to a diffraction limited spot. An excitation power (Pexc) of 1.05 μW 

was used for single-emitter measurements of both R6G and QD to maximize emission 

signal while limiting photobleaching. Emission from the sample was collected through 

the objective and passed through an edge filter (Semrock, LP03-532RS-2S) before 

being focused to an avalanche photodiode detector (APD) with a 50 μm aperture (MPD, 

PDM050CTB) to achieve confocal resolution. Focus during raster scans was 

maintained using a z-axis microscope lock (Applied Science Instruments, MFC-2000). 

A custom LabView program was used to control the nanopositioning stage and collect 

corresponding emission intensities using a 30 ms dwell time. Single emitters were 

identified on the observation of blinking dynamics, diffraction-limited spots, 
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irreversible molecular photobleaching, and concentration dependence of spot density. 

All blinking traces were collected over 200 s with a 10 ms bin time (tbin). 

Blinking traces were analyzed using the change point detection (CPD) method 

(MATLAB 2022). CPD uses generalized likelihood tests to determine the statistically 

significant intensity levels of each trace and their corresponding temporal durations. 

The lowest deconvolved intensity level is defined as nonemissive (off), and intensity 

levels that are greater than one standard deviation above the root-mean-square noise 

are defined as emissive (on). An interval refers to the entire duration of time that a 

blinking trace is above or below this threshold (i.e., on and off intervals, respectively). 

Within these larger intervals, there may be successive changes in intensity level that do 

not signify a switch between on and off, which are called segments. For each blinking 

trace, CPD outputs fourteen blinking statistics that relate to these analytically 

determined intensity levels, intervals, segments, and durations.  

 

2.3 Results and Discussion 

2.3.1 Blinking Dynamics of QD and R6G on Glass 

Blinking traces of 143 QD and 148 R6G were collected on a confocal 

microscope at Pexc = 1 μW with tbin = 10 ms. Consistent with previous single-molecule 

studies, the two classes of emitters display, on average, visually distinct behavior 

(Figure 3A-B).16,17 To analyze each blinking trace, CPD is used. Histograms of the 

resulting statistics reveal the distributions for each emitter. For example, on average, 

QD display more unique intensity levels (𝑁ூ), higher segment event frequencies (𝜈ா), 
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and higher dispersion in both 

statistics than R6G, as shown in 

Figure 3C-D. Although these 

distributions display some degree of 

separation for the two emitters, 

neither statistic alone is sufficient to 

distinguish between them in the case 

of an unknown emitter. 

Consequently, a combined metric 

must be used for classification.  

The differences in QD and 

R6G behavior can be attributed to their distinct photophysical blinking mechanisms. 

Previous work attributes dark states of R6G on glass to intersystem crossing to the first 

triplet state (T1).18 However, more recently, R6G blinking has been found to be due 

electron transfer (ET) to charge trap states on the glass surface, meaning that an excited 

molecule may donate an electron to a nearby vacancy on the substrate.19 The on and 

off time distributions of R6G have been shown to be lognormal, which is consistent 

with the Albery model for complex ET.17,20,21 The Albery model describes the 

activation barriers to ET as a Gaussian distribution such that: 

      ∆𝐺‡ = ∆𝐺଴
‡ + 𝛾𝑥𝑅𝑇                (1) 

where ∆𝐺଴
‡ is the mean activation barrier, 𝛾 is the extent of energetic dispersion about 

∆𝐺଴
‡, and x is a random number generated from a Gaussian distribution. When 

 
Figure 3. BBM with R6G (red) and QD (blue). 
Representative blinking traces of (A) R6G and 
(B) QD on glass display qualitative differences. 
The structures of each emitter are displayed 
above their respective traces. Distributions for 
(C) NI and (D) 𝜈ா  for the emitters are 
overlapped, but, on average QD dynamics yield 
higher values and greater dispersion than R6G. 
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Equation 1 is substituted into the Arrhenius equation, the following rate constant (kij) 

expression results: 

                      𝑘௜௝ = 𝜅௜௝𝑒ିఊ௫       (2) 

with i and j representing the initial and final states of ET, respectively, and 𝜅௜௝ being a 

first-order rate constant corresponding to the mean activation barrier. Because 

activation barriers are assumed to be normally distributed according to the Albery 

model, the rate constants of ET and their corresponding on and off times are 

lognormally distributed.  

The exact cause of fluorescence intermittency in QDs is a subject of active 

inquiry, but two proposed mechanisms are thought to dominate: Type I (charging 

model) and Type II blinking.22 Type I blinking is a result of the charging and 

subsequent neutralization of the nanocrystal core. Essentially, excitation induces a 

charge-hole pair, or exciton, and one charge can be photoionized into a dark trap state 

on the nanocrystal surface, leaving the QD core temporarily charged.23 At this point, 

the QD may still promote additional electrons to the conduction band, but a fast process 

called Auger recombination prevents radiative release of energy. Auger recombination 

refers to the non-radiative transfer of energy from the new exciton to the remaining 

charge in the nanoparticle core. Once the electron-hole pair recombines, the system is 

neutralized, and the QD becomes fluorescent once again. According to this model, the 

length of a dark state depends on the lifetime of the charge trap, which suggests long 

durations for trap states. Type II blinking is dictated by fluctuations in the rate of charge 

trapping on the QD surface. In this model, fluorescence is interrupted when a positive 
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hole charge from an exciton gets transferred to a dark trap state, and it quickly 

recombines non-radiatively with the promoted electron to neutralize the nanocrystal 

core before the next exciton is created.22 This process only takes place when the hole 

trapping rate is larger than the fluorescence recombination rate, as the emitter will 

remain fluorescent when recombination occurs on a faster timescale than trapping. 

Trapping rate is proposed to vary over time due to gradual changes in the number of 

active, available trap sites on the QD surface. Unlike the charging model, Type II 

blinking does not require long-lived trap states but rather periods of time where 

trapping occurs faster than radiative recombination. Experimental results suggest that 

both the Type I and Type II mechanisms contribute to QD blinking. 

 

2.3.2 Metric-Based Blinking-Based Multiplexing 

As a first step toward classification of QD and R6G, BBM is executed using an 

empirically-derived mathematical metric.14 Analyzing histograms of the fourteen CPD-

derived blinking statistics (e.g., Figure 3C-D) reveals that the following five statistics 

have the best separation for these two emitters: number of unique intensity levels (𝑁ூ), 

minimum emissive intensity (𝐼௠௜௡), segment event frequency (𝜈ா), average intensity 

(〈𝐼〉௧), and average on interval time (〈𝑡௢௡〉). The metric value (M) for each individual 

probe is calculated using the following equation: 

   𝑀 = 𝑁ூ𝐼௠௜௡𝜈ா
ଶ〈𝐼〉ଶ〈𝑡௢௡〉                                          (3) 

For each of the included blinking statistics, the distribution of values for QD is, on 

average, higher than those for R6G. Multiplying these key statistics together 



31 
 

exaggerates distributional differences between the emitters, thus allowing for more 

accurate classification. Several alternative metrics were tested before settling on 

Equation 3, which maximizes classification accuracy while minimizing errors. Before 

calculating M for each emitter, the data is normalized to the entire dataset of known 

R6G and QD emitters (n = 291) and multiplied by 100. Normalization ensures that each 

statistic is weighted equally, and multiplication prevents M values from being < 1. 

Figure 4A reveals that the distribution of M values for R6G and QD are relatively well 

separated. 

To assess the ability of Equation 3 to distinguish QD and R6G, receiver 

operating characteristic (ROC) curve analysis is performed. ROC curves, often used in 

chemical sensing and clinical diagnostics, reveal the success of a classifying metric by 

visualizing the true positive rate (TPR) and false positive rate (FPR) as the threshold 

for binary classification is altered.24,25 A true positive occurs when an actually positive 

data point is correctly predicted as such, and TPR can be calculated as TPR=
TP

TP+FN
. A 

false positive refers to an actually false data point being incorrectly predicted as true, 

    
Figure 4. (A) Histogram of M values for R6G (red) and QD (blue). (B) ROC curves for 
R6G/QD classification based on M (green), 𝜈ா (black), and random guessing (dashed). 
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and FPR can be calculated as FPR=
FP

FP+TN
. The abbreviations TP, FP, TN, and FN 

correspond to true positives, false positives, true negatives, and false negatives, 

respectively. Perfect classification yields a point at (0,1), which indicates that all points 

are correctly identified with no errors. To the opposite effect, random guessing yields 

a diagonal that bisects the ROC space. The area under the curve (AUC) is dictated by 

the shape of the graph and demonstrates the metric’s performance, with values closer 

to 1 indicating better classification. The first example would result in AUC = 1, 

revealing flawless classification, whereas the latter case would have AUC = 0.5. For 

this study, a true positive is defined as R6G, whereas a true negative corresponds to 

QD. Figure 4B shows ROC curves regarding the classification of QD and R6G based 

on M, 𝜈ா, and random guessing. Although basing classification on 𝜈ா alone 

demonstrates promise (AUC = 0.94), M is the superior metric (AUC = 0.97). 

In addition to assessing the performance of various metrics, ROC curve analysis 

can be used to establish a numerical cutoff for binary classification of R6G and QD. 

