
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2023

Achieving Real-Time Dnn Execution On Mobile Devices With Achieving Real-Time Dnn Execution On Mobile Devices With

Compiler Optimizations Compiler Optimizations

Wei Niu
William & Mary - Arts & Sciences, niuwei95@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Niu, Wei, "Achieving Real-Time Dnn Execution On Mobile Devices With Compiler Optimizations" (2023).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1697552565.
https://dx.doi.org/10.21220/s2-mfpe-jh96

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1697552565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1697552565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-mfpe-jh96
mailto:scholarworks@wm.edu

Achieving Real-time DNN Execution on Mobile Devices with Compiler
Optimizations

Wei Niu

Yiyang, Hunan, China

Bachelor of Software Engineering, Beihang University, China, 2016

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
May, 2023

© Copyright by Wei Niu 2023

ABSTRACT

Deep learning, particularly deep neural networks (DNNs), has led to significant
advancements in various fields, such as autonomous driving, natural language pro-
cessing, extended reality (XR), and view synthesis. Mobile and edge devices, with
their efficient and specialized processors and suitability for real-time scenarios, have
become the primary carriers for these emerging applications. The advancements in
AutoML tools (e.g., Network Architecture Search) and training techniques have re-
sulted in increasingly complex and deep DNN architectures with larger computational
requirements. However, achieving real-time DNN execution (inference) on mobile
devices is a challenging task due to the limited computing and storage resources
available on embedded chips. Moreover, there is a considerable performance gap
between the theoretical peak and the actual performance of DNN workloads on
mobile devices due to the lack of understanding between the hardware and parallel
algorithms. This dissertation aims to enable the real-time execution of DNNs on
mobile devices by proposing a range of compiler-based optimizations.

Traditional convolutional neural networks (CNNs) consist of computation-intensive
convolution layers, which are responsible for a significant portion of the entire com-
putational workload. To this end, we present PatDNN, an innovative compression-
compilation co-design framework that facilitates the compression of large-scale,
computation-intensive DNNs to fit within the constrained storage and computa-
tion resources available on mobile devices. The PatDNN framework incorporates a
hardware-friendly, pattern-based pruning method to compress DNN model parame-
ters, and a range of sophisticated compiler optimizations tailored for pattern-based
pruning to further enhance the efficiency of the system.

As higher accuracy requirements for different machine learning tasks, researchers
have designed deeper and deeper models that involve moving substantial amounts
of data among the layers. We present DNNFusion, an advanced operator fusion
framework that can fuse multiple successive operators within a DNN into a single
operator, significantly decreasing the number of memory accesses. Moreover, we
propose a novel mathematical-property-based graph rewriting framework to simplify
the computation even further.

To take advantage of the emerging dedicated accelerators in mobile SOCs, we pro-
pose GCD2 specifically for mobile Digital Signal Processors (DSPs). In contrast
to mainstream processors, DSPs feature a wider SIMD width and a wider vari-
ety of vector instructions. GCD2 incorporates our novel compiler optimizations to
capitalize on the unique capabilities of mobile DSPs and enhance hardware utilization.

Lastly, we propose SOD2 for optimizing dynamic DNNs, where the tensor shapes
and even the set of operators used are dependent upon the input and/or execution.

We derive a classification of common operators that form DNNs, and propose a Rank
and Dimension Propagation (RDP) algorithm based on the classification. SOD2

statically determines the shapes of operators, and then enables a series of other
compiler optimizations.

TABLE OF CONTENTS

Acknowledgments vi

Dedication viii

List of Tables ix

List of Figures xiii

1 Introduction 1

1.1 Contributions . 2

1.1.1 Real-time DNN Execution with Compression and Compilation

Co-Design . 2

1.1.2 Real-time DNN Execution with Advanced DNN Operator Fusion 3

1.1.3 Real-time DNN Execution on Mobile Digital Signal Processor 4

1.1.4 Dynamic DNN Execution with Static Compiler Optimization . 5

1.2 Dissertation Organization . 6

2 PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with

Pattern-based Weight Pruning 8

2.1 Introduction . 8

2.2 Background and Motivation . 11

2.2.1 Layerwise Computation of DNNs 11

2.2.2 Mobile Acceleration of DNNs 12

2.2.3 DNN Model Compression and Challenges 14

i

2.2.4 ADMM-based DNN Model Compression Framework 15

2.2.5 Motivation . 16

2.3 Overview of PatDNN . 17

2.3.1 Pattern-based Pruning . 17

2.3.2 Overview of PatDNN Acceleration Framework 19

2.4 PatDNN Training with Pattern-based Pruning 21

2.4.1 Designing the Pattern Set . 21

2.4.2 Kernel Pattern and Connectivity Pruning Algorithm 22

2.4.3 Accuracy Validation and Analysis 24

2.5 PatDNN Inference Code Optimization 26

2.5.1 Compiler-based PatDNN Inference Framework 26

2.5.2 Filter Kernel Reorder (FKR) 28

2.5.3 Compressed DNN Weight Storage (FKW Format) 30

2.5.4 Load Redundancy Elimination (LRE) 31

2.5.5 Parameter Auto-tuning . 33

2.6 Evaluation . 34

2.6.1 Methodology . 34

2.6.2 Overall Performance . 35

2.6.3 Optimization Evaluation . 37

2.6.4 PatDNN Performance Analysis in GFLOPS 39

2.6.5 Portability Study . 41

2.6.6 Impact of Pattern Counts . 41

2.7 Discussion . 41

2.8 Summary . 42

3 DNNFusion: Accelerating Deep Neural Networks Execution with Advanced

Operator Fusion 43

ii

3.1 Introduction . 43

3.2 Blessing and Curse of Deep Layers 46

3.3 Classification of DNN Operators and Fusion Opportunity Analysis . . 48

3.3.1 DNN Operators Classification 48

3.3.2 Fusion Opportunity Analysis 50

3.4 DNNFusion’s Design . 53

3.4.1 Overview of DNNFusion . 53

3.4.2 Mathematical-Property-Based Graph Rewriting 53

3.4.3 Light-Weight Profile-Driven Fusion Plan Exploration 57

3.4.3.1 Overall Idea . 57

3.4.3.2 Fusion Plan Generation Algorithm 58

3.4.4 Fusion Code Generation and Optimizations 61

3.4.4.1 Fusion Code Generation 61

3.4.4.2 Other Fusion-related Optimizations 63

3.5 Evaluation . 64

3.5.1 Evaluation Setup . 65

3.5.2 Overall Mobile Inference Evaluation 66

3.5.3 Understanding Fusion Optimizations 69

3.5.4 Portability . 73

3.6 Related Work . 73

3.7 Summary . 75

4 GCD2: A Globally Optimizing Compiler for Mapping DNNs to Mobile DSPs 77

4.1 Introduction . 77

4.2 Executing DNNs on Mobile DSPs . 80

4.3 Instructions and Layouts . 82

4.4 System Design of GCD2 . 86

iii

4.4.1 SIMD Global Opt. Problem Formulation 86

4.4.2 Layout & Instruction Select Solution 88

4.4.3 VLIW Optimization . 90

4.4.4 Putting Everything Together 96

4.5 Evaluation . 97

4.5.1 Evaluation Setup . 99

4.5.2 Comparison with Other Frameworks 100

4.5.3 Impact of Opt. and Algorithmic Features 103

4.5.4 Power Consumption and Energy Efficiency 106

4.5.5 Comparison with Other DNN Accelerators 107

4.6 Related Work . 108

4.7 Summary . 111

5 SOD2: Statically Optimizing Dynamic Deep Neural Network Execution 112

5.1 Introduction . 112

5.2 Existing Frameworks and Limitations 115

5.3 Operator Classification based on Dynamism 116

Background and Notation. 116

5.4 Design of SOD2 . 120

5.4.1 Pre-Deployment Data-Flow Analysis 120

Formal Definition of Operator Rank and Dimension

Propagation (RDP). 121

RDP Solution. 123

5.4.2 Operator Fusion for Dynamic DNN based on RDP 125

5.4.3 Static Execution Planning based on RDP 126

5.4.4 Other Optimizations . 127

5.4.4.1 Memory Allocation Plan 127

iv

5.4.4.2 RDP-based Multi-Version Code Generation 128

5.5 Evaluation . 129

5.5.1 Evaluation Setup . 130

5.5.2 Overall Comparison . 132

5.5.3 Optimization Breakdown Analysis 133

5.5.4 Further Performance Analysis 136

Latency Comparison with the Same Execution Path. . 136

Latency Comparison with Different Input Sizes. 137

Latency with Fixed Memory Budget. 137

Portability Evaluation 138

5.6 Related Work . 138

5.7 Summary . 140

6 Conclusion and Future Plan 141

6.1 Conclusion . 141

6.2 Future Plan . 141

Bibliography 143

Vita 167

v

ACKNOWLEDGMENTS

I would like to express my heartfelt thanks to everyone who has helped me along the
way in my academic career. I wish I could mention them all; however, I am able to
give some of them a special mention here.

First and foremost, I want to express my deepest appreciation to my advisor, Pro-
fessor Bin Ren, for all of the guidance, mentorship, and patience he showed me
throughout the entirety of my Ph.D. studies. His invaluable insights and expertise
have greatly enriched my research experience. He is always patient and creative,
encouraging and supportive, respects his students, and listens seriously to our ideas.
His enthusiasm for research and teaching, commitment to excellence, and hard work
have inspired me to strive for excellence in my academic and professional pursuits.
He is the best mentor I’ve ever had, as well as a role model for my future career. I
am extremely grateful for the opportunity to work with him. Now, I am ready to
start my new journey with these invaluable experiences and knowledge he has given
me.

I would like to extend my appreciation to my research collaborators for their help and
dedication. They are Professor Gagan Agrawal, Professor Caiwen Ding, Professor
Hui Guan, Professor Xue Lin, Dr. Shaoshan Liu, Professor Sijia Liu, Professor
Kaisheng Ma, Professor Xiaolong Ma, Professor Xuehai Qian, Dr. Minghai Qin,
Professor Xipeng Shen, Professor Xulong Tang, Professor Dingwen Tao, Profes-
sor Yanzhi Wang, and Professor Gang Zhou. Their expertise and creativity have
helped propel our research goals forward and achieve great results. It is impossible
to have my research papers and dissertation without their guidance and collaboration.

I am also grateful to my committee members, Professor Gang Zhou, Professor
Evgenia Smirni, Professor Pieter Peers, and Professor Gagan Agrawal, for their
time and effort in providing valuable feedback and suggestions. Their constructive
and insightful feedback has greatly improved the quality of my dissertation and
contributed greatly to its completion.

I am grateful to Dr. Rui Xia for being an excellent mentor during my internship at
Bytedance, CA, USA. I am particularly appreciative of Wenwei Chen, my former
mentor at Bytedance, Beijing, China, for his guidance and encouragement. Without
his support, I might not have had the courage to pursue my Ph.D. degree. I also
extend my thanks to my friends and colleagues in the lab for their continuous support
and encouragement. We have had many interesting discussions and brainstorming
sessions, which have helped me broaden my horizons and think outside the box.
Their companionship and positive attitude have also made my time in graduate
school more enriching and enjoyable.

vi

I would like to express my sincere thanks to all the faculty members and staff who
have contributed to my education and growth in the department of Computer Science
at William & Mary, as well as the staff at Sadler Center and Commons Dining Hall
for their great dining service.

At last, a special thanks to my parents and Jiewei Wang for their unconditional
support and love. Without these, I would not be where I am today. Thank you for
always being there for me.

For my grandfather, I wish he could see my graduation.

vii

To my family.

viii

LIST OF TABLES

2.1 DNN acceleration frameworks on mobile devices. 13

2.2 Qualitative comparison of different pruning schemes on accuracy and

speedup under the same pruning rate. 19

2.3 Top-5 accuracy comparison on kernel pattern pruning. 24

2.4 Top-5 accuracy and CONV weight reduction on joint kernel pattern

pruning (8 patterns in the set) and connectivity pruning. 25

2.5 DNNs characteristics (under kernel pattern and connectivity pruning):

Accu: ImageNet top-5, CIFAR top-1; the negative values in Accuracy

Loss actually mean accuracy improvement. 34

2.6 VGG unique CONV layers’ filter shapes and given names. 35

2.7 Pattern counts impact (with 3.6× connectivity pruning): accuracy

loss and exe time for VGG. 40

3.1 An empirical study to motivate this work: The relation of

overall computation, layer count, and execution efficiency of multiple

DNNs. Results are collected on Qualcomm Adreno 650 GPU with an

optimized baseline framework with fixed-pattern operator fusion that

outperforms all state-of-the-art DNN execution frameworks (called

OurB+ and will be introduced later). 47

3.2 Classification of DNN operators in mapping types. These

operators are defined in ONNX [160]. 49

ix

3.3 Mapping type analysis. The first column and the first row (both

without color) show the mapping types of first and second operators,

respectively, before fusion, and the colored cells show the mapping

type of the operator after fusion. Green implies that these fusion

combinations can be fused directly (i.e., they are profitable). Red

implies that these fusions are unprofitable. Yellow implies that further

profiling is required to determine profitability. 50

3.4 Graph rewriting with mathematical properties. Only rep-

resentative graph rewriting rules are listed due to space limitation.

In summary, DNNFusion derives 45, 38, and 66 graph rewriting

rules in the category of Associative, Distributive, and Communica-

tive, respectively. We omit unrelated operators for better readability.

⊙,+,−,Abs,Recip,Square,
√

mean element-wise multiplication, ad-

dition, subtraction, absolute, reciprocal, square, and square root,

respectively. BitShift calculates the bit shifted value of elements of

a given tensor element-wisely. ReduceSum and ReduceProd calculate

the reduced summation and production of elements of an input tensor

along an axis. Exp calculates the exponent of elements in a given

input tensor element-wisely. #FLOPS denotes the number of floating

point operations . 56

3.5 Fusion rate evaluation: computation layer count and interme-

diate result size for all evaluated DNNs. CIL (Compute-Intensive

Layer): each input is used more than once, e.g. MatMul, CONV.

MIL (Memory-Intensive Layer): each input is used only once, e.g.

Activation. IRS: intermediate results. ’-’ means this framework does

not support this model. 67

x

3.6 Inference latency comparison: DNNFusion, MNN, TVM,

TFlite, and PyTorch on mobile CPU and GPU. #FLOPS

denotes the number of floating point operations. OurB is our baseline

implementation by turning off all fusion optimizations and OurB+

is OurB with a fixed-pattern fusion as TVM. DNNF is short for

DNNFusion, i.e., our optimized version. ’-’ denotes this framework

does not support this execution. 68

4.1 Latency and Power Comparisons among Mobile CPU, GPU,

and DSP. Experiments are conducted on a Samsung Galaxy S20

with TFLite [1]. CPU, GPU, and DSP uses int8, float16, and int8,

respectively. Power is collected by the Android system interface.

Results are for each inference. 78

4.2 Execution Latency w/ Different SIMD Instructions (and

Layouts) for Matrix Multiplication C = A×B. M, K, and N

denote the dimension size of Matrix A (M×K), B (K×N), and C

(M×N), respectively. Execution latency and total data size with

padding are normalized by vmpy for readability. Smaller numbers

mean better latency or less padding. Bold ones denote the best case. 82

4.3 SIMD Instructions Selected and Performance by RAKE [5]

and GCD2. Representative Conv2d kernels (w/ varied shapes, 7×7,

1×1, and 3×3) are from ResNet-50. 86

xi

4.4 Overall Performance Comparison among TFLite, SNPE, and

GCD2 on Mobile DSP. “-” means this model is not supported by

the framework yet. OverT and OverS are the speedup of GCD2 over

TFLite, and SNPE, respectively. GCD2’s overall compilation time

for these models ranges from 5 minutes (WDSR-b) to 25 minutes

(EfficientDet-d0). 98

4.5 Inference Speed and Energy Efficiency Comparison with

ResNet-50 on EdgeTPU [63] and NVIDIA Jetson Xavier

[217]. FPS is short for frames per second, and FPW represents for

inference frames per Watt. 108

5.1 Inference overhead for shape dynamism w/ execution re-

initialization. SL: shape propagation and layout selection. ST:

schedule and tuning. Alloc: memory allocation. Infer: inference time.

Experiments are conducted on a Samsung Galaxy S21 w/ MNN [96]. 115

5.2 Classification of DNN operators based on dynamism degrees.

Operators are from ONNX (Open Neural Network Exchange) [160]. . 118

5.3 Definition of Rank and Dimensions Propagation (RDP). . . . 123

5.4 Memory consumption (allocated for intermediate results)

for ONNX Runtime, MNN, TVM with Nimble extension

(TVM-N), and SOD2 on a mobile CPU. “-” means this model is

not supported by the framework yet. “S” stands for shape dynamism,

and “C” represents for control-flow dynamism. 131

5.5 End-to-end execution latency comparison among ONNX Run-

time, MNN, TVM-N, and SOD2 on mobile CPU and mobile

GPU. “-” means this model is not supported by the framework yet. 132

xii

LIST OF FIGURES

2.1 DNN CONV layer computation. 12

2.2 (a) Non-structured weight pruning and (b) two types of structured

weight pruning. 14

2.3 Illustration of (a) kernel pattern pruning on CONV kernels, and (b)

connectivity pruning by removing kernels. 17

2.4 Illustration of connectivity pruning. 18

2.5 Overview of PatDNN acceleration framework. 20

2.6 The algorithm-level overview of PatDNN training. 21

2.7 PatDNN’s compiler-based optimization and code generation

flow: compiler takes both model codes with graph-based optimizations

and a layerwise representation (as an example in Figure 2.8) to generate

low-level C/C++ and OpenCL codes (as No-opt). This low-level

code is further optimized with filter kernel reorder and our FKW

compact model storage (+Reorder), the register-level load redundancy

elimination (+LRE), and other optimizations like auto-tuning. Finally,

the code is deployed on mobile devices. 27

2.8 An LR example for a CONV layer. 28

2.9 An example of filter kernel reorder. 28

2.10 An example of FKW compressed weight storage. 30

2.11 Load redundancy elimination (left: kernel-level; right: filter-level). . . 31

2.12 Overall performance: x-axis: different trained DNN models; y-axis:

average DNN inference execution time on a single input. 36

xiii

2.13 Speedup of opt/no-opt on each unique CONV layer. 37

2.14 Profiling result: reorder and redundancy elimination. 38

2.15 Effect of different loop permutations and loop tiling. 38

2.16 Extra data structure overhead: FKW over CSR on unique VGG

CONV layers with different pruning rates. 39

2.17 GFLOPS performance study: PatDNN vs dense. 39

2.18 Portability study: performance on two other platforms. 40

3.1 DNNFusion overview. 54

3.2 Examples of graph rewriting with mathematical properties.

Associative property explores the optimal execution order of operators

and replaces the expensive combination of operators with a cheaper

one. Distributive property explores the common combination of

operators and simplifies the computation structure. Commutative

property switches the execution order of operators to reduce the overall

computation. Note: the letter below each operator (e.g., B below Conv

in (a)) or the letter in rectangle (e.g., C in (b)) denotes that this input

is from model weights rather than an intermediate result. The letter

in diamond (e.g., A) means that this is the input of this operator block,

which could be the input of the model or intermediate result from a

prior block. The intermediate results within this block are omitted

for readability. 55

3.3 An example of fusion plan exploration. Assume Add, Conv, Relu,

Mul, and Sub have identical output shape and IRS size. 58

3.4 Code generation. 61

3.5 Data movement operators optimization. 63

xiv

3.6 Speedup over TASO optimized execution on mobile CPU.

The models (computational graphs) are optimized by TASO and then

executed on TFLite. 69

3.7 Optimization breakdown on y-axis: speedup over OurB, i.e.

a version w/o fusion opt. GR, Fuse, and Other denote graph

rewriting, fusion, and other fusion-related optimizations, respectively. 70

3.8 Memory (left) and cache miss (right) analysis. MA and MC

denote memory access and memory consumption, respectively. Cache

miss count is compared on L1/L2/L3 data cache and L1/L2 TLB

cache on mobile CPU, and on L1/L2 data cache only on mobile GPU.

All values are normalized w.r.t DNNF (the optimal version). 71

3.9 (a) Mobile CPU and GPU utilization. CPU utilization is av-

eraged on 8-cores. (b) Compilation time. Comparison between

TVM and DNNF for YOLO-V4 on mobile CPU. DNNF (w/o db) is

without the presence of an existing profiling database; DNNF (w/ db)

assumes such a database is pre-computed. Fusion is invisible as it

spends very little time on both TVM and DNNF. 72

3.10 Portability evaluation. It is on Samsung Galaxy S10 and Honor

Magic 2. Left two figures are YOLO-V4 and right two are GPT-2.

Only TFLite supports GPT-2 on mobile CPU (no mobile GPU support). 73

4.1 SIMD/Vector Multiply Instruction Examples in Mobile DSP

Chip . 82

xv

4.2 Data Layouts to Support Usage of Varied SIMD Instructions

for Matrix Multiplication. Each number denotes the linear storage

offset of an element. A blue, yellow, and orange cell takes 1, 2,

and 4 bytes, respectively. Left shows data storage, and right shows

computation. 84

4.3 Examples of Computational Graphs. Left and right show partial

CGs in ResNet [77] and TinyBERT [97]. 87

4.4 Two Examples of Packing Instructions with Soft Dependen-

cies. Different colors show different VLIW execution pipeline stages

(read in green, execute in orange, and write in blue). In (a), the sec-

ond stage (Assign R1+R2 to R3) of the second instruction requires

to wait for the completion of the first instruction, incurring packing

penalty. A similar situation happens to (b) between Assign and Store. 91

4.5 An Instruction Packing Example. The left part shows part of

the pseudo assembly code for the innermost nested loop performing

2D Element-wise Addition: R = A + B + C, where A, B, and C are

two-dimensional uint8 arrays and R is a two-dimensional int16 array.

v2:1 denotes a 16-bit register combining 2 8-bit registers v2 and v1.

The middle part shows an IDG, in which, solid edges denote hard

dependency, dot edges denote soft, and critical path is colored in red.

Right shows the packing results from our solution and an sub-optimal

solution that treats all soft dependencies as hard (soft to hard). N

denotes an empty instruction slot. 94

4.6 System Workflow of GCD2. 97

xvi

4.7 Performance Comparison of GCD2, Halide, TVM, and RAKE

with Individual Kernels. Left shows the speedup and right shows

the packet counts, both normalizing Halide as 1. Conv2D operators

(from ResNet-50) are used. GCDb is a sub-optimal version of GCD2

that contains tensor optimizations only without VLIW packing. . . . 101

4.8 DSP Utilization and Memory Bandwidth Comparison. These

results are as reported by Snapdragon Profiler [176], and normalized

with GCD2. 102

4.9 Performance Breakdown Analysis. Speedup over the baseline

(normalized with the no-opt version). DSP utilization and memory

bandwidth analysis (both normalized with the GCD2 optimal version

as 100%). The results are collected from Snapdragon Profiler [176]. . 103

4.10 Layout Optimization Analysis. X-axis denotes the number of

operators in the computational graph. The left figure shows the

speedup over local optimal with different numbers of operators. The

right figure shows the search time, and its y-axis is logarithmically

scaled. 104

4.11 VLIW Scheduling Analysis. The version treating all soft depen-

dencies as hard ones is used as the baseline. 105

4.12 Unrolling Factor Analysis on a Single MatMul Kernel and on

Multiple MatMul Kernels. The x-axis in the left figure denotes the

unrolling factors. The right figure shows the performance comparison

among the best settings of three unrolling strategies (Out, Mid, and

GCD2) on 8 operators (from O1 to O8). For comparison, it also shows

versions w/o unrolling and w/ exhaustive search. 106

xvii

4.13 Comparison of Total Power Consumption (left) and Energy

Efficiency in Inference Frames/Watt (right). Three DSP frame-

works and TFLite with GPU back-end on 4 representative DNNs. . . 107

5.1 Different degrees of dynamism. Each node is a DNN operator.

Yellow, blue, red, and purple mean Input Shape Determined Output,

Input Shape Determined Output Shape, Input Shape & Value Deter-

mined Output Shape, and Execution Determined Output, respectively.

In (d), Switch’s execution path is decided dynamically during runtime

and red dot edges represent both the computation dependency and

control flow. 120

5.2 Domain of RDP dataflow analysis. It includes known, symbolic,

and operation-inferred constants that form a lattice. 121

5.3 Examples of forward and backward transfer. Each node is

an operator. Yellow, blue, and red mean Input Shape Determined

Output, Input Shape Determined Output Shape, and Input Shape &

Value Determined Output Shape, respectively. Ids (e.g., ①) indicate

the location where transfer functions apply and their applying orders

for a forward transfer (a backward transfer reverses this order). S and

V equations map values in the RDP domain to the shape and value

of each tensor, in which, F denotes the transfer function. fs and bs of

F denote forward and backward, and F’s subscript is a short form of

its type (e.g., ISDOS means Input Shape Determined Output Shape). 122

xviii

5.4 Operator fusion with dynamic shapes. The top code snippet

shows that fusion is not feasible because of broadcasting [44]. Specifi-

cally, Add requires A’s indices I′, J′, and K′ to be either 1 or I, J, and

K, resulting in 8 fusion scenarios. With RDP, such fusion is feasible

(shown in the below code snippet). This fusion significantly reduces

intermediate result materialization requirements. 126

5.5 Memory reduction of different optimizations on CPU. Over

the baseline w/o any RDP-enabled optimization (No opt.) 133

5.6 Execution speedup of different opt. on CPU and GPU. Over

the baseline w/o any RDP-enabled optimization (No opt.) 134

5.7 Further break down effect of existing static fusion (SFusion)

and RDP-based fusion (RDP Fusion). For both layer count and

intermediate result size, normalized by no fusion opt. 134

5.8 The percentage of different types of sub-graph. 135

5.9 Latency and memory consumption comparison between SOD2

and MNN with the same execution path. 136

5.10 Performance variation with different input sizes (shapes).

The data is collected from YOLO-V6. A larger input size means more

computations. 137

5.11 Speedup with the same memory consumption. 137

5.12 Portability evaluation. The results are collected on Snapdragon 835.

An empty bar means the model is not supported by the framework.

Results are normalized by MNN for readability. 138

xix

Chapter 1

Introduction

In recent years, there has been an explosion of deep learning applications such as computer

vision (CV) [76, 142, 195, 199, 206, 213, 218, 239], natural language processing (NLP) [97,

115,188,201,212], and autonomous driving [13,24,55,235]. Mobile devices have emerged

as the ideal platform for these applications due to their capability and privacy protection.

The computational capability of mobile devices has increased considerably as a result of

breakthroughs in transistor density. The Snapdragon 8 Gen 1 [187] offers 20 times more

peak performance than the Snapdragon 850 [179]. In addition, the memory capacity of

mobile devices has increased, allowing for the deployment of larger deep neural networks

(DNNs). However, the ever-increasing size of DNNs [201] has posed a significant challenge

to achieving real-time inference performance (typically 30 processing per second, or 33

milliseconds per processing) for DNNs. The limited computational resources of mobile

devices, such as limited memory bandwidth and power budgets, have exacerbated this

issue. There are several challenges behind the scenes. First, the computation size of

DNNs is growing exponentially, leading to a significant increase in computing resource

requirements. Second, as the number of layers in DNNs increases, data flow between layers

becomes more intense, which is one of the most significant performance bottlenecks. In

addition, traditional frameworks are not suited to the emergence of specialized mobile

device accelerators, resulting in inefficient DNN execution. Real-time DNN inference on

1

mobile devices has therefore become a challenging issue.

The dissertation aims to address the challenges of achieving real-time DNN inference

on mobile devices. We approach this issue from three distinct perspectives. Firstly,

we propose a compression-compilation co-design framework for large-scale deep neural

networks that introduces a new optimization dimension: fine-grained pruning patterns

within coarse-grained structures. Secondly, we develop a framework for advanced operator

fusion specifically designed for extremely deep DNNs, which reduces intermediate results

among layers by up to 4.7×. Thirdly, we propose a compilation system that incorporates

global optimization for emerging dedicated accelerators that fully exploit the new features

offered by mobile DSPs. Lastly, we design a comprehensive dynamic DNN execution system,

which includes both static compiler optimizations and dynamic runtime optimization to

achieve real-time performance for DNNs on mobile devices.

1.1 Contributions

1.1.1 Real-time DNN Execution with Compression and Compilation

Co-Design

Considering the limited computational resources of mobile devices and the intensive com-

putation in DNNs, there has been a widely recognized challenge to achieving real-time

performance for large-scale DNN inference. Model (DNN) pruning [34,69,73,74,79,150,233]

serves as a promising technique that can dramatically reduce the computation size (FLOPs)

for computation-intensive operators (e.g, Convolution and Fully-connected). However, exist-

ing model pruning represents two extremes in the design space, non-structured pruning (e.g.,

random pruning) [69, 74] and structured pruning (e.g., filter/kernel pruning) [79,150,233].

Non-structured pruning applies fine-grained pruning and achieves high pruning rates, but it

results in poor hardware performance due to its irregular computation pattern. In contrast,

structured pruning employs coarse-grained pruning, making it hardware efficient, but with

high accuracy loss.

2

We present PatDNN [158], a solution to address the existing limitations by introducing

fine-grained pruning patterns within coarse-grained structures. This innovative approach

advances the state-of-the-art and exposes an unexplored design dimension. By leveraging the

benefits of fine-grained pruning patterns, we introduce a set of architecture-aware compiler

and code generation-based optimizations that mitigate the irregular computation pattern.

The proposed optimizations include filter kernel reordering, compressed weight storage,

register load redundancy elimination, and parameter autotuning. These optimizations

eliminate uncertainty and enhance parallelism at both the thread-level and instruction-level

in the sparse computation. Our evaluation results demonstrate a significant improvement

in performance, up to 44× faster than the current state-of-the-art frameworks (TFLite [1],

TVM [25], and MNN [96]). Our sparse computation can even yield a speedup ratio

comparable to the compression rate for certain convolutional layers in VGG-16 [206]. Most

importantly, PatDNN enables for the first time, the real-time execution of complex DNNs

on mobile devices.

1.1.2 Real-time DNN Execution with Advanced DNN Operator Fusion

The need for higher model accuracy has led to the design of neural networks with more

and more layers. Due to the high volume of data movement between layers and the limited

memory throughput on mobile devices, however, the depth of DNNs is the most significant

obstacle to efficient execution. Operator fusion (or kernel/layer fusion) is a common method

for reducing data movement and eliminating unnecessary intermediate result materialization.

Popular end-to-end frameworks such as TFLite [1], TVM [25], MNN [96], and Pytorch-

Mobile [165] employ operator fusion optimizations based on recognition of specific fusion

patterns. These operator fusion transformations are generally based on a computational

graph representation that views an application as a set of tensor operations and represents

dependencies as a Directed Acyclic Graph (DAG). However, the fusion patterns considered

in these works are insufficient to cover all fusion possibilities. It is unlikely to have happened

that the fusion patterns can be extended to cover all possible operator combinations.

3

DNNFusion [157] is a flexible and comprehensive operator fusion framework that

introduces an alternative approach to traditional end-to-end frameworks, such as TFLite

and TVM, which rely heavily on pattern matching to recognize limited patterns. Our

proposed solution categorizes various operator types into a limited number of groups,

develops rules for the possible combinations of these groups, and generates the fusion

plans and associated code. We also implement a novel mathematical property-based graph

rewriting framework to optimize DNN computation and facilitate subsequent fusion plan

generation, an integrated fusion plan generation that leverages the high-level operator

abstraction and accurate light-weight profiling, and additional advanced optimizations

enabled by the newly designed fusion analysis and fused code generation. DNNFusion has

been integrated into PatDNN as an optimized version of dense model inference and has been

exhaustively evaluated on 15 key DNNs, including BERT and its variants, GPT-2 [188],

YOLO-V4 [13]. The evaluation results demonstrate that DNNFusion outperforms the

state-of-the-art frameworks (TFLite, PyTorch, TVM, and MNN) with up to 9.3× speedup

on the popular models, enabling for the first time many of the most recent DNN models

that are not supported by existing frameworks to run on mobile devices efficiently, even in

real-time.

1.1.3 Real-time DNN Execution on Mobile Digital Signal Processor

On the recent hardware side, the trend of designing specialized accelerators for real-time

execution of Deep Neural Networks (DNN) on mobile devices is emerging along with

advances in hardware technology. For example, modern mobile Digital Signal Processors

(DSPs) feature: 1) wider SIMD (Single Instruction Multiple Data) widths, 2) more capable

vector instructions, and 3) more flexible instruction pipelines that can tolerate certain data

dependencies. In comparison to mobile CPU and GPU, the mobile DSP is superior in

terms of both power and performance for executing DNNs. Existing DNN compilers and

libraries, however, are unable to fully leverage the DSP’s computational power because: 1)

they failed to achieve a global optimization of selecting the best vector instructions for each

4

layer; and 2) an effective instruction packing strategy with regard to data dependencies is

missing at the VLIW (Very Long Instruction Word) packing level. Compiler optimizations

for the DSP chip turns out to involve dealing with many advanced features, especially with

respect to low-level parallelism exposed through its instruction set, requiring techniques

well beyond the ones implemented in current systems or otherwise developed.

We present GCD2 [156], which addresses the problem of efficiently mapping real-

world complex DNN workloads on modern mobile DSP architectures. To this end, GCD2

incorporates several optimizations which are designed to better harness the power of

advanced SIMD instructions while also making it possible to combine different instructions

with varying data dependencies into a single VLIW (Very Long Instruction Word) packet.

Specifically, we first design different tensor data layouts to improve the utilization of

SIMD instructions, followed by the adoption of a global instruction selection algorithm

that facilitates selection of the most suitable SIMD instructions and their accompanying

layouts for each layer. Lastly, we develop a novel VLIW packing algorithm that results

in an efficient instrument scheduling process for the DNN execution. Evaluation results

demonstrate that GCD2 is able to deliver a speedup of up to 6.0× when compared to other

cutting-edge frameworks for mobile DSP by using optimized data layouts in combination

with efficient VLIW packing strategies. It also turns out that, with our optimizations,

mobile DSP even achieves 6.1× and 1.48× better energy efficiency with the same data type

(int8) over EdgeTPU and Jetson Xavier, respectively.

1.1.4 Dynamic DNN Execution with Static Compiler Optimization

Dynamic DNN are increasingly common today due to its higher representative power and

flexibility. On the systematic optimization side, however, the majority of work for DNNs

considers static models characterized by two properties: input and output shapes and sizes

known in advance for each layer, and a fixed execution path independent of the input. In

contrast, dynamic models deviate from one or both of these properties. For instance, some

dynamic models, such as those used in cutting-edge computer vision models [107,191,198]

5

or transformers for natural language processing like BERT [46], can handle inputs with

varying shapes and/or apply variable portions of filter kernels during execution. Those

dynamisms pose many challenges for the optimizations that have been key to obtaining

high efficiency. For example, the lack of static information about the input shapes and

sizes makes it difficult to perform operator fusion, which is a key optimization for reducing

data movement and eliminating unnecessary intermediate result materialization.

We present SOD2, a static compiler optimization framework for DNN inference in the

presence of dynamic features towards minimizing inference latency and memory requirements.

We start by conducting a comprehensive investigation into the operators commonly used in

modern DNNs. These operators are classified based on the relationship between output

shapes, input shapes, and their computation patterns. We introduce the Rank and

Dimension Propagation (RDP) framework, which performs data-flow analysis to deduce

intermediate tensor shapes and dimensions. Leveraging the insights gained from RDP

analysis, we enable various optimizations, including operator fusion, fused code generation,

static execution planning, runtime memory allocation, and multi-version code generation.

To evaluate the effectiveness of SOD2, we extensively test it on 10 state-of-the-art DNN

models featuring shape dynamism and/or control-flow dynamism. These models include

those related to emerging artificial general intelligence (AGI), such as StableDiffusion [198]

and SegmentAnything [107]. Our evaluation demonstrates that SOD2 achieves significant

reductions in memory consumption up to 88%, while accelerating execution by up to 3.9 ×

compared to four state-of-the-art DNN execution frameworks.

1.2 Dissertation Organization

The remainder of this dissertation is structured as follows. Chapter 2 introduces an end-to-

end framework to efficiently execute DNN on mobile devices with the help of a novel model

compression technique – pattern-based pruning and a set of thorough architecture-aware

compiler/code generation-based optimizations. Chapter 3 presents a rigorous and extensive

6

loop fusion framework that can exploit the operator view of computations in DNNs, and

yet can enable a set of advanced transformations. Chapter 4 reports on a compilation

system GCD2, developed to support complex Deep Neural Network (DNN) workloads on

modern mobile DSP chips. Chapter 5 shows a static compiler optimization framework

named SOD2, to support dynamic neural networks on mobile devices. Finally, 6 concludes

this dissertation and discusses future research directions.

7

Chapter 2

PatDNN: Achieving Real-Time DNN

Execution on Mobile Devices with

Pattern-based Weight Pruning

2.1 Introduction

Deep learning or deep neural networks (DNNs) have become the fundamental element and

core enabler of ubiquitous artificial intelligence. After obtaining DNN models trained with

a huge amount of data, they can be deployed for inference, perception and control tasks

in various autonomous systems and internet-of-things (IoT) applications. Recently, along

with the rapid emergence of high-end mobile devices1, executing DNNs on mobile platforms

gains popularity and is quickly becoming the mainstream [42,116,118,161,254] for broad

applications such as sensor nodes, wireless access points, smartphones, wearable devices,

video streaming, augmented reality, robotics, unmanned vehicles, smart health devices,

etc. [12, 17,117,167,197].

Considering the nature of these applications, achieving real-time DNN inference is an
1Modern mobile platforms become increasingly sophisticated, usually equipped with both CPUs and

GPUs, e.g., Qualcomm Snapdragon 855 [180] has an octa-core Kryo 485 CPU and an Adreno 640 GPU.

8

ideal but yet a very challenging goal for mobile devices due to the limited computing

resources of embedded processors. For example, consider VGG-16 [206], one of the key

DNN models in transfer learning with broad application scenarios. For an embedded

GPU (Adreno 640, with 16-bit floating-point for weights/intermediate results), it takes

242ms to perform inference using TVM [25], and is not even supported in TensorFlow-Lite

(TFLite) [1] — these are two representative mobile-oriented, end-to-end DNN inference

acceleration frameworks. It is clearly far from real-time execution.

To achieve the goal, it is necessary to consider algorithm-level innovations. To this end,

DNN model compression techniques, including weight pruning [34, 69, 73, 74, 79, 150,233]

and weight/activation quantization [30,31,70,85,86,127,134,164,192,236,259], have been

proposed and studied intensively for model storage reduction and computation acceleration.

Early efforts on DNN model compression [34,69,73,74,79,150,233] mainly rely on iterative

and heuristic methods, with limited and non-uniform model compression rates. Recently, a

systematic DNN model compression framework (ADMM-NN) has been developed using

the powerful mathematical optimization tool ADMM (Alternating Direction Methods of

Multipliers) [18, 82, 141], currently achieving the best performance (in terms of model

compression rate under the same accuracy) on weight pruning [193, 256] and one of the

best on weight quantization [127].

Despite the high compression ratio, there is a significant gap between algorithm-level

innovations and hardware-level performance optimizations for DNN inference acceleration.

Specifically, the general but non-structured weight pruning (i.e., arbitrary weight can be

pruned) [69, 74] can seriously affect processing throughput because the indices for the

compressed weight representation prevent achieving high parallelism [79,150,233]. While

ADMM-NN achieves higher and more reliable compression ratios, hardware implementation

obstacle due to the non-structured nature still stays the same. Alternatively, the structured

pruning [79, 150,233], e.g., filter and channel pruning, can generate more hardware-friendly

models but result in relatively higher accuracy drop. To achieve the real-time inference

for representative DNNs in mobile devices, it is imperative to develop an end-to-end DNN

9

acceleration framework that achieves both high accuracy and high hardware efficiency.

We make a key observation that the general non-structured pruning and current

structured pruning represent two extremes in the design space. In non-structured pruning,

any weight can be pruned, while in structured pruning, the pruning is done for the whole filter

or channel. Thus, non-structured pruning is completely fine-grained, which achieves high

compression ratio but is not hardware or software optimization friendly, while structured

pruning is coarse-grained, which generates hardware-efficient regular models with higher

accuracy loss.

In this paper, we advance the state-of-the-art by naturally introducing a new dimension,

fine-grained pruning patterns inside the coarse-grained structures, revealing a previously

unknown point in design space. This new dimension allows more flexible exploration of the

trade-off between accuracy and hardware efficiency. In this paradigm, the key question is

how to “recover” the hardware efficiency lost due to the fine-grained patterns. The unique

insight of our solution is to use compiler to seamlessly close the gap between hardware

efficiency of fully structured pruning and the pattern-based “semi-structured” pruning.

