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ABSTRACT

Software ine�ciencies are inevitable in computer systems. At the code level, soft-
ware packages have become increasingly complex, this complexity often introduces
ine�ciencies across software stacks, leading to performance degradation. At the
resource level, the evolution of hardware outpaces the performance optimization of
software, leading to resource wastage and energy dissipation in emerging architec-
ture. To better understand program behaviors, software developers take advantage
of performance profiling tools. Existing profiling techniques, whether fine-grained
profilers or coarse-grained profilers focus on identifying hotspots, however, hotspot
analysis hardly diagnoses whether a resource is being used in a productive manner
of a program. Thus, developers need to make extra e↵ort to decide if a hotspot
needs to be optimized. For this reason, to better perform program optimizations,
we need tools that investigate resource wastage rather than resource usage.
In this dissertation, we perform program ine�ciency detection from di↵erent per-
spectives. First, we study the ine�ciency in compiler optimizations. We propose
CIDetector, a fine-grained profiler, to detect compiler-introduced and compiler-
missed ine�ciencies. Through our analysis, we select 12 representative programs
from di↵erent domains to form a dataset CIBench. We perform the first study
on compiler-related ine�ciencies in fully optimized binary codes, it o↵ers valuable
insights for scientific programmers, compiler writers, and tool developers. More-
over, we study the interaction ine�ciency for Python applications, and extract two
ine�ciency patterns that are common in interaction ine�ciencies. Based on these
patterns, we categorize the interaction ine�ciencies by their root causes. We pro-
pose PieProf, a lightweight profiler, to pinpoint interaction ine�ciencies in Python
applications. The principle of PieProf is to measure the ine�ciencies in the na-
tive execution and associate ine�ciencies with high-level Python code to provide a
holistic view. Guided by PieProf, we optimize 17 real-world applications, yielding
speedups up to 6.3⇥ on application level.
In the meantime, we notice the same program ine�ciency patterns occur in students’
codes. As instructors, we realized that the importance of code performance educa-
tion to students can never be exaggerated. By exploring the pedagogical method
and developing educational tools, we hope to understand and address the challenges
that students have during programming. We report our experience of integrating VS
Code into an introductory-level Python programming course, together with compre-
hensive guidance, it significantly balances the teaching resources and shortens the
students’ learning curves. Additionally, we propose ProTracker, an end-to-end
solution to estimate the progress of programming assignments with machine learn-
ing techniques. ProTracker employs static analysis to extract features from as-
signment samples from previous semesters, and applied a two-level cross-validation
method for tuning and selecting the proper machine-learning model. It runs as a
VS Code extension and performs real-time programming progress estimation for
students.
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Chapter 1

Introduction

Software ine�ciency analysis is an important research topic in the software engineering

community, it is inevitable in computer systems ranging from smartphones to supercom-

puters and data centers. At the code level, software packages have become increasingly

complex. They are comprised of a large amount of source code, sophisticated control and

data flow, a hierarchy of component libraries, and growing levels of abstraction. This

complexity often introduces ine�ciencies across software stacks, leading to performance

degradation. At the resource level, the evolution of hardware outpaces the performance

optimization of software, leading to resource wastage and energy dissipation in emerging

architectures.

Performance profiling abounds in the tools community to aid software developers in un-

derstanding their program behavior. Existing profiling techniques, no matter fine-grained

ones (e.g., TAU, Scalasca) or coarse-grained ones (e.g., Intel VTune [141], Linux Perf [41],

HPCToolKit [2]), focus on identifying hotspots. The hotspot refers to the code region

that consumes plenty of resources during program execution. Hotspot analysis is indis-

pensable; however, it hardly diagnoses whether a resource is being used in a productive

manner that contributes to the overall e�ciency of a program. Hence significant burden is

on the developer to make a judgment call on whether there is scope to optimize hotspots.

Derived metrics, e.g., Cycles-Per-Instruction (CPI), and cache miss ratio, o↵er slightly
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better intuition into hotspots but are still not panaceas. There is a need for tools that

investigate resource wastage instead of resource usage.

In this dissertation, we introduce two research works that perform program ine�ciency

detection and provide optimization guidance for software packages: (1) CIDetector

and CIBench, that perform the first study on compiler-introduced and compiler-missed

optimizations in fully optimized binary codes; (2) PieProf, a lightweight profiler that

pinpoints interaction ine�ciencies between Python codes and native libraries.

With the help of powerful profilers, we extensively examine a wide range of real-world

production software packages and influential codebases, at the same time, as teaching

assistants and instructors, surprisingly we found the same types of ine�ciency in student

assignment and project codes. It brings to our attention that programming education

in universities needs to focus more on code quality and performance training. How to

educate students on programming is always an important topic.

As system researchers, to improve education on code quality and performance, we

focus on IDEs (integrated development environments), which play an important role in

learning a programming language; with the help of IDEs, student benefit from an e�cient

development phase, and build better coding habits. We introduce two educational research

works that focus on curricular development and innovation: (1) We report the experience

of integrating Visual Studio Code in a CS1 Python programming course, which signifi-

cantly balances the teaching resources and shortens the learning curve; (2) We propose

ProTracker, which is a machine learning-based solution to estimate students’ real-time

programming progress.

By adding new techniques to the renovated pedagogical learning environment, we bet-

ter understand and address the challenges that students will have during programming,

which helps students write high-quality code, further succeeds in their computer science

fundamental studies and future careers, and eliminates the occurrence of software ine�-

ciencies from the root.
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1.1 Contribution Highlights

My dissertation research falls into the intersection of software ine�ciency analysis and

computer science education research.

1.1.1 Software Ine�ciency Analysis

Ine�ciency Detection in Compiler Optimizations. Compilers are an indispensable

component in the software stack. Besides generating machine code, compilers perform mul-

tiple optimizations to improve code performance. Typically, scientific programmers treat

compilers as a blackbox and expect them to optimize code thoroughly. However, optimiz-

ing compilers are not a performance panacea. They can miss optimization opportunities

or even introduce ine�ciencies that are not in the source code. There is a lack of tool

infrastructures and datasets that can provide such a study to help understand compiler

optimizations.

We investigate an important compiler optimization—dead and redundant operation

elimination. We first develop a tool CIDetector to analyze a large number of programs.

In our analysis, we select 12 representative programs from di↵erent domains to form a

dataset called CIBench. We utilize five compilers to optimize CIBench with the highest

optimization options available and leverage CIDetector to study each generated binary.

We provide insights into two aspects. First, we show that modern compilers miss several

optimization opportunities, in fact, they even introduce some ine�ciencies, which require

programmers to refactor the source code. Second, we show how compilers have advanced

in a vertical evolution (the same compiler of di↵erent release versions) and a horizontal

comparison (di↵erent compilers of the most recent releases). With empirical studies, we

provide insights for software engineers, compiler writers, and tool developers.

Interaction Ine�ciency Detection in Python Applications. Python has become

a popular programming language because of its excellent programmability. Many modern
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software packages utilize Python for high-level algorithm design and depend on native li-

braries written in C/C++/Fortran for e�cient computation kernels. However, the abstrac-

tion lying on the boundary of Python and native libraries introduces performance losses

on the interaction between Python code and native libraries, which we refer interaction

ine�ciencies. Existing e↵orts cannot address such ine�ciencies. On the one side, Python

code, typically run with interpretation, is disjoint from its execution behavior. Python

profilers [58, 197, 61, 174, 143, 63, 129, 136, 172] fail to step in native code and analyze its

execution details. On the other side, native profiling tools [141, 41, 118, 2, 23, 190, 163, 191]

locate hotspots, o↵ering insights for ine�ciencies diagnosis. However, these tools do not

have Python code’s semantics to understand algorithm defects, they cannot identify the

detailed root cause of the ine�ciencies. A comprehensive solution for interaction ine�-

ciencies that bridges the knowledge gap between Python and native code is demanding.

To understand the interaction ine�ciencies, we extensively study a large collection of

Python software packages and categorize them according to the root causes of ine�cien-

cies. We extract two ine�ciency patterns that are common in interaction ine�ciencies.

Based on these patterns, we develop PieProf, a lightweight profiler, to pinpoint the in-

teraction ine�ciencies in Python applications. PieProf applies CL-algorithm1 [191, 162],

an e�cient redundant memory access detecting method, and leverages it in a complicated

multi-languages environment, in which Python is used to control the semantics and native

libraries are used to perform high-performance computation. The principle of PieProf

is to measure the ine�ciencies in the native execution and associate ine�ciencies with

high-level Python code to provide a holistic view. Guided by PieProf, we optimize 17

real-world applications, yielding speedups up to 6.3⇥ on the application level.

1.1.2 Computer Science Education Research

Advanced Learning Environment. Involving integrated development environments

(IDEs) in introductory-level (CS1) programming courses is critical. IDEs play an impor-

1Chabbi-Liu Algorithm.
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tant role in learning a programming language; through the help of IDEs, students benefit

from e�cient programming, testing, and debugging; students further develop better cod-

ing habits and flatten the learning curve of a new language. As a result, more and more

instructors start involving IDEs in introductory-level Python courses [131, 3, 180], which

significantly improves students’ coding experiences. However, it is di�cult for instructors

to find a suitable IDE that is beginner friendly and supports strong functionality.

In this work, we report the experience of integrating Visual Studio Code (VS Code) in a

CS1 Python programming course at the Department of Computer Science, North Carolina

State University. We describe our motivation for choosing VS Code and how we introduce

it to students. We create comprehensive guidance with hierarchical indexing to help

students with diverse programming backgrounds, which significantly balances the teaching

resources and shortens the learning curve. We perform an experimental evaluation of

students’ programming experience of using VS Code and validate the VS Code together

with guidance as a promising solution for CS1 programming courses.

Educational Data Mining. Tracking the progress of programming assignments gives

useful feedback to students and instructors to better manage time and teaching resources.

However, there is no such tool available in the programming environment for students and

instructors to easily understand the progress accurately and e�ciently.

We propose ProTracker, a machine learning-based solution to estimate the progress

of programming assignments in real time. ProTracker generates datasets by extracting

features in assignment samples from previous semesters, applies a two-level cross-validation

method for tuning and selecting appropriate machine-learning models. The frontend of

ProTracker runs as a VS Code extension, Based on the current codes (in the text

format) in students’ editors. We evaluate ProTracker on six datasets and observe that

ProTracker achieves an average R
2 score of 0.86 with 2.5ms overhead for real-time

estimating programming progress of assignments.
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1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we propose

CIDetector, a whole-program fine-grained profiler that works on fully optimized bi-

naries, and CIBench, the first dataset with 12 representative programs from various

domains for studying compiler-related ine�ciencies. In Chapter 3, we present PieProf,

a profiler to identify interaction ine�ciencies and provide intuitive optimization guidance.

In Chapter 4, we report the experience of integrating VS Code and VS Code Guidance

in a CS1 Python programming course. In Chapter 5, we introduce ProTracker, an

end-to-end solution to estimate the real-time progress of programming assignments with

machine learning techniques. And in Chapter 5, we describe the conclusion and discuss

future research directions.
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Chapter 2

What Every Scientific

Programmer Should Know About

Compiler Optimizations?

2.1 Introduction

Compilers are an important component in the modern software stack. They, typically,

consume source code as inputs, generate machine code1, and apply various optimizations.

In practice, scientific programmers typically treat compiler as a blackbox and expect it to

do a good job at a high optimization level (e.g., -O3 for most compilers) for performance.

However, optimizing compilers are not a panacea; it is challenging for compilers to deliver

“bare-metal” performance due to multiple reasons.

Production software packages of various domains have become increasingly complex;

they integrate multiple components for various functionalities, and employ sophisticated

flow of control and a hierarchy of component libraries. This complexity often introduces

ine�ciencies in the software stacks, which creates challenges for optimizing compilers. Op-

timizing compilers are adept at eliminating ine�ciencies with techniques such as common

1Some compilers are also used in source-to-source translation.
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subexpression elimination [42], value numbering [144], constant propagation [189], par-

tial redundancy elimination [171], dead code elimination [171], among others. Although

profile-guided optimization (PGO) [168] and link-time optimization (LTO) [55, 86, 80] can

further optimize code with extra information such as runtime statistics and better visi-

bility in the entire library hierarchy, the myopic view of the program yields conservative

gains.

Thus, there is an urge from performance sensitive developers, such as the scientific

programmers in the High-Performance Computing (HPC) domain, to understand the lim-

itations in popular compilers and avoid performance pitfalls associated with optimizing

compilers and achieve better runtime performance by curating their code.

This paper bridges the gap between scientific programmers and compilers. In this

paper we hope to answer the following questions:

1. Which ine�ciencies compilers introduce or fail to optimize?

2. Why optimizing compilers fail to eliminate ine�ciencies?

3. Are compilers of di↵erent versions or di↵erent vendors similar in optimizing ine�cien-

cies?

4. How can programmers become aware of ine�ciencies that are not optimized by com-

pilers? Do common patterns exist?

5. Can source code modification eliminate ine�ciencies? If yes, how many code lines does

one typically need to change?

6. Can source code optimization always yield portable speedups for code compiled by

di↵erent compilers?

A major challenge of this research is the lack of standard datasets for experiments.

Although some prior studies [117, 153, 23, 190, 164, 46] identify ine�cient computations,

they are not focused on compiler optimizations. Instead, many ine�ciencies studied in the
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prior work are related to algorithms, data structures, and inputs. Some prior works [83, 95,

150] text mine commit logs in public repositories; these techniques, typically, do not reveal

any ine�ciencies arising from compiler-introduced problems and optimizations missed by

compilers, which is the focus of our work.

We take a step in addressing these challenges by developing a tool infrastructure

(CIDetector 2) to analyze a large number of software programs and identify inter-

esting ones to form the dataset (CIBench) for the study. CIDetector can (1) pinpoint

ine�ciencies to guide code optimization as all the programs in the dataset CIBench have

both original and our hand-optimized versions, and (2) quantify the ine�ciencies in the

machine code produced by various compilers for our study. We hope the community will

adopt CIBench, add more coverage to make it comprehensive, and inspire compiler writ-

ers to develop optimization techniques3 to match or beat the performance of our hand

optimizations.

With the help of CIDetector and CIBench, we attempt to answer the aforemen-

tioned six questions and provide insights for programmers, compiler writers, and tool

developers.

Contribution. In this work, we make the following contributions.

• We develop CIDetector, a tool to analyze a large number of applications and pinpoint

dead/redundant operations in fully optimized binary executables generated by a variety

of compilers.

• We select 12 representative code bases with the help of CIDetector to form the

dataset CIBench, which is the first dataset for studying compiler-related ine�ciency.

We characterize, optimize, and categorize CIBench in multiple ways.

• We leverage CIDetector and CIBench to study the implications of compiler evolu-

tion on ine�ciency optimization, not only with the same compiler of di↵erent releases

2CI denotes compiler ine�ciency.
3including adopting optimizations discussed in the rich compiler literature
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but also with di↵erent state-of-the-art compilers.

• We provide analytical insights as well as open source CIDetector and CIBench to

benefit scientific programmers, compiler writers, and tool developers.

2.2 Research Scope and Methodology

Assessing all programs compiled through all compilers on all architectures is simply in-

feasible. We need to make pragmatic choices to scope our evaluation. First, we limit our

study to scientific programs, where compilers play a crucial role in delivering high per-

formance; moreover, scientific computing is a field that is at the forefront of performance

demands.

Second, we choose to observe ine�ciencies at the machine-code level, which can expose

the ine�ciencies not shown up in the source/intermediate code. However, we attribute

our observations back to the code and program constructs for optimization. Further-

more, for pragmatic reasons, we evaluate only x86 64, which is the most widely deployed

architecture.

Third, we choose dynamic program analysis, which can overcome the limitations in

static analysis, such as imprecise alias and pointer analysis. Actually, we assume the binary

code under investigation is thoroughly optimized by various static analysis techniques in

compilers. This choice means we can only observe the code that executes on our inputs.

Finally, with thousands of compiler optimizations developed over more than several

decades of research, it would be impractical to identify whether each one of them is

applied or missed at runtime. We focus on a particular class of compiler optimization —

elimination of useless operation. A vast number of optimizations fall in this category, e.g.,

dead code elimination, load elimination, constant propagation, lazy code motion, loop

invariant code motion, to name a few. Hence, our choice of looking for useless operations

at runtime provides good coverage, as it will become evident in our evaluation.

We define three kinds of useless operations in the context of our dynamic analysis for
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detecting compiler ine�ciencies:

Definition 1 Dead Store. A dead store occurs when two consecutive store operations to

the same memory location are not intervened by a load operation on the same location.

Definition 2 Redundant Store (a.k.a Silent Store). A store operation, writing a value V

at register/memory location M , is redundant (or silent) if M already holds the same value

V .

Definition 3 Redundant Load. A load operation, loading a value V from memory location

M , is redundant if the immediately preceding load from M also loaded the same value V .

Our choice of these ine�ciency detection techniques may seem narrowly scoped; but, as

you will notice in our evaluation, they are very powerful in detecting missed-optimizations

as well as compiler-introduced ine�ciencies. For example, a missed scalar replacement

will appear as repeated loads of the same data from the same location within or across

loop iterations; a missed inlining may appear as storing the same values to the same stack

slots (arguments) in the same calling context. Code hoisting onto hot paths will appear

as operations whose values are never used before being overwritten.

�7

Commodity x86 CPU processors

GCC ICC LLVM

CIDetector

Intel Pin

Fully optimized binary executables

Figure 2.1: The overview of CIDetector in the software stack.
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2.3 CIDetector Design

CIDetector has two functionalities. First, with CIDetector, we can analyze a large

number of programs and select the ones suitable for CIBench. Second, with CIDetec-

tor, we are able to analyze programs in CIBench that are optimized by di↵erent compil-

ers. CIDetector should be compiler-independent and provide deep insights. Figure 2.1

provides an overview of the position of CIDetector in the software stack. CIDetec-

tor is built atop Intel Pin [97, 31] dynamic binary instrumentation tool and accepts fully

optimized executable. CIDetector leverages Pin to instrument memory and register ac-

cesses (including inspecting the runtime values) and detects useless operations as defined

in Section 2.2.

Dead stores. The driving principle for dead store detection is the invariant that two

writes to the same memory location without an intervening read operation makes the first

write to that memory location dead. To identify dead writes throughout an execution, we

monitor every memory read and write operation issued during program execution. For

each addressable unit of memory M accessed by the program, we assign a state indicating

whether the last operation on M was a read or a write. If an instruction writes to an address

with a write state, a dead store occurs4. When a dead store is detected, information is

recorded for later reporting. Every dead write has two calling contexts involved — the

first write (i.e. the dead write) at ctxtd and the second write (i.e. the killing write) at

ctxtk, represented by the tuple Ti = (ctxtd, ctxtk). We maintain a map Ti : Ci, where Ci

is the number of instances of dead writes observed at the same tuple Ti. CIDetector

reports each Ci in the descending order of Ci value, which highlights the top places of

dead (and killing) writes in the code. This methodology follows the strategy devised by

Chabbi and Mellor-Crummey [23].

4A final write to an address without a subsequent read qualifies as a dead store.
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Table 2.1: The Overview of CIBench dataset.

