
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2024

Efficient Parallelization Of Irregular Applications On Gpu Efficient Parallelization Of Irregular Applications On Gpu

Architectures Architectures

Qihan Wang
William & Mary - Arts & Sciences, qwang19@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Qihan, "Efficient Parallelization Of Irregular Applications On Gpu Architectures" (2024).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1709301519.
https://dx.doi.org/10.21220/s2-n4fs-jk74

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1709301519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1709301519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-n4fs-jk74
mailto:scholarworks@wm.edu

Efficient Parallelization of Irregular Applications
on GPU Architectures

Qihan Wang

Shijiazhuang, Hebei, China

Bachelor of Software Engineering, Beihang University, 2017

A Dissertation presented to the Graduate Faculty of
The College of William and Mary in Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William & Mary in Virginia
January 2024

Copyright by Qihan Wang 2023

APPROVAL PAGE

This Proposal is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Qihan Wang

Approved by the Committee, January 2024

Committee Chair

Bin Ren, Associate Professor, Computer Science

William & Mary

Gang Zhou, Professor, Computer Science

William & Mary

Jie Ren, Assistant Professor, Computer Science

William & Mary

Michael Lewis, Associate Professor, Computer Science

William & Mary

Jie Chen, Senior Computer Scientist

Je↵erson Lab

ABSTRACT

With the enlarging computation capacity of general Graphics Processing Units
(GPUs), leveraging GPUs to accelerate parallel applications has become a critical
topic in academia and industry. However, a wide range of irregular applications
with the computation-/memory-intensive nature cannot easily achieve high GPU
utilization. The challenges mainly involve the following aspects: first, data de-
pendence leads to coarse-grained kernel and inefficient parallelism; second, heavy
GPU memory usage may cause frequent memory evictions and extra overhead of
I/O; third, specific computation patterns produce memory redundancies; last,
workload balance and data reusability conjunctly benefit the overall performance,
but there may exist a dynamic trade-off between them.

Targeting these challenges, this dissertation proposes multiple optimizations to
accelerate two real-world applications: many-body correlation functions to simulate
nuclear physics in a large-scale scientific system; the other is the eALS-based matrix
factorization recommendation system.

To accelerate the calculations of many-body correlation functions, this dissertation
presents three frameworks in GPU memory management and multi-GPU scheduling.
Firstly, an optimized systematic GPU memory management framework, MemHC,
utilizes a series of new memory reduction designs in GPU memory allocation,
CPU/GPU communications, and GPU memory oversubscription. Secondly, an
enhanced multi-GPU scheduling framework, MICCO, particularly by taking both
data dimension (e.g., data reuse and data eviction) and computation dimension
into account. MICCO designs a heuristic scheduling algorithm and a machine-
learning-based regression model to generate the optimal settings of a proposed new
concept to manage the trade-off. Thirdly, a locality-aware multi-GPU scheduling
framework. This scheduler leverages pipeline batch generation with a looking-ahead
strategy by building local dependency graphs for memory transfer reduction and
better data reuse, achieving up to 79.92% memory cost reduction and 1.67x speedup.

To parallelize the eALS-based recommendation system, this dissertation proposes
an efficient CPU/GPU heterogeneous recommendation system, HEALS. HEALS
employs newly designed architecture-adaptive data formats to achieve load balance
and good data locality on CPU and GPU. To mitigate the data dependence,
HEALS presents a CPU/GPU collaboration model for both task parallelism and
data parallelism with multiple kernel computation optimizations.

In summary, this dissertation efficiently accelerates two typical irregular applica-
tions on GPUs by building four frameworks, including CPU/GPU collaboration,
GPU memory management, and multi-GPU scheduling.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures xi

1 Introduction 2

1.1 Thesis Statement . 3

1.1.1 Parallel Recommendation System 3

1.1.2 Parallel Many-body Correlation Functions 3

1.2 Contributions . 4

1.3 Dissertation Organization . 6

2 HEALS: A Parallel eALS Recommendation System on CPU/GPU Hetero-

geneous Platforms 7

2.1 Introduction . 7

2.2 Problem Statement . 10

2.2.1 Coarse-Grained Computation 10

2.2.2 Workload Unbalance . 11

2.2.3 Memory Limitation . 11

2.3 Algorithm Analysis . 12

2.3.1 Fast eALS Algorithm . 12

i

2.3.2 Computation Pattern Analysis 15

2.4 System Overview . 16

2.5 architecture-adaptive data format . 18

2.5.1 Sparse Matrix . 18

2.5.2 Dense Matrix . 20

2.6 Hybrid CPU/GPU Collaboration Model 21

2.6.1 Multi-level Concurrency Design 22

2.6.2 Adjusting Data Partition Dynamically 23

2.7 Hardware-based Accelerating Techniques 24

2.7.1 Loop Transformation . 24

2.7.2 Accelerating GPU Parallel Reduction 25

2.8 Evaluation . 26

2.8.1 Experiment Settings . 26

2.8.1.1 Environment . 26

2.8.1.2 Datasets . 27

2.8.1.3 State-of-the-art Works to Compare 28

2.8.2 Overall Improvement . 28

2.8.3 Performance Analysis: Optimization Breakdown 28

2.8.4 Recommendation Efficiency . 30

2.9 Related Work . 31

2.10 Summary . 32

3 MemHC: An Optimized GPU Memory Management Framework for Accel-

erating Many-body Correlation 33

3.1 Introduction . 33

3.2 Background . 37

3.2.1 Correlation Functions . 38

ii

3.2.2 Redstar System . 39

3.2.3 Data Hierarchy . 41

3.2.4 Kernel Computation Analysis 42

3.3 Redundancy and Reusability Analysis 44

3.3.1 Memory Redundancy Analysis 44

3.3.2 Data Reusability Chances . 44

3.4 System Overview . 45

3.5 Memory Reduction Optimizations . 46

3.5.1 Memory Reusability Optimization 47

3.5.2 Data Reorganization . 49

3.5.3 On-demand Synchronization 50

3.5.4 Memory Oversubscription: Pre-Protected Eviction 51

3.5.4.1 LRU Eviction Policy 51

3.5.4.2 Pre-Protected LRU Eviction Policy 52

3.6 Evaluation . 54

3.6.1 Experiment Methodology . 55

3.6.2 Overall Performance Improvements (without Oversubscriptions) 56

3.6.3 Performance Analysis in General Correlation Functions 58

3.6.3.1 Breakdown Analysis 58

3.6.3.2 Exploring Portability on NVIDIA and AMD GPUs . . 60

3.6.3.3 Exploring CPU/GPU Communications in Unified

Memory . 61

3.6.3.4 Exploring Hadron Contraction Kernel 62

3.6.4 Memory Oversubscriptions in General Correlation Functions . 63

3.6.5 User Case: Evaluation in Redstar System 66

3.7 Related Work . 67

3.8 Discussion . 69

iii

3.9 Summary . 70

4 MICCO: An Enhanced Multi-GPU Scheduling Framework for Many-Body

Correlation Functions 71

4.1 Introduction . 71

4.2 Background . 74

4.2.1 Many-body Correlation Function 74

4.2.2 Topological Representations . 75

4.2.3 Challenges and Opportunities 76

4.3 Interplay between Data Reuse and Load Balance 77

4.3.1 Data Reuse and Load Balance Trade-off Analysis 77

4.3.2 Factors Impacting the Data Reuse-Load Balance Trade-off . . . 79

4.3.2.1 The Impact of Local Reuse Pattern on the Trade-off . 79

4.3.2.2 The Impact of Reuse Bounds on the Trade-off 81

4.4 Multi-GPU Scheduling Framework . 84

4.4.1 System Overview . 84

4.4.2 Heuristic Scheduling Algorithm 85

4.4.3 Regression Model . 87

4.5 Evaluation . 89

4.5.1 Experiment Setup . 89

4.5.2 Overall Performance Evaluation 91

4.5.3 Performance analysis . 92

4.5.4 Case Study: Real-world Datasets in Redstar System 95

4.6 Related Works . 96

4.7 Summary . 97

5 Locality-aware Multi-GPU Scheduling for Many-Body Correlation Functions 98

5.1 Problem Statement . 98

iv

5.1.1 Pipeline Batch Generation . 98

5.1.2 Motivation . 99

5.2 Multi-GPU Scheduling . 100

5.2.1 Interplay between Cost and Benefit of Pipeline Batching 100

5.2.2 Instance Analysis: locality Graph and Vector Reorganization . 101

5.2.3 Locality-aware Scheduling Algorithm 105

5.3 Evaluation . 106

5.4 Summary . 107

6 Conclusion 108

Bibliography 109

Vita 126

v

ACKNOWLEDGMENTS

The following thesis and research are the culmination of guidance, encouragement,
and moral support from many people throughout my graduate studies.

First, I sincerely thank my advisor, Prof. Bin Ren, for his thoughtful, patient, and
diligent mentoring. Prof. Ren taught me a lot about how to conduct successful
research. Under his detailed guidance and encouragement, I accumulated profes-
sional techniques and strengthened my determination. I will carry all the lessons I
learned from these years with me in my future life.

During my PhD, I am fortunate to collaborate with Dr. Jie Chen from Jefferson
Lab. I sincerely appreciate his patient guidance and support. During the three-year
collaboration, his professional skills and work enthusiasm inspired me to keep
learning and improving. I also would like to deeply thank Prof. Gang Zhou for his
support and guidance in my PhD research work. It is my honor to have a collabora-
tion opportunity with him to broaden my knowledge and improve my research skills.

I extend my gratitude to all my dissertation committee members, Bin Ren, Gang
Zhou, Jiajia Li, and Robert M Lewis, for their generous support and attentive
feedback.

I thank all other professors of William & Mary for supporting my graduate studies.
I also thank the Computer Science administrative staff – Vanessa Godwin, Jacqulyn
Johson, and Dale Hayes – for their caring and professional work. They gave me
efficient help and support to deal with daily issues.

I extend my heartfelt thanks to my colleagues from the early stages of my career,
especially my tech lead manager Yan Wang. During my six-year PhD journey, I
dedicated one year to working as a full-time engineer in the industry. Yan’s profound
expertise and insights greatly contributed to my growth and professional develop-
ment. His care, support, and guidance set a brilliant foundation for my entire career.

Finally, I would like to thank my group mates and friends for making my time
at William & Mary truly memorable. I also appreciate my parents, my husband,
and all my other family members for their solid support, care, and encouragement
without which I would not be what I am today.

vi

To my family.

vii

LIST OF TABLES

2.1 Symbol Definitions . 12

2.2 Compare CuMF ALS and fast eALS: Time Complexity and

Computation Patterns . 15

2.3 Machine information . 26

2.4 Experiment datasets . 26

2.5 Overall Performance: Execution Time (s) Per Iteration.

HEALS is compared with original java implementation of eALS,

LIBMF, and CuMF with CG and LU solvers. CuMF is measured

with two factors: f = 100 and f = 60. ’Speedup’ illustrates the

minimum and maximum speedup of HEALS over all others. ’OOM’

donates that CuMF cannot execute Friendster on a single GPU due

to the limited on-device memory. 27

3.1 Performance of Memory Eviction with Varying Vector Size:

Hit Rate, GFLOPS on NVIDIA P100. The results are calcu-

lated as the average values per vector of ten execution loops. The

vector size varies from 8 to 32. Each vector contains half repeated

data. Uniform distribution and Gaussian distribution are applied to

evaluate LRU. Pre-Protected LRU protects all repeated data, so data

distributions have no impact. Oversubscribed memory is half of the

available memory size. Improvement means the times of the GFLOPS

improvements. 64

viii

3.2 Performance of Memory Eviction with Varying Oversub-

scription Rate: Hit Rate, GFLOPS on NVIDIA P100. The

results are calculated as the average values per vector of ten execu-

tion loops. The oversubscribed memory rate varies from 50% to 150%.

50% means half of the available memory size is oversubscribed. The

vector size is 64. Each vector contains half repeated data. 65

3.3 Performance of Memory Eviction with Varying Repeated

Rate: Hit Rate, GFLOPS on NVIDIA P100. The results are

calculated as the average values per vector of ten execution loops.

Repeated rate varies from 1/8 to 3/4. The vector size is 64. Oversub-

scribed memory is half of the available memory size. 65

3.4 Information of Real Correlation Functions Basic information of

three correlation functions including the tensor (spin) size, the number

of initial and unique hadron nodes, the theoretical needed memory and

the number of hadron contractions . 67

3.5 Performance of Real Correlation Functions: Execution Time

and GFLOPS on NVIDIA P100. Speedup means the times of

the accelerated performance of MemHC. 67

4.1 Description of Reuse Bounds. Reuse bounds manage different

tensor pairs and mappings, representing the allowed level of load im-

balance. 82

4.2 Definition and Impact of Data Characteristics. 82

4.3 Definitions of Variables. 85

4.4 R2 Score of Regression Models . 89

4.5 Execution Time (ms). Tensor size is 384. Vector size is 64. Re-

peated rate is 50%. Sum of 10 vectors. 91

ix

4.6 Real Many-body Correlation Functions. Total memory repre-

sents the total device memory about input and intermediate output

data. ’Speedup’ is based on the Groute. 95

5.1 Improvements of Real Correlation Functions. 106

5.2 Real Many-body Correlation Functions. ’Ratio’ means the im-

pact of the baseline memory transfer on the total execution time.

’OOM’ means the performance is hard to measured due to the mixed

computation. 107

x

LIST OF FIGURES

2.1 Problem Statement: Motivation, Challenges, and Optimiza-

tions. 10

2.2 Kernel Computation Pattern. Kernel computation mainly in-

volves two stages: one is to utilize R, W , and V to update the target

matrix U (①); the other is to calculate R based on two dense matrices

U and V (②). Highlighted elements participate in calculating one el-

ement of U . Updating the second element (red cross one) in the first

row of U requires the first row of R, but this row of R is necessar-

ily updated after computing the first element (black cross one) of U .

Dependence exists in the same row of the matrix U , i.e., one

element of U depends on the updated values of all previous elements

in the same row. 16

xi

2.3 System Overview: architecture-adaptive data format and hy-

brid CPU/GPU collaboration model. Sparse matrices are re-

ordered and packed into groups. Dense matrices are reorganized into

a merged one-dimensional array. The optimized data are fed into

the hybrid CPU/GPU collaboration model with a dynamic data as-

signment. Kernel computation includes two types: (a) partitioning

kernel into Kernel 1-GPU (partial computation kernel w/o

dependence on GPU) and Kernel 1-CPU (dependence part

on CPU); (b) Kernel 2-GPU (complete kernel on different

data). 17

2.4 Data Format Design: sparse matrices and dense matrices.

HEALS designs new architecture-adaptive data format to solve work-

load unbalance on GPU and CPU. Sparse matrices on GPU are reor-

ganized with balanced group size, while on CPU adopt uncertain size

groups but more even computation cost. For dense matrices, HEALS

translates multiple matrices into a combined one-dimensional array

for better data locality. 19

2.5 Framework Workflow: hybrid CPU/GPU collaboration

model. Multi-level concurrency includes: (a) two execution lines

constitute data parallelism; (b) Kernel 1-GPU and Kernel 1-CPU

achieve task parallelism; (c) Overlapped data transfer hides la-

tency between Kernel 1-GPU and Kernel 2-GPU. Additionally, com-

putation is partitioned into several stages to handle very large datasets. 21

xii

2.6 Implementation in Kernel 1-GPU, Kernel 1-CPU and Kernel

2-GPU: applying hardware-based accelerating techniques.

Loop transformation includes loop unrolling for a better locality

and vectorizd I/O to leverage data parallelism. GPU parallel re-

duction is accelerated by warp primitives (warp shuffle), which

efficiently utilizes registers and shared memory for reduction. 24

2.7 Speedup of the data formats . 27

2.8 Speedup of the partition ratio . 27

2.9 Speedup in the Kernel 1-GPU . 27

2.10 Speedup in the Kernel 2-GPU . 27

2.11 Recommendation Efficiency: Convergence Speed of RMSE

and NDCG. Compare HEALS (f = 64) with CG Solver based CuMF

(f = 60, f = 100) in datasets: Yelp, Amazon, and YahooMusic.

Compare HEALS (f = 64) with LIBMF (f = 64) in Friendster. 29

3.1 Example of Correlation Functions. Figure (a) describes quark

propagation in a simple meson system; Figure (b) represents quark

propagation in a complex meson system. 39

xiii

3.2 Overview of the Redstar System: Sub-modules, Workflow

and Hierarchical Data Structures. The Redstar system involves

several stages: contraction graph generation (Redstar gen graph),

building hadron nodes (colorvec and harom) and hadron graph con-

traction solutions (redstar npt, hadron). The Hadron package aims

to accomplish hadron contractions. The Redstar system abstracts

topologically contraction graphs from correlation functions, then re-

duce contraction graphs to various configurations. In one configura-

tion, vector pairs cooperate to calculate contractions, which consists

of independent hadron nodes. Hadron node includes multiple batches

and associated spins. 40

3.3 Computation Patterns of an Individual Hadron Contraction.

Two input hadron nodes conduct a batched contraction, then accu-

mulate to generate a batched output hadron node. 43

3.4 System Overview: Optimizations and Associated Tech-

niques. MemHC facilitates memory reduction managements be-

tween loading input data and kernel computation. MemHC pro-

poses reduction optimizations in three aspects: GPU memory allo-

cation, CPU/GPU communications and GPU memory oversubscrip-

tion. Techniques involve memory reusability optimizations, data re-

organization, on-demand synchronization and the Pre-Protected evic-

tion policy. 45

xiv

3.5 Memory Reusability Optimizations: Duplication-aware

Management and Overwriting Lazy-released Memory. During

memory allocation, MemHC checks the element cache table to fetch

duplicate data (❶). If the data is new, free pool table will be checked

to find lazy-released device memory with the same size (❷). If exists,

MemHC overwrites the device memory by the new data. When re-

leasing memory, recordings are moved from the element cache table

to the free pool (❸). When memory is oversubscribed, the recorded

data in free pool are released (❹) before eviction. 47

3.6 Examples of Memory Oversubscription: Compare LRU and

Pre-Protected LRU. Input data are: (A, B, C, D) as a first vector

and (E, F, A, B) or (E, F, C, D) as a second vector. Example (a)

shows that LRU produces redundant evictions; Example (b) and (c)

show that Pre-Protected LRU protect repeated data in advance, to

avoid redundant evictions. 52

3.7 Overall Performance: Comparing GFLOPS of Unified Mem-

ory Management and MemHC on NVIDIA. Sub-figures (a) and

(b) illustrate performance with varying repeated rate: 0%, 12.5%,

25%, 50%, 75% and 100%. Sub-figures (d) and (e) show performance

with varying vector size: 1, 2, 4, 8, 16, 32. Sub-figures (c) and (f)

imply the speed up of MemHC based on the unified memory. The

sizes of evaluated tensors include 384 in sub-figures (a)(b) and 192 in

sub-figures (d)(e). 57

xv

3.8 Optimization Breakdown: Compare Unified Memory Man-

agement and MemHC about GFLOPS and Speedup. Uni-

fied memory management is evaluated by two cases: Unified Memory

Naive and Unified Memory Data Reorg. MemHC is evaluated by

four cases: naive (MemHC Naive), only optimized by data reorgani-

zation (MemHC Data Reorg), optimized by data reorganization and

on-demand synchronization (MemHC Data Reorg + Sync), and the

optimal implementation (MemHC Optimal). Tensor size is 384. The

vector size varies from 4 to 16 and repeated rate varies from 0% to

100%. The performance results are measured on P100. 59

3.9 Exploring Portability: GFLOPS and Speedup on AMD

MI50, MI100 and NVIDIA P100, V100. Tensor sizes are 384

and 192. Vector sizes are 1, 2, 4, 8, 16. Figure (a) and (b) show

speedup based on non-opmized explicit implementation. Figure (c)

and (d) illustrate GFLOPS. 60

3.10 Exploring Kernel Computation on AMD MI50 and NVIDIA

P100. Sub-figure (a) explores the limitation of Unified Memory. Ex-

tra Data Copy donates adding redundant data transfer in explicit

memory implementation. Sub-figure (b) compares the performance of

zgemm in cuBLAS and hadron contraction kernels on MI50 and P100. 61

3.11 Comparing multiple eviction policies. Pre-protected eviction

policy is compared with Random policy, MRU, LRU, CAR and Clock-

Pro policies. Measure metrics include GFLOPS and the number of

evictions. Oversubscribe rate changes from 50% to 150%. The tensor

size is 384. Vector size is 64. Repeated rate is 50%. 63

xvi

4.1 Topology Representations of many-body Correlation. Corre-

lation functions are represented as multiple contraction graphs. Each

contraction graph consists of multiple computation stages. Each stage

consists of two vectors of independent hadron nodes. Each pair of

hadron nodes conducts hadron contractions. 75

4.2 Example (a): Trade-off between data reuse and load balance.

Input tensors are A, B, C, and D. Case ❶ only considers data reuse;

Case ❷ only cares about load balance; Case ❸ trades off data reuse

and load balance. Red dotted frames label reused data. The green

bars mean kernel computation cost, and the yellow bars mean mem-

ory operation cost (allocation and communication) without memory

evictions. 77

4.3 Examples: Trade-off between data reuse and load balance

regarding memory evictions. 79

4.4 Example: Local reuse patterns and task assignments. Classify

tensor pairs based on four local reuse patterns: TwoRepeatedSame,

TwoRepeatedDiff , OneRepeated, and TwoNew. Mappings between

tensor pairs and GPUs can be categorized into seven cases. Mapping

(1) represents two reused tensors, assigned to the re-utilized GPU with

the least overhead. Mappings (2) and (3) contain one reused tensor,

and the rest four mappings have two new tensors, resulting in the

most expensive cost. 80

4.5 Heatmap of the Spearman correlation coefficients. The corre-

lation coefficients are among data characteristics (Data Distribution,

Vector Size, Repeat Rate, and Tensor Size), three reuse bounds, and

GFLOPS. 83

xvii

4.6 System overview of MICCO. Input data is tensors in vectors.

MICCO dynamically handles vectors and generates GPU assignments

for each vector. MICCO consists of a regression model and a heuristic

scheduling algorithm. MICCO extracts data characteristics of each

vector to the regression model (❶). The regression model generates

optimal reuse bounds (❷). The heuristic algorithm classifies tensor

pairs (❸) and jointly manages three policies. 84

4.7 Overall Performance. Two distributions: Uniform (a)-(d) and

Gaussian (e)-(h). Blue stars denote speedup of MICCO-optimal

/ Groute. Repeated rate varies from 25% to 100%. Vector size varies

from 8 to 64. Tensor size is 384. The utilized GPU number is eight. . 90

4.8 Impact of Reuse Bounds. Case (1) vector size = 64, repeated rate

= 50%; Case (2) vector size = 16, repeated rate = 25%; Case (3)

vector size = 32, repeated rate = 75%; Tensor size is 384. 13 sets of

three reuse bounds are measured, and the ranging from 0 to 2. 92

4.9 Scalability. Tensor size is 384. Vector size is 64. 93

4.10 Impact of Tensor Size. Tensor size varies from 128 to 768. Vector

size is 64. Repeated rate is 50%. 94

4.11 Memory Oversubscription. Oversubscription rate increases from

125% to 200%. Vector size is 64. Tensor size is 384. Repeated rate is

50%. 94

5.1 GPU assignment instance. Each original vector contains four ten-

sor pairs to compute four kernels. Here are two GPUs to schedule. . . 102

5.2 Generating local dependency graph. 102

5.3 Sub-graph generation from vectors. Vector 1 brings two redun-

dant memeory copies and vector 4 brings one redundnat memory copy. 103

xviii

5.4 Vector reorganization. Generated local graphs can help reorder

tensor pairs and form new organized vectors. 104

5.5 Scheduling Algorithm Overview 105

xix

Efficient Parallelization of Irregular Applications

on GPU Architectures

Chapter 1

Introduction

Graphics Processing Units (GPUs) support high-performance computing, such as accel-

erating real-world applications, particularly very large datasets. However, different from

fine-grained applications, it is challenging to implement efficient parallel irregular appli-

cations on GPUs. Currently, the main challenges are provoked by both computation

patterns and GPU memory limitations. More specifically, data dependence of the orig-

inal sequential algorithm leads to coarse-grained computation. Meanwhile, dealing with

large datasets requires heavy memory usage, which causes memory oversubscription and

low GPU utilization. Additionally, how to manage the interplay between computation

amount (load balance) and I/O reduction (data reuse) is also a critical challenge.