The shape of the curve reveals the point that maximizes TPR and minimizes FPR. By 

analyzing the ROC curve for M, a cutoff between 3.7 × 10ସ and 8.25 × 10ହ is 

determined to achieve that goal. However, significant overlap in the middle of the 

distribution (3.7 × 10ସ < 𝑀 < 8.25 × 10ହ) prevents accurate emitter classification in 

that region. Consequently, we apply a double threshold, where emitters with M > 

8.25 × 10ହ were classified as QDs, and those with M < 3.7 × 10ସ were classified as 

R6G. When applied to the entire dataset of emitters, M classifies R6G and QD with 

93.5% (272/291) accuracy. Although this result demonstrates excellent BBM 
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performance, the double threshold approach excludes ~8% of data by omitting emitters 

with M values that fall in the unclassified middle region. 

To account for the excluded data points, we implement a second classification 

metric. In collecting blinking traces of R6G and QD, experimentalists recognized 

qualitative distinctions between their emissive behavior to the extent where emitters 

could be accurately classified through visual observation. A simple, yet effective 

manner for discriminating QD from R6G is the duration of emissive activity. Whereas 

QD demonstrates blinking throughout the 200 s period, R6G often photobleaches early 

on (i.e., it undergoes an irreversible photochemical change that no longer allows it to 

be excited by the wavelength of the laser source or fluoresce). Therefore, we introduce 

the secondary metric called “blinking past 150 seconds” for emitters that fail to be 

categorized by M. Unknown emitters that display emissive activity 150 seconds or later 

in the 200 s blinking trace are categorized as QD, and those that do not are marked as 

R6G. Adding on this blinking stipulation lowers the overall classification accuracy 

slightly to 92.5%, only a small tradeoff to make in exchange for inclusion of the full 

dataset (n = 291) in analysis. 

Next, BBM performance is tested by applying the dual metric system to mixed 

samples of QD and R6G. Blinking traces were collected from three mixtures of known 

composition—30:70 (n = 109), 50:50 (n = 145), and 70:30 (n = 97) QD to R6G by 

concentration— and analyzed using CPD and BBM metrics, as previously described. 

If the BBM model performs well for this given system, the metrics would predict a 

30/70, 50/50, and 70/30 split of QD and R6G, respectively. 
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The results of BBM analysis on each mixed emitter sample are presented in 

Table 1. There is excellent agreement between the expected composition, as 

determined by the ratio of concentrations, and the predicted composition. Small 

deviations from the expected values are 

attributed to sampling error, as caused by the 

limited size of the datasets (n = 109, 145, and 97, 

respectively). Even so, in each case, predictions 

fall within 5% (and as low as just 1%) of the 

expected value, further demonstrating the strong 

performance of the BBM model in this proof-of-

concept study. 

 

2.3.3 Machine Learning-Based Blinking-Based Multiplexing 

Despite high (92.5%) accuracy using M-based BBM, this approach was catered 

to the specific blinking properties of QD and R6G emitters. Therefore, the scope of this 

method is limited, as M does not necessarily capture the differences in blinking 

dynamics of other fluorophores, such as other rhodamine derivative dyes. Furthermore, 

M was optimized to QD and R6G blinking specifically on a glass substrate at Pexc = 

1.05 μW and tbin = 10 ms, so it does not account for changes in blinking dynamics that 

may be induced by alterations to experimental conditions. In addition, it took 

experimentalists upwards of two weeks to generate a metric for this simple binary 

system. In future endeavors, faster analysis and model building would allow for more 

[QD] : [R6G] 

Expected Predicted 

30 : 70 33.9 : 66.1 

50 : 50 51.0 : 49.0 

70 : 30 74.2 : 25.8 

Table 1. Expected composition of 
QD:R6G by concentration, 
compared to the composition as 
predicted by BBM. 
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efficient experimental execution and more rapid BBM results. For these reasons, the 

future of BBM has shifted towards machine learning techniques such as deep learning 

(DL) and logistic regression (LR), which can rapidly generate predictive models for 

classification of any system of emitters under any experimental conditions.26–28 

 

2.3.3.1 Deep Learning 

First, DL is explored as an alternative to M-based analysis. Using a one-

dimensional counterpart of residual neural network model with 13 convolutional layers 

and 1 dense layer, DL analysis on the previously described datasets of 143 QD and 148 

R6G molecules achieved an average classification accuracy of 93.2% and a maximum 

accuracy of 96.6%. Furthermore, when applied to the mixed emitter datasets of 

expected compositions 30:70, 50:50, and 70:30 QD to R6G, the average predicted 

compositions are 34.4:65.6, 42.1:57.9, and 60.8:39.4, respectively. Although within 

10% of the expected compositions, these results are not as accurate as what is achieved 

through CPD and metric analysis. Once again, deviations are expected due to the small 

size of the acquired datasets, but this error emphasizes some of the major shortcomings 

of DL. DL requires incredibly large datasets for training models and is computationally 

expensive.27 Additionally, DL utilizes hard classification in its predictions, meaning 

the model assigns each data point a definitive class rather than reporting probabilities 

for classification in each group. 
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2.3.3.2 Logistic Regression 

Given the limitations of DL for BBM, an alternative machine learning 

technique the lab investigated is LR. LR has the capability to quickly generate accurate 

soft classification models without large datasets or considerable computational 

expense.26,29–31 LR classifies binary or higher order systems by using maximum 

likelihood estimation to fit the system to a sigmoid, or logistic, function. The resulting 

model gives the probability of a single emitter to belong to class A (PA) as a function 

of an input predictor (x): 

𝑃஺(𝑥) = [1 + 𝑒ି(௠௫ା௕)]ିଵ                                         (4) 

where m and b are the regression coefficient and y-intercept fit parameters, 

respectively. Here, x is a single CPD-derived blinking statistic. LR generates the model 

by plotting the blinking statistic values against binary probabilities; for example, a 

known QD would be given the value PQD = 1 and a known R6G would have value PQD 

= 0. LR then fits the data to a sigmoid by determining appropriate fit parameters. 

A sample classification using LR is shown in Figure 5A. As seen in M-based 

BBM, NI for QD is higher, on average, than for R6G. To be specific, QD has an average 

value, 〈𝑁ூ〉, of 17.1 ± 0.6 whereas R6G has 〈𝑁ூ〉 of 6.0 ± 0.3. If NI is used as the only 

input, LR generates a model with 𝑏 = −5.2 and 𝑚 = 0.5. Plugging these values into 

Equation 4, we now have a function that can predict the identity of individual data 

points. For instance, an unknown emitter with 𝑁ூ = 12 results in 𝑃ொ஽ = 0.69. For a 

binary system, the default classification threshold is 0.50, so this emitter would be 

classified as QD. Despite overlap in the NI distributions for QD and R6G, LR with this 
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single blinking statistic yields an overall classification accuracy of 85.9%. As 

previously discovered in M-based analysis, however, identification accuracy is 

improved by incorporating more than one CPD-derived statistic into classification. 

A major advantage of LR is its adaptability. As will be further explored in 

Chapter 3, LR can be applied to any emitter system under any experimental condition, 

and it can also generate models with multiple input variables (called multinomial LR). 

Multinomial LR works similarly to its binomial counterpart except that it takes in 

several independent input predictors (x, y, …) to generate a multidimensional sigmoid 

as follows: 

𝑃஺(𝑥, 𝑦, … ) = ൣ1 + 𝑒ି(௠௫ା௡௬ ⋯௕)൧
ିଵ

                                 (5) 

where the fit parameters are b and the regression coefficients (m, n, …), which 

correspond to each predictor (x, y, …), respectively. These inputs must be standardized 

because interpretation is difficult and ineffective without a common scale. 

Standardization occurs via the z-score normalization approach. For each blinking trace, 

𝑧 =
(𝑥 − 𝜇)

𝜎ൗ  is calculated, where μ is the mean of the blinking statistic and σ is its 

standard deviation for the entire dataset. For the purpose of BBM, 10 independent CPD-

derived blinking statistics are used as input predictors: 𝑁ூ, 𝐼௠௜௡, 𝐼௠௔௫, 〈𝐼〉௧, 〈𝑡௢௡,௜௡௧〉, 

〈𝑡௢௙௙,௜௡௧〉, 〈𝑡௢௡,௦௘௚〉, 〈𝑡௢௙௙,௦௘௚〉, 𝑁௢௡,௦௘௚, and 𝑁௢௙௙,௦௘௚. The remaining 4 CPD statistics 

are excluded due to high correlation with one or more of the 10 included values; for 

instance, switching frequencies are directly related to the number of segments and 
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intervals in a given blinking trace. Reducing collinearity eliminates redundancy in the 

logistic model and, in effect, allows for more reliable interpretation of regression 

coefficients.26 

With the desired input predictors decided, LR is applied to the 291 QD and R6G 

emitters on glass at Pexc = 1 μW to give the following best fit logistic model in the form 

𝑃ொ஽ = [1 + 𝑒ି௭]ିଵ, where 

𝑧 = 8.5𝐼௠௜௡ + 4.0𝑁ூ − 3.8𝐼௠௔௫ + 3.2〈𝐼〉௧ − 3.0〈𝑡௢௙௙,௦௘௚〉 + 1.2〈𝑡௢௙௙,௜௡௧〉

+ 0.7𝑁௢௙௙,௦௘௚ + 0.6〈𝑡௢௡,௜௡௧〉 − 0.1𝑁௢௡,௦௘௚ + 0.04〈𝑡௢௡,௦௘௚〉 + 2.2 

 (6) 

with regression coefficients listed in descending order. The magnitude of the 

coefficients signifies the importance of the corresponding blinking statistic in 

discriminating the two emitters. In other words, because of their comparatively large 

coefficients, 𝐼௠௜௡, 𝑁ூ, 𝐼௠௔௫, and 〈𝐼〉௧ have the biggest influence over classification, 

which indicates that intensities are key for distinguishing between R6G and QD. On 

the other hand, 〈𝑡௢௡,௦௘௚〉 and 𝑁௢௡,௦௘௚ have coefficients that are close to zero, meaning 

that the number and durations of on segments have little impact on classification. With 

this model and a default binary classification threshold (i.e., PQD or PR6G > 0.5 for an 

emitter results in classification as QD or R6G, respectively), 92.7% (270/291) of QD 

and R6G emitters are correctly classified. In just a minute or less, LR generates a high-

performance model that can classify emitters with an accuracy that rivals that of the 

empirically-derived metric (which had 92.5% accuracy). 