Ine�ciency Type Program Name Cause Ine�ciency Percentage Problematic Code Total LoC Modified LoC Speedup Domain

Dead
Store

Hmmer[71] VH1 28.9% fast algorithms.c:134-150 35992 18 2.28⇥ Bioinformatics
Srad v2 [24] VH 13.0% srad.cpp:153-156 239 4 1.11⇥ Image Processing

Bzip2-1.0.6 [151] IS2 22.3% blocksort.c:345-470 8117 15 1.08⇥ System Software

Redundant
Store

LavaMD [24] IC3 4.5% kernel cpu.c:173 826 34 1.91⇥ Scientific Computing
Backprop [24] IC 0.6% backprop.c:323 679 2 1.22⇥ Machine Learning

Redundant
Load

Hotspot3D [24] SSR4 46.8% 3D.c:110,175 272 17 1.46⇥ Circuit Design
H264ref [71] MFI5 58.5% mv-search.c:419 51578 62 1.29⇥ Multimedia Processing
Hoard [15] LIA6 67.3% ⇤ libhoard.cpp:127 44730 4 1.50⇥ ⇤ System Software

NERSC MSB1[139] MCP7 98.1% msgrate.c:67 3551 2 3.06⇥ Network Communication
NERSC MSB2 [139] SSR 98.1% msgrate.c:66 3551 2 1.17⇥ + Network Communication

GSL FFT [65] SSR 68.7% c radix2.c:133,134 400475 8 1.03⇥ Scientific Computing
Povray [71] MFI 75.0% csg.cpp:250 155177 19 1.04⇥ Image Processing

USQCD Chroma [53] MFI 15.8% qdp random.h:56 973266 10 1.09⇥ Scientific Computing
1: Value hoisting.
2: Instruction Scheduling.
3: Identity computation.
4: Suboptimal scalar replacement.
5: Missing function inlining.
6: Limited interprocedural analysis.
7: Missing constant propagation.
⇤: Hoard cannot be compiled by gcc 4.1.2, so we report both ine�ciency percentage and speedup compiled with gcc 6.2.
+: The speedup of MSB2 is a further optimization atop MSB1.

Redundant stores. The driving principle for redundant store detection is the invariant

that two writes to the same memory location with the same value makes the second write to

that memory location redundant. To identify redundant stores, we insert instrumentation

before and after a memory write operation. We then need to capture the e↵ective address

e and the value v’ at e before an instruction’s execution into a bu↵er, say b. With this

information, the analysis performed immediately after the instruction can compare the

new value v at e with the previous value v’ captured in b for the number of bytes that the

instruction writes and flag redundancy i↵ v=v’. The mechanism of reporting redundant

stores is similar to CIDetector for dead stores, which quantifies the occurrence count

of redundant stores and reports the top pairs for optimization. This follows the strategy

in [190].

Redundant loads. This is similar to detecting redundant stores: instead of monitoring

memory write operations, CIDetector monitors memory reads [163, 164].

CIDetector also associates the calling contexts with source code for intuitive op-

timization guidance. For studying programs in CIBench, CIDetector computes the

ine�ciency percentage as the ine�ciency instances over the total number of loads (for

redundant loads) or stores (for dead and redundant stores).
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2.4 CIBench Design

We run CIDetector on a large number (more than 100) of scientific codes to identify

the ones that su↵er from significant dead/redundant operations (i.e., programs typically

su↵ering from more than 10% redundant stores or 50% redundant loads). These pro-

grams include benchmarks from SPEC CPU2006 [71], CPU2017 [21], OMP2012 [108],

Rodinia [24], CORAL2 [33], Triniti [139] benchmark suites, as well as some simulation

packages from national laboratories, such as USQCD [53] and NWChem [176], and also

supporting libraries. e.g., GNU Scientific Library (GSL) [65] and Hoard [15]. We use gcc

4.1.2 -O3, the default compiler in Red Hat Enterprise Linux 5 as the baseline compiler5.

We intentionally choose an older compiler version as our baseline to help assess the evolu-

tion. Our approach results in 12 programs with ine�ciencies of di↵erent reasons to form

the dataset CIBench for further analysis.

The design of CIBench follows four criteria:

1. Programs should have compiler-related ine�ciencies. We filter out programs with dead

or redundant operations due to misuse of data structures, suboptimal algorithms, or

skewed inputs.

2. Programs should have significant ine�ciencies that are actionable for optimization.

As for a self-contained dataset, we provide both original and optimized code for each

program in CIBench. The optimization typically yields nontrivial speedups.

3. Programs should be representative of di↵erent categories. We select CIBench pro-

grams according to di↵erent ine�ciency categories defined in Section 2.2, and we also

cover both compiler-missed optimizations and compiler-introduced ine�ciencies.

4. CIBench should cover di↵erent domains in scientific computing. We select high-

performance computing packages, machine learning programs, and system software

5Note that we use other compilers and newer versions in the subsequent sections.
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1 I mc[k] = mpp[k-1] + tpmm[k-1];
2 if ((sc = ip[k-1] + tpim[k-1]) > mc[k])
3 I mc[k] = sc;

Listing 2.1: Dead stores in Hmmer.

1 add (%rbx ,%rcx ,4) ,%eax #hoist the computation result in %eax
2 Imov %eax ,0x4(%rsi) #the 1st store to mc[k]
3 ...
4 cmp %edx ,%eax #the conditional check uses mc[k]’s value stored in %

eax instead of 0x4(%rsi)
5 ...
6 Imov %edx ,0x4(%rsi) #the 2nd store to mc[k]

Listing 2.2: The assembly code of Listing 2.1.

libraries supporting the computation. Some of them are from well-known benchmark

suites and some others are real applications.

Table 2.1 shows all the programs in CIBench categorized by di↵erent ine�ciency types.

We highlight the ine�cient code location and quantify the speedups after optimizing the

ine�ciencies. As the ine�ciencies themselves and their optimizations are not straightfor-

ward, in this section, we elaborate on these ine�ciencies and categorize them according

to their root causes.

It is worth noting that some ine�ciencies do not show up in the source code; the

compilers introduce them during the code generation due to either the conservative opti-

mization (Section 2.4.1) or the aggressive optimization (Section 2.4.2). Other ine�ciencies

are expected to be optimized by compilers but we observe that they remain unoptimized.

We group programs according to the failure of di↵erent compiler optimizations in Sec-

tion 2.4.3-2.4.6.

2.4.1 Value Hoisting

Hmmer. Hmmer is a SPEC CPU2006 benchmark [71]. It uses profile hidden Markov

models of multiple sequence alignments to search for patterns in DNA sequences.

Listing 2.1 shows the problematic code piece in Hmmer where many dead stores occur.

This code appears in a two-level nested loop, and CIDetector reports that the store
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1 int mcTmp = mpp[k-1] + tpmm[k-1];
2 if ((sc = ip[k-1] + tpim[k-1]) > mcTmp)
3 mcTmp = sc;
4 mc[k] = mcTmp;

Listing 2.3: Optimized Hmmer that avoids dead stores.

1 I c[k] = 1.0 / (1.0+ den) ;
2 if (c[k] < 0) {c[k] = 0;}
3 I else if (c[k] > 1) {c[k] = 1;}

Listing 2.4: Dead stores in Srad v2.

in line 3 overwrote the store in line 1. In the unoptimized code, the two stores to mc[k]

one each on line 1 and line 3 are separated by a load in the conditional expression on

line 2, thus making them non-dead. In the compiler-optimized assembly code as shown

in Listing 2.2, the value of mc[k] computed on line 1 is held in a register, which is reused

during the comparison on line 2; however, the write to memory on line 1 is not eliminated,

since the compiler cannot guarantee that the arrays ip, tpim, and mc do not alias each

other. Thus in the compiler optimized code, if line 3 executes, it overwrites the previous

store to mc[k] on line 1.

Optimization. We apply two optimization techniques to eliminate dead stores in Hm-

mer. First, we use a local variable to record the value and assign its value to mc[k] when

the condition satisfies, as shown in Listing 2.3. The other optimization is to use “restrict”

keyword for all three arrays to inform compilers that they never alias to each other.

Srad v2. Srad v2 is a Rodinia benchmark [24], which applies partial di↵erential equa-

tions to filter noise in images. Listing 2.4 shows the ine�cient code that su↵ers from a

similar problem (dead stores) as Hmmer: the value computed for c[k] at line 1 is stored

in a register and reused in the condition check at line 2. Unlike Hmmer, this ine�ciency

only involves one array, which provides a di↵erent insight into compilers from handling

multiple arrays.

Optimization. Similar to Hmmer, we use a local variable to record the value for c[k]

and only assign c[k] when the condition satisfies.
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1 Bool mainGtU (UInt32 i1, UInt32 i2 , UChar* block , ...){
2 ...
3 /* 1 */
4 c1 = block[i1];
5 c2 = block[i2];
6 if (c1 != c2) return (c1 > c2);
7 i1++; i2++;
8 /* 2 */
9 c1 = block[i1];

10 c2 = block[i2];
11 if (c1 != c2) return (c1 > c2);
12 i1++; i2++;
13 /* 3 */
14 c1 = block[i1];
15 c2 = block[i2];
16 if (c1 != c2) return (c1 > c2);
17 i1++; i2++;
18 ...
19 }

Listing 2.5: Dead stores in Bzip2-1.0.6.

2.4.2 Instruction Scheduling

Bzip2-1.0.6. Bzip2 [151] is a tool to compress files. An inlined function mainGtU ac-

counts for many dead stores, as shown in Listing 2.5. This function has 12 successive con-

ditions checking the accesses of array block[i1] and block[i2] through block[i1+11]

and block[i2+11]; this function returns when any check fails. The source code does not

show up any dead stores.

However, when looking into the corresponding assembly code in Listing 2.6, we can see

there are dead stores due to compiler’s instruction scheduling. As shown in Listing 2.6,

the compiler aggregates address computation &block[0] till &block[i1 +11] before the

first conditional check (line 6 in Listing 2.5). However, there are not enough registers to

store all the pre-computed addresses, hence, they are spilled to the memory during scalar

replacement.

For the workload under study, execution of mainGtU returns in the early part of the

checks, which means in such a cases many of the the pre-computed addresses remain

unused; when the spill locations are later overwritten, dead stores show up.

Optimization. We add complex control sequence — a switch statement before condi-

tional checks – to defeat compiler from performing its aggressive code hoisting [51].
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1 lea (%r11 ,%rcx ,1) ,%r8d #%r8d contains i1
2 lea 0x1(%r8) ,%ebx #compute block[i1+1] in %ebx
3 lea 0x2(%r8) ,%r9d #compute block[i1+2] in %r9d
4 lea 0x3(%r8) ,%r15d #compute block[i1+3] in %r15d
5 ...
6 mov %rbx ,0x168(%rsp) #spill block[i1+1] to stack
7 mov %r9 ,0x160(%rsp) #spill block[i1+2] to stack
8 mov %r15 ,0x158(%rsp) #spill block[i1+3] to stack
9 ...

10 cmp %al ,(%r15 ,%rdx ,1) #fist check if(c1 != c2)
11 ...
12 cmp %al ,(%r15 ,%rdx ,1) #second check if(c1 != c2)
13 ...

Listing 2.6: The assembly code of Listing 2.5.

2.4.3 Suboptimal Scalar Replacement

Three programs from CIBench su↵er from suboptimal scalar replacement but for di↵erent

reasons. Hotspot3D fails to store array values that are reused across loops into registers;

FFT from GSL fails to store reused array values in the same loop iteration into the

registers; MSB from NERSC has global constant variables that do not reside in registers.

All of these three programs have a large fraction of redundant loads because they frequently

load the same values from the same memory location.

Hotspot3D. Hotspot3D from Rodinia Benchmark Suite [24], is a thermal simulation

tool, estimating processor temperature based on an architectural floorplan and simu-

lated power measurements [74]. Listing 2.7 shows the problematic code at line 7, where

tOut t[c] is updated with the values of tIn t[]. We observe that when w = c - 1 and

e = c + 1, the value of tIn t[e] of the current iteration is calculated by tIn t[c] from

next iteration and tIn t[w] from the one after next iteration, but the compiler fails to

perform register promotion for tIn t[e] in this computation.

Optimization. we manually store the value of tIn t[e] in a local variable for later

reuses, aka scalar replacement. The compiler automatically places this local variable into

a register.
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1 for(y = 0; y < ny; y++){
2 for(x = 0; x < nx; x++){
3 ...
4 w = (x == 0) ? c : c - 1;
5 e = (x == nx -1) ? c : c + 1;
6 ...
7 I tOut_t[c]=cc*tIn_t[c]+cw*tIn_t[w]+ce*tIn_t[e]+ ...
8 }
9 }

Listing 2.7: Redundant loads in Hotspot3D.

1 for (...){
2 ...
3 REAL(data ,stride ,j) = REAL(data ,stride ,i) - wd_real;
4 IMAG(data ,stride ,j) = IMAG(data ,stride ,i) - wd_imag;
5 REAL(data ,stride ,i) += wd_real;
6 IMAG(data ,stride ,i) += wd_imag;
7 }

Listing 2.8: Redundant loads in GSL FFT.

FFT of GSL-2.1.5. The GNU Scientific Library (GSL) [65] is a numerical library for

C and C++ programmers, which provides a number of mathematical routines. FFT (Fast

Fourier Transformations) is one of such routines.

Listing 2.8 shows the problematic code where data real[i] (i.e., REAL(data,

stride, i) are loaded twice at line 3 and 5, and data imag[i] (i.e., IMAG(data, stride,

i)) are loaded twice at line 4 and 6; Both data real[i] and data imag[i] have im-

mutable values in the same iteration and can be stored in registers for reuse. However,

due to the unresolved aliases, compilers fail to promote the values into registers.

Optimization. From the premise of never alias, we optimize the code with the scalar

replacement. We manually place REAL(data, stride, i) and IMAG(data, stride, i)

in local variables for computation, so as the compiler can place the values into registers.

MSB-2. MSB, a NERSC-8/Trinity Benchmark [139], measures the message passing rate.

In Listing 2.9 we find two di↵erent types of ine�ciencies, for the convenience of discus-

sion, we name the ine�ciency described here as MSB2, and the other type of ine�ciency

described in section 2.4.4 as MSB1. Listing 2.9 highlights the ine�cient code at line 8,

where the value of variable cache size is repeatedly loaded from memory. The compiler
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1 int cache_size = (8 * 1024 * 1024 / sizeof(int));
2 ...
3 int *cache_buf;
4 ...
5 static void cache_invalidate(void){
6 int i;
7 cache_buf [0] = 1;
8 for(i = 1; i < cache_size; ++i){
9 cache_buf[i] = cache_buf[i-1];

10 }}

Listing 2.9: Redundant loads in MSB.

does not promote this value into a register because cache size is a global variable and

the compiler conservatively assumes its value could be modified.

Optimization. We define a local variable for cache size to ensure the register can

hold this value and use it safely in the loop.

2.4.4 Missing Identity Computation and Constant Propagation Opti-

mization

Ine�ciencies of this category are due to the failure of compiler optimization on com-

putation whose values can be either reasoned about statically or bypassed by inserting

conditional checks.

MSB1. MSB has another ine�ciency in Listing 2.9. Line 9 sets all cache buf elements

to be 1. However, the compiler does not perform the constant propagation to eliminate

this loop, possibly due to the inability of the compiler to prove the safety of the assignment

of a global array without the awareness of execution.

Optimization. We directly assign 1 to each element of cache buf.

Backprop. Backprop [24], a Rodinia benchmark, trains the weights of connecting nodes

on a layered neural network. Listing 2.10 shows the ine�cient code, which repeatedly

writes the same values to new dw at line 3. The loop shown in Listing 2.10 has been

accessed twice: for the first time, the loop iterates 17 times and during iterations the

value new dw is non-zero. However, during the second time, the loop has huge iterations
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1 for(j = i; j <= ndelta; j++){
2 for (k = 0; k <= nly; k++) {
3 I new_dw =(( ETA*delta[j]*ly[k])+( MOMENTUM*oldw[k][j]));
4 w[k][j] += new_dw;
5 oldw[k][j] = new_dw;
6 }}

Listing 2.10: Redundant stores in Backprop.

1 for (i=0; i<NUMBER_PAR_PER_BOX; i=i+1){
2 for (j=0; j<NUMBER_PAR_PER_BOX; j=j+1){
3 I r2 = rA[i].v + rB[j].v - DOT(rA[i],rB[j]);
4 u2 = a2*r2;
5 vij= exp(-u2);
6 fs = 2.*vij;
7 ...}}

Listing 2.11: Redundant stores in LavaMD.

of over one million but the value new dw is zero all the time, where the redundancy occurs

since adding zero does not change the value of w.

Optimization. This compiler-missed optimization can be addressed by adding a con-

ditional check. We only update the value of w when new dw is non-zero.

LavaMD. LavaMD, a benchmark from Rodinia Benchmark Suite, calculates particle po-

tential and relocation due to mutual forces between particles within a large 3D space [24].

Listing 2.11 shows the ine�cient code, where exp() often returns the same value. Further

investigation shows that r2 in line 3 is often assigned with the same value, and a2 is a

loop invariant. As a result, the expensive exponential computation often produces the

same value in the loop.

Optimization. We insert a conditional check before line 4. If the value of r2 keeps

unchanged, we reuse the result of vij from the previous iteration.

2.4.5 Missing Function Inlining

Inlining small functions with high invocation frequency can significantly improve perfor-

mance. Failing to inline such functions can show many redundant loads because of frequent

accesses to the same activation record on the stack. CIBench has three programs belong-

ing to this category but with di↵erent features. Povray has a small function in a separate
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1 for (Current_Sib = ((CSG *) Object)->Children; Current_Sib != NULL; Current_Sib =
Current_Sib ->Sibling){

2 if ( TEST_RAY_FLAGS(Current_Sib) ){
3 I if (Ray_In_Bound (Ray , Current_Sib ->Bound)){
4 ...}}
5 }

Listing 2.12: Redundant loads in Povray.

file that is not inlined; H264ref has function pointers that prevent compilers from inlining;

Chroma has a function in an external library that is not inlined.

Povray. Povray is a Ray-Tracer from SPEC CPU 2006 Benchmark Suite [71]. CIDe-

tector points out that the major redundant loads occur at line 3 in Listing 2.12. The

redundant loads are caused by the invocation of the function Ray In Bound, which fre-

quently loads the same values to a register to pass the function arguments.

Optimization. We manually inline the Ray In Bound function to its problematic call

site.

H264ref. H264ref, a SPEC CPU2006 benchmark [71], is a reference implementation

of H.264/AVC, the latest video compression standard. Listing 2.13 shows the problem-

atic code snippet. The function pointer PelYline 11 is assigned to Fastline16Y 11 or

UMVLine16Y 11, these two functions accept abs x, img width, and img height as argu-

ments, which are loop invariants in the two-level loop nest. As a result, the same values

in line 10 are loaded for both callees leading to a great number of redundant loads. Fur-

thermore, due to the overwritten of the same values, there are a significant number of

redundant stores as well.

Optimization. We manually inline the function calls.

USQCD Chroma. Chroma [53] is a toolbox that supports data-parallel programming

constructs for lattice field theory and in particular lattice quantum chromodynamics

(QCD).

Through observation, the majority of redundancies occur in a specific function sranf
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1 for (pos = 0; pos < max_pos; pos++) {
2 ...
3 if (...)
4 PelYline_11 = FastLine16Y_11;
5 else PelYline_11 = UMVLine16Y_11;
6 ...
7 for (blky = 0; blky < 4; blky ++){
8 LineSadBlk0 = LineSadBlk1 = LineSadBlk2 = LineSadBlk3 = 0;
9 for (y = 0; y < 4; y++){

10 I refptr=PelYline_11(ref_pic ,abs_y++,abs_x ,img_height ,img_width)
11 ...} ...}}

Listing 2.13: Redundant loads in H264ref.

1 template <class T1 , class T2>
2 inline void
3 fill_random(float& d,T1& seed ,T2& skewed_seed ,const T1& seed_mult)
4 I d = float(RNG:: sranf(seed , skewed_seed , seed_mult));

Listing 2.14: Redundant loads in Chroma.

as shown at line 4 in Listing 2.14. The problem is that function sranf will keep popping

the same values repeatedly from the same stack location to restore the register values.

The compiler does not inline sranf because this function’s definition and invocation are

from di↵erent libraries.

Optimization. we manually inline sranf to all its call sites.

2.4.6 Limited Interprocedural Analysis

Hoard. Hoard [15], a high-performance cross-platform C++ based memory allocator,

has been integrated into an array of applications and programming languages such as GNU

Bayonne and Cilk programming language. It has 20K lines of code and is parallelized with

the pthreads library. Hoard’s built-in benchmark Larson has a large number of redundant

loads. The top redundancy pair is associated with lines 4 and 7 as shown in Listing 2.15.