Targeting the challenges, we present three works to implement parallelism and acceler-

ation of irregular applications on GPUs. Specifically speaking, we focus on exploring two

real-world applications: an eALS-based recommendation system and many-body correla-

tion function calculations. Based on these two applications, we propose three frameworks

including CPU/GPU collaboration to achieve efficient concurrency, GPU memory man-

agement to eliminate redundancies, and a multi-GPU scheduler for the optimal trade-off

between load balance and data reuse.

2

1.1. THESIS STATEMENT 3

1.1 Thesis Statement

1.1.1 Parallel Recommendation System

A recommendation system is a fundamental building block of many real-world applications

ranging from online shopping, and social networking, to short video sharing and media

business, etc [13, 58]. Alternating Least Square (ALS) is a classic algorithm to solve ma-

trix factorization [107, 70, 21, 85, 30, 53] widely used in recommendation systems. Existing

efforts focus on parallelizing ALS on multi-/many-core platforms to handle large datasets.

Recently, an optimized ALS variant called eALS was proposed, and it yields significantly

lower time complexity and higher recommending accuracy than ALS. However, it is chal-

lenging to parallelize eALS on modern parallel architectures (e.g., CPUs and GPUs) for

the following reasons: First, eALS’ data dependence prevents it from fine-grained parallel

execution, thus eALS cannot fully utilize GPU’s massive parallelism; Second, the sparsity

of input data causes poor data locality and unbalanced workload; Third, its large memory

usage cannot fit into GPU’s limited on-device memory, particularly for real-world large

datasets.

1.1.2 Parallel Many-body Correlation Functions

Calculation of many-body correlation functions is one of the critical kernels utilized in

many scientific computing areas, especially in Lattice Quantum Chromodynamics (Lattice

QCD) [11, 15, 16, 17, 83, 6]. It is formalized as a sum of a large number of contraction

terms each of which can be represented by a graph consisting of vertices describing quarks

inside a hadron node and edges designating quark propagations at specific time intervals.

Graph construction thus is defined as deleting one edge after another, which carries the

computing cost of tensor contractions, until two connected hadron nodes are left. Due

to its computation- and memory-intensive nature, real-world physics systems (e.g., multi-

meson or multi-baryon systems) explored by Lattice QCD prefer to leverage GPUs.

Distinguished from general graph processing, many-body correlation function calcula-

1.2. CONTRIBUTIONS 4

tions show two specific features: a large number of computation-/data-intensive kernels

and frequently repeated appearances of original and intermediate data. The former results

in expensive memory operations such as tensor movements and evictions. The latter offers

data reuse opportunities to mitigate the data-intensive nature of many-body correlation

function calculations.

Existing optimizations [60, 79, 56, 2, 47, 12, 63, 46, 74] on many-body correlation

mainly focus on individual tensor contractions (e.g., cuBLAS libraries and others). Com-

pared with the prior works, this dissertation discovers a new optimization dimension,

memory redundancy eliminations, for many-body correlation by exploring the optimiza-

tion opportunities among tensor contractions. Additionally, current graph-based multi-

GPU schedulers cannot capture the data-centric features claimed before, resulting in a

sub-optimal performance for many-body correlation function calculations. Therefore, this

dissertation explores a multi-GPU scheduling scheme to further accelerate many-body

correlation calculations.

1.2 Contributions

First, this dissertation proposes an efficient CPU/GPU heterogeneous recommendation

system based on fast eALS for the first time (called HEALS) that consists of a set of

system optimizations. HEALS employs newly designed architecture-adaptive data for-

mats to achieve load balance and good data locality on CPU and GPU. HEALS also

presents a CPU/GPU collaboration model that can explore both task parallelism and

data parallelism. HEALS also optimizes this collaboration model with data communi-

cation overlapping and dynamic workload partition between CPU and GPU. Moreover,

HEALS is further enhanced by various parallel techniques (e.g., loop unrolling, vector-

ization, and GPU parallel reduction). Evaluation results show that HEALS outperforms

other state-of-the-art baselines in both performance and recommendation quality. Par-

ticularly, HEALS achieves up to 5.75× better performance than a state-of-the-art ALS

1.2. CONTRIBUTIONS 5

GPU library. This work also demonstrates the possibility of conducting fast recommen-

dations on large datasets with constrained (or relaxed) hardware resources, e.g, a single

CPU/GPU node.

Second, this dissertation proposes MemHC, an optimized systematic GPU memory

management framework that aims to accelerate the calculation of many-body correlation

functions utilizing a series of new memory reduction designs. MemHC targets general GPU

architectures (both NVIDIA and AMD) and optimizes many-body correlation’s memory

management by exploiting a set of memory allocation and communication redundancy

elimination opportunities: First, GPU memory allocation redundancy: the intermediate

output frequently occurs as input in the subsequent calculations; second, CPU-GPU com-

munication redundancy: although all tensors are allocated on both CPU and GPU, many of

them are used (and reused) on the GPU side only, thus many CPU/GPU communications

(like that in existing Unified Memory designs) are unnecessary; third, GPU oversubscrip-

tion: limited GPU memory size causes oversubscription issues, and existing memory man-

agement usually results in near-reuse data eviction thus incurring extra CPU/GPU mem-

ory communications. Therefore, we implement targeting optimizations for GPU memory

allocation, CPU/GPU memory movement, and GPU memory oversubscription, respec-

tively. More specifically, first, MemHC employs duplication-aware management and lazy

release of GPU memories to corresponding host managing for better data reusability. it

implements data reorganization and on-demand synchronization to eliminate redundant

(or unnecessary) data transfer. Third, MemHC exploits an optimized Least Recently Used

(LRU) eviction policy called Pre-Protected LRU to reduce evictions and leverage mem-

ory hits. Additionally, MemHC is portable for various platforms including NVIDIA GPUs

and AMD GPUs. The evaluation demonstrates that MemHC outperforms unified memory

management by 2.18× to 10.73×. The proposed Pre-Protected LRU policy outperforms

the original LRU policy by up to 1.36× improvement.

Third, this dissertation presents a multi-GPU scheduling framework, MICCO, to ac-

celerate contractions for correlation functions particularly by taking the data dimension

1.3. DISSERTATION ORGANIZATION 6

(e.g., data reuse and data eviction) into account. This work first performs a comprehensive

study on the interplay of data reuse and load balance, and designs two new concepts: local

reuse pattern and reuse bound to study the opportunity of achieving the optimal trade-off

between them. Based on this study, MICCO proposes a heuristic scheduling algorithm

and a machine-learning-based regression model to generate the optimal setting of reuse

bounds. Specifically, MICCO is integrated into a real-world Lattice QCD system, Redstar,

for the first time running on multiple GPUs. The evaluation demonstrates MICCO out-

performs other state-of-art works, achieving up to 2.25× speedup in synthesized datasets,

and 1.49× speedup in real-world correlation functions.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces a parallel eALS

matrix factorization-based recommendation system on CPU/GPU architectures. In Chap-

ter 3, we present an optimized GPU memory management scheme to efficiently calculate

many-body correlation functions. Chapter 4 further proposes an enhanced multi-GPU

scheduling framework to accelerate many-body correlation functions. Finally, Chapter 5

summarizes this dissertation and discusses the ongoing and future research works.

Chapter 2

HEALS: A Parallel eALS

Recommendation System on

CPU/GPU Heterogeneous

Platforms

2.1 Introduction

A recommendation system is a fundamental building block of many real-world applica-

tions ranging from online shopping, social networking, to short video sharing and media

business, etc [13, 58]. With rapidly increasing data volumes, exploiting more efficient

(and accurate) recommendation models has been attracting attention from the fields of

information retrieval, machine learning, and high-performance computing fields [68, 99]

etc.

Matrix factorization and its variants [107, 70, 21, 85, 30, 53] have been widely

studied and among the most prevalent approaches for recommendation. In essence, the

input data forms a sparse matrix whose elements either represent ratings (explicit), or

implicit feedback from users (such as click or add-cart). The goal of the factorization aims

7

2.1. INTRODUCTION 8

to produce two (dense) matrices, a user matrix and an item matrix, whose product can be

used to recover the sparse matrix. Especially, the missing elements in the sparse matrix

can be then approximated by the multiplication between the user and item matrices. We

can then recommend the top-rated missing items to each user.

There are different optimization methods for matrix-factorization based recommen-

dation, and among them, Alternating Least Square (ALS) [32, 73, 35] is one of the

state-of-the-art methods due to its simplicity, ease of implementation, and (recommenda-

tion) accuracy. It is also rather efficient if the data is not very large. Intuitively, ALS will

fix one matrix (for instance, the user matrix), and then optimize the other matrix (for

instance, the item matrix); then we will fix the latter matrix and optimize the first one.

This alternating optimization will perform iterative until it converges.

However, when the data size becomes larger (i.e., the number of users and the number

of items), ALS also requires computation efficiency and memory capacity. To efficiently

train large datasets [61], various ALS-based parallel recommendation models are imple-

mented on many-core architectures, such as LIBMF [21] and CuMF libraries [85, 84].

To further accelerate ALS algorithm, recently He’s work [30] proposes an optimized ALS

algorithm, fast element-wise Alternating Least Square (eALS) algorithm and shows its

outperforming convergent speed (and recommendation accuracy) compared with other

MF-based recommendation models.

However, it is challenging to parallelize eALS on modern parallel architectures like

GPUs [59]: First, data dependence in the fast eALS algorithm prevents it from fine-grained

workload partition, thus eALS cannot fully utilize GPU’s massive parallelism. Second,

implicit information constitutes large sparse matrices, resulting in poor data locality and

workload unbalance. Third, addressing large datasets is challenging for GPUs with limited

on-device memory.

Targeting these challenges, this work proposes a CPU/GPU heterogeneous recom-

mendation framework (HEALS) based on implementing an efficient parallel fast eALS

algorithm. HEALS employs a hybrid CPU/GPU collaboration model to alleviate the im-

2.2. PROBLEM STATEMENT 9

pact of data dependence. HEALS accomplishes not only data movement overlapping for

distinct GPU kernels but concurrent kernels between CPU and GPU as well. Moreover,

HEALS reorganizes both sparse and dense matrices to new architecture-adaptive formats

to improve workload unbalance and data locality. HEALS partitions data into several

chucks to handle large datasets. HEALS also leverages several classic system techniques

to further accelerate recommendation. The key contributions are summarized as follows:

• We propose a CPU/GPU heterogeneous recommendation system, HEALS, based on

an efficient parallel eALS-based matrix factorization for the first time.

• We design an architecture-adaptive data format for GPU and CPU to solve workload

unbalance. Additionally, HEALS unfolds and packs dense matrices for better data

locality.

• We present a hybrid CPU/GPU collaboration model incorporating data parallelism,

task parallelism, and overlapped data transfer. It also adopts a data partition ad-

justment approach to balance workload between concurrent kernels.

• We apply crucial hardware-based accelerating techniques to further accelerate kernel

computation, including loop transformation and GPU parallel reduction.

HEALS is extensively evaluated on four datasets by comparing with three other state-

of-the-art works. To further validate its prediction accuracy and recommendation qual-

ity, HEALS is also evaluated on two metrics, Root Mean Square Error (RMSE) and

Normalized Discounted Cumulative Gain (NDCG). Evaluation results demonstrate that

HEALS outperforms other ALS-based parallel libraries. Particularly, it runs 5.75× faster

than CuMF (a state-of-the-art GPU library), and 15.7× faster than LIBMF (a state-of-

the-art CPU library), respectively. HEALS also demonstrates the possibility of performing

fast recommendations on large datasets with constrained (or relaxed) hardware resources.

2.2. PROBLEM STATEMENT 10

Address large
datasets

Accelerate
fast eALS
algorithm

Motivation

Split GPU
Kernel

CPU/GPU
Concurrent
Kernels

Optimize Data
Formats

Partition Data

CPU/GPU
Concurrency

Optimizations

Sequential
eALS

Algorithm

Input Data

Coarse-
Grained

Computation

Workload
Unbalance

Hardware Memory
Limitation

Data
Dependence

Sparse
Matrices

Challenges

Large
Datasets

Figure 2.1: Problem Statement: Motivation, Challenges, and Optimizations.

2.2 Problem Statement

Fig. 3.4 illustrates the overview of the problem statement. The overall motivation is to

accelerate recommendations for large datasets by designing a parallel fast eALS algorithm

with the help of the superior computing capability of a heterogeneous CPU and GPU

system. This section introduces three prerequisites of this work, explains the corresponding

challenges, and summarizes some specific solutions. More specifically, it analyzes three

sub-topics: coarse-grained computation, workload unbalance, and memory limitation.

2.2.1 Coarse-Grained Computation

As a variant of ALS, the sequential eALS algorithm[30] offers a theoretical guarantee of

low computation cost and fast convergence, inspiring us to build our efficient parallel rec-

ommendation system based on this state-of-the-art algorithm. However, the original eALS

algorithm leads to data dependence, which limits the performance of parallelism. Part of

the kernel computation is prone to coarse-grained. More specifically, the kernel computa-

tion consists of three loops, and data dependence exists in the inner loops. We attempt

to relax this inner-loop dependence by unrolling the inner loop, but this straightforward

2.2. PROBLEM STATEMENT 11

method significantly degrades the accuracy because it violates the theoretical guarantee.

Therefore, this work focuses on utilizing a set of system optimizations to alleviate the

influence of data dependence. This work splits the kernel computation into a CPU part

and a GPU part and designs a CPU/GPU collaborative processing model.

2.2.2 Workload Unbalance

Workload unbalance is another bottleneck when calculating sparse matrices in eALS. The

computation cost of different rows may vary dramatically for sparse matrices, directly

leading to workload unbalance. A straightforward solution is to designate different num-

bers of threads to compute different rows; however, it will cause a significant overhead

of threads scheduling. It is also time-consuming to quantify the workload of each row

and decide which threads to use, especially for large datasets. Comparing with the above

approach, it is more efficient to reorganize input data in advance. Thus, this work de-

signs new data formats and divides the original data into groups with a more balanced

workload. Threads are able to directly deal with reorganized groups, without any extra

management in kernel computations.

2.2.3 Memory Limitation

Usually, large datasets cannot fit into the limited on-device memory of a single GPU. Two

possible ways to solve this problem include scaling up to multiple GPUs and applying

a CPU/GPU heterogeneous design. CuMF[84] selects the former to enlarge the whole

memory size; however, it depends on the availability of hardware. In contrast, this work

designs and implements a CPU/GPU concurrent execution model to leverage the large

host memory efficiently with relaxed hardware requirements.

2.3. ALGORITHM ANALYSIS 12

Table 2.1: Symbol Definitions

Name Definitions

R Sparse rating matrix

M Number of users

N Number of items

U Dense user matrix

V Dense item matrix

W Sparse weight matrix

K Number of factors

T Predicted training matrix

L Loss function

λ Parameter to control the regularization

2.3 Algorithm Analysis

Before discussing the parallel implementation, this section explains the original eALS

and its sequential implementation. It mainly explains eALS’ theoretical definitions and

analyzes its computation patterns. Tab. 2.1 illustrates the definitions of symbols used in

the following sections.

2.3.1 Fast eALS Algorithm

Fast eALS algorithm aims to solve matrix factorization. Matrix factorization decomposes

one matrix (usually a sparse matrix, e.g., a user-item rating matrix) into the product of

two lower dimensional matrices (e.g., a user matrix and an item matrix). According to the

Tab. 2.1, R ∈ RM×N , U ∈ RM×K , V ∈ RN×K . The matrix factorization can be defined

as:

R = U × V T (2.1)

A loss function L calculates the loss value between the predicted training matrix (T)

and the ground truth matrix (R). Let r, u, and v represent elements of matrices R, U ,

and V . The loss function is calculated as:

2.3. ALGORITHM ANALYSIS 13

L =

M∑
i=1

N∑
j=1

wij(rij − r̂ij)
2
+ λ(

M∑
i=1

||ui||2 +
N∑
j=1

||vj ||2) (2.2)

To optimize the ALS algorithm, eALS (element-wise ALS) [30] introduces two new

attributes, the element-wise learner and popularity-aware strategy. With this optimiza-

tion, eALS separates the rated and unrated elements in matrix R, then assigns unrated

elements a confidence value c. Here is the optimized loss function L:

L =
∑
i,j∈R

wij(rij − r̂ij)
2
+

M∑
i=1

∑
j /∈Ri

cj r̂ij)
2
+ λ(

M∑
i=1

||ui||2 +
N∑
j=1

||vj ||2) (2.3)

The confidence c comes from the popularity fi that denotes the popularity of item i.

The definition of c is:

ci = c0
fi∑N
j=1fj

(2.4)

To minimize this loss function, we need to get the deviation and compute the updating

rules of matrices U and V . The updating formulas of uif and vjf are defined as:

uif =

∑
j∈R[wijrij − (wij − cj)r̂

f
ij]vjf −

∑
k ̸=f pik × svkf∑

j∈R(wij − ci)v2jf + svff + λ
(2.5)

vjf =

∑
i∈R[wijrij − (wij − cj)r̂

f
ij]uif − cj

∑
k ̸=f pik × sukf∑

j∈R(wij − ci)u2
if + cj × suff + λ

(2.6)

As shown in Alg. 1, kernel computation is to update dense matrices U and V in formula

(5) and (6). Take computing U as an example, after a matrix multiplication to compute

Sv, the kernel consists of three for loops. The first loop is to compute every row of U ,

which is able to execute concurrently. In the middle for loop, every column is accessed

in U , and the dependence exists in this loop. To be more specific, the sparse matrix R is

updated before and after updating U . Then the updated R should be used in the next

2.3. ALGORITHM ANALYSIS 14

Algorithm 1 Fast eALS Algorithm [30]

Require: R, W , c, K, λ
Ensure: Matrices U , V
1: Initialize U and V randomly
2: for i, j ∈ R do
3: r̂ij = Eq.(1)
4: end for
5: for Stopping criteria is not met do
6: Sv =

∑
i=1N civiv

T
i ▷ Update user factors

7: for i = 1; i ≤ M ; i++ do
8: for f = 1; f ≤ K; f ++ do
9: for j ∈ Ri do

10:
ˆ
rfij = r̂ij − uifvjf

11: uif = Eq.(5)
12: end for
13: for j ∈ Ri do

14:
ˆ
rfij = r̂ij + uifvjf

15: end for
16: end for
17: end for
18: Su = UT × U ▷ Update item factors
19: for j = 1; j ≤ M ; j ++ do
20: for f = 1; f ≤ K; f ++ do
21: for i ∈ Rj do

22:
ˆ
rfij = r̂ij − uifvjf vjf = Eq.(6)

23: end for
24: for i ∈ Rj do

25:
ˆ
rfij = r̂ij + uifvjf

26: end for
27: end for
28: end for
29: end forreturn U and V

iteration to update the next element in one row of U . The data dependence limits the

efficiency of the parallel fast eALS algorithm implementation.

Tab. 2.2 shows detailed comparisons between the original ALS implementation in

CuMF ALS[84] and the fast eALS algorithm. ALS consists of two main kernels, matrix

multiplication (get hermitian x) and matrix inverse (batch solve). No data dependence

exists as partitioning the input matrices into tiles for both kernels. ALS’s matrix inverse

(batch solve) consists of two solving functions, LU and Conjugate Gradient (CG). LU’s

complexity is K-time higher than eALS. CG is an estimated method and its iteration

number is set to be 6 in the programs, so the time complexity of the CG solver is the same

as the initial prediction in the fast eALS algorithm. If (M +N)K is much larger than |R|,

(M + N)K2 is dominant in time complexity. In summary, the original ALS has obvious

higher time complexity than fast eALS, while the optimized CG solution of ALS in CuMF

2.3. ALGORITHM ANALYSIS 15

Table 2.2: Compare CuMF ALS and fast eALS: Time Complexity and Com-
putation Patterns

Algorithm Function Time Complexity Computation Pattern Dependence

CuMF ALS get hermitian x |R|K2 Matrix multiplication No

CuMF ALS batch solve
(M+N)K3

(M+N)K2∗It CG

Matrix inverse
Matrix multiplication

No

fast eALS updateUser/updateItem |R|K Irregular access Yes

fast eALS initialPredictions (M +N)K2 Matrix multiplication No

has the same time complexity as fast eALS. Besides time complexity, convergence speed is

another critical factor to evaluate recommendation systems. In He et al.’s work[30], they

conclude that the fast eALS algorithm has better recommendation quality than the ALS

algorithm, which are compared in Section 2.8.

2.3.2 Computation Pattern Analysis

Compared with the original ALS, the fast eALS has a more complicated computation

kernel with data dependency. Fig. 2.2 shows the access patterns of the fast eALS with an

example highlighted with a yellow background. Target matrix and dense matrix are two

dense matrices, defined as U and V . The objective is to use R to estimate U and V . In

the left part of Fig. 2.2, the goal is to update the red cross element (in row 1 and column

2) of the target matrix U . The first row of two sparse matrices (R and W) and the second

column of the dense matrix (V) will be accessed to compute the selected target element

(①). Next, the updated red element of the target matrix (U) and the second column of

the dense matrix (V) are used to update the first row of the sparse matrix (R) (②), as

shown in the right part of Fig. 2.2.

Updating each row of U raises data dependence among columns, while no dependence

occurs between rows. Take updating one row of U into consideration. Before computing

the second element (i.e., the red cross element in the first row of U), the first row of

R is necessarily updated. However, this row of R is computed after updating the first

element (i.e., the black cross one in the first row of U). More specifically, computing one

2.4. SYSTEM OVERVIEW 16

X X

X X
X X
X X

X X

X X
X X
X X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

XX

Sparse Matrices �R and �W

Dense Matrix V

Target Matrix U

X X

X X
X X
X X

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

XX

Sparse Matrices �R

Dense Matrix V

Target Matrix U

Figure 2.2: Kernel Computation Pattern. Kernel computation mainly involves two
stages: one is to utilize R, W , and V to update the target matrix U (①); the other is to
calculate R based on two dense matrices U and V (②). Highlighted elements participate in
calculating one element of U . Updating the second element (red cross one) in the first row
of U requires the first row of R, but this row of R is necessarily updated after computing
the first element (black cross one) of U . Dependence exists in the same row of the
matrix U , i.e., one element of U depends on the updated values of all previous elements
in the same row.

element of U requires the associated row of R, and this row of R is calculated based on

the updated previous elements of U . Computing one element of U has to wait until all

previous elements accomplish updating. Thus, data dependence exists in updating the

same row of U . Different rows of U can execute concurrently without any dependence.

2.4 System Overview

Based on the background and algorithm analysis, this work presents an efficient parallel

eALS recommendation framework on CPU/GPU heterogeneous systems (called HEALS).

Fig. 2.3 illustrates HEALS’s overview that consists of two main parts: architecture-

adaptive data format and hybrid CPU/GPU collaboration model.

2.4. SYSTEM OVERVIEW 17

Data

Sparse Matrix

Dense Matrix

2D to 1D Array and Merging

Reordering and Packing

Data Format Design

Dynamic Data
Assignment

Paritition Kernel

Kernel
2-GPU

Kernel
1-GPU

Kernel
1-CPU

Partition
Workload

Kernel
2-GPU

Kernel
1-GPU

Kernel
1-CPU

Device

Host

Time

Workflow

Data Flow

Figure 2.3: System Overview: architecture-adaptive data format and hybrid
CPU/GPU collaboration model. Sparse matrices are reordered and packed into
groups. Dense matrices are reorganized into a merged one-dimensional array. The op-
timized data are fed into the hybrid CPU/GPU collaboration model with a dynamic data
assignment. Kernel computation includes two types: (a) partitioning kernel into Ker-
nel 1-GPU (partial computation kernel w/o dependence on GPU) and Kernel
1-CPU (dependence part on CPU); (b) Kernel 2-GPU (complete kernel on
different data).

For input data, sparse matrices and dense matrices have different optimizations. On

the one hand, HEALS reorders sparse matrices and pack them into groups for better

workload balance. The new data formats are designed based on well-known CSR [95,

33]. Moreover, new data formats are designed to be adaptive for specific architectures,

based on hardware characteristics. On the other hand, in order to improve data locality,

HEALS linearizes dense matrices from 2D to 1D array and merges multiple matrices to

one array.