 Accuracy alone does not explain the whole story. To gain greater insight into 
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the performance of the LR model, 

we once again use ROC curve 

analysis to uncover the TPR and 

FPR of the system. The same 

methodology as described above 

was used to create a ROC curve 

corresponding to LR classification, 

where the LR probability outputs 

are thresholded to generate the plot. 

The resulting graph and the M-

based curve are overlaid in Figure 

5B. High AUC values of 0.97 and 

0.98 for M-based and LR-based 

classification indicate that both 

methods display exceptional 

performance in classifying this 

system, but LR has a slight 

advantage. Between its rapid, automated, and accurate model generation, its superior 

AUC value, and its use of soft classification, LR is the clear choice for BBM analysis. 

As revealed by the ROC curve, the classification threshold can be adjusted from 

the default for a binary system (i.e., PA > 0.5 leads to classification in class A) to 

maximize TPR and minimize FPR. Figure 5C demonstrates how TPR, FPR, and 

 
Figure 5. (A) LR-derived model for classification 
of QD and R6G on glass at Pexc = 1 μW and tbin = 
10 ms using NI as the only input predictor yields 
85.9% classification accuracy. (B) ROC plots of 
multinomial LR-based classification (black) and 
M-based classification (gray) have AUC = 0.98 
and 0.97, respectively, revealing the superior 
performance of LR. (C) Overall classification 
accuracy of LR (green) improves as the 
classification threshold is increased from 0.5 to 1 
and less certain data is omitted. Inset confusion 
matrices at thresholds 0.5 and 0.8 offer greater 
detail into LR performance at each point. Data 
retention (gray) reveals the balance between 
accuracy and data inclusion. 
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overall classification accuracy are affected as the threshold is varied. As mentioned, in 

the default case, LR correctly classifies 270/290 (92.7%) of R6G and QD emitters. 

From the inset confusion matrices, the number of TP, TN, FP, and FN emitters are 

identified to calculate TPR = 132/143 (0.92) and FPR = 10/148 (0.07). As a reminder, 

QD is defined as “positive” and R6G is defined as “negative.” When the classification 

threshold is increased to 0.8, the overall accuracy increases to 257/270 (94.8%) 

correctly classified emitters. In this case, PQD or PR6G > 0.8 are classified as QD or 

R6G, respectively, and the “less certain” emitters that fall below this threshold are 

omitted from analysis. At this new threshold, TPR = 0.94 and FPR = 0.04. The increase 

in TPR and overall accuracy and the decrease in FPR are improvements over default 

classification. 

Classification thresholding, unfortunately, comes at a small cost. Because 

emitters that fall below the altered threshold cannot be classified, they must be 

discarded. However, note that in the example described above, shifting the 

classification threshold from 0.5 to 0.8 leads to the exclusion of only 21 emitters (7.2% 

of the total dataset of 291 QD and R6G). Figure 5C visualizes the balance between 

overall accuracy and data retention as classification threshold is varied. The threshold 

can be tuned accordingly depending on the application. In data-dense experiments such 

as SRI, classification accuracy may be valued over data retention, and an accuracy of 

~98% can be reached by discarding only ~25% of emitters. A further consideration is 

that the shape of this graph changes based on the emitter system, sample size, and 

experimental conditions, so the abrupt increases and decreases in accuracy that are seen 
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here may be smoothed in the case of a larger dataset. With or without applying a 

classification threshold, the improved accuracy of LR indicates its superiority over 

metric-based classification. 

To demonstrate the generalizability of multinomial LR as compared to M-based 

classification, both methods are applied to new datasets of QD and R6G collected at 

decreased and elevated excitation power settings of Pexc = 0.8 and 1.2 μW, respectively. 

Using Equation 3 to classify the emitters yields classification accuracies of 82.0% for 

the 0.8 μW datasets and 79.5% for the 1.2 μW datasets, both of which fall significantly 

below the high standard set by the results at 1 μW (i.e., 92.5% accuracy).14,31 On the 

other hand, using LR to generate a new predictive model for QD and R6G at the two 

new powers yields higher default accuracies of 83.0% and 93.0% for 0.8 and 1.2 μW, 

respectively. The observations here further solidify the advantages of LR over metric-

based analysis: it is substantially faster, more broadly applicable to various 

experimental conditions, and more accurate overall. 

 

2.4 Conclusion 

In this work, SMS is used to characterize the blinking of R6G and QD on a 

glass substrate for the purpose of distinguishing the emitters without measuring spectral 

color, a method called BBM. Blinking traces measure stochastic fluctuations in 

emissive intensity of single emitters over time, and these traces are analyzed by CPD, 

which parses out fourteen statistics that describe the behavior of the emitters. On 

average, the distributions of QD behavior falls above that of R6G for a number of 
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blinking statistics, including NI and vE, which can be attributed to their differences in 

photophysical blinking mechanism. However, significant overlap in these distributions 

prevents accurate emitter classification with only one blinking statistic. In response, we 

design metric-based analysis and eventually machine learning analysis for accurate 

classification of single QD and R6G emitters. 

BBM may be carried out through an empirically derived metric designed by 

experimentalists for the QD/R6G system under specific experimental conditions (i.e., 

glass substrate, Pexc = 1 μW, and tbin = 10 ms). Equation 3 is derived from the five 

blinking statistics with the best distributional separation in order to exaggerate their 

differences. When used in conjunction with a secondary metric (i.e., blinking activity 

past 150 s), this BBM approach achieves accuracy of 92.5%. Furthermore, applying 

metric analysis to mixed QD and R6G samples of known composition yields excellent 

agreement between BBM prediction and expected values. These preliminary results 

demonstrate the promise of BBM as a novel SRI tool. However, specially crafting an 

empirical metric to the conditions of a particular experiment significantly limits the 

scope of its applications. M-based analysis distinguishes QD and R6G only under the 

given conditions of this experiment and cannot necessarily be applied to other emitters 

and other conditions. Consequently, machine learning is used as an alternative 

approach to BBM analysis. 

Machine learning techniques like LR allow for rapid, automated classification 

of any system of emitters under any experimental conditions. LR creates an accurate 

(92.7%) model for classifying QD and R6G in less than a minute. Furthermore, 
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accuracy may be significantly improved by applying a classification threshold with 

high data retention (e.g., ~98% accuracy is achieved with ~75% data retention). 

Between its elevated accuracy, tunable classification threshold, rapid model generation, 

and generalizability to other systems, LR-based BBM is superior to the metric-oriented 

design. 

These studies, especially the development of LR analysis, establish BBM as a 

powerful new tool for classifying emitters. Because of the adaptability of LR, these 

experiments also raise interesting questions regarding the performance of BBM with 

other fluorophore systems and experimental conditions. QD and R6G are very 

dissimilar emitters in structure, blinking mechanism, and fluorescence behavior, which 

made for an excellent proof-of-concept study. To expand the capabilities of BBM (e.g., 

a wider array of emitters for selection), LR performance must be tested on emitters that 

are more similar in nature, such as other organic fluorophores. Furthermore, 

experimental conditions such as labeling density and Pexc have the potential to effect, 

and even enhance, BBM accuracy. Investigating the impacts of these variables will 

allow us to tune and optimize BBM performance. Finally, studying more complex 

sample environments is a crucial step for broadening the applicability of BBM. The 

goal is to apply this novel approach to SRI experiments, which have much more 

environmental complexity than the glass substrate utilized in this study. In the next 

chapter, two of these considerations—imaging environment and emitter system—are 

investigated with the BBM methodology established here.  
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Chapter III: Blinking-Based Multiplexing in Model Biological Environments 

3.1 Introduction 

 Fluorescence imaging of nanoscale biological systems is critical to 

understanding their structures, functions, and inter/intracellular interactions.1,2 