Specifically, we propose PatDNN, a novel end-to-end mobile DNN acceleration framework

that can generate highly accurate DNN models using pattern-based pruning methods and

guarantee execution efficiency with compiler optimizations. PatDNN consists of two stages:

(1) pattern-based training stage, which performs kernel pattern and connectivity pruning

(termed pattern-based pruning in general) with a pattern set generation and an extended

ADMM solution framework. (2) execution code generation stage, which converts DNN

models into computational graphs and applies multiple optimizations including: a high-

level and fine-grained DNN layerwise representation, filter kernel reorder, load redundancy

eliminations, and automatic parameter tuning. All design optimizations are general, and

applicable to both mobile CPUs and GPUs.

In sum, this paper makes several major contributions:

• First, it proposes a novel pattern-based DNN pruning approach that achieves the ben-

10

efits of both non-structured and structured pruning while avoiding their weaknesses.

• Second, it enhances the recent ADMM-NN framework [193,249] with pattern selection

capability to map a pattern to each kernel, and train non-zero weights.

• Third, it identifies the compatibility of the proposed pattern-based pruning scheme

with compiler code generation, and develop multiple novel compiler optimizations for

compressed DNN execution. These optimization opportunities are enabled only by

our pattern-based design, and do not exist in any prior DNN execution frameworks.

• Fourth, it implements an end-to-end DNN acceleration framework PatDNN on mobile

platforms, compatible with modern embedded CPU and GPU architectures, achieving

real-time performance on representative DNNs without accuracy loss for the first

time.

We compare PatDNN with three state-of-the-art end-to-end DNN frameworks on

both mobile CPU and GPU, TensorFlow Lite [1], TVM [25], and Alibaba Mobile Neural

Networks [96] using three widely used DNNs, VGG-16, ResNet-50, and MobileNet-V2

and two benchmark datasets, ImageNet and CIFAR-10. Our evaluation results show that

PatDNN achieves up to 44.5× speedup without any accuracy compromise. Using Adreno

640 embedded GPU, PatDNN achieves 18.9ms inference time of VGG-16 on ImageNet

dataset. To the best of our knowledge, it is the first time to achieve real-time execution of

such representative large-scale DNNs on mobile devices.

2.2 Background and Motivation

2.2.1 Layerwise Computation of DNNs

DNN models can be viewed as cascaded connections of multiple functional layers, such

as convolutional (CONV), fully-connected (FC), and pooling (POOL) layers, to extract

features for classification or detection [101,125,250]. Take the most computation-intensive

11

Input Feature
Map:

Filter 1:

Filter j:

Filter C :K+1

Output Feature
Map:CO

NV

CONV

CO
NV

k,lx R
eLU

k,lŷ

Next Layer
Input Feature
Map: k+1,lx

1 i Ck

1 i Ck

1 i Ck
k

1 i Ck

Mk

N

1 j Ck+1

k+1

1 i Ck+1

Mk+1

N

channels

kernels

channels

Figure 2.1: DNN CONV layer computation.

CONV layer as an example, as shown in Figure 2.1, the input feature map of the k-th layer

has a size of Mk×Nk×Ck, where Ck is the number of channels of the input feature map.

This layer uses Ck+1 CONV filters, each with a size of Pk×Qk×Ck. Note that the number

of kernels Ck in a CONV filter should match the number of channels Ck in the input feature

map to perform convolution. Each j-th CONV filter performs convolution with the input

feature map, using a stride of Sk, resulting in the j-th channel in the output feature map.

Therefore, the number of channels in the output feature map equals to the number of filters

Ck+1, while the size of the output feature map i.e., Mk+1 and Nk+1 is determined by Mk,

Nk, Pk, Qk, and Sk. The CONV layer is followed by an activation layer, which performs an

activation operation, typically ReLU, on the output feature map. Besides the functional

layers in DNNs, batch normalization becomes an essential operation to increase the stability

of DNN training by overcoming the gradient vanishing issue [89].

2.2.2 Mobile Acceleration of DNNs

In recent years, there have been intensive efforts on DNN inference acceleration frameworks

targeting mobile devices, include DeepX [116], TFLite [1], DeepEar [119], TVM [25], Alibaba

Mobile Neural Network (MNN) [96], DeepCache [241], DeepMon [88], DeepSense [248], and

MCDNN [72]. Most of these prior works do not fully utilize model compression techniques.

12

Other efforts that explore model sparsity and model compression to accelerate the DNN

execution include Liu et al. [139], DeftNN [81], SCNN [163], AdaDeep [140]. However, they

either do not target mobile platforms, or require new hardware, or trade off compression

rate and accuracy, introducing various drawbacks compared to our work.

Table 2.1 compares the major optimization techniques offered by three state-of-the-art,

end-to-end DNN inference frameworks (TFLite [1], TVM [25], and MNN [96]). We do not

include other efforts, e.g., DeepCache [241] and DeepMon [88], since they mainly focus on

specific DNN applications rather than general DNNs. In this work, our goal is to find the

most appropriate weight pruning scheme for mobile DNN acceleration and the corresponding

full-stack acceleration framework. We utilize 16-bit floating point representation on GPU

for both weights and intermediate results which is supported in mobile devices and shown

to incur no accuracy loss [1, 25,96] for DNNs.

Table 2.1: DNN acceleration frameworks on mobile devices.

DNNs Optimization Knobs TFLite TVM MNN Ours

Parameters auto-tuning N Y N Y
CPU/GPU support Y Y Y Y

Dense Half-floating support Y Y Y Y
Computation graph optimization Y! Y* Y! Y**

Tensor optimization Y! Y† Y! Y††

Sparse DNN model support N N N Y
Pattern-based pruning N N N Y

Sparse Connectivity pruning N N N Y
Filter kernel reordering N N N Y
Opt. sparse kernel code generation N N N Y
Auto-tuning for sparse models N N N Y

* Operator fusion, constant folding, static memory plan, and data layout transform
** Besides above in *, operation replacement
† Scheduling, nested parallelism, tensorization, explicit memory latency hiding
†† Besides above in †, dense kernel reordering, SIMD operation optimization
! Similar optimizations as TVM, but less advanced

13

2.2.3 DNN Model Compression and Challenges

DNN model compression has been proposed for simultaneously reducing the storage/compu-

tation and accelerating inference with minor classification accuracy (or prediction quality)

loss. Model compression is performed during DNN training. Two important categories of

DNN model compression techniques are weight pruning [34,69,74,79,150,233] and weight

quantization [30,85,127,134,164,192,236,259].

Filter
Pruning

Channel
Pruning

Filter 1 Filter 2 Filter A Filter 1 Filter 2

(a)

(b)

pruning
synapses

 Before pruning After pruning

pruning
neurons

k Filter Ak

Figure 2.2: (a) Non-structured weight pruning and (b) two types of structured weight
pruning.

Weight pruning reduces the redundancy in the number of weights. As shown in Figure 2.2,

two main approaches of weight pruning are (1) the general and non-structured pruning;

and (2) structured pruning, which produces irregular and regular compressed DNN models.

Non-Structured Pruning: In this method, arbitrary weight can be pruned. It can

result in a high pruning rate, i.e., reduction in the number of weights, which can reduce the

actual computation. For compiler and code optimization, non-structured pruning incurs

several challenges due to the irregularity in computation and memory access. First, the

irregular and sparse kernel weights require heavy control-flow instructions, which degrade

instruction-level parallelism. Second, it introduces thread divergence and load imbalance

due to the fact that kernels in different filters have divergent workloads and they are

usually processed by multiple threads — a key concern for efficient thread-level parallelism.

Third, it usually incurs low memory performance due to poor data locality and cache

14

performance. More importantly, it prohibits advanced memory optimizations such as

eliminating redundant loads that widely exist in convolution operations. Similarly, for

hardware acceleration, since the pruned models are stored in some sparse matrix format

with indices, they often lead to performance degradation in GPU and CPU implementations

[34,69,74].

Structured Pruning: This method can produce regular, but smaller weight matrices.

Figure 2.2 (b) illustrates the representative structured pruning schemes: filter pruning and

channel pruning [233]. Filter and channel pruning can be considered as equivalent in that

pruning a filter in the k-th layer is equivalent to pruning the corresponding channel in the

(k+1)-th layer. Filter/channel pruning is compatible with Winograd algorithm [122,234]

that has been used to accelerate computation of the original DNNs. Due to the regular

structure, the GPU/CPU implementations typically lead to more significant acceleration

[79,150,233]. However, the structured pruning suffers from notable accuracy loss [79,233].

2.2.4 ADMM-based DNN Model Compression Framework

Recent work ADMM-NN [193,249] leverages Alternating Direction Methods of Multipliers

(ADMM) method for joint DNN weight pruning and quantization. ADMM is a powerful

tool for optimization, by decomposing an original problem into two subproblems that can be

solved separately and efficiently. For example, considering optimization problem minx f (x)+

g(x). In ADMM, this problem is decomposed into two subproblems on x and z (auxiliary

variable), which will be solved iteratively until convergence. The first subproblem derives x

given z: minx f (x)+q1(x|z). The second subproblem derives z given x: minz g(z)+q2(z|x).

Both q1 and q2 are quadratic functions.

As a unique property, ADMM can effectively deal with a subset of combinatorial

constraints and yield optimal (or at least high quality) solutions [82, 141]. Luckily, the

necessary constraints in the DNN weight pruning and quantization belong to this subset of

combinatorial constraints, making ADMM applicable to DNN model compression.

Due to the unprecedented results on accuracy and pruning rate, ADMM-NN [193]

15

is considered as the state-of-art results for non-structured weight pruning and one of

state-of-art methods for weight quantization. For non-structured pruning, ADMM-NN

achieves 167×, 24×, and 7× weight reductions on LeNet-5, AlexNet, and ResNet-50 models,

respectively, without accuracy loss. However, the framework only focuses on non-structured

weight pruning, in which the pruning rate does not directly translate to performance

improvements.

ADMM-NN can be extended to perform structured pruning, i.e., filter/channel pruning,

and our results show that it leads to 1.0% Top-5 accuracy degradation with 3.8× weight

reduction on VGG-16 CONV layers using ImageNet dataset. Although better than prior

work (1.7% in [79] and 1.4% in AMC [78]), this accuracy loss is not negligible for many

applications.

2.2.5 Motivation

Based on the discussion of prior work on weight pruning, we rethink the design space and

observe that non-structured and structured represent two extremes in the design space.

In non-structured pruning, any weight can be pruned, we consider it as a fine-grained

method; in structured pruning, the weights of whole filter or channel are pruned together,

we consider it as a coarse-grained method. Correspondingly, the two methods have different

implications on hardware acceleration and software optimization: non-structured pruning

is not hardware or software optimization friendly, so the higher pruning ratio cannot fully

translate to performance gain, while structured pruning incurs higher accuracy loss.

The motivation of our study is to seek an approach that can offer the best of both

methods. To achieve that, we naturally introduce a new dimension, fine-grained pruning

patterns inside the coarse-grained structures, revealing a previously unknown point in design

space. With the higher accuracy enabled by fine-grained pruning pattern, the key question

is how to re-gain similar hardware efficiency as coarse-gained structured pruning. We take a

unique approach and leverage compiler optimizations to close the performance gap between

full structured pruning and pattern-based “semi-structured” pruning.

16

2.3 Overview of PatDNN

2.3.1 Pattern-based Pruning

In pattern-based pruning, the key consideration is how to design and select the patterns. To

achieve high accuracy and execution efficiency, we need to design the patterns considering

the implication for theory and algorithm, compiler optimization, and hardware execution.

Good patterns should have two key properties: flexibility and regularity.

The Flexibility is not only desirable at theory and algorithm level but also enables

efficient compiler code generation. Specifically, it allows compilers to maximize or maintain

both instruction-level and thread-level parallelism. The regularity not only results in

highly efficient hardware execution but also enables efficient compiler optimizations such

as redundant load elimination to further improve performance. Compared to irregular

structures, recent works also show from theory and algorithm level that high accuracy or

function approximation capability can be achieved at the same time with certain regularity.

Given these two key properties, we propose two pattern-based pruning techniques: kernel

pattern pruning and connectivity pruning.

Figure 2.3: Illustration of (a) kernel pattern pruning on CONV kernels, and (b) connectivity
pruning by removing kernels.

Kernel Pattern Pruning is illustrated in Figure 2.3. For each kernel (in a CONV

17

filter), a fixed number of weights are pruned, and the remaining weights (white cells) form

specific “kernel patterns”. We define the example in Figure 2.3 as 4-entry pattern pruning,

since every kernel reserves 4 non-zero weights out of the original 3×3 kernel (the most

commonly used kernel). The same approach is also applicable to other kernel sizes and the

FC layer. For each kernel, it possesses flexibility in choosing among a number of pre-defined

patterns.

At theory and algorithm level, it is shown in [123,132] that the desirable kernel shape

has certain patterns to match the connection structure in human visual systems, instead of

a square shape. The selection of appropriate pattern for each kernel can be naturally done

by extending ADMM-based framework. In Section 2.4.3, we achieve accuracy enhancement

in all representative DNNs in our testing. At compiler level, the pre-defined pattern allows

compiler to re-order and generate codes at filter and kernel level so that kernels with the same

pattern can be grouped for consecutive executions to maximize instruction-level parallelism.

At hardware level, the 4-entry patterns are extremely friendly to the SIMD architecture in

embedded processors based on either GPUs or CPUs. Note that our approach is general

and can be applied to any pre-defined patterns, not just the 4-entry considered in the paper.

...

1Channel

...

iChannel

Channel Ck

Input
feature
Map

Output
feature
Map

1Channel Channel j Channel

FilterFilter j1Filter

1Kernel

iKernel

Kernel

Ck+1

Ck+1

Ck

.........

.........

... ...

...

...

...

...

... ...

Figure 2.4: Illustration of connectivity pruning.

18

Connectivity Pruning is illustrated in Figure 2.4. The key insight is to cut the

connections between certain input and output channels, which is equivalent to removal

of corresponding kernels. In CONV layers, the correlation between input channel i and

output channel j is represented by the i-th kernel of filter j. This method is proposed for

overcoming the limited weight pruning rate by kernel pattern pruning.

At theory and algorithm levels, the connectivity pruning matches the desirability of

locality in layerwise computations inspired by human visual systems [243,244]. It is more

flexible than the prior filter/channel pruning schemes that remove whole filters/channels,

thereby achieving higher accuracy. At compiler and hardware level, removed kernels and

associated computations can be grouped by compiler using the re-ordering capability

without affecting the other computations, thereby maintaining parallelism degree.

Table 2.2: Qualitative comparison of different pruning schemes on accuracy and speedup
under the same pruning rate.

Pruning
Scheme

Accuracy Hardware Speedup

Highest Minor
Loss

Moderate
Loss

Highest
Loss Highest High Moderate Minor

Non-structured X X
Filter/Channel X X

Pattern X X
Connectivity X X

�1

2.3.2 Overview of PatDNN Acceleration Framework

Based on the above discussions, we propose PatDNN, a novel end-to-end mobile DNN

acceleration framework that can generate highly accurate DNN models using pattern-

based pruning methods and guarantee execution efficiency with compiler optimizations.

Compared to recent prior works [78, 79, 193, 233], PatDNN uniquely enables cross-layer

vertical integration, making it desirable across theory/algorithm, compiler and hardware.

Allowing compilers to treat pruned kernels as special patterns, our approach not only

achieves high pruning rate with high accuracy, but also effectively converts into performance

improvements due to hardware friendly properties.

19

Graph-optimization Execution code generation

Pruned
model

Execution graph
with weights

name: vgg16
device: [CPU]
layers:
 - name: conv_op1
 storage:tight
 pattern:
 type: [1, 2]
 layout: FKW

 …
 tuning:
 unroll: [4, 2, 8, 1]
 tile: [16, 32, 8]
 permute: cohwci_b
 …

 info:
 strides: [1, 1]
 dilations: [1, 1]
 …

LR

Filter kernel reorder

Load redundant elimination
1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6

1 x x

2 x x

x x x

`
`

5 6 7 8
`̀̀

Parameter tuning
Opt-code for
CPU/GPU

Compact model

LR Executor
CG

Explorer for ...:
 for ...:
 for ...:
 for ...:
 for ...:
 for ...: Computation

graph

Graph
optimization

epoch 1

epoch 20

epoch 40

epoch 100

ADMM
regularization

CNN weight matrix

CONV kernel

Pre-designed
pattern pool

Guide

A
D

M
M

 tr
ai

ni
ng

 p
ro

ce
ss

fine-tune
epochs

Prune regularized weights and fine-tune

Fi
ne

-tu
ne

Pattern-based pruning

Figure 2.5: Overview of PatDNN acceleration framework.

As shown in Table 2.2, PatDNN can achieve the benefits of both non-structured and

structured pruning. The key enabler to achieving this goal is to leverage compiler to

maintain the efficiency of structured pruning based on kernel pattern and connectivity

pruning. Our approach is an excellent example of hardware and software co-design, which

can be compared to an intuitive analogy: the multi-level cache memory hierarchy provides

sufficient hardware supports to hide memory access latency and explore locality, but compiler

and software optimizations are still needed to fully realize effective cache management

policy.

Figure 2.5 shows the overview of PatDNN which consists of two stages: (1) pattern-based

training stage (Section 2.4), which performs kernel pattern and connectivity pruning with

an extended ADMM solution framework. (2) execution code generation stage (Section 2.5),

which performs multiple effective optimizations based on the patterns. Similar to TVM [25],

PatDNN converts DNN models into computational graphs and applies multiple graph-based

optimizations. Based on these optimizations, we focus on layerwise design and optimization

including a high-level and fine-grained DNN layerwise representation (LR), filter kernel

reorder, load redundancy eliminations, and automatic parameter tuning. All of these

designs and optimizations are general, and applicable to both mobile CPUs and GPUs.

The second stage generates optimized execution codes as well as DNN models with weights

stored in a novel compact format.

20

Pre-defined Pattern Set

Select

Pre-trained Model

ADMM
Regularization

Masked Mapping
& Retraining

Pattern and
Connectivity

pruned Model

Pattern
Selection

Sub-problem 2:
Find Y, Z

Update: U, V

Sub-problem 1:
Find W, b

Figure 2.6: The algorithm-level overview of PatDNN training.

2.4 PatDNN Training with Pattern-based Pruning

This section describes the methods to generate compressed DNN models for PatDNN. The

procedure is composed of two steps: (1) we design a set of desired patterns to be selected

for each kernel; (2) assign a pattern for each kernel (kernel pattern pruning) or prune the

whole kernel (connectivity pruning), and train the pattern-based weights for maintaining

accuracy. The overall flow is shown in Figure 2.6. Essentially, it reflects the algorithm

aspects of PatDNN. Our method can be applied to either a pre-trained DNN or train a

model from scratch.

2.4.1 Designing the Pattern Set

We need to determine the number of patterns, and design each specific candidate pattern

in the pattern set. The number of patterns is an important hyperparameter that should

be carefully considered. If it is too large, it is more challenging to generate efficient codes,

thereby affecting performance; if it is too small, the lack of flexibility may lead to accuracy

degradation. Through empirical study, we validate that 6-8 patterns in the set achieves

as a desirable tradeoff for the most common 3×3 kernel—ensuring low compiler overhead

while maintaining high accuracy.

When the number of patterns is determined and 4-entry patterns are utilized, the

compiler optimization and hardware efficiency are oblivious to the specific pattern shapes.

21

However, the specific patterns to use need to be carefully optimized to maintain high

accuracy after kernel pattern pruning. The key insights of pattern design are: (1) both

theory and empirical studies [243, 244] show that the central weight in a 3× 3 kernel is

critical and shall not be pruned; and (2) it is desirable that the distortion is small for each

kernel before and after kernel pattern pruning. Hence, we propose the following heuristic.

First, for the pre-trained DNN, we scan all the kernels, and for each kernel, we find the

four weights with largest magnitudes (including the central weight). These four weights

form a 4-entry pattern, called the natural pattern of the kernel. According to the definition

of natural patterns, there are a total of
(8

3

)
= 56 number of possible patterns. Suppose

we aim at k different patterns in the candidate set. We count and select the Top-k most

commonly appeared natural patterns across all kernels in the DNN, thereby forming the

pattern candidate set (to select from in the subsequent step).

Our study on pattern number and pattern style selection is consistent with the pattern

pruning theory work that is proposed in [147]. Different from pattern theory derivation

in [147], our approach focuses on system-level design and compiler optimization of the

pattern-based acceleration framework.

2.4.2 Kernel Pattern and Connectivity Pruning Algorithm

Problem Formulation: Consider an N-layer DNN, and we focus on the most computation-

ally intensive CONV layers. The weights and biases of layer k are respectively denoted by

Wk and bk, and the loss function of DNN is denoted by f
(
{Wk}N

k=1,{bk}N
k=1

)
, refer to [256]

for more details. In our discussion, {Wk}N
k=1 and {bk}N

k=1 respectively characterize the

collection of weights and biases from layer 1 to layer N. Then the pattern and connectivity

pruning is formulated as an optimization problem:

minimize
{Wk},{bk}

f
(
{Wk}N

k=1,{bk}N
k=1

)
,

subject to Wk ∈Sk, Wk ∈S ′
k , k = 1, . . . ,N.

(2.1)

22

The collection of weights in the k-th CONV layer forms a four-dimensional tensor, i.e.,

Wk ∈ RPk×Qk×Ck×Ck+1 , where Pk,Qk,Ck, and Ck+1 are respectively the height of kernel, the

width of kernel, the number of kernels, and the number of filters, in layer k. Suppose X

denotes the weight tensor in a specific layer, then (X):,:,a,b denotes a specific kernel.

In kernel pattern pruning, the constraint in the k-th CONV layer is Wk ∈Sk := {X |

each kernel in X needs to satisfy one specific pattern shape in the pattern set (and non-zero

weight values can be arbitrary)}. In connectivity pruning, the constraint in the k-th CONV

layer is Wk ∈S ′
k := {X | the number of nonzero kernels in X is less than or equal to αk}

(αk is a predetermined hyperparameter with more discussions later). Both constraints need

to be simultaneously satisfied.

Extended ADMM-based Solution Framework: The constraint Wk ∈Sk in problem

(2.1) is different from the clustering-like constraints in ADMM-NN [193], in that it is flexible

to select a pattern for each kernel from the pattern set. As long as a pattern is assigned for

each kernel, constraints in problem (2.1) become clustering-like and ADMM compatible.

Similar to ADMM-NN [193], the ADMM-based solution is an iterative process, starting

from a pre-trained DNN model. We assign an appropriate pattern for each kernel based on

the L2-norm metric in each iteration, to achieve higher flexibility.

By incorporating auxiliary variables Zk’s and Yk’s, and dual variables Uk’s and Vk’s,

we decompose (2.1) into three subproblems, and iteratively solve until convergence. In

iteration l, after assigning patterns we solve the first subproblem

minimize
{Wk},{bk}

f
(
{Wk}N

k=1,{bk}N
k=1

)
+

N

∑
k=1

ρk

2
∥Wk−Zl

k +Ul
k∥2

F

+
N

∑
k=1

ρk

2
∥Wk−Yl

k +Vl
k∥2

F . (2.2)

The first term is the loss function of the DNN, while the other quadratic terms are convex.

As a result, this subproblem can be solved by stochastic gradient descent (e.g., the ADAM

algorithm [106]) similar to training the original DNN.

The solution {Wk} of subproblem 1 is denoted by {Wl+1
k }. Then we aim to derive

23

{Zl+1
k } and {Yl+1

k } in subproblems 2 and 3. These subproblems have the same form as

those in ADMM-NN [193]. Thanks to the characteristics in combinatorial constraints, the

optimal, analytical solution of the two subproblems are Euclidean projections, and are

polynomial time solvable. For example, for connectivity pruning, the projection is: keeping

αk kernels with largest L2 norms and setting the rest of kernels to zero. For kernel pattern

pruning it is similar. Finally, we update dual variables Uk and Vk according to the ADMM

rule [18] and thereby complete the l-th iteration in the ADMM-based solution.

The hyperparameter determination process is relatively straightforward for joint pattern

and connectivity pruning. There is no additional hyperparameters for kernel pattern

pruning when the pattern set has been developed. For connectivity pruning we need to

determine the pruning rate αk for each layer. In this paper, we adopt a heuristic method

of uniform pruning rate for all layers except for the first layer (which is smaller, yet more

sensitive to pruning).

2.4.3 Accuracy Validation and Analysis

We validate the accuracy of ADMM-based joint kernel pattern and connectivity pruning,

based on ImageNet ILSVRC-2012 and CIFAR-10 datasets, using VGG-16 [206], ResNet-

50 [77], and MobileNet-V2 [200] DNN models. Our implementations are based on PyTorch,

and the baseline accuracy results are in many cases higher than prior work, which reflects

the recent progress in DNN training. With a pre-trained DNN model, we limit the number

of epochs in kernel pattern and connectivity pruning to 120, similar to the original DNN

training in PyTorch and much lower than iterative pruning [74].

Table 2.3: Top-5 accuracy comparison on kernel pattern pruning.

Network
VGG16

ResNet50

Original DNN 6-pattern 8-pattern 12-pattern
91.7%
92.7%

92.1%
92.7%

92.3%
92.8%

92.4%
93.0%

Table 2.3 illustrates the Top-5 accuracy comparison on kernel pattern pruning only,

applied on the CONV layers of VGG-16 and ResNet-50 using ImageNet dataset. The

24

baseline is the original DNN without patterns, and we demonstrate the accuracy results with

6, 8, and 12 patterns (all 4-entry patterns) in the pattern set. Our first observation is that

the accuracy will improve when the number of candidate patterns is sufficient — typically 4

- 8 patterns are sufficient. This is attributed to the compatibility of kernel pattern pruning

with human visual system and the ability to eliminate overfitting (compared with square

kernel shape). This observation has been also validated for other types of DNNs and data

sets (e.g., CIFAR-10).

Table 2.4: Top-5 accuracy and CONV weight reduction on joint kernel pattern pruning (8
patterns in the set) and connectivity pruning.

VGG16

Method
Top-5

Accuracy
CONV

compression rate
Deep compression [14]
NeST [8]

ADMM-NN [49] (non-structured)
Our’s (8-pattern + connectivity)

89.1% 3.5
6.5

8.0

89.4%
88.9%
91.6%

ResNet50
Fine-grained Pruning [42]
ADMM-NN [49] (non-structured)
Our’s (8-pattern + connectivity)

92.3% 2.6

4.4
92.3%
92.5%

7.0

10.2

Table 2.4 illustrates the Top-5 accuracy comparison on joint kernel pattern pruning (8

patterns in the set) and connectivity pruning, on VGG-16 and ResNet-50 using ImageNet

dataset. For VGG-16, all kernels are 3×3. After applying 4-entry patterns on all kernels

and 3.6× uniform connectivity pruning, we achieve around 8× weight reduction on CONV

layers of VGG-16. For ResNet-50, a portion of kernels are 1×1 besides the majority of

3×3 kernels. We apply kernel pattern pruning on all 3×3 ones, and apply uniform 3.6×

connectivity pruning on all kernels. We achieve 4.4× weight reduction on CONV layers.

One can observe from the table that (1) no Top-5 accuracy drop with this setup; (2) under

the same accuracy, the weight reduction rate is close to ADMM-based (and outperforms

prior heuristic based) non-structured pruning on CONV layers.

For the CIFAR-10 dataset, we observe consistent accuracy improvements with 8 patterns

on 3×3 kernels and 3.6× connectivity pruning, with results shown in Section 2.6.

25

2.5 PatDNN Inference Code Optimization

For DNN models with kernel pattern and connectivity pruning, PatDNN ensures hardware

execution efficiency of DNN inference with optimized compiler and code generation. As

aforementioned, compiler optimizations play the key role in “recovering” the performance

loss due to the fine-grained pattern-based pruning compared to fully structured pruning.

This stage includes two-levels of optimizations: (1) optimizations on computational graphs

that explore the potential opportunities among multiple DNN layers; and (2) optimizations

within each layer. PatDNN adopts an enhanced TVM [25]-like approach together with other

innovations from the latest efforts in this direction (e.g., Tensor Comprehensions [224]) to

implement the former (with major optimizations summarized in Table 2.1). Due to space

limit, we do not elaborate each as they are not the main research contribution and not

specific to DNN execution optimization leveraging pattern-based pruning.

This section focuses on PatDNN’s layerwise optimizations based on kernel pattern

and connectivity pruning that are specifically designed to address the challenges in DNN

acceleration with non-structured weight pruning, i.e., heavy control-flow instructions, thread

divergence and load imbalance, and poor memory performance. These optimizations are

general, and applicable to both mobile CPUs and GPUs. Our framework can generate both

optimized CPU (vectorized C++) code and GPU (OpenCL) code. Figure 2.7 illustrates

PatDNN’s compiler-based optimization and code generation flow with a CONV layer

example.

2.5.1 Compiler-based PatDNN Inference Framework

Layerwise Representation: The key feature of PatDNN is its sparsity- and pruning-aware

design. To support it, PatDNN proposes a high-level fine-grained Layerwise Representation

(LR) to capture the sparsity information. This LR includes intensive DNN layer specific

information to enable aggressive layerwise optimizations. In particular, it includes detailed

kernel pattern and connectivity-related information (e.g., the pattern types presented in this

26

for oc = 0 to tile_oc step unroll_oc:
 for oh = 0 to tile_oh step unroll_h:
 for ow = 0 to tile_ow step unroll_w:
 for ic = stride[0] to stride[1] step unroll_ic:
 in = read_input(index[ic], oh, ow)
 // Compute Pattern 1 here
 for ic = stride[1] to stride[2] step unroll_ic:
 // Compute Pattern 2 here

/Reorder LRE Tune
Optimization

+ No-opt

for oc = 0 to tile_oc step 1:
 for oh = 0 to tile_oh step unroll_h:
 for ow = 0 to tile_ow step unroll_w:
 for ic = 0 to in_channel step unroll_ic:
 switch (style[oc][ic])
 case 0: //Skip the empty kernel
 case 1: //Compute Pattern 1 here
 case 2: //Compute Pattern 2 here
 ...

+ Reorder
for oc = 0 to tile_oc step 1:
 for oh = 0 to tile_oh step 1:
 for ow = 0 to tile_ow step 1:
 for ic = stride[0] to stride[1] step unroll_ic:
 in = read_input(index[ic], oh, ow)
 // Compute Pattern 1 here
 for ic = stride[1] to stride[2] step unroll_ic:
 // Compute Pattern 2 here

+ LRE

Graph opt code

Deploy

Compact storage

Figure 2.7: PatDNN’s compiler-based optimization and code generation flow:
compiler takes both model codes with graph-based optimizations and a layerwise represen-
tation (as an example in Figure 2.8) to generate low-level C/C++ and OpenCL codes (as
No-opt). This low-level code is further optimized with filter kernel reorder and our FKW
compact model storage (+Reorder), the register-level load redundancy elimination (+LRE),
and other optimizations like auto-tuning. Finally, the code is deployed on mobile devices.

layer, the pattern order in each filter, the connection between kernels and input/output

channels, etc.); and tuning-decided parameters (e.g., the input and output tile sizes, unrolling

factors, the loop permutation of this layer, etc.).

PatDNN extracts the pattern/connectivity information from DNN models with com-

putational graph optimizations, and determines the tuning-related parameters by the

auto-tuning. This LR is used for PatDNN’s following optimizations: (1) filter kernel

reordering, which operates on kernel pattern and connectivity-related information, i.e.,

specifically the compressed weight storage structure; and (2) load redundancy elimination,

which requires each kernel’s pattern, the connectivity between kernels and input/output

channels, and the exact input/output tile size and unroll factor. After these optimizations,

high-level LR can generate compressed model and associated optimized model execution

code by using the pattern-related information and other basic layer information extracted

from DNN models, (e.g., the kernel size, computation stride, computation dilation, etc).

Figure 2.7 shows the optimization flow and two sample code skeletons (+Reorder and +LRE)

for these two optimizations, respectively.

27

IR

device: [CPU]
layers:
 - name: "conv_op1"
 storage: "tight"
 pattern: {"type": [1, 2], "layout": FKW, ...}
 tuning: {"unroll": [4, 2, 8, 1], "tile": [16, 32, 8],
 "permute": cohwci_b, ...}
 info: {"strides": [1, 1], "dilations": [1, 1], ...}

Figure 2.8: An LR example for a CONV layer.

Figure 2.8 shows a simplified LR example for a CONV layer (with 2-D kernels). This

LR will generate execution code for CPU (device). Two types of kernel patterns ([1, 2])

present in this layer (patterns) and the filter kernels’ pattern layout is specified by our FKW

compressed weight storage format (clarified in Section 2.5.3 in detail)2. Its computation

loop permutation is cohwci_b, i.e., in the order of output channel, output height, output

width, and input channel, with blocking and unrolling. Their blocking sizes are specified in

tile. Their unrolling factors are specified in unroll. Figure 2.7 (+Reorder) also shows

the execution code generated from this LR, in which the outer loops iterating on all tiles

are omitted. The inner-most iteration processes kernels in each filter in the order of their

pattern types, i.e., all kernels with pattern 1 in each filter will be processed at first, then

kernels with pattern 2. This code optimization does not require any loop control-flows.

This is guaranteed by our filter kernel reorder that is introduced in Section 2.5.2 in details.

2.5.2 Filter Kernel Reorder (FKR)
Reorder

2 1
1 2 2
2 2 2 1
2 1

1 2 1
1 2 1 2

2 1
2 1

1 2 2
1 2 1
2 2 2 1

1 2 1 2

1 2
1 2
1 2 2
1 1 2
1 2 2 2
1 1 2 2

DNN layer

Group 0

Fi
lte

rs

Kernels

Group 1

Group 2

Figure 2.9: An example of filter kernel reorder.

2This LR is used after our filter kernel reorder, so the pattern information is stored in the optimized
FKW format. Before reorder, a relatively loose data format is used, which is omitted due to the space limit.

28

Kernel pattern and connectivity pruning offer better opportunities to address the

performance challenges in non-structured pruning thanks to its better regularity. Specifically,

Filter kernel reorder (FKR) is designed to address two key challenges, i.e., heavy control-flow

instructions, and thread divergence and load imbalance. Our basic insight is: for a specific

DNN layer, the patterns of all kernels are already known after model training, so the

inference computation pattern is also known before model deployment. FKR leverages

this knowledge to organize the filters with similar kernels together to improve inter-thread

parallelization and order the same kernels in a filter together to improve intra-thread

parallelization.

Figure 2.9 explains FKR with a simplified example. Here, a matrix represents a CONV

layer of DNN and each cell is a kernel with pattern type denoted by the number on it.

Empty kernels are the ones pruned by connectivity pruning. The kernels in the same

row belong to the same filter, and are marked with the same color.

Before the reorder, kernels with different patterns are distributed in this DNN layer.

When performing the convolution operation directly, the execution code will contain many

branches (as the +No-opt code in Figure 2.7) that incur significant instruction pipeline stalls

and thread divergences, hurting both instruction- and thread-level parallelism. According

to our experimental results in Section 2.6, this version results in sub-optimal performance.

FKR is composed of two steps: filter reorder and kernel reorder. The filter reorder

organizes similar filters next to each other and the kernel reorder groups kernels with

identical patterns in each filter together. Particularly, the filter similarity used in filter

reorder is decided by two factors: first, the number of non-empty kernels in each filter (i.e.,

the length of each filter); and second, for filters with the same length, the number of kernels

at identical positions with identical pattern IDs when the kernels in each filter are ordered

according to these IDs.

After the reorder, the filters with the same length are grouped together, and in each

group, the filters with the highest degree of similarity are ordered next to each other. The

code +Reorder in figure 2.7 is for the execution of this reordered layer. This code shows

29

Weight array - Weight level

Index array - Kernel level

Offset array - Filter level

Pattern Storage

2 1

2 1

2 2 2

2 2

DNN layer

Fi
lte

rs

Kernels

0 2 4 6 9

3 1 2 0 1 3 1 2 3

0 1 2 0 1 2 0 0 2 0 0 3
Stride array - Kernel level

0 1 3 2
Reorder array - Filter level1 2

1 2

2 2

2 2 2

Kernel 0

Reorder

Figure 2.10: An example of FKW compressed weight storage.

much better instruction-level parallelism because it eliminates all branches. In addition,

it also allows the better exploration of thread-level parallelism, because it results in large

thread execution similarity and good load balance, particularly, considering the example of

mapping the filters in the same group to the same GPU thread block.

2.5.3 Compressed DNN Weight Storage (FKW Format)

After FKR, our LR stores the DNN’s weights in a novel compact format (called FKW,

standing for Filter-Kernel-Weight format). Compared with existing compact data formats

(like CSR), FKW is higher-level and results in much less extra structure overhead (i.e.,

the total size of all index arrays that are used for weights data access). In addition, FKW

leverages the pattern information, and stores the kernels with the FKR information that

will support later branch-less DNN execution. Other compact data format cannot support

this.

Figure 2.10 shows an example. This DNN layer consists of four filters, each with 2,

2, 2, and 3 (after FKR) non-empty kernels, respectively. The two kernels in the first

filter (marked as blue) have pattern 1 and 2, corresponding to the input channel 3 and

1, respectively. FKW uses five arrays to represent this DNN layer: offset array, reorder

array, index array, stride array, and weight array. The offset array and reorder array store

filter-level information, index array and stride array store kernel-level, and the weight array

stores actual weights.

More specifically, the offset array stores the offset of each filter (in terms of the number

of non-empty kernels). In Figure 2.10, the offset of filter 0 is 0, and the offset of filter

30

Load Redundancy Elimination-kernel Level

15 18 21 24
33 36 39 42

A filter Input feature map Output feature mapComputation phase

x x x
2 0 x
0 0 x

x x x
2 0 x
0 0 x

1 x x
2 x x
x x x

Kern
els x x x x x x

7 8 9 10 11 x
13 14 15 16 17 x
19 20 21 22 23 x

x x x x x x
7 8 9 10 11 x
13 14 15 16 17 x
19 20 21 22 23 x

1 2 3 4 x x
7 8 9 10 x x
13 14 15 16 x x
x x x x x x

 Win

 Hin
1 2 3 4
7 8 9 10

7 8 9 10
13 14 15 16

1
2

1
2

x x x
1 0 0
0 0 0

x x x
1 0 x
0 0 x

x x x
2 0 0
0 0 0

x x x
2 0 x
0 0 x

Load Redundancy Elimination-Filter Level

1 x x
2 x x
x x x

15 18 21 24
x x x x

2 x x
1 x x
x x x

1
2

2
1

x x x x x x
7 8 9 10 11 x
13 14 15 16 17 x
19 20 21 22 23 x

x x x x x x
7 8 9 10 11 x
13 14 15 16 17 x
19 20 21 22 23 x

1 2 3 4 x x
7 8 9 10 x x
x x x x x x
x x x x x x

1 2 3 4
7 8 9 10

1 2 3 4
7 8 9 10

Filters Input feature map Output feature mapComputation phase

Filter 0

Filter 1
9 12 15 18
x x x x

Output channel 0

Output channel 1

Figure 2.11: Load redundancy elimination (left: kernel-level; right: filter-level).

1 is 2 because there are two kernels in filter 0, and so on. The reorder array shows the

reorder information that is used for accumulating the computation output to the correct

output channel. In Figure 2.10, the reorder array tells us that filter 2 and filter 3 have been

switched and their computation results should also be switched to the corresponding output

channel. The index array represents the corresponding input channel for each non-empty

kernel. In Figure 2.10, kernel 1 in filter 0 corresponds to the input channel 3, and kernel 2

corresponds to the input channel 1. So, the first two elements in the index array are 3 and

1, respectively. The stride array denotes the number of kernels in each pattern within the

same filter. In Figure 2.10, the filter 0 has the stride array values 0, 1, and 2, denoting that

the filter 0 has 1 kernel with pattern 1 (1 = 1−0), and 1 kernel with pattern 2 (1 = 2−1).

In this example, each kernel has four (non-zero) weights, so each filter has 8, 8, 8, and 12

weights (after FKR), respectively.

2.5.4 Load Redundancy Elimination (LRE)

As discussed before, irregular memory access (in the form of array indirection) is also a

major cause of inefficient execution of weight pruned DNNs. PatDNN uses two techniques

to address this issue: (1) a conventional input tiling to improve the cache performance;

and (2) the optimized code generation with the help of the pre-defined pattern information.

The first one, specifically the determination of the optimal tiling size will be introduced

in Section 2.5.5. This section focuses on the second, specifically, introducing our novel

redundant register load elimination optimization applied in code generation procedure.

Our key insight is: in DNN execution, such as a convolution operation, the data access

pattern of the input and output is decided by the (none-zero elements) patterns of kernels

31

that are already known after training. Therefore, it is possible to generate the optimized

data access code with this information for each pattern of kernels and call them dynamically

during the DNN execution. The generated codes consist of all statically determined data

access instructions for the kernel-level computation with a careful instruction reorganization

to 1) eliminate all indirect memory accesses; and 2) eliminate all redundant register load

operations. The elimination of all indirect memory accesses is relatively straightforward,

because in all data access instructions, the index of input data can be directly calculated

from kernel pattern. We next explain two novel register-level load redundancy elimination

methods in details.