After pre-processing input data, the data will be assigned to the hybrid CPU/GPU

collaboration model. HEALS partitions kernel computation into Kernel 1-GPU

2.5. ARCHITECTURE-ADAPTIVE DATA FORMAT 18

(partial computation kernel without dependence on GPU) and Kernel 1-CPU

(partial computation kernel with dependence on CPU). To further leverage con-

currency, HEALS performs Kernel 2-GPU to hide the waiting latency of the device.

Kernel 2-GPU processes different data from Kernel 1-GPU/CPU and accom-

plishes the complete kernel computation. Additionally, HEALS dynamically assigns

data chunks with optimized proportion to achieve better workload balance.

2.5 architecture-adaptive data format

In order to reduce workload unbalance and improve data locality, HEALS presents

architecture-adaptive data format for sparse matrices and dense matrices. Targeted work-

load unbalance, prior works propose various data format optimizations. For instance,

Hong et al.’s paper[33] reorders the data and packs different rows. The data formats have

two extra index arrays and a complicated data structure, which is suitable for simple ker-

nel computation like matrix multiplication instead of matrix factorization. With respect

to the kernel computation patterns, this work designs architecture-adaptive data format,

including optimizing sparse matrices for GPU and CPU respectively, and dense matrix

transformation.

2.5.1 Sparse Matrix

The sparse matrix optimization is shown in the upper part of Fig. 2.4. Before compressing

the sparse matrix, HEALS reorders both rows and columns based on the number of rated

elements. Then HEALS divides the whole sparse matrix into two parts: a dense part

and a sparse part. Since GPU is beneficial for the computation-intensive kernel, the

dense part is fed to GPU, while the sparse part to CPU.

As claimed in Section 5.1, workload unbalance relies on the varied row lengths of sparse

matrices. To improve workload balance, the key idea is to divide the rows into groups and

balance the number of elements in each group for each thread. HEALS utilizes the greedy

2.5. ARCHITECTURE-ADAPTIVE DATA FORMAT 19

GPU

CPU

Sparse Matrix Reordering and Packing

Dense Matrices

U �V Sv

Update U

U �V �Su

Update V

2D to 1D array and Merging

Figure 2.4: Data Format Design: sparse matrices and dense matrices. HEALS
designs new architecture-adaptive data format to solve workload unbalance on GPU and
CPU. Sparse matrices on GPU are reorganized with balanced group size, while on CPU
adopt uncertain size groups but more even computation cost. For dense matrices, HEALS
translates multiple matrices into a combined one-dimensional array for better data locality.

algorithm to distribute multiple rows into groups, and generate even groups. This new

data format is named Multiple Packed Compressed Sparse Row (MP-CSR). The detailed

steps are:

• Step 1: Reorder the matrix based on the row size.

• Step 2: Select the smallest row, and assign it to the current smallest group.

• Step 3: Continue selecting and assigning until all the rows are allocated. Each

group contains an uncertain number of rows.

Since the data size of every group may be distinct, MP-CSR manages an extra array

to record the first index position of every group. However, an extra array requires more

memory space, resulting in extra access operations and more cache misses, especially for

GPU. Thus, HEALS proposes another grouping approach, in which it assigns each group

2.5. ARCHITECTURE-ADAPTIVE DATA FORMAT 20

the same number of rows and balances the total number of elements in these rows. After

reordering the rows, HEALS packs the longest one and shortest one together as a group.

This new data format is named Nested Packed Compressed Sparse Row (NP-CSR). NP-

CSR implies dividing multiple rows into even groups. The number of rows in the dense

part is set to be even multiple numbers of the group. The number of groups depends on

the input data size and GPU layouts. The detailed steps are:

• Step 1: Reorder the matrix based on the row size.

• Step 2: Select the largest row and smallest row, then assign them to one group.

• Step 3: Continue selecting and assigning until all the rows are allocated. Each

group contains the same number of rows.

Compared with NP-CSR, MP-CSR has a better workload balance but a more com-

plicated data structure. In contrast to GPU, CPU is more suitable to conduct an extra

array with a larger cache and memory size. Therefore, GPU employs NP-CSR, while

CPU employs MP-CSR.

2.5.2 Dense Matrix

For dense matrices, HEALS linearizes a two-dimensional matrix into a one-dimensional

array then merges dense matrices. When accessing data, the increased possibility of

accessing near elements in different threads improves data locality. Packing three matrices

together is also able to reduce data movements. For small datasets, dense matrices are easy

to reorganize. For large dense matrices, HEALS partitions data to fit the limited global

memory of GPU. As shown in Fig. 2.4, different color areas of dense matrices represent

different partitions. Based on the access pattern in Fig. 2.2, light area in three matrices

are loaded to deal with one partition of the target matrix. The partition organization

depends on the input data size.

2.6. HYBRID CPU/GPU COLLABORATION MODEL 21

Kernel
2-GPU

Kernel 1-CPU

Kernel
1-GPU

Kernel
2-GPU

Kernel 1-CPU

Kernel
1-GPU

Kernel 2-GPU

Kernel 1-CPU
Execution Line 1

Time

Data Kernel 1

Data

Data

Kernel 2 Data

Device

Streams

Data Flow
Stage 1 Stage 2 Stage 3

Kernel
1-GPU

Execution Line 2

Figure 2.5: Framework Workflow: hybrid CPU/GPU collaboration model.
Multi-level concurrency includes: (a) two execution lines constitute data parallelism;
(b) Kernel 1-GPU and Kernel 1-CPU achieve task parallelism; (c) Overlapped data
transfer hides latency between Kernel 1-GPU and Kernel 2-GPU. Additionally, compu-
tation is partitioned into several stages to handle very large datasets.

2.6 Hybrid CPU/GPU Collaboration Model

This section introduces hybrid CPU/GPU collaboration model in HEALS. Some related

works implement CPU/GPU concurrent schemes to solve matrix factorization. Tsai et

al.’s work [89] separates kernel computation to solve QR matrix factorization with a

much longer execution time on CPU than GPU. Teodoro et al.’s work [86] designs a

performance-aware method for multi-GPUs with extra scheduling overhead. In contrast

to prior approaches, HEALS exploits a hybrid CPU/GPU collaboration model, combin-

ing Workload Partition (WP) and CPU-GPU Pipeline (CGP) collaboration models [82].

HEALS dynamically adjusts data partitioning proportion for balance workload and opti-

mal overlapping.

2.6. HYBRID CPU/GPU COLLABORATION MODEL 22

2.6.1 Multi-level Concurrency Design

Fig. 2.5 illustrates the design of hybrid CPU/GPU collaboration model. To process large

datasets, HEALS partitions the whole data into chunks. The scheduling framework solves

chunks stage by stage. In each stage, kernel computation is divided into two execution

lines: one executes on Kernel 1-GPU and Kernel 1-CPU, and another runs on Kernel

2-GPU. The two execution lines process independent data.

Kernel 1 represents the first execution line, including two kernels: kernel without data

dependence and the rest computation with dependence. The no dependence computation

is named Kernel 1-GPU, executing on GPU. The rest of kernel computation is Kernel

1-CPU on CPU. They are combined together to solve a complete kernel for the same data

chunks. Kernel 1-CPU can only start after Kernel 1-GPU.

However, Kernel 1-GPU is more than five times faster than Kernel 1-CPU to process

identical data chunks. The significant GPU waiting time affects the performance. To

improve GPU utilization, HEALS applies another execution line, aiming to concurrently

execute with Kernel 1-CPU. To avoid any conflicts, this execution line deals with separate

data chunks on GPU. This kernel is named Kernel 2-GPU to implement the whole kernel

computation. Only executing Kernel 2-GPU is not efficient enough due to the data depen-

dence. Therefore, the optimal design is to incorporate these two execution lines, to fully

utilize both GPU and CPU. If the dataset is large, the computation will be partitioned

into several stages. Due to the sequential execution of kernels on the device, multiple

stages constitute a pipeline model.

Based on Sunet al.’s work [82], HEALS combines two CPU/GPU collaboration models:

Workload Partition (WP) and CPU-GPU Pipeline (CGP). On one hand, Kernel

2-GPU and Kernel 1-CPU solve independent workload concurrently as a WP collaboration

model. On other hand, the first execution line partitions kernel computation in multiple

stages, formalized as a CGP collaboration model. Furthermore, HEALS achieves multi-

level concurrency. As shown in Fig. 2.5, the concurrency consists of three major aspects:

2.6. HYBRID CPU/GPU COLLABORATION MODEL 23

task parallelism between Kernel 1-CPU and Kernel 1-GPU, data parallelism between two

execution lines (i.e., Kernel 1 and Kernel 2), and overlapped data transferring between two

GPU kernels.

2.6.2 Adjusting Data Partition Dynamically

This work designs a dynamic partition model to calculate the ideal proportion and adjusts

it in the following iterations. According to Fig. 2.5, HEALS partitions the data into two

independent execution lines, so it is critical to balance the workload between the two exe-

cution lines. When training the complete parallel fast eALS model, the iteration number is

at least 50 to achieve a satisfying accuracy. After executing on the first iteration, HEALS

obtains execution time and builds bivariate linear equations to compute the ideal partition

ratio. Subsequently, the adjusted proportion is applicable in the following iterations.

Take one stage as an example to explain how to compute the ideal partition ratio. This

work defines the execution time of Kernel 1-GPU to be t1, Kernel 2-GPU to be t2, and

Kernel 1-CPU to be t3. First, HEALS allocates θ tiles to solve. Tiles mean the groups

of rows of the sparse matrices. Second, α tiles are allocated to Kernel 2-GPU and β to

Kernel 1. The most overlapped case is t1 + t2 = t3, between Kernel 1 and Kernel 2. Last,

the equations are built as follows: θ = α+ β, α× t2 + β × t1 = β × t3.

The partition ratio is set to be γ = α
β . Execution time t1, t2, t3, and the total number

of tiles θ are given. The objective is to calculate γ, β and α. After solving the bivariate

linear equations, results are shown as follows:

γ = (t3 − t1)/t2 (2.7)

β =
t2θ

t3 − t1 + t2
(2.8)

α =
(t3 − t1)θ

t3 − t1 + t2
(2.9)

If the data size is so large to be managed more than one stage, all stages will compute

ratios individually after the first iteration and record them in a global array.

2.7. HARDWARE-BASED ACCELERATING TECHNIQUES 24

__global__ void KernelTwo_GPU(){
__shared__ float numer_sh[1];
__shared__ float denom_sh[1];
__shared__ float tmp_numer_sh[1];
for(u->N){//EVERY ROW OF THE TARGET MATRIX

for (j->R_u) {
for(f=0; f<factors/4; f++){

tmp_u = reinterpret_cast<float4*>(uvsv_cu)[u*factors/4+f];
tmp_v = reinterpret_cast<float4*>(uvsv_cu)[uborder/4+i*factors/4+f];
tmp_res4 = make_float4(tmp_u.x * tmp_v.x, tmp_u.y * tmp_v.y,

tmp_u.z * tmp_v.z, tmp_u.w * tmp_v.w);
res = res + res4.x + res4.y + res4.z + res4.w;

}
//INITIALIZE THE MATRIX R

}
//EVERY COLUMN OF THE MATRIX
for (f = 0; f < factors; f++) {

for (j->R_u) {
numer += ... //COMPUTATION THE NUMERATOR OF EQ.(5);
denom += ... //COMPUTATION THE DENOMINATOR OF EQ.(5);

}
for(j = tid; j<factors/4; j+=THREAD_NUM){

tmp_u = reinterpret_cast<float4*>(uvsv_cu)[u*factors/4+j];
tmp_v = reinterpret_cast<float4*>(uvsv_cu)[vborder/4+f*factors/4+j];
tmp_res4 = make_float4(tmp_u.x * tmp_v.x, tmp_u.y * tmp_v.y,

tmp_u.z * tmp_v.z, tmp_u.w * tmp_v.w);
tmp_numer = tmp_numer + res4.x + res4.y + res4.z + res4.w;

}

for (j = 16; j > 0; j /= 2){
numer += __shfl_down_sync(FULL_MASK, numer, j);
denom += __shfl_down_sync(FULL_MASK, denom, j);
tmp_numer += __shfl_down_sync(FULL_MASK, tmp_numer, j);

}
//SUM UP ALL WARPS
//UPDATE MATRIX U;
for (j->R_u){//UPDATE MATRIX R;}

}
}

}

Shared memory

Vectorization

Vectorization

Warp Shuffle

__global__ void KernelOne_GPU(){
int tidx = threadIdx.x;
int bidx = blockIdx.x; //BLOCK X REPRESENTS THE ROW OF THE TRAGET MATRIX
int bidy = blockIdx.y; //BLOCK Y REPRESENTS THE COLUMN OF THE TARGET

MATRIX
float numer_reg;
float denom_reg;
__shared__ float tmp_numer[1];
__shared__ float tmp_denom[1];
for(u->N){

for (j->R_u) {
numer_reg +=...//COMPUTE THE NUMERATOR OF EQ.(5) WITHOUT MATRIX R
denom_reg +=...//COMPUTATION THE DENOMINATOR OF EQ.(5);

}
for (j = 16; j > 0; j /= 2){

numer_reg += __shfl_down_sync(FULL_MASK, numer_reg, j);
denom_reg += __shfl_down_sync(FULL_MASK, denom_reg, j);

}
//SUM UP ALL WARPS
//UPDATE MATRIX U;

}
}

Shared memory

Warp Shuffle

void KernelOne_CPU(){
for (int f = 0; f < factors; f++) {

for(int j = 0; j<size_item; j++){
v_col[j] = V.matrix[i][f];}

for (j->R_u) {
UPDATE_NUMERATOR(j);
UPDATE_NUMERATOR(j+1);
UPDATE_NUMERATOR(j+2);...}

//DEAL WITH THE REMAINDER AND UPDATE THE TARGET MATRIX
for (int j = 0; j<size_item; j+=UNROLLING_SIZE){

UPDATE_R(j);
UPDATE_R(j+1);
UPDATE_R(j+2); ...}

//DEAL WITH THE REMAINDER
}

}

Locality

Loop
Unrolling

#pragma unrolling UNROLLING_SIZE
Loop Unrolling

Figure 2.6: Implementation in Kernel 1-GPU, Kernel 1-CPU and Kernel 2-
GPU: applying hardware-based accelerating techniques. Loop transformation
includes loop unrolling for a better locality and vectorizd I/O to leverage data par-
allelism. GPU parallel reduction is accelerated by warp primitives (warp shuffle),
which efficiently utilizes registers and shared memory for reduction.

2.7 Hardware-based Accelerating Techniques

This section presents hardware-based accelerating techniques used in HEALS, including

loop transformation and GPU parallel reduction. Fig. 2.6 illustrates the implementing

details in Kernel 1-GPU, Kernel 2-GPU and Kernel 1-CPU.

2.7.1 Loop Transformation

HEALS applies loop transformation including vectorization and loop unrolling. Vectoriza-

tion is commonly used to leverage data parallelism, as one instruction manages multiple

data (SIMD). On CPU, the compiler automatically applies SIMD optimizations in most

loops when setting -O3. On GPU, vectorized I/O cannot be managed by nvcc, providing

chances to improve the kernel performance. CUDA supports vectorization instructions,

including 64 or 128-bit load and store operations. Vectorization is used to update R, a

data-dependent part. Thus HEALS conducts vectorization in Kernel 2-GPU. Likewise,

2.7. HARDWARE-BASED ACCELERATING TECHNIQUES 25

loop unrolling is applied in Kernel 1-CPU and Kernel 1-GPU to further improve data

locality.

During loop transformation, HEALS leverages shared memory to store temporal data

for each block. Based on the access pattern in Fig. 2.6, when updating one row of the

target matrix, the whole dense matrix has to be accessed, which cannot fit in the limited

shared memory. As for the sparse matrix, each thread processes one row, of which the

size varies dramatically. Thus, HEALS mainly stores temporal parameter values instead

of dense or sparse matrices in the shared memory, both in Kernel 1-GPU and Kernel 2-

GPU. These parameters are extended to arrays, making each thread process one element

without any conflicts.

2.7.2 Accelerating GPU Parallel Reduction

GPU parallel reduction techniques aim to summarize data among threads efficiently.

Based on the eALS algorithm implementation in Section 2.3, summation operation is

part of the kernel computation to calculate dense matrices. Therefore, HEALS performs

efficient utilization of registers and shared memory to improve GPU parallel reduction.

GPU parallel reduction in HEALS is broadcast through warp-level (registers), block-

level (shared memory), and global-level (global memory). To accomplish summation

operations in Kernel 1-GPU and Kernel 2-GPU, HEALS takes advantage of registers

based on warp-level primitives, shfl down sync. Warp shuffle directly fetches data

from other threads’ registers within one warp, which benefits broadcasting data without

syncthreads(). The detailed implementing steps are: First, HEALS utilizes primitive

function shfl down sync to get the sum of one warp, and the first thread of every warp

obtains the result; Second, HEALS employs atomicAdd operation to sum up all warps and

store the result in shared memory; Last, HEALS gathers the values in the shared memory

and stores the final result in the global memory. Overall, efficient GPU parallel reduction

yields great benefits on performance improvements, which will be explained in Section 2.8.

2.8. EVALUATION 26

Table 2.3: Machine information

Hardware Descriptions

CPU Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz

GPU NVIDIA Corporation GP100GL Tesla P100 PCIe 16GB

Table 2.4: Experiment datasets

Name Users Items Ratings Sparsity

Yelp 25677 25815 698472 99.8947
Amazon 117176 75389 3790245 99.9571

YahooMusic 1127446 136736 431596064 99.7211
Frienderster 37551359 124836179 1768515776 99.9999

2.8 Evaluation

This section evaluates HEALS with a set of experiments. The evaluation objectives in-

clude: (a) demonstrating that HEALS outperforms other state-of-the-art related works;

(b) evaluating the effects of proposed optimizations including architecture-adaptive data

format, hybrid CPU/GPU collaboration model, and hardware-based accelerating tech-

niques; (c) validating the benefits of HEALS on prediction accuracy and recommendation

quality.

2.8.1 Experiment Settings

2.8.1.1 Environment

Experiments are conducted on a heterogeneous CPU/GPU platform with an Intel Xeon

CPU with 40-cores, and an NVIDIA Tesla P100 GPU (as shown in Tab. 2.3). This

platform is configured with Ubuntu 18.04.4, icpc (ICC) 19.1.0.166, and CUDA V10.1.105.

All HEALS runs use all computing resources (i.e., 40 threads w/o hyper-threading and

the whole GPU).

2.8. EVALUATION 27

Table 2.5: Overall Performance: Execution Time (s) Per Iteration. HEALS is
compared with original java implementation of eALS, LIBMF, and CuMF with CG and LU
solvers. CuMF is measured with two factors: f = 100 and f = 60. ’Speedup’ illustrates
the minimum and maximum speedup of HEALS over all others. ’OOM’ donates that
CuMF cannot execute Friendster on a single GPU due to the limited on-device memory.

Datasets
Original
eALS

LIBMF
CuMF

CG,f=100
CuMF

CG,f=60
CuMF

LU,f=100
CuMF
LU,f=60

HEALS
f=64

Speedup

Yelp 0.284 0.18776 0.06942 0.04104 0.2902 0.1456 0.0120 3.42X-23.6X
Amazon 1.223 1.71973 0.4186 0.2852 0.8176 0.4102 0.1192 2.39X-14.4X

YahooMusic 89.811 70.905 19.55 12.4054 22.7412 13.3947 8.3740 1.48X-10.7X
Friendster 940.8 663.7 OOM OOM OOM OOM 78.6 8.4X-11.97X

YELP Amazon YahooMusic Friendster
0

9

18

27

Sp
ee

dU
p

O
ve

r O
rig

in
al

 e
AL

S No optimizations
Only sparse matrices
Sparse and dense matrices

Figure 2.7:
Speedup of the
data formats

YELP Amazon YahooMusic Friendster
0

8

16

24

Sp
ee

dU
p

O
ve

r O
rig

in
al

 e
AL

S Partition ratio = 1 Partition ratio= 0.5
Partition ratio = 2 Dynamic partition ratio

Figure 2.8:
Speedup of the
partition ratio

YELP Amazon YahooMusic Friendster
1.0

1.2

1.4

1.6

Sp
ee

dU
p

O
ve

r N
o-

O
pt

Vectorized I/O
Warp shuffle+Vectorized I/O

Figure 2.9:
Speedup in the
Kernel 1-GPU

YELP Amazon YahooMusic Friendster
1.0

1.1

1.2

1.3

Sp
ee

dU
p

O
ve

r N
o-

O
pt

Vectorized I/O
Warp shuffle + Vectorized I/O

Figure 2.10:
Speedup in the
Kernel 2-GPU

2.8.1.2 Datasets

This work is tested on four datasets: Yelp, Amazon, YahooMusic, and Frienderster. Yelp

and Amazon datasets come from the original eALS paper [30]. Dataset YahooMusic [24]

includes the ratings of songs with artists and albums from the Verizon Media Labs. Frien-

derster is a sparse matrix dataset from the Stanford Large Network Dataset Collection.

Frienderster contains 1.7 billion ratings to show HEALS’s capacity of handling large data.

It requires more than 56 GB memory for kernel computation, out of GPU’s on-device

memory. This original dataset is pre-processed to match our recommendation evaluation

needs, including adding random rated values from one to five and eliminating all repeated

edges and null elements. The number of users, items, and training ratings are shown in

Tab. 2.4. This work randomly selects 90% data to train and 10% to test. Training datasets

are used for measuring performance while testing datasets are used for measuring accuracy

and recommendation quality.

2.8. EVALUATION 28

2.8.1.3 State-of-the-art Works to Compare

HEALS is compared with three state-of-the-art implementations: Original Java imple-

mentation [30] is implemented in a sequential way. LIBMF [21] is a state-of-the-art

matrix factorization library on CPU. This work compares with its ALS implementation

(with all 40 CPU threads). CuMF ALS [107, 84, 85] is a state-of-the-art library to solve

matrix factorization on (multiple) GPUs. Each test runs 10 times. Because different runs

do not vary significantly, this work only reports the average time for readability.

2.8.2 Overall Improvement

The overall performance improvement is evaluated in terms of the execution time per it-

eration (as shown in Tab. 2.5). CuMF library is evaluated with two different batch solver

functions: CG and LU. Factor values (f) are commonly set to be 60 or 100 as suggested

in Xie et al.’s work [107], so our experiments cover both factors. Tab. 2.5 shows the mini-

mum and maximum speedup in the last column. OOM donates that CuMF cannot execute

Friendster on a single GPU because of the limited on-device memory. Our evaluation

results show that HEALS achieves significant speedups on all datasets, outperforming all

other state-of-the-art works by a speedup from 1.48× to 23.6×. Particularly, comparing

with the state-of-the-art CPU implementation (LIBMF with all 40 CPU threads), HEALS

achieves 15.65×, 14.43×, 8.47×, and 8.44× speedup on Yelp, Amazon, YahooMusic, and

Friendster, respectively. Comparing with the fastest version of the latest GPU implemen-

tation (CuMF), HEALS achieves 3.42×, 2.39×, and 1.48× speedup on Yelp, Amazon, and

YahooMusic, respectively.

2.8.3 Performance Analysis: Optimization Breakdown

Fig. 2.7 to Fig. 2.10 illustrate the impact of different optimizations on performance im-

provements. The speedup is compared with the original eALS implementation in Fig. 2.7

and Fig. 2.8. The partition ratio in Fig. 2.8 represents the workload ratio of Kernel 2 over

2.8. EVALUATION 29

Figure 2.11: Recommendation Efficiency: Convergence Speed of RMSE and
NDCG. Compare HEALS (f = 64) with CG Solver based CuMF (f = 60, f = 100)
in datasets: Yelp, Amazon, and YahooMusic. Compare HEALS (f = 64) with LIBMF
(f = 64) in Friendster.

Kernel 1. The baseline of Fig. 2.9 and Fig. 2.10 is the non-optimized kernel computation.

The proposed hardware-based accelerating techniques are divided into Vectorized I/O,

and Warp shuffle + Vectorized I/O.