Multicolor super-resolution imaging (SRI) allows for such systems to be visualized 

with unprecedented spatial resolution.3–5 However, because multicolor SRI relies on 

spectral color for emitter identification, there are few sets of emitters that can be used 

together due to incompatible experimental conditions and limited availability of high-

performance probes across the visible spectrum. Even relatively small overlaps in 

emission spectra can lead to inaccuracy called spectral crosstalk. To overcome this 

challenge, many researchers turn to sequential imaging of emitters, which eliminates 

the effects of crosstalk but also increases experimental time and demands.6,7 

 Blinking-based multiplexing (BBM) is a novel multicolor imaging tool that 

eliminates the reliance on spectral color for emitter identification by instead exploiting 

their intrinsic blinking dynamics.8 Blinking, defined as random fluctuations of single 

emitters under continuous photoexcitation, is a natural phenomenon that is observed 

only at the single-molecule level. The blinking dynamics of single emitters are highly 

dependent not only on their chemical identity but also the conditions of the local 

environment. That is, single molecules of the same class display dispersive behavior 

depending on factors such as molecular orientation or proximity to other molecules.9 

The initial BBM experiment separating quantum dots (QD) from rhodamine 6G (R6G) 

emitters demonstrated a successful proof-of-concept, but also generated questions 
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about BBM’s performance under various experimental conditions. Although BBM was 

initially performed using an empirically-derived metric, this approach is time-intensive 

and limits the scope of BBM. Logistic regression (LR), a machine learning technique, 

offers a much faster, more generalizable approach by generating predictive models for 

QD and R6G under various experimental conditions. For instance, classification 

accuracies of 95% are routinely achieved for QD and R6G on glass with various 

excitation powers (Pexc) and bin times (tbin) using LR and classification thresholding.10 

In each experiment, LR successfully adapts to the unique blinking distributions of each 

system to rapidly generate high-performance models for emitter classification.  

There are several additional variables to investigate to both optimize and 

broaden the applicability of BBM for biological imaging. BBM control experiments 

were performed on a simple glass environment, making substrate a crucial variable for 

investigation before BBM can be applied to more complex systems (e.g., biological 

structures). Additionally, it is necessary to expand the capabilities of BBM to 

differentiate more than two spectrally-overlapped probes, as otherwise it will face the 

same limitations as current multicolor imaging techniques. Organic dyes are of 

particular interest due to their small size and greater biocompatibility as compared to 

inorganic nanoparticles. In this chapter, the environmental and molecular dependence 

of BBM are investigated using the polymer poly(vinyl alcohol) (PVA) as a model 

biological environment for emitter immobilization and a boron-dipyrromethene 

(BODIPY) dye as a new probe for the BBM library. 
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3.1.1 Poly(vinyl Alcohol) as a Model Biological Environment 

First, BBM of the previously established QD and R6G system is tested in a new, 

more complex environment. Because single-molecule blinking behavior is closely 

related to local environment, altering substrate is likely to impact an emitter’s blinking 

mechanism (e.g., by allowing access to new dark states or offering greater 

photostability). Ultimately, BBM is meant to be utilized in biological imaging 

experiments, which involve a much higher degree of 

environmental complexity than the simple glass substrates 

used in Chapter 2. It is therefore reasonable to suspect 

qualitative and quantitative changes in the blinking of QD 

and R6G in such an environment. To establish the viability 

of BBM for complex imaging applications, we test its 

performance with a model biological environment: poly(vinyl alcohol) (PVA).  

PVA is a linear polymer with an alternating hydroxyl unit (Figure 1), 

synthesized from the full or partial hydrolysis of poly(vinyl acetate).11,12 The properties 

of PVA, including glass transition temperature (Tg), crystallinity, and viscosity, are 

highly dependent on its degree of hydrolysis and molecular weight (MW). Experiments 

in this chapter use 88% hydrolyzed PVA with MW ~15 kDa, which, according to the 

manufacturer, has a viscosity of 4.1 cPs for a 4% aqueous solution. Tg, the temperature 

at which PVA transitions from a rigid to a flexible state, has been reported to range 

from ~70-90 ℃, with higher values corresponding to higher degrees of hydrolysis and 

lower values indicating higher water content.11,13,14 Above this temperature, PVA 

Figure 1. Structure of 
poly(vinyl alcohol). 
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becomes mobile and flexible, which has been shown to affect the photophysics of 

embedded fluorophores.13,15–17 At room temperature, however, the rigidity of PVA 

immobilizes emitters and offers greater structural stability.18  

PVA is known to introduce alternative blinking pathways that alter the 

fluorescent behavior of embedded emitters. For R6G in particular, the hydroxyl groups 

of PVA are thought to donate an electron to the lowest triplet state (𝑇ଵ) of R6G, 

producing a radical anion of R6G and forcing it into a reversible dark state.19 This 

electron transfer process is dependent on intermolecular distance between the dye and 

a PVA hydroxyl site, which leads to a broad distribution of the lifetimes of fluorescent 

events, which can be probed with SMS. For QD in PVA, it has been proposed that dark 

states arise due to the stabilization of charges ejected from the emitter to self-trapped 

states in the polymer matrix.20  

PVA has already been used as a model biological environment in numerous 

single-molecule studies.14,19,21–23 Bittel et al. has demonstrated effective use of emitter 

immobilization in PVA as a simple yet effective method for screening fluorophores for 

potential use in SRI.21 The study and characterization of photophysical properties 

commonly involves fluorophore immobilization via labeling a known cell structure or 

protein conjugation to glass. However, fluorophores embedded in PVA and conjugated 

to glass displayed similar photophysical behavior, indicating that PVA is a faster, 

simpler alternative for evaluating emitters. Furthermore, PVA also has a myriad of 

favorable characteristics that make it attractive for biological studies. As a 

biocompatible polymer, PVA is nontoxic to living cells and has extensive applications 
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in the biomedical field, including drug delivery and wound care, as well as food 

science.24–27 Furthermore, below Tg, PVA creates a more rigid, less reactive 

environment for probes than simple aqueous solution, which offers greater structural 

stability for fluorophores.14,18 Between its simplicity for experimental use, its 

biocompatibility, and its composition of polar and nonpolar groups, PVA serves as a 

model system that mimics a biological setting. 

 

3.1.2 Properties of Pyrromethene 605 

In addition to studying BBM environment, this chapter expands the library of 

BBM emitters by investigating the behavior of an organic BODIPY fluorophore, both 

on glass and in PVA. BODIPY dyes are becoming increasingly popular in imaging 

experiments due to their small size, spectral stability, narrow emission bandwidth, and 

compatibility with live cells.22,28–32 These dyes demonstrate significant spectral 

tunability over the visible region with only slight structural variations.33–35 

Additionally, BODIPY derivatives can be synthetically engineered to have a wide 

range of Stokes shifts, which has allowed for 

successful simultaneous imaging of two or more 

probes via spectral discrimination.22,31 However, 

such a library of tunable emitters is not 

commercially available, and the design and 

synthesis of each probe is time-intensive and so far unavailable to SRI practitioners. 

Furthermore, despite widespread interest in BODIPY dyes due to their favorable 

 
Figure 2. Structure of PM605. 
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emissive properties, the blinking mechanism of this family of molecules is poorly 

understood.  

Pyrromethene 605 (PM605), is a commercially-available BODIPY derivative 

(Figure 2). According to the manufacturer, PM605 has a quantum yield of 0.74 and an 

extinction coefficient of 7.76 × 10ସ M-1 cm-1 at its maximum absorption wavelength 

of 543 nm. The high extinction coefficient and quantum yield, along with significant 

spectral overlap with QD and R6G 

(Figure 3) make PM605 a good 

candidate for BBM at 532 nm laser 

excitation. In this chapter, the blinking 

dynamics of PM605 on glass and in 

PVA are examined to investigate its 

blinking mechanism and establish it as a 

viable BBM probe.  

 

3.2 Methods 

3.2.1 Materials and Sample Preparation 

R6G (Acros Organics, 99%) and PM605 (Exciton) were used as received. All 

glassware was cleaned in a base bath (~1 M KOH) for 12-24 h and rinsed with ultrapure 

water (ThermoScientific, EasyPure II, 18.2 MΩ cm). Microscope coverslips (Fisher 

Scientific, 12-545-102) were base bathed for 12-24 h, rinsed with ultrapure water, and 

dried with clean air (Wilkerson, X06-02-000). R6G stock solutions (~10ିସ M) were 

 
Figure 3. Emission spectra of R6G, QD, and 
PM605 display significant overlap. 



53 
 

prepared in ultrapure water, and PM605 stock solutions (~10ିସ M) were prepared in 

ethanol (Pharmco, absolute anhydrous, 200 proof). QD stock solutions (Invitrogen, 

Qdot 565 ITK carboxyl quantum dots, 8 μM solution in borate buffer) were used as 

received. Stock solutions of R6G and PM605 were sonicated for ~1 min before use. 

For QD and R6G experiments, solutions of 10% wt PVA were prepared by gradually 

adding powdered PVA (MP Biomedicals, 88% hydrolyzed, MW ~15 kDa) to ultrapure 

water heated to 40 ℃. For use in PM605 experiments, solutions of 10% wt PVA were 

prepared by gradually adding powdered PVA to a 1:1 v/v mixture of ultrapure water to 

EtOH heated to 40 ℃. For thorough mixing, the solutions were gently stirred at 65 ℃ 

for several hours before being transferred to a rotator (Fisher Scientific, Multi-Purpose 

Tube Rotator, 88861049) for 12-24 h at 5 rpm.  