Figure 2.11 illustrates both register-level load redundancy eliminations: the left one is

within each kernel, and the right one is among multiple kernels. Within each kernel, the

load redundancy is caused by the convolution operation. In the example (shown on the

left part of Figure 2.11), the kernel value 1 requires the elements in the first two rows of

the input matrix while value 2 requires the second and third rows. The elements in the

second row [7,8,9,10] are loaded twice (from cache to register). PatDNN eliminates this

load redundancy by explicitly reusing the (SIMD) registers that already hold the required

data (like the second row in the above example).

Multiple kernels on the same position of different filters may share the same pattern

and input channel. The input data required by these kernels are exactly identical. The

right-hand side of Figure 2.11 shows a concrete example. If the computation of these filters

on identical data is packed together, the possible redundant load of this input can be

eliminated. PatDNN explores this optimization when it generates the optimized memory

access code. The FKR organizes the kernels (in different filters) with identical patterns

together. Together with a filter-level (or output channel) loop unrolling when processing

these kernels, the redundant register load is eliminated. Figure 2.7 (+LRE) shows an example

of this unrolling code.

It is worth noting that the above two redundancy elimination opportunities are more

straightforward to exploit for dense models where the memory accesses of kernel weights

32

are continuous and the data reuse pattern is periodically repeated. However, it is very

challenging (or even not possible) to exploit for pruned sparse models with irregular memory

accesses, because it is hard to detect the data reuse pattern (or the data reuse pattern

does not even exist). Our pattern-based pruning can preserve the data reuse patterns and

help the compiler to detect them, thus re-enabling these two kinds of register-level load

redundancy elimination.

2.5.5 Parameter Auto-tuning

Many configuration parameters require careful tuning to guarantee the performance of

the generated execution code. However, manual tuning is tedious, and hard to yield the

optimal code. Therefore, PatDNN also includes an auto-tuning component for selecting the

best execution configuration.

It consists of two parts: first, an explorer model based on Genetic Algorithm to generate

the configuration exploration space; and second, a performance estimation model created

from our historical data to predict the possible best configuration and performance for

a given hardware. Compared with the simulated annealing in TVM, our explorer model

supports better parallelism because it allows the initialization of an arbitrary number

of chromosomes to start the search. For a typical (large-scale) DNN like VGG-16, our

exploration can complete in 3-5ms. During the exploration, history data is also collected

for training the performance estimator (based on Multilayer Perceptron and least square

regression loss). The advantage of this approach is that when deploying PatDNN on a

new platform, it can give a quick prediction of the optimal configuration parameters as

well as the possible execution time. In addition, these tuning parameters are crucial to the

performance of our PatDNN execution, thus need to be carefully tuned by our auto-tuning

module including: data placement configurations on GPU, tiling sizes, loop permutations,

and loop unrolling factors.

33

Table 2.5: DNNs characteristics (under kernel pattern and connectivity pruning): Accu:
ImageNet top-5, CIFAR top-1; the negative values in Accuracy Loss actually mean accuracy
improvement.

Name Network Dataset Layers Conv Patterns Accu(%) Accu Loss (%)

VGG VGG-16
ImageNet 16 13 8 91.6 0.1

CIFAR-10 16 13 8 93.9 -0.4

RNT ResNet-50
ImageNet 50 49 8 92.5 0.2

CIFAR-10 50 49 8 95.6 -1.0

MBNT MobileNet
-V2

ImageNet 53 52 8 90.3 0.0

CIFAR-10 54 53 8 94.6 -0.1

Name Network Dataset Layers Conv Size
(MB) Patterns Accu

(%)
Accu

Loss (%)

VGG VGG-16
ImageNet 16 13 553.5 8 91.6 0.1

CIFAR-10 16 13 61 8 93.9 -0.4

RNT ResNet-50
ImageNet 50 49 102.5 8 92.5 0.2

CIFAR-10 50 49 94.4 8 95.6 -1.0

MBNT MobileNet
-V2

ImageNet 53 52 14.2 8 90.3 0.0

CIFAR-10 54 53 9.4 8 94.6 -0.1

�1

2.6 Evaluation

This section evaluates the execution performance of PatDNN by comparing it with

three state-of-the-art DNN inference acceleration frameworks, TFLite [1], TVM [25], and

MNN [96]. All major optimizations of these frameworks (and our PatDNN) are summarized

in Table 2.1.

2.6.1 Methodology

Evaluation Objective: Our overall evaluation demonstrates that achieving real-time

inference of large-scale DNNs on modern mobile devices is possible with PatDNN. Specif-

ically, the evaluation has five objectives: (1) demonstrating that PatDNN outperforms

existing state-of-the-art DNN frameworks without any accuracy compromise; (2) studying

the performance effect of our key compiler optimizations and explaining the reasons for

performance improvement; (3) further confirming the performance of PatDNN by com-

paring its pure GFLOPS with our optimized dense baseline; (4) showing that PatDNN

performs similarly on different mobile platforms, i.e., PatDNN has a good portability; and

(5) unveiling the impact of pattern count selections on both the accuracy and performance.

DNNs and Datasets: PatDNN is evaluated on three mainstream DNNs, VGG-16 (VGG),

ResNet-50 (RNT), and Mobile-Net-V2 (MBNT). They are trained on two datasets, ImageNet

and CIFAR-10. Table 2.5 characterizes these trained DNNs. Some information is omitted

34

Table 2.6: VGG unique CONV layers’ filter shapes and given names.

Name Filter shape Name Filter shape Name Filter shape
L1 [64,3,3,3] L4 [128,128,3,3] L7 [512,256,3,3]

L2 [64,64,3,3] L5 [256,128,3,3] L8 [512,512,3,3]
L3 [128,64,3,3] L6 [256,256,3,3] L9 [512,512,3,3]

�1

due to the space constraint, e.g., a uniform CONV pruning rate for VGG and RNT is 8×,

and 4.4×, respectively (with uniform 3.6× connectivity pruning rate). VGG has 13 CONV

layers, and 5 of them have identical structures to others. Table 2.6 lists the filter shape

([#output channel, #input channel, kernel height, and kernel width]) of these 9

unique layers and gives them a short name each.

Evaluation Platforms and Running Configurations: Our experiments are conducted

on a Samsung Galaxy S10 cell phone with the latest Qualcomm Snapdragon 855 mobile

platform that consists of a Qualcomm Kryo 485 Octa-core CPU and a Qualcomm Adreno

640 GPU. Our portability tests are conducted on a Xiaomi POCOPHONE F1 phone with a

Qualcomm Snapdragon 845 that consists of a Kryo 385 Octa-core CPU and an Adreno 630

GPU, and an Honor Magic 2 phone with a Kirin 980 that consists of an ARM Octa-core

CPU and a Mali-G76 GPU. All tests run 50 times on different input (images) with 8

threads on CPU, and all pipelines on GPU. Because multiple runs do not vary significantly,

this section only reports the average time for readability. Because CONV layers are most

time-consuming, accounting for more than 95% (90% for VGG) of the total execution time,

our evaluation focuses on the CONV layers. All runs are tuned to their best configurations,

e.g., Winograd optimization [122] is used for all dense runs, and 16-bit float point is used

for all GPU runs.

2.6.2 Overall Performance

Figure 2.12 shows the overall CPU and GPU performance of PatDNN compared to TFLite,

TVM, MNN on all six trained DNNs. PatDNN outperforms all other frameworks for all

cases. On CPU, PatDNN achieves 12.3× to 44.5× speedup over TFLite, 2.4× to 5.1× over

35

VGG RNT MBNT
0

100

200

300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

MNN
TVMTFLite
PatDNN

818.1 698.9

(a) ImageNet-CPU
VGG RNT MBNT

0

25

50

75

E
xe

cu
tio

n
Ti

m
e

(m
s) 106.3 133.0

(b) CIFAR-10-CPU
VGG RNT MBNT

0

40

80

120

E
xe

cu
tio

n
Ti

m
e

(m
s) 176.4 143.3

(c) ImageNet-GPU
VGG RNT MBNT

0

10

20

30

Ti
m
e(
m
s)

51.6 63.8

(d) CIFAR-10-GPU

Figure 2.12: Overall performance: x-axis: different trained DNN models; y-axis: average
DNN inference execution time on a single input.

TVM, and 1.9× to 7.1× over MNN, respectively. On GPU, PatDNN achieves 2.5× to 20×,

2.8× to 11.4×, and 1.6× to 6.2× speedup over TFLite, TVM, and MNN, respectively3. For

the largest DNN (VGG) and largest data set (ImageNet), PatDNN completes CONV layers

on a single input within 18.9 ms on GPU. Even including the other rest layers (like FC),

PatDNN can still meet the real-time requirement (usually 30 frames/sec, i.e., 33 ms/frame).

PatDNN outperforms other frameworks because of two major reasons. First, its dense

version is already 1.1× to 1.6× faster than TVM and MNN on mobile platforms because of

some extra optimizations (as shown in Table 2.1). Figure 2.17(a) shows that PatDNN’s dense

version is faster than MNN on VGG, our largest DNN. Second, the pattern-based pruning

reduces the overall computation by 3× to 8×. Such computation reduction unfortunately

cannot transfer to performance gains directly. We confirmed this by implementing an

optimized sparse matrix version of PatDNN based on CSR [66], which shows almost the same

speed to PatDNN’s dense version. However, the subsequent compiler-level optimizations

(filter kernel reorder, load redundancy elimination, auto-tuning, and compressed weight

storage) successfully convert this computation reduction into real performance gains. We

conduct a more detailed study on these optimizations in the next Section, and Figure 2.13

shows a break-down of these optimizations’ contributions. Figures 2.14 to 2.16 provide a

detailed analysis of the underlying reasons.
3TFLite does not support executing VGG on ImageNet data set on GPU due to its too large memory

footprint.

36

L1 L2 L3 L4 L5 L6 L7 L8 L90x

3x

6x

9x
Sp

ee
dU

p
O

ve
r N

o-
O

pt

No-Opt Reorder
Reorder+LRE Reorder+LRE+Tune

(a) CPU
L1 L2 L3 L4 L5 L6 L7 L8 L90x

5x

10x

15x

Sp
ee

dU
p

O
ve

r N
o-

O
pt

(b) GPU

Figure 2.13: Speedup of opt/no-opt on each unique CONV layer.

2.6.3 Optimization Evaluation

This section studies the effect of our key compiler optimizations and shows that our

PatDNN’s good performance mainly comes from these pattern-enabled optimizations. This

part also compares the extra structure overhead between FKW and CSR. Constrained by

space, we only report the results of VGG, our most complex DNN, on the most widely

accepted dataset (ImageNet). Experiments on other DNNs and datasets show the same

trend. The rest parts also use VGG on ImageNet as a representative example.

Figure 2.13 reports the speedup of the versions with optimizations over the version

without any optimization on each unique CONV layer of VGG on CPU and GPU, re-

spectively. On CPU, reorder brings 1.6× to 3.0× speedup, load redundancy eliminations

bring additional 1.6× to 2.8× speedup, and parameter tuning brings additional 1.2× to

1.9× speedup. On GPU, these numbers are 2.7× to 6.1×, 1.5× to 3.3× and 1.4× to 3.8×.

It is interesting that FKR brings more benefits on GPU than on CPU, because GPU’s

performance is more sensitive to the thread divergence and load balance due to its massive

parallel nature. We next study why these optimizations work.

Filter Kernel Reorder: Figure 2.14 (a) reports the filter length distribution of VGG

L4 before and after FKR. Before reorder, the filters with varied lengths are distributed

randomly, resulting in significant load imbalance if assigning them to different threads.

After reorder, the filters are grouped into three groups, and the filters within each group

37

0 50 100
30

40

50

60
Fi

lte
r L

en
gt

h

No-Reorder Reorder

(a) Filter length distribution before and after
filter kernel reorder for L4

L1 L2 L3 L4 L5 L6 L7 L8 L9
0

1×108

2×108

3×108

Lo
ad

 C
ou

nt

No-Eliminate Eliminate

(b) Register load counts before and after elimi-
nation

Figure 2.14: Profiling result: reorder and redundancy elimination.

L1 L2 L3 L4 L5 L6 L7 L8 L9
0

20

40

60

80

G
FL
O
PS

CoCiHW
CoHWCi

CoCiHW-Block
CoHWCi-Block

(a) ImageNet
L1 L2 L3 L4 L5 L6 L7 L8 L9

0

20

40

60

80

G

FL
O

PS

(b) CIFAR-10

Figure 2.15: Effect of different loop permutations and loop tiling.

have identical lengths. Each group could be executed by CPU threads simultaneously, or

mapped to the same GPU thread block.

Load Redundant Elimination: Figure 2.14 (b) reports the register load counts before and

after LRE for each unique CONV of VGG. It shows that our register LRE can significantly

reduce the number of register loads. Note that even if register load has lower latency than

cache or memory load, the memory/cache performance has nevertheless been aggressively

optimized by conventional tiling. Thus, the significant performance gains must have been

achieved with the reduced number of register loads.

Auto-tuning: Figure 2.15 reports the CPU performance (in GFLOPS) of each unique

VGG CONV layer with varied loop permutations, and with or w/o blocking on ImageNet

and CIFAR-10, respectively. It shows that different inputs and layers may require different

38

L1 L2 L3 L4 L5 L6 L7 L8 L9 All
0%

5%

10%

15%

FK
W

/C
SR

18 - Pruning rate
12 - Pruning rate
8 - Pruning rate

Figure 2.16: Extra data structure overhead: FKW over CSR on unique VGG CONV
layers with different pruning rates.

CPU GPU0

150

300

450

E
xe

cu
tio

n
Ti

m
e

(m
s) MNN

PatDNN

(a) Dense w/o Wino
L1 L2 L3 L4 L5 L6 L7 L8 L90

50

100

150

G
FL

O
PS

CPU-Dense(No Wino) CPU-Pattern
GPU-Dense(No Wino) GPU-Pattern

(b) Performance in GFLOPS: pattern vs dense

Figure 2.17: GFLOPS performance study: PatDNN vs dense.

configurations. Proper tuning will bring significant benefits. Constrained by space, we omit

the GPU results and tuning results about GPU data placement.

Compressed Weight Storage: Figure 2.16 shows the extra data structure overhead (i.e.,

the size of data structures other than weights) of FKW over CSR on each unique VGG

CONV layer with three kinds of pruning rates, 18×, 12×, and 8× respectively. For each

one, FKW saves 93.4%, 91.6%, and 87.9% extra data structure overhead over CSR in total,

resulting in 46.7%, 45.8%, and 43.9% overall storage space saving.

2.6.4 PatDNN Performance Analysis in GFLOPS

To further analyze the performance of PatDNN, this part compares its pure GFLOPS

with our dense implementation. To conduct an apple-to-apple comparison, we turn off the

Winograd optimization that transforms the convolution operation to matrix-multiplication

for a trade-off between the computation reduction and operation conversion overhead.

39

CPU GPU
0

150

300

450

Ex
ec

ut
io

n
Ti

m
e

(m
s)

MNN
TFLite

PatDNN
TVM919

(a) Kirin 980
CPU GPU

0

150

300

450

E
xe

cu
tio

n
Ti

m
e

(m
s) 1032

(b) Snapdragon 845

Figure 2.18: Portability study: performance on two other platforms.

Table 2.7: Pattern counts impact (with 3.6× connectivity pruning): accuracy loss and exe
time for VGG.

Network Dataset #Patterns Accu (%) Accu Loss (%) Device Time (ms)

VGG-16 ImageNet

6 91.4 0.3
CPU 50.5

GPU 18.6

8 91.6 0.1
CPU 51.8

GPU 18.9

12 91.7 0.0
CPU 92.5

GPU 27.6

�1

Figure 2.17 (a) shows that our dense version can serve as an optimized baseline, because it

is even faster than MNN.

Figure 2.17 (b) shows that our pattern-based (sparse) PatDNN achieves comparable

GFLOPS to our optimized dense baseline on CPU, and outperforms it on GPU. It implies

that the memory performance of PatDNN is comparable to the dense baseline on CPU

and even better than it on GPU. This benefits from our model compression and memory

load (and register load) reductions. Without pattern-based pruning, the input, output,

and DNN model compete for the limited memory/cache resource; after pruning, only the

input and output compete for it. PatDNN also reduces the overall computation; thus, it

significantly outperforms all other mobile frameworks. We cannot achieve this performance

without our pattern-based design, and our other sparse implementation with conventional

sparse matrix optimizations can only get either comparable or even slower speed than other

mobile frameworks.

40

2.6.5 Portability Study

PatDNN is also evaluated on two other platforms to confirm its portability. Figure 2.18 shows

the result. On these platforms, PatDNN also outperforms other frameworks. Particularly,

other frameworks run much slower on Magic 2 than on Snapdragon 855; however, PatDNN

performs more stably. This is because our pattern-based pruning leads to fewer computations

and fewer memory accesses thus reducing the memory bandwidth pressure.

2.6.6 Impact of Pattern Counts

Table 2.7 reports the impact of the pattern count selection on both the accuracy and

execution time, under 3.6× uniform connectivity pruning rate. As increasing pattern

counts, the accuracy increases slightly, however, the performance drops quickly. Our

evaluation selects 8 patterns that result in ideal performance with a negligible accuracy

loss.

2.7 Discussion

Generality: The techniques proposed in PatDNN are general enough to be applied to other

platforms. Compared to laptops or servers, mobile platforms are more resource-constrained,

making it is more challenging to achieve real-time execution. However, the need for real-time

DNN execution is crucial due to many important mobile applications. In fact, in addition

to the mobile platforms in our paper, we also tested PatDNN on the latest Raspberry Pi 4

platform. It shows a similar speedup over other frameworks like TVM. We believe that it

is a promising research direction to improve PatDNN’s portability by incorporating it with

TVM that emphasizes the DNN execution on varied computing devices.

Dense vs. Sparse DNNs: General end-to-end DNN inference acceleration frameworks

like TFLite, TVM, and MNN do not support sparse DNN execution. If we simply add

sparse DNN support with random pruning and general compression storage (like CSR) to

these frameworks, it is expected that their speed cannot be improved significantly as shown

41

in the results of PatDNN’s CSR implementation. Although there is potential to improve the

performance with coarse-grained structured pruning (that prunes whole filters/channels),

the accuracy will be obviously degraded as we discussed before. From this perspective,

PatDNN opens a new door to accelerate DNN execution with a compression/compiler-

optimization co-design. With such co-design, sparse (or compressed) DNN execution

becomes a more promising solution in resource-constraint environments than dense DNN.

2.8 Summary

This paper presents PatDNN, an end-to-end framework to achieve real-time DNN execution

on mobile devices. PatDNN consists of two stages, a pattern-based pruning stage based on

extended ADMM solution framework, and an optimized execution code generation stage

including a high-level, fine-grained DNN layerwise representation and a set of architecture-

aware optimizations. This design allows PatDNN to benefit from both high accuracy and

hardware efficiency. Our evaluation results demonstrate that PatDNN outperforms other

state-of-the-art end-to-end DNN execution frameworks with up to 44.5× speedup and no

accuracy compromise, and achieves real-time execution of large-scale DNNs on mobile

devices.

42

Chapter 3

DNNFusion: Accelerating Deep

Neural Networks Execution with

Advanced Operator Fusion

3.1 Introduction

The past ten years have witnessed a resurgence of Machine Learning, specifically in the form

of Deep Learning. Deep Neural Networks (DNNs) such as Convolution Neural Networks

(CNN) and Recurrent Neural Networks (RNN) serve as the state-of-the-art foundation and

core enabler of many applications that have only emerged within the last few years and

yet have become extremely popular among all users of computing today [12, 197]. Behind

the success of deep learning are the increasingly large model sizes and complex model

structures that require tremendous computation and memory resources [39]. There is a

difficult trade-off between increasing complexity of DNNs (required for increasing accuracy)

and deployment of these DNNs on resource-constrained mobile devices (required for wider

reach).

In recent years, there has been a significant emphasis on optimizing the execution of

43

large DNNs. Operator fusion (or kernel/layer fusion) has been a common approach towards

improving efficiency of DNN execution [1, 25]. The basic idea of such fusion is the same as

the traditional loop fusion done by optimizing compilers [100,103,151], and they lead to the

following benefits: (i) eliminating unnecessary materialization of intermediate results, (ii)

reducing unnecessary scans of the input; and (iii) enabling other optimization opportunities.

Traditional end-to-end frameworks like TensorFlow Lite [1], TVM [25], MNN [96], and

Pytorch-Mobile [165] all have operator fusion optimizations, which are broadly based on

recognizing certain fusion patterns. These transformations have generally been based on

a representation called computational graph [25], which views the application as a set of

operations on tensors, and representation of dependencies in the form of consumption of

tensor(s) output by an operation by another operation.

In this paper, we observe that the fusion patterns considered in the past work [1,25] are

too restricted to cover the diversity of operators and layer connections that are emerging.

For example, ONNX (Open Neural Network Exchange) [160] lists 167 distinct operators, and

creating fusion patterns based on their combinations is unlikely to be a feasible approach.

At the same time, traditional compiler loop transformations (including fusion [103,151])

work on a low-level view of the computation, i.e., loop (indices) and dependence between

array elements. More recent work on loop fusion has been based on polyhedral analysis [16],

with several different resulting algorithms [2, 3, 15]. Polyhedral analysis, while providing

an excellent foundation to rigorously reason the legality of, and explore the space of,

loop transformations, can be an “overkill” to capture the relatively simple data structures

(tensors) and operations (without loop-carried dependencies) in DNNs. Moreover, polyhedral

analysis is normally limited to affine-loop analysis and transformations (although latest

efforts [202, 226, 228] do extend it to certain non-affine loop optimizations), and cannot

capture certain operation (combinations) in DNNs. An example will be a combination of

Gather, which copies input to output indirectly using an index array followed by Flatten,

which changes the dimensionality of a tensor. Finally, the operator view in computational

graphs can enable us to exploit properties of these computations, which may be lost when

44

a lower-level view of the computation is considered.

This paper presents DNNFusion, a rigorous and extensive loop fusion framework that

can exploit the operator view of computations in DNNs, and yet can enable a set of

advanced transformations. The core idea is to classify operators into different types, and

develop rules for different combinations of the types, as opposed to looking for patterns with

specific combination of operations. Particularly, we first classify the existing operations

in a DNN into several groups based on the mapping between their input and output ,

such as One-to-One, One-to-Many, and others. We also enhance the computational graph

representation into the Extended Computational Graph (ECG) representation, where the

type (and other properties) of the operation are explicitly noted. Then, we design a mapping

type analysis to infer the profitability of fusing operations of different combinations of these

types of operators, binning the combination into three groups: likely profitable (and legal),

likely not profitable, and ones where profitability may need to be determined through profile

information.

Next, on the ECG representation, we apply a series of graph rewriting rules that we

have developed. These rules exploit the mathematical properties of the operations and

have a similar flavor to the classical optimization called strength reduction [29]. Unlike

traditional compiler work, however, we apply these rules on operations on tensors (and

not scalars) and our set of rules go well beyond the traditional ones. The rest of our

framework comprises algorithms for determining fusion of specific operations (based on

certain heuristics) and generating optimized fused code. Almost each fusion generates a

new operator (and its implementation) that is not present in the original library; however,

once a new operator is generated, its implementation can be reused when the same pattern

is detected in the same or a different model. Overall, we show that an operator view of the

DNN can enable rigorous optimizations, beyond what will be possible with a lower-level

view of the computation or the existing (simplistic) work on applying a small set of fusion

patterns on the operator view.

In summary, this paper makes the following contributions:

45

• It designs high-level abstractions (including mapping type analysis and ECG) for

operator fusion by leveraging high-level DNN operator information. The approach

can handle a diversity of operators and yet enable aggressive optimizations.

• It proposes a novel mathematical-property-based graph rewriting to simplify ECG

structure, optimize DNN computations, and facilitate subsequent fusion plan genera-

tion.

• It presents an integrated fusion plan generation by combining the benefit of effi-

cient machine-independent mapping type analysis while leveraging a profiling result

database.

• It implements optimized fusion code generation, integrating the approach into a

state-of-the-art end-to-end DNN execution framework. The optimized framework

with operator fusion is called DNNFusion.

DNNFusion is extensively evaluated on 15 cutting-edge DNN models with 5 types of

tasks, varied model sizes, and different layer counts on mobile devices. Comparing with

four popular state-of-the-art end-to-end DNN execution frameworks, MNN [96], TVM [25],

TensorFlow-Lite [1], and Pytorch-Mobile [165], DNNFusion achieves up to 8.8× more

loop fusions, 9.3× speedup with our proposed advanced operator fusion. Particularly,

DNNFusion for the first time allows many latest DNN models that are not supported by

any existing end-to-end frameworks to run on mobile devices efficiently, even in real-time.

Moreover, DNNFusion improves cache performance and device utilization – thus, enabling

execution on devices with more restricted resources – and reduces performance tuning time

during compilation.

3.2 Blessing and Curse of Deep Layers

This section presents a study that motivates our work, by demonstrating that it is challenging

to execute deep(er) neural networks efficiently, particularly on resource-constraint mobile

devices, due to the high memory and computation requirements.

46

Table 3.1: An empirical study to motivate this work: The relation of overall
computation, layer count, and execution efficiency of multiple DNNs. Results are collected
on Qualcomm Adreno 650 GPU with an optimized baseline framework with fixed-pattern
operator fusion that outperforms all state-of-the-art DNN execution frameworks (called
OurB+ and will be introduced later).

Model #Total layer IR size #FLOPS Speed (FLOPs/S)
VGG-16 [206] 51 161M 31.0B 320G
YOLO-V4 [13] 398 329M 34.6B 135G
DistilBERT [201] 457 540M 35.3B 78G
MobileBERT [212] 2,387 744M 17.6B 44G
GPT-2 [188] 2,533 1,389M 69.1B 62G

As we stated earlier, there has been a trend towards deeper DNNs. With increasing

amount of computation, there has also been a trend towards reducing the computation by

reducing the weight size. Consider the well-known Natural Language Processing (NLP)

model, BERT [46] as an example. TFLite takes 985ms to inference BERT on the latest

CPU of Snapdragon 865. In recent efforts [188, 212] (MobileBERT, GPT-2), machine

learning researchers have addressed this issue by reducing the weight size on each layer and

thus training thinner and deeper models to balance the computation workload and model

accuracy.

However, we have observed that the depth of the model is the critical impediment to

efficient execution. Our experimental study has correlated execution efficiency with the

total amount of computation and the number of layers (Table 3.1). Particularly, we can see

that although DistilBERT [201] and VGG-16 [206] have a similar number of computations

(while having 457 and 51 layers, respectively), DistilBERT’s execution performance (78

GFLOPs/S) is much worse than VGG’s (320 GFLOPs/S). This is mainly because of two

reasons. First, models with more layers usually generate more intermediate results, thus

increasing the memory/cache pressure. Second, deep models usually have an insufficient

amount of computations in each layer, thus degrading the processor’s utilization, particularly

for GPUs. Operator fusion can be an effective technique to reduce memory requirements

and improve efficiency, and is the focus of our study.

47

3.3 Classification of DNN Operators and Fusion Opportunity

Analysis

This section establishes the basis for our approach, by classifying DNN operators and their

combinations.

3.3.1 DNN Operators Classification

This work carefully studied all operators supported by a popular (and general) DNN

ecosystem ONNX (Open Neural Network Exchange) [160], and finds that the mapping

relation between (each) input and output of each operator is critical to determine both the

profitability and correct implementation of fusion optimization. Moreover, it is possible

for us to classify all operators into five high-level abstract types based on the relationship

between input elements and output elements. These five types are One-to-One, One-to-

Many, Many-to-Many (which includes Many-to-One, but we do not consider it separately

here), Reorganize, and Shuffle. This classification serves as the foundation of our proposed

fusion framework. Table 3.2 shows more details of this operator classification and gives

one or two representative examples for each mapping type. If an operator has only one

input or multiple inputs with the same mapping type to the output, the mapping type of

this operator is decided by its any input/output pair. If multiple input/output pairs with

varied mapping types exist, this operator’s mapping type is decided by the more complex

mapping type1.

Assuming each input element can be denoted as x[d1, . . . ,

dn], where x means the operand of an operator and d1, . . . ,dn denotes the index for an

element of an operand, the mapping types between one input and one output are classified

as follows.
1Order in increasing order of complexity: One-to-One, Reorganize, Shuffle, One-to-Many, and Many-to-

Many

48

Table 3.2: Classification of DNN operators in mapping types. These operators are
defined in ONNX [160].

Mapping type Operators Representative

One-to-One Add, Asin, BatchNormalization, Cast, Ceil, Clip, Concat, Cos, Erf, Exp, Greater, Where,
LeakyRelu, Log, Not, PRelu, Reciprocal, Relu, Round, Sigmoid, Sin, Slice, Split, Sqrt, Tanh Add, Relu

One-to-Many Elementwise w/ broadcast, Expand, Gather, Resize, Upsample Expand

Many-to-Many AveragePool, CONV, ConvTranspose, CumSum, Einsum, GEMM, InstanceNormalization,
MaxPool, Reduce (e.g. ReduceProd, ReduceMean), Softmax Conv, GEMM

Reorganize Flatten, Reshape, Squeeze, Unsqueeze Reshape
Shuffle DepthToSpace, SpaceToDepth, Transpose Transpose

• One-to-One: There is a set of functions F, f1, . . . , fn, such that

y[d1, . . . ,dn] = F(x[f1(d1,), . . . , fn(dn)])

and there is a 1-1 mapping between each [d1, . . . ,dn] and the corresponding [f1(d1,) . . . , fn(dn)]

used to compute it.

• One-to-Many: There is a set of functions F, f1, . . . , fn, such that:

y[e1, . . . ,em] = F(x[f1(d1), . . . , fn(dn)])

where m > n, and there is a One-to-Many relationship between [f1(d1), . . . , fn(dn)] and

[e1, . . . ,em].

• Many-to-Many: There is a set of functions f 1
1 , . . . , f 1

n , . . .

f k
1 , . . . , f k

n , such that:

y[e1, . . . ,em] = F(x1[f 1
1 (d1), . . . , f 1

n (dn)], . . . ,xk[f k
1 (d1), . . . , f k

k (dn)]).

• Reorganize: We have

y[e1, . . . ,em] = x[f1(d1), . . . , fn(dn)]

and there is a 1-1 relationship between each [e1, . . . ,em] and the corresponding

[f1(d1), . . . , fn(dn)].

49

Table 3.3: Mapping type analysis. The first column and the first row (both without
color) show the mapping types of first and second operators, respectively, before fusion, and
the colored cells show the mapping type of the operator after fusion. Green implies that
these fusion combinations can be fused directly (i.e., they are profitable). Red implies that
these fusions are unprofitable. Yellow implies that further profiling is required to determine
profitability.

Mapping type combo

One-to-One One-to-Many Many-to-Many Reorganize Shuffle

One-to-One One-to-One One-to-Many Many-to-Many Reorganize Shuffle

One-to-Many One-to-Many One-to-Many One-to-Many One-to-Many

Many-to-Many Many-to-Many Many-to-Many Many-to-Many Many-to-Many

Reorganize Reorganize One-to-Many Many-to-Many Reorganize Reorganize

Shuffle Shuffle One-to-Many Many-to-Many Reorganize Shuffle

Mapping relation: One-to-one < (Reorganize, Shuffle) < (One-to-many, many-to-one)

First op
Second op

• Shuffle: There is a set of functions F, f1, . . . , , fn, where F is a permutation function,

such that,

y[e1, . . . ,en] = x[f1(dF(1)), . . . , fn(dF(n))].

3.3.2 Fusion Opportunity Analysis

Based on the mapping type of each operator, this work proposes a new fusion analysis.

The basic idea is that given two fusion candidate operators with a certain combination of

mapping types, it is possible to: 1) infer the mapping type of the resulting fused operation;

and 2) simplify the profitability evaluation and correct implementation of this fusion.

Table 3.3 shows the details of this analysis. The first column and the first row (without

any color) show the mapping types of the first and the second operator to be fused and

the colored cells show the mapping type of the resulting operator. It further classifies the

fusion of this combination of mapping types into three groups (shown as green, yellow, and

red, respectively). Green implies that these fusions are legal and profitable and no further

analysis is required. Red implies that these fusions are known to be either illegal or clearly

not profitable. Yellow implies that these fusions are legal; however, further profiling is

required to determine profitability. This analysis eliminates the need for anytime runtime

50

analysis or autotuning for red and green cases. For remaining (yellow) cases, we can further

accelerate compilation using a profiling database that stores the execution results of various

fusion combinations collected offline.

These five mapping types have a range of what we call transformation impedance (which

we informally define as a metric to qualitatively express the difficulty to fuse), i.e., when

they are fused with another type, they have different capability of deciding the fused

mapping type. One-to-One has the lowest transformation impedance among all five types,

whereas Reorganize and Shuffle’s transformation impedance is in the middle, i.e., they can

transform One-to-One to their types while they cannot transform others. One-to-Many and

Many-to-Many have the strongest transformation impedance, i.e., the resulted mapping type

is decided by them solely when they are fused with other operators. Moreover, One-to-Many

and Many-to-Many have the same capability, and Reorganize and Shuffle have the same as

well.

We elaborate on the following representative combinations to provide intuition behind

the Table 3.3.

• One-to-One with others. When a One-to-One operator (Op1 with the input I and the

output O) is fused with an operator of any type (Op2), i.e., Op2 takes O as the input,

the memory access to each element of O can be mapped to the access to each element

of I, as long as this mapping function is known. Unlike general programs where the

dependencies can be more complex, the use of tensors and a limited set of operators

limits the type of mappings, and DNN operators carry this mapping information. Our

analysis leverages this high-level operator information to ensure the correctness of

these fusions. Moreover, this fusion usually requires limited number of registers and

does not incur extra overhead like data copying or redundant computations, so they

are profitable. Take a case that fuses Add and GEMM in either order. Each element in

the output of Add can be replaced by two elements in the two inputs of Add, ensuring

correct and profitable fusion, irrespective of the order of these operations.

• Reorder or Shuffle with others. Both types are variants of One-to-One with a special

51

mapping function between the input and the output. Above reasons for the correctness

analysis are also applied here; however, when fusing with One-to-Many or Many-to-

Many types operators, profitability needs to be validated with further profiling because

of the possibility of introduced data copying, change in data access order, or redundant

computations. As an example, consider Expand and Transpose operators – Expand

copies the input tensor with a continuous memory access pattern, whereas, Transpose

transposes the input tensor to the output tensor according to the permutation in

operator properties. Thus, the resulting fused operation may not have continuous

memory accesses.

• One-to-Many with Many-to-Many. Take the case that Expand followed by Conv – as

Conv reads the feature map input tensor with continuous access, while a One-to-Many

operator can distribute the continuous input tensor elements. As it is very desirable

for the (compute-intensive) Many-to-Many operators to read the input tensors in a

continuous way, we consider this fusion unprofitable.

• Many-to-Many with Many-to-Many. When a Many-to-One mapping operator is

followed by a Many-to-One operator, e.g. Conv followed by another Conv, attempting

a combined execution will be too complicated and will likely negatively impact register

and cache usage. Thus, we consider them unprofitable.

• Many-to-Many with One-to-Many. When a Many-to-One mapping operator is followed

by a One-to-Many operator, e.g. Conv followed by Expand or Resize, a combined

execution may or may not have a desirable data access pattern. When Conv is

combined with Expand, as Expand operator only expands a single dimension of the

input, so it will not adversely affect the computation pattern of Conv. On the other

hand, if Conv is combined with a Resize that will copy the input tensor along different

dimensions, it can negatively impact the computation of Conv. Thus, we consider

such cases to be requiring further profiling.

Extended Computational Graph. Based on the analysis above and as a background for

the methods we will present next, we introduce Extended Computational Graph (ECG)

52

as our intermediate representation (IR). As the name suggests, this represents builds

on top of the (traditional) Computational Graph [25], which captures the data-flow and

basic operator information like the operator type and parameters. ECG contains more

fusion-related information, including mapping_type indicating the mapping type of each

operator, IR_removable denoting if an intermediate result can be removed completely

(which is true only if all its successors can be fused and which is calculated during fusion),

and mathematical properties of the operations like whether the associative, commutative,

and/or distributed properties hold.

3.4 DNNFusion’s Design

3.4.1 Overview of DNNFusion

Figure 3.1 shows an overview of DNNFusion. It takes the computational graph gener-

ated from compiler-based DNN execution frameworks (e.g., TVM [25], and MNN [96])

as the input, and adds key information to create the Extended Computational Graph

(ECG). Based on this ECG, the main compiler optimization and code generation stage of

DNNFusion consists of three components: ➊ mathematical-property-based graph rewriting

(Section 3.4.2), ➋ lightweight profile-driven fusion plan exploration (Section 3.4.3), and ➌

fusion code generation and other advanced fusion-based optimizations (Section 3.4.4).

3.4.2 Mathematical-Property-Based Graph Rewriting

DNNFusion first employs a mathematical-property based graph rewriting pass to optimize

the Extended Computational Graph (ECG). With this pass, DNNFusion is able to 1) remove

unnecessary operations, 2) eliminate redundant intermediate data copies, and 3) replace

costly (combination of) operators with more efficient ones. This graph rewriting carried

out here is in the spirit of the classical compiler optimization of strength reduction [29];

however, here it is performed on complicated operators on matrices or tensors rather than

on scalar expressions. Moreover, the rules we present are more complex and involved,

53

Overview

Code generation Inter-block opt

Data
Transform

Block
Intra-block opt

3

Graph rewriting 1 Fusion plan exploration 2

Block

!"#

$%!

$%"

ECG

Figure 3.1: DNNFusion overview.

and are based on operations that are common in DNNs. More importantly, compared to

existing efforts on computational graph substitution (e.g., TASO [94]), our graph rewriting

is designed to work in conjunction with operator fusion and identifies a set of operators

and rules for that specific purpose. Our evaluation results (Section 3.5) show that with

graph rewriting, there are 18% fewer fused layers left after fusion on GPT-2. We also do an

experimental comparison against TASO later in this paper.

Figure 3.2 shows specific examples of leveraged mathematical properties (distributive,

communicative, and associative). Table 3.4 shows a more complete set of rules. This table

also shows the computation size (in #FLOPS) before and after the rewriting. Our rules

mainly focus on operators in the One-to-One mapping type (e.g., element-wise multiplication,

addition, reciprocal, square root, and others) and several reduction operators that are

in Many-to-Many (e.g., ReduceSum and ReduceProd) – this is because these operators

usually follow our defined mathematical properties. DNNFusion uses #FLOPs (rather

than temporary output size or memory footprint) as the metric to drive graph rewriting

mainly because of two reasons: first, in most of the applications scenarios of these rules, the

temporary output size keeps the same before and after graph rewriting, and second, the size

of the temporary output in a majority of other cases becomes a non-issue because fusion

54

Graph rewriting

A

B
Conv

C
Mul

Mul

RecipRecip

(" ⊛ $)!"⨀(("⊛ $)⨀')!"
(" ⊛ $)!#⨀'

A

B
Conv

C
Mul

Recip
Square

A

B

C
Mul

D
Mul

Add

" · $ ⨀' + (" · $)⨀*
" · $ ⨀(' + *)

A

Mul

D
Add

C

B

GEMM
GEMM

Computation based rewriting

(a) Data aggregation (b) Data transportation (c) Data splitting

A
Input

B
Add

C
Mul

AA

B
Mul

C
Add

B
Mul

C
Add

D
Sub

E
Sub

Loop joint

TransposeRecip Recip

Slice Slice

Data based rewriting

A

B
Mul

C
Add

Index
transform

A

B
Mul

C
Add

D
Sub

E
Sub

Loop splitting

A
Input

B
Add

C
Mul

Concat

Recip Recip
Joint axis

Split axis

$+,-ℎ+/,(012341-35("))After:

A

012341-35($+,-ℎ+/,("))

A

Before:

BitShift

ReduceSum BitShift

ReduceSum

(a) Associative property (b) Distributive property (c) Commutative property

Figure 3.2: Examples of graph rewriting with mathematical properties. Associa-
tive property explores the optimal execution order of operators and replaces the expensive
combination of operators with a cheaper one. Distributive property explores the common
combination of operators and simplifies the computation structure. Commutative property
switches the execution order of operators to reduce the overall computation. Note: the
letter below each operator (e.g., B below Conv in (a)) or the letter in rectangle (e.g., C in
(b)) denotes that this input is from model weights rather than an intermediate result. The
letter in diamond (e.g., A) means that this is the input of this operator block, which could
be the input of the model or intermediate result from a prior block. The intermediate
results within this block are omitted for readability.

is applied after rewriting. For a small number of remaining cases, i.e., where temporary

output size changes and the fusion is not applied, more sophisticated methods will be

considered in the future.

We now elaborate on some of the rules presented in Table 3.4, which were also depicted

in Figure 3.2.

• Associative: By leveraging the associative property, the graph rewriting pass can

identify an optimized order of operators execution, and hence replace the expensive

combination of operators with a new cheaper one. Figure 3.2 (a) shows an example,

in which a combination of two Recip operators and two Mul operators is replaced

by a combination of a Recip, a Square, and a Mul. The latter is more efficient as it

eliminates a Mul operator and the intermediate result size is significantly reduced,

leading to reduced register pressure after subsequent fusion.