Fig. 2.7 shows the impact of architecture-adaptive data format. Sparse matrix data for-

mat optimization brings 1.1× benefits on average while dense matrix optimization brings

additional 1.2× gains, e.g., the speedup of Amazon improves from 13.01× with sparse ma-

trix optimization only to 16.98× with both sparse and dense data format optimizations.

Experiments demonstrate that dense matrix optimization yields slightly more benefits

than the sparse matrix. Fig. 2.8 shows the benefits of dynamic partition ratio, achiev-

ing a 1.25× to 2.54× speedup over other selected fixed partition ratios. The improved

results demonstrate great benefits of the hybrid CPU/GPU collaboration model. Fig. 2.9

and Fig. 2.10 show the speedup of hardware-based accelerating techniques compared with

non-optimized GPU kernel implementation. Warp shuffle yields more benefits than loop

transformation, e.g., the GPU vectorized I/O brings 1.09× performance gains on average

while warp shuffle brings additional 1.23× benefits on average (in Fig. 2.9).

2.8. EVALUATION 30

2.8.4 Recommendation Efficiency

This work evaluates recommendation efficiency in two major aspects: matrix factor-

ization precision and recommendation equality. The performance metrics are Root

Mean Square Error (RMSE, the lower the better) and Normalized Discounted Cumu-

lative Gain (NDCG, the higher the better) [30]. RMSE represents the average accu-

racy of rated scores, illustrating matrix factorization precision. NDCG aims to measure

the recommending quality without considering the values of rated scores. The observa-

tions involve not only convergence point values but convergence speed as well to measure

the recommendation efficiency.

Fig. 2.11 shows the evaluation results. HEALS is measured with f = 64. HEALS

is compared with CG solver-based CuMF with two factors (f = 60, f = 100) in three

datasets. For Friendster, HEALS is compared with LIBMF (f = 64).

For RMSE, HEALS and CuMF achieve close factorization precision but HEALS ob-

tains faster convergence speed. As shown in Fig. 2.11, HEALS achieves 1.45× convergence

speedup over CuMF (f = 60) and 1.77× over CuMF (f = 100) on average, respectively.

On Friendster, HEALS outperforms LIBMF, achieving 3.75× convergence speedup. Ex-

periment results prove HEALS has better recommendation efficiency than other ALS-

based parallel libraries.

For NDCG, HEALS yields benefits on both recommendation equality and convergence

speed. For instance, HEALS obtains a 1.14× convergence point value over CuMF on

YahooMusic. HEALS achieves a 2.78× convergence speedup over CuMF on Amazon.

For Friendster, HEALS achieves a 1.12× NDCG absolute value and a 4.83× convergence

speedup over LIBMF. In summary, HEALS shows great benefits on recommendation effi-

ciency, outperforming others.

2.9. RELATED WORK 31

2.9 Related Work

Matrix factorization-based recommendation algorithms. Various matrix

factorization-based algorithms have been applied in recommendation systems, e.g.,

Stochastic Gradient Descent (SGD) [13, 108], Cyclic Coordinate Descent (CCD) [70, 86],

and ALS [30, 21, 84, 54]. He et al.’s eALS work [30] has proved that the optimized eALS-

based recommendation model outperforms other matrix factorization-based approaches

(e.g., SGD, CCD, and original ALS) in both computation cost and recommendation accu-

racy. That is why this work focuses on building the first efficient parallel recommendation

system based on eALS.

Parallel ALS-based recommendation systems. Many existing research efforts focus

on parallelizing ALS-based recommendation. LIBMF [21] offers an efficient ALS C++

library on CPUs. Chen et al. [20] also propose an optimized ALS algorithm based on

Weighted-Regularization (WR) on CPU. Tan et al. [85, 84] employ iterative conjugate

gradient solver to optimize parallel ALS, and present a parallel ALS implementation on

GPU (CuMF). Closely related to HEALS, Teodoro et al. [86] propose a performance-aware

CPU/GPU heterogeneous framework and optimize ALS by managing GPU layouts and

partitioning. Chen et al. [18] implement a portable ALS framework to optimize original

ALS by applying system techniques, e.g. thread batching techniques. Many other ALS-

based parallel recommendation systems are implemented on distributed systems. Xie et

al. [106] design a new loss function of ALS algorithm on Spark platform. Aljunid and

Manjaiah [5] optimize conventional ALS algorithm based on Apache Spark. Winlaw et

al. [96] propose an optimized ALS by using a nonlinear conjugate gradient (NCG) on

Spark. Compared with all of these efforts, HEALS targets a more advanced algorithm

(eALS) that is more challenging to be parallelized than the original ALS, and for the first

time presents a set of new system optimizations on heterogeneous CPU/GPU systems.

Other parallel recommendation systems based on matrix factorization. Many

other matrix factorization-based approaches are implemented on multi-core or many-core

2.10. SUMMARY 32

architectures. CuMF SGD [107] scales up the SGD kernel computation on multiple GPUs,

and Nisa et al. [70] present an optimized implementation of CCD++ on GPU. Li et al. [54]

mainly focus on non-negative matrix factorization and present a multi-GPU implementa-

tion. All these efforts explore GPU optimizations without fully utilizing CPU resources or

CPU/GPU collaboration. Zinkevich et al. [108] mainly optimize SGD in data parallelism.

In contrast, HEALS exploits hybrid CPU/GPU collaboration model and combines data

parallelism and task parallelism together. Again, different from all of these efforts, HEALS

targets a more advanced eALS algorithm with better computation cost and recommenda-

tion accuracy while more challenges to be parallelized.

2.10 Summary

This work presents HEALS, an efficient CPU/GPU parallel recommendation system, for

the first time building on top of fast eALS. To alleviate workload unbalance, HEALS em-

ploys a new architecture-adaptive data format for both GPU and CPU. HEALS is also

equipped with a new hybrid CPU/GPU collaboration model with an adjustable partition

ratio. HEALS supports multi-level concurrency including data parallelism, task paral-

lelism, and overlapped data transferring. Moreover, HEALS takes advantage of various

hardware-based accelerating techniques to further optimize kernel computation, including

vectorized I/O, loop unrolling, and efficient GPU parallel reduction. HEALS outperforms

other baselines by a speedup of 1.48× to 23.6×. HEALS also achieves significantly better

recommendation accuracy and quality, and faster convergence than other state-of-the-art

libraries. In the future, we plan to extend HEALS to execute on multiple GPUs.

Chapter 3

MemHC: An Optimized GPU

Memory Management Framework

for Accelerating Many-body

Correlation

3.1 Introduction

Many-body correlation functions are widely used in scientific physics systems, such as

Lattice quantum chromodynamics (QCD) [17][16][15]. Correlation function calculation

is critical for physics observables (e.g., predicting properties of light nuclei [28]), and is

broadly explored in Jeffersion Lab (Jlab), Facility for Antiproton and Ion Research in

Europe (FAIR), and Japan Proton Accelerator Research Complex (J-PARC) facilities

[11]. A typical instance of many-body correlation is hadronic correlation function in com-

plex many-particle systems, involving quarks and gluons enclosed in mesons and baryons.

Hadronic correlation calculation converts a series of quark propagation describing inter-

actions among particles into many undirected graphs which have hadrons as vertices and

gluons as edges, followed by performing a graph contraction on every graph reduces graph

33

3.1. INTRODUCTION 34

edges one after another until only two vertices are left. Each reduction of an edge is a

tensor contraction between hadron nodes which is dubbed hadron contraction.

Computing many-body correlation functions are both computation- and memory-

intensive because it involves not only a single hadron contraction but a large number

of hadron contractions with specific dependencies among them. Each hadron contraction

can be formalized as a batched matrix multiplication in meson system or a batched tensor

contraction in baryon system that is already computational intensive. In particular, the

number of hadron contractions scales as the factorial of the number of quark degree of

freedom, which makes computing many-body correlation functions memory-intensive.

To overcome the significant expense of the calculations, a general solution is to leverage

many-core architectures like GPUs [97, 101]. For example, Redstar system [17], a well-

known QCD simulation, for the first time calculates many-body correlation functions on

many-core architectures. Redstar system translates a statistic form of a many-body cor-

relation function to an executable computation kernel, which consists of a series of hadron

contractions. This work takes Redstar as an example and studies the new opportunities

of optimizing many-body correlation on general GPU accelerators.

Many existing efforts that focus on optimizing tensor contractions [60, 79, 56, 2, 47, 12,

63, 46, 74] can be applied to many-body correlation; however, they usually result in sub-

optimal performance. This is because all of these efforts focus on optimizing individual

large tensor contractions, while many-body Lattice QCD correlation is featured with a

great number of not large tensor contractions.

To address this issue, this work fully explores specific attributes of many-body correla-

tion (i.e., a great many tensor contractions) and discovers new optimization opportunities.

According to the physical observations and thorough programming analysis, redundant

memory operations happen frequently in several areas: memory allocations, CPU/GPU

memory communications, and memory oversubscriptions. First, in contrast of other many-

body problems [88, 65, 34], overlapped reduction paths among multiple contraction graphs

result in a large number of repeated data (including initial and intermediate data), which

3.1. INTRODUCTION 35

brings memory allocation redundancy. Second, many-body correlation functions create

many intermediate objects on CPU, and these objects also need to participate in compu-

tations on GPU. Accessing these intermediate objects from CPU and GPU interleavely

causes frequent data movements between CPU and GPU. Finally, with growing number

of intermediate data, limited GPU memory on a single GPU inevitably leads to mem-

ory oversubscriptions [52, 48]. The randomly repeated data in hadron contractions easily

cause evictions of previously used data that will be utilized very soon (near-reuse), raising

redundant memory evictions and even data thrashing. Therefore, a general GPU memory

optimization technique is required to control memory operations and accelerate hadron

contractions.

This work proposes a memory management framework for many-body correlation on

general GPU architectures (including NVIDIA GPU and AMD GPUs) called MemHC,

to eliminate redundant memory operations. The novel optimizations mainly consist of

three aspects. The first innovation is an integrated redundancy elimination mechanism

to manage GPU memory from the host. Due to the large memory footprint of a single

hadron node (37MB for a meson with 384 tensor size, 280 MB for a baryon with 128 tensor

size), current redundancy elimination techniques to operate within GPU registers [43, 71],

cache [3, 23, 37], and shared memory [43, 14] are not practical in correlation functions.

Targeting this challenge, MemHC leverages reusability to eliminate redundant memory

allocation by applying duplication-aware management and overwriting lazy-released mem-

ory based on building mappings between CPU and GPU memory. Furthermore, MemHC

explores and overcomes the limitations of Unified Memory management which results in

redundant CPU/GPU communications when passing references of GPU objects back to

the host. The second new insight is a Pre-Protected eviction policy to minimize memory

evictions by utilizing the specific storage formats, i.e., vectors, to predict data access and

pre-protect all reusable data. Unlike other popular eviction policies [72, 9, 50, 41] to esti-

mate the reuse distances of repeated data, the pre-protected eviction policy recognizes all

repeated data in advance to completely avoid redundant evictions. The third contribution

3.1. INTRODUCTION 36

is the robust portability for general GPU architectures, especially for AMD GPUs using

ROCm framework which currently does not support Unified Memory management.

The key contributions of this work can be summarized as follows:

• This work presents a GPU memory management framework, MemHC, to eliminate

multiple memory redundancies. It efficiently facilitates reduction optimizations in

memory allocations, CPU/GPU communications, and memory oversubscriptions.

• MemHC proposes memory reusability optimizations, including duplication-aware

management and overwriting lazy-released memory, which yield benefits on alloca-

tion reductions.

• MemHC applies data reorganization based on contiguous memory locations and

employs on-demand synchronization for CPU/GPU memory movement reductions,

particularly overcoming memory communication redundancy produced by the Uni-

fied Memory management.

• MemHC exploits a novel Least Recently Used (LRU) eviction policy named Pre-

Protected LRU eviction policy to protect reusable data in advance. This approach

improves the memory hit rate and avoid data thrashing.

• MemHC illustrates robust portability on different platforms including NVIDIA

GPUs and AMD GPUs.

This work evaluates general correlation functions based on synthesized random bench-

marks with various parameters and data distributions. To further validate the practical

performance, MemHC is extensively integrated into a real-world application and evalu-

ated by three physical correlation functions. The evaluation demonstrates that MemHC

outperforms NVIDIA’s Unified Memory management by 2.18× to 10.73× speedup. The

proposed Pre-Protected eviction policy achieves up to 1.36× higher GFLOPS than the

original LRU eviction policy. Furthermore, the performance of real correlation functions

is improved up to 6.12× better than using Unified Memory management.

3.2. BACKGROUND 37

We organize the rest of the chapter as follows. Section 3.2 introduces the background

of many-body correlation functions, the Redstar system, data characteristics, and compu-

tation patterns. Section 3.3 analyzes multiple memory redundancies and reusability op-

portunities. Section 3.4 illustrates an overview of the MemHC framework. Subsequently,

we explain detailed techniques about memory reduction optimizations in Section 3.5. Sec-

tion 3.6 demonstrates the evaluation observations and experimental results. Section 3.7

introduces related works, and Section 3.8 discusses future works. Finally, Section 3.9

concludes this chapter.

3.2 Background

Computing many-body correlation functions, such as Lattice QCD, is a critical and chal-

lenging topic in the modern scientific field. Calculation of correlation functions is crucial

for generating physics observables (e.g., predicting properties of light nuclei [28]), and is

relevant to experiments planned for Jlab, FAIR, and J-PARC facilities [11]. Therefore,

accelerating many-body correlation function on GPU memory management has research

and practical significance in nuclear physics.

Correlation function calculations are constituted by a large number of hadron contrac-

tions. One of the current popular lattice QCD systems, the Redstar system [15] focuses on

solving correlation functions on many-core architectures efficiently. Taking accelerating

hadron contraction as a critical user study about calculations of many-body correlation

functions, this work is constructed and evaluated based on the Redstar system. This

section mainly introduces the theoretical knowledge of correlation functions, analyzes the

motivations to speed up hadron contraction on GPU, explains the workflow of the Redstar

system, and illustrates the kernel computation patterns of hadron contractions.

3.2. BACKGROUND 38

3.2.1 Correlation Functions

Based on the nature of the complicated many-particle systems, calculating many-body cor-

relation functions is very important for generating physical observables. Different physics

scenarios require different types of correlation functions. To be more specific, correlation

function computation consists of many wick-contractions which in turn can be turned into

matrix multiplication in meson systems or tensor contraction in baryon systems. The rank

of the tensors depends on the number of quarks in a hadronic node.

A correlation function between annihilation and creation operator χ at Euclidean t

and t′ is able to define the energy of an eigenstate of the Hamiltonian of a quantum field

theory. The definition of the correlation function is:

C(t′, t) =< χ(t′)χ†(t) > (3.1)

When inserting Ĥ|k >= Ek|k >, as a complete set of eigenstates of the Hamiltonian,

the correlation function represents an accumulation of all states:

C(t, t′) =
∑
k

| < χ|k > |2e−Ek(t
′−t) (3.2)

Each state has the same quantum numbers as the source operators. Take a two-point

meson correlation function as an example, the definition is:

C(t, 0) = Trdist spin[M
12(t)U23(t, 0)M34(0)D41(0, t)] (3.3)

In Equation (1), calculating the correlation function includes evaluating the quark field

path-integral, inserting the out-product of the distillation operators, and keeping track of

smearing labels as indices. The correlation function can be abstracted in Fig. 3.1 (a), and

3.2. BACKGROUND 39

the edges between two vertices describe quark propagation. Another more complicated

meson correlation function is shown in Fig. 3.1(b). The theoretical definition is:

C(t, 0) =
∑

p2,p3|p

cp2,p3M
12(p⃗, t)P 25(t, 0)M56(p⃗2, 0)P

63(0, 0)M34(p⃗3, 0)P
41(0, t) (3.4)

Figure 3.1: Example of Correlation Functions. Figure (a) describes quark propa-
gation in a simple meson system; Figure (b) represents quark propagation in a complex
meson system.

In practical physics scenarios, calculating many-body correlation functions on an en-

semble of gauge fields has a high time cost to solve a great number of hadron contractions

in physical observations. For instance, the hadron contraction number achieves more than

10,000 in a two-meson f0 system, while a baryon system is able to generate more than

100,000 hadron contractions. The computation cost of computing correlation functions

grows rapidly due to the intermediate data. Producing intermediate data continuously

also takes up significant memory resource. Moreover, the current advanced calculations

of multi-meson correlation functions need about 10M core-hours for one ensemble in the

gauge field. Therefore, improving the calculation functions is challenging and has great

practical benefits in real-world scientific applications.

3.2.2 Redstar System

The Redstar system is designed to evaluate many-body correlation functions on multi-core

architectures including CPU and GPU. As shown in Fig. 3.2, the system consists of sev-

eral stages including generating contraction graphs, producing multiple types of hadron

3.2. BACKGROUND 40

Correlation
Functions

Generate
Contraction

Graphs

Generate
Execution

Queue

Conduct Hadron
Contractions

Data HierarchyWorkflowSub-modules

Contraction Graph
Redstar_gen_graph

Harom

Redstar_npt

Colorvec

Hadron

Hadron node

Batch

Spins

Time Slices

Vector 1
Contraction

Vector 2

Figure 3.2: Overview of the Redstar System: Sub-modules, Workflow and Hi-
erarchical Data Structures. The Redstar system involves several stages: contraction
graph generation (Redstar gen graph), building hadron nodes (colorvec and harom

) and hadron graph contraction solutions (redstar npt, hadron). The Hadron pack-
age aims to accomplish hadron contractions. The Redstar system abstracts topologically
contraction graphs from correlation functions, then reduce contraction graphs to vari-
ous configurations. In one configuration, vector pairs cooperate to calculate contractions,
which consists of independent hadron nodes. Hadron node includes multiple batches and
associated spins.

nodes in distillation space, orchestrating hadron contractions, and calculating correla-

tion function results. The input of the Redstar system is a list of correlation functions.

Redstar gen graph package translates the physical correlation functions to a contraction

graph. In the contraction graph, vertices represent hadron nodes with various quarks.

Then edges describe the interactions between hadron nodes. Subsequently, the system

classifies different types of hadron nodes relying on their physical definitions, then con-

structs hadron nodes to complete contraction graphs by using sub-modules harom and

colorvec.

Another critical package, redstar npt computes the contraction graphs on multiple

3.2. BACKGROUND 41

time slices and produces execution queues to guide hadron contraction computations.

Some graph reorganization operations are applied to improve the correlation function

computation. Moreover, this package conducts evaluations to measure the graph-level

optimizations. The sub-module redstar npt results in computation configurations and

a queue of hadron contractions, which will be the input of hadron package. Hadron

contractions are generated in a fixed execution order. Sub-module redstar npt is mainly

implemented on CPU using parallel techniques such as OpenMP. The hadron package

manages vectors to carry out hadron contractions. Hadron contractions take advantage

of general GPU architectures.

3.2.3 Data Hierarchy

The Redstar system constructs hierarchical data structures. Fig. 3.2 illustrates the whole

picture of the multi-level data. When computing correlation functions, the Redstar system

produces a sequence of hadron contractions from contraction graphs. Every single graph

undergoes a graph contraction process during which one edge after another in the graph

is reduced until two nodes are left. Each reduction of an edge corresponds to a tensor

contraction.

Based on the definitions in Section 3.2.1, calculating correlation functions can be ab-

stracted to compute a series of contractions generated from all the graphs on multiple

time slices. All the graphs are topologically the same across different time slices but with

different hadron nodes as their vertices. Thus, all the hadron contractions are the same

types of calculations with different hadron nodes for different time slices.

One time slice includes various vectors. The order of vectors is determined by the

execution queue, which is generated by redstar npt. Contractions occur between two

associated elements in a pair of vectors, like the first elements of Vector 1 and Vector 2 in

Fig. 3.2. A pair of vectors incorporate to accomplish contraction calculations.

Each vector consists of multiple independent hadron nodes, and a hadron node can be

formalized as a tensor T (abr)(ijk) where abr represents spin and ijk represent distillation

3.2. BACKGROUND 42

space. A contraction happens on both spin and spatial indices, and each spin component

itself is a spatial tensor. To carry out a contraction between two hadron nodes, a single re-

sulting spin of the destination nodes comes from multiple spins of these two hadron nodes.

For examples, for two mesons (0, 0) is generated from these 4 pairs of spins (0, 0) (0, 0), (0,

1) (1, 0), (0, 2) (2, 0) and (0, 3) (3, 0). Therefore, a hadron contraction can be expressed

as a sequence of matrix multiplications or a sequence of tensor contractions. From here

we refer these arrays of tensor contractions as batched multiplications. Furthermore, a

single spin component from the source of a contraction can appear multiple times in the

batched multiplications, e.g., (1, 0) can go to (0, 0) and (1, 0) to (1, 1). We define these

duplicate relations between batch and spins to be overlapped batch-spin mappings. Take

meson systems as an example, the batch size is often to be 64, while the number of spins

is 16. Four elements in the batch point to the same destination spin.

3.2.4 Kernel Computation Analysis

Compared with conventional graph-based applications including Sparse matrix-vector

multiplication, BFS, and PageRank, there are two specific characteristics in contraction

graphs: (1) the entire calculation consists of a large number of small computation kernels

(dense matrix multiplication or tensor contraction), representing each edge of contraction

graphs; (2) the repeated appearance of the input data and intermediate output data, be-

cause of overlapped reduction paths among multiple contraction graphs to compute one

correlation function.

It is well-known that matrix multiplication or tensor contraction is already

computation-intensive. However, expensive computation cost of many-body correlation

results from a large number of hadron contractions, which leads to memory-intensive ker-

nel computation. This section mainly explains the computation patterns of individual

hadron contraction and analyzes the kernel computation of many-body correlation func-

tions.

Take a meson system as an example to illustrate the computation pattern of an indi-

3.2. BACKGROUND 43

vidual hadron contraction in Fig. 3.3. Hadron node is two-dimensional consisting of 16

spins, and the batch size will be 64. In the batch layer, each element points to one spin,

and 4 elements point to the identical spin. Hadron contraction can be formalized as a

batched tensor contraction and an accumulation operation. Input 1 and input 2 represent

a pair of hadron nodes as input data. The mappings between batch and spins are probably

different in the two input data. Two hadron nodes accomplish batched tensor contrac-

tion, generating 64 temporal tensors with 16 groups of 4 tensors being mapped to a single

spin of the output hadron node. The library cuBLAS [1] is applied to conduct a batched

contraction. Subsequently, every single group of the 4 temporary tensors is accumulated

into a single tensor for one spin of the output.

Batched Contraction

Input 2

Accumulation

... ...

Input 1

Batch

Spins

...

...

Batch

Spins

...

...

...

Batch

Spins
Output

...

...

Figure 3.3: Computation Patterns
of an Individual Hadron Contrac-
tion. Two input hadron nodes conduct a
batched contraction, then accumulate to
generate a batched output hadron node.

Allowing for many-body correlation

functions, kernel calculation is not only

computation-intensive but memory-intensive

as well, due to the small size of spins in one

hadron node and a large number of hadron

contractions. On the one hand, the rank of

the tensor is two and the tensor size is often

not more than 384 in meson systems. The

computation cost of an individual hadron

contraction is not heavy, which is 37MB in

size for a single meson. On the other hand, the large number of hadron nodes require

significant memory capacity. Particularly, the data type is necessarily set to be double

complex so as to guarantee the computation precision. Compared with the limited

computation cost of a single kernel, it is more critical to focus on optimizing memory

management for a series of hadron contractions.

3.3. REDUNDANCY AND REUSABILITY ANALYSIS 44

3.3 Redundancy and Reusability Analysis

Based on the characteristics of computing correlation functions in Section 3.2, this work

figures out various memory redundancies, which offers optimization opportunities to ac-

celerate many-body correlation. In particular, there exist multiple types of duplicate data

raising data reusability chances.

3.3.1 Memory Redundancy Analysis

Memory redundancies broadly exist in the following aspects: memory allocation,

CPU/GPU memory communication, and memory oversubscription. Firstly, a great many

intermediate data are repeatedly created and released during the calculations. The naive

approach is to create new memory for each input pair. However, allocate and release

operations about identical data are frequently repeated. Likewise, some new data obtain

the same memory size as the released data. Thus, a number of memory allocations are

redundant, which brings high time cost. Secondly, although the intermediate data refer-

ences are created on CPU to determine the executing order, all the kernel computations

exist on GPU. When manipulating parameters on CPU, only the references of intermedi-

ate data are passed. More specifically, no access operations of data values are performed,

such as readings or writings. Under this situation, memory movements between CPU and

GPU are unnecessary and result in memory redundancy in CPU/GPU communications.