The cause of such redundancy is that the program repeatedly checks whether theTLAB

is a null pointer. More specifically, the function isCustomHeapInitialized at line 15 and

function getCustomHeap at line 16 both include code to check whether theTLAB is equal

to nullptr. Hence, the second check at lines 8-11 in getCustomHeap is redundant. The

compiler does not perform the optimization due to the limited interprocedural analysis.

Optimization. To remove redundancies, we inline these two functions into their caller
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1 static __thread TheCustomHeapType * theTLAB INITIAL_EXEC_ATTR = nullptr;
2 ...
3 bool isCustomHeapInitialized () {
4 I return (theTLAB != nullptr);
5 }
6 TheCustomHeapType * getCustomHeap () {
7 I auto tlab = theTLAB;
8 if (tlab == nullptr) {
9 tlab = initializeCustomHeap ();

10 theTLAB = tlab;
11 }
12 return tlab;
13 }
14 void * xxmalloc (size_t sz) {
15 if (isCustomHeapInitialized ()) {
16 void * ptr = getCustomHeap ()->malloc(sz);
17 ...
18 }}

Listing 2.15: Redundant loads in Hoard.

xxmalloc and remove the redundant check.

2.5 Experimental Setups and Results

We conduct our evaluation on a 14-core Intel Xeon E7-4830 v4 machine clocked at 2GHz.

The memory hierarchy consists of 32KB and 256KB L1 and L2 private caches, a 30MB

L3 shared cache and a 256GB main memory. The operating system is Linux 3.10.

We perform both vertical and horizontal studies of di↵erent compiler versions. The

vertical study uses gcc [122] of di↵erent versions (4.1.2, 6.2.0, and 9.3.0), while the

horizontal study uses the latest gcc 9.3.0, icc 19.1 [79], and llvm 9.0 [92]. We build

gcc and llvm from the source code tree while installing icc from the o�cial binary. We

enable the highest optimization levels of all these compilers for experiments, including -O3

-Ofast -march=native -mtune=native, profile guided optimization (PGO), and link

time optimization (LTO) upon the availability. PGO o↵ers runtime statistics and LTO

o↵ers whole-program visibility, which provides unique information for optimization. The

exception is gcc 4.1.2, we use -O3 as the baseline because it does not support -Ofast.

We use gcc 4.1.2 and 6.2.0 for vertical study because they were default releases in

popiular Red Hat Enterprise Linux 5 and Red Hat Developer Toolset 6, respectively.
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Figure 2.2: Experimental results for Hmmer. The left y-axis denotes speedups and
the right y-axis denotes the percentage reduction in dead stores and total stores. The
error bars denote the standard deviation across three executions.

It is worth noting that we do not compare the absolute execution time across com-

pilers because di↵erent compilers apply di↵erent optimization techniques. Instead, we

only compare the speedups and the percentage of reduction in loads or stores after our

optimization on the ine�ciencies described in Section 2.4. The speedups are averaged

across three executions. We discuss the empirical results for each ine�ciency category.

Section 2.5.1 and 2.5.2 discuss the compiler-introduced ine�ciencies and other sections

describe the compiler-missed optimizations.

2.5.1 Ine�ciencies due to Value Hoisting

2.5.1.1 Hmmer

Figure 2.2 shows the experimental results of Hmmer, including the optimization speedups,

dead store reduction, and total store reduction. All the data are collected across five

compilers. We describe our vertical and horizontal studies.
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(a) Srad v2 (b) Bzip2-1.0.6 (c) Hotspot3D

(d) GSL FFT (e) NERSC-8 MSB2 (f) H264ref

(g) Povray (h) USQCD Chroma (i) Backprop

(j) LavaMD (k) NERSC-8 MSB1 (l) Hoard

Figure 2.3: Experimental results for programs in CIBench. The left y-axis denotes
speedups and the right y-axis denotes the percentage reduction of dead/redundant
stores and total stores. The error bars denote the standard deviations across three
executions.
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Vertical study. All the gcc versions perform the value hoisting in Hmmer, which intro-

duces dead store operations as gcc 4.1.2. These gcc compilers fail to reason about the

aliases across the five arrays involved in the computation (see Listing 2.1) so all of them

perform the conservative optimization as described in Section 2.4.1. Our optimization

eliminates nearly all the dead store operations (99%) and reduces 50-64% total stores for

all the gcc compilers, yielding 1.25-2.3⇥ speedups.

Horizontal study. Our optimization on Hmmer receives speedups with both gcc 9.3

and llvm 9.0. The nearly 100% elimination in dead stores and almost 70% of store

reduction show the provenance of the speedups for llvm 9.0, which is similar to gcc

6.2 and gcc 9.3. However, icc 19.1 does not yield any speedup; instead, it slows the

execution down by 53%. Statistical data show that our optimization reduces 32% dead

stores and decreases the total stores by 4%. With further investigation, we find that our

optimization by introducing the scalar variable in Listing 2.3 hurts the loop vectorization.

Thus, our optimization is not generally applicable to all compilers. For icc 19.1, a better

way that declares all the array involved in the computation with “restrict” keyword can

both avoid producing most dead stores and generate better vector code, which yields a

20% speedup. It is worth noting that the “restrict” keyword eliminating ine�ciencies only

works for icc, not for gcc and llvm.

2.5.1.2 Srad v2

Figures 2.3a shows the data of Srad v2. Unlike Hmmer, the ine�ciencies in Srad v2 can

be automatically optimized by some compilers.

Vertical study. For srad v2, gcc 6.2 and gcc 9.3 do not introduce the ine�cient code

seen in gcc 4.1.2. From figure 2.3a, we can see that our optimization does not reduce

any dead stores or total stores, and obtains no speedups. Further investigation shows that

although srad v2 has a similar code shape as Hmmer, it has only one array involved in
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the computation (as shown in Listing 2.4). Recent gcc compilers are able to figure out

the alias and avoid producing redundant operations.

Horizontal study. All the latest compilers can successfully resolve the aliasing issues

for srad v2, so our code optimization neither reduces dead stores nor reduces total stores,

producing no speedups. Furthermore, like Hmmer, both icc 19.1 and llvm 9.0 have

10% slowdown with our optimized code, mainly due to the loss of vectorization.

2.5.2 Ine�ciencies due to Instruction Scheduling

Vertical study. Both gcc 6.2 and gcc 9.3 do not aggressively schedule instructions in

Bzip2 so they do not su↵er from dead stores introduced by gcc 4.1.2. From Figure 2.3b

we can see that gcc 6.2 and gcc 9.3 do not a↵ect the total stores much, yielding no

speedups with our optimization. It is worth noting that there are some reductions in dead

stores after our optimization. As the absolute percentage of dead stores is small, it does

not have much performance e↵ect.

Horizontal study. All the latest compilers do not aggressively move instructions in

Bzip2 so as to not introduce dead stores. Our optimization may introduce or eliminate

some small amount of dead stores but with no e↵ect on performance because the total

amount of dead stores are small. As shown in Figure 2.3b, there is no performance impact

for all three latest compilers.

2.5.3 Missing Scalar Replacement

Vertical study. As shown in Figure 2.3c, 2.3d, and 2.3e, the optimizations on

Hotspot3D, GSL FFT, and MSB2 show speedups for all gcc versions, which means the

evolution of gcc does not fully resolve the scalar replacement issues.

For Hotspot3D, the total loads reduced and speedups obtained from our optimization

is shrinking with the evolution of gcc compilers. With the binary code analysis, we find
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that the recent gcc versions adopt more aggressive loop unrolling strategies, which can

reduce the redundant loads across iterations.

For GSL FFT with our optimization, all gcc versions eliminate most of the redundant

loads that account for ⇠30% total loads, yielding 3-8% speedups. It is because all the gcc

versions do not resolve the aliases as described in Section 2.4.3.

For MSB2, all gcc versions do not automatically optimize the accesses to the static

variable. Our optimization reduces almost 95% redundant loads and 96% total loads,

yielding 1.2⇥ and 1.1⇥ speedups for gcc 6.2 and gcc 9.3. It is worth noting that our

optimization, although reduces redundant loads and total loads, yields a little speedup

for gcc 4.1.2. The reason is that MSB su↵ers another ine�ciency that is described in

Section 2.4.4 as MSB1. That ine�ciency involves arrays, which have a higher influence

on performance. Both gcc 6.2 and gcc 9.3 do not su↵er from MSB1 ine�ciencies so

they have speedups. Moreover, our optimization on an optimized MSB1 can yield a 17%

speedup for gcc 4.1.2.

Horizontal study. Among all the compilers, icc 19.1 most aggressively unrolls the

loop and vectorizes its computation. Our optimization (scalar replacement) on Hotspot3D,

although reduces some redundant load operations, it hurts the vectorization optimization.

Thus, the optimization yields trivial speedup with icc 19.1. In contrast, llvm 9.0 has

similar behavior as gcc 9.3. For GSL FFT and MSB2, all the three compilers have similar

behaviors: none of them eliminates the redundancies. Our optimization eliminates most

of the redundancies and yields nontrivial speedups.

2.5.4 Missing Function Inlining

Vertical study. For Povray, all the gcc versions do not inline the target functions in

H264ref. As shown in Figure 2.3f, newer gcc versions yield higher speedups; this is possibly

because the new gcc versions optimize other parts of the program and the function inlining

yields higher performance impacts.

30



For Chroma, all gcc compilers do not inline the problematic function. Our inlin-

ing optimization reduces both redundant loads and total load operations, yielding 1.09⇥

speedups. For Povray, neither gcc 4.1.2 nor gcc 9.3 inlines the problematic function.

Thus, our optimization achieves 4-9% speedups. However, gcc 6.2 can automatically

inline the function, which makes our optimization having no performance impacts.

Horizontal study. For Povray, gcc 9.3 and icc do not inline the problematic function;

our optimization reduces redundant load operations and yields 9% and 5% speedups for

these two compilers. In contrast, llvm inlines the functions, and our hand optimizated

code and compiler generated code have performance parity.

For H264ref, icc has similar behaviors as gcc, which misses the inlining opportunities.

Our optimization with manual function inlining can remove many redundant operations

and yield significant speedups. However, llvm 9.0 has a di↵erent behavior. With LTO

and PGO enabled, llvm 9.0 is able to inline the indirect function call in H264ref but

introduces a condition check in the loop body, resulting in only 8% speedup to the entire

program. CIDetector still reports redundancies at the same place. Our manual opti-

mization clones the loops and hoists the condition check out of the loops, resulting in an

additional 46% speedup.

For Chroma, our manual optimization does not obtain any speedup when compiled

with llvm 9.0, but incurs slightly slowdown. Moreover, there is almost no reduction in

redundant loads and total load operations. Further investigation shows that llvm does not

perform aggressive function inlining. Both gcc 9.3 and icc 19.1 inline all the callers of

function sranf, while llvm 9.0 has a few callers not inlined. Thus, llvm 9.0’s di↵erent

inlining strategy results in di↵erent performance behavior.

2.5.5 Missing Constant Propagation

Vertical study. Backprop and LavaMD show similar behaviors across all the three

gcc versions, which do not eliminate identity computation. Our manual optimization
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yields significant speedups as shown in Figure 2.3i and 2.3j. For these two programs,

our optimization either removes most of the redundant stores or many memory accesses.

Moreover, optimizing the ine�ciency of this category also removes redundant arithmetic

computations that depend on the redundant memory loads or stores, resulting in more

speedups.

For MSB1, the missing constant propagation that is not optimized by gcc 4.1.2 is

mostly optimized by gcc 6.2 and gcc 9.3. Figure 2.3k shows that our optimization does

not have an obvious impact on redundant loads, total load operations, and speedups.

Horizontal study. Like the vertical study, gcc 9.3, icc 19.1, and llvm 9.0 do not

eliminate the identity computations in Backprop and LavaMD; as a result, our optimiza-

tion reduces many redundancies or total store operations and yields significant speedups.

For MSB1, by investigating the assembly code, we find llvm 9.0 performs a similar

optimization as gcc 6.2 and gcc 9.3. Thus, our optimization yields a slight 1.08⇥

speedup with llvm 9.0. In contrast, icc 19.1 has a di↵erent behavior, which unrolls

the loop with a factor of eight at line 8 in Listing 2.9. Then in each loop iteration,

icc loads the value from cache buf[i] into a register and assigns this register value

to cache buf[i+1]...cache buf[i+7]. With this compiler optimization, the redundant

loads can be reduced to 1/8. Our manual optimization can further eliminate the remaining

redundancies and achieve a 38% speedup.

2.5.6 Missing Interprocedural Optimization

Hoard does not compile with gcc 4.1.2 due to the lack of c++11 support, so for the

vertical study, we only compare gcc 6.2 and gcc 9.3. From Figure 2.3l, we can see

that our manual optimization reduces redundant loads and yields ⇠1.5⇥ improvement in

throughputs because both compilers fail to eliminate the redundant checks across function

calls. For the horizontal study, all the three latest compilers do not eliminate redundant

check operations automatically. Our manual optimization can eliminate nearly half total
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loads and always yields significant throughput improvement.

Table 2.2: Optimization capabilities of di↵erent compilers.

Program Name Hmmer Srad v2 Bzip2 LavaMD Backprop H264ref Hotspot3D Hoard MSB1 MSB2 FFT Povray Chroma

gcc 9.3 N S S N N N P N S N N N N
icc 19.1 N S S N N N P N P N N N N
llvm 9.0 N S S N N P P N S N N S N

N: Not Optimized; P: Partially Optimized; S: Successfully Optimized.

2.6 Insights from the Study

The observation obtained from our experiments results in a number of insights regard-

ing compiler-related ine�ciencies. We discuss the insights that are useful to scientific

programmers, compiler writers, and tool developers, respectively. Our discussion also

answers questions raised in Section 2.1.

2.6.1 Insights for Scientific Programmers

This study o↵ers four key insights for scientific programmers, which pertain to questions

(4)-(6) in Section 2.1.

Ine�ciencies exist in fully optimized binary codes. Modern compilers do not

eliminate many ine�ciencies. Even worse, ine�ciencies can be introduced by compilers.

Such ine�ciencies can significantly degrade performance. These ine�ciencies exist in a

fully optimized binary code that is generated by mainstream compilers, including di↵erent

versions of gcc compiler and the latest versions of gcc, icc, and llvm. Scientific program-

mers need to become aware of these compiler-related ine�ciencies, which are only visible

in the binary code. They can use tools such as [23, 190, 192] to regularly inspect the code

quality as the software evolves and introduces complex constructs.

Finding ine�ciency patterns in source code is di�cult which makes tools nec-

essary. Our studies show that it is di�cult to find the ine�ciency patterns in program
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source code. Particularly, such patterns do not exist for compiler-introduced ine�cien-

cies. Instead, one might be able to extract some patterns from the binary analysis, but

pointers and aliases complicate the static analysis. Thus, a dynamic binary analysis tool

like CIDetector is needed. Such a tool can glean rich information to guide source code

revision in order to avoid compiler-introduced ine�ciencies, or produce a code shape that

enables important compiler optimizations.

Ine�ciencies can be removed by curating source code. Our studies show that

both compiler-introduced and compiler-missed ine�ciencies optimizations can be removed

by source code optimization. From Table 2.1, we can see that only a few lines of source

code (2-62 with a median of 10) need to be changed for optimization.

Source code optimization does not always yield portable performance. Manual

optimization may not yield portable performance for di↵erent compilers. For example, our

optimization (i.e. scalar replacement) on Hmmer and Srad v2 does not yield any speedup

for icc 19.1, as shown in Section 2.4.3. Even though our optimization eliminates re-

dundancies, the entire program undergoes nontrivial slowdowns when compiled with icc

19.1. As we discussed, such slowdowns are caused by the loss of vectorization which sur-

passes the benefit from redundancy elimination. A similar situation occurs for llvm 9.0

on Chroma. Thus, manual optimization may hurt compiler optimization (e.g., vectoriza-

tion in icc 19.1 and inlining in llvm 9.0). Profiling is necessary to understand such a

tradeo↵ between manual and compiler optimizations. Furthermore, one needs to curate

code for the compiler they intend to use.

2.6.2 Insights for Compiler Writers

Our insights for compilers answer questions (1)-(3) in Section 2.1.

Insights from the vertical study. Generally speaking, gcc 6.2 and gcc 9.3 elimi-

nate more ine�ciencies compared to the older version gcc 4.1.2 in the following three
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aspects.

• gcc has improved the aliasing analysis in newer versions so that when fewer arrays

are involved in the computation (e.g., srad v2), they can avoid generating compiler-

introduced ine�ciencies.

• gcc avoids aggressive instruction scheduling in its newer versions (e.g., Bzip2).

• gcc has improved constant propagation optimization in its newer versions (e.g., MSB1).

Most ine�ciencies shown in CIBench are not optimized by gcc 6.2 and gcc 9.3.

These ine�ciencies include scalar replacement due to imprecise aliasing analysis (e.g.,

Hmmer, GSL FFT, MSB2), missing function inlining (e.g., H264ref, Chroma), and identity

computation (e.g., LavaMD, Backprop). A future direction of gcc evolution can improve

these ine�ciencies.

Insights from the horizontal study. Our horizontal studies show that no compiler is

better or worse than another production compiler in all cases. Table 2.2 summarizes all

the programs optimized by di↵erent compilers or not.

• icc 19.1 performs more aggressive loop unrolling that can reduce the redundant oper-

ations across loop iterations (e.g., LavaMD, MSB1).

• llvm 9.0 has the most aggressive optimization with function inlining. For example,

llvm 9.0 optimizes Povray and partially optimizes H264ref. The inlining strategy in

Chroma is also di↵erent from the other two compilers.

• icc 19.1 is the only compiler that does not fully optimize MSB1 with constant prop-

agation.

Thus, di↵erent compilers can borrow optimization techniques from each other in future

releases. Moreover, most (69%) ine�ciencies are not optimized by these recent compilers,

so there is still large room for future compiler improvement.
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2.6.3 Insights for Tool Developers

For our study, we can see the importance of a tool like CIDetector for analyzing the

fully optimized binary code produced by di↵erent compilers. Given the optimization may

not be portable, software engineers are suggested to frequently use tools upon committing

code updates and changing development environments. Moreover, there are two possible

directions for tool evolution. First, tools should evaluate the optimization tradeo↵ between

dead/redundant operations with other ine�ciencies. Second, tools should develop new

metrics that quantify the speedups after optimization.

2.7 Related Work

There exist many approaches to analyzing ine�ciencies. Some approaches [36, 42, 98,

76, 49, 48] analyze the code statically to identify redundancies. These static techniques

yield many false positives and false negatives due to limitations such as imprecise alias

analysis. To address the limitation, dynamic approaches [23, 190, 164, 191, 110, 120, 30,

88, 72, 43, 123, 117, 153, 192] pinpoint redundancies at runtime. Our tool CIDetector

also uses dynamic analysis but distinguishes existing work in three aspects. First, unlike

CIDetector, none of the existing tools can identify all the three kinds of ine�ciencies in

the fully optimized binary code generated by di↵erent modern compilers. Second, many

of the existing tools pinpoint semantic-level redundancies, such as inappropriate data

structures, suboptimal algorithms, and skewed inputs, not particularly focusing on the

compiler-related ine�ciencies. To the best of our knowledge, CIBench is the first data

set for this purpose. Third, we perform the first study on the compiler vertical evolution

and horizontal comparison and provide insights for di↵erent audiences.

Some prior studies identify performance bugs in real-world programs [83, 95, 150, 93,

68, 73] written in C, C++, Java, and JavaScript. They can extract some patterns in

performance bugs and define rules to optimize them. Our approaches di↵er from them in

two ways. First, we study the compiler-related performance bugs in binary code, which are
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not systematically studied previously. Unlike existing approaches, the code repositories

have few commits related to this kind of ine�ciency. Thus, we develop CIDetector

and CIBench to help the study. Second, no existing approaches study the ine�ciencies

produced by di↵erent compilers. Instead, they focus on software evolution.