• Distributive: Following the same ideas as above, applying distributive property

also enables optimization opportunities. As shown in Figure 3.2 (b), the combination

of two Mul operators and an Add can be replaced by an Add followed by a Mul, thus

55

Table 3.4: Graph rewriting with mathematical properties. Only representative
graph rewriting rules are listed due to space limitation. In summary, DNNFusion de-
rives 45, 38, and 66 graph rewriting rules in the category of Associative, Distributive,
and Communicative, respectively. We omit unrelated operators for better readability.
⊙,+,−,Abs,Recip,Square,

√
mean element-wise multiplication, addition, subtraction, ab-

solute, reciprocal, square, and square root, respectively. BitShift calculates the bit shifted
value of elements of a given tensor element-wisely. ReduceSum and ReduceProd calculate
the reduced summation and production of elements of an input tensor along an axis. Exp
calculates the exponent of elements in a given input tensor element-wisely. #FLOPS
denotes the number of floating point operations

Property Without graph rewriting With graph rewriting
Graph structure in equation #FLOPS Graph structure in equation #FLOPS

Associative

Recip(A)⊙Recip(A⊙B) 4∗m∗n Square(Recip(A))⊙B 3∗m∗n
(A⊙

√
B)⊙ (

√
B⊙C) 5∗m∗n A⊙B⊙C 2∗m∗n

Abs(A)⊙B⊙Abs(C) † 4∗m∗n Abs(A⊙C)⊙B 3∗m∗n
(A⊙ReduceSum(B))⊙ (ReduceSum(B)⊙C)¶ 5∗m∗n A⊙Square(ReduceSum(B))⊙C 3∗m∗n+m

Distributive
A⊙C + A⊙B 3∗m∗n (A+B)⊙C 2∗m∗n

A+A⊙B 2∗m∗n A⊙ (B+1) 2∗m∗n §
Square(A+B)− (A+B)⊙C 5∗m∗n (A+B)⊙ (A+B−C) 3∗m∗n

Commutative
A⊙B m∗n B⊙A m∗n‡

ReduceSum(BitShi f t(A)) ¶ 2∗m∗n BitShi f t(ReduceSum(A)) m∗n+m
ReduceProd(Exp(A)) ¶ 2∗m∗n Exp(ReduceSum(A)) m∗n+m

§ Although #FLOPS is not reduced, A is loaded once instead of twice.
† First use commutative property to swap B and Abs(C), then apply associative property.
‡ Even though this pattern has no #FLOPS gains, it can enable further optimization, e.g the case of †.
¶ #FLOPS is calculated by assuming the reduction of ReduceSum/ReduceProd is along with the inner-most dimension.

eliminating an unnecessary operator.

• Commutative: The property guaranties the legality of swapping the position of two

operators, which usually results in computation reduction. As shown in Figure 3.2

(c), BitShift 2 and ReduceSum3 satisfy communicative property, thus ReduceSum can

be scheduled to execute before BitShift, reducing the number of elements on which

BitShift is applied.

DNNFusion employs pattern matching [112, 113] to recognize rewriting candidates.

However, associative and commutative matching is NP-complete [9]. Therefore, DNNFu-

sion first partitions the entire Extended Computational Graph into many sub-graphs by

considering operators with neither of associative, communicative, or distributive properties

as partitioning points within the original graph. Within each sub-graph, DNNFusion
2Calculate the bit shifted value of elements of a given tensor element-wisely.
3Calculate the reduced sum of elements of an input tensor along an axis.

56

can explore all possible patterns and pattern combinations because these sub-graphs have

limited number of operators. More specifically, all matching rules within a partition are

considered and the rule leading to the largest reduction in #FLOPS is applied. This process

is repeated till there are no additional matching rules within the partition. DNNFusion

chooses this greedy scheme to keep the optimization overheads low.

3.4.3 Light-Weight Profile-Driven Fusion Plan Exploration

3.4.3.1 Overall Idea

Optimal fusion plan generation requires a large search space [14,50] and has been shown to

be NP-complete [35,103]. To keep the process at manageable costs, DNNFusion explores

fusion plans by employing a new light-weight (greedy) approach based on our proposed

Extended Computational Graph (ECG) IR and our classification of operations into mapping

types.

The high-level ideas are as follows. First, DNNFusion selects the starting operators

(called fusion seed operators) from our ECG to restrict the search space. This is based

on a key insight that operators of One-to-One mapping type have the potential to yield

more benefits because they a) potentially result in fusion of more layers, including both

with their predecessors and successors because of what we refer to as lower transformation

impedance, and b) have lower memory requirements and need for fewer registers among all

mapping types. Second, starting with these seed operators, DNNFusion explores fusion

opportunities along the seed operator’s successors and predecessors, respectively. Third,

DNNFusion creates fusion plans based on an approach that combines machine-independent

mapping type analysis and a profiling result database. The mapping type analysis follows

Table 3.3 to check the operators’ mapping type combination (in ECG) to decide if these

operators should be fused. Such mapping eliminates unnecessary profile data lookup for

most cases.

57

Plan generation

Add Conv Sub
Relu

Mul

Seed
GEMM

Step 1: seed operator selection

Add Conv Sub
Relu

Mul
GEMM

Step 2: head to successor of Add

1. Mapping type analysis
2. Constraint analysis
3. Profile-based selection

Add Conv Sub
Relu

Mul
GEMM

Repeat step 2 until failed analysis
Add Conv Sub

Relu

Mul
GEMM

Step 3: head to predecessor
(similar with step 2)

Block
Block

Seed

One-to-One Many-to-Many

Many-to-Many

Many-to-One

Figure 3.3: An example of fusion plan exploration. Assume Add, Conv, Relu, Mul,
and Sub have identical output shape and IRS size.

3.4.3.2 Fusion Plan Generation Algorithm

List 3.1 shows our detailed fusion plan exploration algorithm. Its goal is to generate

candidate fusion blocks that are further optimized by subsequent intra-block optimizations

(Section 3.4.4) before fusion code generation. Figure 3.3 illustrates its basic idea with a

simplified example. This algorithm consists of three main steps:

Step I: Fusion seed operator(s) selection. DNNFusion selects the One-to-One operator

with the minimum intermediate result as the fusion seed operator (as shown in Listing 3.1

lines 1 to 5). This heuristic is used because a smaller intermediate result makes fusion

more profitable. This may seem counter-intuitive because fusing the operators with larger

intermediate results usually results in more benefits. However, DNNFusion has a different

goal, i.e., to ultimately enable more fusions to occur. Starting with a pair of operators with

smaller intermediate results creates opportunities to fuse more (smaller) operators together,

increase overall computation granularity, and hence enable higher parallelism and better

load balance for the entire DNN computation. If multiple seed operators with the same

minimum size of intermediate results exist, DNNFusion initiates fusion with them one after

another (unless another seed is grouped to the same candidate fusion block). In Figure

3.3, Add, Relu, Mul, and Sub are in One-to-One type (with an identical intermediate result

58

size), then Add is selected as the seed for the first round of fusion plan exploration.

1 def generate_seed(ops):
2 # find all one_to_one mapping operators
3 oto_ops = find_all_one_to_one(ops)
4 # find the operator with minimum IRS size
5 return min(op.IRS_size for op in oto_ops)
6

7 def fuse_successor(op , successor , block):
8 # Step 2.1: check the mapping relationship
9 relation = mapping_check(op , successor)

10 # return if successor can not be fused
11 if relation == fuse_break: return
12 # Step 2.2: check the constraint requirement
13 if not check_constraint(op, successor , block):
14 return
15 # fuse by profile -based selection
16 if relation == fuse_depend:
17 # Step 2.3: get latency w/ database/runtime
18 temp_latency = latency(block + successor)
19 if temp_latency > latency(block , successor):
20 return
21 block = op + successor
22 # Step 2.4: recursively head to successor
23 for fusing_op in successors(successor):
24 fuse_successor(successor , fusing_op , block)
25

26 # Similar with fuse_successor
27 def fuse_predecessor(op , predecessor , block):
28 # Similar with step 2.1, 2.2, 2.3, 2.4
29

30 # <Algorithm Entry >
31 unfused_ops = all_operators
32 # Step 1: start fuse from the selected seed
33 while(sp = generate_seed(unfused_ops))
34 block = [sp]
35 # Step 2: head to successor
36 for successor in successors(sp):
37 fuse_successor(sp , successor , block)
38 # Step 3: head to predecessor
39 for predecessor in predecessors(sp):
40 fuse_predecessor(sp , predecessor , block)
41 unfused_ops = unfused_ops - block

Listing 3.1: Fusion plan generation

Step II: Propagated exploration along seed’s successors. Each operator may have

one or multiple immediate predecessors and successors. DNNFusion first processes the

seed operator’s successors one by one (Listing 3.1 Lines 7 to 24). At any stage in this

recursive exploration, if a node cannot be fused with any of its immediate successors, fusion

is not considered any further. Broadly, this step proceeds as follows. First, mapping type

59

analysis (Listing 3.1 Step 2.1) categorizes the potential fusion result into three types based

on Table 3.3: 1) fuse_break indicates this is a Red case, and fusion should be aborted; 2)

fuse_through indicates that this is a Green case, and should be proceeded without any

further analysis; 3) fuse_depend indicates that this is a Yellow case, requiring a profile data

lookup. Second, a constraints check (Listing 3.1 Step 2.2) is applied to analyze if further

fusion is likely undesirable, i.e, it incurs too many overheads (e.g., can cause excessive

register spills). Using an empirically determined threshold, the algorithm can decide to

not consider any additional fusion candidates. Otherwise, DNNFusion continues exploring

fusion candidates recursively. Figure 3.3 shows an example of fusing Add with Conv and

other operators with this step. After this step, the generated candidate fusion block has

a mapping type of Many-to-One, and includes five operators (Add, Conv, Relu, Mul, and

Sub).

Step III: Propagated exploration along seed’s predecessors. After processing along

the seed’s successor direction, DNNFusion processes along the seed’s predecessors direction

with the same algorithm as Step II (In fact, Step III and Step II can be swapped). However,

one difference is that if an operator has multiple immediate predecessors, there is an option

of fusing with some, but not all, of these immediate predecessors. In the example in

Figure 3.3, the first attempt of fusing current candidate fusion block with GEMM fails because

both of them are of many-to-one mapping type. Table 3.3 indicates this is a fuse_break

case, so GEMM is not included in this candidate fusion block.

Iterate. DNNFusion completes a round of fusion plan generation with above steps. If more

fusion seeds exist, it will iterate from Step II with the next seed until no additional fusion

seed is available.

60

Code generation

B

A

C
Mul

D
Mul

Add

GEMM

Recip Square

!"#

$%&! $%&!

$%&"

$%&#

$%&$

$%&%

!"#

$%&# $%&%

$%&"

$%&! '

()

$%&$

* $%&!

()

!"# ← $%&# + $%&%

$%&# ← %-./012.34($%&")
$%&" ← $%&! ⨀ '
$%&! ← (·)

$%&% ← Square(IRS$)
$%&$ ← $%&! ⨀*

$%&" ← $%&! ⨀ '

$%&! ← (·)
ECG Data-flow tree Code generation

Figure 3.4: Code generation.

3.4.4 Fusion Code Generation and Optimizations

3.4.4.1 Fusion Code Generation

Once fusion blocks have been selected by our algorithm, DNNFusion generates fused code

for each fusion block with a data-flow tree (DFT) built from the Extended Computational

Graph (ECG) and a set of pre-defined code generation rules. DNNFusion generates

C++ code for mobile CPU and OpenCL for mobile GPU, respectively. More specifically,

DNNFusion traverses DFT and generates fused code for each pair of operators to be fused

by leveraging the code generation rules that are based on abstract mapping types (e.g.,

One-to-One). 23 code generation rules are defined for each of mobile CPU and mobile

GPU, with one rule corresponding to a green or yellow cell in Table 3.3. The basic idea is

that as long as the operators are of the same type, the same rules lead to efficient code.

While fusing more than two operators, these rules are invoked each time two operators are

fused. Finally, the subsequent code optimizations (e.g, vectorization, unrolling, tiling, and

memory/register optimizations, and auto-tuning of these optimizations) are handled by our

existing framework called PatDNN [158], thus not a major contribution of this paper. Note

that almost each fusion generates a new operator (and its codes) that is not present in the

original operator library; however, once the new operator (and its code) is generated, it

can be used for both the current model and future models.

Figure 3.4 shows an example of the code generation. To elaborate, DNNFusion first

61

generates a data-flow tree (DFT) from the Extended Computational Graph (ECG). This

DFT represents the final output (Out), all intermediate results (IRS), and all inputs (A, B,

C, and D) with the edges reversed as compared to the ECG (i.e., the parent node depends

on the children nodes). During the fused code generation, DNNFusion traverses this DFT

to recognize the input/output data dependence (and fuses corresponding ECG operations),

recursively. The right-hand side of Figure 3.4, shows an example of this DFT traversal (the

fused code generation based on the pre-defined code generation rules is omitted in this Figure

for readability and is introduced in the next paragraph). First, DNNFusion recognizes that

Out depends on IRS3 + IRS5; next, it recognizes that IRS3 depends on reciprocal of IRS2,

and so on, until reaching the input of A,B,C,D. It is worth noting DNNFusion can also

find redundant computations in DFT with a common sub-tree identification and eliminate

them during code generation. In our example, both Mul operators use IRS1, resulting in a

common sub-tree in DFT, so the recognition in two red boxes of Figure 3.4 is only taken

once.

During this DFT traversal, DNNFusion employs the pre-defined code generation rules to

generate the code for each pair of operators to be fused. For the example shown in Figure 3.4,

DNNFusion first fuses Add with its left input branch Recip. Both Add and Recip belong to

One-to-One mapping, and hence the fused operator is also One-to-One. DNNFusion keeps

fusing Mul (One-to-One) with this newly fused operator, and the result is still One-to-One.

Next, this newly generated operator is fused with GEMM (Many-to-One), generating a new

Many-to-One operator. Similar steps are taken along the right input branch of Add until all

operators are fused into a single new Many-to-One operator. DNNFusion relies on the DFT

traversal introduced in the prior paragraph to figure out the input/output data dependence,

and employs the operator mapping type to handle the index mapping relationship and

generate proper nested loop structures.

To explain this further, here is an example with more complicated mapping types:

GEMM (Many-to-Many) + Div (One-to-One) + Transpose (Shuffle). First, DNNFusion fuses

Transpose and Div, a case of (“Shuffle + One-to-One”) by first permuting the loop in the

62

Graph rewriting

A

B
Conv

C
Mul

Mul

RecipRecip

(" ⊛ $)!"⨀(("⊛ $)⨀')!"
(" ⊛ $)!#⨀'

A

B
Conv

C
Mul

Recip
Square

A

B

C
Mul

D
Mul

Add

" · $ ⨀' + (" · $)⨀*
" · $ ⨀(' + *)

A

Mul

D
Add

C

B

GEMM
GEMM

Computation based rewriting

(a) Data aggregation (b) Data transportation (c) Data splitting

A
Input

B
Add

C
Mul

AA

B
Mul

C
Add

B
Mul

C
Add

D
Sub

E
Sub

Loop joint

TransposeRecip Recip

Slice Slice

Data based rewriting

A

B
Mul

C
Add

Index
transform

A

B
Mul

C
Add

D
Sub

E
Sub

Loop splitting

A
Input

B
Add

C
Mul

Concat

Recip Recip
Joint axis

Split axis

$+,-ℎ+/,(012341-35("))After:

A

012341-35($+,-ℎ+/,("))

A

Before:

BitShift

ReduceSum BitShift

ReduceSum

(a) Associative property (b) Distributive property (c) Commutative property

Figure 3.5: Data movement operators optimization.

Transpose operator and then fusing it with the Div operator. It generates a new operator

of the type Shuffle. Next, DNNFusion fuses GEMM (Many-to-Many type) with this new

operator (Shuffle type), in which DNNFusion maps output elements of GEMM to the

destination that is decided by this new operator.

3.4.4.2 Other Fusion-related Optimizations

DNNFusion also includes several advanced optimizations enabled by our fusion analysis and

fused code generation. They broadly can be characterized into two groups, intra-fusion-block

optimizations that are performed on Extended Computational Graph (ECG) immediately

before the code generation and inter-fusion-block optimizations on the generated fused code.

Intra-block Optimizations: Operators in Shuffle and Reorganize mapping types usually

involve intensive data movement. We observed many of these time/memory consuming data

operations can be eliminated. In particular, consider the case when the transformed data

is used by only one subsequent operator because the data locality improvement brought

this data transformation cannot be compensated by the overhead of intermediate results

generation and storage. Figure 3.5 shows such examples – particularly, in these, data

transpose and data slicing operations bring more overheads than the benefit. Thus, in such

cases, DNNFusion replaces them with operations that have a changed data index. These

optimizations are performed after graph rewriting and result in an ECG that should have a

more efficient implementation.

63

Inter-block Optimization: Different operators prefer different data formats. Without

the proposed graph rewriting optimizations and operator fusion, normally such choices are

made at the level of each individual operator – however, this can result in redundant or

unnecessary transformations. In contrast, DNNFusion considers the data format choice

at a global level, thus avoiding redundant or unnecessary transformations. Currently,

DNNFusion employs a heuristic approach to optimize the data format, which is as follows.

For a specific fusion block, it identifies one dominant operator whose performance is

impacted the most by the choice of the layout (e.g., CONV, GEMM, and Softmax are most

likely to such operators). The optimal layout for this operation is then used for the entire

fusion block. This heuristic approach works based on a key observation that most other

non-dominant operators can employ any layout/format without their performance being

significantly affected. A potential future work will be to consider more sophisticated cost

models, including balancing the cost of reformatting the data with reductions in execution

because of the optimized layout.

3.5 Evaluation

DNNFusion is implemented on top of an existing end-to-end DNN execution framework

called PatDNN [158] that supports both dense and sparse DNN execution. It has been

shown in our previous work that PatDNN [158] performs slightly better than TVM, MNN,

and TFLITE even without our proposed operator fusion. For readability, we also call this

optimized framework DNNFusion. Our evaluation has four objectives: 1) demonstrate that

the proposed fusion framework (together with graph rewriting) is effective by showing how

DNNFusion outperforms other state-of-the-art frameworks, and no-fusion and fixed-pattern

fusion implementations on various DNN models; 2) validating DNNFusion’s generality

by showing its efficient execution on both CPU and GPU on a wide spectrum of DNNs

(for 5 types of tasks, with varied sizes, and layer counts ranging from relatively shallow

to extremely deep); 3) analyzing the impact of different compiler optimizations on both

64

execution time and compilation time; and 4) demonstrating the effective portability of

DNNFusion by evaluating it on three different mobile phones.

More specifically, DNNFusion (also called DNNF for short) is compared against four

popular state-of-the-art end-to-end DNN execution frameworks: MNN [96], TVM [25],

TensorFlow-Lite (TFLite) [1], and Pytorch-Mobile (Pytorch) [165]. Because certain ex-

tremely deep neural networks are not supported by any of these existing frameworks (or

just supported by their mobile CPU implementation), we also set a baseline by turning

off DNNFusion’s all fusion related optimizations (called OurB, i.e., our baseline version

without fusion) and implement a version that optimizes OurB with fixed-pattern fusion

(using operator fusion described in TVM [25]) (called OurB+), and compare DNNFusion

against them.

3.5.1 Evaluation Setup

Models and datasets. DNNFusion is evaluated on 15 mainstream DNN models. Table 3.5

characterizes them with a comparison of their targeted task, number of parameters, total

number of layers, and number of floating point operations (FLOPS). Particularly, we have

1) two image classification 2D CNNs (EfficientNet-B0 [213] and VGG-16 [206]), 2) two

object detection two-dimensional (2D) CNNs (MobileNetV1-SSD [142] and YOLO-V4

[13]), 3) two action recognition three-dimensional (3D) CNNs (C3D [218] and S3D [239]),

4) one image segmentation 2D CNN (U-Net [199]) and two image segmentation R-CNNs

(Mask R-CNN [76] and FasterRCNN [195]), and 5) six natural language processing (NLP)

models (TinyBERT [97], DistilBERT [201], ALBERT [115], BERTBASE, MobileBERT

[212], and GPT-2 [188]).

Because the choice of datasets has a negligible impact on the final inference latency or

relative execution speeds (and also because of space limitations), we report results from one

dataset for each model. EfficientNet-B0 and VGG-16 are trained on ImageNet dataset [41];

MobileNetV1-SSD and YOLO-V4 are trained on MS COCO [136]; C3D and S3D are trained

on UCF-101 [209]; U-Net, Faster R-CNN, and Mask R-CNN are trained on PASCAL VOC

65

2007 [51]; TinyBERT, DistilBERT, ALBERT, BERTbase, MobileBERT, and GPT-2 are

trained on BooksCorpus [46] and English Wikipedia [46]. Because the model accuracy is

identical among all frameworks, and also because of space limitations, we only focus on

execution times and do not report accuracy.

Evaluation environment. The evaluations are carried out on a Samsung Galaxy S20

cell phone that has Snapdragon 865 processor [183], which comprises an octa-cores Kryo

585 CPU and Qualcomm Adreno 650 GPU yielding high performance with good power

efficiency. For demonstrating portability, we further use a Samsung Galaxy S10 with a

Snapdragon 855 [181] (Qualcomm Kryo 485 Octa-core CPU and a Qualcomm Adreno

640 GPU), and an Honor Magic 2 with a Kirin 980 [84] (ARM Octa-core CPU and a

Mali-G76 GPU). All executions used 8 threads on mobile CPUs, and similarly all pipelines

on mobile GPUs. 16-bit and 32-bit floating points are used for all GPU runs and CPU

runs, respectively. All experiments were run 100 times but as the variance was very small,

we only report averages.

3.5.2 Overall Mobile Inference Evaluation

Our comparison includes both fusion rate4 and execution latency.

Fusion rate. Table 3.5 shows detailed layer counts (including computation-intensive

(CIL), memory-intensive (MIL), and all layers), and intermediate result sizes for models

before fusion and after fusion with different frameworks. Note that DNNFusion is the only

end-to-end framework that can support all of the target models on both mobile CPU and

mobile GPU. In Table 3.5, “-” implies that this framework does not support this model.

Certain extremely deep neural networks (e.g., Faster R-CNN and Masker R-CNN) are not

supported by any other frameworks on mobile devices because these frameworks either

lack the support of multiple key operators and/or limited optimization supported in them

lead to a large model execution footprint. For transformer-based models, only TFLite can

support execution on mobile CPU (without GPU support).
4Fusion rate = original layer count/fused layer count.

66

Table 3.5: Fusion rate evaluation: computation layer count and intermediate
result size for all evaluated DNNs. CIL (Compute-Intensive Layer): each input is
used more than once, e.g. MatMul, CONV. MIL (Memory-Intensive Layer): each input is
used only once, e.g. Activation. IRS: intermediate results. ’-’ means this framework does
not support this model.

Model Type Task Layer counts and IRS sizes before opt. Layer counts and IRS sizes after opt.
#CIL #MIL #Total layer IRS size MNN TVM TFLite Pytorch DNNF IRS size

EfficientNet-B0 2D CNN Image classification 82 227 309 108MB 199 195 201 210 97 26MB
VGG-16 2D CNN Image classification 16 35 51 161MB 22 22 22 22 17 52MB
MobileNetV1-SSD 2D CNN Object detection 16 48 202 110MB 138 124 138 148 71 37MB
YOLO-V4 2D CNN Object detection 106 292 398 329MB 198 192 198 232 135 205MB
C3D 3D CNN Action recognition 11 16 27 195MB 27 27 - 27 16 90MB
S3D 3D CNN Action recognition 77 195 272 996MB - - - 272 98 356MB
U-Net 2D CNN Image segmentation 44 248 292 312MB 241 232 234 - 82 158MB
Faster R-CNN R-CNN Image segmentation 177 3,463 3,640 914MB - - - - 942 374MB
Mask R-CNN R-CNN Image segmentation 187 3,812 3,999 1,524MB - - - - 981 543MB
TinyBERT Transformer NLP 37 329 366 183MB - 304† 322 - 74 55MB
DistilBERT Transformer NLP 55 402 457 540MB - 416† 431 - 109 197MB
ALBERT Transformer NLP 98 838 936 1,260MB - 746† 855 - 225 320MB
BERTBASE Transformer NLP 109 867 976 915MB - 760† 873 - 216 196MB
MobileBERT Transformer NLP 434 1,953 2,387 744MB - 1,678† 2,128 - 510 255MB
GPT-2 Transformer NLP 84 2,449 2,533 1,389MB - 2,047† 2,223 - 254 356MB
† TVM does not support this model on mobile. This layer count number is collected on a laptop platform for reference.

Table 3.5 shows that compared with the other frameworks, DNNFusion results in better

fusion rates, with 1.3× to 2.9×, 1.3× to 8.1×, 1.3× to 8.8×, and 1.3× to 2.8× over MNN,

TVM, TFLite, and Pytorch, respectively. Particularly, compared with original models,

DNNFusion yields more benefits for R-CNN and Transformer-based models (3.9× to 10.0×

fusion rate) than 2D/3D CNNs (1.7× to 3.6× fusion rate). This is because 2D/3D CNNs

have higher fractions of computation-intensive layers that are in either One-to-Many or

Many-to-Many types, while transformer-based models have more memory-intensive layers

that are in One-to-One, Shuffle, or Reorganize categories. The latter offers more fusion

opportunities according to our mapping type analysis (Table 3.3). Because of the same

reason, 3D CNNs have the lowest fusion rate because they are more compute-intensive.

Moreover, comparing to TVM (that performs the best among all other frameworks),

DNNFusion particularly yields more benefits for transformer-based models. This is because

these models have more types of operators, and TVM’s fixed pattern-based fusion cannot

capture fusion opportunities among many types of operators while DNNFusion can. This

result demonstrates that DNNFusion has a better generality.

Execution latency. Table 3.6 shows the execution latency evaluation results. Comparing

with MNN, TVM, TFLite, and Pytorch, with fusion optimization, DNNFusion achieves the

67

Table 3.6: Inference latency comparison: DNNFusion, MNN, TVM, TFlite, and
PyTorch on mobile CPU and GPU. #FLOPS denotes the number of floating point
operations. OurB is our baseline implementation by turning off all fusion optimizations
and OurB+ is OurB with a fixed-pattern fusion as TVM. DNNF is short for DNNFusion,
i.e., our optimized version. ’-’ denotes this framework does not support this execution.

Model #Params #FLOPS MNN (ms) TVM (ms) TFLite (ms) Pytorch (ms) OurB (ms) OurB+ (ms) DNNF (ms)
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

EfficientNet-B0 5.3M 0.8B 41 26 56 27 52 30 76 - 54 35 38 24 16 10
VGG-16 138M 31.0B 242 109 260 127 245 102 273 - 251 121 231 97 171 65
MobileNetV1-SSD 9.5M 3.0B 67 43 74 52 87 68 92 - 79 56 61 39 33 17
YOLO-V4 64M 34.6B 501 290 549 350 560 288 872 - 633 390 426 257 235 117
C3D 78M 77.0B 867 - 1,487 - - - 2,541 - 880 551 802 488 582 301
S3D 8.0M 79.6B - - - - - - 6,612 - 1,409 972 1,279 705 710 324
U-Net 2.1M 15.0B 181 106 210 120 302 117 271 - 227 142 168 92 99 52
Faster R-CNN 41M 47.0B - - - - - - - - 2,325 3,054 1,462 1,974 862 531
Mask R-CNN 44M 184B - - - - - - - - 5,539 6,483 3,907 4,768 2,471 1,680
TinyBERT 15M 4.1B - - - - 97 - - - 114 89 92 65 51 30
DistilBERT 66M 35.5B - - - - 510 - - - 573 504 467 457 224 148
ALBERT 83M 65.7B - - - - 974 - - - 1,033 1,178 923 973 386 312
BERTBase 108M 67.3B - - - - 985 - - - 1,086 1,204 948 1,012 394 293
MobileBERT 25M 17.6B - - - - 342 - - - 448 563 326 397 170 102
GPT-2 125M 69.1B - - - - 1,102 - - - 1,350 1,467 990 1,106 394 292

speedup of 1.4× to 2.6×, 1.5× to 3.5×, 1.4× to 3.3×, and 1.6× to 9.3×, respectively, on

the mobile CPU. Focusing on mobile GPU, improvements over MNN, TVM, and TFLite are

1.7× to 2.6×, 2.0× to 3.1×, 1.6× to 4.0×, respectively, whereas Pytorch does not support

execution on this mobile GPU. The reason for speedups including the fact that our baseline

implementation with a fixed-pattern fusion (OurB+) is already faster than other frameworks

(with speedup of 1.04× to 5.2× on mobile CPU and 1.05× to 1.7× on mobile GPU), and

with our more advanced fusion, DNNFusion achieves 1.4× to 2.5× speedup over OurB+ on

mobile CPU and 1.5× to 3.9× speedup on mobile GPU. In addition, comparing DNNFusion

(with fusion) and our baseline without fusion (OurB), our advanced fusion brings 1.5× to

5.8× speedup. Moreover, fusion optimization offered by DNNFusion brings more benefits

for mobile GPU than CPU, particularly for extremely deep models (e.g., Faster R-CNN and

GPT-2). This is because mobile GPU offers more parallelism but smaller cache capacity

compared to CPU, and GPU kernel launch incurs certain overheads, so it is more sensitive

to intermediate data reduction, kernel launch reduction, and processor utilization increase

that are brought by DNNFusion’s fusion.

To further validate DNNFusion’s performance, Figure 3.6 compares it with a state-

of-the-art computational graph substitution approach mentioned earlier, TASO [94]. We

68

ENT-B0 VGG MNT YOLO-V4U-Net TBERTDBERTABERT BERT MBERT GPT-2

1

2

3

Sp
ee
du
p

Figure 3.6: Speedup over TASO optimized execution on mobile CPU. The models
(computational graphs) are optimized by TASO and then executed on TFLite.

use TASO to optimize all eleven models (computational graphs) supported by TFLite

among those listed in Table 3.6, including EfficientNet-B0 (ENT-B0), VGG-16 (VGG),

MobileNetV1-SSD (MNT), YOLO-V4, U-Net, TinyBERT (TBERT), DistilBERT (DBERT),

ALBERT (ABERT), BERTBase (BERT), MobileBERT (MBT), and GPT-2. Then, for our

experiments, these models are executed under TFLite on mobile CPU (not GPU because

TFLite lacks GPU support for many of these models). Compared with TASO, DNNFusion

yields 1.4× to 2.6× speedup on mobile CPU. The graph rewriting in DNNFusion is designed

to work in conjunction with operator fusion and identifies a set of operators and rules for

that specific purpose, thus enabling more fusion opportunities. TASO does not emphasize

the relationship between graph rewriting and fusion, resulting in less efficient execution as

compared to DNNFusion.

3.5.3 Understanding Fusion Optimizations

This section studies the effect of our key optimizations.

Optimization breakdown. Figure 3.7 shows the impact of our proposed optimizations on

latency with four models (EfficientNet-B0 (ENT-B0), YOLO-V4, S3D, and GPT-2) on

both mobile CPU and GPU. Experiments on other models show a similar trend and are

omitted due to space constraints. We evaluate each compiler-based optimization speedup

incrementally over the OurB version. Compared with OurB, graph rewriting brings 1.2×

to 1.5× speedup, fusion brings additional 1.6× to 2.2× speedup, and other optimizations

(intra-block optimizations like data movement operator optimizations and inter-block

69

ENT-B0 YOLO-V4 S3D GPT-2

1

3

5
Sp

ee
du

p
br

ea
kd

ow
n OurB GR

GR + Fuse + OtherGR + Fuse
Fuse + Other

(a) CPU.
ENT-B0 YOLO-V4 S3D GPT-2

1

3

5

Sp
ee

du
p

br
ea

kd
ow

n

(b) GPU.

Figure 3.7: Optimization breakdown on y-axis: speedup over OurB, i.e. a
version w/o fusion opt. GR, Fuse, and Other denote graph rewriting, fusion, and other
fusion-related optimizations, respectively.

optimizations like data format optimizations introduced in Section 5.4.4) bring additional

1.3× to 1.8× speedup on mobile CPU. On mobile GPU, these numbers are 1.3× to 1.5×,

2.1× to 3.3×, and 1.7× to 2.1×, respectively. Again, our fusion brings more benefit for

mobile GPU than CPU due to the aforementioned reasons of memory, parallelism, and kernel

launch overheads. Although graph rewriting by itself brings fewer benefits than the fusion,

its hidden benefit is in enabling more fusion opportunities. Take GPT-2 as an example –

without graph rewriting, the generated fused layer count is 310, while after rewriting, it is

254 (18% reduction). This is because graph rewriting simplified the computational graph

structure. To further assess this impact of graph rewriting on operator fusion, the last

bar (in orange) of Figure 3.7 reports the speedup of fusion with other optimizations only

(i.e., without graph rewriting) over the baseline OurB. Compared with no graph rewriting,

graph rewriting brings an additional 1.4× to 1.9× and 1.6× to 2.0× speedup (over OurB)

on mobile CPU and GPU, respectively.

Memory and cache performance We compare memory (and cache) performance of

DNNFusion with other frameworks on both mobile CPU and GPU. We only report YOLO-

V4’s results due to space constraint, and because it is one of the models supported

by all frameworks. Figure 3.8 (a) left shows memory performance (measured in total

memory accesses (MA) and memory consumption (MC)) – MA and MC are collected from

Snapdragon Profiler [176], and Figure 3.8 (a) right shows cache miss count on data cache

70

MA MC

1

2

3

M
em

or
y

MNN TVM
TFLite Pytorch
DNNF

MA MC

1

2

3

M
em

or
y

MNN TVM
TFLite DNNF

L1 L1-TLB L2 L2-TLB L3

1

3

5

C
ac

he
 m

is
s

co
un

t
L1 L2

1

3

2

C
ac

he
 m

is
s

co
un

t

(a) CPU.

(b) GPU.

Figure 3.8: Memory (left) and cache miss (right) analysis. MA and MC denote
memory access and memory consumption, respectively. Cache miss count is compared on
L1/L2/L3 data cache and L1/L2 TLB cache on mobile CPU, and on L1/L2 data cache
only on mobile GPU. All values are normalized w.r.t DNNF (the optimal version).

and TLB cache on mobile CPU. All values are normalized with respect to DNNFusion

(i.e., our best version) for readability. DNNFusion outperforms other frameworks on both

memory access count and memory consumption because it eliminates materialization of

more intermediate results. Figure 3.8 (b) shows similar results on mobile GPU (excluding

PyTorch because it does not support YOLO-V4 on mobile GPU). Mobile GPU results are

generally better than CPU because mobile GPU has smaller cache capacity and simpler

hierarchy (GPU only has L1/L2 v.s., CPU has L1/L2/L3). Thus, intermediate results

reduction leads to more gains on mobile GPU.

CPU/GPU utilization. Figure 3.9 (a) reports the mobile CPU and GPU utilization on

YOLO-V4. This result is collected by Snapdragon Profiler [176]. It shows that DNNFusion

results in the highest utilization on both CPU and GPU because its aggressive fusion

groups more computation together, resulting in coarser-grained execution with less loop

and parallel scheduling (and kernel launch for GPU only) overhead. Particularly, the GPU

utilization is slightly higher than CPU because of its higher parallelism.

71

MNN TVM TFLite Pytorch DNNF
70

85

100

U
til

iz
at

io
n

(%
) CPU GPU

(a) CPU and GPU utilization.

TVM DNNF (w/o db) DNNF (w/ db)0

120

240
Fusion Profiling Tuning

C
om

pi
la

tio
n

tim
e

(m
)

(b) Compilation time.

Figure 3.9: (a) Mobile CPU and GPU utilization. CPU utilization is averaged on
8-cores. (b) Compilation time. Comparison between TVM and DNNF for YOLO-V4 on
mobile CPU. DNNF (w/o db) is without the presence of an existing profiling database;
DNNF (w/ db) assumes such a database is pre-computed. Fusion is invisible as it spends
very little time on both TVM and DNNF.

Compilation time. Figure 3.9 (b) compares the compilation time between TVM and

DNNFusion for YOLO-V4 on mobile CPU. TVM’s compilation time consists of operator

fusion and other compiler optimizations (Fusion), and tuning for performance-critical

parameters, e.g., tiling size, unrolling factors, and others (Tuning). Tuning dominates its

compilation time, lasting for around 4 hours for YOLO-V4 on mobile CPU. DNNFusion’s

compilation time consists of operator fusion and other compiler optimizations (Fusion),

profiling to analyze the fusion benefits (Profiling), and performance tuning (Tuning).

DNNFusion’s Tuning relies on an auto-tuner based on Genetic Algorithm (reported in our

previous publication [158]) to generate the exploration space. Compared with AutoTVM [26],

our auto-tuning’s Genetic Algorithm allows parameter search to start with initializing an

arbitrary number of chromosomes. Without our pre-existing profiling database, Profiling

and Tuning dominate the compilation, requiring around 3 hours. With a pre-computed

database, Profiling becomes very fast, and only Tuning dominates the compilation,

requiring around 1 hour. After evaluating 15 models in Table 3.5, the profiling database

consists of around 22K profiling entries with each one including operators’ information

(e.g., operator types, shape, and their combinations) and the latency achieved.

72

CPU GPU

400

800

1200
In

fe
re

nc
e

Ti
m

e(
m

s) MNN
TFLite

TVM
Pytorch

DNNF

CPU GPU

500

1000

1500

In
fe

re
nc

e
Ti

m
e(

m
s)

CPU GPU

400

800

1200

In
fe

re
nc

e
Ti

m
e(

m
s) MNN

TFLite
TVM
Pytorch

DNNF

CPU GPU

500

1000

1500

In
fe

re
nc

e
Ti

m
e(

m
s)

(a) Samsung Galaxy 10

(b) Honor Magic 2

Figure 3.10: Portability evaluation. It is on Samsung Galaxy S10 and Honor Magic 2.
Left two figures are YOLO-V4 and right two are GPT-2. Only TFLite supports GPT-2 on
mobile CPU (no mobile GPU support).

3.5.4 Portability

Figure 3.10 shows the execution latency on additional cell phones (Samsung Galaxy S10

and Honor Magic 2) to demonstrate effective portability. Only YOLO-V4 and GPT-2 are

reported due to limited space. Other models show similar trends. In particular, DNNFusion

shows a more stable performance on older generations of mobile devices. This is because

our fusion significantly reduces the overall number of layers and intermediate result size,

and older cell phones with more restricted resources are more sensitive to these.

3.6 Related Work

Operator fusion in end-to-end mobile DNN frameworks. Operator fusion is an im-

portant optimization in many state-of-the-art end-to-end mobile DNN execution frameworks

that are based on computational graphs, such as MNN [96], TVM [25], TensorFlow-Lite [1],

and Pytorch [165]. However, they all employ fixed-pattern fusion that is too restricted to

cover diverse operators and layer connections in deep models like BERT – for example,

73

ConvTranspose + ReLU + Concat cannot be recognized in TVM as it is not one of the

specified patterns. Other examples that can be handled by DNNFusion and cannot be

recognized by TVM include MatMul + Reshape + Transpose + Add in GPT-2, and Sub +

Pow + ReduceMean + Add + Sqrt in TinyBERT. Comparing to these frameworks, DNNFu-

sion works by classifying both the operators and their combinations, thus enabling a much

larger set of optimizations.

Operator fusion on other ML frameworks. There are certain recent frameworks that

rely on polyhedral analysis to optimize DNN computations and support operator fusion. R-

Stream·TF [172] shows a proof-of-concept adaptation of the R-Stream polyhedral compiler

to TensorFlow. Tensor Comprehensions [224] is an end-to-end compilation framework

built on a domain-specific polyhedral analysis. These frameworks do not support mobile

execution (i.e. ARM architecture), and thus we cannot perform a direct comparison

between DNNFusion and them. As we have stated earlier, DNNFusion maintains an

operator view but builds a higher-level abstraction on them. In the future, we can

combine DNNFusion’s high-level abstraction to existing domain-specific polyhedral analysis.

Similarly, another promising direction will be to integrate DNNFusion into other compilation-

based DNN frameworks [65, 154] or other popular general tensor/matrix/linear algebra

computation frameworks, such as MLIR [121], Tiramisu [8], TACO [109,110], Halide [189],

and LGen [114,211].

There also exist several other frameworks to optimize machine learning with operator

fusion or fusion-based ideas. Closely related to DNNFusion – Rammer [146] relies on

fix-pattern operator fusion to further reduce kernel launch overhead of their optimized

scheduling, Cortex [53] proposes a set of optimizations based on kernel fusion for dynamic

recursive models, TensorFlow XLA [64] offers a more general fusion method than fix-

pattern operator fusion by supporting reduce operations and element-wise operations, and

TensorFlow Grapper [215] provides an arithmetic optimizer that performs rewrites to

achieve both fusion and arithmetic expression simplification (e.g., a×b+a×c = a× (b+c)).