Finally, as the number of hadron nodes increases, more data are repeated in an uncertain

order, leading to near-reuse memory evictions. Therefore, to solve the memory redun-

dancy, a systematic memory optimization technique is desired for accelerating many-body

correlation functions.

3.3.2 Data Reusability Chances

Data hierarchy illustrates various repeated data from configurations to hadron nodes,

shown in Fig. 3.2. For one original contraction graph, different configurations can be

3.4. SYSTEM OVERVIEW 45

Input data
GPU Memory
Management
Framework

Kernel
Computation

Output
Results

Allocation CPU/GPU
Communication Oversubscription

Memory
Reusability

Optimization
Data

Reorganization
Pre-Protected
Eviction Policy

Host to Device Device to Host

On-Demand
Sychronization

Optimizations

Techniques

Workflow

Figure 3.4: System Overview: Optimizations and Associated Techniques.
MemHC facilitates memory reduction managements between loading input data and kernel
computation. MemHC proposes reduction optimizations in three aspects: GPU memory
allocation, CPU/GPU communications and GPU memory oversubscription. Techniques
involve memory reusability optimizations, data reorganization, on-demand synchroniza-
tion and the Pre-Protected eviction policy.

considered as different execution iterations. Their computations are consistent, while the

data values are updated at a different time interval. When calculating one contraction

graph, data occur repeatedly, which can be classified as three types: duplicate initial

data, repeated intermediate data, and overlapped batch-spin mappings. For the appearance

order of the repeated data, all the three types execute in an uncertain order. As for

repeat frequency, initial data and intermediate data obtain random repeat frequency.

The frequency of overlapped batch-spin mappings is a fixed number, relying on the input

requirements (definitions of many-body correlation functions). Overall, repeated data

provide multi-level data reusability chances, which inspires optimizations to fully utilize

these repeated data and improve correlation function calculations.

3.4 System Overview

According to the previous analysis, repeated data appearances cause broad memory re-

dundancies and bring data reusability opportunities. The limitations of Unified Mem-

ory management [51], including redundant memory movements and lacking portability

3.5. MEMORY REDUCTION OPTIMIZATIONS 46

in general architectures (e.g., AMD GPUs), inspire an optimized memory redundancy

mechanism for many-body correlation functions.

Therefore, this work proposes MemHC, a GPUmemory management framework, which

efficiently facilitates a series of memory reduction optimizations to accelerate correlation

function calculations. As shown in Fig. 3.4, this work presents three optimized memory

managements, including memory reusability optimizations for memory allocation, data

reorganization and synchronization for CPU/GPU memory communications, and the Pre-

Protected Eviction for memory oversubscription, in order to eliminate redundant memory

operations and enhance data reusability. First, MemHC conducts memory reusability op-

timizations. The optimizations involve duplication-aware management for repeated data

and overwriting lazy-released memory for new intermediate data. Second, data reorganiza-

tion is beneficial for both memory allocation and memory movement from the host to the

device. Third, to decrease the latency of CPU/GPU memory communications, MemHC

implements on-demand synchronization to efficiently manage data movements from de-

vice to host. Last, MemHC exploits a novel eviction policy, Pre-Protected eviction policy,

in order to avoid redundant evictions and data thrashing. Overall, multi-level memory

redundancies motivate the corresponding memory reduction optimizations. The proposed

GPU memory management framework, MemHC, adopts various techniques to leverage

data reusability, eliminate redundant memory operations, and accelerate many-body cor-

relation functions.

3.5 Memory Reduction Optimizations

Memory redundancies exist broadly in memory allocations, CPU/GPU communications,

and memory oversubscription. Targeting these redundancy opportunities, this section

mainly introduces a set of associated techniques: (a) memory reusability optimizations

including duplication-aware management and overwriting lazy-released memory; (b) data

reorganization based on contiguous memory locations; (c) performing on-demand synchro-

3.5. MEMORY REDUCTION OPTIMIZATIONS 47

Memory Release

Input
Element

Cache table

 Exists in
table

Fetch
repeated data

Yes

Data
Reorganization

No
 Exists same size

data in table

Free Pool

Overwrite
lazy-released

memory

Yes

Create new
data

No

Memory Allocation

1
2

Input Memory
Eviction

Pre-Protected
Policy

Release
memory in
free pool

Go on next
operation

Yes Memory
Eviction

Yes

Free Pool

4

Input

Free Pool

Update
tables

Element
Cache table

Move

3

No No

Memory Oversubscription

Figure 3.5: Memory Reusability Optimizations: Duplication-aware Manage-
ment and Overwriting Lazy-released Memory. During memory allocation, MemHC
checks the element cache table to fetch duplicate data (❶). If the data is new, free pool

table will be checked to find lazy-released device memory with the same size (❷). If exists,
MemHC overwrites the device memory by the new data. When releasing memory, record-
ings are moved from the element cache table to the free pool (❸). When memory is
oversubscribed, the recorded data in free pool are released (❹) before eviction.

nization; (d) exploiting Pre-Protected eviction policy.

3.5.1 Memory Reusability Optimization

Memory reusability optimizations involve enhancing the reusability of duplicate data and

reducing redundant allocations of new intermediate data. On the one hand, identical data

appear repeatedly through calculations, as explained in Section 3.3. On the other hand,

the allocating and releasing of intermediate data occur frequently, which brings a large

number of redundant memory These two types of allocation redundancies inspire MemHC

for memory reusability opportunities.

MemHC exploits two targeted memory reusability optimizations for both repeated

data and new intermediate data:

• Duplication-aware management. This work employs duplication-aware man-

agement to reuse duplicate input data. MemHC records the mappings between

host objects and associated device memory locations. The duplication-aware man-

3.5. MEMORY REDUCTION OPTIMIZATIONS 48

agement recognizes repeated input data by checking the mappings. The allocated

device memory is directly fetched for kernel calculations, without any redundant

memory allocations.

• Overwriting lazy-released memory. To further leverage the reusability of inter-

mediate data, another optimization is overwriting lazy-released memory. Memory

release operations are delayed to be reused by new intermediate data, which obtain

the same memory size as the allocated memory. This approach efficiently reduces

both memory allocations and memory release operations.

Fig. 3.5 illustrates the workflow of memory reusability optimizations. MemHC de-

signs two memory tables to help implement duplication-aware management and overwrit-

ing lazy-released memory: element cache table and free pool table, respectively. The

element cache table mainly records mapped host objects and device memory address of

active data, while the free pool table records device memory information about lazy-

released data. When creating new memory, MemHC firstly checks the element cache

table to fetch the reusable data (❶). If the data is not recorded, MemHC will check

free pool table to find an allocated memory with the same memory size (❷). If exists,

the memory will be reused and overwritten by new data. When managing memory release,

MemHC erases data in the element cache table and then adds it to the free pool table

(❸). Additionally, MemHC firstly releases the data in the free pool (❹) during mem-

ory oversubscription. If memory is still not enough, the Pre-Protected eviction policy will

start addressing memory evictions. In summary, the usage of two memory tables efficiently

leverages data reusability and eliminates redundant memory operations. The two mem-

ory reusability optimizations yield significant benefits on memory allocation reduction.

Detailed optimizations about memory oversubscription will be explained in Section 3.5.4.

3.5. MEMORY REDUCTION OPTIMIZATIONS 49

3.5.2 Data Reorganization

Separated allocations of spins in one hadron node result in redundant memory allocations

and memory movements. As claimed in Section 3.2, each spin represents a matrix or

tensor. Although the batch layer combines spins together, these spins are created and

allocated individually on the host. Take an example in a typical meson system. The

number of spins is set to be sixteen. When solving one hadron node, the naive approach

produces sixteen allocations. Furthermore, calculating a large number of hadron nodes

leads to expensive time cost.

Therefore, MemHC performs data reorganization to reduce memory allocations and

movements. Compared with other data reorganization works [91, 75, 92, 39, 38], MemHC

mainly focuses on reorganizing the internal structure of the hadron node by packing spins

together. As for the previous example, if the number of spins is sixteen, packing spins

is able to reduce the number of allocating spins from sixteen to one. The number of

transferring spin values from host to device can also be reduced. Thus, the objective is to

pack spins together into contiguous memory locations. MemHC applies contiguous data

storage formats on both input and output data. After reorganizing the data structure,

the latency of data allocations and transfer can be significantly reduced.

Particularly, reorganizing hadron node structure requires more batch manipulations

than common batched tensors, due to the overlapped batch-spin mappings. To cover gen-

eral correlation functions, these mappings are considered randomly produced. Managing

the overlapped batch-spin mappings is the main challenge of employing contiguous spin

memory locations.

To overcome this issue, MemHC records the overlapped batch-spin mappings in ad-

vance and rebuilds the mappings before and after kernel computations. Kernel zgemm in

cuBLAS [1] requires input data structure to be a two-dimensional array. MemHC trans-

lates the allocated contiguous one-dimensional array to a two-dimensional array, in order

to construct a formal input of the zgemm kernel. The overlapped batch-spin mappings of

3.5. MEMORY REDUCTION OPTIMIZATIONS 50

input data are given as an unpredictable structure, but the mappings of output data are

fixed. MemHC builds the batch-spin mappings of the output data on the device after

accumulation operations.

3.5.3 On-demand Synchronization

One of the frequent operations in correlation function calculation is to manipulate inter-

mediate GPU objects by passing their references on the host. On one hand, the execution

order of intermediate data should be guided by the manager on the host. On other hand,

calculations about intermediate data only occur onto the device. More specifically, some

parameter manipulations require managing intermediate data from host, but these oper-

ations are passing references without accessing values. Thus, it is unnecessary to update

host data values during computations. However, current management frameworks (e.g.,

unified memory management of NVIDIA) [51, 57, 66, 76] cannot recognize this situation

and produces redundant memory movements when passing references. Plenty of passing

reference operations onto the host incur significant CPU/GPU communication redundan-

cies.

Targeting this specific situation, this work accomplishes on-demand synchronization to

eliminate CPU/GPU communication redundancy. Synchronizations occur when releasing

device memory or accessing associated host data values, instead of passing references on the

host. MemHC handles the intermediate data to stay on GPU until released, without any

CPU/GPU communications. More specifically, MemHC defines intermediate data a new

data type, GPU-only object, and avoids redundant memory movements about this type

of data. As a complementary to the CPU/GPU communication management, MemHC

also implements a synchronization function, which makes data copy controllable for user

requirements. Data transfer occurs from device to host only if the synchronization function

is called to update host values.

3.5. MEMORY REDUCTION OPTIMIZATIONS 51

Algorithm 2 LRU Eviction Policy

Require: curr mem , lru mem , elem cache , gpu only objs
1: while curr mem is not enough for new data do
2: mem ← lru mem .back(); ▷ obtain the host address of the least used object in LRU queue
3: cache ptr ← elem cache .find(mem); ▷ obtain the object from the element cache table
4: if cache ptr is the head of contiguous memory then
5: children ← cache ptr → second.mem.children(); ▷ obtain children elements
6: for i← 0− children.size() do
7: Free child ptr ▷ free memory of this child
8: elem cache .erase(child ptr); ▷ remove this child from element cache table
9: end for

10: end if
11: update curr mem ; ▷ update memory information: the current available memory size
12: lru mem .pop back(); ▷ pop the back of the LRU queue
13: elem cache .erase(cache ptr); ▷ remove the cache ptr from element cache table
14: end while

3.5.4 Memory Oversubscription: Pre-Protected Eviction

With respect to the limited memory of GPU (e.g., 16GB memory in NVIDIA), memory

oversubscription is a critical topic in GPU memory management. To eliminate mem-

ory eviction redundancy, MemHC designs a novel algorithm, Pre-Protected LRU eviction

policy to fully protect reusable data in advance based on vector forms of input data.

3.5.4.1 LRU Eviction Policy

To address memory evictions, prior efforts present many eviction algorithms, including

Random Eviction, Most recently used (MRU), Least recently used (LRU), clock with

adaptive replacement (CAR), Clock-Pro, and more complicated replacement methods [72,

9, 50].

LRU eviction strategy is based on the First In First Out (FIFO) algorithm. The main

idea of the LRU policy is to evict the least recently used elements first. Fig. 3.5 illustrates

the pre-process of the memory evictions. The lazy-released memory in free pool is freed

when device memory is oversubscribed. MemHC manages an LRU memory queue to

contain all active host memory addresses and makes use of element cache table to guide

device memory eviction.

3.5. MEMORY REDUCTION OPTIMIZATIONS 52

Figure 3.6: Examples of Memory Oversubscription: Compare LRU and Pre-
Protected LRU. Input data are: (A, B, C, D) as a first vector and (E, F, A, B) or (E,
F, C, D) as a second vector. Example (a) shows that LRU produces redundant evictions;
Example (b) and (c) show that Pre-Protected LRU protect repeated data in advance, to
avoid redundant evictions.

Detailed information about the LRU eviction algorithm is shown in Alg. 2. First,

MemHC checks the current memory size and determines the number of data to evict.

Next, it fetches the back element of the LRU memory queue and finds the mapped value

of this fetched host memory address in element cache table. Based on the contiguous

data formats, if the evicted element is the head of the contiguous memory, MemHC frees

all its children elements. Last, MemHC updates the element cache table and the LRU

memory queue.

3.5.4.2 Pre-Protected LRU Eviction Policy

Although LRU is efficient to deal with common GEMM kernel computations, LRU may

cause near-reuse memory evictions when calculating correlation functions. Fig. 3.6 Ex-

ample (a) shows that LRU produces redundant evictions. Assume the input data are two

vectors. The first vector includes (A, B, C, D) and the second one is (E, F, A, B). The

memory size is four. The number with the letter means the order of loading and storing

in the LRU queue. LRU policy selects the data with the smallest number to evict. Data

3.5. MEMORY REDUCTION OPTIMIZATIONS 53

A, B, C, and D are pushed into the LRU queue in order. When solving the second vector,

A and B are evicted first, then allocated again. The total number of memory evictions is

four. As the number of repeated data grows, it may incur data thrashing.

As for other eviciton policies, Clock-Pro [41] considers not only the recently referenced

data but recently evicted data, which is better than LRU in one-time scan and large loop.

CAR [9] is self-tuned and theoretically more efficient than LRU. These eviction policies

implement different techniques to reduce the redundant evictions but cannot avoid them

completely.

This work firstly implements LRU, as one of the most popular and fundamental algo-

rithms, to assist many-body correlation calculations. Based on this policy, MemHC designs

a Pre-Protected LRU eviction policy to avoid redundant memory evictions of repeated

data, by utilizing the vector form of hadron nodes. The vector form means loading a

sequence of data in advance, capturing all repeated data to completely avoid redundant

memory evictions. More specifically, this approach takes reuse distance of data within

one vector into consideration. The pre-protected data have the least reused distances.

Limiting the prediction range into vector size aims to balance the managing overhead and

eviction reductions.

Fig. 3.6 illustrates how Pre-Protected LRU policy works to eliminate redundant mem-

ory evictions. In this Example (b), after loading the second vector in the hadron package,

A and B are found in LRU memory queue and pre-protected to avoid evictions since

they are in both the first and the second vector. When E comes in, since A and B are

protected, the unprotected least recently used data, C, will be evicted. After solving the

second vector, only two data, C and D are evicted. Compared with the original LRU

policy, our method reduces the evictions from four to two and increases two memory hits.

Example (c) further shows that changing the repeated data or their positions, all the

reusable data will be checked and protected in LRU queue in advance, without producing

redundant memory evictions. When the second vector (E, F, C, D) comes in, C and D

will be protected and only A and B are evicted.

3.6. EVALUATION 54

Algorithm 3 Pre-Protected LRU Eviction Policy

Require: vector, curr mem , lru mem , elem cache , gpu only objs
1: if curr mem is not enough for new data then
2: for src in vector do
3: if src in elem cache ▷ check each element of vector exists in element cache

table then
4: src.flag protected ← TRUE; ▷ protect the reusable data
5: end if
6: end for
7: end if
8: while curr mem is not enough for new data do
9: mem ← lru mem .back(); ▷ obtain the host address of the least used object in

LRU queue
10: cache ptr ← elem cache .find(mem); ▷ obtain the object from the

element cache table
11: if cache ptr is protected then
12: lru mem .erase(cache ptr);
13: lru mem .push front(cache ptr); ▷ avoid evicted in the next iteration
14: src.flag protected ← FALSE; ▷ avoid over-protection
15: end if
16: Same statements in LRU Eviction
17: end while

Alg. 3 shows the Pre-Protected eviction policy. In the beginning, MemHC checks the

LRU memory queue and finds all the repeated data to pre-protect. It adds a flag to label

pre-protection. If the data exists in element cache table, MemHC sets the flag to be true.

When memory oversubscription happens, MemHC firstly checks a pre-protected flag. We

design the flag to distinguish the protected data from other input data. If the data is

protected, move it from the end to the front of the LRU memory queue. In most cases,

the GPU memory size is much larger than the data size of one vector, and unprotected

data are enough to evict.

3.6 Evaluation

This work aims to accelerate many-body correlation functions based on the optimized GPU

memory management. We build the GPU memory management framework, MemHC,

3.6. EVALUATION 55

which efficiently eliminates multiple memory redundancies in calculating correlation func-

tions. The experiments broadly cover evaluating general correlation functions and real-

world physics correlation functions with varying factors on NVIDIA and AMD GPUs.

3.6.1 Experiment Methodology

Evaluation Setup. To measure the performance for general architectures, MemHC

executes on NVIDIA Pascal P100, NVIDIA Volta V100, AMD MI50, and AMD MI100.

P100 has 16GB GPU memory, while V100, MI50, and MI100 have 32GB GPU memory.

Kernel computation is compiled by CUDA 10.2 on NVIDIA and ROCm 4.3.0 on AMD.

Experiment Design. This work designs three series of experiments, including general

correlation functions with fitted memory, general correlation functions when memory over-

subscriptions, and improved performance in Redstar system.

To evaluate general many-body correlation functions, this work applies a set of syn-

thesized benchmarks. The benchmarks broadly cover multiple tensors with varying tensor

size, repeated rate, and vector size. The vector size means the number of independent

hadron nodes in one vector. Repeated rate means the ratio of the data which appears pre-

viously to all the data. Repeated rate means the reusable data in one vector. For instance,

50% repeated rate represents half the data of each vector are repeated. 100% repeated

rate represents all the data in one vector appear previously. Each vector has unique data.

Particularly, the vector size implies the number of streams managed by OpenMP on CPU,

aiming to reduce the latency of parameter manipulations. Oversubscription rate implies

the proportion of the oversubscribed data size to the memory capacity.

To further validate the practical performance, this work measures performance im-

provements in three real physical correlation functions, in which MemHC is integrated to

Redstar system as a user case evaluation. Unified Memory management is evaluated as

the baseline for both general and real-world correlation functions. To evaluate the per-

formance of the Pre-Protected eviction policy, MemHC compares with the original LRU

eviction policy. When GPU memory is oversubscribed, the performance is sensitive to

3.6. EVALUATION 56

data distribution. Thus, this work evaluates two data distributions including uniform

distribution and Gaussian distribution.

Evaluation Objectives. Evaluation aims to achieve the following objectives: First, this

work demonstrates that MemHC outperforms unified memory management of NVIDIA,

achieving up to 10.73× speedup in general correlation functions. The performance of the

Pre-Protected eviction policy is improved up to 1.36× compared with LRU. Second, this

work presents the generality of proposed optimizations with varying tensor size, vector size,

repeated rate, and oversubscription rate. Third, this work illustrates the robust portability

and widely compares the performance on multiple platforms, including NVIDIA P100,

NVIDIA V100, AMD MI50, and AMD MI100. Last, MemHC is evaluated by applying in

a real-world system, Redstar system. Experiment results show great benefits of MemHC

on real physics correlation functions, achieving up to 6.12× speedup.

3.6.2 Overall Performance Improvements (without Oversubscriptions)

Fig. 3.7 illustrates the overall improved performance of MemHC on NVIDIA. This work

compares the unified memory management and optimized MemHC. Fig. 3.7 (a) and (b)

show GFLOPS with varying repeated rate: 0%, 12.5%, 25%, 50%, 75% and 100%. Fig. 3.7

(c) and (d) represent GFLOPS with varying vector size: 1, 2, 4, 8, 16, 32. The evaluated

tensor size is 384, as shown in Fig. 3.7 (a)(c) and 192 in Fig. 3.7 (b)(d). The evaluated

results are calculated as an average result of ten execution times. Each execution time

measures one hundred vectors which are randomly generated. The vector size is 16 in

Fig. 3.7 (a) and (b). The repeated rate is 100% in Fig. 3.7 (d) and (e). The number of

vectors is 100 in Fig. 3.7.

As shown in Fig. 3.7, MemHC outperforms unified memory management in all cases.

when the tensor size is 384, the Speedup achieves from 2.18× to 3.62× in Fig. 3.7 (a) and

ranges from 3.26× to 9.67× in Fig. 3.7 (b). These experiment results illustrate that the

overall performance is sensitive to the repeated rate. When increasing repeated rate, the

overall performance achieves more speedup, due to the increasing memory redundancy

3.6. EVALUATION 57

Figure 3.7: Overall Performance: Comparing GFLOPS of Unified Memory
Management and MemHC on NVIDIA. Sub-figures (a) and (b) illustrate perfor-
mance with varying repeated rate: 0%, 12.5%, 25%, 50%, 75% and 100%. Sub-figures (d)
and (e) show performance with varying vector size: 1, 2, 4, 8, 16, 32. Sub-figures (c) and
(f) imply the speed up of MemHC based on the unified memory. The sizes of evaluated
tensors include 384 in sub-figures (a)(b) and 192 in sub-figures (d)(e).

opportunities.

MemHC yields more benefits when the tensor size is 192. The Speedup achieves from

2.39× to 3.86× in Fig. 3.7 (d) and 2.17× to 10.73× in Fig. 3.7 (e). This is because the

latency of kernel computation is sensitive to tensor size. Tensor size is smaller, memory

redundancies perform more impacts on the performance. More memory redundancies offer

more optimization opportunities in MemHC, leading to more speedup shown in Fig. 3.7

(c) and (f).

One observation is that MemHC is sensitive to the repeated rate. When the repeated

rate is 50%, the performance achieves less than half of that in the case of 100% repeated

rate, shown in Fig. 3.7 (b). This is because the ratio of repeated data affects the amount

of memory redundancies. More repeated data provide more redundant opportunities.

Particularly, to eliminate memory redundancy, one of the critical optimizations in MemHC

is to leverage reusability of the repeated data. Therefore, the sensitivity of repeated rate

demonstrates high memory redundancy efficiency of MemHC.

3.6. EVALUATION 58

When changing vector size, unified memory management does no show any improve-

ments, while MemHC achieves obvious Speedup. Fig. 3.7 (d) shows that MemHC achieves

GFLOPS from 1653.59G/s to 3541.42G/s and Fig. 3.7 (e) illustrates that GFLOPS im-

proves from 454.53G/s to 2213.88G/s. This is because a larger vector size produces more

redundancies. As explained before, all cases apply a 100% repeated rate and the number of

vectors is fixed. A larger vector size brings more repeated data in each vector. Compared

with unified memory management, experiment results show great benefits of MemHC on

data reusability.

3.6.3 Performance Analysis in General Correlation Functions

3.6.3.1 Breakdown Analysis

To further explore the efficiency of MemHC, this section focuses on breakdown analy-

sis. Fig. 3.8 evaluates the performance of the memory redundancy techniques separately

and compares with the Unified memory management about both GFLOPS and Speedup.

Unified memory management is evaluated by two cases: non-optimized implementation

(Unified Memory Naive) and optimized version by data reorganization (Unified Memory

Data Reorg). MemHC is evaluated in the following four cases: (1) MemHC Naive without

any optimizations but explicit implementation; (2) MemHC Data Reorg, which is only op-

timized by data reorganization; (3) MemHC Data Reorg + Sync combining data reorgani-

zation and on-demand synchronization; (4) the optimal implementation, MemHC Optimal,

with all memory redundancy techniques. Tensor size is set to be 384, and the vector

size varies from 4 to 16 in (a) and repeated rate varies from 0%, to 100% in (b). The

performance results are measured on NVIDIA P100.