The approach [100] perhaps is the most related work to ours. It evaluates the vector-

ization capabilities of di↵erent compilers on a set of benchmarks. Unlike their approach,

we focus on compiler-related ine�ciencies, which are orthogonal to vectorization.

2.8 Summary

In this chapter, we developed CIDetector and CIBench and leveraged them to per-

form the first study on compiler-introduced and compiler-missed optimizations in fully

optimized binary codes. We studied five state-of-the-art compilers, including three gcc

compilers of di↵erent versions, and the most recent icc and llvm releases. To the best of

our knowledge, our work is the first systematic study of compiler-related ine�ciencies. Our

study o↵ers several insights that are valuable for scientific programmers, compiler writ-

ers, and tool developers, including inspiring programmers of compiler limitations, showing

that di↵erent compilers have di↵erent optimization strategies, and motivating the neces-

sity of analysis tools. We expect the community to develop automatic optimizations to

match or beat the performance of our hand optimization. CIDetector is integrated into

CCTLib [22], available at https://github.com/CCTLib/cctlib; CIBench is available

at https://github.com/CCTLib/cibench.
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Chapter 3

Toward E�cient Interactions

between Python and Native

Libraries

3.1 Introduction

In recent years, Python has become the most prominent programming language for data

modeling and library development, especially in the area of machine learning, thanks to

its elegant design that o↵ers high-level abstraction, and its powerful interoperability with

native libraries that delivers heavy numeric computations. Decoupling data analysis and

modeling logics from operation logics is the singular mechanism guiding the remarkable

improvements in developers’ productivity in the past decade. Python enables small teams

to build sophisticated model [114] that were barely imaginable a few years ago, and enables

large teams of modelers and numeric developers to seamlessly collaborate and develop

highly influential frameworks such as Tensorflow [1] and Pytorch [125].

While high-level languages to articulate business logics and native libraries to deliver

e�cient computation is not a new paradigm, downstream developers have not always un-

derstood the details of native libraries, and have implemented algorithms that interacted
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poorly with native codes. A well-known example of the interaction ine�ciency problem

occurs when developers, who fail to recognize that certain matrix operations can be vec-

torized, write significantly slower loop-based solutions. MATLAB and Mathematica can

alleviate the problem since these languages usually are locked with a fixed set of native

libraries over a long time, and developers can establish simple best practice guidelines to

eliminate most interaction ine�ciencies (MATLAB contains the command, “try to vec-

torize whenever possible”).

In the Python ecosystem, native libraries and downstream application codes evolve

rapidly so they can interact in numerous and unexpected ways. Therefore, building a

list to exhaust all interaction ine�ciencies becomes infeasible. We seek a solution that

will automatically identify the blocks of Python code that lead to ine�cient interactions,

through closing the knowledge gap between Python and native code. Existing profiling

tools cannot address this issue. Python profiles [58, 197, 61, 174, 143, 63, 129, 136,

172] cannot step in native code so they do not know execution details. Native profiling

tools [141, 41, 118, 2, 23, 190, 163, 191] can identify hotspots, which o↵er insights into

problematic code blocks. However, because these tools do not have knowledge about

Python code’s semantics, they cannot render detailed root cause and thus often make

debugging remarkably challenging.

We propose PieProf, the first lightweight, insightful profiler to pinpoint interaction

ine�ciencies in Python programs. PieProf works for production Python software pack-

ages running in commodity CPU processors without modifying the software stacks. Its

backbones algorithmic module is a recently proposed technique based on hardware per-

formance monitoring units (PMUs) and debug registers to e�ciently identify redundant

memory accesses (hereafter, referred to as CL-algorithm1 [191, 162]). CL-algorithm in-

telligently chooses a small collection of memory cells and uses hardware to track accesses

to these cells at a fine granularity. For example, when the technique detects two con-

secutive writes of the same value to the same cell, it determines that the second write

1Chabbi-Liu Algorithm.
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is unnecessary, and flags the responsible statement/function for further inspection. The

developer can clearly see where a non-opt memory access occurs and why. The technique

already shows its potential for eliminating ine�ciencies in monolithic codebases that use

one programming language.

PieProf leverages the CL-algorithm in a substantially more complex multi-languages

environment, in which a dynamic and (predominantly) interpretation-based language

Python is used to govern the semantics and native libraries compiled from C, C++, For-

tran are used to execute high-performance computation. Doing so requires us to address

three major challenges that crosscut Python and native code.

At the measurement front, we need to suppress false positives and avoid tracking

irrelevant memory operations produced from Python interpreter and Python-native inter-

actions. For example, memory accesses performed by Python interpreters may “bait” the

CL-algorithm to waste resources (i.e., debug registers) on irrelevant variables such as refer-

ence counters. At the infrastructure front, we need to penetrate entire software stacks: it

cannot see execution details (i.e, how memory is accessed) with only Python runtime infor-

mation, or cannot understand program semantics with only native library knowledge. Our

main task here is to compactly implement lock-free calling context trees that span both

Python code and native libraries, and retain a large amount of information to e↵ectively

correlate redundant memory accesses with ine�cient interactions. At the memory/safety

front, we need to avoid unexpected behaviors and errors caused by Python runtime. For

example, Python’s garbage collection (GC) may reclaim memory that our tool is track-

ing. So delicate coordination between PieProf and Python interpreter is needed to avoid

unexpected behaviors and errors.

We note that while most of the downstream applications we examined are machine

learning related, PieProf is a generic tool that can be used in any codebase that requires

Python-native library interactions.

Contributions. In this work, we make the following contributions.
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• We are the first to thoroughly study the interaction ine�ciencies between Python

codes and native libraries. We categorize the interaction ine�ciencies by their root

causes.

• We design and implement PieProf, the first profiler to identify interaction ine�-

ciencies and provide intuitive optimization guidance, by carefully stepping through

Python runtimes and native binaries. PieProf works for production Python soft-

ware packages in commodity CPU processors without modifying the software stacks.

• Following the guidance of PieProf, we examine a wide range of influential codebases

and identify interaction ine�ciencies in 17 real-world applications and optimize them

for nontrivial speedups.

3.2 Background and Related Work

3.2.1 Python Runtime System

Python basics. Python is an interpreted language with dynamic features. When run-

ning a Python application, the interpreter translates Python source code into stack-based

bytecode and executes it on the Python virtual machine (PVM), which varies implemen-

tations such as CPython [35], Jython [87], Intel Python [78] and PyPy [166]. This work

focuses on CPython because it is the reference implementation [60], while the proposed

techniques are generally applicable to other Python implementations as well. The CPython

PVM maintains the execution call stack that consists of a chain of PyFrame objects known

as function frames. Each PyFrame object includes the executing context of corresponding

function call, such as local variables, last call instruction, source code file, and current

executing code line, which can be leveraged by performance or debugging tools.

Python supports multi-threaded programming, where each Python thread has an in-

dividual call stack. Because of the global interpreter lock (GIL) [59], the concurrent

execution of Python threads is emulated as regular switching threads by the interpreter,
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Native Library

Operating System

Hardware

Figure 3.1: The typical stack of production Python software packages. Python ap-
plications usually rely on native libraries for high performance but introduce an ab-
straction across the boundary of Python runtime and native libraries.

i.e., for one interpreter instance, only one Python thread is allowed to execute at a time.

Interaction with native libraries. When heavy-lifting computation is needed, Python

applications usually integrate native libraries written in C/C++/Fortran for computation

kernels, as shown in Figure 3.1. Such libraries include Numpy [179, 69], Scikit-learn [127],

Tensorflow [1], and PyTorch [125]. Therefore, modern software packages enjoy the benefit

from the simplicity and flexibility of Python and native library performance. When the

Python runtime calls a native function, it passes the PyObject2 or its subclass objects to

the native function. The Python runtime treats the native functions as blackboxes — the

Python code is blocked from execution until the native function returns.

Figure 3.1 shows an abstraction across the boundary of Python runtime and native

library, which logically splits the entire software stack. On the upper level, Python applica-

tions are disjoint from their execution behaviors because Python runtime (e.g., interpreter

and GC) hides most of the execution details. On the lower level, the native libraries lose

most program semantic information. This knowledge gap leads to interaction ine�ciencies.

2
PyObject is the super class of all objects in Python.
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3.2.2 Existing Tools vs. PieProf

This section compares existing tools that analyze ine�ciencies in Python and native codes

to distinguish PieProf.

Python performance analysis tools. PyExZ3 [81], PySym [64], flake8 [37], and

Frosted [169] analyze Python source code and employ multiple heuristics to identify code

issues statically [67]. XLA [167] and TVM [26] apply compiler techniques to optimize deep

learning applications. Harp [196] detects ine�ciencies in Tensorflow and PyTorch appli-

cations based on computation graphs. All of these approaches, however, ignore Python

dynamic behavior, omitting optimization opportunities.

Dynamic profilers are a complementary approach. cProfile [58] measures Python

code execution, which provides the frequency/time executions of specific code regions.

Guppy [197] employs object-centric profiling, which associates metrics such as allocation

frequency, allocation size, and cumulative memory consumption with each Python ob-

ject. PyInstrument [143] and Austin [172] capture Python call stack frames periodically

to identify executing/memory hotspots in Python code. PySpy [61] is able to attach to

a Python process and pinpoint function hotspots in real time. Unlike PieProf, these

profilers mainly focus on Python codes, with no insights into the native libraries.

Closely related to PieProf, Scalene [14] separately attributes Python/native exe-

cuting time and memory consumption. However, it does not distinguish useful/wasteful

resources usage as PieProf does.

Native performance analysis tools. While there are many native profiling tools [141,

41, 2], from which the most related to Python that can identify performance ine�cien-

cies are Toddler [118] that identifies redundant memory loads across loop iterations, and

LDoctor [154] that reduces Toddler’s overhead by applying dynamic sampling and static

analysis. DeadSpy [23], RedSpy [190], and LoadSpy [163] analyze dynamic instructions

in the entire program execution to detect useless computations or data movements. Un-
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fortunately, all of them use heavyweight binary instrumentation, which results in high

measurement overhead, and they do not work directly on Python programs.

3.2.3 Performance Monitoring Units and Hardware Debug Registers

Hardware performance monitoring units (PMUs) are widely equipped on the modern x86

CPU architectures. Software can use PMUs to count various hardware events like CPU

cycles, cache misses, et cetera. Beside the counting mode that counts the total number of

events, PMUs can be configured in sampling, which periodically sample a hardware event

and record event’s detailed information. PMUs trigger an overflow interrupt when the

sample number reaches a threshold. The profiler runtime captures interrupts as signals

and collects samples with their executing contexts.

For memory-related hardware events such as memory load and store, Precise Event-

Based Sampling (PEBS) [38] in Intel processors provides the e↵ective address and the

precise instruction pointer for each sample. Instruction-Based Sampling (IBS) [50] in the

AMD processors and Marked Events (MRK) [157] in PowerPC support similar function-

alities.

Hardware debug registers [85, 102] trap the CPU execution when the program counter

(PC) reaches an address (breakpoint) or an instruction accesses a designated address

(watchpoint). One can configure the trap conditions with di↵erent accessing addresses,

widths and types. The number of hardware debug registers is limited (e.g., the modern

x86 processor has four debug registers).

3.3 Interaction Ine�ciency Characterization

This section provides a high-level preview of the key findings from applying PieProf to an

extensive collection of high-profile Python libraries at Github. We specifically categorize

the interaction ine�ciencies according to the root causes and summarize the common

patterns, which serve three purposes: (i) this is the first characterization of interaction
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1 def train(self , trainData , maxEpochs , learnRate):
2 ...
3 for j in range(self.nh):
4 delta = -1.0 * learnRate * ihGrads[i,j]
5 self.ihWeights[i, j] += delta
6 ...

Listing 3.1: Interaction ine�ciencies in IrisData due to the iteration on Numpy arrays
within a loop.

ine�ciencies based on large scale studies, thus rendering a more complete landscape of

potential code quality issues that exist in Python codebase for ML and beyond; (ii) we

see a diverse set of ine�ciencies hiding deep in Python-native library interaction, which

justifies using heavy machineries/profiling tools to automatically identify them; and (iii)

these concrete examples explain the common patterns we use to drive the PieProf’s

design.

3.3.1 Interaction Ine�ciency Categorization

We categorize interaction ine�ciencies into five groups. For each category, we give a real

example, analyze the root causes, and provide a fix.

Slice underutilization. Listing 3.1 is an example code from IrisData [161], a back-

propagation algorithm implementation on Iris Dataset [56]. A loop iterates two multidi-

mensional arrays ihGrads and ihWeights with indices i and j for computation. Because

Python arrays are supported by native libraries such as Numpy and PyTorch/TensorFlow,

indexing operations (i.e., []) in a loop trigger native function calls that repeat boundary

and type checks [119].

The so-called vectorization/slicing eliminates repeated “housework” and (usually) en-

ables the underlying BLAS [17] library to perform multi-core computation. Listing 3.2

shows a simple fix in a 2⇥ speedup for the entire program execution.

Repeated native function calls with the same arguments. Functions from native

libraries typically have no side e↵ects, so applying the same arguments to a native function
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1 def train(self , trainData , maxEpochs , learnRate):
2 ...
3 self.ihWeights[i, 0:self.nh] += -1.0 * learnRate * ihGrads[i, 0:self.nh]
4 ...

Listing 3.2: Optimized IrisData code with slice notation.

1 def rotate(self , theta):
2 a = np.cos(theta)
3 b = np.sin(theta)
4 rotate_mtx = np.array ([[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]], float)
5 self._mtx = np.dot(rotate_mtx , self._mtx)
6 ...

Listing 3.3: Interaction ine�ciencies in Matplotlib due to the same input theta.

results in the same return value, which introduces redundant computations. Listing 3.3

shows a code from Matplotlib [77], a comprehensive library for visualization and image

manipulation. This code rotates an image and is often invoked in training neural nets for

images.

The argument theta for the rotate function (rotate angle) is usually the same across

consecutive invocations from deep learning training algorithms because they rotate images

in the same batch in the same way. Here, Pyobjects returned from native functions

np.cos(), np.sin() and np.array() in lines 2-4 have the same values across images that

share the same input theta.

This can be fixed by either a simple caching trick [44, 113], or refactoring the rotate

funcion so that it can take a batch of images. We gain a 2.8⇥ speedup after the fix.

Ine�cient algorithms. Listing 3.4 is an example of algorithmic ine�ciencies from

Scikit-learn, a widely used machine learning package. The code works on X, a two-

dimensional Numpy array. It calls the native function swap from the BLAS library to

exchange two adjacent vectors. In each iteration, swap returns two PyObjects and Python

runtime assigns these two PyObjects to X.T[i] and X.T[i+1], respectively. The loop uses

swap to move the first element in the range to the end position. Ine�ciencies occur because

it requires multiple iterations to move X.T[i] to the final location.

Instead of using swap, we directly move each element to the target location. We apply
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1 def lars_path(X, y, Xy=None , ...):
2 ...
3 for i in range(ii, n_active):
4 X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1])
5 indices[i], indices[i + 1] = indices[i + 1], indices[i]
6 ...

Listing 3.4: Interaction ine�ciencies in Scikit-learn due to the ine�cient algorithm.

1 def CEC_4(solution=None , problem_size=None , shift =0):
2 ...
3 for i in range(dim - 1):
4 res += 100 * np.square(x[i]**2-x[i+1]) + np.square(x[i]-1)
5 ...

Listing 3.5: Interaction ine�ciencies in Metaheuristic [115, 116] due to the API misuse
in native Libraries.

a similar optimization to the indices array as well. Our improvement yields a 6.1⇥

speedup to the lars path function.

API misuse in native libraries. Listing 3.5 is an example of API misuse from Meta-

heuristic [115, 116], which implements the-state-of-the-art meta-heuristic algorithms. The

code accumulates the computation results to res. Since the computation is based on

Numpy arrays, the accumulation operation triggers one native function call in each itera-

tion, resulting in many ine�ciencies.

In Listing 3.6 shows our fix (i.e., use the e�cient sum API from Numpy) which avoids

most of the native function invocations by directly operating on the Numpy arrays. This

optimization removes most of interaction ine�ciencies, and yields a 1.9⇥ speedup to the

entire program.

Loop-invariant computation. Listing 3.7 is a code snippet from Deep Dictionary

Learning [99], which seeks multiple dictionaries at di↵erent image scales to capture com-

plementary coherent characteristics implemented with TensorFlow. Lines 1-3 indicate the

computation inputs A, D, and X. Lines 4-5 define the main computation. Lines 6-7 execute

the computation with the actual parameters D and X . The following pseudo-code shows

the implementation:

47



for i  1 to Iter do

A = D(X �D
T
A)

where D and X are loop invariants. If we expand the computation, DX and DD
T can be

computed outside the loop and reused among iterations, shown as pseudo-code:

t1 = DX

t2 = DD
T

for i  1 to Iter do

A = t1 � t2A

This optimization yields a 3⇥ speedup to the entire program [196].

3.3.2 Common Patterns in Interaction Ine�ciencies

We are now ready to explain the common patterns in code that exhibits interaction e�-

ciencies, which we use to drive the design of PieProf. Specifically, we find that almost

all interaction ine�ciencies involve (i) repeatedly reading the same PyObjects of the same

values, and (ii) repeatedly returning PyObjects of the same values.

Both observations require developing a tool to identify redundant PyObjects, which

is di�cult and costly because it requires heavyweight Python instrumentation and modi-

fication to Python runtime. Further analysis, however, finds that PyObject redundancies

reveal the following two low-level patterns during the execution from the hardware per-

spective.

Table 3.1: Redundant loads and stores detect di↵erent categories of interaction inef-
ficiencies.

Ine�ciency Pattern Ine�ciency Category

Redundant
Loads

Slice underutilization
Ine�cient algorithms

API misuse in native libraries

Redundant
Stores

Loop-invariant computation
Repeated native function calls with same arguments

Ine�cient algorithms
API misuse in native libraries
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1 def CEC_4(solution=None , problem_size=None , shift =0):
2 ...
3 res += np.sum (100 * np.square(x[0:dim -1]**2 - x[1: dim]) + np.square(x[0:dim

-1] - 1))
4 ...

Listing 3.6: Optimized Metaheuritics code for Listing 3.5, with appropriate native
library API.

1 A = tf.Variable(tf.zeros(shape =[N, N]), dtype=tf.float32)
2 D = tf.placeholder(shape =[N, N], dtype=tf.float32)
3 X = tf.placeholder(shape =[N, N], dtype=tf.float32)
4 R = tf.matmul(D, tf.subtract(X, tf.matmul(tf.transpose(D), A)))
5 L = tf.assign (A, R)
6 for i in range(Iter):
7 result = sess.run(L, feed_dict ={D: D_ , X: X_})

Listing 3.7: Interaction ine�ciencies in Deep Dictionary Learning [99] due to loop-
invariant computation.

• Redundant loads: If two adjacent native function calls read the same value from the

same memory location, the second native function call triggers a redundant (memory)

load. Repeatedly reading PyObject of the same value result in redundant loads.

• Redundant stores: If two adjacent native function calls write the same value to the same

memory location, the second native function call triggers a redundant (memory) store.

Repeatedly returning PyObject of the same value result in redundant stores.

We use the redundant loads and stores to serve as indicators of interaction ine�cien-

cies. Table 3.1 shows di↵erent categories of interaction ine�ciencies, which show up as

redundant loads or stores. Section 4 describes how we use the indicators.

3.4 Design and Implementation

3.4.1 Overview

See Figure 3.2. Recall that the CL-algorithm controls PMUs and debug registers to

report redundant member accesses of a process. PieProf interact with Python runtime,

native libraries, and the CL-algorithm through three major components: (i) Safeguard

and sandbox. A thin sandbox is built around Python interpreter and native libraries,
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PIEPROF Process

Safeguard
DEV

Debug Register
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Figure 3.2: Overview of PieProf’s workflow.

and a safeguard is implemented inside the sandbox to moderate communication between

Python runtime and the CL-algorithm. (ii) Measurement. Upon receiving an event from

the CL-algorithm, the measurement component determines whether to notify CCT (calling

context tree) builder to update the CCT, and (iii) CCT Builder. Upon receiving an update

from the measurement component, CCT builder examines Python runtime and native call

stacks to update CCT. When an interaction ine�ciency is detected, it will report to the

end user (developer).