Comparing with these frameworks, DNNFusion works by classifying the operators and their

74

combinations into several mapping categories, thus resulting in a more aggressive fusion

plan and more performance gains. Elgamal [50] and Boehm [14] presently optimize general

machine learning algorithms (e.g., SVM and Kmeans) with operator fusion. These efforts

have both different targets and techniques compared to DNNFusion.

Polyhedral-based and other loop fusion methods. Polyhedral analysis [16, 21, 48, 111,

170, 252] is a prominent approach that offers a general and rigorous foundation for loop

transformation and optimization.

Many existing efforts [2,3,15] rely on a general polyhedral analysis to achieve optimized

loop fusion. Pouchet et al. [171] have demonstrated that polyhedral analysis can decompose

the loop optimization problem into sub-problems that have much lower complexity, enabling

optimal selection. The problem arising because of a large number of operators in our

target applications (models) is quite different, and thus there does not seem to be a direct

application of Pouchet et al.’s approach in our context. There have also been other loop

fusion efforts targeting general programs [40, 100, 103, 151]. In contrast to these general

efforts, DNNFusion is more domain-specific, leveraging the knowledge of DNN computations

with a higher-level abstraction to explore more aggressive loop fusion opportunities.

3.7 Summary

This paper has presented a new loop fusion framework called DNNFusion. The key

advantages of DNNFusion include: 1) a new high-level abstraction comprising mapping type

of operators and their combinations and the Extended Computational Graph, and analyses

on these abstractions, 2) a novel mathematical-property-based graph rewriting, and 3) an

integrated fusion plan generation. DNNFusion is extensively evaluated on 15 diverse DNN

models on multiple mobile devices, and evaluation results show that it outperforms four

state-of-the-art DNN execution frameworks by up to 8.8× speedup, and for the first time

allows many cutting-edge DNN models not supported by prior end-to-end frameworks to

execute on mobile devices efficiently (even in real-time). In addition, DNNFusion improves

75

both cache performance and device utilization, enabling execution on devices with more

restricted resources. It also reduces performance tuning time during compilation.

Our future work will enhance DNNFusion by combining it with the latest model pruning

advances [49,158]. Though model pruning is effective, with fusion the dense versions are

outperforming these efforts by having fewer layers. Thus, there is an opportunity to combine

the two set of approaches to achieve an even better performance.

76

Chapter 4

GCD2: A Globally Optimizing

Compiler for Mapping DNNs to

Mobile DSPs

4.1 Introduction

Despite the upcoming end of Moore’s law, the last several years have seen a quick increase

in transistors density. For example, in going from 22 nm technology to 10 nm, Intel chips

saw a nearly 7× increase in transistor density, and the most chip manufacturers are building

chips with more than 100 million transistor per square millimeter at the time of writing

this paper1. All processors, but more particularly the specialized ones, have exploited this

density by supporting an increasing amount of parallelism, often combined with intricate

ways in which this parallelism can be exploited. Even in mainstream processors, the SIMD

width has increased and the flexibility of programming API has improved with AVX-512

instruction set that has features like scatter, gather, and masks.

An example of a class of specialized chips that offer a programming interface suited
1https://www.techcenturion.com/7nm-10nm-14nm-fabrication

77

Table 4.1: Latency and Power Comparisons among Mobile CPU, GPU, and
DSP. Experiments are conducted on a Samsung Galaxy S20 with TFLite [1]. CPU, GPU,
and DSP uses int8, float16, and int8, respectively. Power is collected by the Android system
interface. Results are for each inference.

Model #MACS† Latency (ms) Power⋆
CPU GPU DSP CPU GPU DSP

EfficientNet-b0 [213] 0.4G 53 11.3 9.1 10.7 1.6 1.0
ResNet [77] 4.1G 62 34.4 13.9 6.2 2.3 1.0
PixOr [245] 8.8G 280 64.6 43 6.7 1.8 1.0
CycleGAN [260] 186G 4320 477 450 5.5 1.2 1.0
† #MACS denotes the number of multiply-accumulate operations.
⋆ Normalized by DSP’s power for readability.

for general purpose processing is the Digital Signal Processing (DSP) chips. Particularly,

smartphones have invested in sophisticated DSP chips that are also capable of accelerating

other highly parallel workloads. To date, however, there is only a limited exploration on

the use of DSP chips for other workloads [5, 223,229,246].

In recent years, machine learning (ML) or deep learning (DL) workloads, particularly

the Deep Neural Networks (DNNs), have emerged as important workloads that have been

targeted on a range of hardware – from mainstream processors and accelerators [11, 25, 47,

81,94,168,224,227] to mobile devices [1, 61,72,88,95,96,116,231,241,248,255] (including

mobile DSP [119]) to chips specifically designed for them [80,102,204,257]. A particular

requirement, and the driver of our work, is performing inference using complex Deep Neural

Network (DNN) models on mobile phones in a time, memory, and power-efficient manner.

We observe that DSP chips are a natural candidate for accelerating DNN inference in a

mobile setting, not only because mobile phone already have a DSP chip, but also because

these chips are optimized for matrix and vector computations on fixed-point values.

This paper reports a compilation system that optimizes Deep Neural Networks (DNNs)

for execution on a mobile DSP chip. As a quick motivation for this effort, results from

Table 4.1 show that with an existing framework, TFLite [1], execution on a DSP chip

outperforms both mobile CPU and GPU in terms of execution time and power. Conceptually,

however, it also turns out that compiling for the DSP chip involves dealing with many

78

advanced features, especially with respect to low-level parallelism exposed through its

instruction set, requiring techniques well beyond the ones implemented in current systems

or otherwise developed. More specifically, modern (mobile) DSP chips have much more

complex SIMD instruction sets with both a larger width and a greater variety of instructions

as compared to the mainstream processors, and thus require techniques beyond those

explored in current literature [27,111,219]. Besides 1024-bit width, there are instructions

combining vector operations and reductions in different ways, going even beyond Intel’s

additions under VNNIW and FMAPS extentions [60]. In addition, VLIW instructions exist

that can combine multiple SIMD instructions for simultaneous execution, and there are

other performance characteristics that require new methods for effective mapping of the

workload.

This paper develops techniques for exploiting these architectural features. Our contri-

butions include:

• Methods for Exploiting Disparate SIMD Instructions. We develop data layouts

and execution schemes that use different new instructions for key Deep Learning (DL)

kernels. We also investigate the trade-offs between different approaches depending

upon the size of the operands.

• Formulating and Solving a Global Optimization Problem. We show how the

choice of instruction (and their corresponding data layouts) for one operator impacts

the choice for their successor and formulate a global optimization problem. We show

an optimal linear-time solution for this problem when the operators form a linear

chain, and develop useful heuristics for the general case of a computational graph.

• VLIW Packing (i.e., Scheduling) Problem. Considering many unique aspects of

our target architecture (including the notion of soft dependencies, and latency sensi-

tivity), we present a novel Soft Dependencies Aware (SDA) algorithm for instructions

packing.

79

• Design of an End-to-End Compilation System. We engineer a system that

includes a nuanced code generation design and several additional optimizations.

GCD2 is extensively evaluated on 10 real-world large DNNs, with a range of model

sizes and operator counts and designed for various ML tasks, targeting popular mobile

DSPs. Compared with two state-of-the-art DNN frameworks (TFLite [1] and Qualcomm

SNPE [178]) that support end-to-end mobile DSPs execution, GCD2 achieves 2.8× and

2.1× speedup (in geometric mean), respectively, reaching real-time execution for some of

them for the first time. In fact, for two of the models, GCD2 implementation supports

mobile DSP execution for the first time. While comparing with three established compilers

(Halide [189], TVM [25], and RAKE [5]) that support efficient kernels execution on mobile

DSPs, GCD2 achieves 4.5×, 3.4×, and 4.0× speedup, respectively. GCD2 outperforms

others primarily because of improved SIMD execution and optimized VLIW instruction

scheduling and the evaluation justifies the choices made in GCD2’s algorithms for these

optimizations.

4.2 Executing DNNs on Mobile DSPs

Modern mobile DSPs have become increasingly powerful with key features as follows: 1)

larger SIMD widths, 2) richer vector instructions with growing computation capabilities,

and 3) more flexible instruction pipelines that can tolerate certain data dependencies. Take

Qualcomm Hexagon 698 DSP [184]2 as an example. Its SIMD width is 1024-bit, twice that

of Hexagon 680 [174] and its instruction set includes multiple SIMD/vector instructions

(e.g., vmpy, vmpa, and vrmpy elaborated in Section 4.3), and can support complicated

MAC (multiply–accumulate) operations. Multiple vector (and scalar) instructions can be

packed into a VLIW pipeline, further improving the computational throughput. Finally,
2Qualcomm Snapdragon is one of the most popular SoC and many generations of Snapdragon are

equipped with Hexagon DSPs. Although our presentation and evaluation is on Hexagon DSP, the work is
generally applicable to other mobile DSPs as well, e.g., Cadence, which is the other major player in the
mobile DSP market.

80

the pipeline offers hardware mechanisms to guarantee execution correctness even in the

presence of certain dependencies, thus offering more flexibility.

Mobile DSPs support fix-point operations (8/16/32-bit) with extremely high perfor-

mance (e.g., the theoretical peak for Hexagon 698 DSP is 15 TOPS [186]). While considering

DSP chips for DNN execution, the important context here is that Quantization, a well-

known technique to convert floating-point values to integer ones, has been very effective

in accelerating DNN executions, particularly on resource-constraint devices [32,173]. The

cutting-edge DNN acceleration frameworks, (e.g., TFLite [1] and SNPE [178], and Qual-

comm’s built-in library Hexagon NN [182]) aim to combine the benefits of both quantization

and mobile DSPs to accelerate DNN execution, achieving both (near) state-of-the-art model

accuracy and lower latency as compared to the other parts of the mobile SoC (i.e., CPUs

and GPUs). Similarly, MobiSR schedules the super-resolution model over Heterogeneous

Mobile Processors (including CPU, GPU, and DSP) [126].

Despite these rapid developments, compilers and libraries built for DSP chips cannot

fully exploit the device’s computation power – this applies to, but is not limited to, the

compilers and libraries for DNN execution listed above. Specifically, the performance of the

mobile DSP is sensitive to 1) the input/output data layout, and 2) the VLIW instruction

packing (or scheduling) in view of all hardware resource constraints. This is because first,

various SIMD/vector instructions are designed to perform MAC operations in different ways

and they are friendly to different input/output data sizes and data layouts. Second, the

VLIW pipeline imposes many constraints on the instructions that can be packed together.

In the context of DNN acceleration, complex DNN designs challenge the DSP-oriented

implementations in multiple ways. First, modern DNNs usually consist of many operators

(e.g., the latest BERT consists of over 1000 operators [46]), and even with the same operator,

operands can be of different shapes and sizes. Mapping growing SIMD/vector width and

instruction set (variety) to these operators and operands is challenging. Second, as discussed

above, the complex opportunities and constraints in VLIW packing need to be considered

for implementations of specific operators.

81

Layout & instruction

v127 v126 v125 v124 … v3 v2 v1 v0

s3 s2 s1 s0

v124 ∗ s0 + v125 ∗ s1
+ v126 ∗ s2 + v127 ∗ s3

… v0 ∗ s0 + v1 ∗ s1 +
v2 ∗ s2 + v3 ∗ s3

(c) vrmpy

v127 v126 v125 v124 … v3 v2 v1 v0

s3 s2 s1 s0

v126 ∗ s2 v124 ∗ s0 … v2 ∗ s2 v0 ∗ s0
v127 ∗ s3 v125 ∗ s1 … v3 ∗ s3 v1 ∗ s1

(a) vmpy

v127′ v126′ v125′ v124′ … v3′ v2′ v1′ v0′
v127 v126 v125 v124 … v3 v2 v1 v0

s3 s2 s1 s0

v126 ∗ s0
+ v126′ ∗ s1

v124 ∗ s0
+ v124′ ∗ s1

… v2 ∗ s0
+ v2′ ∗ s1

v0 ∗ s0
+ v0′ ∗ s1

v127 ∗ s2
+ v127′ ∗ s3

v125 ∗ s2
+ v125′ ∗ s3

… v3 ∗ s2
+ v3′ ∗ s3

v1 ∗ s2
+ v1′ ∗ s3

High addr. Low addr.128

(b) vmpa

Vector pair

Vector pairVector

Byte 2-Byte 4-Byte vi/vi′: i-th element in the vector register
si: i-th element in the scalar register

Vector

Figure 4.1: SIMD/Vector Multiply Instruction Examples in Mobile DSP Chip

Table 4.2: Execution Latency w/ Different SIMD Instructions (and Layouts)
for Matrix Multiplication C = A×B. M, K, and N denote the dimension size of Matrix
A (M×K), B (K×N), and C (M×N), respectively. Execution latency and total data size
with padding are normalized by vmpy for readability. Smaller numbers mean better latency
or less padding. Bold ones denote the best case.

M K N Execution Latency Total Data Size w/ Pad
vmpy vmpa vrmpy vmpy vmpa vrmpy

32 32 32 1.00 0.79 0.63 1.00 0.56 0.33
64 64 64 1.00 0.69 0.76 1.00 0.60 0.60
96 96 96 1.00 1.06 0.89 1.00 1.00 0.82
128 128 128 1.00 1.10 1.23 1.00 1.00 1.00

4.3 Instructions and Layouts

Our target instruction set includes novel and complex SIMD instructions capable of opti-

mizing computations found in ML (and scientific) workloads. We show three representative

instructions in Figure 4.1. While these instructions are used for multiple operators in a DNN

(e.g., the convolutions), our presentation here uses matrix multiplication for illustration.

Similarly, other instructions like vtmpy and vmpye can also be used to implement these

operators. Our discussion here considers only three instructions. However, as a motivation,

we first show the trade-offs between their use.

Table 4.2 shows how the cost of matrix multiplication varies with the three choices

when input tensors have different shapes. We can see that the instruction vmpy (and

the corresponding 1-column layout, both are elaborated later) provides better execution

efficiency if the operands have a certain length. However, for other cases, this instruction

causes padding overheads, thus making the other instructions more time- and space -efficient.

82

As additional background, many recent works show that the floating-point represen-

tations (and operations) for weights and activations are not necessary to achieve good

accuracy for DNNs, but instead fixed point (8-bit or even less) suffices [32,90,91,98,105,238].

However, one caution is that the product between two 8-bit values should be stored in

16-bits to avoid data overflow, and similarly, accumulating several such products requires

32-bits. In either case, a requantization phase is required to generate the 8-bit final output.

With this motivation and background, we explain the existing instructions and associated

data layouts we have developed. In Figure 4.1 (a), we show the instruction vmpy, whose

inputs are a vector with 128 8-bit values and four scalar values. In vmpy, four consecutive

values in the vector are multiplied by four distinct scalars, with the output being two

vectors with 64 16-bit values, each storing alternate results of multiplications.

In Figure 4.1 (b), the input for the instruction vmpa are two vectors with 128 8-bit

values each. A pair of corresponding values from the two vectors are multiplied by two

scalar values and then added together. Specifically, alternate pairs are multiplied with the

first two and the last two scalars, respectively, and accumulated to two different output

vectors.

Finally, in Figure 4.1 (c), the instruction vrmpy is illustrated – here, four consecutive

values from the vector are successively multiplied by four distinct scalar values, and

accumulated together. The result is a vector with 32 32-bit values.

In this work, we have developed novel dense matrix data layouts that optimize the use

of these instructions for multiple key operators in DNN computations (e.g., MatMul, CONV,

Depthwise CONV, etc.), and this part takes matrix multiplication (MatMul), a critical kernel

for our target workload as an example. Developing layouts for implementing arbitrary loop

nests using these or similar instructions is an open problem beyond the scope of this paper.

In Figure 4.2 (a), we show the layout that enables the use of vmpy instruction shown

earlier in Figure 4.1 (a). For efficiency, it is very important that the set of values that are

to be loaded to or stored from a vector register are stored in a contiguous fashion. The

layout we use is referred to as the 1-column layout. The numbers shown in the boxes

83

126 124 … 2 0

Instruction – elementwise multiplication
Byte 2-Byte 4-Byte

0 128 256 384
1 129 257 385
… … … …

127 255 383 511
512 640 768 896
513 641 769 897
… … … …

639 767 895 1023

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

0 128 256 384
1 129 257 385
… … … …

127 255 383 511
512 640 768 896
513 641 769 897
… … … …

639 767 895 1023

1

127126125124 … 4 3 2 1 0

127 125 … 3 1

64

128

128

128

Splat one element

Output vector pair

Input vector

Input Weight Output

1 1 1

1-column, 更加有利于unroll

0 0 0 0

Primary computation

(a) 1-column layout example (instruction: vmpy).

Instruction – dual vectors with four scalars

0, 1 128, 129
2, 3 130, 131
… …

126, 127 254, 255
256, 257 384, 385
258, 259 386, 387

… …
382, 383 510, 511

64

0, 1 128, 129
2, 3 130, 131
… …

126, 127 254, 255
256, 257 384, 385
258, 259 386, 387

… …
382, 383 510, 511

2

255 254 253 252 … 132 131 130 129 128

126 124 … 2 0

Weight scalar
Output vector pair

64

127 126 125 124 … 4 3 2 1 0

Input vector pair

126 124 … 2 0

0 4 8 12
2 6 10 14
1 5 9 13
3 7 11 15

128

64

Reorder

2

Input Weight Output

2-column

3 2 1 0

(b) 2-column layout example (instruction: vmpa).

Instruction – single vector with four scalars

0, 1, 2, 3
4, 5, 6, 7

…
124, 125, 126, 127
128, 129, 130, 131
132, 133, 134, 135

…
252, 253, 254, 255

0, 1, 2, 3
4, 5, 6, 7

…
124, 125, 126, 127
128, 129, 130, 131
132, 133, 134, 135

…
252, 253, 254, 255

127 126 125 124 … 4 3 2 1 0

31 … 0

128

32

4

32

32

Weight scalar

Output vector

Input vector0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Input Weight Output

4-column

3 2 1 0

(c) 4-column layout example (instruction: vrmpy).

Figure 4.2: Data Layouts to Support Usage of Varied SIMD Instructions for
Matrix Multiplication. Each number denotes the linear storage offset of an element. A
blue, yellow, and orange cell takes 1, 2, and 4 bytes, respectively. Left shows data storage,
and right shows computation.

84

represent the offset of the location of that element. In 1-column layout, a set of 128 rows

is stored in a column-major way, and this pattern is repeated for the next set of rows.

In carrying out the matrix multiplication, the first column is loaded to a vector and all

values are multiplied with the first weight (0) stored in the scalar register. The outputs are

two vectors storing 64 16-bit elements each, which will eventually be shuffled to obtain an

output layout matching the input layout. The process continues by loading the next 128

elements physically stored in our layout, multiplying them with the second weight (1), and

reducing the output to the same two vectors.

In Figure 4.2 (b), we show the layout and the key steps of matrix multiplication with the

instruction vmpa, which was shown earlier in Figure 4.1 (b). The layout we have designed is

referred to as 2-column layout – within the 64-row panels, values for 2 columns are stored

adjacent to each other, before following the column-major storage. In applying matrix

multiplication, elements 0, 1, 128, and 129, which are from the same rows of the matrix,

are multiplied by the output weights 0, 1, 2, and 3, respectively, stored in scalar registers.

Note that the two corresponding output elements in the output vectors need to be further

added to obtain the results.

In Figure 4.2 (c), we show the matrix multiplication operations and layouts with the

use of the instruction vrmpy shown in Figure 4.1 (c). The input and weight matrix are of

different shapes as compared to the previous examples, in order to illustrate the layout and

the computation. Here, panels of 32 rows are used and four elements from each row are

stored together. Four elements in a row are multiplied with four weights stored in scalar

registers. We also note that while there is an instruction somewhat similar to vrmpy in Intel

instruction set (vpdpbusd), there are no counterparts to vmpy or vmpa at the current time.

Overall, our work considers a relatively small number of candidate instructions for

implementing a single operation, using a “pre-designed" approach for each pair of operator

and instruction. Efforts do exist on trying to automate the selection of instruction and code

generating using the instruction [5, 222, 223]. We have conducted a brief comparison of our

approach against the code generated by the most recent of these efforts (which also targets

85

Table 4.3: SIMD Instructions Selected and Performance by RAKE [5] and
GCD2. Representative Conv2d kernels (w/ varied shapes, 7×7, 1×1, and 3×3) are from
ResNet-50.

Conv2d properties Instruction Speedup
Ours/RAKEInput shape Weight shape Output shape RAKE Ours

1x3x224x224 64x3x7x7 1x64x112x112 vrmpy vmpy 1.63x
1x64x56x56 64x64x1x1 1x64x56x56 vmpy vmpa 1.98x
1x128x28x28 128x128x3x3 1x128x28x28 vrmpy vmpy 2.06x

the same instruction set), i.e. RAKE [5]. As shown in Table 4.3, our approach is able to

deliver significantly higher performance. Thus, while automation of instruction selection

and code generation is valuable, current approaches are not matching the “pre-designed”

approach we are taking.

4.4 System Design of GCD2

This section highlights the major optimizations developed in GCD2, followed by a brief

summary of implementations.

4.4.1 SIMD Global Opt. Problem Formulation

From the discussion earlier in Section 4.3, the important takeaway is that different instruc-

tions can be used for the same operation, but with different requirements on input formats,

resulting in different output formats, and with different trade-offs (which were summarized

earlier in Table 4.2).

With a relatively small number of instructions available to implement a single operation,

the instruction and the layout selection can be performed (in isolation) by explicitly

considering all choices and choosing the one that requires the fewest cycles for execution.

However, it turns out that with distinct input and output layouts for different instructions,

choices for each operation cannot be made in isolation. Suppose an operator A can be

implemented in the most efficient fashion using the instruction vmpa. Let the output

of the operation A be the input to the operation B. Without considering the need for

86

Layout transformation example

MaxPool

Add

Softmax

MatMul

Add

MatMul

Transpose

Add

Add

MatMul

Transpose

MatMul

Add

Transpose

MatMul Relu
Conv

Conv

Add

Conv

Relu

Conv

Conv

Conv Conv

Figure 4.3: Examples of Computational Graphs. Left and right show partial CGs in
ResNet [77] and TinyBERT [97].

the formatting of input tensors, let the most efficient implementation of B be using the

instruction vrmpy. However, the output tensor from the operation A will be in the two-

column format (Figure 4.2 (b)), whereas if B is implemented using vrmpy, it is expected

that the input tensors are in the four-column format (Figure 4.2 (c)). Converting the layout

of a tensor itself is a time-consuming step. Thus, if the sequence of two operators A and B

are considered, it is possible that the most efficient implementation involves using the same

instructor (and thus layouts) for the two operators. In practice, DNN models use many

operators (e.g., the model EfficientDet-D0 used in our evaluation has 822 operators), and

thus, we have a complex optimization problem.

To formulate this global optimization problem, we use an existing intermediate represen-

tation called the Computational Graph (CG) [25], which captures the data-flow and basic

operator information like the operator type and parameters. Figure 4.3 shows examples

of such graphs. Let V be the set of vertices in a CG and let E be the set of edges. Each

vertex is an operation that produces exactly one output tensor. A directed edge (vi,v j)

denotes that the output of the vertex (operation) vi is (one of) input(s) to the operation

v j. The source of the edge e is also denoted as vin(e) and similarly, the destination of e is

denoted as vout(e).

87

Now, given an operator (vertex) O in the CG, let it have a set of immediate predecessors

we denote as Pre(O). By each predecessor, we denote interchangeably both the operators

and their output. After performing the local analysis of possible implementations and

associated layouts for the operator O we obtain a set of possible execution plans EP(O),

comprising execution plans ep1(O), ep2(O), and so on. Associated with every execution

plan, there is a cost of execution, denoted by Cost(epi(O), which is based on the number

of instructions (cycles) required. This cost calculation assumes that all input tensors are

already stored in the required layout for the SIMD instruction used.

We consider an execution plan epi(O) and a predecessor tensor of O, which we denote

as I (I ∈ Pre(O)). If the operator I is executed with the plan ep j(I), then there could

be a data transformation with the associated cost TC(ep j(I), epi(O)) (this cost will be 0

when data transformation is not required).

Given this background, the global optimization problem is as follows. For each operator

(vertex) v in the CG, we want to select an execution plan epv, such that the total cost of

execution for the graph G, which is denoted as

Agg_Cost(G) = ∑
v∈V

Cost(epv(v)) + ∑
e∈E

TC(epvin(e)(vin(e)),epvout(e)(vout(e))) (4.1)

is minimized. In the expression above for Agg_Cost(G), the first term is the cost of execution

associated with each operation under the choice of plan made, whereas the second term is

the cost of data transformation between the layouts for the source and the sink of the edge,

under the choices of implementation plans chosen for the source and sink operators.

4.4.2 Layout & Instruction Select Solution

It is easy to see that a trivial approach for solving this problem will involve comparing k|V |

options, where |V | is the number of vertices in the graph and k is number of (assumed fixed

for all operators) options available for each operator. Even when k is 2 or 3, this cost can

be easily prohibitive for realistic DNN models. Furthermore, the above problem is really

88

a Partitioned Boolean Quadratic Programming (PBQP) problem, which is known to be

NP-hard [7].

If we simply have a linear chain of operations O1,O2, . . . ,On, then the following approach

can be used to solve the problem. Let Sol(i, j) denote the lowest possible cost of execution

operations O1,O2, . . . ,Oi such that the output from the operator Oi is the jth available

choice (j ≤ k, where k is the number of choices available for each operator). Then, we have

Sol(i, j) = minl=1,...,k(Sol(i−1, l) + TC(epl(Oi−1),ep j(Oi)) (4.2)

Here, Sol(i, j) is computed by comparing k choices, which are the lowest cost ways of

reaching each of the k different output formats for the previous operation in the chain.

It is easy to see that this recurrence can be solved in O(|V | × k2) time. Moreover, this

solution can be easily extended to the cases when either every path from a “source” vertex

of a DAG to a given vertex is of the same length, or when every vertex has at most one

output. However, this approach does not work for an arbitrary DAG and we focus on an

effective heuristic solution. While considering a PBQP solver [7,71], which is not guaranteed

to provide an optimal solution but is in practice close, is an option, we instead focus on

exploiting the properties of our target domain. For this, we consider the following definition:

Definition 4.4.1 (Cost Optimal Partitioning). Given a computational graph G, a cost

optimal partitioning of G is a disjoint graph partitioning P = {G1,G2, . . . ,Gn}, such that

for Agg_Cost(G) (as defined in Equation 4.1), we have

Agg_Cost(G) = Agg_Cost(G1) + Agg_Cost(G2) + . . .+Agg_Cost(Gn) (4.3)

Note that we use the popular definition of graph partitioning, where the edges between

vertices that are in different partitions are not considered part of either partition. If such

partitioning can be found, the optimal plans for all operators within each partition can be

determined in isolation, translating to a significant reduction in the complexity of search.

In practice, What we can hope to achieve is to find a set of partitions that can be

optimized independently, i.e. where the lowest cost for the entire graph is achieved by

89

choosing plans within each partition independently. To achieve this, we note that an edge

e = (vi,v j) is a desirable partitioning edge if 1) the node v j has only one predecessor (vi), and

2) The operator v j is a layout transformation operator or the transformation along the edge

e is a profitable transformation. Typical examples of layout transformation operators include

Reshape and Transpose – they do not perform any computations but change the shape of

the operand. A transformation along an edge is considered profitable if the reduction in

execution time of the successor operator with the transformed layout is higher than the cost

of the data transformation itself. The intuition for this definition of desirable partitioning

edge is that decisions on nodes leading up to this edge and vertices following this edge can

be made in isolation.

However, as next challenge for us, partitioning a graph typically involves many cut

edges. Now, if we can find a cut edge that is dominant, i.e, if every path from the (assumed

to be unique) source vertex in the DAG to the (again, assumed unique) sink vertex passes

through this edge, then the problem is simplified. When this is not feasible, we can add

complementary edges to the identified cut edges to create complete partitions.

4.4.3 VLIW Optimization

Instruction packing or scheduling is a long-standing issue in VLIW research that has been

proved to be NP-hard [124, 230]. Because of the specific opportunities as well as challenges

associated with our target architecture, a new algorithm is developed in this work.

Optimization Foundation: Hard/Soft Dependencies. For our target architecture,

dependencies between two instructions can be characterized into two types with respect to

their implication on placing them in the same VLIW packet3

• Hard dependency denotes a strict dependence relationship where placing such instruc-

tions in the same packet likely produces incorrect results.
3This classification is independent of the traditional classification of dependencies into flow/RAW,

output/WAW, and anti/WAR, though soft dependencies can only be RAW or WAR.

90

Read ad from RF Load into R1

Read R2 from RF Assign R1+R2 to R3 Write R3 to RF

Execution pipelines

R1 load(ad)
R3 R2 + R1

Read R1 from RF Assign R1 + R2 to R3

Read R2 from RF

Write R3 to RF

Read ad from RF

R3 R1 + R2
store(R3, ad)

(b) Store after writing

(a) Read after loading

Store R3

Stage: read Stage: execute Stage: write

Figure 4.4: Two Examples of Packing Instructions with Soft Dependencies.
Different colors show different VLIW execution pipeline stages (read in green, execute in
orange, and write in blue). In (a), the second stage (Assign R1+R2 to R3) of the second
instruction requires to wait for the completion of the first instruction, incurring packing
penalty. A similar situation happens to (b) between Assign and Store.

• Soft dependency denotes a relaxed dependence relationship, and placing instructions

together produces correct results; however, the resulted execution performance is

likely degraded to a certain degree. An example of the soft dependency in our target

architecture is the one between a scalar addition operation and a consumer of the

result of such an addition.

To further illustrate the nuances associated with soft dependencies, we show two

examples of packing instructions with soft dependencies in Figure 4.4. Figure 4.4 (a) shows

a dependency between a load operation and an arithmetic operation that consumes the

loaded value. Each of these two instructions takes 3 clock cycles4 individually, however, if

they are packed in the same packet, they can execute correctly by taking 4 cycles in total5.

This example shows that packing instructions with soft dependencies together takes less

clock cycles than not packing them together at all (i.e., treating the soft dependency as a

hard dependency). However, if sufficient number of instructions are available without any
4According to the target microarchitecture design, each VLIW pipeline execution comprises three stages,

read from Register File (RF), execute, and write to RF, though some of these stage can be be empty.
Our explanations will assume that each stage is 1 clock cycle [177].

5Mobile DSP processors (e.g., Hexagon DSPs) execute instructions within each VLIW packet in parallel,
but without overlap between packets.

91

dependencies between them, we will prefer to not pack instructions with soft dependencies

together. Figure 4.4 (b) shows a similar example with a soft dependency between an

arithmetic operator and a store operation. Which dependencies are soft and which ones

are hard depends upon the microarchitecture. This information needs to be obtained from

the details of processor implementation (e.g., [177]) and made available to the instruction

packing algorithm.

Soft Dependencies Aware (SDA) VLIW Packing Algorithm. Because of the notion

of soft dependencies, we have developed a new VLIW instruction packing algorithm. Besides

handling the distinction between soft/hard dependencies, the algorithm is cognizant of other

constraints. While a packet can have up to 4 instructions, there can be a limited number

of slots for each type of instruction. As an example, packing two shift operations together

is not allowed. This instruction packing is implemented as an additional optimization step

of LLVM’s assembly code generation.

Like much of the previous work, the packing algorithm uses the notion of a critical

path [207]. and its overall goal of minimizing execution time as two sub-goals: 1) reducing

the total number of instruction packets, and 2) packing instructions with identical or similar

latency together to minimize VLIW pipeline stalls. The work also has many similarities

with algorithms for code generation targeting superscalars, in the sense the goal is to

minimize intra-bundle RAW stalls [10].

Our presentation of the algorithm (as shown in Algorithm 1) is supported by the running

example from Figure 4.5. Its left hand side shows the pseudo assembly code for a part of an

innermost nested loop of a frequently occurring Add operator in deep neural networks (R =

A + B + C), where A, B, and C are two-dimensional uint8 arrays and R is a two-dimensional

int16 array. Take the instruction of v2 : 1 = vadd(v1,v2) in this pseudo assembly code as an

example. v1 and v2 are two 8-bit registers. v2:1 denotes a 16-bit register combining 2 8-bit

registers (v2 and v1) to store the addition result.

Returning to our algorithm, it first builds a Control-Flow Graph (CFG) on assembly

for each operator, and finds the basic block corresponding to the computation kernel of

92

Algorithm 1: Soft-dependency-aware VLIW Packing
Func packing: instructions ← [Packet]

1 cfg ← build_cfg(instructions)
2 all_packets ← Stack()
3 foreach block in cfg.block do
4 idg ← build_IDG(block)
5 free_insts ← Set()
6 find_free_instruction(idg, free_insts)
7 while free_insts is not empty do

/* Build critical path from IDG */
8 critical_path ← get_critical_path(idg)
9 cur_packet ← critical_path[-1]

/* Iterate all the free instruction */
10 while len(cur_packet) < 4 do

/* Select the most profitable instruction */
11 inst ← select_instruction(free_insts, cur_packet)
12 find_free_instruction(idg, free_insts)
13 if inst is None then
14 break
15 else
16 cur_packet.add(inst)
17 idg.remove(inst)

18 all_packet.add(cur_packet)

19 return all_packets

Func select_instruction: free_insts, packet ← Instruction
20 all_insts ← resource_constraint(free_insts, packet)
21 if all_insts is empty then
22 return NULL

23 hi_lat ← highest_latency(packet)
24 best ← NULL
25 foreach i in all_insts do

/* The criteria of profitability */
26 i.score ← (i.order + i.pred) ×w - abs(hi_lat - i.lat) ×(1−w)
27 if soft_dependency(i, packet) then
28 i.score ← i.score - p(i, packet)

29 if best is NULL or best.score < i.score then
30 best ← i

31 return best

93

E

1 2

Entry

Soft dependency aware
instruction packing

All hard dependency
instruction packing

Instruction dependency DAG (IDG) VLIW packets

P2
P3
P4
P5

P1
P2
P3

1 2 N N
3 N N N
4 N N N
5 6 N N
7 8 N N

1 2 3 N
4 5 6 N
7 8 N N

3

4

6 75

8

P1…
v2 = vmem(r2++)
v4:3 = vzxt(v3)
v2:1 = vadd(v1, v2)
v2:1 = vadd(v2:1, v4:3)
vmem(r4++) = v1
v3 = vmem(r3++)
vmem(r5++) = v2
v1 = vmem(r1++)
…

Pseudo assembly

1

2

3

4

5

6

7

8

Critical
path

MICRO revisionFigure 4.5: An Instruction Packing Example. The left part shows part of the pseudo
assembly code for the innermost nested loop performing 2D Element-wise Addition: R = A
+ B + C, where A, B, and C are two-dimensional uint8 arrays and R is a two-dimensional
int16 array. v2:1 denotes a 16-bit register combining 2 8-bit registers v2 and v1. The middle
part shows an IDG, in which, solid edges denote hard dependency, dot edges denote soft,
and critical path is colored in red. Right shows the packing results from our solution and
an sub-optimal solution that treats all soft dependencies as hard (soft to hard). N denotes
an empty instruction slot.

each operator (usually the largest basic block). Next, it builds an instruction dependency

DAG (called IDG) based on the hard/soft dependency information, and finds the critical

path with the longest execution latency. The middle part of Figure 4.5 shows the IDG –

here, a vertex represents an instruction, and an edge represents the dependence between

two instructions. A solid edge represents a hard dependency and a dotted edge represents

a soft dependency. Take the instructions (or vertices) 4, 5, 6, and 7 in this figure as an

example. The dependencies between the instructions 4 and 5, 4 and 6, and 4 and 7 are all

soft dependencies. IDG also contains an artificial entry vertex. The number shown with

the vertex corresponds to the assembly instruction in the left. The critical path is colored

in red. The vertices with identical colors have the same rank (distance to the entry).

Based on the IDG and the critical path, the algorithm now packs instructions. When

creating a new packet, the algorithm always uses the last (unpacked) instruction in the

critical path as a seed (line 9). Next, such an instruction is packed with other instructions

94

that either do not have any outgoing edges or have only soft-dependence edges to an

instruction to be packed (all of these instructions are called free instructions). This step

consists of three major sub-steps: i) iterating through all free instructions (line 7), 2)

finding a candidate instruction from the set of free instructions (line 11), and 3) grouping

the candidate instruction into the current packet. Particularly, the key second sub-step

(i.e., finding a candidate instruction) comprises of two steps: first, for the current working

packet, the algorithm finds all instructions that can be packed while meeting the hardware

constraints (line 20), and also determines the highest latency (hi_lat) among the instructions

that are already in the current packet; second, it iterates these available instructions to

pick up the best instruction and returns it (lines 25 to 30). Note that, the best instruction

selection is based on this instruction’s score (i.score) that is calculated as follows:

i.score = (i.order+ i.pred)×w−abs(hi_lat− i.lat)× (1−w) (4.4)

According to Equation 4.4, the score of an instruction is decided by its three attributes,

its distance from the entry node (i.order), its predecessor instruction count (i.pred), and

its latency (i.lat). The first two have positive impacts on the score, while the absolute

difference between this instruction’s latency (i.lat) and the latency of the longest instruction

already in the current packet (hi_lat) has a negative impact on the score. The former is

because it is desirable to include instructions that have a longer chain of dependencies

and/or a total large number of instructions that it is dependent on. The latter, on the

other hand, wants to create more efficiency by packing instructions of the same (or very

similar) latency values together. This algorithm introduces two new parameters (w is short

of weight, and p is short for penalty) that are empirically decided. w aims to control

the weight of the three factors’ impact (line 26), while p aims to control the impact of

soft dependency on this packing (line 28). Specifically, the value p depends both on the

instruction i under consideration and the instructions already placed in the packet, and

captures the stall that the soft dependence will cause. For comparison in our experiments,

we also create a version of our algorithm that reduces all soft dependencies to ‘none’ or no

95

dependence – this version of the algorithm will ignore the calculation of this penalty. Next,

to complete the description of our algorithm, after one packet is created, the algorithm

repeats by finding the critical path of the remaining sub-graph.

Returning to Figure 4.5, the right part shows the packets after scheduling (N denotes

an empty slot). This example compares our Soft Dependencies Aware (SDA) packing

algorithm (bottom) with a sub-optimal algorithm (called soft to hard) that treats all soft

dependencies as hard ones (top). Taking the first seed (vertex 8, i.e., the last instruction in

the critical path) as an example. 8 and 6 cannot be packed together (because of hardware

constraints) and 8 can be packed with 7. Our packing algorithm can continue to explore

the packing opportunity between 4 and 5/6 because 5 and 6 only have soft dependencies to

4, and the soft dependencies allow the packing for 1, 2, and 3; however, these opportunities

do not exist in soft to hard version of the algorithm. In summary, our algorithm delivers a

schedule with only three packets, while the sub-optimal soft to hard version generates a

schedule with two additional packets. Evaluation results in Section 4.5 further validate our

algorithm’s efficacy.

Impact of Unrolling. Loop unrolling plays an important role in the schedule quality by

affecting the scheduling scope and the register pressure. Different from previous work like

[196], GCD2 employs a low-cost heuristic solution specifically designed for DNN operators.

The basic idea is to perform a fast adaptive unrolling setting selection according to the

shape of output tensors, for example, for GEMM, different unrolling settings are designed

for varied output shapes (skinny, near-square, and fat). Our empirical study in Section 4.5

proves that this approach outperforms some simple selections while also yielding comparable

performance gains to a much more expensive exhaustive search.

4.4.4 Putting Everything Together

GCD2 is implemented on top of an existing end-to-end DNN execution framework, PatDNN [67,

157,158] to support efficient mobile DSP execution. Figure 4.6 shows the system workflow

of GCD2. First, it converts the post-training quantized model to a computational graph

96

Overview

Computational
graph

Local layout enumeration

LLVM + VLIW
packing

Post-training
quantized model, e.g.,

TF, PyTorch

Other
optimizations

C code
generationGlobal layout selection

SIMD global optimization

Figure 4.6: System Workflow of GCD2.

(and optimizes it with various techniques, e.g., constant folding) by leveraging the existing

framework. Second, it feeds the (optimized) computational graph to the SIMD global

optimization module to conduct the local layout (instruction) enumeration and the global

layout (instruction) selection. The result here is an optimized SIMD code generation

plan including the data layout for each operator and corresponding SIMD instructions

to use. This is followed by a pass where other optimizations are applied, e.g., replacing

an expensive division operation with a database lookup operation. As the next step, the

existing framework and the optimized SIMD code generation plan lead to a “low-level”

C code with input/output tensor storage details and optimized SIMD intrinsics. Finally,

it employs LLVM [143] with our VLIW packing optimization to generate the optimized

executable code on the mobile DSP.