For PM605 experiments on glass, an ethanolic stock solution was diluted to 1 

nM to achieve appropriate labeling density for single-molecule studies. Samples were 

prepared by spin coating 35 μL of the resulting PM605 solution onto a clean glass 

coverslip using a spin coater (Laurell Technologies, WS-400-6NPP-LITE) operating at 

3000 rpm with a 5 s acceleration time and a 30 s spin time. Consistent with previous 

single-molecule studies in PVA, emitter solutions were prepared in 10% wt PVA 

solutions.13,36. QD and R6G were diluted to final concentrations of 4 nM and 10 nM, 

respectively, in aqueous PVA solution. PM605 was diluted to a final concentration of 

2 nM in 1:1 EtOH to ultrapure water PVA solution. The resulting R6G/PVA, QD/PVA, 

and PM605/PVA solutions were mixed on a rotator for 12-24 h at 5 rpm. To achieve a 

thin polymer film (i.e., ~250 nm thickness) with evenly dispersed emitters, single-
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molecule samples were prepared by spin coating 100 μL of one of the three 

aforementioned emitter/PVA solutions onto a coverslip at 3000 rpm with a 5 s 

acceleration time and 30 s spin time.13 To reduce the amount of adsorbed water in the 

emitter/PVA samples, which has been found to reduce the emission intensity of 

fluorophores via vibrational relaxation, the prepped slides were stored under vacuum 

overnight before use.23 

 

3.2.2 Single-Molecule Spectroscopy and Data Analysis 

Single-molecule samples were mounted onto a custom aluminum flow cell 

(approximately 1.5" × 3" × 0.5" and equipped with Tygon tubing) and flushed with 

dry nitrogen gas (Airgas, 100%). The flow cell was placed on a nanopositioning stage 

(Physik Instrumente, LP E-545) atop an inverted confocal microscope (Nikon, TiU). 

Using a high numerical aperture (NA) 100x oil-immersion objective (Nikon Plan Fluor, 

NA = 1.3), laser excitation at 532 nm (Spectra Physics, Excelsior) was focused to a 

diffraction limited spot. Excitation powers (Pexc) of 0.8 and 1 μW were used for 

PM605/glass and emitter/PVA experiments, respectively, to maximize emission signal 

while limiting molecular photobleaching. Sample emission was collected through the 

objective and passed through an edge filter (Semrock, LP03-532RS-2S) before being 

focused to an avalanche photodiode detector (APD) with a 50 μm aperture (MPD, 

PDM050CTB) to achieve confocal resolution. Focus during raster scans was 

maintained using a z-axis microscope lock (Applied Science Instruments, MFC-2000). 

A custom LabView program was used to control the nanopositioning stage and collect 
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the corresponding emission intensities, which were measured with a 30 ms dwell time. 

Single emitters were identified on the observations of blinking dynamics, diffraction-

limited spots, irreversible molecular photobleaching, and/or concentration dependence 

of spot density. All blinking traces were collected over 200 s with tbin = 10 ms. 

Blinking traces were analyzed using the change point detection (CPD) method 

described in Chapter 2, which determines the statistically significant intensities of each 

trace and their corresponding temporal durations to quantify the blinking dynamics of 

each emitter. Ten independent CPD blinking statistics are used in LR for generating 

models. Four statistics describe the intensity levels of a trace: the number of unique 

intensity levels (NI), minimum emissive intensity (Imin), maximum emissive intensity 

(Imax), and average intensity level over the entire trace duration (〈𝐼〉௧). Imin is defined as 

one standard deviation above the minimum deconvolved intensity level. LR also 

includes several statistics that describe the number and durations of emissive and 

nonemissive segments and intervals: number of on segments (Non,seg), number of off 

segments (Noff,seg), average on-segment time (〈𝑡௢௡,௦௘௚〉), average off-segment time 

(〈𝑡௢௙௙,௦௘௚〉), average on-interval time (〈𝑡௢௡,௜௡௧〉),  and average-off interval time 

(〈𝑡௢௙௙,௜௡௧〉). Segments are events at one intensity level, and intervals include all 

successive segments that occur before a switch between on and off. By fitting the 

statistics of each emitter system to a 10-dimensional sigmoid function (i.e., one 

dimension per included CPD statistic), LR generates a model that gives the 

classification probability of a single emitter (PA) as a function of input predictors. A 

more detailed description of LR is found in Chapter 2. 
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3.3 Results and Discussion 

3.3.1 Blinking Dynamics of QD and R6G in PVA 

 To test the performance of BBM in the more biologically relevant PVA 

environment, blinking dynamics of hundreds of QD and R6G emitters in PVA are 

collected at 532 nm excitation and Pexc = 1 μW. Typically, in single-molecule 

experiments, the presence of single emitters is determined by the appearance of bright 

diffraction-limited spots with significant contrast from a dim background. However, 

Figure 4A, which shows a typical false-colored emission scan of 10 nM R6G/PVA, 

displays increased background signal that is not observed for corresponding 

measurements of emitters on glass. To determine if the elevated background signal is 

 
Figure 4. (A) Representative emission scan of 10 nM R6G in PVA at Pexc = 1 μW. (B) 
Emission images of blank 10% wt PVA under the same conditions display dim diffraction-
limited spots and high intensity pixels across the scans due to polymer impurities and/or 
scattering from aggregates. (C) Histograms of I values for 138 blank PVA spots (gray) and 
261 R6G and QD emitters in PVA (purple) are well separated. (D) ROC curve analysis of 
the I threshold (purple) as compared to the hypothetical case when a classifier cannot 
distinguish (gray). A high AUC establishes I as an effective parameter for distinguishing 
true emitters from PVA background signal. 
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due to the polymer film, blank PVA samples were prepared using the same methods 

but without the addition of emitters. 30 emission images of blank PVA were measured 

(Figure 4B) and compared to corresponding images of emitter samples. These scans 

display dim diffraction-limited spots and high-intensity pixels scattered throughout the 

scan. The source of these features is thought to be due to impurities and/or scattering 

from large aggregates of PVA. To ensure that background signal from PVA is excluded 

from true emitter datasets, the distribution of emission image intensities (I) is found by 

sampling values for 138 blank PVA, 124 R6G/PVA, and 137 QD/PVA spots (Figure 

4C). The latter two are grouped together as “emitter/PVA” for analysis purposes. The 

average emission intensity, 〈𝐼〉, for blank PVA is 54 ± 2 counts per 30 ms, which falls 

significantly below the emitter/PVA average of 172 ± 4 counts per 30 ms. 

Furthermore, the overall I distributions for blank PVA and emitter/PVA are well 

separated. 

 Because of the excellent separation of the distributions, an I-based threshold is 

applied to ensure that blank PVA is excluded from the datasets of true QD and R6G 

emitters. Receiver operating characteristic (ROC) curve analysis (described in Chapter 

2 in greater detail) is used to assess whether I is an appropriate criterion for identifying 

true emitters. The correct identification of QD or R6G as an emitter is defined as a true 

positive, and a false positive refers to the case where PVA background signal is 

incorrectly attributed to an emitter. Area under the curve (AUC) for the ROC curve, is 

0.98 (Figure 4D). The closer an AUC value is to 1, the more effective the test parameter 

is for differentiation, so the high value here assures that I is an appropriate metric for 



58 
 

identifying true emitters. Next, the graph is examined to establish an appropriate 

threshold to maximize true positive rate (TPR) and minimize false positive rate (FPR). 

Another factor to consider in selecting a threshold is that it should not be set too high 

as to exclude excessive quantities of dim true emitter data. Considering these three 

elements, an I threshold value of 100 counts per 30 ms is selected, where 𝐼 ≥ 100 

corresponds to an emitter and 𝐼 < 100 to PVA background signal. Within this 

framework, a high TPR of 0.92 and low FPR of 0.06 are achieved, and just 20/261 

(<8%) of diffraction-limited spots from the collective emitter/PVA dataset are 

attributed to PVA and need to be discarded. The threshold ensures that only true 

emitters are included in BBM analysis and comes at a low data loss rate. For the 

remainder of this work, we focus on the remaining 129 QD/PVA and 112 R6G/PVA 

spots and corresponding blinking traces (Figure 5) that are determined to be true 

emitters after applying the 𝐼 ≥ 100 counts per 30 ms threshold.  