The measurement component helps to suppress false positive and avoid tracking ir-

relevant variables (e.g., reference counters), the CCT builder continuously updates the

lock-free CCT, and Safeguard/sandbox ensures that the Python application can be exe-

cuted without unexpected errors.

We next discuss each component in detail.
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#test.py
import numpy as np

def func1():
a = np.random.rand(i)
b = np.random.rand(i)
c = np.zeros(i)
...
c[:] = a[:] + b[:]
...

def func2():
func1()
...

if __name__==“__main__”:
func2()

…

Hybrid Call Path

_PyEval_EvalFrameDefault
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PyRun_SimpleFileExFlags

main

DOUBLE_add
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PyRun_SimpleFileExFlags
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DOUBLE_add

run_binary_simd_add

sse2_binary_add_DOUBLE

tstate tstate

…
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…
…
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…
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Figure 3.3: Constructing a hybrid call path across Python runtime and native li-
braries. White arrows in call paths denote a series of elided call frames in PVM. The
red circle in the hybrid call path shows the boundary of Python and native frames,
where interaction ine�ciencies occur.

3.4.2 Measurement

CL-algorithm. CL-algorithm uses PMUs and debug registers to identify redundant

loads and stores in an instruction stream. It implements a conceptually simple and elegant

process: a sequence a1, a2, . . . , am memory access instructions arrive at the CL-algorithm

in a streaming fashion. Here, ai refers to the address of the memory access for the i-th

instruction. Upon seeing a new memory access instruction ai (step 1, i.e ∂ in Figure 3.2),

the CL-algorithm uses PMUs to probabilistically determine whether it needs to be tracked

(step 2), and if so, store the address in a debug register (step 3). If the debug registers are

all used, a random one will be freed up. When a subsequent access to ai (or any addresses

tracked by debug registers) occurs (step 4), the debug register will trigger an interrupt so

that the CL-algorithm can determine whether the access is redundant (step 5), by using

the rules outlined in Section 3.3.2. Since the number of debug registers is usually limited,

the CL-algorithm uses a reservoir sampling [186] technique to ensure that each instruction

(and its associated memory accesses) has a uniform probability of being sampled.
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Improving measurement e�ciencies. First, PMUs sample instructions at the hard-

ware level so it cannot distinguish memory accesses from the Python interpreter from

those from the Python applications. In practice, a large fraction of memory access se-

quences are related to updating reference counters for Python objects. Therefore, most

debug registers will be used to track reference counters if we bluntly use the CL-algorithm,

and substantially reduces the chances of identifying memory access redundancies. Second,

it needs to ignore redundant memory accesses occurring within the same native function

call, or within a code region of PieProf because they are not related to interaction inef-

ficiencies. Note that tracking redundant memory accesses within the same native function

call is worse than merely producing false positives because it can bury true instances.

For example, two write instructions w1 and w2 of the same value are performed on the

same memory from function Fa, and later function Fb performs a third write instruction

w3 of the same value on the same location. If we track redundant accesses within the

same function, the CL-algorithm says it has found a redundant pair hw1, w2i, evicts w1

from the debug register. and never detects the redundant pair hw1, w3i caused by the real

interaction ine�ciencies.

PieProf performs instruction-based filter to drop a sample if (i) its instruction pointer

falls in the code region unrelated to native function calls (e.g., that of PieProf), (ii) its

memory access address belongs to “junky” range, such as the head of PyObject that

contains the reference number. In addition, when the CL-algorithm delivers a redundant

memory access pair to PieProf, it checks the Python runtime states and drops the sample

when these two memory accesses occur inside a same state (corresponding to within the

same native function call).

3.4.3 Calling Context Trees Builder

This section first explains the construction of call paths, and then explains how they can

be used to construct signal-free calling context trees (CCTs).
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Hybrid call path. PieProf uses libunwind [147] to unwind the native call path of

a Python process to obtain a chain of procedure frames on the call stack. See the

chain of “Native Call Path” on the left in Figure 3.3. Here, call stack unwinding is

not directly applicable to Python code because of the abstraction introduced by PVM.

The frames on the stack are from PVM, not Python codes. For example, the bottom

PyEval EvalFrameDefault3 shows up in “Native Call Path”, but we need the call to

correspond to func2() in Python code (connected through PyFrame1). Thus, PieProf

needs to inspect the dynamic runtime to map native calls with Python calls on the fly.

1. Mapping PyFrame to Python calls. First, we observe that each Python thread main-

tains its call stacks in a thread local object PyThreadState (i.e., tstates in Figure 3.3).

To obtain Python’s calling context, PieProf first calls GetThisThreadState()4 to get

the PyThreadState object of the current thread. Second PieProf obtains the bottom

PyFrame object (corresponding to the most recently called function) in the PVM call stack

from the PyThreadState object. All PyFrame objects in the PVM call stack are organized

as a singly linked list so we may obtain the entire call stack by traversing from the bottom

PyFrame. Each PyFrame object contains rich information about the current Python frame,

such as source code files and line numbers that PieProf can use to correlate a PyFrame

to a Python method. In Figure 3.3, PyFrame1, PyFrame2, and PyFrame3 are for Python

methods main, func2, and func1, respectively.

2. Extracting PyFrame’s from Native Call Path. Each Python function call leaves a

footprint of PyEval EvalFrameDefault in the native call stack so we need only ex-

amine PyEval EvalFrameDefault. Each PyEval EvalFrameDefault maps to a unique

PyFrame in the call stack of the active thread in Python Runtime. In addition, the ordering

preserves, e.g., the third PyEval EvalFrameDefault in “Native Call Path” corresponds

to the third PyFrame in Python’s call stack. Therefor use standard Python interpreter

APIs to obtain the PyFrame’s and map them back to nodes in the native call path.

3
PyEval EvalFrameDefault is a frame (i.e., a function pointer) in the native call stack in runtime that

corresponds to invocation of a function or a line of code in Python.
4
GetThisThreadState() is a PVM API to retrieve an object that contains the state of current thread.
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Figure 3.4: A calling context tree constructed by PieProf. Each parent node applies
skip-list to organize children. INode denotes an internal node and LNode denotes a leaf
node. Red box shows searching 0xa46 in the example skip-list.

CCT from call paths. PieProf applies a compact CCT [7, 6] to represent the profile.

Figure 3.4 shows the structure of a CCT produced by PieProf. The internal nodes rep-

resent native or Python function calls, and the leaf nodes represents the sampled memory

loads or stores. Logically, each path from a leaf node to the root represents a unique call

path.

As mentioned, Python is a dynamic typing language, and uses meta-data to represent

calling context (e.g., the function and file names in string form); therefore, its call stacks

are usually substantially larger (in space) than those in static languages. One solution is

to build a dictionary to map strings to integer ids but the solution must be signal-free

because it needs to interact with the CL-algorithm and PMUs, which is prohibitively
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complex.

Our crucial observation is that function calls in di↵erent threads near the root of a

tree usually repeat so unlike solutions appeared in [23, 190, 163, 22, 162], which pro-

duce a CCT for each thread/process, PieProf constructs a single CCT for the entire

program execution. In this way, the same function call appearing in di↵erent threads is

compressed into one node and space complexity is reduced. PieProf also implements a

lock-free/signal-safe skip-list [133] to maintain CCT’s edges for fast and thread-safe op-

erations. In theory, Skip-list’s lookup, insert, and delete operations have O(log n) time

complexity. In practice, Skip-list with more layers has higher performance but higher

memory overhead. In a CCT, the nodes closer to the root are accessed more frequently.

PieProf, however,proportionally adjusts the number of layers in the skip-lists at di↵erent

levels in a CCT to optimize the performance and overhead tradeo↵s. It uses more layers

to represent the adjacency lists of nodes that are close to the root, and fewer layers to

represent those that are close to the leaves.

3.4.4 Safeguard

PieProf uses two mechanisms to avoid unexpected errors in Python runtime. It will

hibernate if it enters a block of code, interrupting which will cause state corruption in

PVM, and will block certain activities from GC if the activities can cause memory issues.

Hibernation at function-level. Upon seeing an event (e.g., an instruction is sampled

or a redundant memory access is detected), the PMUs or debug registers use interrupt

signals to interact with PieProf, which will pause Python’s runtime. Error could happen

if Python run time is performing certain specific tasks when an interrupt exception is

produced. For example, if it is executing memory management APIs, memory error (e.g.,

segmentation fault) could happen, and if Python is loading native library, deadlock could

happen.

PieProf maintains a list of functions, inside which PieProf needs to be temporarily
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Table 3.2: Overview of performance improvement guided by PieProf. AS denotes
application-level speedup, FS denotes function-level speedup, L refers to redundant
loads and S refers to redundant stores.

Program Information Ine�ciency Optimization

Applications Library Problem Code Category Pattern AS FS

Ta [124] Ta
volatily.py(45)/trend.py(536,

Slice underutilization L 1.1⇥ 16.6⇥
549, 557, 571, 579)

NumPyCNN [62] Numpy [69, 179] numpycnn.py(161) Loop-invariant computation S 1.8⇥ 2.04⇥
Census main NumpyWDL [159] ftrl.py(60) Loop-invariant computation S 1.03⇥ 1.1⇥

Lasso Scikit-learn [127] least angle.py(456, 458) Ine�cient algorithms S 1.2⇥ 6.1⇥

IrisData [161] Numpy
nn backprop.py(222, 228, Slice underutilization &

L 2⇥ 2.02⇥
247, 256, 263, 271, 278) API misuse

Network
Neural-network-

network.py(103-115)
Repeated

NFC
L 1.03⇥ 1.05⇥

from-scratch

Cnn-from-scratch [195] Numpy conv.py(62) Slice underutilization L 2.5⇥ 3.9⇥

Metaheuristics [115, 116] Numpy

FunctionUtil.py(374) API misuse L 1.4⇥ 1.9⇥
FunctionUtil.py(270) Slice underutilization L 6.3⇥ 27.3⇥

FunctionUtil.py(309, 375) Loop-invariant computation S 1.04⇥ 1.4⇥
FunctionUtil.py(437) Repeated NFC L 1.02⇥ 1.1⇥

EPO.py(40) Loop-invariant computation S 1.1⇥ 1.1⇥
LinearRegression [91] LinearRegression LinearRegression.py(49, 50) Repeated NFC L 1.4⇥ 1.5⇥
Pytorch-examples [84] PyTorch [125] adam.py:loop(66) Loop-invariant computation L 1.02⇥ 1.07⇥

Cholesky [196] PyTorch cholesky.py(76) Slice underutilization L 3.2⇥ 3.9⇥
GGNN.pytorch [29] PyTorch model.py(122, 125) Loop-invariant computation S 1.03⇥ 1.07⇥
Network-sliming [94]

Torchvision [137] functional.py(164) Slice underutilization L
1.1⇥ 1.7⇥

Pytorch-sliming [94] 1.04⇥ 1.7⇥
Fourier-Transform [89]

Matplotlib [77] transforms.py(1973)
Repeated

NFC
S

1.02⇥ 2.8⇥
Jax [19] 1.04⇥ 2.8⇥

Autograd [66] 1.05⇥ 2.8⇥

turned o↵ (i.e., in hibernation mode). To do so, PieProf maintains a block list of

function, and implements wrappers for each function in the list. Calls to these functions

are redirected to the wrapper. The wrapper turns o↵ PieProf, executes the original

function, and turns on PieProf again.

Dropping events vs. hibernation. We sometimes drop an event when it is unwanted

(Section 3.4.2). Complex logic can be wired to drop an event at the cost of increased

overhead. Here, hibernating PieProf is preferred to reduce overhead because no event

needs to be kept for a whole block of code.

Blocking garbage collector. When Python GC attempts to deallocate the memory

that debug registers are tracking, errors could occur. Here, we uses a simple trick to

defer garbage collection activities: when PieProf monitors memory addresses and it is

within a PyObject, it increases the corresponding PyObject’s reference, and decreases the

reference once the address is evicted. This ensures that memories being tracked will not

be deallocated. Converting addresses to PyObject’s is done through progressively heavier

mechanisms. First, PyObject’s exist only in a certain range of the memory so we can easily

filter out addresses that do not correspond to PyObject (which will not be deallocated
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by GC). Second, we can attempt to perform a dynamic casting on the address and will

succeed if that corresponds to the start of an PytObject. This handles most of the cases.

Finally, we can perform a full search in the allocator if we still cannot determine whether

the address is within a PyObject.

3.5 Evaluation

This section studies the e↵ectiveness of PieProf (e.g., whether it can indeed identify

interaction ine�ciencies) and its overheads.

We evaluate PieProf on a 14-core Intel Xeon E7-4830 v4 machine clocked

at 2GHz running Linux 3.10. The machine is equipped with 256 GB of mem-

ory and four debug registers. PieProf is compiled with GCC 6.2.0 -O3, and

CPython (version 3.6) is built with --enable-shared flag. PieProf subscribes

hardware event MEM UOPS RETIRED ALL STORES for redundant stores detection and

MEM UOPS RETIRED ALL LOADS for redundant loads detection, respectively.

3.5.1 E↵ectiveness

This section assesses the e↵ectiveness of PieProf, and the breadth of the interaction

ine�ciencies problem among influential Python packages. The lack of a public benchmark

creates two inter-related challenges: (i) determining the codebases to examine inevitably

involves human intervention, and (ii) most codebases provide a small number of “hello

world” examples, which have limited test coverage.

We aim to include all “reasonably important” open-source projects and use only pro-

vided sample code for testing. While using only sample code makes ine�ciency detection

more di�cult, this helps us to treat all libraries as uniformly as possible. For each of

Numpy, Scikit-learn, and Pytorch, we find all projects in Github that import the library,

and sort them by popularity, which gives us three lists of project candidates. Our stopping

rule for each list di↵ers and involves human judgement because we find that the popular-
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ity of a project may not always reflect its importance (e.g., specialized libraries could be

influential, but generally have smaller user bases, and are less popular in Github’s rating

system). For example, Metaheuristics is important and included in our experiment but it

received only 91 ratings at the time we performed evaluation. At the end, we evaluated

more than 70 read-world applications, among which there are more projects that import

Numpy than the other two libraries.

Indentifying a total of 19 ine�ciencies is quite surprising because these projects are

mostly written by professionals, and the sample codes usually have quite low codebase cov-

erage, and are usually “happy paths” that are highly optimized. The fact that we identify

18 new performance bugs as reported in Table 2, indicates that interaction ine�ciencies

are quite widespreaded.

Table 3.2 reports that the optimizations following PieProf’s optimization guidance

lead to 1.02⇥ to 6.3⇥ application-level speedup (AS), and 1.05⇥ to 27.3⇥ function-level

speedup (FS), respectively. According to Amdahl’s law, AS approaches FS as the function

increasingly dominates the overall execution time. For the five ine�ciency categories we

define in Section 3.3.1 and which are common in real applications, PieProf’s superior

redundant loads/stores detection proves its e↵ectiveness.

3.5.2 Overhead

This section reports the runtime slowdown and memory bloating caused by PieProf. We

measure runtime slowdown by the ratio of program execution time with PieProf enabled

over its vanilla execution time. Memory bloating shares the same measuring method but

with the peak memory usage.

Since Python does not have standard benchmarks, we evaluate the overhead of

PieProf on three popular Python applications — Scikit-learn, Numexpr [134], and

NumpyDL [187] which contain benchmark programs from scientific computing, numer-

ical expression and deep learning domains. We report only the first half of the Scikit-
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(a) Redundant Stores Detection
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(b) Redundant Loads Detection

Figure 3.5: Runtime slowdown of PieProf on Scikit-learn, Numexpr, and NumpyDL
with sampling rates of 500K, 1M, and 5M. The y-axis denotes the slowdown ratio and
the x-axis denotes the program name.

learn benchmark due to space limitations, and exclude varying-expr.py from Numexpr,

cnn-minist.py and mlp-minist.py from NumpyDL due to large variations in memory

consumption, or the runtime errors of vanilla runs cnn-minist.py and mlp-minist.py.

We run each experiment three times, and report the average overhead. Furthermore,

the overhead of PieProf is evaluated with three commonly-used sampling rates, 500K,
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(a) Redundant Stores Detection

20
ne

w
sg

ro
up

s
co

ve
rt

yp
e

gl
m

Ki
gg

sb
os

on
bo

os
tin

g lo
f

m
ni

st
Ki

er
ar

cK
ic

al
in

cr
em

en
ta

lp
ca

la
ss

op
at

K
ra

nd
om

pr
oM

sa
ga

sg
dr

eg
re

ss
io

n
sp

ar
si

fy
ts

ne
m

ni
st

bo
ol

ea
nt

im
in

g
m

ul
tid

im
is

su
e4

7
is

su
e3

6
po

ly
tim

in
g

un
al

ig
ne

ds
im

pl
e

vm
lti

m
in

g
vm

lti
m

in
g2

vm
lti

m
in

g3
ls

tm
cK

ar
ac

te
rlm

cn
ns

en
te

nc
e

ls
tm

se
nt

en
ce

m
lp

di
gi

ts
rn

nc
Ka

ra
ct

er
lm

ge
om

ea
n

m
ed

ia
n

   

0

1

2

3

4

0
em

or
y 

Bl
oa

tin
g

1.2

   

500. 10 50

Scikit-learn Numexpr NumpyDL

(b) Redundant Loads Detection

Figure 3.6: Memory bloating of PieProf on Scikit-learn, Numexpr, and NumpyDL
with sampling rates of 500K, 1M, and 5M. The y-axis denotes the slowdown ratio and
the x-axis denotes the program name.

1M, and 5M.

Figure 3.5a shows the runtime slowdown of the redundant stores detection. The geo-

means are 1.09⇥, 1.07⇥, and 1.03⇥ under the sampling rates of 500K, 1M, and 5M, and

the medians are 1.08⇥, 1.05⇥, and 1.03⇥, respectively. Figure 3.5b shows the runtime

slowdown of the redundant loads detection. The geo-means are 1.22⇥, 1.14⇥, and 1.05⇥,
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under the sampling rates of 500K, 1M, and 5M, and the medians are 1.22⇥, 1.11⇥, and

1.04⇥, respectively. The runtime slowdown drops as sampling rate decreases, because

more PMUs samples incur more frequent profiling events, such as inspecting Python run-

time, querying the CCT, and arming/disarming watchpoints to/from the debug registers.

Redundant loads detection incurs more runtime slowdown compared to redundant stores

detection, because programs usually have more loads than stores. Another reason is that

PieProf sets RW TRAP for the debug register to monitor memory loads (x86 does not

provide trap on read-only facility) which traps on both memory stores and loads. Even

though PieProf ignores the traps triggered by memory stores, monitoring memory loads

still incurs extra overhead.

Figure 3.6a shows memory bloating of the redundant stores detection. The geo-means

are 1.25⇥, 1.24⇥, and 1.23⇥ under the sampling rates of 500K, 1M, and 5M, and the

medians are 1.18⇥, 1.18⇥, and 1.16⇥, respectively. Figure 3.6b reports memory bloating

of the redundant loads detection. The geo-means are 1.67⇥, 1.56⇥, and 1.29⇥ under the

same sampling rates, and the medians are 1.52⇥, 1.51⇥, and 1.24⇥, respectively. Memory

bloating shows a similar trend to runtime slowdown with varied sampling rates and be-

tween two kinds of ine�ciency detection. The extra memory consumption is caused by the

larger CCT required for the larger number of unique call paths. issue36, vmltiming2, and

cnnsentence su↵er the most severe memory bloating due to the small memory required

by their vanilla runs. PieProf consumes a fixed amount of memory because some static

structures are irrelevant to the testing program. Thus, a program has a higher memory

bloating ratio if it requires less memory for a vanilla run. mlpdigits consumes more mem-

ory for redundant loads detection, because mlpdigits (a deep learning program) contains

a two-level multilayer perceptron (MLP) that has more memory loads than stores.