4.5 Evaluation

This section evaluates the performance of GCD2 by comparing it with five state-of-the-art

frameworks, TFLite [1] (V2.6.0), SNPE [178] (V1.55), Halide [189] (V12.0.1), TVM [25]

(V0.8.0), and RAKE [5] (V1f99df1). More specifically, TFLite, SNPE, and TVM are the

state-of-the-art production-level DNN execution frameworks that can support (or partially

support) our target mobile DSP. Both TFLite and SNPE call Hexagon NN, an expert-

written hand-tuned library designed by Qualcomm. However, as end-to-end DNN execution

97

Table 4.4: Overall Performance Comparison among TFLite, SNPE, and GCD2

on Mobile DSP. “-” means this model is not supported by the framework yet. OverT
and OverS are the speedup of GCD2 over TFLite, and SNPE, respectively. GCD2’s overall
compilation time for these models ranges from 5 minutes (WDSR-b) to 25 minutes
(EfficientDet-d0).

Model Type Task #MACS #Params #Operators TFLite (ms) SNPE (ms) GCD2 (ms) OverT OverS
MobileNet-V3 2D CNN Classification 0.22G 5.5M 193 7.5 6.2 4.0 1.9 1.6
EfficientNet-b0 2D CNN Classification 0.40G 4M 254 9.1 9.2 6.0 1.5 1.5
ResNet-50 2D CNN Classification 4.1G 25.5M 140 13.9 11.6 7.1 2.0 1.6
FST 2D CNN Style transfer 161G 1.7M 64 935 870 211 4.4 4.1
CycleGAN GAN Image translation 186G 11M 84 450 366 181 2.5 2.0
WDSR-b 2D CNN Super resolution 11.5G 22.2K 32 400 137 66.7 6.0 2.1
EfficientDet-d0 2D CNN 2D object detection 2.6G 4.3M 822 62.8 - 26 2.4 -
PixOr 2D CNN 3D object detection 8.8G 2.1M 150 43 26.4 11.7 3.7 2.3
TinyBERT Transformer NLP 1.4G 4.7M 211 - - 12.2 - -
Conformer Transformer Speech recognition 5.6G 1.2M 675 - - 65 - -

Speedup (geometric mean) 2.8 2.1

frameworks, their computational graph optimizations (graph rewriting, operator fusion,

etc.) are different, thus resulting in very different execution performance (as shown in

Table 4.4). Halide, TVM, and RAKE use LLVM as their back-end to generate DSP

instructions. They perform packet generation without distinguishing between soft and

hard dependencies (i.e., they treat each soft dependency as a hard dependency). It should

be noted that Halide, TVM, and RAKE are tensor compilers, while GCD2 comprises

both tensor compiler optimizations (e.g., global data layout optimization) and language

compiler optimization (instruction packing). We introduce a version of GCD2 to facilitate

a comparison of tensor compiler aspect of our work with these systems, as we will describe

later. Our evaluation has four main objectives: 1) to demonstrate that GCD2 outperforms

all of these state-of-the-art frameworks on mobile DSP (Section 4.5.2); 2) to identify the

benefits of specific optimizations and the choices made in our algorithms (Section 4.5.3);

3) to study the power consumption and energy efficiency of GCD2 against alternative

implementations on the same chip (Section 4.5.4); 4) to compare the inference speed and

energy efficiency of our mobile DSP-based solution with other embedded DNN accelerators

(Section 4.5.5).

98

4.5.1 Evaluation Setup

Models and Datasets. GCD2 is evaluated on 10 state-of-the-art neural networks (see

Table 4.4) that are categorized into seven groups according to the tasks they perform.

Particularly, they include 1) three image classification two-dimensional CNNs (MobileNet-V3

[83], EfficientNet-b0 [213], and ResNet-50 [77]); 2) one image style transfer two-dimensional

CNN (FST [99]); 3) one image-to-image translation GAN (CycleGAN [260]); 4) one

super resolution two-dimensional CNN (WDSR-b [251]); 5) two object detection two-

dimensional CNNs (EfficientDet-d0 [214], and PixOr [245]); 6) one trans-former-based NLP

model (TinyBERT [97]); and finally, 7) one transformer-based speech recognition model

(Conformer [68]). All the evaluated models in this section are quantized by a standard

approach used by well-known TFlite [216](with identical post-training quantization across

all frameworks) with 8-bit integers being used for weights and feature maps (activations).

It should be noted that the choice of datasets has a negligible impact on the final

inference latency or relative execution speeds, which are the primary metrics in our

evaluation. Therefore, and also because of space limitations, we report results from one

dataset for each model. MobileNet-V3, EfficientNet-B0, ResNet-50, and CycleGAN are

trained on the ImageNet dataset [41], WDSR-b is trained on DIV2K [4], EfficientDet-d0 and

FST are trained on COCO [136], PixOr is trained on KITTI [59], TinyBERT is trained on

BooksCorpus [46] and English Wikipedia [46], and Conformer is trained on [162]. Because

all frameworks employ the identical model quantization approach, they achieve the same

accuracy on all models and datasets, and thus accuracy is not reported.

Test Bed. Most of the experiments described in this section are conducted on a Samsung

Galaxy S20 (with Snapdragon 865 SoC [184]) that consists of an octa-core Kryo 585

CPU, Adreno 650 GPU, and Hexagon 698 DSP (with Vector eXtensions support). We

also tested our framework on older series Snapdragon platforms, which show the similar

performance gains against other baseline frameworks. We omit the results due to the space

constraints. We note that our optimization designs are general, potentially applicable

99

to other mobile DSP architectures (e.g., Cadence DSPs with increasingly complex SIMD

and VLIW supports). All models are executed with their best configurations while the

same parameters are used for all execution platforms. Each data involves inferences on 50

different inputs. After excluding the highest/lowest time, an average is taken and reported.

As the variation is negligible, ranges are not reported.

4.5.2 Comparison with Other Frameworks

This part evaluates the overall performance of GCD2 by comparing it against five state-of-

the-art frameworks, TFLite, SNPE, Halide, TVM, and RAKE. We compare the performance

of GCD2 with TFLite and SNPE over 10 models. While Halide, TVM, and RAKE have

the capability to generate code for the DSP chip, they currently cannot execute full DNN

models on this platform. Thus, a Conv2d kernel is used for comparison against Halide,

TVM, and RAKE.

Execution Latency. Table 4.4 shows the overall performance comparison for all 10 models.

TFLite and SNPE do not support Transformer-based models. For the other 8 models, GCD2

achieves 1.5× to 6.0×, and 1.5× to 4.1× speedup over TFLite and SNPE, respectively.

Table 4.4 shows that

GCD2 outperforms TFLite and SNPE mainly because of 1) optimized SIMD instruction

selection and layout transformation, and 2) optimized SDA VLIW packing by taking soft

dependencies into account. TFLite and SNPE employ a uniform SIMD implementation

for each operator type to support mobile DSP execution, and their VLIW packing does

not consider soft dependencies as GCD2. It turns out that GCD2 achieves the most

speedup (6.0× over TFLite) on WDSR-b. The reason is that feature map shapes in

WDSR vary significantly among different operators, and our instruction selection and layout

transformation optimizations deliver much better performance over others.

We also note that GCD2 for the first time enables mobile DSP execution of two DNNs

(TinyBERT and Conformer) because it supports more operators than TFLite and SNPE,

100

C0 C1 C2 C3 C4 C5 C6 C7

1

3

5

Sp
ee
du
p

Halide TVM
GCD2

RAKE
GCDb

(a) Speedup.
C0 C1 C2 C3 C4 C5 C6 C7

0.50

0.75

1.00

Pa
ck

et
 c

ou
nt

(b) Packet count.

Figure 4.7: Performance Comparison of GCD2, Halide, TVM, and RAKE with
Individual Kernels. Left shows the speedup and right shows the packet counts, both
normalizing Halide as 1. Conv2D operators (from ResNet-50) are used. GCDb is a sub-
optimal version of GCD2 that contains tensor optimizations only without VLIW packing.

e.g., more variants of MatMul, and Pow. It also the first time supports real-time mobile DSP

execution of another (EfficientDet-d0).

Next, we compare several individual convolutional computation kernels with Halide,

TVM, and RAKE. Because our native compiler optimizations (SDA VLIW instruction

packing) built on LLVM can be applied to all other frameworks as well to further improve

their performance, we separate tensor compiler optimizations (e.g., our data layout and

instruction selection) and native/language compiler optimizations (e.g., SDA VLIW instruc-

tion packing) in this comparison by introducing a new version of GCD2 called GCDb. GCDb

only contains tensor compiler optimizations, and can be viewed as a more fair comparison

against these three tensor compilers. In this comparison, the first 8 unique Conv2D operators

in ResNet-50 are used. Figure 4.7 (a) and (b) show the speedup and the packet count for

these 8 Conv2D kernels, respectively, and all results are normalized by Halide. It turns out

that GCD2 outperforms Halide, TVM, and RAKE with significant speedups due to both

its layout optimizations and VLIW instruction packing. In comparing GCDb with other

tensor compilers, GCDb achieves up to 3.8×, 2.7×, and 3.3× over Halide, TVM, and RAKE

due to tensor compiler optimizations like layout and instruction selection. In addition, our

instruction packing algorithm results in fewer numbers of packets (25% < Halide, 19% <

TVM, and 21% < RAKE on average, respectively). Please also refer to Section 4.5.3 for a

101

ENT-B0 RNT-50 FST WDSR PixOr
80

90

100

D
SP

 u
til

iz
at

io
n TFLiteSNPE GCD2

(a) DSP utilization.
ENT-B0 RNT-50 FST WDSR PixOr

80

90

100

M
em

or
y

ba
nd

w
id

th

(b) Memory bandwidth.

Figure 4.8: DSP Utilization and Memory Bandwidth Comparison. These results
are as reported by Snapdragon Profiler [176], and normalized with GCD2.

more detailed performance breakdown study.

Overall Performance Analysis. To further understand the performance difference

among above frameworks, Figure 4.8 compares DSP utilization and memory bandwidth.

This experiment uses 5 representative models out of 8 supported by both TFLite and

SNPE, including EfficientNet-B0 (ENT-B0), ResNet-50 (RNT-50), FST, WDSR, and PixOr.

Experiments on other models show similar trends and are excluded because of space limits.

The data is collected from Snapdragon Profiler [176]. For DSP utilization, TFLite and

SNPE can only achieve 88% to 93%, and 89% to 95% of GCD2’s utilization, respectively.

For memory bandwidth, TFLite and SNPE can only utilize 86% to 93% and 90% to 94%

of GCD2’s, respectively. These results show GCD2 better utilizes mobile DSP’s computing

and memory resources with better VLIW instruction pipeline execution and higher SIMD

parallelism.

It should be noted that the theoretical peak performance of Hexagon 698 reported

by Qualcomm is 15 TOPS [186]. However, this number includes its Neural Processing

Unit that is not publicly programmable yet. To get the peak performance of the publicly

available vector processing unit (HVX), we test the highly optimized matrix multiplication

kernel in the Qualcomm Hexagon SDK with small inputs that can fit into the L-1 cache,

and achieve the performance of 3.7 TOPS. Our evaluation shows GCD2 achieves up to 1.51

TOPS for an individual layer in DNN inference. Considering the necessary data loading and

102

RNT-50 FST CycleGAN PixOr TinyBERT

1

3

5

Sp
ee

du
p

br
ea

kd
ow

n No opt. Layout + SDA + OtherLayout Layout + SDA

(a) Speedup over the baseline (No opt.)

RNT-50 FST CycleGAN PixOr TinyBERT
60

80

100

D
SP

 U
til

iz
at

io
n

(b) DSP utilization.

RNT-50 FST CycleGAN PixOr TinyBERT
60

80

100

M
em

or
y

ba
nd

w
id

th

(c) Memory bandwidth.

Figure 4.9: Performance Breakdown Analysis. Speedup over the baseline (normalized
with the no-opt version). DSP utilization and memory bandwidth analysis (both normalized
with the GCD2 optimal version as 100%). The results are collected from Snapdragon
Profiler [176].

memory latency costs involved, this value shows effective practical use of the hardware.

4.5.3 Impact of Opt. and Algorithmic Features

Impact of Different Optimizations. To understand how different optimizations (in-

struction and layout selection, VLIW packing, and other optimizations) contribute towards

performance speedups, Figure 4.9 (a) studies the impact of these optimizations with 5 rep-

resentative models that cover 2D CNN, GAN, and Transformer (EfficientNet-B0 (ENT-B0),

ResNet-50 (RNT-50), FST, WDSR, and PixOr). We evaluate each compiler-based opti-

mization speedup incrementally over our baseline (w/o proposed optimizations). Compared

with No opt, instruction and layout selection brings 1.4× to 2.9× gains, VLIW scheduling

achieves additional 1.2× to 2.0× speedup, and finally, other optimizations (e.g., replacing an

expensive division operation with a database lookup) add 1.1× to 1.4× speedup. Figure 4.9

(b) and Figure 4.9 (c) further reveal that instruction and layout selection also has the

103

10 15 20 25

1.0

1.5

2.0
Sp

ee
du

p
Local Global
GCD2 (13) GCD2 (17)

(a) Speedup.
10 15 20 25

2-10

20

210

220

Se
ar

ch
 ti

m
e

(s
)

47

1

(b) Search time.

Figure 4.10: Layout Optimization Analysis. X-axis denotes the number of operators
in the computational graph. The left figure shows the speedup over local optimal with
different numbers of operators. The right figure shows the search time, and its y-axis is
logarithmically scaled.

largest impact on DSP utilization and memory bandwidth.

Instruction (and Layout) Selection Analysis. This section justifies the choice we

have made in performing global layout selection. Specifically, we compare the algorithm

used in GCD2 with two baselines - local optimal and exhaustive search based global

optimal solutions. The local optimal solution selects the layout with the best performance

independently for each operator, whereas the global optimal always conducts an (expensive)

exhaustive search on the entire computational graph to find the optimal solution.

For the purpose of these experiments, partial computational graphs are extracted from

ResNet-50 using contiguous operators. Figure 4.10 (a) compares the model execution

performance among local optimal, global optimal, and our two versions – GCD2 (13) and

GCD2 (17) mean the maximum number of operators within each sub-graph is 13, and 17,

respectively. Compared with local optimal, GCD2 brings 1.55× to 1.7× speedup, while

global optimal brings 1.56× to 1.72× speedup. This validates the design choice we have

made – specifically, the performance of GCD2 (13) is almost identical to global optimal.

At the same time, it is clear that local-only decisions impose large data transformation

overheads and do not achieve good performance.

Figure 4.10 (b) compares the search time for the four solutions. Obviously, the search

time in global optimal solution increases exponentially, making it impracticable even when

104

RNT-50 FST CycleGAN PixOr TinyBERT

1

2

Sp
ee

du
p

Soft to hard dependency Soft to none dependency GCD2

Figure 4.11: VLIW Scheduling Analysis. The version treating all soft dependencies
as hard ones is used as the baseline.

there are 25 operators (complete models have more operators, see Table 4.4). The search

time is over 80 hours with only 25 operators in the graph, while GCD2 (13) and GCD2 (17)

need less than 2 seconds and 1 minute, respectively.

VLIW Packing Analysis. One of the unique aspects of our SDA VLIW instruction

packing is the treatment of soft dependencies. We evaluate this by comparing our method

against two versions: 1) all soft dependencies are treated as hard dependencies, i.e.,

separating all instructions with soft dependencies into different packets (soft to hard; 2)

all soft dependencies are treated as no dependencies soft to none (i.e., removing lines

27, 28 in Algorithm 1 and thus not associating with penalty with packing an instruction

with a soft dependency). Figure 4.11 reports the effectiveness of our optimization using

5 models and establishes our current algorithm does better than either of these choices.

GCD2 achieves up to 2.1×, and 1.4× speedup compared with soft to hard and soft to

none, respectively because of better packing efficiency as compared to soft to hard and

fewer runtime stalls as compared to soft to none.

Unrolling Analysis. Figure 4.12 (a) shows the performance comparison of different

unrolling strategies for a matrix multiplication kernel (three loop-levels): Out (only unroll

the outer-most-level loop), Mid (only unroll the mid-level loop), and Exhaustive (unroll

the loops by an exhaustive search). We omit the inner-most-level loop as a possibility as

vectorization is performed at that level. The x-axis denotes the unrolling factor, while the

speedup is normalized by no unrolling, i.e., when the unrolling factor is 1. The unrolling

105

1 2 4 8 12 16 20

1.0

1.5

2.0
Sp

ee
du

p
Out Mid GCD2

No unrolling

2-1

1-1

2-2
4-2 4-3 4-4 4-5

Exhastive

(a) On a single kernel.
O1 O2 O3 O4 O5 O6 O7 O8

1.0

1.5

2.0

Sp
ee

du
p

Out MidNo unrolling
GCD2Exhaustive

(b) On multiple kernels.

Figure 4.12: Unrolling Factor Analysis on a Single MatMul Kernel and on
Multiple MatMul Kernels. The x-axis in the left figure denotes the unrolling factors.
The right figure shows the performance comparison among the best settings of three unrolling
strategies (Out, Mid, and GCD2) on 8 operators (from O1 to O8). For comparison, it also
shows versions w/o unrolling and w/ exhaustive search.

settings of GCD2 for both loop levels are also labeled in this figure. The best configuration

by exhaustive search is 4−4. GCD2 achieves higher performance compared with the other

two options. For all options, we see the expected result that the performance drops if

unrolling factor is too large due to increasing register spilling. Figure 4.12 (b) compares the

performance of Out, Mid, Exhaustive search, and GCD2 under different matrix multiplication

kernels – here again the y-axis is normalized by No unrolling in each kernel. Unrolling

factor in No unrolling is 1, while Out and Mid both use the best unrolling factor obtained

from Figure 4.12 (a). Compared with exhaustive search (Exhaustive that searches the

best unroll plan for a loop structure in some common unrolling configurations), GCD2

achieves very comparable performance while saving significant search time (exhaustive

search generally takes over 3 minutes for each kernel). GCD2 unrolling achieves much higher

performance compared with the other two strategies across all kernels.

4.5.4 Power Consumption and Energy Efficiency

Figure 4.13 compares the total power consumption and energy efficiency of GCD2 against

TFLite and SNPE also executed on DSP (*-DSP) on four representative DNN models (

EfficientNet-b0, ResNet-50, PixOr, and CycleGAN). As additional baseline, TFLite on a

106

ENT-B0 RNT-50 PixOr CycleGAN

1

3

5
Po

w
er

 c
on

su
m

pt
io

n
(W

)
TFLite - GPU TFLite - DSP
SNPE - DSP GCD2 - DSP

(a) Power consumption.

ENT-B0 RNT-50 PixOr CycleGAN0

30

60

90

Fr
am

e
pe

r W
at

t

0.55
0.72

0.86
1.63

(b) Energy efficiency: infer. frames/W.

Figure 4.13: Comparison of Total Power Consumption (left) and Energy Effi-
ciency in Inference Frames/Watt (right). Three DSP frameworks and TFLite with
GPU back-end on 4 representative DNNs.

mobile GPU, Qualcomm Adreno 650 GPU on the same Snapdragon 865 SoC (TFlite-GPU)

is also included. Figure 4.13 (a) shows the total power consumption of each solution, where

we see that TFLite-GPU consumes the most power (ranging from 2.1 Watt to 3.8 Watt),

and three DSP-based solutions consume less power. GCD2-DSP consumes less power than

TFLite-GPU (by around 3.6% on average) while consuming slightly higher power than

TFLite-DSP and SNPE-DSP (7.2% and 6.7% on average, respectively). GCD2-DSP consumes

more power than other DSP solutions mainly because of its better DSP and memory

utilization. As this results in reduced execution times, GCD2-DSP achieves much better

energy efficiency as measured in inference frames per Watt – specifically improving on

TFLite-DSP and SNPE-DSP by around 1.7× and 1.5× on average, respectively (Figure 4.13).

Figure 4.13 also shows that all mobile DSP-based solutions result in better energy efficiency

than the state-of-the-art mobile GPU-based solution, TFLite-GPU. Specifically, GCD2

outperforms it by 2.9× in energy efficiency.

4.5.5 Comparison with Other DNN Accelerators

To better understand the inference speed and energy efficiency of mobile DSP, we also

compare GCD2 with two popular embedded DNN accelerator-based solutions, EdgeTPU

[63] and Jetson Xavier [217] using a representative DNN (ResNet-50). EdgeTPU is a

107

Table 4.5: Inference Speed and Energy Efficiency Comparison with ResNet-50
on EdgeTPU [63] and NVIDIA Jetson Xavier [217]. FPS is short for frames per
second, and FPW represents for inference frames per Watt.

Platform Device FPS Power FPW
EdgeTPU [63] Edge TPU (int8) 17.8 2 W 8.9
Jetson Xavier [217] GPU + DLA (fp16) 291 ≈30 W 9.7
Jetson Xavier [217] GPU + DLA (int8) 1100 ≈30 W 36.7
GCD2 DSP (int8) 141 2.6 W 54.2

low-power embedded platform with an edge TPU aiming to accelerate integer computations.

Jetson Xavier utilizes both a GPU and DLA (deep learning accelerator), with operators

not supported by DLA executed by the GPU. In this evaluation, EdgeTPU and Jetson

Xavier use TFLite, and TensorRT, respectively, as their inference engine. The evaluation

results are presented in Table 4.5. Jetson Xavier with int8 results in the highest FPS

(frames per second) though with more power consumption. Our mobile DSP solution,

GCD2 achieves 6.1× and 1.48× better energy efficiency (FPW) with the same data type

(int8) over EdgeTPU and Jetson Xavier, respectively.

4.6 Related Work

This section discusses efforts related to DNN acceleration and compilation, SIMD optimiza-

tions, VLIW instruction packing, and other compilation work targeting DSP chips.

DNN Acceleration and ML/DL Compilers. There are many recent efforts on ac-

celerating DNN inference on edge and mobile devices including DeepX [116], TFLite [1],

TVM [25], MNN [96], DeepCache [241], DeepMon [88], DeepSense [248], MCDNN [72],

and MobiSR [126]. Some of them (e.g., TVM, and TFLite) rely extensively on compiler

techniques, and hence are called ML or DL compilers. Most of these efforts do not target

DSP, except TVM, TFLite, and MobiSR that offer options to call certain versions of

Hexagon NN [182]. They do not focus on SIMD/VLIW optimizations as GCD2. TASO [94]

and AccPar [208] are two recent DNN acceleration efforts with some similarities to GCD2.

TASO’s computation-graph-level optimization is restricted to a sub-graph with a limited

108

number of operators, aiming to assist in their proposed effective operator substitution;

while GCD2 focuses on a global optimization aiming to find a data layout solution that can

result in the optimized execution of the entire DNN. The partitioning problems considered

by AccPar have similarities with the data layout (and instruction) selection problem GCD2

considered. However, AccPar’s formulation is different and can always be solved by dynamic

programming, while GCD2’s problem maps to an NP-complete problem, PBQP [7], and

thus requires a different solution.

Compiling for DSP Chips. Digital Signal Processing chips have been around for several

decades and there have been multiple systems developed for compiling for them [37,138,240,

262], including considering SIMD features [145] and exploring VLIW instructions [22, 190].

However, the DSP chip instructions set targeted in this earlier work do not have much

correspondence to a modern mobile DSP chip like the one considered in this work. The

techniques presented in this work are all related to advances in SIMD instruction sets and

properties of VLIW instruction execution. Recently, Ahmad et al. [5] have reported a

system that does instruction selection and code generation for the same instruction set as

the one we have targeted. Their work is more general in considering arbitrary loop nests

but does not address the global optimization problem. Moreover, their approach has a

high compilation cost, and they report results on small kernels only – our experimental

comparison shows better results for our system even on individual operators. The work from

Vanhattum et al. [222,223] also has similar focus (and limitations) but their target backend

is different, making a direct experimental comparison infeasible. Next, Yang et al. have

mapped a vision-related DNN to a chip that comprises several DSP processors, performing

effective mapping to their vector instruction [246]. However, their work has been applied

to a single model and does not include a general compiler-based optimization framework.

Prior to that, another system (based on Halide system) was extended to support DSP

chips [229], but this work did not emphasize data layout issues.

SIMD Optimizations. Compiler-driven code optimization and generation for SIMD [149,

159,210] goes back several decades. Earlier work was heavily driven by the fact that Intel

109

SIMD extensions required operands of vector instructions to be contiguous [57,159,194].

More advanced techniques in this area used polyhedral models to map arbitrary loop nests

for SIMD execution [111,219] or even consider irregular applications [23]. Because of our

target workloads, where there are relatively fewer options for the computations within one

operator, but there can be a very long chain of operators, the challenges we address are

related to global optimization, and not dealing with arbitrary loop nests. Previous work on

global optimizations for SIMD [87,152] did not consider a comparable instruction set as

ours, and therefore, SIMD instruction selection and associated data layout optimizations

were not their focus. Recently, Chen et al. have developed VeGen [27] that targets the

growing diversity in available SIMD and vector instructions. The VeGen compiler extracts

what they term as lane-level parallelism by finding the instruction most suitable for a

loop (nest). This work, however, does not consider the possibility (and costs) of data

transformation to use specific instructions, does not target instructions as complicated as

the one we have handled, and there are no global optimizations in their work. In another

recent work, a JIT compilation system was presented to use Intel SIMD advances for

convolution operations [60] – this work, however, does not consider any layout or global

optimizations.

VLIW Instruction Packing. VLIW instruction scheduling with timing and resource

constraints is a long-standing issue, and many solutions have been proposed for various DSP

architectures (that are different from modern mobile DSPs), including advanced software

pipelining [38,128,220,221]. Closely related to this work, Six et al. [207] discussed a critical

path based approach based on a variant of Coffman-Graham list scheduling [36]. This

approach is top-down by leveraging the heuristic that instructions with the longest latency

path to the exit have priority. However, our scheduling is bottom-up by considering a

heuristic of assigning higher priority to instructions that are on a critical path and can

enable more instructions packing if they are packed early. More importantly, compared with

all existing efforts, GCD2 categorizes data dependencies and tolerates soft dependencies

with advanced hardware support, and focuses on a more domain-specific design for DNN

110

accelerations on mobile DSP.

4.7 Summary

This paper has presented a compilation system, GCD2, for efficiently mapping real-world

complex DNN workloads on modern mobile DSP architectures. GCD2 consists of three

major optimizations including the development of matrix layout formats to support novel

advanced SIMD instructions in the mobile DSP, a global SIMD optimization procedure that

selects optimal SIMD instructions and associated layouts, and an SDA VLIW instruction

packing that considers the effect of soft dependencies. GCD2 is extensively evaluated with

ten real-world complex DNNs on popular mobile DSPs. The results show that GCD2

outperforms two cutting-edge end-to-end DNN execution frameworks supporting mobile

DSPs by up to 6.0× and outperforms three established compilers that support efficient

computation kernels execution on mobile DSPs by up to 4.5× because of the improved

SIMD execution and optimized VLIW instruction scheduling. For certain DNNs, GCD2 is

unique in supporting the real-time execution of the model. For two of these ten models,

GCD2 implementation has, for the first, enabled execution on mobile DSPs. The overall

compilation time is also justified. In the future, we plan to design and integrate a more

advanced (or customized) Quantization approach [32] to GCD2, and explore DSP-friendly

operator fusion [157] to further improve the performance.

111

Chapter 5

SOD2: Statically Optimizing Dynamic

Deep Neural Network Execution

5.1 Introduction

Deep Neural Networks are enabling several of the most exciting and innovative applications

that are executed on a variety of computing devices, ranging from servers to edge and

mobile devices. From a systems research viewpoint, this had led to a large set of ongoing

projects on optimizing DNN inference (and training) tasks [1,72,88,96,116,126,224,241,248]

as well as tensor compilers [110,120,189].

Most of the work on optimizing DNNs considers static models that are characterized by

the following two properties: 1) input and output shapes and sizes for each layer are known a

priori, and 2) the execution path is fixed, i.e., independent of the input. In dynamic models,

in contrast, one or both of the above two properties are no longer true, and such models are

now becoming prevalent. For example, Skipnet [232] decides, based on the input, whether

to include or exclude certain operators (or layers). A different form of dynamism seen in

transformers for NLP like BERT [46] or cutting-edge computer vision models [107,191,198]

can take inputs with different shapes and/or apply variable portions of filter kernels during

the execution. At least three factors have contributed to the popularity of dynamic models

112

and this trend is expected to continue: the need for adapting to computational capacities

of different devices, the need for supporting different types of input (e.g. images of different

resolutions), and the need for achieving high accuracy for different scenarios.

Dynamic shapes, sizes, and control flow in these models pose many challenges for

the optimizations that have been key to obtaining high efficiency. For example, loop

fusion [64, 146,157,215] cannot be applied [203,258,261] if we do not know that the index

space of two loops (which likely is the same as the dimensions of respective input tensors)

is identical. Planning the execution order [6] to reduce memory requirements or otherwise

planning memory allocation [169] is, similarly, not possible if tensor sizes are not statically

known.

While many of the existing systems for DNN execution can support dynamic models,

they do with high overheads due to very conservative assumptions and/or expensive analyses

at the runtime. For example, TFLite [1] and MNN [96] perform re-initialization (equivalent

of recompilation) when the input shape to the model changes.

This paper presents the first nuanced approach for optimizing DNN inference in the

presence of dynamic features. Our approach emphasizes reducing inference latency as well

as memory requirements – the latter being quite important on the mobile devices we target.

The foundation of our approach is an in-depth study of operators that form the basis for

modern DNNs. These operators are classified into several groups on the basis of how the

output shapes relate to input shapes and values. Based on such a classification, we present

a data-flow analysis framework, called Rank and Dimension Propagation (RDP) that infers

shapes and dimensions of intermediate tensors. RDP analysis considers known constants,

symbolic constants, and expressions involving these. RDP analysis results are then used

for enabling a number of optimizations, which includes operator fusion and fused code

generation, static execution planning, runtime memory allocation, and multi-version code

generation.

This work integrates RDP and optimizations enabled by it together and builds a

comprehensive framework for optimizing Dynamic DNNs, called SOD2. SOD2 is extensively

113

evaluated on 10 cutting-edge DNN models with shape dynamism and/or control-flow

dynamism. Specifically, these models include the ones for emerging Artificial General

Intelligence (AGI) [62] such as StableDiffusion [198] and SegmentAnything [107]. Our

evaluation results show that SOD2 saves 27% to 88% memory consumption and results in

1.7× to 3.9× execution speedup compared with four state-of-the-art product-level DNN

execution frameworks (such as ONNX Runtime [45], MNN [96], TVM [25] with Nimble

extension [203], and TensorFlow Lite [1]) that support dynamic DNNs.

In all, this paper makes the following contributions.

• DNN Operator Classification. We classify the operators used for modern DNNs

(specifically 150 operators used in ONNX (Open Neural Network Exchange)) into

4 categories, which are Input Shape Determined Output, Input Shape Determined

Output Shape, Input Shape & Value Determined Output Shape, Execution Determined

Output. We formally define these operators and explain their significance for inferring

ranks and dimensions for the DNNs where the input can be of different sizes and the

execution is data dependent.

• Data-Flow Analysis for Rank and Dimension Propagation. Building on the

operator classification, we have developed a static analysis framework for propagating

shape and size information through a computational graph. This framework, called

RDP, considers both known and symbolic constants as well as expressions involving

these values. Though somewhat similar to the well-known constant propagation

analysis [20], our work is different in having transfer functions specific to the operator

(types), supporting both backward and forward analyses, and considering not only

known and symbolic constants but also expressions involving them.

• Comprehensive Set of Static and Dynamic Optimizations. Using results

from RDP analysis, we enable a series of optimizations. First, we enable code

fusion, including generating multiple versions when sufficient static information is not

available. Next, we perform execution planning, using the results of RDP to partition

114

Table 5.1: Inference overhead for shape dynamism w/ execution re-initialization.
SL: shape propagation and layout selection. ST: schedule and tuning. Alloc: memory
allocation. Infer: inference time. Experiments are conducted on a Samsung Galaxy S21 w/
MNN [96].

Model CPU latency (ms) GPU latency (ms)
SL ST Alloc Infer SL ST Alloc Infer

YOLO-V6 [131] 6.9 1,155 2.2 476 0.8 1,678 30,605 102
Conformer [68] 3.8 127 7.8 926 3 1,021 73,170 1193
CodeBERT [56] 2.3 253 2.8 370 1 856 4,568 498

the original graph, and further using several heuristics based on RDP output. Finally,

we enable runtime plan generation for memory allocation and also generate multiple

versions of optimized implementations for individual operators.

5.2 Existing Frameworks and Limitations

Existing DNN inference engines on mobile devices use two common approaches when

handling dynamic DNNs.

Static Solutions. Many existing DNN inference engines for mobile platforms (specifically,

TFLite [1] and MNN [96]) support dynamic features by extending their static model

execution. For handling dynamic input shapes, this involves either execution re-initialization

when the input shape changes or, alternatively, conservative (maximum) memory allocation

when the input shapes are unknown. To handle dynamic control flow, it typically requires

the execution of all possible paths, and stripping out invalid results. Not surprisingly, such

simplistic handling of dynamic features incurs significant execution and/or memory overhead.

To further illustrate, Table 5.1 shows a performance study of three models (YOLO-V6 [131],

Conformer [68], and CodeBERT [56]) that can take input with dynamic shapes. MNN [96]

runs these models on a Samsung Galaxy S21 with execution re-initialization to handle varied

input shapes. These results show that the re-initialization usually takes even significantly

longer time than the inference itself. This approach might be acceptable for cases where

the overhead of re-initialization can be amortized over a number of inference tasks (e.g.,

115

certain video processing scenarios). However, many application scenarios (across the image,

audio, and language processing) involve continuously changing inputs. An alternative way,

as also indicated above, is to conservatively allocate large memory spaces. However, it

incurs significant memory wastage, which can limit the ability to execute large models or

to do so efficiently, especially on mobile (or edge) devices with limited memory.

Runtime Solutions. TVM (with Nimble extension) [25, 203] improves on the limitations

of static solutions by providing a set of optimizations within a virtual machine. An example

of this functionality is a shape function to infer the output tensor shape and use this

information for dynamic memory allocation. However, such functions and the subsequent

dynamic memory allocation introduces significant execution overhead.

5.3 Operator Classification based on Dynamism

Our observation is that DNN operators have different dynamism degrees, leading to distinct

levels of challenges and opportunities in optimizing them. More specifically, this work

categorizes DNN operators into four types: Input Shape Determined Output, Input Shape

Determined Output Shape, Input Shape & Value Determined Output Shape, and Execution

Determined Output. This section gives a formal definition.

Background and Notation. It is common to represent a DNN as a Computational

Graph, which happens to be a Directed Acyclic Graph (DAG). Each tensor (which can

be an input and/or output) can be categorized by a shape (including dimensions) and

the contents or values. Each operator is denoted as Ll, where l is the operator index.

Assume Ll has m input tensors (of which, [1,k) are constant tensors while [k,m] are output

tensors from previous operators) and n output tensors. The shape of the input tensor i for

the lth operator is denoted as ISl
i and the corresponding tensor value can be denoted as

IV l
i , Similarly, each output tensor’s shape and value are OSl

i and OV l
i , respectively. Now,

intuitively, a class of functions relates the output shapes and values to the input shapes

116

and values – F f s for the shapes and Fv for the values.

• Input Shape Determined Output: The output (tensor), which is characterized by

both its shape and value, has the following dependence on the input. The output tensor

shapes are dependent on the input tensor shapes, whereas the output tensor values are

determined by the input tensor shapes and possibly some of the constant tensors – input

values do not impact the output. Examples include Shape and EyeLike. Formally, there

is a pair of functions (F f s,Fv), such that:

OSl
i

(F f s)←−−− (ISl
1, . . . , ISl

m)

OV l
i

(Fv)←−− (ISl
1, . . . , ISl

m),(IV
l
1 , . . . , IV

l
k−1)

where 1≤ k ≤ m.

• Input Shape Determined Output Shape: Similar to the previous category, the

output shapes depend on the input shapes. However, what is different is that the

output values rely on all the input values (including intermediate and constant input

values). Examples include Conv, Add, and Pooling. The significance of this category,

as compared to the next set of categories, is that if the input shape of this operator is

known, compiler optimizations (e.g., operator fusion, execution/memory optimizations)

are enabled. Formally, there is a pair of functions (F f s,Fv), such that:

OSl
i

(F f s)←−−− (ISl
1, . . . , ISl

m)

OV l
i

(Fv)←−− (ISl
1, . . . , ISl

m),(IV
l
1 , . . . , IV

l
m).

• Input Shape & Value Determined Output Shape: Similar to the previous category,

the output values rely on the input shapes and all the input values. The difference is

that the output shapes also rely on partial set of input values. Examples include Extend

and Range). Formally, there is a pair of functions (F f s,Fv) and a subset of input tensors

(p, . . . ,q) whose values specify the output shape, such that:

OSl
i

(F f s)←−−− (ISl
1, . . . , ISl

m),(IV
l
p, . . . , IV

l
q)

OV l
i

(Fv)←−− (ISl
1, . . . , ISl

m),(IV
l
1 , . . . , IV

l
m)

117

Table 5.2: Classification of DNN operators based on dynamism degrees. Operators
are from ONNX (Open Neural Network Exchange) [160].

Operator type Operators Representative
Input Shape Determined Output Shape, ConstantOfShape, Eyelike Shape

Input Shape Determined Output Shape
Add, AveragePool, Cast, Concat, Conv,
Elementwise w/ broadcast, Gather, MatMul,
MaxPool, Reduce, Relu, Round, Sigmoid, Softmax

Conv, MatMul

Input Shape & Value Determined Output Shape Expand, GroupNormalization, MaxUnpool, Onehot,
Range, Reshape, Resize, Slice, TopK, Upsample Reshape, Range

Execution Determined Output If, Loop, NMS, Nonzero, <Switch, Combine>† If, Loop
† <Switch, Combine> is a pair of customized operators for dynamic control flow that is not defined in ONNX.

, where 1≤ p≤ q≤m. If p≤ q≤ k, which is identical to Input Shape Determined Output

Shape, and all the dependent input tensors are constant. In such cases, the input shapes

can be calculated without knowing other intermediate input tensors. If only the input

shape of this operator is known, only partial compiler optimizations with conservative

analysis can be applied to it, and full optimizations need dynamic execution results.

• Execution Determined Output: Similar to the previous two categories, the output

values rely on the input shapes and all the input values. Examples include Nonzero and

If. Formally, there is a function Fv, such that:

OV l
i

(Fv)←−− (ISl
1, . . . , ISl

m),(IV
l
1 , . . . , IV

l
m)

, and the shape of i-th output tensor can only be measured after materializing its value:

OSl
i ←− SHAPE_OF(OV l

i)

, which means it is not able to know the output shapes until materializing the output

tensors (i.e., after executing the layer). Only partial optimization with conservative

analysis can be applied to this operator, and full optimizations need dynamic execution

results.

Although these operator types are defined according to forward transfer , i.e. an output

tensor shape and value are related to the input tensor shape and/or value. In practice,

Backward transfer is also used, i.e., we can (and need to) backward propagate the known

output shapes (either rank or dimension or both) to the unknown input shapes. For

instance, if we know the output shape of Add, its input dimension might be 1 or identical

118

to the corresponding output dimension due to broadcasting rules [44]. We define backward

transfer functions as:

ISl
i

(Fbs)←−−− (OSl
1, . . . ,OSl

n).

Table 5.2 shows typical operators in ONNX [160] categorized by the above classification.

As further illustration, Figure 5.1 shows four sub-graphs that represent operators with

different dynamism degrees (marked with red boundary) and their connections. Figure 5.1

(a) shows an Input Shape Determined Output operator Shape. Once its input shape is known,

its value result can be directly inferred (and in fact, this value can be propagated from

Shape to BiasAdd because all following operators belong to the Input Shape Determined

Output Shape group). Similarly, Figure 5.1 (b) implies that if the input shape to Conv is

known, this shape information could be propagated to the entire sub-graph because all

operators in this sub-graph belong to the Input Shape Determined Output Shape group.

For the cases represented in both (a) and (b), even if the exact shape is unknown, it is

still possible for us to perform compiler optimizations such as operator fusion and fused

code generation, execution order optimization, and memory optimization, which will be

elaborated in the next Section. In Figure 5.1 (c), the output shape of TopK depends on its

input value (which is the left predecessor’s branch in the example), i.e., the output shape of

TopK (and its successors) is unknown until its left predecessor branch is executed. Figure 5.1

(d) represents a sub-graph involving a dynamic control flow. Switch results decide if path

①, ②, and/or ③ will be taken, and Combine merges the results from executed paths. Both

(c) and (d) require dynamic execution, thus is more difficult to optimize statically.

Discussion. Although the examples in Table 5.2 and Figure 5.1 mentioned above simply

classify each operator into one category, there are additional considerations. For example,

an Upsample operator may belong to either Input Shape Determined Output Shape or Input

Shape & Value Determined Output Shape depending on whether some of the input tensors

are constant or not. Therefore, with constant propagation, an operator may transform

from a more dynamic classification to a less dynamic one, offering us more aggressive

optimization opportunities. This has motivated certain aspects of SOD2.