The blinking dynamics of QD and R6G emitters undergo significant changes in 

PVA as compared to glass (Table 1), consistent with previous studies.8,19,37,38 Notably, 

 
Figure 5. Representative blinking traces of (A) R6G/PVA and (B) QD/PVA at Pexc = 1 μW. 
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the emissive intensity of both emitters is decreased from glass to PVA. Imax decreases 

from 140 ± 10 to 43 ± 2 counts per 10 ms and 36 ± 4 to 24 ± 2 counts per 10 ms for 

QD and R6G, respectively, which may be attributed to fluorescence quenching from 

PVA hydroxyl groups and adsorbed water reducing the emissive intensity of emitters 

via vibrational relaxation.23,39 For the same reason, 〈𝐼〉௧ decreases for QD/PVA as 

compared to glass. However, an increase in 〈𝐼〉௧ is observed for R6G/PVA. Although 

this may appear contradictory to the decrease in Imax, it is important to note that R6G 

displays an increase in 〈𝑡௢௡,௜௡௧〉 when embedded in PVA. This observation, consistent 

with reports that polymer matrix may stabilize emitters, indicates that longer emissive 

events in PVA elevate 〈𝐼〉௧ despite the diminished intensities.18,40  

 QD R6G 
Blinking 
Statistic 

Glass PVA Glass PVA 

NI 17.1 ± 0.6 12.4 ± 0.4 6.1 ± 0.3 6.5 ± 0.3 

Non,seg 270 ± 20 78 ± 5 29 ± 5 31 ± 5 

Noff,seg 17 ± 1 14.2 ± 0.8 6.6 ± 0.8 10 ± 1 

Imin 15 ± 2 8.6 ± 0.5 4.0 ± 0.2 6.6 ± 0.8 

Imax 140 ± 10 43 ± 2 36 ± 4 24 ± 2 

〈𝑰〉𝒕 54 ± 5 19 ± 1 4.7 ± 0.5 6.7 ± 0.4 

〈𝒕𝒐𝒏,𝒔𝒆𝒈〉 1.2 ± 0.1 3.0 ± 0.3 2.3 ± 0.7 3.5 ± 0.5 

〈𝒕𝒐𝒇𝒇,𝒔𝒆𝒈〉 2.2 ± 0.3 4.6 ± 0.5 15 ± 1 5.0 ± 0.4 

〈𝒕𝒐𝒏,𝒊𝒏𝒕〉 14 ± 1 15 ± 1 6 ± 1 10 ± 1 

〈𝒕𝒐𝒇𝒇,𝒊𝒏𝒕〉 3.1 ± 0.7 5.0 ± 0.4 11 ± 2 11 ± 2 

 
Table 1. Average blinking statistics of R6G and QD emitters at Pexc = 1 μW on glass and in 
PVA for the 10 blinking statistics included in LR analysis. Errors correspond to standard 
deviations of the mean. Intensities are reported in counts/ 10 ms, and times are reported in 
seconds. 
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Average blinking statistics, 

however, do not tell the whole story. 

Although statistics such as 〈𝑡௢௡,௜௡௧〉 and 

〈𝑡௢௙௙,௜௡௧〉 show little to no change between 

the glass and PVA environments, their 

distributions reveal shifts that are hidden by 

ensemble averaging. Complementary 

cumulative distribution functions (CCDFs) 

describe the probability of a blinking event lasting as long as or longer than a specified 

time; the distributions start at high probability for short blinking events and decrease 

as event duration increases. Qualitative assessment of CCDFs for QD and R6G on- and 

off-interval times corroborates the changes in blinking (Appendix I, Figures A1-A2 

and Tables A1-A2). For instance, off-interval times for QD demonstrate modest 

broadening in PVA as compared to glass (Figure 6), consistent with previous 

observations of complex electron transfer (ET) in PVA.14,19,38 All single-molecule 

experiments were performed well below Tg, so the altered blinking kinetics are 

attributed to the new blinking mechanisms in PVA rather than emitter rotation or 

photoinduced intramolecular rearrangement.19 These changes confirm the dependence 

of single emitter blinking dynamics on local environment and establish PVA as a 

suitable model environment for BBM.  

 

 

 
Figure 6. Off times CCDF for QD on 
glass (black) and in PVA (red) reveal 
differences in emitter blinking dynamics 
between the environments. 
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3.3.2 Blinking-Based Multiplexing of QD and R6G in PVA 

To test the performance of BBM analysis in PVA, multinomial LR is performed 

on 129 QD/PVA and 112 R6G/PVA emitters. LR outputs the following best fit model 

in the form 𝑃ொ஽ = [1 + 𝑒ି௭]ିଵ, where 

𝑧 = 2.8〈𝐼〉௧ + 2.7𝑁ூ − 1.9𝑁௢௡,௦௘௚ − 0.7〈𝑡௢௙௙,௦௘௚〉 + 0.6𝐼௠௜௡ + 0.4𝑁௢௙௙,௦௘௚ −

0.2𝐼௠௔௫ + 0.2〈𝑡௢௡,௦௘௚〉 − 0.2〈𝑡௢௡,௜௡௧〉 − 0.2〈𝑡௢௙௙,௜௡௧〉 + 1.1     (1) 

with regression coefficients listed in descending magnitude. The magnitude of a 

coefficient indicates the model’s sensitivity to the corresponding blinking statistic for 

classifying emitters. That is, blinking statistics that have well-separated distributions 

result in larger coefficients and 

therefore are more influential 

in LR predictions. In this 

framework, 〈𝐼〉௧, NI, and Non,seg 

are the most important 

statistics for distinguishing 

R6G and QD in PVA, whereas 

average interval and on-

segment times (i.e., 〈𝑡௢௡,௜௡௧〉, 

〈𝑡௢௙௙,௜௡௧〉, and 〈𝑡௢௡,௦௘௚〉) play 

relatively modest roles in 

classification.  

 
Figure 7. Classification accuracy (green) and data 
retention (gray) for BBM of QD and R6G in PVA at 
Pexc = 1 μW via multinomial LR as classification 
threshold is varied. Inset confusion matrices reveal LR 
performance at the default binary classification 
threshold and a threshold of 0.87. The default yields 
87% accuracy and retains 100% of the data, whereas at 
the 0.87 threshold, accuracy reaches 95% but ~40% of 
data points are discarded.  
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Using the default classification threshold for a binomial system (i.e., PQD or 

PR6G > 0.5 results in classification as QD or R6G, respectively), LR yields an accuracy 

of 86.7% with TPR = 0.85 and FPR = 0.12. Although LR performs well here, it does 

not reach the standard set by previous experiments of QD and R6G on glass (92.7% 

default accuracy). However, as described in Chapter 2, applying a classification 

threshold increases accuracy and TPR and decreases FPR by discarding less certain 

data points. Figure 7 shows the balance between overall classification accuracy and 

data retention as the threshold is increased from the default. At a threshold of 0.87, 

BBM via LR reaches accuracy as high as 95% for this system with TPR = 0.95 and 

FPR = 0.05, but it does so with only ~60% data retention. However, in data-dense 

experiments such as single-molecule localization microscopy (SMLM), data loss is a 

fair trade for high accuracy. 

 In addition to testing the ability of LR to classify emitters, we also investigate 

its ability to distinguish between environments. That is, two multinomial LR 

classifications are performed to compare emitters on glass versus in PVA. Table 2 

summarizes the resulting coefficients from both analyses. For R6G, LR classifies glass 

and PVA environments with a default accuracy of 88.1%, TPR = 0.91, and FPR = 0.18. 

For QD, LR is less successful at distinguishing local environment, yielding default 

accuracy of 76.1%, TPR = 0.71, and FPR = 0.18. Varying the classification threshold 

once again improves BBM performance. Environmental classification of R6G reaches 

95% accuracy, TPR = 0.98, and FPR = 0.08 with 64.2% data retention when a 

classification threshold of 0.91 is applied. That level of accuracy can be matched for 
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QD as well but comes at a much more substantial cost with data retention as low as 

29.0%. Nonetheless, the results here suggest that environmental classification via LR 

is promising. Such a technique would be valuable for imaging multicomponent 

systems, where LR can be used to simultaneously predict both emitter class and 

environment. 

 

3.3.3 Blinking Dynamics of PM605 on Glass and in PVA 

 To investigate if BBM is successful with emitters beyond just QD and R6G, 

blinking dynamics of 118 PM605 molecules on glass and 109 PM605 molecules in 

PVA were collected at Pexc = 0.8 and 1 μW, respectively. Similar to the QD and R6G 

experiments described in previous sections, PVA is observed to add complexity to 

emitter identification and analysis. However, unlike QD/PVA and R6G/PVA, 

 Emitter Environment 

LR coefficient QD vs R6G in PVA 
R6G on glass vs 

PVA 

QD on glass vs 
PVA 

NI  2.7 -1.3 -1.2 

Non,seg  -1.9 -0.7 3.0 

Noff,seg  0.4 0.4 ~0 

Imin 0.6 -4.8 1.7 

Imax -0.2 4.1 1.7 

〈𝑰〉𝒕 2.8 0.7 -0.7 

〈𝒕𝒐𝒏,𝒔𝒆𝒈〉 0.2 0.1 0.3 

〈𝒕𝒐𝒇𝒇,𝒔𝒆𝒈〉 -0.7 0.3 -0.6 

〈𝒕𝒐𝒏,𝒊𝒏𝒕〉 -0.2 -0.8 0.2 

〈𝒕𝒐𝒇𝒇,𝒊𝒏𝒕〉 -0.2 0.4 0.6 

b 1.1 0.7 0.8 
 
Table 2. LR coefficients for emitter and environmental classifications at Pexc = 1 μW. Best 
fit parameters correspond to each of the 10 blinking statistic included in LR as well as an 
intercept (b).  
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PM605/PVA emission scans 

have dimmer intensities on 

average and lack diffraction-

limited spots (Figure 8A). 