Although lower sampling rates reduce overhead, the probability of missing some subtle

ine�ciencies increases. To achieve a better trade-o↵ between overhead and detecting

ability, we empirically select 1M as our sampling rate.
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3.6 Threats to Validity

The threats mainly exist in applying PieProf for code optimization. The same opti-

mization for one Python application may show di↵erent speedups on di↵erent computer

architectures. Some optimizations are input-sensitive, and a di↵erent profile may demand

a di↵erent optimization. We use either typical inputs or production inputs of Python

applications to ensure that our optimization improves the real execution. As PieProf

pinpoints ine�ciencies and provides optimization guidance, programmers will need to de-

vise a safe optimization for any execution.

3.7 Summary

This chapter demonstrates the first to study the interaction ine�ciencies in complex

Python applications. Initial investigation finds that the interaction ine�ciencies occur due

to the use of native libraries in Python code, which disjoins the high-level code semantics

with low-level execution behaviors. By studying a large amount of applications, we are

able to assign the interaction ine�ciencies to five categories based on their root causes.

We extract two common patterns, redundant loads and redundant stores in the execution

behaviors across the categories, and design PieProf to pinpoint interaction e�ciencies

by leveraging PMUs and debug registers. PieProf cooperates with Python runtime to

associate the ine�ciencies with Python contexts. With the guidance of PieProf, we opti-

mize 17 Python applications, fix 19 interaction ine�ciencies, and gain numerous nontrivial

speedups.
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Chapter 4

Visual Studio Code in

Introductory Computer Science

Course: An Experience Report

4.1 Introduction

Integrated Development Environments (IDEs) play an important role in learning a pro-

gramming language. IDEs o↵er programmers extensive development abilities. They un-

derstand language syntax and provide features such as build automation, code linting,

testing, and debugging, which accelerate and simplify the coding process. Through the

help of IDEs, students benefit from e�cient programming, testing, and debugging. Stu-

dents can further develop better coding habits and flatten the learning curve of a new

language. As a result, more and more instructors start involving IDEs in introductory-

level Python courses such as Atom [8], Jupyter Notebook [131, 3, 180], and many others,

which significantly improve student’s coding experiences.

However, not all IDEs are suitable for introductory-level Python courses. Choosing a

satisfying IDE is di�cult for instructors. On the one hand, professional IDEs [185, 57, 82]

support an integrated programming environment and many powerful features but with
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limited support for education. One may need advanced knowledge and plenty of time to

use them properly. For students who are new to programming, it is hard to take advantage

of IDEs on top of learning a new programming language, because plenty of time is spent on

software installation and environment setup. On the other hand, education-focused code

editors are easily installed and manipulated, but they are rarely used during professional

software development cycles. Students face a big gap when transiting from college to

industry [177, 178], which has some negative impacts on their future careers.

Thus, there is urgent to use an appropriate IDE for the introductory-level Python

class, which not only provides enough education-related features but also is mainstream

among professional software engineers. We aim to use an IDE that satisfies four features:

1) it is cross-platform supported, students are able to install and use it identically on

di↵erent OS/hardware; 2) it is easy to use, students can code e↵ectively with a simple

and concise interface; 3) it has extensive functionalities, e.g. code compilation, project

organization, and multi-languages support, etc.; 4) it is mainstream among professional

software engineers, which means the IDE is widely used in industry, bridging the gap

between introductory-level class and future career.

Thus, we identify Microsoft Visual Studio Code (VS Code) as the desired IDE, which

has all four aforementioned features. Moreover, VS Code has been adopted in many

advanced courses in our department, such as operating systems, compiler constructions,

computer networks, and many others. However, VS Code does not draw significant atten-

tion to CS1 courses. Furthermore, with our study of 20 computer science departments,

none of them specify VS Code as the default IDE in the introductory Python courses.

Moreover, there is no comprehensive guidance on VS Code for educators and students.

Since students have various backgrounds, e.g. from diverse majors, with uneven learn-

ing speeds, or are familiar with di↵erent operating systems, comprehensive guidance is

necessary to facilitate the e↵orts of both students and educators.

In this paper, we give the first experience report for the use of VS Code in an intro-

ductory (CS1) Python course. We create the first comprehensive guidance of VS Code for
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both students and educators by gathering plugins (i.e., VS Code extensions) for Python

education and various user experiences. The guidance is highly modularized. Students

who have programming experience jump to the sections they need to learn and skip the

sections they already know; students who are beginner programmers follow the guidance

step-by-step; students who come across errors target why errors occur and how to solve

them. With the help of our guidance, students can quickly acquire the necessary knowl-

edge of the programming environment in the class. We already integrate VS Code and our

guidance into the introductory-level Python course in our department. We use a survey

to evaluate the e↵ectiveness of our e↵orts. From the survey, the students highly value the

use of VS code and our guidance. Students with some industry internship experiences ac-

knowledge the usefulness of learning Python with VS Code over other education-oriented

IDEs, as VS Code is widely used in the industry.

Contributions. In this work, we make the following contributions.

• We point out the importance of selecting a proper IDE for introductory-level courses.

• We identify Visual Studio Code as a desired IDE. We investigate it from four aspects

and analyze its practicality for introductory-level Python courses.

• We propose the first comprehensive guidance1 with hierarchical indexing, to guide

students with diverse backgrounds.

• We report our experiences in using VS Code in an introductory-level programming

course and show that VS Code is a satisfactory IDE for the introductory-level Python

course. We also verify the value and necessity of the guidance.
1The VS Code guidance will become public upon this paper’s acceptance.
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4.2 Background and Related Work

4.2.1 Python in Education

Python has become the most prominent language in college, it tops the list of the most-

taught programming languages, especially in introductory computer science courses, it is

mainly due to three facts: Python is beginner friendly, it has a simplified syntax with

an emphasis on natural language while most programming languages have complex rules,

thus it is perfect for beginners to learn and practice [90, 128, 156, 40]. Python is a powerful

tool, it is applied in many areas like machine learning and big data, especially e↵ective

and essential in scientific computing and data analysis [121, 179, 127, 28, 27, 165, 1, 125].

Students with diverse backgrounds use Python for di↵erent purposes, e.g. analyzing the

market in finance, simulating protein structure in biology. Students who pursue a formal

education in computer science or computer science-related majors are extremely likely

to continue using Python throughout their careers. Python is popular, according to the

PYPL index [135] and Stackoverflow Developer Survey 2021 [158], Python is the most

popular and the fastest-growing programming language (10.4%) in the world as of Jun

2022.

4.2.2 Pedagogical Approaches

Programming language plays an important role in computing education. Many systematic

studies explore the teaching in introductory-level programming classes [126, 148, 103, 146].

Through our observation, a tremendous number of research have been done on how

the programming environment can improve students’ coding experience in recent years,

especially the programming environment for Java and Python, which are the most taught

entry-level programming languages in college. The selection of the programming envi-

ronment is typically decided by instructors. Pedagogical tools and Intelligent Tutoring

Systems (ITS) [173, 181, 182, 39, 112] have been designed specifically for programming

novices. Also, some works report the study of using industry-level programming envi-
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ronments such as Jupyter Notebooks [3, 45, 10, 180] or Eclipse extension [142], their

experience shows how a great IDE improve students’ engagement and performance.

4.2.3 IDEs in Education

Integrated Development Environments (IDEs) refer to software applications that combine

all tools needed for a software development project, including an editor, compiler, and

debugger. They consolidate di↵erent aspects of software development and significantly

improve programmers’ productivity.

Many types of programming environments exist in the market. Roughly there are two

kinds: plain-text/code editor and IDE. Text/code editor does not require complex instal-

lation and configuration, some editors are installed by default like NotePad or TextEdit,

but they o↵er limited functionalities and are not directly related to programming. On

the other hand, a full-featured IDE combines functionalities in one, integrating all tools

developers need to build and test, but IDE requires more disk space/memory or a faster

processor, users may su↵er more from installation, configuration, even cost (some IDEs’

license are expensive). However, there is not a clear boundary exist between them. Users

may turn a text/code editor into an IDE by installing plug-ins/extensions. There are

always trade-o↵s between the time spent on installation/configuration and how powerful

the functionalities are.

It is important to introduce IDEs in programming courses, especially in introductory-

level courses. A great IDE helps students from two perspectives. First, it helps students

write correct code. In our past teaching experience, common errors come up over and

over again in students who have no or less programming experience. Second, it helps

students establish good coding habits. Beginners focus more on correctness and tend

to produce low-quality code, including messy code format, meaningless variable names,

excessive function length, etc. Many IDEs support features like code formatting, variable

name suggesting and function length warning, helping students write clean and decent

code that shows professionalism towards industry standards.
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4.3 Visual Studio Code Investigation

Visual Studio (VS) Code is a lightweight IDE developed and supported by Microsoft,

it is free for private or commercial use. The core feature of VS Code is its extension

support, users are able to add languages, debuggers, and tools to their own installation

to better serve later development. Besides standard extensions released by Microsoft,

there are plenty of extensions on the VS Code Extension Marketplace [107] contributed

by third-party organizations and individual developers. We analyze its practicality for

introductory-level Python courses from four aspects: accessibility, easy-to-use, function-

ality, and popularity.

Accessibility. VS Code provides cross-platform support, it runs on various operating

systems, i.e. macOS, Windows, Linux, and on most available hardware with an identical

user interface. VS Code has a small download (¡ 200 MB) and a disk footprint (¡ 500 MB),

it is lightweight, and perfectly fits every student with di↵erent devices.

As a multi-languages supported IDE, almost every major programming language has

extension support, it is e↵ortless to switch between di↵erent programming languages.

Though our class is for Python beginners, students can continually code with VS Code in

later programming classes.

Easy-to-use. VS Code has a compact but simple user interface. Figure 4.1 shows an

example. In the center is the editor, where students code their assignments. Under the

editor is the panel, it can be displayed in di↵erent panels like a debug console or a built-in

terminal, the terminal always starts from the root of a certain workspace. On the left side

is the sidebar that contains di↵erent views, Figure 4.1 shows the view of Explorer to better

assist in locating a file. Maintaining a single window of code and debugging e↵ectively

increase programming e�ciency.

Besides the concise user interface, VS Code employs many features to improve devel-

opment. One important feature that simplifies programming is the workspace configure
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Figure 4.1: The basic layout of VS Code user interface [32] that we introduced to
students. The editor is the area to edit files, students can open multiple editors at
the same time side by side vertically or horizontally. The panel below the editor is for
output or debug information, errors, and warnings, or an integrated terminal. The
side bar contains di↵erent views like the Explorer or Extension Marketplace, to assist
students while working on the projects or downloading extensions.

setting. A VS Code workspace is the root folder of the current project, configure set-

tings that apply to a specific workspace but not others. As a common scenario, students

need to have di↵erent settings (e.g. interpreter version, dependent libraries, programming

languages) among projects. In our past experience, students may feel confused with the

configure settings, especially set/reset environment at the beginning of starting a new

project. It will be much easier to work on VS Code workspace, because it allows configur-

ing settings in the context of the current workspace, and always overrides the global user

settings.

Furthermore, VS Code supports remote development. The Remote SSH extension

allows opening a remote folder on any remote machine, virtual machine, or container

a running SSH server. Another useful feature favored by many developers is the Com-
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Figure 4.2: The red box indicated the Command Palette of VS Code. Students
can access all functionality of VS Code and install extensions through the Command
Palette.

mand Palette, Figure 4.2 shows an example, where users would have access to all of the

functionalities of VS Code, including commands of your installed extensions.

Functionality. Besides the basic features of a source code editor, VS Code o↵ers ex-

tensions to increase its functionality. With over 30,000 extensions in Marketplace, users

pick favored extensions and customize their installation to improve the programming ex-

perience. For example, in our Python course, we recommend students install the Python

extension developed by Microsoft, which o↵ers strong support for Python language, it has

powerful features such as IntelliSense [104], code formatting, debugging, variable explorer,

and more. The IntelliSense suggestion pops out while you type, it provides intelligent code

completion based on the language semantics and written source code. Figure 4.3 shows

an example, where IntelliSense suggests using variable msg in print function.

Popularity. VS Code is widely used among real-world developers. In the Stack Overflow

2021 Developer survey [158], VS Code tops the most popular developer environment tool,

with 71.06% of over 80,000 respondents reporting that they use it. Due to the great user

amount, bugs/issues are fixed/solved in time. VS Code updates frequently, from June
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Figure 4.3: An example of code completion supported by VS Code, where the Intel-
liSense suggests using variable msg in print function.

2020 to May 2021, VS Code development team made 22 releases in total, updating almost

every month.

The high popularity tops the reasons why we introduce VS Code to our Python class.

Students encounter di�culties in switching IDEs, they are able to use VS Code throughout

di↵erent programming languages classes, or in their future careers.

4.4 Guidance and Support

To accelerate the learning process of VS Code for students with various backgrounds, we

introduce comprehensive guidance in Python class. The guidance2 is divided into separate

tutorials, the following subsections explain the detail of each tutorial.

Download and installation of VS Code. In this tutorial, students are guided to the

download page, and how to choose the correct version according to their OS. We introduce

the workspace right after the installation because it is the fundamental unit to manipulate

projects. We give examples of how to start a VS Code project, and how to organize files

in a project.

2Guidance figures are not shown in the paper for anonymous purposes, and the guidance will become
public upon this paper’s acceptance.
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Download and installation of Python. In our past teaching experience, we su↵er

three main problems with Python version: 1. not being aware of the di↵erence between

Python2 and Python3; 2. installing the wrong version; 3. having both Python2 and

Python3 installed on the same device, but don’t know how to switch them.

In the tutorial, we require students to use Python3 and emphasize the di↵erence be-

tween Python2 and Python3. Before the installation, students need to check if they have

any versions of Python pre-installed. If they don’t have or have Python2 installed, they

are led to the newest Python3 download link. If they have any version of Python3 in-

stalled, then there is no need to install it again. For students with multiple versions of

Python installed, we provide a detailed guide on switching Python versions in the next

tutorial.

Setup Python environment. Next, students install the Python extension and set up

the Python environment in VS Code. In our past teaching experience, students were

always confused with the programming environment settings, we pay extra e↵ort into

where and how to set/change configure settings.

Then students are guided to the extension marketplace, to find and install the Python

extension developed by Microsoft. The Python extension works on/with any operating

system/Python version, the Jupyter extension is included in the Python extension instal-

lation bundle. The Python extension supports code completion and IntelliSense on top of

the currently selected Python interpreter, we provide step-by-step guidance with figures

on how to select a Python interpreter from Command Palette. We also provide guidance

on how to change programming language mode, for students who want to work with other

programming languages in later classes.

Run Python examples. Once set up Python environment, VS Code becomes a real

Python IDE. In this tutorial, we guide students to write, run their first simple Python

program from scratch, and give explanations on how Python extension improves coding.
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We require students to generate expected outputs for example programs, such that they

have identical settings for the Python environment.

Install and run Jupyter extension. We use VS Code’s Jupyter extension to run

in-class coding exercises to improve student engagement [131, 3], through the Jupyter

extension students open and run ipynb files on VS Code the same way as Python files.

The Jupyter Notebook extension provides basic notebook support for language kernels

and allows any Python environment to be used as a Jupyter kernel. In this tutorial, we

guide students to install the Jupyter extension, create new Jupyter files, and manage and

run the code cells.

Install and use scientific packages. Python packages are very e�cient to solve com-

plex problems in scientific computing, data visualization, data manipulation, and many

other fields. In this tutorial, we guide students to install and import Python libraries,

e.g., Numpy, Pandas, Matplotlib, and SciPy. Then students are required to learn and

use basic APIs, and the example codes are provided. To succeed in this tutorial, students

need to plot a certain figure using Matplotlib functions.

4.4.1 Improvements for Guidance

To better guide students, the guidance comprises optimizations as follows:

• We provide two versions of guidance for MacOS users and Windows users, respec-

tively. In our experience, a single version of guidance for all OSs is not adequate,

minor di↵erences among OSs matter in the introductory-level course.

• We provide three ways to access guidance: PDF download, website, and video. The

conventional way is to upload guidance to the course learning management system as

PDF, but its format (PDF) has limited representations, therefore we add a website

version of the guidance. Due to COVID-19, students might not be able to get
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enough in-person instruction, we also provide video guidance to improve student

engagement.

• We constantly collect students’ feedback, and periodically improve and update the

guidance.

4.4.2 Hierarchical Indexing

We provide detailed descriptions of tutorials, students follow tutorials step-by-step, and set

up a programming environment without e↵ort. However, students’ preferences regarding

tutorials vary with their programming backgrounds. Tutorials with a flat structure cannot

satisfy all students’ requirements. Students who prefer video tutorials may not follow the

video pace from the beginning. A common scenario is to start with a verbal demonstration

and refer to a video when problems occur. It is di�cult to locate the corresponding video

timestamp from text if tutorials are flat structured. In addition, students with some

programming knowledge require more concise messages, e.g. have installed Python and

VS Code, but require guidance on Python environment in VS Code, which fail to provide

if tutorials are flat structured. For students who are already familiar with the environment

setup, it is hard for them to extract key messages from flat-structured tutorials.

We design hierarchical indexing on tutorials to fulfill diverse requirements. The hier-

archical indexing consists of three levels: 1) High-level: we provide an abstract with all

key messages at the beginning of each tutorial, such as software names, download links,

software versions, etc. 2) Medium-level: we segment each tutorial into several parts and

summarize with subtitles. We list subtitles and link the corresponding positions in tutori-

als. Students can locate the information they need without e↵ort. 3) Low-level: we build

mappings between video and verbal demonstration, i.e., verbal demonstrations for each

step within a subtitle are linking the corresponding video timestamps. Thus, students

switch between verbal and video demonstrations when problems occur.

74



4.5 Evaluation and Student Responses

In this section, we evaluate two objectives:

• Validate VS Code is a suitable IDE for the introductory-level Python programming

courses

• Verify the value and necessity of VS Code’s Guidance

4.5.1 Course Description

We introduce VS Code and VS Code guidance to a CS1 Python programming course in

Fall 2022 and Spring 2023 semesters, the course enrollment is 141 and 93, respectively.

This CS1 course is restricted for non-CS students, with an emphasis on basic programming

skills and engineering applications. Students learn how to solve problems through writing

Python programs, particular elements include: the development of Python programs from

specifications; documentation and coding style; use of data types, control structures and

data structures; abstractions and verification.

The course uses a flipped classroom format. Every week, students start conceptual

learning of the topics covered in the week by watching videos and completing self-check

quizzes online. Then they attend a 100-minute class exercises session and a 165-minute

lab exercises session to participate in the active learning activities. Students work on

weekly homework assignments and project tasks after class to reinforce the knowledge

and skills of the week. Students are required to run the in-class coding exercises via the

Jupyter Notebook extension installed in VS Code, and complete the programming tasks

(homework assignments, lab exercises, and projects) in VS Code by themselves.

4.5.2 VS Code and VS Code Guidance Evaluation

We designed surveys with 21 questions, to collect students’ feedback on the VS Code

and VS Code Guidance at the end of the semester. The survey first collects students’
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backgrounds, then invites students to rate both VS Code and VS Code guidance based on

their programming experience throughout the semester. In total, 82 valid responses were

collected, 42 responses in Fall 2022, and 40 responses in Spring 2023.

First, we collect students’ background information. In Fall’22/Spring’23, 79%/83% of

students are freshmen and sophomores, 86%/88% of students did not take any Python-

related programming course in the past, and 74%/75% of them have less than one year of

coding experience.

Then students are invited to rate the VS Code and VS Code guidance performance

throughout the semester. They rate VS Code from the following four aspects, the degree

of satisfaction lies between 1 to 5, in which 1 is strongly dissatisfied and 5 is strongly

satisfied.

• Visual appeal: rate the VS Code’s user interface, and the editor layout.

• Extension ecosystem: rate the way to search/install/uninstall extensions.

• Debugging experience: rate the VS Code’s built-in debugger, whether it helps ac-

celerate students’ edit, compile, and debug loop, and if the recommended debugger

extensions are helpful.