119

challenge_of_dynamism

(b) Input Shape Determined
Output Shape

Reduce

ArgMax

GlobalPooling

Conv

(c) Input Shape & Value Determined
Output Shape

MatMulReduce

Gather

Sigmoid

Reduce

TopK

Add

Switch

Pooling Softmax

Combined

BiasAdd
1 2

(d) Execution-Determined

3

(a) Input Shape
Determined Output

Gather

Range

BiasAdd

Shape

Input Shape Determined Output ShapeInput Shape Determined Output Input Shape & Value Determined Output Shape Execution-Determined

Figure 5.1: Different degrees of dynamism. Each node is a DNN operator. Yellow,
blue, red, and purple mean Input Shape Determined Output, Input Shape Determined Output
Shape, Input Shape & Value Determined Output Shape, and Execution Determined Output,
respectively. In (d), Switch’s execution path is decided dynamically during runtime and
red dot edges represent both the computation dependency and control flow.

5.4 Design of SOD2

Based on the DNN operator classification introduced above, SOD2 introduces a new static

data-flow analysis framework to infer the intermediate result tensor shape. Such an analysis

is the enabler of several optimizations, which are dynamic DNN operator fusion, execution

path planning, memory planning, and multi-version code generation. At a high level, our

approach does not require conservative static assumptions or runtime overheads, thus

providing significant improvement over the existing state-of-the-art.

5.4.1 Pre-Deployment Data-Flow Analysis

To facilitate static optimizations for dynamic DNNs, a critical requirement is knowing

(possibly symbolically) the intermediate result tensor shape (i.e., rank and dimension).

Our key observation is that for many operators and operator combinations (e.g., an Input

Shape Determined Output operator and an Input Shape Determined Output Shape operator),

even without knowing the input tensor shape, it is still possible to infer the shape of the

intermediate result tensor to a certain degree. Our framework is based on this observation

and is called operator Rank and Dimension Propagation, or RDP. While RDP has certain

similarities with the classical (symbolic) constant propagation frameworks [20], it needs to

deal with nuances of the DNN operations and the computational graph. RDP also considers

operations over multiple (symbolic) constants as a possibility in its lattice and requires

120

nac(⊥)

𝒌𝒏𝒐𝒘𝒏 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝑥 𝑥 ∈ 𝑢𝑖𝑛𝑡}

𝒔𝒚𝒎𝒃𝒐𝒍𝒊𝒄 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
{𝑥|𝑥 ∈ 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠𝑒𝑡}

𝒐𝒑 𝒊𝒏𝒇𝒆𝒓𝒓𝒆𝒅 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕
𝑥! 𝑥! = 𝑜𝑝 𝑥", 𝑥# , 𝑥1, 𝑥# ∈ 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡}

-

𝑢𝑛𝑑𝑒𝑓(⊤)

lattice_definision

Figure 5.2: Domain of RDP dataflow analysis. It includes known, symbolic, and
operation-inferred constants that form a lattice.

iterative forward and backward analysis.

Formal Definition of Operator Rank and Dimension Propagation (RDP). The

entire RDP algorithm is expressed as a four-tuple < G,D,L′,F >.

• G is an extended computational graph (a DAG), with control-flow operators <Switch,

Combine>). If this extended computational graph involves multiple branches that all

need to be executed, we assume the execution order is always from left to right. It is

easy to prove that G is equivalent to a control-flow graph on operators, which serves

as the foundation of this data-flow analysis.

• D is the direction of the data flow, which can be FORWARD and BACKWARD.

Unlike most classic data-flow formulations, e.g., constant propagation or reaching

definitions, RDP iteratively processes G in forward and backward directions until

the results converge. This is because the shape of a tensor could be inferred from its

producing operator and/or consuming operator, and their inference results should be

the same to guarantee the correctness of this DNN execution.

• L′ itself is a three-tuple < V ′,∧,m >. V ′ is the domain of values (also shown in

Figure 5.2) and includes known constants, symbolic constants, and operation-inferred

constants that form a lattice. The lattice also includes undefined (unde f) as the top

(⊤) of the lattice and Bottom (⊥) which is not-a-constant (nac). ∧ is a meet operator,

121

Softmax

Shape

Min

TopK

Status Output shape Symbolic value

𝑆! = [𝑎, 𝑏] 𝑉! = 𝑢𝑛𝑑𝑒𝑓

𝑆" = 𝐹#$%&$
'(𝑆!

= [𝑎, 𝑏]
𝑉" = 𝑢𝑛𝑑𝑒𝑓

𝑆) = 𝐹#$%&
'(𝑆"

= [2]
𝑉) = 𝐹#$%&* (𝑆")

= [𝑎, 𝑏]

𝑆+ = 𝐹#$%&
'(𝑆)

= [1]
𝑉+ = 𝐹#$%&* (𝑆))

= 𝑚𝑖𝑛(𝑎, 𝑏)

𝑆, = 𝐹#$-%&$
'(𝑆", 𝑉+

= (𝑎,𝑚𝑖𝑛(𝑎, 𝑏))
𝑉, = 𝑢𝑛𝑑𝑒𝑓

(b) An example of backward transfer(a) An example of forward transfer

𝑆"

𝑆#

𝑆!

𝑆$

𝑆"
Swish

MatMul

Transpose

𝑆$

𝑆%

𝑆"

Status Output shape Symbolic value

𝑆, = [2𝑎, 4𝑏] 𝑉, = 𝑢𝑛𝑑𝑒𝑓

𝑆+ = [2𝑎, 2𝑐] 𝑉+ = 𝑢𝑛𝑑𝑒𝑓

𝑆) = [2𝑎, 2𝑐] 𝑉) = 𝑢𝑛𝑑𝑒𝑓

𝑆" = 𝐹#$%&$.(𝑆+, 𝑆,
= [2𝑐, 4𝑏] 𝑉" = 𝑢𝑛𝑑𝑒𝑓

𝑆! = 𝐹#$%&$.(𝑆"
= [4𝑏, 2𝑐] 𝑉! = 𝑢𝑛𝑑𝑒𝑓

1

0
𝑆%

2

3

4

0

1

2

3

4

4

13

2 0
𝑆#

𝑆!

4

3

2

1

0Inferred by
forward

Inferred by
backward

forward_backward_example

Figure 5.3: Examples of forward and backward transfer. Each node is an operator.
Yellow, blue, and red mean Input Shape Determined Output, Input Shape Determined
Output Shape, and Input Shape & Value Determined Output Shape, respectively. Ids (e.g.,
①) indicate the location where transfer functions apply and their applying orders for a
forward transfer (a backward transfer reverses this order). S and V equations map values
in the RDP domain to the shape and value of each tensor, in which, F denotes the transfer
function. fs and bs of F denote forward and backward, and F’s subscript is a short form of
its type (e.g., ISDOS means Input Shape Determined Output Shape).

which follows the common definition for product lattice. m is a map function mapping

values in lattice to two variables, Shape (S) and Value (V), representing these for the

intermediate tensor.

• F : V ′→V ′ is the domain for transfer functions. F is designed for each operator (type)

and transfers the Shape (S) and Value (V) from the input tensor to the output tensor

based on the operator type. Similar to data-flow analysis for constant propagation

RDP has two kinds of transfer functions, Update, and Merge. Update transfers from

the input tensor to the output tensor for an individual operator; while Merge operates

on branch control flow and merges (output) tensors from multiple possible execution

paths. Because RDP has both FORWARD and BACKWARD directions, F also

contains transfer functions for both directions.

Transfer Function Examples. SOD2 contains 16 types of Update transfer functions based

on the operator dynamism degree classification1. Figure 5.3 illustrates several common

ones. The left-hand side (Figure 5.3 (a)) shows an example with four forward transfers that
1Due to space constraints, we cannot list all of our update functions here.

122

Table 5.3: Definition of Rank and Dimensions Propagation (RDP).

Notation Definition Notation Definition
Domain Tensor Rank and Dimensions Direction Forward, Backward
Forward OUT (L) = F f s

P∈pred(L)(P) Backward IN(L) := Fbs(OUT (L))
Initial OUT [L] = unde f Terminate No more changes

employ three types of Update transfer functions. Similarly, the right-hand side (Figure 5.3

(b)) shows an example with two backward transfer functions that belong to the same type.

A point worth noting is that the appropriate transfer function to apply to an operator

depends not only on the computational graph but also on the constants inferred during the

RDP analysis process, which determines the dynamism classification of the operator. The

Merge transfer function is straightforward – it merges the S-map and V-map from multiple

control-flow branches based on the lattice in Figure 5.2. Table 5.3 summarizes the key

components of RDP.

RDP Solution. The method is shown as Alg. 2 and involves applying the transfer

functions (F) to the extended computational graph (G) along the two directions iteratively.

Elaborating on Alg. 2, it first sorts the nodes (i.e., operators) in the computational graph

G with the dept-first order and initializes the output shape- and value-maps of each node

as undef (Line 1 to Line 2). It next processes each node (n) by applying forward transfer

functions to n’s predecessors’ output shape- and value-maps (i.e., n’s input shape- and

value-maps) (Line 13). Moreover, it propagates n’s output shape- and value-maps to

n’s predecessors’ output shape- and value-maps by backward transfer functions if any

predecessors have undef analysis results (Line 14 to Line 15). These forward and backward

transfer functions are defined based on the dynamism classification of DNN operators (as

shown in Line 20 to Line 32). Alg. 2 needs to process two specific types of nodes (operators):

i) control-flow nodes (like Combine or Switch), for which, it needs to call the Merge function

to merge analysis results from multiple control-flow paths (Line 9 to Line 10), and ii) Input

Shape Determined Output nodes, for which, it assigns a symbolic constant to the value

123

Algorithm 2: RDP’s Optimized Chaos Algorithm
1 foreach node in ecg.sorted_node do
2 mark_as_undef(node) /* Initialize as unde f */

3 set_model_input_shape(ecg)
4 do
5 changed ← false

/* Traverse the Depth-first sorted nodes */
6 foreach node in ecg.sorted_node do
7 predecessors ← predecessor_of(node)
8 successors ← successor_of(node)
9 if node.type is Combine then

/* Merge the rank and dims for Combine */
10 changed |= node.merge(predecessors)

11 if node.type is Switch or Combine then
12 continue /* Transit to all successors */

/* 1 Forward transfer to current node */
13 changed |= forward_transfer(node, predecessors)

/* 2 Backward transfer to predecessors */
14 foreach pred in predecessors do
15 changed |= backward_transfer(node, pred)

/* 3 Update for Input Shape Determined Output */
16 if node.type ∈ Input Shape Determined Output then
17 if node.shape /∈ (unde f ,nac) then
18 node.value ← get_symbolic_value(node.shape)

19 while changed

Func forward_transfer: node, preds
20 if all(node.outputs.shape /∈ undef) then
21 return False /* Outputs are not in unde f */

22 pred_shapes, pred_values ← shape_of(preds), value_of(preds) switch node.op_type do
23 case ‘Input Shape Determined Output’ do

/* Only depends on the first input shape */
24 return FT_ISDO(node, pred_values[0])

25 case ‘Input Shape Determined Output Shape’ do
26 return FT_ISDOS(node, pred_shapes)

27 case ‘Input Shape & Value Dependent Output Shape’ do
28 return FT_ISVDOS(node, pred_shapes, pred_values)

29 case ‘Execution-Determined’ do
/* Assign nac */

30 return False

Func backward_transfer: node, pred
31 if all(pred.outputs.shape /∈ undef) then
32 return False /* Outputs are not in unde f */

/* Similar to forward_transfer */

124

map to facilitate subsequent analysis (Lines 16 to 18). Alg. 2 continues processing nodes in

G until no updates happen on any node’s shape-/value-maps. Similarly to other data-flow

analysis, RDP follows Lattice Theory [104], so an optimized chaos implementation (based

on worklist) is guaranteed to converge.

5.4.2 Operator Fusion for Dynamic DNN based on RDP

Though fusion has been a successful optimization on DNNs [157], it is also known to

be very hard to implement on dynamic DNNs [203]. A frequent issue is that without

knowing the tensor shape of two operators, the DNN compiler either cannot fuse them

at all or has to generate a large number of code versions, each for a possible combination

of shapes for the two operators. In fact, as often more than two operators are merged,

the possible combinations for which separate code should be generated increase rapidly.

Our proposed RDP analysis can address this issue by using (possibly symbolic) shape

information. Information such as the two operators having tensors of the same shape can

enable and/or simplify fusion, even if the exact dimensions are not known till runtime.

Figure 5.4 shows a simplified example with two common DNN operators (Sigmod and

Add) on tensors with shapes not known till runtime. Sigmod takes an input tensor A with

a dynamic shape of [I’, J’, K’]. Add performs an element-wise addition on Sigmod’s output

and another input tensor B, whose shape happens to be [I, J, K]. Now, if A and B are

of different shapes, a shape broadcast operation on the output tensor of Sigmod needs to

be conducted immediately before the element-wise addition. Without our RDP analysis,

the dynamic shape of A and B (and the possible shape broadcast operation) prevents

the DNN compiler from fusing these two operators in an efficient way, i.e., the compiler

either generates code without fusion (as shown in the blue box of Figure 5.4), or generates

multiple code versions (8 versions for this example) and selects a version during the runtime.

Assuming our RDP analysis result is I’ = I, J’ = 1, and K’ = 1, i.e., a mix of symbolic

constant (I) and known constant, the DNN compiler can further generate a unique version

of fused code (as shown in the green box of Figure 5.4). SOD2 incorporates RDP and the

125

fusion_challenge

Sigmoid

Add

A [I', J', K']

B [I, J, K]

for i' in [0, I'):
for j' in [0, J'):
for k' in [0, K'):
tmp_arr = Sigmoid(A[i', j', k'])

//Broadcast shape of tmp_arr to [I,J,K]
tmp_arr.broadcast_to(B)
for i in [0, I):
for j in [0, J):
for k in [0, K):
tmp = tmp_arr[i, j, k]
C[i, j, k] = tmp + B[i, j, k]

for i in [0, I):
ia = Sigmoid(A[i, 0, 0])
for j in [0, J):
for k in [0, K):
C[i, j, k] = ia + B[i, j, k]

C [I, J, K]

A [I', J', K'], B [I, J, K], C [I, J, K]

A [I, 1, 1], B [I, J, K], C [I, J, K]

General cases:
I' = 1 or I, J' =1 or J, K' =1 or K

If we know:
I' = I, J’= 1, K' =1

Figure 5.4: Operator fusion with dynamic shapes. The top code snippet shows that
fusion is not feasible because of broadcasting [44]. Specifically, Add requires A’s indices
I′, J′, and K′ to be either 1 or I, J, and K, resulting in 8 fusion scenarios. With RDP,
such fusion is feasible (shown in the below code snippet). This fusion significantly reduces
intermediate result materialization requirements.

above operator fusion based on RDP into a state-of-the-art operator fusion for static DNNs

(DNNFusion [157]) to generate the fusion plan and optimized fused code.

5.4.3 Static Execution Planning based on RDP

A computational graph (DAG) typically allows for several different orderings for the

execution of operators. The choice of ordering has an impact on the peak memory usage

(for intermediate results), which further has consequences for cache performance and the

execution latency. There has been previous work on this problem, which has in fact shown

that generating an optimal execution plan (by a metric like memory consumption) is an

NP-complete problem [6]. Thus, choosing an optimal plan can be difficult for modern large

DNNs with hundreds or even thousands of operators.

The dynamic properties (e.g., dynamic shapes and control flow) further complicate this

problem. In SOD2, we develop a series of heuristics driven by the use of proposed RDP

analysis. The overall idea is that since a globally optimal solution is almost infeasible, an

approach based on graph partitioning is justified. It turns out that the results of RDP

are able to guide both graph partitioning and choice of solution within each sub-graph.

Particularly, we observe that known constants, symbolic constants, op-inferred constants,

and ⊥ or nac progressively increase the impediment on the generation of an optimal

126

execution plan. More specifically, for a sub-graph sg with a limited number of operators:

First, if the shape of all tensors in sg are known constants, the optimal execution

plan for sg can be obtained statically by an exhaustive search – a limited size of sg can

further make such a search feasible. Second, if the shape of tensors in sg are mixed known

constants, symbolic constants, and op-inferred constants, it is still possible to compare

the memory requirements and thus generate a (close to) optimal execution plan. This is

especially true if these shapes are derived from the same set of symbolic constants. Third,

if an operator has an nac output tensor shape, it disables further analysis and execution

planning. Such operators, it turns out, provide an opportunity to partition the original

graph into sub-graphs that can be independently analyzed.

5.4.4 Other Optimizations

5.4.4.1 Memory Allocation Plan

Besides execution (order) planning, memory planning of DNNs is also a critical step [6,169].

A memory allocation plan, which decides where in a linear memory space each intermediate

tensor is allocated, and when it is deallocated, can restrict peak memory usage and improve

execution performance – the latter by reducing memory fragmentation, avoiding memory

movement, and limiting memory allocation/de-allocation. In contrast to execution planning

that (even for dynamic DNNs) can be carried out at compilation time, memory planning for

dynamic DNNs can only be performed at execution time when all tensor sizes are known.

Memory planning of static DNN execution has also been proved NP-complete [6], while

DNN model dynamism further complicates memory planning.

Existing memory planning methods for dynamic DNN execution (e.g., Nimble [203])

have addressed this. Without knowing the exact tensor shapes, the methods usually rely

on a greedy strategy [169], (e.g., finding the minimal memory slot currently available that

can hold the new tensor). In comparison, we use RDP results and the following two key

insights. First, we base our approach on sub-graphs generated by our static execution

127

planning method. It turns out that for sub-graphs with known constant shapes, as well as

those with symbolic/op-inferred constant shapes that are defined solely by the input tensor

of the sub-graph, the peak memory requirement can be inferred from static RDP analysis

results and subsequent execution plan generation.

Second, we have observed that for most sub-graphs, the memory requirement decreases

monotonically in both forward and backward directions from the location in the graph

with peak memory usage. Therefore, initiating memory planning from the peak memory

consumption location and traversing in the forward and backward directions, and picking

the available memory slots for reuse works as a good strategy, and does not lead to the

need for extra memory space.

Based on these insights, a lightweight greedy approach that starts from the peak memory

requirement location can help to find optimal memory usage for many/most sub-graphs.

Our evaluation (details omitted because of space limits) on ConvNet-AIG [225] shows

that our RDP-based memory allocation plan requires 1.05× of optimal peak memory

consumption (that results from an exhaustive search); while the one based on the greedy

strategy mentioned above (MNN) requires 1.16× of optimal peak memory consumption.

5.4.4.2 RDP-based Multi-Version Code Generation

As we discussed in Section 5.4.2, RDP analysis enables and/or simplifies operator fusion by

revealing (possibly symbolically) tensor shapes. In cases where a single (fused) version is

not feasible, one of the advantages of the information obtained through RDP is that the

number of different versions of the fused code generated can be reduced significantly.

SOD2 further benefits from this property of RDP by generating multi-version code to

optimize hotspot operators (e.g., CONV and GEMM) that dominate the DNN execution.

Prior efforts [1, 96] have shown that the optimization opportunities for these operators

depend on the shapes and sizes of the input/output tensors. Therefore, for static DNN

executions, existing frameworks (such as TensorFlow Lite [1] and MNN [96]) usually employ

multi-version codes that involve different optimizations (e.g., tiling, unrolling, choice of

128

the number of thread blocks, etc.). However, this optimization is challenging for dynamic

DNNs because an unknown tensor shape and/or tensor size implies that too many versions

will be needed. The tensor shape (or shape relations) provided by RDP help to generate

code for more specific tensor shapes only, thus resulting in fewer code versions.

5.5 Evaluation

SOD2 is implemented by extending an existing DNN execution framework (DNNFusion [157])

that supports static DNN execution only. This section evaluates the performance of SOD2

by comparing it with four state-of-the-art frameworks. These frameworks are ONNX

Runtime (ORT) [45] (V1.14.1), MNN [96] (Vdcb080c), TVM [25] w/ Nimble extension

(TVM-N) [203] (V7831a79), and TFLite [1] (V2.11.1). ORT, MNN, and TVM-N support

shape dynamism, while for DNNs with control flow, they execute all possible branches

and strip out invalid ones. For fairness, this section also shows a performance comparison

between SOD2 and MNN by disabling SOD2’s <Combine, Switch> control-flow support

and adopting the same “execute-all, strip-out-invalid” strategy. TFLite supports dynamic

input shapes with memory re-initialization; however, it cannot run most of our dynamic

models properly because it usually fails on some input shapes. It does not support dynamic

control flow either as required by most of the models we target. Thus, we use TFLite as a

baseline for comparing DNN executions with fixed inputs and paths only.

Our evaluation has four objectives: 1) demonstrating that SOD2 outperforms other

frameworks with respect to both memory requirements and execution latency (Section 5.5.2),

2) studying the performance effect of our key optimizations based on RDP (Section 5.5.3),

3) further confirming the performance advantage of SOD2 by evaluating it under different

situations (Section 5.5.4), and 4) showing that SOD2 performs well on different mobile

platforms (i.e., SOD2 has good portability).

129

5.5.1 Evaluation Setup

Dynamic Models and Datasets. Our evaluation is conducted on three types of dynamic

models: 1) models with shape dynamism, 2) models with control-flow dynamism, and

3) models with both shape and control-flow dynamism. The first category comprises

five cutting-edge DNN models, which are StableDiffusion [198] (covering the Encoder

part, referred to as SDE), SegmentAnything [107], Conformer [68], CodeBERT [56], and

YOLO-V6 [131] (referred to as YL-V6). The second category includes DGNet [130]. The

third category consists of four models, including SkipNet [232] (referred to as SNet),

ConvNet-AIG [225] (referred to as CNet), RaNet [247], and BlockDrop [237] (referred to as

BDrop).

Table 5.4 characterizes these models by showing the nature of dynamism, target

input types, model size, and the total number of layers. Because the choice of training

datasets has a negligible impact on the final inference latency or memory consumption

(since the model size and structure are the same), this section reports results from one

training dataset for each model. StableDiffusion-Encoder, SkipNet, DGNet, ConvNet-AIG,

RaNet, and BlockDrop are trained on ImageNet dataset [41]; YOLO-V6 is trained on MS

COCO dataset [137]; SegmentAnything is trained on SA-1B dataset [107]; CodeBERT

is pre-trained on [43]; and finally, Conformer is trained on Librispeech dataset [162].

Since the model accuracy is the same across all frameworks, our evaluation focuses only on

execution time and memory consumption.

Test Samples and Setup. Our inference performance evaluation randomly selects 50

input samples from the corresponding validation dataset for each model. Specifically, for

models that take images as input, i.e., YOLO-V6, SkipNet, ConvNet-AIG, RaNet, and

BlockDrop, our evaluation randomly selects 50 input images from the ImageNet dataset,

with the size of dimensions ranging from 224 to 640. DGNet does not support dynamic

input shapes, but it does support dynamic control flow. Therefore, we only tested images

with a dimension of 224 for DGNet. As YOLO-V6 only accepts images with dimensions

130

Table 5.4: Memory consumption (allocated for intermediate results) for ONNX
Runtime, MNN, TVM with Nimble extension (TVM-N), and SOD2 on a mobile
CPU. “-” means this model is not supported by the framework yet. “S” stands for shape
dynamism, and “C” represents for control-flow dynamism.

Model #Layers Model Dynamism Input Type ORT (MB) MNN (MB) TVM-N(MB) SOD2 (MB)
Size (MB) Min Max Min Max Min Max Min Max

StableDiffusion [198] 407 137 S Text + Image 186 342 124 376 - - 92 271
SegmentAnything [107] 857 17 S Text + Image - - - - - - 16 22
Conformer [68] 1,703 303 S Audio - - 61 78 - - 49 58
CodeBERT [56] 985 502 S Text 32 75 25 54 - - 21 41
YOLO-V6 [131] 599 239 S Image 288 430 148 404 964 1,103 89 206
SkipNet [232] 549 103 S + C Image 168 597 27 124 522 700 18 86
DGNet [130] 847 91 C Image 37 37 76 76 - - 23 29
ConvNet-AIG [225] 282 104 S + C Image 168 423 33 109 557 646 26 77
RaNet [247] 2,617 525 S + C Image 675 1275 166 675 - - 86 452
BlockDrop [237] 439 179 S + C Image 242 460 35 105 523 723 24 69

Geo-mean memory consumption normalized by SOD2⋆ 3.64× 1.37× 8.62× 1
⋆ This normalized geo-mean memory consumption is calculated by 1) averaging the memory usage of runs with all input samples
for each model, 2) calculating the geo-mean of the average memory usage of all models, and 3) normalizing with SOD2’s
geo-mean memory usage.

that are multiples of 32, only a subset of inputs could be used. For StableDiffusion-Encoder

and SegmentAnything, the 50 randomly selected input images have dimensions ranging

from 64 to 224. For CodeBERT and Conformer, our evaluation randomly selects 50 input

samples with sequential lengths ranging from 32 to 384.

The experiments are performed on a Samsung Galaxy S21 smartphone powered by

a Snapdragon 888 processor [185]. This processor features an octa-core Kryo 680 CPU,

comprising one large core, three middle cores, and four small cores, and a Qualcomm Adreno

660 GPU with 1024 ALUs. Additionally, to demonstrate the portability of our approach,

SOD2 is also tested on an earlier generation of Snapdragon platform with more constrained

resources, specifically the Snapdragon 835 [175] equipped with a Qualcomm Kryo 280

octa-core CPU, consisting of four middle cores and four small cores, and a Qualcomm

Adreno 540 GPU with 384 ALUs. Our evaluation employs 8 threads on mobile CPUs

and pipelined execution on mobile GPUs. The GPU execution uses a 16-bit floating-point

representation, while the CPU execution uses a 32-bit floating-point representation. Each

experiment is executed 50 times and only the average numbers are reported – as the variance

was negligible, it is not reported for readability.

131

Table 5.5: End-to-end execution latency comparison among ONNX Runtime,
MNN, TVM-N, and SOD2 on mobile CPU and mobile GPU. “-” means this model
is not supported by the framework yet.

Model
ORT (ms) MNN (ms) TVM-N (ms) SOD2 (ms)

CPU GPU CPU GPU CPU GPU CPU GPU
Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

StableDiffusion [198] 179 2,115 217 2,076 189 1,287 159 1,252 - - - - 152 733 105 530
SegmentAnything [107] - - - - - - - - - - - - 66 108 42 71
Conformer [68] - - - - 51 300 265 498 - - - - 40 225 35 150
CodeBERT [56] 141 752 - - 125 1,265 - - - - - - 102 452 72 366
YOLO-V6 [131] 174 1,386 155 733 168 925 47 287 251 2,108 - - 118 546 33 178
SkipNet [232] 111 841 - - 92 789 116 363 109 974 - - 41 633 29 253
DGNet [130] 122 122 127 127 67 67 211 211 - - - - 32 56 23 42
ConvNet-AIG [225] 90 693 - - 88 731 96 305 98 947 - - 46 526 22 203
RaNet [247] 102 641 - - 139 663 114 208 - - - - 63 403 31 150
BlockDrop [237] 153 1,199 - - 145 1,421 139 468 185 1,622 - - 79 668 42 295
Geo-mean latency⋆ 2.5× 3.9× 1.7× 2.3× 2.7× - 1 1
⋆ This normalized geo-mean execution latency is calculated by 1) averaging the execution latency of runs with all input samples
for each model, 2) calculating the geo-mean of the average execution latency of all models, and 3) normalizing with SOD2’s
geo-mean execution latency.

5.5.2 Overall Comparison

This section focuses on the end-to-end memory reduction and execution latency gains of

SOD2.

Overall Memory Consumption Comparison. Table 5.5 presents a comparison of

end-to-end memory consumption on a mobile CPU using SOD2, ONNX Runtime (ORT),

MNN, and TVM with Nimble extension (TVM-N). As the results on mobile GPU show

a similar trend, they are not included here. ‘-’ implies that a model is not supported by

a given framework. The ‘Min’ and ‘Max’ columns indicate the minimum and maximum

memory consumption (excluding the memory for holding the model itself because this part

is the same for all frameworks). The last row of the table shows the geometric mean memory

consumption of each framework normalized by SOD2. Its detailed calculation method is

shown below the table and is over the cases where execution is possible. Among other

frameworks, only MNN can support Conformer. SegmentAnything is not supported by

other frameworks as either certain key operators are missing, and/or there are limitations

in optimization, leading to large model execution footprints.

Compared with other frameworks, SOD2 has significantly lower memory consumption.

132

SDE CodeBERT RaNet BDrop0

1

0.4
0.7

M
em

. r
ed

uc
tio

n No opt. RDP w/ Fusion
RDP w/ Fusion+SEP RDP w/ Fusion+SEP+DMP

(a) Mobile CPU

Figure 5.5: Memory reduction of different optimizations on CPU. Over the
baseline w/o any RDP-enabled optimization (No opt.)

Specifically, ORT, MNN, and TVM-N need to use 3.64×, 1.37×, and 8.62× memory,

respectively, over SOD2. SOD2 results in a greater reduction in memory consumption for

image models (compared to other models) because image models generally have larger

memory footprints, allowing for more significant optimization opportunities. It is worth

noticing that TVM-N executes models as its own Android RPC application, which is one

of the causes of higher memory requirements.

Overall Latency Comparison. Table 5.5 presents a comparison of end-to-end latency

for SOD2 against other frameworks on both mobile CPU and GPU. The table includes the

minimum and maximum latency observed across different input samples for each model. On

mobile CPU, SOD2 achieves an average speedup of 2.5×, 1.7×, and 2.7× compared to ONNX

Runtime, MNN, and TVM-N, respectively. TVM-N does not support dynamic models on a

mobile GPU. Compared against the other two frameworks on mobile GPU, SOD2 achieves

a speedup of 3.9× and 2.3× over ORT and MNN, respectively. Notably, the minimum

latency achieved by SOD2 on mobile GPU is significantly lower than other frameworks

for ConvNet-AIG, RaNet, and BlockDrop models. This is because our optimizations can

handle different cases and mitigate the effect of execution path variations.

5.5.3 Optimization Breakdown Analysis

This section studies the individual impact of the key optimizations in SOD2 on both memory

consumption and latency.

Memory Reduction w/ Different Optimizations. Figure 5.5 evaluates the memory

133

SDE CodeBERT RaNet BDrop
1

3

5

Sp
ee

du
p

No opt. RDP w/ Fusion
RDP w/ Fusion + SEP RDP w/ Fusion + SEP + DMP
RDP w/ Fusion + SEP + DMP + MVC

(a) Mobile CPU

SDE CodeBERT RaNet BDrop
1

3

5

Sp
ee
du
p

(b) Mobile GPU

Figure 5.6: Execution speedup of different opt. on CPU and GPU. Over the
baseline w/o any RDP-enabled optimization (No opt.)

SDE CodeBERT RaNet BDrop0.0

0.5

1.0

N
um

be
r o

f l
ay

er
s Original SFusion RDP Fusion

(a) Layer count

SDE CodeBERT RaNet BDrop0.0

0.5

1.0

IR
 s

iz
e

(b) IR size

Figure 5.7: Further break down effect of existing static fusion (SFusion) and
RDP-based fusion (RDP Fusion). For both layer count and intermediate result size,
normalized by no fusion opt.

reduction achieved through different optimizations for 4 models (StableDiffusion-Encoder,

CodeBERT, RaNet, and BlockDrop), including RDP-enabled operator fusion (Fusion),

static execution planning (SEP), and dynamic memory planning (DMP). The results for other

models exhibit a similar trend and are excluded due to space limitations. The baseline

version is referred to as No opt – despite the name, it includes general static optimizations,

such as static operator fusion and constant folding. Building on this version, we study

the benefits of optimizations enabled by RDP analysis. On mobile CPU, operator fusion,

static execution planning, and dynamic memory planning bring 18% to 30%, an extra 22%

to 37%, and another extra 3% to 7% memory reduction, respectively. Multi-version code

generation (MVC) is primarily designed for latency improvement, its impact on memory

134

RaNet BDrop0

30

60

90

Su
b-

gr
ap

h
pe

rc
en

ta
ge All known const.

Mixed const. (5-8)
With nac

Mixed const. (1)
Mixed const. (2-4)

(a) Sub-graph percentage

RaNet BDrop

30

60

90

La
te

nc
y

pe
rc

en
ta

ge

(b) Latency percentage

Figure 5.8: The percentage of different types of sub-graph.

reduction is negligible. The memory reduction on mobile GPU is omitted because our

optimizations are general to both CPU and GPU, and the results are similar.

Latency Reduction w/ Different Optimizations. Figure 5.6 presents the speedup

breakdown of our key optimizations on the same 4 models. On mobile CPU, our RDP-based

operator fusion yields 1.3× to 1.9× speedup compared to No opt. Additionally, static

execution planning provides 1.1× to 1.3× speedup, and dynamic memory planning gains

1.04× to 1.1× speedup, and Multi-version code generation brings an extra 1.3× to 1.6×

speedup. On mobile GPU, these numbers are 1.4× to 2.3×, 1.2× to 1.3×, 1.06× to 1.2×,

and 1.4× to 1.7×, respectively. Our optimizations provide more benefits for mobile GPU

since GPU is more sensitive to memory and data movement and supports a higher degree

of parallelism. We further study each optimization with more profiling results.

RDP-enabled Operator Fusion. Figure 5.7 further breaks down the effect of existing

operator fusion for static DNNs only (SFusion) and our RDP-enabled operator fusion (RDP

Fusion) on these four dynamic DNNs. These results are normalized by the original DNN

without fusion (Original). SFusion reduces the layer counts by 26% to 61%; while RDP

Fusion further reduces the layer counts by 16% to 46% additionally by leveraging RDP

analysis results. In terms of intermediate result (IR) size, RDP Fusion saves an additional

13% to 40% on top of SFusion.

Subgraph Data. To better understand execution and memory planning, this part studies

how many sub-graphs can benefit from RDP analysis results. Figure 5.8 (a) shows the

percentage of different sub-graphs, i.e. those with all known constant shapes, with mixed

135

SNet RaNet CNet BDrop

1

2

Sp
ee
du
p

MNN Ours

(a) Inference time
SNet RaNet CNet BDrop

1

2

M
em

or
y

co
ns

um
pt

io
n

(b) Memory consumption

Figure 5.9: Latency and memory consumption comparison between SOD2 and
MNN with the same execution path.

constant shapes, and with statically unknown (nac) only for 2 representative models. The

numbers (1, 2-4, and 5-8) after Mixed const denote the number of code versions that are

required to optimize this sub-graph (the lower the better). This result shows that over

90% of the sub-graphs belong to all known constant or mixed constant categories whose

execution plan and memory plan can be optimized by our framework. To further confirm

this, Figure 5.8 (b) shows the latency percentage of each kind of sub-graphs.

5.5.4 Further Performance Analysis

This section further studies SOD2 under different cases.

Latency Comparison with the Same Execution Path. To provide an apple-to-apple

comparison for control-flow dynamism, this test disables the control-flow logic in 4 models

(SkipNet, RaNet, ConvNet-AIG, and BlockDrop) that have control-flow dynamism. Our

execution included all paths, including all branches in the <Switch, Combine> pairs. Figure

5.9 illustrates the performance comparison with MNN because MNN performs the best

among all baseline frameworks we compared. SOD2 achieves 1.5× to 2.0× speedup and

1.2× to 1.5× memory reduction on the mobile CPU. This result further validates the effect

of our RDP analysis and fusion, execution, and memory optimizations based on it even

without the dynamic branch selection capability of SOD2.

136

0

100

200

300

Input size

In
fe

re
nc

e
tim

e
(m

s) MNN Ours

(a) Mobile CPU

0

20

40

60

Input size

In
fe

re
nc

e
tim

e
(m

s)

(b) Mobile GPU

Figure 5.10: Performance variation with different input sizes (shapes). The data
is collected from YOLO-V6. A larger input size means more computations.

SNet RaNet

1

2

3

Sp
ee
du
p

TFLite Ours

(a) Mobile CPU
SNet RaNet

1

2

3

Sp
ee
du
p

(b) Mobile GPU

Figure 5.11: Speedup with the same memory consumption.

Latency Comparison with Different Input Sizes. To demonstrate the stability

of SOD2, this test randomly selects 15 input shapes for YOLO-V6, and Figure 5.10,

shows their inference latency with MNN and SOD2. These results demonstrate that SOD2

outperforms MNN in terms of both latency and stability across increasing input sizes on

mobile CPUs and GPUs. Specifically, SOD2 exhibits lower and more consistent latency,

while MNN exhibits significant variations.

Latency with Fixed Memory Budget. Figure 5.11 presents a latency comparison

between SOD2 and TFLite with the same memory budget. Specifically, TFLite fixes its

memory consumption to match SOD2’s, and uses the XLA rematerialization policy [64] to

handle the out-of-memory cases. SOD2 outperforms TFLite by an even greater margin.

Additionally, SOD2 demonstrates a higher speedup on mobile GPU compared to mobile

CPU due to the longer time required for mobile GPU to materialize intermediate tensors

from its cache into main memory because of memory mapping.

137

SDE YL-V6 SNet CNet BDrop0

1

2

3

4

Sp
ee
du
p

ORT MNN TVM-N Ours

(a) Mobile CPU

SDE YL-V6 SNet CNet BDrop0

1

2

3

4

Sp
ee
du
p

(b) Mobile GPU

Figure 5.12: Portability evaluation. The results are collected on Snapdragon 835. An
empty bar means the model is not supported by the framework. Results are normalized by
MNN for readability.

Portability Evaluation To further investigate the effectiveness of portability, Figure

5.12 shows the execution speedup of SOD2 over other frameworks on another mobile device

– Snapdragon 835, and 5 models (StableDiffusion-Encoder, YOLO-V6, SkipNet, ConvNet-

AIG, and BlockDrop). SOD2 achieves similar speedup trends, and interestingly, it achieves

higher speedups on this earlier generation of SoC because this SoC has more restricted

resources (e.g., cache size and memory throughput). The RDP-based optimizations employed

in SOD2 significantly reduce memory requirements, leading to improved performance on

these platforms.

5.6 Related Work

Dynamic Neural Network Optimizations. Type analysis and type inference [33,

75, 120, 153, 205] are widely used to analyze tensor shapes, thus assisting in Dynamic

Neural Network optimizations. Nimble [203], which has been integrated into TVM, is a

compilation-based Dynamic DNN framework. This framework relies on expensive dynamic

functions to interpret dynamic shapes at the runtime. This implementation, which we

have extensively compared against, limits the opportunities for optimized code generation,

such as performing operator fusion. DISC [261] extends MLIR-HLO [120] and propagates

the shape information for operators that have certain constraints, e.g. same dimensions

(the case of Activation) and same size (the case of Transpose). SOD2 provides a more

138

comprehensive operator classification based on dynamism degrees, bringing in significantly

enhanced optimization opportunities. Axon [28] is a programming language that allows

specification of symbolic shapes for input and output tensors for computational graphs. It

uses a constraint solver to find shapes whereas SOD2 uses a forward and backward data-flow

analysis (RDP), which also alleviates additional programmer involvement. In addition,

SOD2 includes a set of opts enabled by RDP.

Less closely related to SOD2, DietCode [258] proposes an auto-scheduler framework

based on TVM for dynamic shapes. The framework builds a cost model to predict runtime

performance and reduces the search space to find optimal runtime parameters (e.g., loop

tiling). Cortex [54], Cavs [242], and another effort [93] mainly aim to address recursive

dynamism of neural networks, different from SOD2’s focus. Other efforts focus on dynamic

batching for inference [52,58,144,253] or are designed for dynamic DNN training [155].

DNN Execution and Memory Optimizations. Several studies exist for operator

execution order scheduling, such as [6, 133, 135]. Among these efforts [133, 135] focus on

minimizing peak memory consumption by reordering operators for resource-constrained

devices (e.g., MCUs), and effort [6] proposes an optimized scheduling framework for complex

models (irregularly wired neural networks). These approaches rely on static shapes only.

There have aldo been recent efforts on optimizing memory allocation planning and memory

management for DNNs. Works such as [129,169] have designed various heuristic memory

planning algorithms for static DNNs only. TelaMalloc [148] performs memory management

on the fly for static control-flow graphs with known intermediate tensor shapes and sizes.

It does not fully consider the DNN control-flow dynamism and dynamic shapes. A possible

future work can be to integrate our RDP analysis and TelaMalloc’s combination of heuristics

with a solver-based approach to further improve our memory planning. When the available

memory is limited, rematerialization [92, 108] and recomputation [19] methods achieve

a trade-off between memory consumption and execution latency. These aspects can be

considered for dynamic DNNs in the future.

DNN Inference Engines on Mobile. Support for DNN inference on mobile devices has

139

become an area of active research in recent years. Efforts such as MCDNN [72], DeepX [116],

DeepMon [88], DeepSense [248], and DeepCache [241] have primarily concentrated on

optimizing the execution of static DNNs with static shapes and control flow. TensorFlow

Lite (TFLite) [1], Pytorch-Mobile [166], TVM [25], and MNN [96] provide support for

dynamic shapes relying on reinitialization or conservative (maximum) memory allocation.

They either do not support dynamic control flow or require executions of all paths with

a stripping of invalid results. As shown in our evaluation, these methods introduce high

runtime overhead. One of the previous systems for static DNNs, DNNFusion [157], also

involved a classification of DNN operators, however, the classification introduced here is

orthogonal.