Therefore, identifying the 

presence of single molecules 

is more difficult in this 

system, and an I-based 

threshold is no longer 

suitable for separating true 

molecules from background 

polymer scattering. To 

distinguish PM605 emitters 

from background PVA, 

blinking dynamics of PM605/PVA are compared to that of blank 10% wt PVA made 

in 1:1 EtOH to ultrapure water. Despite the presence of some low intensity diffraction-

limited spots in emission images (Figure 8B), likely due to scattering from polymer 

aggregates or fluorescent impurities, blank PVA demonstrates little to no fluorescence 

or blinking behavior on average. The average emission image intensity, 〈𝐼〉, of 56 ± 6 

counts/ 30 ms for the 34 sampled blank PVA spots falls far below the average of 104 ±

3 counts/30 ms for PM605/PVA. These observations suggest that mistaking polymer 

background signal for a true PM605 emitter is not a significant issue in this system.  

 
Figure 8. Representative emission scans (left) and 
blinking dynamics (right) of (A) PM605/PVA at Pexc = 1 
μW, (B) blank mixed solvent PVA at Pexc = 1 μW, and 
(C) PM605/glass at Pexc = 0.8 μW. All emission images 
are presented on a scale of 0-250 counts/ 30 ms. 
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To confirm that blank PVA can be easily distinguished from emitters, LR is 

performed using blinking dynamics from 109 PM605/PVA and 34 blank PVA spots. 

The resulting coefficients are summarized in Table 3. Compared to other BBM 

experiments with LR (Tables 2-3), the coefficients here are substantially larger in 

magnitude, indicating a particularly high degree of separation in the distributions of 

blinking statistics. When the LR model is applied, the classification accuracy is 94.4%, 

as calculated from the confusion matrix shown in Figure 9.  The high accuracy and 

large coefficients indicate that, in addition to being visually distinguishable, the 

blinking dynamics of blank PVA are quantifiably distinct from PM605/PVA. Because 

only a small fraction (3.5%) of blank PVA traces is predicted to be PM605 emitters, 

the contributions from background PVA are modest, and, accordingly, none of the 109 

emitters are discarded from the PM605/PVA dataset. 

LR Coefficient 
PM605 vs blank 

PVA 
PM605 vs R6G in 

PVA 

PM605 vs QD in 
PVA 

NI  69.5 2.0 18.2 

Non,seg  2.4 0.1 9.9 

Noff,seg  0.4 1.4 2.5 

Imin 119.7 5.7 29.1 

Imax 21.0 -0.9 -6.6 

〈𝑰〉𝒕 -141.9 -8.1 -125.5 

〈𝒕𝒐𝒏,𝒔𝒆𝒈〉 1.6 -3.5 -12.4 

〈𝒕𝒐𝒇𝒇,𝒔𝒆𝒈〉 -8.2 -1.2 1.1 

〈𝒕𝒐𝒏,𝒊𝒏𝒕〉 -1.6 0.4 -8.6 

〈𝒕𝒐𝒇𝒇,𝒊𝒏𝒕〉 6.6 0.4 8.3 

b 31.8 -2.1 -52.2 

 
Table 3. LR coefficients for identification of PM605 emitters in PVA and classification of 
PM605 against R6G and QD.  
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Figures 8A and C show 

representative emission scans and blinking 

traces for PM605 on glass and in PVA, 

respectively. Qualitatively, dramatic 

differences are seen in the emission images of 

PM605 in the two environments. On glass, the 

fluorophores appear as round diffraction 

limited spots with high intensity. In 

polymer matrix, PM605 molecules are 

striped in appearance and display lower 

counts on average. In the blinking traces, 

PM605/glass emitters are initially bright 

but appear to quickly undergo 

irreversible photobleaching, whereas 

PM605/PVA blinks intermittently 

throughout the entire 200 s trace. The 

improved photostability in PVA is likely 

due to greater emitter stability in the 

polymer matrix.40 These qualitative 

observations manifest in the average CPD statistics (Table 4). Most notably, 

PM605/PVA displays much shorter 〈𝑡௢௡,௦௘௚〉 and 〈𝑡௢௡,௜௡௧〉 and greater Non,seg, Noff,seg, 

Non,int, and Noff,int than on glass. Additionally, significant changes in 〈𝑡௢௡/௢௙௙,௦௘௚/௜௡௧〉 are 

Blinking 
Statistic 

PM605/ 
Glass 

PM605/ 
PVA 

NI 4.8 ± 0.3 8.1 ± 0.2 

Non,seg 12 ± 3 52 ± 4 

Noff,seg 2.7 ± 0.4 30 ± 1 

Non,int 1.8 ± 0.4 19 ± 1 

Noff,int 1.6 ± 0.4 19 ± 1 

〈𝒕𝒐𝒏,𝒔𝒆𝒈〉 2.7 ± 0.4 0.60 ± 0.03 

〈𝒕𝒐𝒇𝒇,𝒔𝒆𝒈〉 28 ± 3 6.8 ± 0.4 

〈𝒕𝒐𝒏,𝒊𝒏𝒕〉 8 ± 1 1.6 ± 0.1 

〈𝒕𝒐𝒇𝒇,𝒊𝒏𝒕〉 6 ± 2 11 ± 1 

 
Table 4. Average blinking statistics of 
PM605 molecules at Pexc = 0.8 μW on glass 
and Pexc = 1 μW in PVA, respectively. Errors 
correspond to standard deviations of the 
mean. Values for 〈𝑡〉 are reported in seconds. 

 
Figure 9. LR confusion matrix for 
PM605/PVA vs. blank PVA yields 
classification accuracy of 94.4%, 
indicating that PM605 is easily 
distinguishable from PVA background. 
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observed in the CCDFs and associated fit parameters of the two datasets (Appendix I, 

Figure A3 and Tables A3-A4). Because the PM605 datasets on glass and in PVA were 

collected at slightly different Pexc, blinking statistics relating to emissive intensity 

values (i.e., Imin, Imax, and 〈𝐼〉௧) are not compared.  

To explain the changes in the single-molecule fluorescence behavior of PM605 

in PVA as compared to glass, the underlying mechanism for blinking is examined. 

Figure 10 shows CCDF plots of the on- and off-interval times for PM605/glass and 

PM605/PVA with lognormal fits overlaid. Most of the on- and off-interval times on 

glass and in PVA are appropriately 

modeled by lognormal distributions as 

indicated by nonzero p-values, which are 

statistical measures that describe 

goodness of fit. The p-value for 

PM605/PVA off-interval times is zero, 

which indicates a poor fit to a lognormal 

function despite visual agreement 

between the fit and the true distribution. 

However, Table A3 in Appendix I 

reveals that the plot is not well modeled 

by a Weibull distribution (i.e., p = 0) and 

that a power law captures only a small 

portion of the distribution, as indicated 

 
Figure 10. (A) On- and (B) off-interval time 
CCDFs for PM605 on glass (black) and in 
PVA (red). Lognormal fits to the data are 
presented as dashed overlays. 
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by a high onset time (tmin = 41.57 s). Therefore, despite its p-value of zero, a lognormal 

distribution is the most representative model of PM605/PVA off-interval times.  

Lognormal distributions of on and off events are consistent with the Albery 

model for dispersive ET, which assumes Gaussian-distributed barriers to electron 

transfer.37,41–43 The lognormally distributed on- and off-interval times for PM605 on 

glass and in PVA indicate that ET is the mechanism behind blinking in PM605 in both 

environments. According to the Albery model, −μ is proportional to the rate of ET (i.e., 

−μon and −μoff indicate relative forward and back ET rates, respectively) and σ describes 

the degree of kinetic dispersion about μ. In this framework, a larger −μon value of 

0.26 ± 0.02 in PVA as compared to 0.0 ± 0.1 on glass suggests that PM605 undergoes 

faster forward ET in PVA. PVA is known to be a heterogeneous environment, so we 

expect to observe greater dispersion on that substrate than on glass. Interestingly, 

dispersion is smaller in PVA for on-interval times (𝜎௢௡ = 1.06 ± 0.02 in PVA 

compared to 1.85 ± 0.09 on glass). The smaller −μoff value of 0.37 ± 0.05 in PVA as 

compared to 1.2 ± 0.1 on glass reveals that back ET is slower in PVA. Additionally, 

𝜎௢௙௙ values of 2.03 ± 0.03 and 2.0 ± 0.1 in PVA and on glass, respectively, indicate 

no change in dispersion between the environments for off-interval times. The changes 

in μ signify the sensitivity of single-molecule ET dynamics to local conditions, further 

confirming the environmental dependence of PM605 blinking behavior. The lower 𝜎௢௡ 

and unchanged 𝜎௢௙௙ values for PM605/PVA compared to PM605/glass align with 

experimental observations that PM605 displays more consistent blinking behavior in 
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PVA. In fact, this decrease in dispersion may be valuable for BBM, as molecules with 

more consistent, characteristic blinking are expected to be easier to classify. 

 

3.3.4 Blinking-Based Multiplexing of QD, R6G, and PM605 in PVA 

 To examine the efficacy of BBM with the addition of PM605, LR is tested on 

109 PM605/PVA, 129 QD/PVA, and 112 R6G/PVA emitters. Coefficients for the 

resulting models are summarized in Table 3 and corresponding confusion matrices at 

the default threshold (i.e., 𝑃஺ > 0.5 or 0.33 for binary and ternary comparisons, 

respectively) are shown in Figure 11. Binary comparisons of PM605/PVA against 

QD/PVA and R6G/PVA yield default classification accuracies of 97.1% and 86.4%, 

respectively. As expected, this result indicates that the blinking dynamics of R6G and 

PM605, the two organic fluorophores, are more similar to each other than to QD and 

are therefore more difficult to distinguish.  