Fig. 3.8 (a) and (c) show the impact of the repeated rate. When the repeated data is

0%, the Speedup of the MemHC Optimal is about 1.25× based on the MemHC Naive. When

the repeated rate is 50%, Explicit MemHC Optimal achieves 2.6× speedup. When applying

both data reorganization and on-demand synchronization, the geometric mean speedup

3.6. EVALUATION 59

Figure 3.8: Optimization Breakdown: Compare Unified Memory Management
and MemHC about GFLOPS and Speedup. Unified memory management is eval-
uated by two cases: Unified Memory Naive and Unified Memory Data Reorg. MemHC
is evaluated by four cases: naive (MemHC Naive), only optimized by data reorganization
(MemHC Data Reorg), optimized by data reorganization and on-demand synchronization
(MemHC Data Reorg + Sync), and the optimal implementation (MemHC Optimal). Ten-
sor size is 384. The vector size varies from 4 to 16 and repeated rate varies from 0% to
100%. The performance results are measured on P100.

achieves from 2.5× to 2.8× in (a) and 2.1× to 2.4× in (c). Fig. 3.8 (b) and (d) illustrate

the influence of the vector size. Take comparing vector sizes 4 and 16 as an example. The

speedup is 1.42× of the MemHC Optimal. Unified Memory Data Reorg achieves 1.22×

speed up and Unified Memory Naive achieves 1.06× speedup. Data reorganization im-

proves both unified memory management and MemHC. Memory reusability optimizations

further enhance performance in MemHC.

As for data reorganization, when the repeated rate is 50%, the performance is not

obviously improved by the MemHC Naive. This is because data reorganization reduces the

redundant allocations and communications no matter the data are new or repeated. The

reorganization is to change the data structure in each hadron node, so as to reduce the

number of memory operations from the batch size to one. Additionally, the repeated rate

3.6. EVALUATION 60

Figure 3.9: Exploring Portability: GFLOPS and Speedup on AMD MI50,
MI100 and NVIDIA P100, V100. Tensor sizes are 384 and 192. Vector sizes are 1, 2,
4, 8, 16. Figure (a) and (b) show speedup based on non-opmized explicit implementation.
Figure (c) and (d) illustrate GFLOPS.

has an impact on the overhead of data reorganization. If the repeated rate is 50%, half of

the hadron nodes are repeated and the batch-spin mappings will be complicated to extract

and rebuild, leading to trivial improvements by MemHC Naive. If the repeated rate is 0%,

applying data reorganization has more improvements than that of the 50% repeated rate,

since there is no overlapped in the batch-spin mappings. If the repeated rate is 100%,

all the hadron nodes will be the same and the reorganization is simple. Therefore, the

repeated rate, which determines the complexity of the hadron node internal structure,

has an impact on reorganization overhead, further influencing the data reorganization

improvements.

3.6.3.2 Exploring Portability on NVIDIA and AMD GPUs

To further confirm the robust portability of this work, the performance of MemHC is

broadly evaluated on different GPU architectures.

Fig. 3.9 (a) and (b) illustrate the speedup of MemHC over the non-optimized explicit

implementation on those four GPU architectures. In most cases, NVIDIA V100 can

achieve the best speedup among others. When tensor size is 192, NVIDIA V100 can

achieve up to 4.4× speedup when vector size is 1. For tensor size 192 and 384, NVIDIA

V100 can achieve average 3.8× and 1.3× speedup, respectively.

Fig. 3.9 (c) and (d) illustrate the MemHC’s GFLOPS on 4 different GPUs, including

3.6. EVALUATION 61

Figure 3.10: Exploring Kernel Computation on AMD MI50 and NVIDIA
P100. Sub-figure (a) explores the limitation of Unified Memory. Extra Data Copy do-
nates adding redundant data transfer in explicit memory implementation. Sub-figure (b)
compares the performance of zgemm in cuBLAS and hadron contraction kernels on MI50
and P100.

AMD MI50, AMD MI100, NVIDIA P100, and NVIDIA V100, with various settings of

vector sizes and tensor sizes. When the vector size increases from 1 to 16, MemHC

increases GFLOPS on all four architectures. Among them, AMD MI100 and NVIDIA

V100 have better GFLOPS than AMD MI50 and NVIDIA P100. When the tensor size

increases from 192 to 384, the absolute GFLOPS gap between them increases.

3.6.3.3 Exploring CPU/GPU Communications in Unified Memory

Compared with unified memory management, one critical benefit of MemHC is improving

CPU/GPU communications. This section mainly analyzes the limitations abut CPU/GPU

communications in unified memory management.

Current NVIDIA GPUs provide Unified Memory [51, 57], which supports a vir-

tual single address both accessible for CPU and GPU. This feature is convenient for

users to extend CPU codes to CUDA codes without caring about data locations.

Recent machines (e.g.,Tesla P100), support hardware page faulting and on-demand

migration [66, 76]. When evaluating unified memory management, this work sets

cudaMemAdviseSetReadMostly flag and performs cudaMemPrefetchAsync function to

manage data locations.

To further validate the limitations of unified memory, this work conducts a series of

3.6. EVALUATION 62

experiments to explore its bottleneck. Experiments are set up by using on zgemm kernel

of cuBLAS. In Fig. 3.10 (a), there are three lines illustrate the performance of zgemm.

The blue line simulates the explicit implementation of zgemm. The red line represents

the unified memory managed by the GPU driver. Another implementation is the explicit

memory management with extra data copy from device to host when passing references of

device objects. As shown in Fig. 3.10 (a), the unified memory management achieves from

61.4% to 70.5% performance of the explicit memory management. The green line is very

close to the red line, which means the extra data copy in explicit memory management

can simulate the case of the unified memory implementation.

In conclusion, the GPU driver produces redundant CPU/GPU communications when

passing references in the unified memory. The observation further supports the neces-

sary and high efficiency of defining GPU-only objects to keep intermediate data always

on device. Compared with unified memory management, MemHC efficiently eliminates

redundant CPU/GPU communications.

3.6.3.4 Exploring Hadron Contraction Kernel

To explore the efficiency of hadron contraction kernel, this work compares the performance

between hadron contractions and zgemm. The zgemm kernel is well-optimized in a widely-

used library, considered as the peak performance of computing batched tensor contractions.

Fig. 3.10 (b) shows the experimental results. In NVIDIA, MemHC achieves 61.4% to 94.8%

performance of zgemm. The average percentage is 73.6%. In AMD, MemHC is able to

achieve 59.6% to 83.7% and the average percentage is 74.5%.

As explained in Section 3.2, this work implements batched tensor contraction kernel

based on the zgemm. When the tensor size is smaller than 200, the performance of zgemm

kernel and hadron contraction achieve close performance. Besides zgemm kernel, the ex-

ecution latency of hadron contractions includes parameter manipulations on CPU and

accumulating operations among batches on GPU. As the tensor size becomes larger, the

extra overhead increases in the beginning and generates a stable impact on the whole per-

3.6. EVALUATION 63

Figure 3.11: Comparing multiple eviction policies. Pre-protected eviction policy
is compared with Random policy, MRU, LRU, CAR and Clock-Pro policies. Measure
metrics include GFLOPS and the number of evictions. Oversubscribe rate changes from
50% to 150%. The tensor size is 384. Vector size is 64. Repeated rate is 50%.

formance. Both NVIDIA P100 and AMD MI50 have similar trends, while P100 achieves

a stable trend earlier than MI50. The experiment results illustrate the high efficiency of

our hadron contraction implementation.

3.6.4 Memory Oversubscriptions in General Correlation Functions

This section evaluates LRU eviction policy in two synthesized datasets including uniform

distribution and Gaussian distribution. The evaluation involves two aspects: compar-

ing with multiple eviction policies and exploring the performance broadly with different

situations.

Comparing with multiple eviction policies. Fig. 3.11 illustrates the comparison

between Pre-Protected LRU and other eviction policies, including Random, MRU, LRU,

CAR, and Clock-Pro. The experiments measure GFLOPS in Fig. 3.11 (a) and (b), and the

sum of ten iterations of the number of evictions in Fig. 3.11 (c) and (d). The data distri-

bution includes Uniform distribution and Gaussian distribution, when the oversubscribe

rate ranges from 150% to 250%. Fig. 3.11 (a) and (b) show the GFLOPS results of these

eviction policies. Among them, Pre-Protected LRU shows the best performance in all

cases. Overall, Pre-Protected LRU can achieve 1.1× geometric mean GFLOPS over other

eviction policies in both datasets using various oversubscribe rates. Fig. 3.11 (c) and (d)

show the number of evictions of these eviction policies. The evaluation results illustrate

3.6. EVALUATION 64

Table 3.1: Performance of Memory Eviction with Varying Vector Size: Hit
Rate, GFLOPS on NVIDIA P100. The results are calculated as the average values
per vector of ten execution loops. The vector size varies from 8 to 32. Each vector
contains half repeated data. Uniform distribution and Gaussian distribution are applied
to evaluate LRU. Pre-Protected LRU protects all repeated data, so data distributions have
no impact. Oversubscribed memory is half of the available memory size. Improvement
means the times of the GFLOPS improvements.

Experiment Results Per Iteration (Oversubscription Rate=50%, Repeated Rate=1/2)
Vector
Size

Eviction Policy Allocate Evicts Hit Miss Hit Rate GFLOPS Speedup

8
LRU UNIFORM 27 8 16 32 33.33% 780.16 1×
LRU GAUSSIAN 25 6 18 30 37.5% 934.27 1.19×

Pre-Protected LRU 24 4 19 29 39.58% 1062.84 1.36×

16
LRU UNIFORM 48 12 35 61 36.45% 1453.61 1×
LRU GAUSSIAN 47 12 36 60 37.50% 1501.1 1.03×

Pre-Protected LRU 44 8 39 57 40.63% 1907.89 1.31×

32
LRU UNIFORM 89 22 74 118 38.54% 1571.02 1×
LRU GAUSSIAN 87 20 76 116 39.58% 1605.04 1.02×

Pre-Protected LRU 84 16 79 113 41.15% 1943.48 1.23×

that Pre-Protected LRU has the lowest number of evictions than others in both synthe-

sized datasets. When the oversubscribe rate is 150%, 200%, and 250%, Pre-Protected

LRU only has in geometric mean 77.2%, 71.6%, and 82.1% number of evictions of other

methods in the uniform dataset, and 79.7%, 78.1%, and 81.6% in the Gaussian dataset,

respectively.

Exploring performance in varying situations. This work compares the perfor-

mance between Pre-Protected LRU and original LRU policy with three crucial factors:

vector size, oversubscription rate, and repeated rate. For the Pre-Protected eviction pol-

icy, all the repeated data are protected. Values and positions of the random repeated data

have no influence on the performance. Performance metrics include memory hit rate and

GFLOPS. Detailed experiment results are shown in Tab. 3.1 3.2 3.3, which are calculated

as the average value of ten execution loops.

The Pre-Protected LRU achieves improvements from 1.12× in Tab. 3.2 to 1.36× in

Tab. 3.1 GFLOPS of the LRU eviction policy. The average improvement is 1.21×. Hit

rate improvements achieve from ten percent to thirty percent better than original LRU

policy. As the vector size increases from 8 to 64, the improved performance decreases from

3.6. EVALUATION 65

Table 3.2: Performance of Memory Eviction with Varying Oversubscription
Rate: Hit Rate, GFLOPS on NVIDIA P100. The results are calculated as the
average values per vector of ten execution loops. The oversubscribed memory rate varies
from 50% to 150%. 50% means half of the available memory size is oversubscribed. The
vector size is 64. Each vector contains half repeated data.

Experiment Results Per Iteration (Vector size=64, Repeated Rate=1/2)
Oversub-

rate
Eviction Policy Allocate Evicts Hit Miss Hit Rate GFLOPS Speedup

50%
LRU UNIFORM 178 46 145 239 37.76% 1554.54 1×
LRU GAUSSIAN 171 40 152 232 39.58% 1630.69 1.05×

Pre-Protected LRU 164 32 159 225 41.4% 1825.28 1.17×

100%
LRU UNIFORM 216 120 235 341 40.79% 1568.06 1×
LRU GAUSSIAN 213 82 238 338 41.31% 1578.86 1.01×

Pre-Protected LRU 196 64 255 321 44.2% 1750.12 1.12×

150%
LRU UNIFORM 251 120 328 440 42.71% 1575.25 1×
LRU GAUSSIAN 243 112 336 432 43.75% 1606.90 1.01×

Pre-Protected LRU 228 96 351 417 45.7% 1759.57 1.12×

Table 3.3: Performance of Memory Eviction with Varying Repeated Rate: Hit
Rate, GFLOPS on NVIDIA P100. The results are calculated as the average values
per vector of ten execution loops. Repeated rate varies from 1/8 to 3/4. The vector size
is 64. Oversubscribed memory is half of the available memory size.

Experiment Results Per Iteration (Oversubscription Rate=50%, Vector Size = 64)
Repeated

Rate
Eviction Policy Allocate Evicts Hit Miss Hit Rate GFLOPS Speedup

1/8
LRU UNIFORM 196 64 127 257 33.07% 1346.61 1×
LRU GAUSSIAN 194 62 129 255 33.59% 1362.25 1.01×

Pre-Protected LRU 188 56 135 249 35.15% 1595.54 1.18×

1/4
LRU UNIFORM 192 60 131 253 34.11% 1400.95 1X
LRU GAUSSIAN 190 58 133 251 37.23% 1427.83 1.02×

Pre-Protected LRU 180 48 143 241 34.64% 1720.16 1.23×

3/4
LRU UNIFORM 151 20 172 212 44.79% 1940.44 1×
LRU GAUSSIAN 149 18 174 210 45.31% 1982.20 1.02×

Pre-Protected LRU 148 16 175 209 45.57% 2257.93 1.16×

1.36× in Tab. 3.1 to 1.17× in Tab. 3.2. The experiment results show that the original

LRU policy is sensitive to the vector size. In Tab. 3.1, when the tensor size is 8, the

performance of Gaussian distribution is obviously better than the uniform case. This is

because Gaussian distribution produces less least-used data than a uniform distribution.

when the tensor size is small, the repeated data have more probability existing in the

center positions, which makes less probability to be evicted. In other cases, memory

oversubscription performance is not influenced by data distribution. Additionally, Tab. 3.2

illustrates stable performances of three eviction policies with varying oversubscription

3.6. EVALUATION 66

rate. More specifically, both GFLOPS and improvements are close in these three cases.

It is concluded that the oversubscription rate has a trivial impact on memory eviction

performance. Tab. 3.3 explores the influence of the repeated rate. On one hand, the

performance improvement is relatively stable, achieving about 1.2×. On other hand,

values of memory hits and GFLOPS increase as the repeated rate is higher. This is

because more repeated data bring more reusability opportunities. The Pre-Protected

eviction policy yields stable benefits on eliminating redundant memory evictions with

varying oversubscription rate, and repeated rate. In summary, evaluation results are

consistent with our theoretical analysis in Section 3.5.4. The Pre-Protected LRU eviction

policy always outperforms LRU eviction policy in memory hits and GFLOPS. The Pre-

Protected LRU eviction policy is able to avoid data thrashing and obviously eliminate

redundant memory evictions.

3.6.5 User Case: Evaluation in Redstar System

In order to evaluate in practical scenarios, this work measures three real physics correlation

functions in Redstar system. As claimed in Section 3.2, calculating one correlation func-

tion includes multiple configurations with multiple time intervals. In a typical practical

scenario, one correlation function produces about four to five hundred configurations, then

one configuration executes through sixty-four time intervals. Each configuration obtains

the identical computation and different data in all time intervals. Different configurations

also represent the same computations. Therefore, the performance is measure by the av-

erage executing results of one configuration of the correlation functions with a single time

interval. All these three correlation functions belong to multi-meson system computations.

The detailed information of correlation functions is shown in Tab. 3.4.

This work designs a set of experiments to integrate into the Redstar system. Execu-

tion time and GFLOPS are measured to evaluate performance Improvements. Tab. 3.5

illustrates the experiment results. Execution time implies the average of ten execution

loops at a single time interval of one configuration. GFLOPS are calculated based on

3.7. RELATED WORK 67

Table 3.4: Information of Real Correlation Functions Basic information of three
correlation functions including the tensor (spin) size, the number of initial and unique
hadron nodes, the theoretical needed memory and the number of hadron contractions

Function Name Tensor Size #Total Nodes Memory (GBytes) #Contractions
a1 rhopi 128 106 0.44 68
f0d2 256 2173 36.28 1968
f0d4 256 2173 36.32 1970

Table 3.5: Performance of Real Correlation Functions: Execution Time and
GFLOPS on NVIDIA P100. Speedup means the times of the accelerated performance
of MemHC.

Function
Execution Time (s) GFLOPS

Unified Memory MemHC Speedup Unified Memory MemHC Speedup
a1 rhopi 0.61 0.17 3.56× 59.87 212.87 3.56×
f0d2 16.19 2.67 6.06× 134.52 815.22 6.06×
f0d4 16.33 2.67 6.12× 133.44 810.72 6.08×

all the memory operations and the execution time. According to the Tab. 3.5, the im-

proved performance ranges from 3.56× to 6.12× in execution time and 3.56× to 6.08× in

GFLOPS. These results support the significant benefits of MemHC on accelerating hadron

contractions in real-world applications.

3.7 Related Work

Tensor contraction optimization works. Prior works focus on implementing a general

method [60, 79, 56, 2, 47, 12, 63, 46, 74] to optimize an individual tensor contraction instead

of a number of tensors. Some other related works optimize tensor contraction kernel for

specific tensor patterns, such as sparsity[60], symmetry[46], and high rank[79]. Kim et al.’s

work [47] proposes a GPU code generator of tensor contractions to leverage data reuse in

a high dimensional loop. Another work of Kim et al. [46] aims to optimize CCSD kernel

computation for specific applications. Ma et al.’s work [62] implements a code generator to

translate tensor expressions to optimized CUDA codes. Nelson et al.’s work [69] presents

a machine learning-based approach to find the optimal GPU codes for tensor contraction.

Different from all these efforts, MemHC targets a large number of tensor contractions on

3.7. RELATED WORK 68

efficient memory management and redundancy eliminations.

GPU memory management frameworks. Graphics processing units (GPUs) is fa-

mous for dramatically speeding up the computation of various practical applications, in-

cluding deep learning [100, 104, 102, 93] and scientific computing. Many existing research

efforts aim to optimize GPU memory management. Li et al.’s work [55] presents a set of

hybrid implicit or explicit data movement frameworks to optimize GPU unified memory.

Dashti et al.’s work [22] discusses various popular memory management methods in het-

erogeneous systems including HSA, NVIDIA, and AMD hardware. Ausavarungnirun et

al.’s work [8] proposes Mosaic, a new GPU memory manager that efficiently supports mul-

tiple page sizes. Compared with these works, MemHC mainly targets specific attributes,

multiple memory redundancies, in many-body correlation. Other prior works mainly ex-

plore the memory oversubscription based on unified memory management. A framework

ETC [52] classifies applications as regular and irregular and provides three memory over-

subscription mitigation techniques. Kim et al.’s work [45] also focuses on dealing with

memory oversubscription on unified memory including thread Oversubscription(TO) and

Unobtrusive Eviction (UE). In contrast, MemHC exploits a novel eviction policy, the Pre-

Protected eviction, based on an explicit and optimized GPU memory management for

many-body correlation.

Memory redundancy elimination techniques. Existing work about memory redun-

dancy elimination techniques cannot address correlation function efficiently. For instance,

many efforts about accelerating neural networks [43, 71] eliminate redundant operations in

registers. Other elimination redundancy works focus on GPU cache [3, 23, 37] and shared

memory [43, 14]. Unlike these efforts, one hadron node requires about 37M memory cost

in a single meson system with 384 tensor size, which can not be optimized in GPU reg-

ister, cache or shared memory. Unified Memory management [51] jointly manages host

and device memory, and provides memory allocation elimination techniques. However,

as analyzed in Sec. 3.6, Unified Memory management produces redundant CPU/GPU

memory communications when passing references of GPU objects from the host, which is

3.8. DISCUSSION 69

a frequent operation in computing many-body correlation functions. Therefore, Unified

Memory management and other conventional redundancy elimination techniques are not

suitable for many-body correlation calculations.

Memory eviction policies. Currently many efforts aim to avoid evict reusable data

and leverage memory hit rate. Popular eviction policies include Random Eviction, Most

recently used (MRU), Least recently used (LRU), clock with adaptive replacement (CAR),

Clock-Pro, and more complicated policies [72, 9, 50, 41]. Clock-Pro [41] considers not only

the recently referenced data but recently evicted data, which is better than LRU in one-

time scan and large loop. CAR [9] is self-tuned and theoretically more efficient than LRU.

These eviction policies implement different techniques to reduce the redundant evictions

but cannot avoid them completely. Compared with these efforts, the pre-protected policy

utilizes the specific data structure (vector form of hadron nodes) to predict data access in

advance, which can help pre-protect repeat data and avoid redundant memory evictions.

3.8 Discussion

We discuss two future works about optimizing many-body correlation functions. On one

hand, we plan to scale up the current work to multiple GPUs. The challenges include high

efficiency of multi-GPU scheduling for many-body correlation calculations and memory

operation reductions, especially memory communication among GPUs. On the other

hand, there exist complicated correlation function systems, like tetra systems based on

four dimensional tensors. High dimensional tensors make contraction much more complex

(e.g., tensor permutations), both in memory utilization and computation expense. In

the future, we will extend the framework to address more types of hadronic systems and

further optimizations on high-rank tensor contractions.

3.9. SUMMARY 70

3.9 Summary

In the paper, we present an efficient GPU memory management framework MemHC to

eliminate broad memory redundancies. The redundant memory operations involve mem-

ory allocations, CPU/GPU memory communications, and oversubscription. MemHC ex-

ploits associated reduction optimizations including memory reusability optimizations, data

reorganization, and on-demand synchronization. Memory reusability optimizations in-

clude duplication-aware management and overwriting lazy-released memory for duplicate

data and new intermediate data. Additionally, this work designs a novel Pre-Protected

LRU eviction policy to avoid redundant memory evictions and data thrashing. In evalu-

ation, MemHC outperforms the unified memory management in general correlation func-

tions and three real-world physics correlation functions. The improvements are able to

achieve from 2.17× to 10.73× higher GFLOPS. MemHC is also widely evaluated in four

architectures, including NVIDIA P100, NVIDIA V100, AMD MI50, and AMD MI100,

to demonstrate the robust portability and generalization. Furthermore, although this

framework is built for many-body correlation functions, some new insights, like the Pre-

Protected LRU eviction, are potentially helpful for other workloads. For instance, the

neural network models (particularly DNN training tasks that require a significant amount

of GPU memory) have pre-defined data structures to reuse intermediate results and model

weights when bypassing computational graphs. The Pre-Protected LRU eviction method

can help pre-protect the reusable intermediate data in advance to eliminate redundant

memory evictions for large datasets. Another example is large time-evolving graph pro-

cessing that generates dynamic graph structures and provides data reuse opportunities

for the repeated part of the graphs. Many current efforts focus on predicting temporal

graph behaviors, which allows the Pre-Protected LRU eviction policy to pre-protect the

reusable nodes and eliminate redundant memory evictions. In the future, we will explore

more optimizations for multiple GPU scheduling and accelerating complicated hadronic

systems.

Chapter 4

MICCO: An Enhanced

Multi-GPU Scheduling Framework

for Many-Body Correlation

Functions

4.1 Introduction

Calculation of many-body correlation functions is a key kernel widely used in many scien-

tific physics systems (such as Lattice Quantum Chromodynamics(QCD)) [11, 15, 16, 17,

83, 6]. Hadronic correlation function in complex multi-meson and multi-baryon systems

is a typical example of many-body correlation function, which involves quarks enclosed

in mesons and baryons. Calculating hadronic correlation functions converts a series of

quark propagations describing interactions among hadrons into many undirected graphs

that have quarks of the hadrons as vertices and quark propagations as edges, followed by

performing a graph contraction on every graph that reduces graph edges one after another

until only two hadrons are left. Each reduction of an edge is a tensor contraction between

hadron nodes which is dubbed hadron contraction.