5.7 Summary

This paper has presented a comprehensive framework, SOD2, for optimizing DNNs. SOD2

classifies common operators of Dynamic DNNs into four types, and comprises a novel static

dataflow analysis (RDP). This is followed by a set of optimizations enabled by RDP for

Dynamic DNNs, including operator fusion, static execution (order) planning, dynamic

memory allocation planning, and multi-version code generation. SOD2 is extensively

evaluated on a mobile system with 10 emerging dynamic DNNs and the evaluation results

show that it saves up to 88% memory consumption and brings up to 3.9× execution speedup

over four state-of-the-art DNN execution frameworks. As the underlying techniques are

general and applicable to other devices as well, our future work will evaluate SOD2’s efficacy

on other devices (e.g., edge GPUs and Raspberry Pi).

140

Chapter 6

Conclusion and Future Plan

6.1 Conclusion

This dissertation proposes four novel compiler-based frameworks to achieve real-time DNN

execution on mobile devices, including mobile CPU, GPU, and DSP. In the first work, we

present the sparse neural network compilation system tailored for an innovative hardware-

friendly pruning that, for the first time, achieves real-time DNN execution for large-scale

models on smartphones. With the increasing number of layers in recent neural networks, we

design an advanced flexible operator fusion strategy with our dedicated compiler support,

which significantly reduces the data movement among the successive layers. In the third

work, we carefully investigate the soft dependencies tolerated by the mobile DSP and

propose a heuristic VLIW packing strategy and global instruction selections for DSP

architecture. Lastly, we propose a novel dynamic neural network compilation system that

can efficiently execute dynamic neural networks on mobile devices.

6.2 Future Plan

In continuation of my existing research on real-time machine learning systems, I will explore

a broader scope of embedded platforms and related areas. In particularly, I would like to

141

investigate the following research opportunities:

The opportunity for emerging parallel hardware: Today, a few mobile chip

vendors, such as edge TPU and Kirin NPU, offer their own specialized processors, and each

mobile platform has a unique combination of such processors. For example, the Kirin NPU

has a 3D Cube Tensor Computing Engine that can perform 2,048 FP16 multiplications. This

exemplifies an important trend in modern parallel hardware design: SIMD unit expansion

to increase computational capacity. Existing computation-intensive workloads, on the

other hand, are difficult to map onto such hardware and necessitate significant low-level

hardware and software stack expertise. My expertise will provide me with advantageous

opportunities to advance the frontiers of this topic in the future. I plan to look into it

from two angles: parallelism and data locality. By optimizing parallel algorithms and

guiding further hardware optimization, the ultimate goal is to fully unleash the power of

new parallel architectures. The interaction of parallel hardware and parallel algorithms is

so complex that more research is needed.

142

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vi-
jay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In OSDI 2016, pages
265–283, USA, 2016. USENIX Association.

[2] Aravind Acharya, Uday Bondhugula, and Albert Cohen. Polyhedral auto-
transformation with no integer linear programming. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
529–542, New York, NY, USA, 2018. Association for Computing Machinery.

[3] Aravind Acharya, Uday Bondhugula, and Albert Cohen. Effective loop
fusion in polyhedral compilation using fusion conflict graphs. ACM Transactions on
Architecture and Code Optimization (TACO), 17(4):1–26, 2020.

[4] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image
super-resolution: Dataset and study. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, July 2017.

[5] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib
Kamil, and Alvin Cheung. Vector instruction selection for digital signal processors
using program synthesis. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2022, page 1004–1016, New York, NY, USA, 2022. Association for Computing
Machinery.

[6] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei
Hou, and Hadi Esmaeilzadeh. Ordering chaos: Memory-aware scheduling of
irregularly wired neural networks for edge devices. Proceedings of Machine Learning
and Systems, 2:44–57, 2020.

[7] Andrew Anderson and David Gregg. Optimal dnn primitive selection with
partitioned boolean quadratic programming. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pages 340–351, 2018.

143

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral compiler for
expressing fast and portable code. In CGO 2019, pages 193–205. IEEE, 2019.

[9] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of
matching problems. Journal of symbolic computation, 3(1-2):203–216, 1987.

[10] David Bernstein and Michael Rodeh. Global instruction scheduling for su-
perscalar machines. In Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation, pages 241–255, 1991.

[11] Somashekaracharya G Bhaskaracharya, Julien Demouth, and Vinod
Grover. Automatic kernel generation for volta tensor cores. arXiv preprint
arXiv:2006.12645, 2020.

[12] Sourav Bhattacharya and Nicholas D Lane. From smart to deep: Robust
activity recognition on smartwatches using deep learning. In 2016 IEEE Interna-
tional Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pages 1–6. IEEE, 2016.

[13] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020.

[14] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen,
Alexandre V. Evfimievski, and Niketan Pansare. On optimizing operator
fusion plans for large-scale machine learning in systemml. Proc. VLDB Endow.,
11(12):1755–1768, August 2018.

[15] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshminarayanan
Renganarayanan. A model for fusion and code motion in an automatic parallelizing
compiler. In PACT 2010, page 343–352. ACM, 2010.

[16] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Pon-
nuswamy Sadayappan. A practical automatic polyhedral parallelizer and locality
optimizer. In PLDI 2008, pages 101–113, 2008.

[17] Ivica Boticki and Hyo-Jeong So. Quiet captures: A tool for capturing the
evidence of seamless learning with mobile devices. In Proceedings of the 9th Interna-
tional Conference of the Learning Sciences-Volume 1, pages 500–507. International
Society of the Learning Sciences, 2010.

[18] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends® in Machine Learning,
3(1):1–122, 2011.

144

[19] Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. In-place
activated batchnorm for memory-optimized training of dnns. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5639–5647,
2018.

[20] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon.
Interprocedural constant propagation. ACM SIGPLAN Notices, 21(7):152–161, 1986.

[21] Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. Polyhedral opti-
mizations of explicitly parallel programs. In PACT 2015, pages 213–226. IEEE,
2015.

[22] Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Young-Jia Lin, Yi-
Ping You, Chia-Han Lu, and Jenq-Kuen Lee. Enabling compiler flow for
embedded vliw dsp processors with distributed register files. In Proceedings of the
2007 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 146–148, 2007.

[23] Linchuan Chen, Peng Jiang, and Gagan Agrawal. Exploiting recent simd
architectural advances for irregular applications. In 2016 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 47–58. IEEE, 2016.

[24] Long Chen, Shaobo Lin, Xiankai Lu, Dongpu Cao, Hangbin Wu, Chi Guo,
Chun Liu, and Fei-Yue Wang. Deep neural network based vehicle and pedestrian
detection for autonomous driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 22(6):3234–3246, 2021.

[25] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated end-to-
end optimizing compiler for deep learning. In OSDI 2018, pages 578–594, 2018.

[26] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to
optimize tensor programs. arXiv preprint arXiv:1805.08166, 2018.

[27] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe.
Vegen: a vectorizer generator for simd and beyond. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 902–914, 2021.

[28] Alexander Collins and Vinod Grover. Axon: A language for dynamic shapes
in deep learning graphs. arXiv preprint arXiv:2210.02374, 2022.

[29] Keith D Cooper, L Taylor Simpson, and Christopher A Vick. Operator
strength reduction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5):603–625, 2001.

145

[30] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems, pages 3123–3131, 2015.

[31] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,
2016.

[32] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and
Luis Ceze. Automatic generation of high-performance quantized machine learning
kernels. In Proceedings of the 18th ACM/IEEE International Symposium on Code
Generation and Optimization, pages 305–316, 2020.

[33] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceedings
of the fourth ACM SIGPLAN international conference on Functional programming,
pages 233–248, 1999.

[34] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: a neural network synthesis
tool based on a grow-and-prune paradigm. arXiv preprint arXiv:1711.02017, 2017.

[35] Alain Darte. On the complexity of loop fusion. In 1999 International Conference
on Parallel Architectures and Compilation Techniques (Cat. No. PR00425), pages
149–157. IEEE, 1999.

[36] B Dupont De Dinechin. From machine scheduling to vliw instruction scheduling.
ST Journal of Research, 1(2):1–35, 2004.

[37] Hugo De Man, J Rabaey, Paul Six, and Luc Claesen. Cathedral-ii: A silicon
compiler for digital signal processing. IEEE Design & Test of Computers, 3(6):13–25,
1986.

[38] Giovanni De Micheli. Synthesis and optimization of digital circuits. Number
BOOK. McGraw Hill, 1994.

[39] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, et al. Large scale distributed deep networks. In Advances in neural
information processing systems, pages 1223–1231, 2012.

[40] Saumya K Debray. Unfold/fold transformations and loop optimization of logic
programs. In PLDI 1988, pages 297–307, 1988.

[41] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR 2009, pages 248–255.
IEEE, 2009.

[42] Yunbin Deng. Deep learning on mobile devices – a review. arXiv preprint
arXiv:1904.09274, 2019.

146

[43] Microsoft Developer. Codebert. https://github.com/microsoft/CodeBERT,
2023.

[44] Numpy developers. Tensor broadcasting. https://numpy.org/doc/stable/user/
basics.broadcasting.html, 2023. Version: 1.24.

[45] ONNX Runtime developers. Onnx runtime. https://onnxruntime.ai/, 2023.
Version: 1.14.1.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[47] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song
Han. Ios: Inter-operator scheduler for cnn acceleration. Proceedings of Machine
Learning and Systems, 3, 2021.

[48] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa.
Polly’s polyhedral scheduling in the presence of reductions. arXiv preprint
arXiv:1505.07716, 2015.

[49] Peiyan Dong, Siyue Wang, Wei Niu, Chengming Zhang, Sheng Lin, Zhen-
gang Li, Yifan Gong, Bin Ren, Xue Lin, and Dingwen Tao. Rtmobile: Beyond
real-time mobile acceleration of rnns for speech recognition. In 57th ACM/IEEE
Design Automation Conference, pages 1–6. IEEE, 2020.

[50] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V Ev-
fimievski, Shirish Tatikonda, Berthold Reinwald, and Prithviraj Sen.
Spoof: Sum-product optimization and operator fusion for large-scale machine learning.
In CIDR, 2017.

[51] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes challenge 2007 (voc2007)
results. 2007.

[52] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotransformers:
an efficient gpu serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 389–402, 2021.

[53] Pratik Fegade, Tianqi Chen, Phil Gibbons, and Todd Mowry. Cortex: A
compiler for recursive deep learning models. arXiv preprint arXiv:2011.01383, 2020.

[54] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. Cortex:
A compiler for recursive deep learning models. Proceedings of Machine Learning and
Systems, 3:38–54, 2021.

147

https://github.com/microsoft/CodeBERT
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html
https://onnxruntime.ai/

[55] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards safe autonomous
driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection.
In 2018 21st international conference on intelligent transportation systems (ITSC),
pages 3266–3273. IEEE, 2018.

[56] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
bert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

[57] Franz Franchetti, Stefan Kral, Juergen Lorenz, and Christoph W
Ueberhuber. Efficient utilization of simd extensions. Proceedings of the IEEE,
93(2):409–425, 2005.

[58] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low latency rnn inference
with cellular batching. In Proceedings of the Thirteenth EuroSys Conference, pages
1–15, 2018.

[59] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. International Journal of Robotics Research
(IJRR), 2013.

[60] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj
Kalamkar, Greg Henry, Hans Pabst, and Alexander Heinecke. Anatomy
of high-performance deep learning convolutions on simd architectures. In SC18:
International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 830–841. IEEE, 2018.

[61] Perry Gibson, José Cano, Jack Turner, Elliot J Crowley, Michael
O’Boyle, and Amos Storkey. Optimizing grouped convolutions on edge de-
vices. In 2020 IEEE 31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 189–196. IEEE, 2020.

[62] Ben Goertzel. Artificial general intelligence: concept, state of the art, and future
prospects. Journal of Artificial General Intelligence, 5(1):1, 2014.

[63] Google. Snapdragon 820, 2020.

[64] Google. Tensorflow xla. https://www.tensorflow.org/xla, 2023.

[65] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma.
Compiling kb-sized machine learning models to tiny iot devices. In PLDI 2019, pages
79–95, 2019.

[66] Joseph L Greathouse, Kent Knox, Jakub Poła, Kiran Varaganti, and
Mayank Daga. clsparse: A vendor-optimized open-source sparse blas library. In
Proceedings of the 4th International Workshop on OpenCL, page 7. ACM, 2016.

148

https://www.tensorflow.org/xla

[67] Hui Guan, Shaoshan Liu, Xiaolong Ma, Wei Niu, Bin Ren, Xipeng Shen,
Yanzhi Wang, and Pu Zhao. Cocopie: enabling real-time ai on off-the-shelf
mobile devices via compression-compilation co-design. Communications of the ACM,
64(6):62–68, 2021.

[68] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang,
Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al.
Conformer: Convolution-augmented transformer for speech recognition. arXiv preprint
arXiv:2005.08100, 2020.

[69] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient dnns. In Advances In Neural Information Processing Systems, pages
1379–1387, 2016.

[70] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In International
Conference on Machine Learning, pages 1737–1746, 2015.

[71] Lang Hames and Bernhard Scholz. Nearly optimal register allocation with
pbqp. In Joint Modular Languages Conference, pages 346–361. Springer, 2006.

[72] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,
Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource constraints.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 123–136. ACM, 2016.

[73] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[74] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in Neural Information
Processing Systems, pages 1135–1143, 2015.

[75] Robert Harper and Greg Morrisett. Compiling polymorphism using inten-
sional type analysis. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 130–141, 1995.

[76] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In ICCV 2017, pages 2961–2969, 2017.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[78] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc:
Automl for model compression and acceleration on mobile devices. In European
Conference on Computer Vision, pages 815–832. Springer, 2018.

149

[79] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating
very deep neural networks. In Computer Vision (ICCV), 2017 IEEE International
Conference on, pages 1398–1406. IEEE, 2017.

[80] Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W Fletcher.
Morph: Flexible acceleration for 3d cnn-based video understanding. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
933–946. IEEE, 2018.

[81] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong
Hsu, Michael A Laurenzano, Scott Mahlke, Lingjia Tang, and Jason
Mars. Deftnn: Addressing bottlenecks for dnn execution on gpus via synapse
vector elimination and near-compute data fission. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 786–799. ACM,
2017.

[82] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis
of alternating direction method of multipliers for a family of nonconvex problems.
SIAM Journal on Optimization, 26(1):337–364, 2016.

[83] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasude-
van, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

[84] Huawei. Kirin 980, 2018.

[85] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in neural information
processing systems, pages 4107–4115, 2016.

[86] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Quantized neural networks: Training neural networks with
low precision weights and activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[87] Joonmoo Huh and James Tuck. Improving the effectiveness of searching for
isomorphic chains in superword level parallelism. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 718–729. IEEE, 2017.

[88] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys), pages 82–95. ACM, 2017.

[89] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

150

[90] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quan-
tization and training of neural networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2704–2713, 2018.

[91] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma,
and Yida Wang. Efficient execution of quantized deep learning models: A compiler
approach. arXiv preprint arXiv:2006.10226, 2020.

[92] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion Stoica. Checkmate:
Breaking the memory wall with optimal tensor rematerialization. Proceedings of
Machine Learning and Systems, 2:497–511, 2020.

[93] Eunji Jeong, Joo Seong Jeong, Soojeong Kim, Gyeong-In Yu, and Byung-
Gon Chun. Improving the expressiveness of deep learning frameworks with recursion.
In Proceedings of the Thirteenth EuroSys Conference, pages 1–13, 2018.

[94] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia,
and Alex Aiken. Taso: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 47–62, 2019.

[95] Shiqi Jiang, Lihao Ran, Ting Cao, Yusen Xu, and Yunxin Liu. Profiling
and optimizing deep learning inference on mobile gpus. In Proceedings of the 11th
ACM SIGOPS Asia-Pacific Workshop on Systems, pages 75–81, 2020.

[96] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin
Zou, Yafeng Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu,
and Zhihua Wu. Mnn: A universal and efficient inference engine. In Proceedings of
Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
volume 2, pages 1–13. 2020.

[97] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin
Li, Fang Wang, and Qun Liu. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351, 2019.

[98] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network quantization
with adaptive bit-widths. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2146–2156, 2020.

[99] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European conference on computer
vision, pages 694–711. Springer, 2016.

151

[100] Mahmut Kandemir, A Choudhary, J Ramanujam, and Prithviraj Baner-
jee. Improving locality using loop and data transformations in an integrated frame-
work. In Proceedings. 31st Annual ACM/IEEE International Symposium on Microar-
chitecture, pages 285–296. IEEE, 1998.

[101] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1725–1732, 2014.

[102] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis,
Sudip Roy, Amit Sabne, and Mike Burrows. A learned performance model for
tensor processing units. Proceedings of Machine Learning and Systems, 3, 2021.

[103] Ken Kennedy and Kathryn S McKinley. Maximizing loop parallelism and
improving data locality via loop fusion and distribution. In International Workshop
on Languages and Compilers for Parallel Computing, pages 301–320. Springer, 1993.

[104] Gary A Kildall. A unified approach to global program optimization. In Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 194–206, 1973.

[105] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt
Keutzer. I-bert: Integer-only bert quantization. arXiv preprint arXiv:2101.01321,
2021.

[106] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Proceedings of the International Conference on Learning Representations (ICLR),
2014.

[107] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rol-
land, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C.
Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything.
arXiv:2304.02643, 2023.

[108] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan,
Mike He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. Dynamic
tensor rematerialization. arXiv preprint arXiv:2006.09616, 2020.

[109] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe.
Tensor algebra compilation with workspaces. In CGO 2019, pages 180–192. IEEE,
2019.

[110] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):1–29, 2017.

152

[111] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-
Noël Pouchet, and Ponnuswamy Sadayappan. When polyhedral transfor-
mations meet simd code generation. In Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, pages 127–138,
2013.

[112] Emmanuel Kounalis and Denis Lugiez. Compilation of pattern matching
with associative-commutative functions. In Colloquium on Trees in Algebra and
Programming, pages 57–73. Springer, 1991.

[113] Manuel Krebber. Non-linear associative-commutative many-to-one pattern match-
ing with sequence variables. arXiv preprint arXiv:1705.00907, 2017.

[114] Nikolaos Kyrtatas, Daniele G Spampinato, and Markus Püschel. A basic
linear algebra compiler for embedded processors. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1054–1059. IEEE, 2015.

[115] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. In International Conference on Learning Representations,
2020.

[116] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar. Deepx: A software accelerator for low-power deep learning
inference on mobile devices. In 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), pages 1–12. IEEE Press, 2016.

[117] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, and Fahim Kawsar. An early resource characterization of deep learning on
wearables, smartphones and internet-of-things devices. In Proceedings of the 2015
international workshop on internet of things towards applications, pages 7–12. ACM,
2015.

[118] Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev,
Claudio Forlivesi, and Fahim Kawsar. Squeezing deep learning into mobile
and embedded devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[119] Nicholas D Lane, Petko Georgiev, and Lorena Qendro. Deepear: robust
smartphone audio sensing in unconstrained acoustic environments using deep learning.
In Proceedings of the 2015 ACM international joint conference on pervasive and
ubiquitous computing, pages 283–294. ACM, 2015.

[120] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO), pages 2–14. IEEE, 2021.

153

[121] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River
Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: A compiler infrastructure for the end of
moore’s law. arXiv preprint arXiv:2002.11054, 2020.

[122] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4013–4021, 2016.

[123] Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain
damage. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2554–2564, 2016.

[124] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. Com-
piler optimization on vliw instruction scheduling for low power. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 8(2):252–268, 2003.

[125] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th annual international conference on machine
learning, pages 609–616. ACM, 2009.

[126] Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya,
and Nicholas D Lane. Mobisr: Efficient on-device super-resolution through
heterogeneous mobile processors. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[127] Cong Leng, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural
network: Squeeze the last bit out with admm. arXiv preprint arXiv:1707.09870, 2017.

[128] Rainer Leupers. Instruction scheduling for clustered vliw dsps. In Proceedings
2000 International Conference on Parallel Architectures and Compilation Techniques
(Cat. No. PR00622), pages 291–300. IEEE, 2000.

[129] Maksim Levental. Memory planning for deep neural networks. arXiv preprint
arXiv:2203.00448, 2022.

[130] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and
Xiaojun Chang. Dynamic slimmable network. In CVPR, 2021.

[131] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang
Li, Zaidan Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, et al. Yolov6: A
single-stage object detection framework for industrial applications. arXiv preprint
arXiv:2209.02976, 2022.

[132] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient convnets. In International Conference on Learning
Representations (ICLR), 2017.

154

[133] Edgar Liberis and Nicholas D Lane. Neural networks on microcontrollers:
saving memory at inference via operator reordering. arXiv preprint arXiv:1910.05110,
2019.

[134] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. In International Conference on Machine
Learning, pages 2849–2858, 2016.

[135] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. Mcunet:
Tiny deep learning on iot devices. Advances in Neural Information Processing Systems,
33:11711–11722, 2020.

[136] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[137] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr
Doll’a r, and C. Lawrence Zitnick. Microsoft COCO: common objects in
context. CoRR, abs/1405.0312, 2014.

[138] W Lin, Corinna G Lee, and Paul Chow. an optimizing compiler for the
tms320c25 dsp chip. In Proc. Int. Conf. Signal Processing Applicat. Technol., number 5,
pages I–689. Citeseer, 1994.

[139] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-
anna Pensky. Sparse convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 806–814, 2015.

[140] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao
Du. On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services, pages 389–400. ACM, 2018.

[141] Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. Zeroth-order online
alternating direction method of multipliers: Convergence analysis and applications.
In International Conference on Artificial Intelligence and Statistics, pages 288–297,
2018.

[142] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37. Springer, 2016.

[143] LLVM. Llvm, 2021.

[144] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Pe-
ter Norvig. Deep learning with dynamic computation graphs. arXiv preprint
arXiv:1702.02181, 2017.

155

[145] Markus Lorenz, Peter Marwedel, Thorsten Drager, Gerhard Fettweis,
and Rainer Leupers. Compiler based exploration of dsp energy savings by simd
operations. In ASP-DAC 2004: Asia and South Pacific Design Automation Conference
2004 (IEEE Cat. No. 04EX753), pages 839–842. IEEE, 2004.

[146] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Rammer:
Enabling holistic deep learning compiler optimizations with rtasks. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
881–897. USENIX Association, November 2020.

[147] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng
Ma, Bin Ren, and Yanzhi Wang. Pconv: The missing but desirable sparsity
in dnn weight pruning for real-time execution on mobile devices. arXiv preprint
arXiv:1909.05073, 2019.

[148] Martin Maas, Ulysse Beaugnon, Arun Chauhan, and Berkin Ilbeyi. Tela-
malloc: Efficient on-chip memory allocation for production machine learning accel-
erators. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, ASPLOS 2023,
page 123–137, New York, NY, USA, 2022. Association for Computing Machinery.

[149] Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones.
Exploiting vector instructions with generalized stream fusion. Communications of
the ACM, 60(5):83–91, 2017.

[150] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and
William J Dally. Exploring the regularity of sparse structure in convolutional
neural networks. arXiv preprint arXiv:1705.08922, 2017.

[151] Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for parallel
programs. In Proceedings of the ninth annual ACM symposium on Parallel algorithms
and architectures, pages 282–291, 1997.

[152] Charith Mendis and Saman Amarasinghe. Goslp: Globally optimized superword
level parallelism framework. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1–28, 2018.

[153] Robin Milner. A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(3):348–375, 1978.

[154] Naums Mogers, Valentin Radu, Lu Li, Jack Turner, Michael O’Boyle,
and Christophe Dubach. Automatic generation of specialized direct convolutions
for mobile gpus. In Proceedings of the 13th Annual Workshop on General Purpose
Processing using Graphics Processing Unit, pages 41–50, 2020.

[155] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed
Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang,

156

Daniel Clothiaux, Trevor Cohn, et al. Dynet: The dynamic neural network
toolkit. arXiv preprint arXiv:1701.03980, 2017.

[156] Wei Niu, Jiexiong Guan, Xipeng Shen, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Gcd2: A globally optimizing compiler for mapping dnns to mobile
dsps. In Proceedings of the 55th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2022.

[157] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
Dnnfusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 883–898, 2021.

[158] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin,
Yanzhi Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution on
mobile devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 907–922, 2020.

[159] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of interleaved
data for simd. ACM SIGPLAN Notices, 41(6):132–143, 2006.

[160] ONNX. Open neural network exchange. https://www.onnx.ai, 2017.

[161] Kaoru Ota, Minh Son Dao, Vasileios Mezaris, and FRANCESCO GB DE
Natale. Deep learning for mobile multimedia: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 13(3s):1–22,
2017.

[162] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
Librispeech: an asr corpus based on public domain audio books. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages
5206–5210. IEEE, 2015.

[163] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W
Keckler, and William J Dally. Scnn: An accelerator for compressed-sparse
convolutional neural networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 27–40. ACM, 2017.

[164] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-based
quantization for deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7197–7205, 2017.

[165] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. pages 8024–8035, 2019.

157

https://www.onnx.ai

[166] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[167] Damian Philipp, Frank Durr, and Kurt Rothermel. A sensor network
abstraction for flexible public sensing systems. In 2011 IEEE Eighth International
Conference on Mobile Ad-Hoc and Sensor Systems, pages 460–469. IEEE, 2011.

[168] Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda,
Karthik Srinivasa Murthy, Yanqi Zhou, Christof Angermueller, Mike
Burrows, Sudip Roy, Ketan Mandke, Rezsa Farahani, et al. A flexible
approach to autotuning multi-pass machine learning compilers. In 2021 30th Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 1–16. IEEE, 2021.

[169] Yury Pisarchyk and Juhyun Lee. Efficient memory management for deep neural
net inference. arXiv preprint arXiv:2001.03288, 2020.

[170] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.
Iterative optimization in the polyhedral model: Part ii, multidimensional time. ACM
SIGPLAN Notices, 43(6):90–100, 2008.

[171] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,
Jagannathan Ramanujam, Ponnuswamy Sadayappan, and Nicolas Vasi-
lache. Loop transformations: convexity, pruning and optimization. ACM SIGPLAN
Notices, 46(1):549–562, 2011.

[172] Benoît Pradelle, Benoît Meister, Muthu Baskaran, Jonathan Springer,
and Richard Lethin. Polyhedral optimization of tensorflow computation graphs.
In Programming and Performance Visualization Tools, pages 74–89. Springer, 2017.

[173] Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao,
Shuai Yi, Xianglong Liu, and Hao Su. Bipointnet: Binary neural network for
point clouds. arXiv preprint arXiv:2010.05501, 2020.

[174] Qualcomm. Snapdragon 820. https://www.qualcomm.com/products/snapdragon-
820-mobile-platform, 2016.

[175] Qualcomm. Snapdragon 835. https://www.qualcomm.com/products/snapdragon-
835-mobile-platform, 2016.

[176] Qualcomm. Snapdragon profiler. https://developer.qualcomm.com/software/
snapdragon-profiler, 2016.

[177] Qualcomm. Hexagon v66 manual, 2017.

[178] Qualcomm. Snpe, 2017.

158

https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://www.qualcomm.com/products/snapdragon-820-mobile-platform
https://www.qualcomm.com/products/snapdragon-835-mobile-platform
https://www.qualcomm.com/products/snapdragon-835-mobile-platform
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler

[179] Qualcomm. Snapdragon 850. https://www.qualcomm.com/products/
application/mobile-computing/snapdragon-8-series-mobile-compute-
platforms/snapdragon-850-mobile-compute-platform, 2018.

[180] Qualcomm. Snapdragon 855. https://www.qualcomm.com/products/snapdragon-
855-mobile-platform, 2018.

[181] Qualcomm. Snapdragon 855, 2018.

[182] Qualcomm. Hexagon nn library, 2019.

[183] Qualcomm. Snapdragon 865, 2019.

[184] Qualcomm. Snapdragon 865, 2019.

[185] Qualcomm. Snapdragon 888. https://www.qualcomm.com/products/snapdragon-
888-5g-mobile-platform, 2020.

[186] Qualcomm. Theoretical speed of hexagon dsp, 2021.

[187] Qualcomm. Snapdragon 8 gen 1. https://www.qualcomm.com/products/
application/smartphones/snapdragon-8-series-mobile-platforms/
snapdragon-8-gen-1-mobile-platform, 2022.

[188] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

[189] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: A language and
compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. In PLDI 2013, page 519–530, New York, NY, USA, 2013. Association for
Computing Machinery.

[190] Subramanian Rajagopalan, Sreeranga P Rajan, Sharad Malik, Sandro
Rigo, Guido Araujo, and Koichiro Takayama. A retargetable vliw com-
piler framework for dsps with instruction-level parallelism. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(11):1319–1328, 2001.

[191] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and
Cho-Jui Hsieh. Dynamicvit: Efficient vision transformers with dynamic token
sparsification. Advances in neural information processing systems, 34:13937–13949,
2021.

[192] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional neural net-
works. In European Conference on Computer Vision, pages 525–542. Springer, 2016.

159

https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.qualcomm.com/products/application/mobile-computing/snapdragon-8-series-mobile-compute-platforms/snapdragon-850-mobile-compute-platform
https://www.qualcomm.com/products/snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/products/snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform

[193] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai
Qian, Xue Lin, and Yanzhi Wang. Admm-nn: An algorithm-hardware co-
design framework of dnns using alternating direction methods of multipliers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 925–938, 2019.

[194] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations for
simd devices. ACM SIGPLAN Notices, 41(6):118–131, 2006.

[195] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances in
neural information processing systems, pages 91–99, 2015.

[196] Rodrigo CO Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís FW
Góes, Zheng Wang, Murray Cole, and Hugh Leather. Vectorization-aware
loop unrolling with seed forwarding. In Proceedings of the 29th International Confer-
ence on Compiler Construction, pages 1–13, 2020.

[197] Mary M Rodgers, Vinay M Pai, and Richard S Conroy. Recent advances
in wearable sensors for health monitoring. IEEE Sensors Journal, 15(6):3119–3126,
2014.

[198] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[199] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[200] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[201] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[202] Manuel Selva, Fabian Gruber, Diogo Sampaio, Christophe Guillon, Louis-
Noël Pouchet, and Fabrice Rastello. Building a polyhedral representation
from an instrumented execution: Making dynamic analyses of nonaffine programs
scalable. ACM Transactions on Architecture and Code Optimization (TACO), 16(4):1–
26, 2019.

[203] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin
Sharma, Zachary Tatlock, and Yida Wang. Nimble: Efficiently compiling

160

dynamic neural networks for model inference. Proceedings of Machine Learning and
Systems, 3:208–222, 2021.

[204] Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, and
Chunyuan Zhang. Towards a uniform template-based architecture for accelerating
2d and 3d cnns on fpga. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 97–106, 2018.

[205] Jeremy Siek and Walid Taha. Gradual typing for objects. In ECOOP 2007–
Object-Oriented Programming: 21st European Conference, Berlin, Germany, July
30-August 3, 2007. Proceedings 21, pages 2–27. Springer, 2007.

[206] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[207] Cyril Six, Sylvain Boulmé, and David Monniaux. Certified and efficient
instruction scheduling: application to interlocked vliw processors. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–29, 2020.

[208] Linghao Song, Fan Chen, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran
Chen. Accpar: Tensor partitioning for heterogeneous deep learning accelerators. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 342–355. IEEE, 2020.

[209] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101:
A dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[210] Daniele G Spampinato, Diego Fabregat-Traver, Paolo Bientinesi, and
Markus Püschel. Program generation for small-scale linear algebra applications.
In Proceedings of the 2018 International Symposium on Code Generation and Opti-
mization, pages 327–339, 2018.

[211] Daniele G Spampinato and Markus Püschel. A basic linear algebra compiler.
In CGO’14, pages 23–32, 2014.

[212] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and
Denny Zhou. Mobilebert: Task-agnostic compression of bert by progressive knowl-
edge transfer. 2019.

[213] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convo-
lutional neural networks. In International Conference on Machine Learning, pages
6105–6114. PMLR, 2019.

[214] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and
efficient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10781–10790, 2020.

161

[215] TensorFlow. Tensorflow grappler. https://www.tensorflow.org/guide/graph_
optimization, 2018.

[216] TensorFlow. Post-training quantization, 2021.

[217] Peter Torelli and Mohit Bangale. Measuring inference performance of machine-
learning frameworks on edge-class devices with the mlmark benchmark. Techin-
cal Report. Available online: https://www. eembc. org/techlit/articles/MLMARK-
WHITEPAPERFINAL-1. pdf (accessed on 5 April 2021), 2021.

[218] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d convolutional networks.
In ICCV 2015, pages 4489–4497, 2015.

[219] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira
Rosen. Polyhedral-model guided loop-nest auto-vectorization. In 2009 18th Inter-
national Conference on Parallel Architectures and Compilation Techniques, pages
327–337. IEEE, 2009.

[220] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation
validators: a case study on instruction scheduling optimizations. In Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 17–27, 2008.

[221] Jean-Baptiste Tristan and Xavier Leroy. A simple, verified validator for
software pipelining. ACM Sigplan Notices, 45(1):83–92, 2010.

[222] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and
Adrian Sampson. A synthesis-aided compiler for dsp architectures (wip paper). In
The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 131–135, 2020.

[223] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and
Adrian Sampson. Vectorization for digital signal processors via equality saturation.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 874–886, 2021.

[224] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions. arXiv preprint arXiv:1802.04730, 2018.

[225] Andreas Veit and Serge Belongie. Convolutional networks with adaptive
inference graphs. 2018.

[226] Anand Venkat, Mary Hall, and Michelle Strout. Loop and data transfor-
mations for sparse matrix code. ACM SIGPLAN Notices, 50(6):521–532, 2015.

162

https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization

[227] Anand Venkat, Tharindu Rusira, Raj Barik, Mary Hall, and Leonard
Truong. Swirl: High-performance many-core cpu code generation for deep neural
networks. The International Journal of High Performance Computing Applications,
33(6):1275–1289, 2019.

[228] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle Mills
Strout. Non-affine extensions to polyhedral code generation. In Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
pages 185–194, 2014.

[229] Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde Corvino, and
Rick Nas. Extending halide to improve software development for imaging dsps.
ACM Transactions on Architecture and Code Optimization (TACO), 14(3):1–25, 2017.

[230] Gang Wang, Wenrui Gong, and Ryan Kastner. Instruction scheduling using
max-min ant system optimization. In Proceedings of the 15th ACM Great Lakes
symposium on VLSI, pages 44–49, 2005.

[231] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu.
Asymo: scalable and efficient deep-learning inference on asymmetric mobile cpus. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking, pages 215–228, 2021.

[232] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez.
Skipnet: Learning dynamic routing in convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 409–424, 2018.

[233] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems, pages 2074–2082, 2016.

[234] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam, 1980.

[235] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet:
Unified, small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 129–137, 2017.

[236] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
Quantized convolutional neural networks for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4820–4828,
2016.

[237] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie,
Larry S Davis, Kristen Grauman, and Rogerio Feris. Blockdrop: Dy-
namic inference paths in residual networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8817–8826, 2018.

163

[238] Hongwei Xie, Yafei Song, Ling Cai, and Mingyang Li. Overflow aware
quantization: Accelerating neural network inference by low-bit multiply-accumulate
operations. In IJCAI, pages 868–875, 2020.

[239] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Mur-
phy. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In ECCV 2018, pages 305–321, 2018.

[240] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. Spl:
A language and compiler for dsp algorithms. ACM SIGPLAN Notices, 36(5):298–308,
2001.

[241] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe
Liu. Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, MobiCom
’18, page 129–144, New York, NY, USA, 2018. ACM, Association for Computing
Machinery.

[242] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie
Deng, Qirong Ho, Guangwen Yang, and Eric P Xing. Cavs: An efficient
runtime system for dynamic neural networks. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), pages 937–950, 2018.

[243] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning
models to understand sensory cortex. Nature neuroscience, 19(3):356, 2016.

[244] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon,
Darren Seibert, and James J DiCarlo. Performance-optimized hierarchical
models predict neural responses in higher visual cortex. Proceedings of the National
Academy of Sciences, 111(23):8619–8624, 2014.

[245] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object
detection from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7652–7660, 2018.

[246] Chao Yang, Shuming Chen, Yaohua Wang, and Junyang Zhang. The
evaluation of dcnn on vector-simd dsp. IEEE Access, 7:22301–22309, 2019.

[247] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang.
Resolution adaptive networks for efficient inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[248] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Ab-
delzaher. Deepsense: A unified deep learning framework for time-series mobile
sensing data processing. In Proceedings of the 26th International Conference on World
Wide Web, WWW ’17, page 351–360, Republic and Canton of Geneva, CHE, 2017.
International World Wide Web Conferences Steering Committee, International World
Wide Web Conferences Steering Committee.

164

[249] Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin,
Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, et al. Progressive
dnn compression: A key to achieve ultra-high weight pruning and quantization rates
using admm. arXiv preprint arXiv:1903.09769, 2019.

[250] Dong Yu and Li Deng. Deep learning and its applications to signal and information
processing [exploratory dsp]. IEEE Signal Processing Magazine, 28(1):145–154, 2011.

[251] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Xinchao Wang, and
Thomas S Huang. Wide activation for efficient and accurate image super-resolution.
arXiv preprint arXiv:1808.08718, 2018.

[252] Tomofumi Yuki, Vamshi Basupalli, Gautam Gupta, Guillaume Iooss,
D Kim, Tanveer Pathan, Pradeep Srinivasa, Yun Zou, and Sanjay Ra-
jopadhye. Alphaz: A system for analysis, transformation, and code generation in
the polyhedral equational model. Colorado State University, Tech. Rep, 2012.

[253] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang Zhang,
Zizhong Chen, Xin Liu, and Yibo Zhu. Bytetransformer: A high-performance
transformer boosted for variable-length inputs. arXiv preprint arXiv:2210.03052,
2022.

[254] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile
and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 2019.

[255] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing
Yang, and Yunxin Liu. nn-meter: towards accurate latency prediction of deep-
learning model inference on diverse edge devices. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, pages 81–93,
2021.

[256] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan
Fardad, and Yanzhi Wang. A systematic dnn weight pruning framework using
alternating direction method of multipliers. arXiv preprint arXiv:1804.03294, 2018.

[257] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao,
Bin Cheng, Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and
Xuefeng Jin. Akg: Automatic kernel generation for neural processing units using
polyhedral transformations. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2021, page
1233–1248, New York, NY, USA, 2021. Association for Computing Machinery.

[258] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm,
Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko.
Dietcode: Automatic optimization for dynamic tensor programs. Proceedings of
Machine Learning and Systems, 4:848–863, 2022.

165

[259] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incre-
mental network quantization: Towards lossless cnns with low-precision weights. In
International Conference on Learning Representations (ICLR), 2017.

[260] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232, 2017.

[261] Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao, JJ Bai, Jun Yang,
XY Liu, LS Diao, and Wei Lin. Disc: A dynamic shape compiler for machine
learning workloads. In Proceedings of the 1st Workshop on Machine Learning and
Systems, pages 89–95, 2021.

[262] Vojin Zivojnovic, Stefan Pees, Christian Schlager, Markus Willems,
Rainer Schoenen, and Heinrich Meyr. Dsp processor/compiler co-design: a
quantitative approach. In Proceedings of 9th International Symposium on Systems
Synthesis, pages 108–113. IEEE, 1996.

166

167

VITA

Wei Niu

Aug. 1995 Born - Yiyang, Hunan, China

Aug. 2012 - June. 2016 B.S. in Software Engineering,

Beihang University, Beijing, China

Apr. 2016 - July. 2018 Mobile Application Developer,

Bytedance, Ltd., Beijing, China

Aug. 2018 - Aug. 2023 Ph.D. in Computer Science,

William & Mary, Williamsburg, VA, USA

May. 2021 - Aug. 2021 Full-time Research Intern,

Bytedance, Ltd., CA, USA

Oct. 2021 - Apr. 2022 Part-time Research Intern,

CoCoPIE, Inc., VA, USA

Wei Niu is a Ph.D. candidate in the Department of Computer Science at William

& Mary under the supervision of Professor Bin Ren. Wei’s research interests lie in real-

time machine learning systems, mobile computing, parallel computing, and compilers. In

particular, he focuses on achieving real-time DNN execution on mobile platforms with

compiler optimizations. His work has appeared at top conferences (e.g., MICRO, PLDI,

ASPLOS, RTAS, ICS, DAC, NeurIPS, CVPR, AAAI, ECCV, ICCV) and top journals (e.g.,

TPAMI, CACM). He is the recipient of the Stephen K. Park Graduate Research Award at

William & Mary. He also won first place in the 2020 ISLPED Design Contest, the CACM

Contributed Article Award in 2021, and the Best Paper Award at an ICLR workshop in

2021.

	Achieving Real-Time Dnn Execution On Mobile Devices With Compiler Optimizations
	Recommended Citation

	tmp.1697666406.pdf.TrCK4