 LR coefficients in Table 3 reveal the driving forces for binary classification for 

the two systems. For the comparison of QD/PVA versus PM605/PVA, 〈𝐼〉௧ and Imin 

have the largest coefficients (-125.5 and 29.1, respectively) and therefore have the most 

 
Figure 11. Confusion matrices for BBM of PM605, QD, and R6G in PVA at Pexc = 1 μW 
and with the default classification threshold (i.e., 𝑃஺ > 0.5). LR yields classification 
accuracies of (A) 97.1% for PM605 vs. QD in PVA and (B) 86.4% for PM605 vs. R6G in 
PVA. (C) Ternary classification of all 3 emitters results in 79.7% accuracy. 
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influence over classification. The R6G/PVA versus PM605/PVA comparison is driven 

by the same two blinking statistics with coefficients -8.1 for 〈𝐼〉௧ and 5.7 for Imin. 

Although 〈𝐼〉௧ dominates both binary classifications, it does so to a different degree in 

each comparison. For PM605/PVA versus QD/PVA, the 〈𝐼〉௧ coefficient of -125.5 is 

11.7x greater than the average magnitude of the other nine coefficients (10.7); for 

PM605/PVA versus R6G/PVA, the corresponding coefficient of -8.1 is just 4.8x above 

the average (1.7). That is, 〈𝐼〉௧ is over twice as important for classifying PM605 against 

QD than R6G in PVA. This result is consistent with the average 〈𝐼〉௧ values for the 

emitters, as PM605/PVA and R6G/PVA have more similar averages (7.2 ± 0.2 and 

6.7 ± 0.4 counts/ 10 ms, respectively) than PM605 and QD (19 ± 1 counts/ 10 ms), 

which likely indicates poorer separation of their distributions. Additionally, it is notable 

that 〈𝑡௢௡,௜௡௧〉 and 〈𝑡௢௙௙,௜௡௧〉 play relatively small roles in both binary classifications, 

despite differences in the lognormal fit parameters for each emitter (Appendix I, 

Tables A1-A3). Therefore, emission intensities, as governed by photostability and ET 

processes for 〈𝐼〉௧ and by funamental photophysical parameters for Imin, are important 

factors for classifying PM605 from QD and R6G. However, the temporal durations of 

on and off intervals, which also rely on ET dynamics, exert only modest influence over 

LR predictions. 

 To examine the achievable level of accuracy, classification thresholding is 

applied to the LR comparison of R6G/PVA and PM605/PVA. As previously described, 

elevating this threshold increases accuracy and TPR and decreases FPR by discarding 

less certain emitters. When the threshold is shifted from 0.5 to 0.84, classification 
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accuracy rises from 86.4% to 95% with 73.8% data retention. Because LR already 

classifies PM605 and QD in PVA with incredibly high default accuracy (97.1%), no 

thresholding is required. 

 When a ternary LR classification is performed using all three emitters, the 

default accuracy decreases to 79.7%. For ternary comparisons, the default threshold is 

0.33 instead of 0.5, so the standard for classification is lower. Once again, a 95% 

accuracy is achieved by increasing the classification threshold to 0.95 but results in 

64.6% data loss. However, for applications that are sensitive to data retention, 

accuracies as high as 89.8% can be reached with data loss of only 30%. Using 

classification thresholding, BBM results are highly tunable depending on the desired 

balance of accuracy and data retention. Overall, despite the observation of dispersive 

blinking behavior in QD, R6G, and PM605 in the heterogenous PVA environment, LR 

predicts emitter identity with incredible success. 

 

3.4 Conclusion  

These studies expand the capabilities of BBM by investigating its performance 

in multiplexing emitters in complex polymer matrix and by introducing an additional 

fluorophore, PM605, to the already-established QD/R6G system. SMS is used to 

collect blinking dynamics of each of the emitters, which are then quantified and 

classified by CPD and LR, respectively. Testing BBM in PVA establishes the viability 

of the method for biological imaging applications because it models the complexity 

and heterogeneity of a biological system. Despite additional challenges with the 
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polymer environment, emitters are discriminated from PVA background signal by 

applying a simple intensity threshold for diffraction-limited spots. When embedded in 

PVA matrix, QD and R6G emitters undergo different ET processes than observed 

previously on glass. LR adapts to these changes to rapidly generate new models with 

coefficients that reflect alterations in the distributions of CPD statistics, yielding default 

accuracy of 86.7% and reaching as high as 95% when the classification threshold is 

increased. 

Blinking dynamics of PM605 on glass and in PVA are studied in order to 

examine its blinking mechanism in each environment and, ultimately, add this third 

small-molecule emitter to the library of spectrally-overlapped probes for BBM. The 

lognormally distributed on- and off-interval times for PM605 on glass and in PVA are 

consistent with the Albery model for complex ET. Although blinking is attributed to 

ET in both environments, fit parameters −μ and σ reveal faster ET, slower BET, and 

lower dispersion for PM605 in PVA than on glass. Harnessing PM605 blinking for 

BBM, LR classification of PM605/PVA against QD/PVA and R6G/PVA reveals 

binary default accuracies of 86.4% and 97.1%, respectively. Ternary classification of 

all three emitters in PVA yields lower accuracy (79.7%) at the default threshold. 

However, in all three cases, accuracy is highly tunable by adjusting the classification 

threshold depending on the needs of the experiment and the availability of data. 

The experiments in this thesis demonstrate the incredible potential of BBM for 

high accuracy classification of any system of spectrally-overlapped emitters under 

numerous experimental conditions, even conditions that add significantly to the 
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complexity of the system of study. The next steps are to continue to expand the palette 

of BBM probes and to further optimize BBM accuracy and efficiency. Current research 

in the Wustholz lab is exploring the performance of BBM with multiple rhodamine 

dyes. The effects of emitter concentration are also being tested, as SRI experiments 

require labeling densities that are higher than what is typical for single-molecule 

studies.44 Additionally, in the near future, blinking data will be collected using wide-

field acquisition on an electron multiplying charge coupled device camera, which will 

accelerate data collection and increase the size of datasets. 

Overall, BBM is a powerful new alternative to current multicolor SRI 

techniques, which are limited in scope and efficiency due to their reliance on spectral 

color for emitter identification. Demonstrating rapid, automated, and accurate 

classification of three emitters in a PVA environment using LR reveals the viability of 

BBM for imaging complex biological systems.  
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Appendix I. On and Off Time Distributions and Fit Parameters 

  

Figure 1. CCDF plots of (A) on and off intervals and (B) on and off segments for 

R6G/glass (black) and R6G/PVA (red). 

 

Table 1. Power law, Weibull, and lognormal distribution best fit parameters (with 
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Figure 2. CCDF plots of (A) on and off intervals and (B) on and off segments for 

QD/glass (black) and QD/PVA (red). 

 

Table 2. Power law, Weibull, and lognormal distribution best fit parameters (with 

standard deviations) and p-values of 1,358 on-interval, 1,345 off-interval, 10,110 on-

segment, and 1,832 off-segment times for 129 QD/PVA emitters at Pexc = 1 μW. 
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Figure 3. CCDF plots of (A) on and off intervals and (B) on and off segments for 

PM605/glass (black) and PM605/PVA (red). 

 

Table 3. Power law, Weibull, and lognormal distribution best fit parameters (with 

standard deviations) and p-values of 2,032 on-interval, 2,032 off-interval, 5,646 on-

segment, and 3,293 off-segment times for 109 PM605/PVA emitters at Pexc = 1 μW.  
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Table 4. Power law, Weibull, and lognormal distribution best fit parameters (with 

standard deviations) and p-values of 211 on-interval, 192 off-interval, 1,392 on-

segment, and 313 off-segment times for 118 PM605/glass emitters at Pexc = 0.8 μW. 

 

 

Blinking Statistic PM605/glass PM605/PVA 

NI 4.8 ± 0.3 8.1 ± 0.2 

Non,seg 12 ± 3 52 ± 4 

Noff,seg 2.7 ± 0.4 30 ± 1 

Non,int 1.8 ± 0.4 19 ± 1 

Noff,int 1.6 ± 0.4 19 ± 1 

Imin 9.5 ± 0.2 8.4 ± 0.2 

Imax 37 ± 4 31 ± 1 

〈𝑰〉𝒕 9.0 ± 0.6 7.2 ± 0.2 
〈𝒕𝒐𝒏,𝒔𝒆𝒈〉 2.7 ± 0.4 0.60 ± 0.03 

〈𝒕𝒐𝒇𝒇,𝒔𝒆𝒈〉 28 ± 3 6.8 ± 0.4 

〈𝒕𝒐𝒏,𝒊𝒏𝒕〉 8 ± 1 1.6 ± 0.1 

〈𝒕𝒐𝒇𝒇,𝒊𝒏𝒕〉 6 ± 2 11 ± 1 

Table A5. Average blinking statistics of PM605 molecules at Pexc = 0.8 μW on glass 

and Pexc = 1 μW in PVA, respectively. Errors correspond to standard deviations of the 

mean. Intensities are reported in counts/ 10 ms, and values for 〈𝑡〉 are reported in 

seconds. 
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