71

4.1. INTRODUCTION 72

Calculation of many-body correlation functions is computation and memory-intensive

because it usually involves many thousands even millions of contractions resulting in ex-

tremely large numbers of tensor contractions. Graph contractions also generate a large

amount of intermediate data, requiring significant memory resources. Thus, real-world

physics systems commonly rely on high-end computing devices like many-core GPUs to

compute many-body correlation functions. Specifically, due to the limited memory size of

a single GPU, multi-GPU systems are preferred.

However, accelerating the calculation of many-body correlation functions on multi-

GPUs is challenging. In contrast to general graph-based applications that process a

huge graph on multi-GPUs [10, 19, 40], many-body correlation function calculations are

featured with two specific characteristics: First, the entire calculation consists of many

computation-/data-intensive kernels that are represented by graph edges. Second, re-

peated hadron nodes appear frequently because of overlapped reduction paths among

multiple contraction graphs. The former shifts the scheduling bottleneck from optimiz-

ing graph partition and reducing partition synchronization (as shown frequently in general

graph processing) to improving the GPU assignment of these computation kernels to avoid

expensive memory operations such as tensor evictions in memory oversubscription situa-

tions, or tensor movements. The latter offers unique (and many) data reuse opportunities

that potentially mitigate the data-intensive nature of many-body correlation function cal-

culations. Unfortunately, existing multi-GPU scheduling frameworks [94, 10, 4, 36, 44, 80]

mainly focus on workload balance without considering the above data dimension that is

critical to the execution performance of many-body correlation, thus resulting in sub-

optimal system performance if they are adopted directly.

To address this issue, this work presents a new multi-GPU scheduling framework,

MICCO, to accelerate calculating many-body correlation functions. The key innovation

of MICCO is that it brings the data dimension into the whole scheduling picture, par-

ticularly by studying the impact of a data reuse-load balance interplay on the scheduling

and leveraging this interplay to find the optimal scheduling scheme. The key insight of

4.1. INTRODUCTION 73

this study is that data reuse and load balance form a trade-off relationship in scheduling

scheme exploring and multiple factors affect this trade-off, rendering it very challenging

to find a global optimal scheduling solution within a practical time budget for real-world

systems.

Fortunately, this study demonstrates that it is possible to create a highly effective local

optimal scheduling with the help of two newly designed concepts including local reuse

pattern and associated simplified but effective mapping analysis, and reuse bound that

characterizes the allowed level of load imbalance when exploring data reuse opportunities.

Based on both new concepts, this work proposes a heuristic scheduling algorithm that

toggles between leveraging data reuse and pursuing load balance particularly by taking

memory evictions into account, and designs a machine-learning-based regression model to

determine the optimal setting of reuse bounds. MICCO is integrated into a well-known

Lattice QCD system, Redstar [15, 16, 17], for the first time running it on multiple GPUs.

The main contributions can be summarized as follows:

• For the first time performing a comprehensive study on the interplay between data

reuse and load balance in multi-GPU scheduling of many-body correlation function

calculations, particularly introducing two new concepts that are critical in multi-

GPU scheduler design, local reuse pattern and reuse bound.

• Based on the previous study, presenting a multi-GPU scheduling framework,

MICCO, to accelerate the calculation of many-body correlation functions that con-

sists of a heuristic scheduling algorithm and a regression model to generate optimal

settings to balance the impact of data reuse and load balance, particularly by con-

sidering memory oversubscription situations.

• Integrating MICCO into a real-world Lattice QCD system, Redstar, and for the first

time running it on a multi-GPU environment.

MICCO is extensively evaluated with both synthesized datasets and real-world datasets

4.2. BACKGROUND 74

with varied settings. The evaluation demonstrates that MICCO outperforms other state-

of-art works in all situations, achieving up to 2.25× speedup.

4.2 Background

4.2.1 Many-body Correlation Function

Hadronic correlation functions are the central quantities to be calculated when determining

the properties and interactions of quarks directly from Lattice QCD simulations. Calcu-

lation of correlation functions is crucial for generating physics observables and is relevant

to experiments planned for Jlab, FAIR, and J-PARC facilities [11, 83, 6]. However, the

computational cost of constructing such correlators is, however, known to be exceptionally

enormous. The reason for such a high cost comes from computing all required quark prop-

agation diagrams [15] resulting from Wick contractions [15, 16, 17]. The number of such

diagrams grows factorially as the number of quarks and the total number of freedom of

the hadronic systems under consideration increase. A quark propagation diagram can be

represented as a graph consisting of a set of hadron nodes each of which has vertices (V)

representing the quarks inside a hadron node and undirected edges (E) describing quark

propagations at specific time intervals. Especially, the number of unique graphs can be

potentially huge approaching in the order of 500, 000. The graph contraction of a graph,

which is defined as deleting one edge after another, consists of a series of hadron con-

tractions involving batched matrix multiplications for a meson system or batched tensor

contractions for a baryon system1. A large number of contraction graphs on many time-

slices and the size of matrices/tensors (≈ 100s) associated with the hadron nodes present

extreme computing challenges. It is paramount to utilize modern computing accelerators

such as GPUs to speed up the calculations of hadron contractions.

1This paper uses tensor in the following discussion to refer to both two-dimensional matrix and higher
dimensional tensor.

4.2. BACKGROUND 75

4.2.2 Topological Representations

Figure 4.1: Topology Representations of many-body Correlation. Correlation
functions are represented as multiple contraction graphs. Each contraction graph consists
of multiple computation stages. Each stage consists of two vectors of independent hadron
nodes. Each pair of hadron nodes conducts hadron contractions.

To translate the statistic definition into a formalized computational problem, Fig.4.1

illustrates many-body correlation function calculations as a topological representation, in

the form of contraction graphs. It is worth noting that a many-body correlation may

involve thousands of contraction graphs while this figure only shows one for sim-

plicity. In each contraction graph, vertices represent hadron nodes, while edges describe

the interactions between hadron nodes. Hadron nodes are formalized as batched matrices

or tensors, with different ranks of tensors representing different types of hadron nodes

(e.g., matrices in meson systems and three-dimensional tensors in baryon systems, respec-

tively). The associated interactions between two hadron nodes are formalized as matrix

multiplications or tensor contractions.

A well-known Lattice QCD system, Redstar [15, 16, 17] first translates each correlation

function into a set of unique contraction graphs, and then produces a sequence of hadron

contractions from the generated contraction graphs. One correlation function can produce

many thousands of contraction graphs. Each graph undergoes a graph contraction process

during which one edge after another is reduced until only two nodes are left. Again, each

reduction of an edge corresponds to a matrix multiplication or tensor contraction.

To leverage the concurrency of many-body correlation calculations, pre-processing,

based on dependency analysis is used to partition the computation into several stages

4.2. BACKGROUND 76

(e.g., stages 1, 2, and 3 in Fig.4.1) with these stages executing sequentially. Each stage

contains two vectors and each vector contains independent hadron nodes. Each pair of

associated hadron nodes in these two vectors accomplishes hadron contractions. Since the

hadron nodes are independent, the hadron contractions can execute concurrently.

4.2.3 Challenges and Opportunities

Many-body correlation calculation introduces multiple new (and interesting) challenges to

multi-GPU scheduling due to its unique computation patterns:

Calculation consists of many computation-intensive kernels. In contrast

to conventional graph processing applications (e.g., BFS, PageRank, and Shortest

Path) [94, 81], many-body correlation comprises a large number of small contraction

graphs that construct a backbone computation structure, and the overall correlation func-

tion consists of many computation-intensive kernels, e.g., matrix multiplications or tensor

contractions that are represented by edges of these contraction graphs. The multi-GPU

scheduling bottleneck is shifted from graph partition and partition synchronization reduc-

tion to proper GPU assignment of these computation-intensive kernels to avoid frequent

memory oversubscription and intensive tensor movement.

Contraction graphs may share hadron nodes. A hadron node may appear multi-

ple times in more than one contraction graph in a random manner. The tensors belonging

to this hadron participate in multiple computations if this hadron is shared by multiple

contraction graphs. This key observation demonstrates that many-body correlation offers

many data reuse opportunities during its computation. It is critical to take data reuse into

account during multi-GPU task allocation. This work particularly studies the interplay

between data reuse and load balance and proposes an enhanced scheduler based on this

study.

System cannot afford a heavy scheduler. Finding the optimal scheduling scheme

for the entire many-body correlation computation is time-consuming because it consists of

thousands of kernel computations that involve many matrices and tensors. The resulted

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 77

Figure 4.2: Example (a): Trade-off between data reuse and load balance. Input
tensors are A, B, C, and D. Case ❶ only considers data reuse; Case ❷ only cares about
load balance; Case ❸ trades off data reuse and load balance. Red dotted frames label
reused data. The green bars mean kernel computation cost, and the yellow bars mean
memory operation cost (allocation and communication) without memory evictions.

searching space is huge. However, due to the computation- and memory-intensive na-

ture, the real-world systems cannot afford a heavy scheduling mechanism. A lightweight

approach with a reduced scheduling search space and the limited cost is desired.

4.3 Interplay between Data Reuse and Load Balance

This section carefully studies the interplay between two scheduling metrics, data reuse

and load balance, and their effects on multi-GPU scheduling of many-body correlation

calculations. This section further analyzes the impact of multiple key factors on this

interplay. This study aims to guide the design of MICCO.

4.3.1 Data Reuse and Load Balance Trade-off Analysis

Although improving load balance and data reuse can both lead to better multi-GPU

system performance, the multi-GPU scheduler may not be able to achieve optimal for

both, simultaneously, e.g., optimizing data reuse may result in unbalanced computation.

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 78

An interesting trade-off relationship exists between these two metrics. Fig.4.2 illustrates

a detailed example. Assume input data are four tensors (A, B, C, and D) in a vector. If

at present time GPU 0 has fetched a copy of these tensors from CPU and GPU 1 stores

another set of tensors (E, F , G, and H). In the next step, if only considering data reuse,

all input tensors should be assigned to GPU 0 (as shown in case ❶); while if only caring

about workload balance, GPU 0 and GPU 1 should fetch the identical amount of tensors

(as shown in case ❷). However, both cases result in sub-optimal system performance.

Case ❶ only keeps GPU 0 busy, while case ❷ incurs extra memory operations for two

tensors (C and D), including two tensor allocations and two tensor movements from CPU

to GPU. In contrast to both cases, we point out case ❸ specifically that trades off data

reuse and load balance, i.e., assigning three tensors (A, B, and C) to GPU 0 and one

tensor (D) to GPU 1. This case results in the best system performance among three

schedule schemes.

Fig.4.3 shows that concerning memory oversubscription, both data reuse (Example

(b)) and load balance (Example (c)) are able to reduce memory evictions. Leveraging

data reuse decreases the total new memory allocations to avoid memory oversubscription.

In Example (b), assume each GPU memory can hold up to four input tensors. Both

scheduling cases have balanced workloads, but case ❷ does not reuse the repeated tensors

and causes two extra memory operations (including two memory allocations and two tensor

movements), and two memory evictions for each GPU. In Example (c), assume each GPU

memory can hold two more output tensors. Example (c) compares two cases to show load

balance can also help oversubscription: case ❶ has better reusability with three reused

tensors, and case ❷ has only two reused tensors but better workload balance. In case ❶,

a memory eviction occurs when tensor C results a new output tensor. Case ❷ achieves no

evictions and better performance than case ❶.

Remarks: A proper trade-off between data reuse and workload balance results in the

optimal task allocation and helps avoiding memory evictions in GPU oversubscription

situations that frequently happen in large-scale scientific computations with memory-

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 79

Figure 4.3: Examples: Trade-off between data reuse and load balance regard-
ing memory evictions.

intensive kernels like many-body correlation.

4.3.2 Factors Impacting the Data Reuse-Load Balance Trade-off

The execution of many-body correlation function calculation consists of three main parts:

kernel computation, memory allocation, and data communication (i.e., data movement

between CPU and GPU or between two GPUs). The latter two are referred to as mem-

ory operations in this paper. Data reuse mainly reduces memory operation cost, while

workload balance is critical to kernel computation performance. Our study discovers

that multiple factors influence this data reuse-load balance trade-off, and our multi-GPU

scheduler design can benefit from a careful study of them.

4.3.2.1 The Impact of Local Reuse Pattern on the Trade-off

Theoretically, if the scheduler can capture all data reuses and conduct an exhaustive

search by targeting the best data reuse-load balance combination, it can find the optimal

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 80

Figure 4.4: Example: Local reuse patterns and task assignments. Classify ten-
sor pairs based on four local reuse patterns: TwoRepeatedSame, TwoRepeatedDiff ,
OneRepeated, and TwoNew. Mappings between tensor pairs and GPUs can be cate-
gorized into seven cases. Mapping (1) represents two reused tensors, assigned to the
re-utilized GPU with the least overhead. Mappings (2) and (3) contain one reused tensor,
and the rest four mappings have two new tensors, resulting in the most expensive cost.

task scheduling scheme. However, two major issues exist: First, it assumes the global

knowledge of all contraction graphs that may not be available for many cases, particularly

when (partial) contraction graphs are generated dynamically. Second, the search space is

too large and this exhaustive search is easy to be proved an NP problem as other task

scheduling problems. To address this issue, this work proposes to leverage local reuse

pattern information to dynamically search the local optimal scheduling scheme based on

a key study as follows.

Each tensor contraction involves two tensors. The tensor pair of each (incoming)

tensor contraction can be categorized into one of four local reuse patterns (Fig.4.4 shows

an example):

• twoRepeatedSame : Both tensors in this pair already exist in the current memory

of the same GPUs. A1 and A2 already exist in the memory of GPU 0 when the new

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 81

tensor pair (with A1 and A2) comes.

• twoRepeatedDiff : Two tensors exist in the current memory of different GPUs. B1

and B2 already exist on GPU 0 and 1, respectively.

• oneRepeated : One tensor of this tensor pair exists in current GPU memory. C1

presents in GPU 0 and C2 is a new tensor.

• twoNew : Neither of the two tensors of the tensor pair exist in current GPUs’

memory. D1 and D2 are two new tensors.

Based on this local reuse pattern classification, Fig.4.4 also demonstrates and analyzes

the cost of seven typical task assignments/mappings2: Mapping (1) assigns both tensors to

the GPU that stores A1 and A2, previously. Mappings (2) and (3) assign only one reused

tensor in the tensor pair to the GPU with this tensor before, producing one memory

allocation and one memory communication. Mappings (4) - (7) incur the most expensive

cost: two memory allocations and two memory communications.

Remarks: Although it is challenging to find the global optimal scheduling scheme, it

is possible to create a local optimal one with our insights on the local reuse patterns and

mapping study aforementioned, particularly by designing a heuristic approach (introduced

in Section 4.4). This approach has demonstrated its high efficacy in our evaluation.

4.3.2.2 The Impact of Reuse Bounds on the Trade-off

Another key factor that impacts the data reuse-load balance trade-off is the level of allowed

load imbalance, i.e., the scheduler allows a certain level of load imbalance to leverage the

potential data reuse. This work defines this factor as a special term called reuse bound.

For example, assume assigning eight tensors to two GPUs. If the reuse bound is zero, each

GPU must receive four tensors (i.e., with a perfect load balance). If the reuse bound is

two, each GPU can receive up to six tensors, i.e., each GPU allows to exceed the average

allocation by two.

2The costs of other mappings that are not shown in this figure have been covered by these cases.

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 82

Table 4.1: Description of Reuse Bounds. Reuse bounds manage different tensor
pairs and mappings, representing the allowed level of load imbalance.

Name Tensor Pairs Mappings

Reuse bound 1 TwoRepeatedSame (1)

Reuse bound 2 TwoRepeatedDiff ,OneRepeated (2) (3)

Reuse bound 3 TwoNew (4)-(7)

Table 4.2: Definition and Impact of Data Characteristics.

Data Characteristics Description Impact on Performance

Tensor Size Dimension length of a tensor Computation, Allocation

Vector Size Number of tensors in one vector
Computation, Allocation

Communication

Data Distribution
Repeated data follows biased

or unbiased distribution
Allocation

Communication

Repeated Rate
Ratio of the repeated data
by total data per vector

Allocation
Communication

Considering the tensor pairs with different local reuse patterns and mappings impact

the schedule differently (e.g., a tensor pair with twoRepeatedSame and mapping type (1)

brings more data reuse benefits while others bring less), this work specifically maintains

three reuse bounds according to the local reuse patterns and mappings of incoming tensor

pairs. Table 4.1 explains these reuse bounds in detail.

Besides local reuse patterns (and mappings), multiple data characteristics also influ-

ence the setting of reuse bounds. Table 4.2 characterizes them in detail, particularly

specifying their performance impact on either computation and/or memory operations.

Because of these factors, it is challenging to set a uniform set of reuse bound values. An

auto-tuning or machine learning approach is desired for finding reuse bound values.

To further support the above claim, this work leverages Spearman’s rank correlation

coefficient [77], a widely used approach to explore the relationships among data charac-

teristics, three reuse bounds, and performance. The Spearman correlation unveils the

correlation (whether linear or not) between two variables. All seven factors have positive

impacts on the GFLOPS, as shown in Fig.4.5. Data Distribution and Repeated Rate benefit

4.3. INTERPLAY BETWEEN DATA REUSE AND LOAD BALANCE 83

Figure 4.5: Heatmap of the Spearman correlation coefficients. The correlation
coefficients are among data characteristics (Data Distribution, Vector Size, Repeat Rate,
and Tensor Size), three reuse bounds, and GFLOPS.

data reuse to improve the GFLOPS. Larger Vector Size and Tensor Size bring more kernel

computations, resulting in higher GFLOPS. Reuse bounds represent better data reuse and

workload unbalance. The positive coefficients of reuse bounds illustrate that data reuse

is slightly more important than workload balance. Data Distribution and Repeated Rate

have positive coefficients with reuse bounds, due to the benefits of data reuse. Vector Size

and Tensor Size are sensitive with workload imbalance, having negative coefficients with

reuse bounds.

Remarks: Reuse bounds are critical to trade-off data reuse benefits and load imbal-

ance costs; however, many factors influence the setting of reuse bounds. This fact guides

us to design an approach to find the optimal reuse bounds efficiently (e.g., our regression

model in Section 4.4.3).

4.4. MULTI-GPU SCHEDULING FRAMEWORK 84

Figure 4.6: System overview of MICCO. Input data is tensors in vectors. MICCO
dynamically handles vectors and generates GPU assignments for each vector. MICCO
consists of a regression model and a heuristic scheduling algorithm. MICCO extracts data
characteristics of each vector to the regression model (❶). The regression model generates
optimal reuse bounds (❷). The heuristic algorithm classifies tensor pairs (❸) and jointly
manages three policies.

4.4 Multi-GPU Scheduling Framework

This section introduces the design and optimization of our multi-GPU scheduling frame-

work, MICCO. MICCO’s design focuses on these aspects: 1) exploring data reuse opportu-

nities for repeated tensors, 2) improving load balance to keep GPUs busy, and 3) achieving

optimal data reuse-load balance trade-off with considerations of memory evictions.

4.4.1 System Overview

Fig. 4.6 shows an overview of MICCO that mainly consists of two components: a heuristic

scheduling algorithm, and a pre-trained lightweight regression model. Fig. 4.6 also illus-

trates the workflow that MICCO calculates many-body correlation functions. In the first

step, MICCO fetches input vectors from the upstream module of a scientific application

(e.g., Lattice QCD) and feeds each vector to the pre-trained regression model (❶). In the

second step, the pre-trained regression model prepares for its online inference input (e.g.,

the data characteristics of tensor pairs in a given vector), conducts an online inference,

and outputs a set of reuse bounds for this vector (❷). Because this regression model is

small, this step is lightweight incurring negligible overhead. In the third step, the heuristic

4.4. MULTI-GPU SCHEDULING FRAMEWORK 85

Table 4.3: Definitions of Variables.

Variable Name Descriptions

Tensor1,Tensor2 Input tensor of one tensor pair

reuseBd A vector of three reuse bounds

tensorsGPU A pair between tensors and GPU

mapGPUTensor GPU-Tensor pairs mappings

mapGPUCom GPU-Computation cost mappings

mapGPUMem GPU-Memory cost mappings

numGPU The number of GPUs

numTensor The number of tensors

balanceNum |numTensor / numGPU |
candiQueue A queue of candidate GPUs

GPUMaxMemory The maximal memory size of GPU

scheduling algorithm takes each tensor pair (❸) in a given vector and the associated reuse

bounds to assign the related tensor contraction (and its tensor pair) to a specific GPU. Par-

ticularly, the heuristic scheduling algorithm toggles among three policies to assign tensors:

data-centric policy, computation-centric policy, and memory-eviction-sensitive policy.

4.4.2 Heuristic Scheduling Algorithm

To trade-off data reuse and load balance, this heuristic algorithm toggles among three

scheduling policies. Data-centric policy emphasizes data reuse, and assigns tensors

based on the aforementioned tensor pair local reuse pattern classification and mapping

strategy. Computation-centric policy emphasizes workload balance, and ensures each

GPU handles the identical number of tensor pairs. Memory-eviction-sensitive policy

emphasizes reducing memory cost to avoid evictions.

As claimed in Sec. 4.3, data reuse is the principal factor to alleviate expensive memory

operations, thus benefiting the data-intensive nature of many-body correlation functions.

Therefore, the data-centric policy first dominates MICCO’s scheduling to find available

GPUs that hold the incoming tensors already, and then MICCO stores these GPUs’ IDs

in a queue (candiQueue). To decide if a GPU is available, MICCO compares a GPU’s

computing utilization with the reuse bounds from the regression model, i.e., if assigning

4.4. MULTI-GPU SCHEDULING FRAMEWORK 86

Algorithm 4 Heuristic Scheduling Algorithm

Require: Tensor Tensor1, Tensor2, Vector reuseBd, Map mapGPUTensor, mapGPUCom,
mapGPUMem, Integer balanceNum

Ensure: A pair tensorsGPU
1: Initialize candiQueue
2: GPUsofTensor1 = mapGPUTensor.find(Tensor1)
3: GPUsofTensor2 = mapGPUTensor.find(Tensor2)
4: if (GPUsofTensor1 ∩GPUsofTensor2) ̸= NULL then
5: for it1 : GPUsofTensor1 do
6: if it1 ∈ GPUsofTensor2∩mapGPUTensor.at(it1).size() < reuseBd[0] + balanceNum then
7: Add it1 to candiQueue
8: end if
9: end for
10: end if
11: if candiQueue = NULL ∩ (GPUsofTensor1 ̸= NULL ∪GPUsofTensor2 ̸= NULL) then
12: for it1 : GPUsofTensor1 do
13: if mapGPUTensor.at(it1).size() < reuseBd[1] + balanceNum then
14: Add it1 to candiQueue
15: end if
16: end for
17: for it2 : GPUsofTensor2 do
18: if mapGPUTensor.at(it2).size() < reuseBd[1] + balanceNum then
19: Add it2 to candiQueue
20: end if
21: end for
22: end if
23: if candiQueue = NULL then
24: for it = 1; it ≤ numGPU ; it++ do
25: if mapGPUTensor.at(it).size() < reuseBd[2] + balanceNum then
26: Add it to candiQueue
27: end if
28: end for
29: end if
30: Call Alg.5 to determine tensorsGPU
31: Update mapGPUTensor, mapGPUCom, mapGPUMem return tensorsGPU

the incoming pair to a given GPU results in severe load imbalance, this GPU is unavailable.

Next, the computation-centric policy dominates MICCO’s scheduling to select the GPU

with least computation from candiQueue to further balance workload. If the former

scheduling causes any oversubscription of a GPU in candiQueue, the memory-eviction-

sensitive policy kicks in to select the GPU with the most available memory in candiQueue

to avoid data evictions.

Alg.4 illustrates the designed heuristic scheduling algorithm that processes tensor pairs

one after another. Alg.5 shows the generation of an assignment between a tensor pair and

a GPU by designed scheduling policies. Tab. 4.3 explains the variables in both algorithms.