• Editing experience: rate the overall editing experience of VS Code. If the basic

editing features (i.e., keyboard shortcuts and Command Palette) are useful and

beginner-friendly. Also rate IntelliSense, if code editing features such as code com-

pletion, parameter info, and content assist are helpful.

Based on the responses, in Fall 2022 semester, 61% of students do not have IDE or

coding platform experience in the past, and 39% of students have used some other IDEs,

whereas in Spring 2023, 70% of students do not have IDE or coding platform experience

in the past, and 30% of students used some other IDEs such as Matlab, RStudio, etc.

As shown in Table 4.1, the average rating for visual appeal, extension ecosystem,

debugging experience, and editing experience are 4.17, 3.81, 4.02, and 4.05, respectively
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Table 4.1: The averaged answers of students’ satisfaction (82 students in total) over
four aspects: visual appeal, extension ecosystem, debugging experience, and editing
experience. The degree of satisfaction lies between 1 to 5, in which 1 is strongly
dissatisfied and 5 is strongly satisfied.

Semester Visual Appeal Extension Debugging Editing

Fall’22 4.17 3.81 4.02 4.05

Spring’23 4.28 3.71 3.7 4.73

in Fall 2022; and 4.28, 3.71, 3.7, 4.73, respectively in Spring 2023. We released a VS

Code extension that periodically recommends and installs themes for students, which

significantly raises their editing experience3. As for the student’s overall satisfaction with

VS Code guidance, it is 4.2 in Fall 2022 and 4.0 in Spring 2023.

Among the total 82 students, 74% students consider VS Code easy to install and use

with the help of VS Code Guidance, and 76% students consider VS Code as a good IDE

to code with. There are 13 students who claim they had issues/trouble with VS Code

guidance throughout the semester, and we have collected these issues and fixed/updated

them in the VS Code guidance.

4.5.3 Class Averages

We also compare the class averages of Spring’22 with Fall’22/Spring’23, the results are

shown in Table 4.2. In Spring 2022, the class average total score is 82.86%, whereas 85.10%

and 84.34% in Fall 2022 and Spring 2023, respectively.

Table 4.2: The class average of total score in the Spring 2022, Fall 2022, and Spring
2023 semesters.

Semester Spring’22 Fall’22 Spring’23

Class Average 82.86% 85.10% 84.34%

3We collected students’ feedback but the data is not shown here since it has been discussed in another
work.
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Although the comparison in Table 4.2 shows that the class averages of Fall 2022 and

Spring 2023 are higher than Spring 2022, we cannot simply accredit the average raise

to VS Code or VS Code guidance. In Spring 2022, we used the traditional classroom,

and students are required to use Spyder integrated within Anaconda, whereas we use

the flipped classroom and VS Code in Fall 2022 and Spring 2023. But according to the

student’s experience, we can conclude that both VS Code and VS Code guidance have

positive e↵ects and are useful in completing coding assignments.

4.5.4 Student Comments

At the end of the student survey, students are invited to comment on their VS Code and

VS Code guidance experience throughout the semester. One student described his/her

overall experience as:

I can view Python files and text files alike without even making a new window

using VS Code. The interface is visually appealing. The VS Code tutorial is

straightforward. Instructions are easy to follow. That’s all a tutorial really

needs, in my opinion.

Some students favor the dark mode in VS Code, one student claimed it improves

his/her coding experience:

I like VS Code uses color coordination to make di↵erent code types and func-

tions stand out. I also like that by default the background is black it makes

it easier to read. 90% of the time it’s very easy to find mistakes within codes.

Overall the tutorial is easy to follow.

We observe that many students prefer dark mode compared with bright mode, it may

be because dark mode or dark theme stands out the syntax highlighting. With a light

background, the code texts are mostly darker colors, while more colorful with a dark

background. In addition, compared with pedagogical IDEs, changing themes in VS Code

is quite easy. Students highly raise the theme extensions in VS Code, one student claimed:
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I like the way how VS Code installs extensions, I especially love theme exten-

sions in Marketplace, whenever I am bored with codes I change my theme, and

it just becomes a totally new software!

From the feedback, we collect many constructive suggestions. Some students complain

about the complex commands on the terminal. It’s true that we may involve plenty of

terminal instructions at the beginning of class, but the instructor thinks those instruc-

tions/commands are required for this class. To fix this problem, we divide the command

study into di↵erent labs and add detailed explanations on every instruction.

Another student considered VS Code guidance useful, but suggested we could involve

more helper extensions in class:

Tutorials are thorough, straight to the point. But in my opinion, VS Code

lacks collaborative elements, especially in the lab. I feel that collaboration via

a ‘shared’ document would be beneficial because, without it, one user mostly

does the code by themselves.

The live share extension enables students to share screens and collaborate with class-

mates/TAs/instructors on the same code without the need to sync code or configure the

same development tools, settings, or environment [106]. We are evaluating the feature and

will introduce it to students after careful consideration.

To summarize, students’ overall experience with VS Code and VS Code guidance

is positive and encouraging, which shows that VS Code and guidance are valuable and

promising for the CS1 course.

4.5.5 Issues with Jupyter Notebook in VS Code

We observe two issues: 1. when running a cell/all cells in Jupter Notebook file, it loads for

a long time but not showing any content, this issue was reported by more than 10 students

(with both on Mac/Windows devices); 2. when running a cell/all cells in Jupyter Notebook
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file, VS Code crashes. With 2 students these issues are solved by restarting/upgrading VS

Code, but in most cases, we can not fix these, running cells bloat device memory, we fix

these by using the Jupyter Notebook web-based platform instead of the Jupyter Notebook

extension.

4.6 Discussions

Discussions on education-related concerns. VS Code has some advanced features

that raise some debates for their use in introductory-level programming courses, such

as code auto-completion and function signature hints. Some argue that supplementary

features would develop a blind dependence on IDEs rather than truly understanding the

code. In practice, our teaching plan covers all necessary programming knowledge and

concepts, and features like auto-completion and function signature hints help students

learn faster and more e�ciently. Moreover, these features can be customized or completely

disabled in VS Code if required.

Discussions on some limitations. We can see some limitations in this study. We

only evaluate an introductory Python course. The reason is that our department o↵ers

Python as the introductory programming language. However, VS Code supports multiple

programming languages, such as Matlab, Java, and C/C++. It is straightforward to

adapt our guidance to courses with other programming languages. We will partner with

instructors in our department to report more VS Code experiences.

4.7 Summary

This chapter describes the experiences of introducing Visual Studio Code in an introduc-

tory (CS1) Python programming course at a big engineering university. In this paper, we

investigate VS Code as a satisfactory IDE for CS1 programming courses. To better help

students, we develop comprehensive VS Code guidance for students with various program-
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ming backgrounds. We perform evaluations among students and validate the practicality

of VS Code and verify the quality of our VS Code guidance. We periodically update and

improve the guidance with the collected feedback. We are now practicing VS Code and

our VS Code guidance in more CS1 programming courses with programming languages

besides Python.
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Chapter 5

ProTracker: Estimating Progress

of Programming Assignments

5.1 Introduction

It is common knowledge that many students struggle with programming assignments,

especially CS1 students with limited or even no coding experience. While instructors and

teaching assistants (TAs) provide various resources to flatten learning curves, students still

face many di�culties, such as inadequate time to complete coding assignments, hard to

debug by themselves, shortage of instructor/TA o�ce hours, and many others. To succeed

in programming assignments, students need to produce high-quality codes and deliver

assignments on time. There are many well-studied approaches to help students write high-

quality code such as involving debugging or testing frameworks [11, 9, 160, 12, 155], but not

many researches have been conducted on how to help students estimate the assignment

workloads and deliver assignments on time. Without such a tool, students may fail to

control the pace of finishing the assignments and miss the deadlines.

To avoid such cases, instructors encourage the students to start the assignment early

and provide more leniency, like pushing back deadlines and o↵ering extra o�ce hours.

However, these approaches are usually unproductive, as the students have other deadlines
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and may rank this assignment with lower priority. Thus, a fundamental solution is to

let students self-manage their time better, so they do not struggle when the deadline is

approaching. To achieve this goal, it is important for students to understand their pace

toward completing assignments by tracking their own progress. We foresee a tool that

reports positive and accumulated progress can benefit both students and instructors/TAs.

From the student’s perspective, tracking their programming progress gives them bet-

ter time management to complete coding assignments more e�ciently. Moreover, positive

feedback (i.e., a growing progress bar) motivates students towards completing the assign-

ments. We survey a number of students who enrolled in a CS1 Python programming course

in Summer 2022, of whom 85.3% students (29 out of 34 students) would like to know their

programming progress to better estimate the assignment completion time. From the in-

structor’s aspect, understanding students’ programming progress helps them identify any

learning obstacles to studying (i.e., many students are stuck at a certain progress status

for a long time), so they can provide necessary help accordingly.

However, having students estimate their assignment progress is challenging. Program-

ming assignments typically require students to implement one or multiple functions, data

structures, or algorithms, which consist of many components. Students, especially those

who take the CS1 courses, can mistakenly estimate the required e↵orts: underestimation

results in the risk of not finishing the assignment by the deadline, and overestimation leads

to the impression that the assignment is over complex. Thus, there is a demand for an

automatic method to help students estimate programming progress accurately.

The software engineering community has some prior work on better estimating or

tracking software project progress [4, 34, 5, 175]. However, prior approaches are devel-

oped for engineering managers or architects, not for educators or students. Estimating

the progress of programming assignments in the education community has its challenges

and opportunities. First, estimating software project progress in prior works requires in-

volving multiple aspects including budgets, software design, and communication, among

others. In contrast, we only focus on students’ assignments. Moreover, we are able to
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refer sample solutions for progress estimation but prior works can only refer to the sys-

tem design “blueprint”, which is not detailed and accurate. Furthermore, we have plenty

of assignment samples (provided by previous students) as references to extract common

patterns for progress estimation, while prior works target individual software projects.

Given these opportunities, the research challenge here is how to use sample solutions

and assignment samples to estimate programming progress for students tracking their

assignment progress, without giving any hints for problem-solving. This paper targets

the research question: How can we estimate the programming progress of assignments for

educational purposes?

To answer this research question, we propose ProTracker, the first end-to-end solu-

tion to estimate the coding progress of programming assignments for students by applying

machine learning techniques. ProTracker produces accurate programming progress es-

timation on-the-fly while doing assignments, so students can get real-time feedback. Fig-

ure 5.1 shows a typical pipeline for students doing a programming assignment. When

starting an assignment, students first do coding for several milestones or the entire pro-

gram. They then test their codes and do debugging if necessary. These patterns will

repeat until the final solution is submitted. As an extension, ProTracker can be easily

installed on students’ editors1, upon installation, the estimated programming progress ap-

pears whenever students save code texts. ProTracker tracks the coding progress for the

entire assignment or milestones only regardless of the code correctness. For correctness,

ProTracker incorporate with testing/debugging approaches [9, 160, 11, 75]. Students

can seek help from the instructor/TAs in time if they (1) feel their coding paces fall behind

or (2) complete the coding progress but are stuck at debugging for a long time.

ProTracker consists of two parts: backend and frontend. The backend takes sample

solutions and assignment sample files as input, preprocesses the code text, performs static

analysis, and generates the dataset for ML models. It applies a two-level cross-validation

method to perform hyper-parameter tuning for each model and select the best model for

1We provide step-by-step installation instruction, which normally takes less than a minute.
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ProTracker

Test Cases

Submit

Figure 5.1: How we help students in code assignments. We provide test cases to check
code correctness, and ProTracker to estimate coding progress.

the input data. After the backend produces the best ML model, the frontend, which runs

as a Microsoft Visual Studio Code (VS Code) extension (i.e., the default programming

environment in our courses), uses the model to estimate the progress and report to the

students on-the-fly.

Contributions. In this work, we m

ake the following contributions.

• We bring up the necessity of measuring and reporting the progress of programming

assignments to both students and instructors.

• We propose a machine learning-based approach to estimate the progress of program-

ming assignments with high accuracy and low overhead.

• We develop an end-to-end system, ProTracker, to show the progress status (in

percentage) in the editor, which can be used in practice.
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5.2 Related Works

5.2.1 Predictions in Education

In recent years, tremendous research has focused on student behavior predictions with

educational data mining techniques. Works have been done on student success prediction,

typically they collect data (e.g., students’ background information, assignments scores, and

grade point average (GPA) within the intended major) from the early stage of class to

predict students’ final grades or performances [138, 130, 152, 16, 54], some other works [18,

184, 188, 193] reported significantly high prediction accuracy but not able to predict in

the early stage of the class. Furthermore, some researchers have been working on the

predictions of student engagement [52, 111, 109, 170], they study the student activity,

such as keystrokes and elapse time, to predict students’ engagement while programming.

5.2.2 Progress Monitoring in Education

Monitoring student progress plays an important role in education, typically refers to tech-

niques that assess students’ academic performance during semesters [96]. Instructors

spend a significant amount of time monitoring the progress students made, if and how

they can achieve success in class. To accurately evaluate students’ progress, first instruc-

tors ensure the students’ background and current performance level, and the achieve-

ment goals students suppose to reach by the end of the learning period. Studies point

out that closely monitoring student progress has a positive e↵ect on both instructors

and students [145, 194], and adaptive feedback motivates and improves students’ perfor-

mance [101]. Automatic unit tests [11, 9] can help students understand their milestones.

However, unit tests can only validate the progress when a milestone completes. Pro-

Tracker, instead, estimates the progress at any time.
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Figure 5.2: The overview of ProTracker. It takes historical students’ programming
assignments as inputs and achieves programming progress prediction through the
backend and frontend, which interact with cloud storage.

5.3 Design and Implementation

Figure 5.2 shows the overview of ProTracker. Instructors, i.e., tool operators, col-

lect historical students’ assignments as ProTracker input data, then ProTracker’s

backend uses input data to train ML models and upload them to the cloud storage au-

tomatically. Students, i.e., tool users, install VS Code and ProTracker extension on

their local programming environment. ProTracker’s frontend (a VS Code extension)

downloads the updated ML models from the cloud and predicts students’ programming

progress on-the-fly. The pre-trained ML models can be shared among di↵erent instruc-

tors, but we highly recommend instructors retrain the existing models with their own

input data (historical students’ assignments from their courses), for optimal accuracy.

The backend runs on the server and consists of three major components: (i) Prepro-

cessor: the preprocessor takes collected labeled assignments as input data, and generates

clean and valid code text. (ii) Generator: generator performs static analysis on the clean

code text. It extracts labels with predefined patterns and produces feature data based

on pre-configured plugins. With the labels and feature data, it generates datasets for the

model selector. (iii) Model Selector: the model selector applies datasets created by the

generator on hyper-parameter tuning for each ML model. It picks the best model for the
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input files and uploads the selected model with tuned parameters to the cloud storage.

The frontend runs as VS code extension that is installed on users’ editors. The frontend

pulls the updated models from cloud storage when the user opens the VS code. During

programming, the moment the user saves a file the frontend performs static analysis on

the valid code text, extracts the feature data, and estimates the programming progress

with the ML model. The results appear as a percentage number on the user’s VS code

workspace.

5.3.1 Input Dataset

The core of machine learning is to learn with historical data and predict a selected prop-

erty of the data for new inputs. The inputs for ProTracker are students’ historical

programming assignments with pre-defined labels. The collected assignments are labeled

by the labelers (i.e., instructors and TAs), who fully understand the assignments. On the

basis of assignment grading criteria and sample assignment solutions, labelers are able to

label progress for assignments intuitively even if they have diverse solutions. Figure 5.3

shows an example of a labeled assignment file, where the pre-defined label pattern is

”#@#”, labelers divide the assignment into four parts with 25% of each. By learning

the input data (labeled historical students’ assignments), ProTracker is able to predict

programming progress for new inputs (the code text that students are working on).

Figure 5.3: An example labeled assignment.
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5.3.2 ProTracker Backend

Preprocessor. The preprocessor takes students’ labeled homework files as inputs, then

loads contexts from inputs, performs preprocessing, and produces clean and valid code

text for the generator. These files are labeled with pre-defined labels, providing context

for ML models to learn. Based on labeling criteria such as homework grading criteria,

the logic of sample homework, and test cases, labelers add labels to indicate di↵erent

percentages in a homework file.

There are three steps in preprocessing. 1) Preprocessor cleans the code text for privacy

purposes. It’s common to list students’ private information (e.g. student name, student id,

submission date, etc) in code text, which should not be exposed to the tool’s operators.

The preprocessor removes the privacy information before the operator access the code

content. 2) The code contexts that are not related to the programming functionality

(such as empty lines, comments, or pre-defined functions) bring the noise to the ML

models’ training and result in low accuracy. The preprocessor deletes noisy contexts from

the code text, then the generator is able to generate high-quality datasets, improving the

accuracy of ML models. 3) There may have invalid label errors and syntax errors in the

code text, which trigger errors during the generator’s static analysis. The preprocessor

validates the code text and fixes/removes the invalid code blocks from it, which avoids

errors during the generator producing the datasets.

Generator. The generator extracts the labels and produces features based on the code

text delivered by the preprocessor, and generates formatted datasets for the model selector.

When the generator generates the data for the code text of a file, it first locates all labels

{l1, l2..lK} in this file by using a predefined pattern with a pattern match. Based on the

total number of labels, the generator gets the real value of each label by proportional

calculation: li = i
K . As the example shown in Figure 5.3, the value of the first label

l0 = 25% and the value of the second label l1 = 50%, ..., so on and so forth. For each

label, the generator segments and identifies the code block, and generates its corresponding
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feature data by performing static analysis with feature extraction plugins. After producing

features for all labels, the generator formats, concatenates, and compresses all the data and

passes them to the model selector for ML models’ training. Besides the default features,

ProTracker provides APIs for the tool operators to change the feature produced by

developing and loading their feature extraction plugins.

Model selector. The model selector trains and picks the best model for the dataset

passed by the generator with a novel two-level cross-validation method [140]. The model

selector first split the dataset D into two equally: a dataset for hyper-parameter tuning

(Dht), and another dataset for model selection (Dms). Then the model selector per-

forms bottom-level cross-validation. It divides (xi, yi) 2 Dht, i 2 [1, N ] to K folders as

{d1ht, d2ht, .., dKht} and  : {1, 2, ..., N}! {1, 2, ...,K} is the index mapping function between

samples to folders. For each candidate model mi 2 M (i 2 [1, T ]) with L parameters, its

estimator m̂⇥
i depends on tuning parameters ⇥ = (✓1, ✓2, ..., ✓L) 2 RL. For the kth folder,

the model selector trains the model to the other K�1 folders and calculates the prediction

error on d
k
ht. The corresponding estimator of kth folder denotes as m̂⇥

i,�k. For each tuning

parameter ✓ of mi, the cross-validation error is:

Erf bottom(✓) =
1

N

NX

j=1

(yj � m̂
✓
i,�(j)(xj))

2 (5.1)

The model selector finds ✓̂i for each candidate model mi, which satisfies:

✓̂ = argmin
✓2{✓1,✓2,...,✓P }

Erf bottom(✓) (5.2)

After the bottom-level cross-validation, the model selector gets T tuned models:

{m̂1, m̂2, ..., m̂T }. Then the model selector performs top-level cross-validation to select

the best model among candidates. Same as the bottom-level cross-validation, the model

selector divides (x0
i, y

0
i) 2 Dms to K folders and gets the index mapping function 

0. The

cross-validation error for the t
th candidate is:
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Erf top(t) =
1

N

NX

j=1

(y0j � m̂t,�0(j)(x
0
j))

2 (5.3)

And the model selector picks the m̂t̂, which has minimal cross-validation error as the

best model for the input dataset.

After the execution of two-level cross-validation and having the best model, the model

selector uploads the selected model with its tuned hyper-parameters to the cloud storage,

thus the frontend is able to use it for forecasting.

5.3.3 ProTracker Frontend

The frontend presents as a VS code extension. Students download, install and manage it

without e↵ort. The extension is activated after VS Code starts up. Upon installation, the

frontend uses a pre-trained model that is provided by the backend and performs a real-

time estimation for programming progress. The frontend updates the local model with

the newest hyper-parameters downloading from the cloud storage automatically without

updating the extension. The frontend consists of two parts: a Typescript driver and a

Python processor. The driver registers callbacks on saving file events to VS code, and

callback functions are executed when students save the file (onDidSaveTextDocument).

Callback functions load the code text from the alive (the current valid) workspace and

pass it to the processor. Then the processor achieves the core functionality of the frontend

— programming progress estimation by three steps: (1) validate the input code text (2)

apply static analysis to the code text and extract the feature data (3) get the prediction

from the pre-trained model with feature data. At last, the processor returns the prediction

of programming progress to the driver, and the driver shows it as a percentage of the

student’s workspace. Figure 5.4 describes an estimating example of frontend, the orange

box shows the start estimating message, which pops out when the estimating starts. The

red box in the status bar indicates the estimated percentage, which reports the real-time

programming progress percentage based on the current code text.
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Figure 5.4: An example of real-time programming progress prediction performs by
the frontend. The start estimating message and progress estimation appear whenever
students save code text.

Di↵erent from the backend, it is highly possible that the students’ code text has syntax

errors during the programming. To solve this problem, two strategies are applied on the

frontend: (1) if syntax errors occur at the bottom part of the code text: it’s more possible

that the student is adding context. The frontend cuts o↵ the code text after the syntax

errors and predicts the progress with only the correct code. (2) if syntax errors occur

at the top or middle part of the code text: it’s more likely that students are modifying

the existing context. In this scenario, the frontend simply uses the last result without

performing a new prediction. We further optimize the frontend by preventing unnecessary

forecast when: (1) multiple files save events occur in a short time window and (2) the

code text has no significant di↵erence between multiple successive events (e.g. only one

variable name or value has been modified).

Table 5.1: Topics and learning outcomes of corresponding assignments in our
introductory-level Python programming course.

Topics Learning Outcomes Assignments

Fundamental
Programming

Use Python input()/print() functions to process input/output Lab1
Build expressions using arithmetic operators Homework1, lab2

Convert data types among int, float, and str Homework2
Functions Create user-defined functions Lab3, Homework3

Conditionals Write programs using chained/nested conditional statements Lab4, homework4
while/for Loops Implement while/for loops Lab5, homework5

Objected-Oriented Programming Use Python classes and methods Lab6
Strings and Lists Create and use 1D/2D lists, traverse lists, convert between list and string Lab7, homework7, lab8, homework8

Tuples and Dictionaries Create and use dictionaries Lab9, homework9
Files and Exception Handling Read data from text files, handle potential exceptions in the program Lab10, homework10
Python Scientific Libraries Create and use NumPy arrays Lab11, homework11

Plot with Matplotlib Plot data from text files, plot fitted curves in regression analysis Lab12, homework12
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5.3.4 Discussion

In this section, we discuss the details of ProTracker’s implementation.

Sequential labeling. As mentioned in Section 5.3.1, the input data of ProTracker’s

backend are students’ homework assignment files, which are sequentially labeled. With

the sequential labeling method, a new label represents a sequential increment of pro-

gramming progress, which may not be true for software development. For example,

four functions exist in a file sequentially as {f1, f2, f3, f4}, then the file is labeled as

{f1, l1, f2, l2, f3, l3, f4, l4}. Under the situation of the sequential labeling, labels l1, l2, l3, l4

represent the progress of 25%, 50%, 75% and 100%, respectively, which indicates the de-

veloping order is f1, f2, f3, f4. However, the real developing order could be f1, f2, f4, f3

(f3 calls f4 in the body), and the sequential labels cannot reflect the correct progress.

Nonetheless, we still apply the sequential labeling for ProTracker based on two rea-

sons: (1) it’s unrealistic to track every student’s programming process in labeling. (2)

compare to the developing order, the code text content is more related to the program-

ming progress. Although the sequential labeling may not reflect actual programming

progress, it’s capable of producing high-quality training data in practice.

Feature selection. We select line number, defined variable number, keyword number,

and operator number as features to predict the programming progress. These features

are intuitively related to programming progress, but they cannot be used standalone for

prediction. For example, more lines of code indicate more programming progress, but

it is inaccurate since line numbers vary in coding styles and implementation methods.

Thus we combine features to train and forecast. We add/switch features by using feature

extraction plugins. Due to the IRB restriction, we have a limited number of samples

(students’ assignments files), thus we limit the feature number (feature dimension) below

five. With the small sample size, high dimensional data make models hard to converge.
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Models. ProTracker contributes four built-in candidate models, Liner Regres-

sion [149], KNN [132], MLP [70] and GBRT [25] to predict programming progress for

Python assignments. The reasons for not involving complex machine learning models are:

(1) the complex models are harder to converge with a small sample size; (2) lightweight

models fit well enough due to the low dimensions and high signal-to-noise ratio of the

dataset; (3) complex models have higher forecasting overhead.

Typically, one semester consists of multiple assignments. There are two ways of train-

ing: use a single assignment to train individually (each assignment has one model), or use

all assignments to train (all assignments share one model). On the one hand, training with

a single assignment has higher accuracy but models are easily overfitting [47] and hard to

tune with a small sample size. On the other hand, training with all assignments signifi-

cantly deteriorates the accuracy even applying normalization for features. In practice, we

combine multiple assignments that share a similar structure, achieving a good trade-o↵

between accuracy and model tuning di�culty.

Table 5.2: The sample size for six datasets.

Dataset 1 2 3 4 5 6
Sample Size 2226 1655 1359 4571 2009 4304

5.4 Evaluation

This section tests ProTracker on real-world datasets collected from a Python program-

ming course and evaluates ProTracker on programming progress prediction accuracy

and runtime overhead.

5.4.1 Datasets

Course description. To build datasets, we collect participants’ assignment files from

two semesters of a Python programming course. Participants are full-time students who

enrolled in an introductory-level Python programming course from a large engineering
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Table 5.3: Forecast results for each dataset.

Dataset 1 2 3 4 5 6
Picked Model GBRT GBRT KNN KNN GBRT GBRT

MSE 0.0048 0.0058 0.0117 0.0139 0.0192 0.0084
R2 0.94 0.92 0.84 0.82 0.77 0.89

university, in Fall 2021 and Spring 2022. This course is prepared for students not majoring

in Computer Science. The course enrollment amount is 136 students for Fall 2021 and 86

students for Spring 2022.

Assignment description. Each semester, there are 11 homework assignments and 12

lab assignments (3 individual lab assignments, 9 group lab assignments), in total 23 as-

signments with 4325 files, the detailed assignment description is shown in Table 5.1. We

group assignments that have similar programming structures and generate six datasets,

the sample size of each dataset is shown in Table 5.2.

5.4.2 Accuracy

Evaluation setup. We perform an end-to-end evaluation of ProTracker’s accuracy

by performing a breakdown analysis on the two-level cross-validation of the model selector.

For each dataset, we first split the dataset into training/testing sets by 80%/20%. Then

we perform a 50%/50% split on the training set, generating Dht for hyper-parameter

tuning of candidate models and Dms for best model selection. We use five as the folder

number (K) for cross-validations [183]. For hyper-parameter tuning, we pre-define the

search space and max iteration to find the local optimal hyper-parameter combination.

We present the ProTracker accuracy by two metrics: mean squared error (the lower

the better, 0 is the best), and R
2 score (the higher the better, varies between 0 and 100%),

they are both reported as the average value of the K (five) tests. We applied scikit-learn

1.1.0 as ProTracker’s backbone ML framework and all experiments are conducted on a

multi-core server with an Intel Xeon Gold 6138 Skylake CPU with 40 cores, each running

at 2.0 GHz, and 192 GB DDR4 memory.
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Results. We first perform the bottom-level cross-validation on models with Dht of six

datasets. After tuning hyper-parameters, LR, KNN, MLP, and GBRT achieves 0.81, 0.95,

0.85, 0.95 averaged R
2 score on training and 0.77, 0.90, 0.81, 0.89 averaged R

2 score on

testing, respectively. Then we perform the top-level cross-validation on tuned models with

Dms. With the hyper-parameters picked by the bottom-level cross-validation, LR, KNN,

MLP, and GBRT achieves 0.80, 0.93, 0.83, 0.95 averaged R
2 score on training and 0.77,

0.88, 0.79, 0.88 averaged R
2 score on testing, respectively2. At last, based on the models

picked by the top-level cross-validation for each dataset, we perform forecasts and achieve

an averaged R
2 score of 0.86, as shown in Table 5.3.

The high accuracy benefits from (1) properly selected features, which have a high

signal-to-noise ratio and are strongly related to the forecast target (programming

progress); (2) we limit the feature numbers, to reduce the di�culty of tuning models

and avoid the curse of dimensionality [13]; (3) though we have limited samples in each

dataset, we apply cross-validations on tuning parameters and picking models to improve

the robustness and avoid the overfitting.

From the model aspect, KNN and GBRT perform better than LR because they capture

the non-linear signals from features, MLP has a similar ability, but it’s di�cult to tune

MLP for its complex structure. From the dataset aspect, the sample size is not directly

related to the accuracy. ProTracker achieves high accuracy even among datasets with

a small sample size since the dataset is high quality (e.g. accurate labels, similar structure

for each file, etc).

5.4.3 Overhead

Evaluation setup. We implement ProTracker’s frontend based on VS Code exten-

sion APIs [105] and the extension runs on VS Code version 1.70.0. To evaluate the

frontend’s overhead, we randomly sample 50 homework files from each dataset for exper-

2Due to the limited space, the accuracy result of two-level cross-validation will be presented in the final
version.
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Figure 5.5: Overhead of ProTracker’s frontend (run as a VS Code extension).

iments. To better reflect the overhead, for each file we perform a forecast on full code

text (with 100% programming progress) because more code text leads to higher overhead

in static analysis. We evaluate the frontend with all four candidate models regardless of

the accuracy. We test 100 times for each file on each model, the results are presented as

the average time of experiments. All experiments are conducted on a 2018 MackBook Pro

with a 2.3 GHz Quad-Core Intel Core I5 and 16 GB DDR3 memory.

Results. Figure 5.5 shows the overhead of ProTracker’s frontend. The overhead

is decomposed into three parts: static analysis (feature extraction), model forecast, and

driver, the averaged time is 0.46ms, 1.62ms, and 0.41ms, respectively. On average, it takes

2.5ms for each programming progress prediction process on PCs, which shows the overhead

caused by ProTracker is neglectable. The driver overhead is not a↵ected by the choice

of models or datasets. The static analysis overhead is dependent on the code content, thus

its overhead varies among di↵erent datasets. On average, LR, KNN, MLP, and GBRT

take 0.16ms, 3.2ms, 1.12ms, and 1.97ms for forecasting, respectively. KNN and GBRT

show superior performance at Section 5.4.2, but LR and MLP may be better solutions for

programming progress prediction when the frontend runs on low-end hardware.
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5.5 Limitations

First, ProTracker requires retraining the model when applying it to courses with lan-

guages other than Python. Fortunately, such retraining requires lightweight e↵orts, from

our experiences. Second, while ProTracker shows high estimation accuracy, Pro-

Tracker may su↵er from some inaccurate estimation in more advanced Python pro-

gramming courses. Many existing ML techniques can solve this issue, we will employ

them in the future. Third, ProTracker does not directly consider the code’s correct-

ness. We will integrate the testing and debugging e↵orts into our progress prediction

model in the future.

5.6 Summary

This paper presents ProTracker, the first end-to-end solution to estimate the progress

of programming assignments with machine learning techniques. It employs static analysis

to extract features from assignment samples from previous semesters, and applies a two-

level cross-validation method for tuning and selecting the proper machine-learning model.

Its frontend runs as a Visual Studio Code extension and performs real-time program-

ming progress estimation for students. Our evaluation demonstrates that ProTracker

achieves an average R2 score of 0.86 with 2.5ms overhead for real-time estimating pro-

gramming progress of assignments.
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Chapter 6

Conclusion and Future Research

Directions

6.0.1 Summary of Dissertation Contributions

As an important research topic in the software engineering community, software ine�-

ciency analysis is needed everywhere in computer systems ranging from smartphones to

supercomputers. We detect and eliminate software ine�ciency by pinpointing and opti-

mizing useless and redundant memory operations. This dissertation demonstrates program

analysis for both software engineers and students. We perform two works to detect pro-

gram ine�ciency and provide optimization guidance for software packages; two works to

improve students’ code quality and performance. By renovating the pedagogical learning

environment and adding new techniques, we better understand and address the challenges

that students have during programming, improve CS teaching and learning for under-

graduate students, and further succeed in CS fundamental studies. We elaborate on the

following conclusions:

Ine�ciency Detection in Compiler Optimizations. We develop CIDetector and

CIBench and leverage them to perform the first study on compiler-introduced and

compiler-missed optimizations in fully optimized binary codes. We study five state-of-
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the-art compilers, including three gcc compilers of di↵erent versions, and the most recent

icc and llvm releases. This work is the first systematic study of compiler-related inef-

ficiencies, it o↵ers several insights that are valuable for scientific programmers, compiler

writers, and tool developers, including inspiring programmers of compiler limitations,

showing that di↵erent compilers have di↵erent optimization strategies, and motivating

the necessity of analysis tools. This work is accepted to ICS’20.

Interaction Ine�ciency Detection for Python Applications. We present

PieProf, a lightweight profiler to pinpoint the interaction ine�ciencies in Python ap-

plications. PieProf leverages the CL algorithm in a multi-language environment, in

which Python is used to govern the semantics and native libraries are used to execute

computation. PieProf identifies interaction ine�ciencies with two common ine�ciency

patterns: redundant loads and redundant stores. PieProf works for production Python

software packages in commodity CPU processors without modifying the software stacks.

This work is accepted to ESEC/FSE’21.

Computer Science education research. We report the experience of integrating VS

Code into a CS1 Python programming course, together with comprehensive guidance, it

significantly balances the teaching resources and shortens the students’ learning curves. In

addition, we focus on the development of education-related VS Code extensions. We pro-

pose ProTracker, the first end-to-end solution to estimate the progress of programming

assignments with machine learning techniques. ProTracker employs static analysis to

extract features from assignment samples from previous semesters, and applied a two-level

cross-validation method for tuning and selecting the proper machine-learning model. It

runs as a VS Code extension and performs real-time programming progress estimation for

students. These works are under-reviewing by CSE (CS education) conferences.
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6.0.2 Future Directions

Performance profiling on emerging platforms and architectures. In our future

direction, we will explore performance profiling on emerging platforms and architectures.

Our current profiling tools run on x86 only, we plan to extend the ine�ciency detection

to the ARM architecture by leveraging DynamoRio [20]. Moreover, many popular Python

functions and programs run on GPUs to achieve data parallelism, we plan to extend the

interaction ine�ciency detection to Python applications with GPU acceleration.

Education-related extensions. We plan to further expand the current advanced learn-

ing environment, integrated with more pedagogical approaches, to better improve the

undergraduate/graduate students’ learning experiences, including the development of ex-

tensions that further support education-related activities. Specifically, we are developing

an extension that enhances students’ visual comfort during programming activities, it pro-

vides students with recommendations for meticulously crafted code themes that integrate

meaningful and intuitive visual representations, known as semantic coloring code themes,

tailored to their programming environment better engage students.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heteroge-

neous systems, 2015. Software available from tensorflow.org.

[2] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel,

Gabriel Marin, John Mellor-Crummey, and Nathan R Tallent. Hpc-

toolkit: Tools for performance analysis of optimized parallel programs. Concurrency

and Computation: Practice and Experience, 22(6):685–701, 2010.

[3] Abdulmalek Al-Gahmi, Yong Zhang, and Hugo Valle. Jupyter in the class-

room: An experience report. In Proceedings of the 53rd ACM Technical Symposium

on Computer Science Education V. 1, pages 425–431, 2022.

[4] H Alaidaros and Mazni Omar. Software project management approaches for

102



monitoring work-in-progress: A review. Journal of Engineering and Applied Sci-

ences, 12(15):3851–3857, 2017.

[5] Hamzah Alaidaros, Mazni Omar, Rohaida Romli, and Adnan Hussein.

The development and evaluation of a progress monitoring prototype tool for soft-

ware project management. In 2019 First International Conference of Intelligent

Computing and Engineering (ICOICE), pages 1–9. IEEE, 2019.

[6] Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware per-

formance counters with flow and context sensitive profiling. ACM Sigplan Notices,

32(5):85–96, 1997.

[7] Matthew Arnold and Peter F Sweeney. Approximating the calling context

tree via sampling. IBM TJ Watson Research Center Yorktown Heights, New York,

US, 2000.

[8] Atom. Atom homepage. https://atom.io/, 2022.

[9] Gina R Bai, Justin Smith, and Kathryn T Stolee. How students unit test:

Perceptions, practices, and pitfalls. In Proceedings of the 26th ACM Conference on

Innovation and Technology in Computer Science Education V. 1, pages 248–254,

2021.

[10] Lorena A Barba, Lecia J Barker, Douglas S Blank, Jed Brown, Allen B

Downey, Timothy George, Lindsey J Heagy, Kyle T Mandli, Jason K

Moore, David Lippert, et al. Teaching and learning with jupyter. Recuperado:

https://jupyter4edu. github. io/jupyter-edu-book, 2019.
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[111] Thomas L Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf

Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles Mc-

115

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/api/extension-guides/overview
https://code.visualstudio.com/api/extension-guides/overview
https://learn.microsoft.com/en-us/visualstudio/liveshare/
https://learn.microsoft.com/en-us/visualstudio/liveshare/


Nally, Susan Rodger, et al. Exploring the role of visualization and engagement

in computer science education. InWorking group reports from ITiCSE on Innovation

and technology in computer science education, pages 131–152. 2002.

[112] Samy S Abu Naser. Developing an intelligent tutoring system for students learning

to program in c++. Information Technology Journal, Scialert, 7(7):1055–1060, 2008.

[113] Khanh Nguyen and Guoqing Xu. Cachetor: Detecting cacheable data to remove

bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, pages 268–278, 2013.

[114] Thieu Nguyen. Implement the-state-of-the-art meta-heuristic algorithms using

python (numpy). https://github.com/thieunguyen5991/metaheuristics, 2019.

[115] Thieu Nguyen, Binh Minh Nguyen, and Giang Nguyen. Building resource

auto-scaler with functional-link neural network and adaptive bacterial foraging op-

timization. In International Conference on Theory and Applications of Models of

Computation, pages 501–517. Springer, 2019.

[116] Thieu Nguyen, Nhuan Tran, Binh Minh Nguyen, and Giang Nguyen. A

resource usage prediction system using functional-link and genetic algorithm neural

network for multivariate cloud metrics. In 2018 IEEE 11th conference on service-

oriented computing and applications (SOCA), pages 49–56. IEEE, 2018.

[117] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: Detecting performance

problems via similar memory-access patterns. In 2013 35th International Conference

on Software Engineering (ICSE), pages 562–571, May 2013.

[118] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: De-

tecting performance problems via similar memory-access patterns. In 2013 35th

International Conference on Software Engineering (ICSE), pages 562–571. IEEE,

2013.

116

https://github.com/thieunguyen5991/metaheuristics


[119] Numpy. Source code of array subscript function. https://github.com/numpy/

numpy/blob/5de64de6dbdf89b1bd8828c59393c4239364755a/numpy/core/src/

multiarray/mapping.c#L1508, 2009.

[120] Taewook Oh, Hanjun Kim, Nick P. Johnson, Jae W. Lee, and David I.

August. Practical Automatic Loop Specialization. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, pages 419–430, New York, NY, USA, 2013. ACM.

[121] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[122] GNU Organization. The gnu compiler collection. https://gcc.gnu.org/, 2019.

[123] Rohan Padhye and Koushik Sen. Travioli: A dynamic analysis for detecting

data-structure traversals. In Proceedings of the 39th International Conference on

Software Engineering, ICSE ’17, pages 473–483, Piscataway, NJ, USA, 2017. IEEE

Press.
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