4.4. MULTI-GPU SCHEDULING FRAMEWORK 87

The heuristic algorithm is greedy with O(n2) time complexity, where n is the number of

tensor pairs. The outer n loop is to traverse all tensor pairs, while the inner n loop is

to check previous tensor pairs in mapGPUTensor. The main steps of this algorithm are

clarified as follows:

• Step-I : Alg.4 figures out the local reuse pattern of an incoming tensor pair by

checking mapGPUTensor (line 2-3). If the pair belongs to twoRepeatedSame (line

4), Alg.4 finds all available GPUs that hold this pair already and puts their IDs in

candiQueue (line 5-10).

• Step-II : If the twoRepeatedSame pair cannot find any available GPUs or the pair

belongs to twoRepeatedDiff or oneRepeated (line 11), Alg.4 fills in candiQueue

with the available GPUs containing one tensor of the pair (line 12-22). Otherwise,

Alg.4 fills in candiQueue with all available GPUs (line 23-29).

• Step-III : Alg.5 monitors memory cost and recognizes memory oversubscription (line

2-6). If no memory eviction occurs (line 7), Alg.5 selects the GPU with the least

computation from the candiQueue (line 8-12). If memory eviction appears, Alg.5

selects the GPU with the most memory capacity from the candiQueue (line 14-19).

• Step-IV : Alg.5 creates a tensor assignment (tensorGPU) by combining the selected

GPU ID with this tensor pair (line 22), and passes it to Alg.4 (line 30). Alg.4

dynamically updates mapGPUTensor after handling each tensor pair (line 31).

4.4.3 Regression Model

To determine the optimal setting of the three reuse bounds, MICCO builds a regression

model to explore the correlation between data characteristics and reuse bounds. Input

(feature variables) is data characteristics and output (response labels) is optimal reuse

bound setting. Data characteristics include vector size, tensor size, data distribution,

and repeated rate. Vector size and tensor size are given variables by input data. Data

4.4. MULTI-GPU SCHEDULING FRAMEWORK 88

Algorithm 5 Tensor Assignment Algorithm

Require: Map mapGPUCom, mapGPUMem, mapGPUTensor, Vector candiQueue, Tensor Tensor1,
Tensor2, Integer GPUMaxMemory

Ensure: A pair tensorsGPU Initialize vector GPUSelect, Integer GPUID, Bool evictF lag
1: Integer candidateNum = candiQueue.size()
2: for id = 1; id ≤ candidateNum; id++ do
3: if mapGPUMem.at(id).size() > GPUMaxMemory then
4: evictF lag = TRUE
5: end if
6: end for
7: if evictF lag ̸= TRUE then
8: GPUSelect.add(min (mapGPUCom.at(id).size(), id ∈ candiQueue))
9: if GPUSelect.size()>1 then
10: GPUID =random (min (mapGPUMem.at(id).size(), id ∈ candiQueue))
11: else
12: GPUID = GPUSelect.at(0)
13: end if
14: else
15: GPUSelect.add (min (mapGPUMem.at (id).size(), id ∈ candiQueue))
16: if GPUSelect.size()>1 then
17: GPUID =random(min (mapGPUCom.at(id).size(), id ∈ candiQueue))
18: else
19: GPUID = GPUSelect.at(0)
20: end if
21: end if
22: tensorsGPU = make pair (Tensor1, Tensor2, GPUID) return tensorsGPU

distribution is judged to be uniform or biased. Repeated rate is calculated dynamically

for each vector. The regression model is offline trained once in the beginning. In offline

training, the total data size is 300, 20% of which is test data to evaluate the prediction.

For each set of feature variables, we measure GFLOPS of all possible values of reuse

bounds and set the optimal reuse bounds to be the response labels. Reuse bounds range

from 0 to numTensor− balanceNum (i.e., assigning all data to one GPU). During online

scheduling, MICCO extracts data characteristics of each vector and executes the inference

of the pre-trained regression model to generate optimal reuse bound values.

Tab. 4.4 compares the precision of three regression models [67], including Linear Re-

gression, Gradient Boosting, and Random Forest. R2 Score [42] is a well-known statistical

metric to measure the regression predicting quality. R2 Score is closer to 1, the regression

model is more accurate. The results in Tab. 4.4 illustrate that the correlation among data

characteristics, reuse bounds, and GFLOPS is non-linear. It is also difficult to predict

4.5. EVALUATION 89

Table 4.4: R2 Score of Regression Models

Model Name LinearRegression GradientBoosting RandomForest

R2 Score 0.57 0.91 0.95

the optimal reuse bound setting by a policy-based approach. Thus, building a non-linear

regression model is necessary. MICCO selects Random Forest [78] as its regression model

because of its high accuracy (95%). Here are more details about this model: the learning

rate of Gradient Boosting and Random Forest is 0.1, the number of boosting stages in

Gradient Boosting is 150, and the number of trees in Random Forest is 150.

4.5 Evaluation

This section aims to evaluate MICCO, particularly with the following objectives: (1)

proving MICCO outperforms state-of-art schedulers with varied vector sizes and data

repeated rates for both uniform and non-uniform data distributions; (2) exploring the

impact of reuse bounds and demonstrating MICCO obtains stable improvements with

varied numbers of GPUs (scalability), tensor size, and memory oversubscription rate; (3)

showing that MICCO can be integrated into a real-world system, Redstar [15, 16, 17], and

yields obvious benefits on real problem sizes and datasets.

4.5.1 Experiment Setup

Platforms. MICCO is evaluated on eight AMD MI100 GPUs, each with 32G GPU

memory3. The compiler is Rocm-4.3.0 based on clang 13.0.0. These GPUs are connected

to an AMD EPYC 7502 32-Core CPU Processor.

Baseline and optimized versions. This evaluation compares MICCO with a state-

of-art work, Groute [10], a popular and efficient multi-GPU scheduling framework. Groute

3Although MICCO is evaluated on the latest AMD GPUs, it can also run on other GPUs like other
generations of AMD GPUs and NVIDIA GPUs because its design is general, and not bound with specific
GPU hardware implementations.

4.5. EVALUATION 90

Figure 4.7: Overall Performance. Two distributions: Uniform (a)-(d) and Gaussian
(e)-(h). Blue stars denote speedup of MICCO-optimal / Groute. Repeated rate varies
from 25% to 100%. Vector size varies from 8 to 64. Tensor size is 384. The utilized GPU
number is eight.

assigns jobs and associated data on the earliest available device to achieve good load

balance similar to many other frameworks [40, 19] Two versions of MICCO are evaluated

including MICCO-naive and MICCO-optimal. MICCO-naive does not benefit from reuse

bounds (by setting these values as zero) while MICCO-optimal leverages reuse bounds

produced from the regression model.

Evaluation setups. Our experiments extensively evaluate MICCO by changing mul-

tiple data characteristics including vector size, repeated rate, tensor size, and memory

oversubscription rate. MICCO is also evaluated with varied numbers of GPUs for scal-

ability. To evaluate the impact of data distribution, our experiments synthesize both

unbiased and biased datasets. The selection of repeated data from the previous data

follows two distributions: Uniform and Gaussian.

Real-world system and datasets. To further validate the practical performance,

MICCO4 is also integrated into Redstar and evaluated on three real-world correlation

functions.

4.5. EVALUATION 91

Table 4.5: Execution Time (ms). Tensor size is 384. Vector size is 64. Repeated rate
is 50%. Sum of 10 vectors.

Distribution Scheduling Overhead Total Time

Uniform 8.27 4925.73

Gaussian 8.52 1550.88

4.5.2 Overall Performance Evaluation

Fig.4.7 illustrates the overall performance improvements by comparing MICCO with

Groute in two distributions: Uniform and Gaussian. We measure four vector sizes from

8 to 64, and the tensor size is 384. The speedup of MICCO over Groute is also shown in

Fig.4.11, labeled as blue stars.

Experiment results demonstrate that MICCO outperforms Groute in all cases, achiev-

ing up to 2.25× speedup. Fig.4.7 (a)-(d) show throughput in Uniform distribution.

The optimal version of MICCO (MICCO-optimal) is able to achieve 1.57× geometric

mean speedup than Groute. Fig.4.7 (e)-(h) show throughput in Gaussian distribution,

and the geometric mean speedup is 1.65× than Groute. Compared with MICCO-naive,

MICCO-optimal achieves up to 1.89× speedup. These results show the great benefits of

MICCO’s heuristic scheduling algorithm and regression model.

One interesting observation is growing repeated rate cannot keep improving perfor-

mance, further validating the trade-off between data reuse and load balance. The best

performance appears with 75% repeated rate in Uniform, and 50% repeated rate in Gaus-

sian. Please note that repeated rate describes initial characteristics of input data rather

than real reused data in calculations. Considering load balance, some repeated data has to

be assigned to new GPUs for the optimal performance according to our heuristic schedul-

ing, so improving repeated rate does not necessarily mean more data reuse.

When comparing data distributions, the following two observations also support that

data reuse and load balance jointly impact the performance. One is that to reach the best

4https://github.com/JeffersonLab/hadron.

https://github.com/JeffersonLab/hadron

4.5. EVALUATION 92

Figure 4.8: Impact of Reuse Bounds. Case (1) vector size = 64, repeated rate = 50%;
Case (2) vector size = 16, repeated rate = 25%; Case (3) vector size = 32, repeated rate
= 75%; Tensor size is 384. 13 sets of three reuse bounds are measured, and the ranging
from 0 to 2.

throughput, the repeated rate of Uniform is higher than Gaussian. This is because biased

distribution (like Gaussian that determines the selection of repeated data) leads to more

load imbalance than Uniform distribution, and this load imbalance particularly increases

with the growth of biased degree. Another observation is that a larger vector size may

degrade the performance of Gaussian (as shown in Fig.4.7 (g) and (h)). This is because

the increasing vector size and large repeated rate (more than 50%) produce many biased

repeated data and cause increasingly severe load imbalance.

Tab.4.5 demonstrates the extremely low scheduling overhead of MICCO

(MICCO-optimal), particularly compared with the total executing time (5.4‰ and 1.6‰).

4.5.3 Performance analysis

This section further studies MICCO’s performance from multiple aspects. Please notice

that MICCO in this section denotes MICCO-optimal.

4.5. EVALUATION 93

Figure 4.9: Scalability. Tensor size is 384. Vector size is 64.

Exploring the impacts of reuse bounds. Fig.4.8 shows the impact of changing

reuse bounds on the performance. The experiments include three cases: Case (1) vector

size = 64, repeated rate = 50%; Case (2) vector size = 16, repeated rate = 25%; Case

(3) vector size = 32, repeated rate = 75%. This work measures thirteen values of three

reuse bounds. The reuse bound values of the best performance vary when changing vector

size, repeated rate, and data distribution. In Case (1) of Fig.4.8 (a), the best performance

is 9753 GFLOPS with (0,2,0), but in Case (3) of Fig.4.8 (b), the best performance is

5869 GFLOPS with (0,2,2). The evaluation results explicitly show that multiple data

characteristics influence data reuse-load balance trade-off and the optimal values of reuse

bounds, which are hard to predict by a policy-based approach or linear regression. This

observation is consistent with Tab. 4.4, and further supports the necessity of building a

non-linear regression model to generate optimal reuse bounds.

Exploring scalability. This work compares MICCO with Groute and changes the

number of GPUs from 1 to 8 in Uniform and Gaussian distributions. As shown in Fig.4.9,

MICCO outperforms Groute, achieving up to 1.96× speedup. One observation is the slow

growth of GFLOPS with an increasing number of GPUs. e.g., GFLOPS increases from

7877 GFLOPS on 1 GPU, to 13043 GFLOPS on 8 GPUs in Fig.4.9 (a). One reason is

when computing small tensors (tensor size is 384), memory operation impacts more than

computation on GFLOPS. Another reason is more GPUs bring more computation capacity

4.5. EVALUATION 94

Figure 4.10: Impact of Tensor Size. Tensor size varies from 128 to 768. Vector size
is 64. Repeated rate is 50%.

Figure 4.11: Memory Oversubscription. Oversubscription rate increases from 125%
to 200%. Vector size is 64. Tensor size is 384. Repeated rate is 50%.

but make data reuse harder. One GPU can reuse all repeated tensors, while multiple GPUs

cannot achieve full data reuse concerning load balance. The speedup improves from 1.18×

on 2 GPUs to 1.68× on 8 GPUs, showing MICCO yields great benefits on leveraging data

reuse and reducing memory operations.

Exploring the impact of tensor size. This work compares Groute and MICCO

with varying tensor sizes including 128, 256, 384, 768 in two distributions. As shown

in Fig.4.10, MICCO outperforms Groute, achieving speedup from 1.35× to 1.92×. The

performance is sensitive to the tensor size, which determines the kernel computation cost.

Overall, MICCO obtains better performance than Groute in all cases as tensor size varies.

Exploring memory oversubscription. The experiments measure two data distri-

4.5. EVALUATION 95

butions when vector size is 64, tensor size is 384, and the repeated rate is 50%. MICCO

achieves a speedup up to 1.9× over Groute. The GFLOPS decreases with the increasing

memory oversubscription. For instance, GFLOPS decreases from 1841 to 1224 in Gaussian

and 2663 to 1194 in Uniform as the subscription rate increases from 125% to 200%. This

observation shows that the performance is sensitive to memory evictions. The geometric

mean speedup of MICCO over Groute is 1.4× in Gaussian and 1.2× in Uniform. Memory

evictions have slightly more impacts on Uniform than Gaussian distribution.

4.5.4 Case Study: Real-world Datasets in Redstar System

Table 4.6: Real Many-body Correlation Functions. Total memory represents the
total device memory about input and intermediate output data. ’Speedup’ is based on
the Groute.

Function Tensor Size Memory Cost Speedup

a1 rhopi 128 56.05G 1.49x

f0d2 256 4645.12G 1.41x

f0d4 256 4064.48G 1.36x

In order to evaluate practical scenarios, this work measures three real physics cor-

relation functions in the Redstar system. The correlation functions are a1 rhopi in a1

system, and f0d2 and f0d4 in f0 system. All of them belong to meson systems and con-

sist of two-particle and single-particle constructions. Their tensor size and total device

memory cost are shown in Tab. 4.6. The memory cost is the sum of sixteen time slices,

including initial input data and intermediate output data. The utilized number of GPUs

is eight. Vector size, repeated rate, and data distribution vary dynamically. Compared

with Groute, the speedup achieves up to 1.49×. The experiment results demonstrate the

practical significance of MICCO.

4.6. RELATED WORKS 96

4.6 Related Works

Recently, many multi-GPU scheduling frameworks have been developed to support dif-

ferent types of applications [25, 31, 10, 27, 36, 49, 105, 103, 99, 98, 101]. The efforts

closely related to this work include some general data-aware multi-GPU schedulers, graph

processing schedulers, schedulers that support other irregular computations, streaming

task schedulers aiming to process a sequence of computation kernels, and schedulers for

machine learning models [102].

General data-aware Multi-GPU schedulers Although the current general data-aware

GPU schedulers (as [7, 26, 87]) that consider data locality have shown efficacy on many

applications based on large matrices (e.g., Matrix Multiplication, LU, etc.), it is not easy

to directly apply them to our application due to multiple unique features of many-body

correlation calculations. Augonnet et al. [7] mainly focus on reducing transfer latency

and overlapping with kernel computation, while reducing data movement counts brings

more significant performance gains for our application because of the large number of

kernels (with reusable data). Gonthier et al. [26] assume the knowledge of all tasks and

dependencies, but our application requires online scheduling for dynamic graphs. This

work also mainly focuses on single-GPU scheduling. Teodoro et al. [87] mainly focus on

optimizing CPU-GPU transfers instead of multi-GPUs.

Multi-GPU schedulers in graph applications and other irregular applications.

Many multi-GPU graph processing schedulers [10, 19, 40] adopt greedy-based strategies

that assign jobs to the earliest available devices and mainly consider workload balance.

Ben et al. [10] present an asynchronous and runtime multi-GPU programming model for

graph and irregular applications. Chen et al. [19] propose a task-based dynamic load-

balancing solution for both single- and multi-GPU systems. These efforts mainly focus

on optimizing workload balance to improve the GPU utilization without considering data

reusability and the interplay between load balance and data reusability. More close to our

work, Kim et al. [44] develop CODA that enables co-placement of compute and data for

4.7. SUMMARY 97

fine-grained interleaved memory with a low-cost method. Although this work takes data

placement into account, it pays more attention to data locations rather than reusing data.

Multi-GPU schedulers for streaming tasks and machine learning models.

Huynh et al. [36] propose a code generation framework mapping streaming applications

onto a multi-GPU system. Melot et al. [64] present a crown scheduling to improve the

efficiency of energy utilization. Udupa et al. [90] propose an efficient technique to exe-

cute stream programs on GPUs. These efforts do not consider data reuse-load balance

trade-off in terms of memory oversubscription as MICCO. Many multi-GPU schedulers for

machine learning workloads have been proposed recently [105, 49, 27, 29]. Gandiva [105] is

a domain-specific scheduler, accelerating deep learning models by packing jobs on multiple

GPUs. CROSSBOW [49] proposes a multi-GPU scheduler for deep learning with small

batch sizes. These efforts have different focuses and do not study the trade-off of load bal-

ance and data reuse as MICCO, either. Additionally, many works, e.g., Tiresias [27] and

Marble [29], apply preemptive scheduling approaches, which are not suitable for this work,

due to the heavy overhead of suspending and resuming in many kernel computations.

4.7 Summary

This work presents MICCO, a multi-GPU scheduling framework to accelerate calculating

many-body correlation functions, integrated in a real-world Lattice QCD system, Redstar

system. This work extensively studies the data reuse-load balance interplay, and further

brings up local reuse pattern and reuse bounds. MICCO proposes a heuristic schedul-

ing algorithm toggling data reuse and load balance regarding memory oversubscription.

Moreover, MICCO builds a regression model to predict optimal reuse bounds. In evalu-

ation, MICCO achieves up to 2.25× speedup in synthesized datasets and 1.49× speedup

in real correlation functions. In the future, we plan to extend the design of MICCO to

a multi-node cluster with GPUs and implement it on an NVIDIA GPU cluster upon the

availability of these devices.

Chapter 5

Locality-aware Multi-GPU

Scheduling for Many-Body

Correlation Functions

5.1 Problem Statement

The locality-aware multi-GPU scheduling framework has been augmented within the

MICCO context. This enhancement primarily targets the alleviation of substantial mem-

ory transfer costs that arise during the pipeline input generation phase, especially when

dealing with exceedingly large real-world datasets.

5.1.1 Pipeline Batch Generation

In the computation of many-body correlation functions, the Redstar system initially gen-

erates contraction graphs, subsequently partitioning them into an execution queue. As

discussed in the previous sections, the nature of this execution queue is inherently un-

predictable. Our frameworks have been developed to accommodate computing kernels

that manage tensor pairs corresponding to each vector. To elaborate, computations are

conducted on a vector-by-vector basis, wherein each vector is processed individually. All

98

5.1. PROBLEM STATEMENT 99

input vectors manifest in a seemingly random fashion, rendering the execution queue akin

to runtime streaming data. Contrarily, in the most recent restart system, input vectors

are not produced sequentially. Instead, they are generated through a pipeline process for

very large dataset, implying that the real system provides a batch of vectors as input at

any given instance.

5.1.2 Motivation

In the pipeline input-generation system, we identify several avenues for optimization in

multi-GPU scheduling due to the grouping of vectors. Firstly, unlike a wholly unpre-

dictable input file, this system allows for preliminary checking some vectors in advance

of their scheduled processing time. Secondly, the actual input vectors exhibit variability

in batch size (vector size), differing from the fixed sizes commonly assumed in theoretical

models. In practice, batch sizes may reduce. Even though the system routinely receives

more than one vector at a time, employing the same scheduling tactics as before is subop-

timal, as variations in batch size can lead to underutilization of computational resources.

Thirdly, there exists a complex interplay between the overheads of pipeline batch loading

and the advantages gained from this looking-ahead activity. As the number of vectors

we choose to look ahead increases, both the overhead and the algorithmic complexity es-

calate, complicating the task at hand. Concurrently, looking-ahead more data enhances

the system’s ability to schedule tensor pairs efficiently, fostering better data reuse and

diminishing the need for memory transfers between GPUs.

Sections 3 and 4 introduce two frameworks: MemHC, which focuses on optimizing

kernel computations on a single GPU, and MICCO, which is principally utilized to handle

fixed batch sizes and process vectors sequentially. Unfortunately, these existing frame-

works fall short in addressing the novel input characteristics presented by pipeline gener-

ation, varied batch sizes, and the delicate balance between cost and benefit.

5.2. MULTI-GPU SCHEDULING 100

5.2 Multi-GPU Scheduling

5.2.1 Interplay between Cost and Benefit of Pipeline Batching

There exists a trade-off between the batching pipeline cost and the benefits of the looking-

ahead strategy. The waiting time for generating the execution queue within the Redstar

system accumulates as we increase the number of vectors to preview, subsequently es-

calating the complexity of the scheduling algorithm. Conversely, checking more data in

advance enhances the framework’s ability to allocate recurring tensor pairs to the same

GPU, thereby capitalizing on reusability and optimizing data use. This, in turn, facilitates

a reduction in memory transfers among GPUs.

To navigate this complexity, it is imperative to formulate a performance model that

meticulously balances the trade-off between the costs and benefits of pipeline batching.

The overarching objective is to minimize the total overhead, taking into account the

intricate interplay of costs and benefits. The relationship among overhead, costs, and

benefits can be encapsulated through the regression function F , which lends itself to linear

regression analysis. As costs escalate, the total overhead concurrently accumulates, with

the parameter λ assuming a positive value, and µ taking on a negative value, reflecting

the intricate dynamics between these variables.

Aij
αβB

jk
βγ

Aij
αβB

jkl
βγδ

Aijk
αβγB

klm
γδε

Overhead = F (Cost,Benefits)

Overhead = λCost+ µBenefits(λ > 0, µ < 0)

5.2. MULTI-GPU SCHEDULING 101

The incurred costs are predominantly influenced by the quantity of batches or vectors,

which not only prolongs the waiting time required for generating input tensor pairs but also

amplifies the complexity of the scheduling algorithm. To accurately encapsulate this, we

characterize the cost in terms of the number of tensor pairs, denoted as N , and the number

of kernels, represented by K. On the flip side, the benefits derived from this process can

be quantified through the enhancement in data reusability, measurable by the increased

reuse ratio, R, and the diminished memory transfer ratio, M . We can approximate these

relationships utilizing linear regression models, as illustrated below.

Cost = λ1N + λ2K

Benefits = µ1R+ µ2M

In summary, the formulas above are used to determine the optimal amount of vectors

which contains the input tensor pairs.

5.2.2 Instance Analysis: locality Graph and Vector Reorganization

Having established the optimal quantity of vectors to preview for enhanced scheduling,

the subsequent task involves strategizing the reorganization of these vectors to maximize

data reuse. The principal methodology employed here is locality analysis.

To elucidate the intricacies of our scheduling design, we provide a practical example

demonstrating the process of conducting locality analysis. Through this example, we will

illustrate the steps involved in constructing local dependency graphs, a crucial endeavor for

optimizing data reusability and minimizing superfluous memory copies. This helps reor-

ganize the input tensors and ensures a more efficient utilization of resources, contributing

significantly to the overall performance of the system.

In the illustrative example depicted in Fig. 5.1, we focus on the execution of two

vectors, namely vector 1 and vector 2, with the intention of allocating them across two

GPUs: GPU 1 and GPU 2. Vector 1 encompasses four tensor pairs scheduled for execution,

5.2. MULTI-GPU SCHEDULING 102

Figure 5.1: GPU assignment instance. Each
original vector contains four tensor pairs to compute
four kernels. Here are two GPUs to schedule.

Figure 5.2: Generating local
dependency graph.

three of which involve tensors 1 and 2, commonly repeated and computed with varying

indexes in real-world scenarios. The fourth tensor pair comprises tensors 3 and 4. The

resulting output tensors from these operations are tensors 5, 6, 7, and 8. In the interest

of achieving a balanced workload distribution, tensors 1 and 2 will be duplicated across

both GPU 1 and GPU 2, resulting in two memory copies between the GPUs.

A dependency exists between vector 1 and vector 2, necessitating the execution of

vector 2 subsequent to vector 1, as tensors 5, 6, and 8 (output tensors of vector 1) are

prerequisites for vector 2. This dependency can be visually represented using a graph,

wherein nodes symbolize tensors and edges denote dependencies between input and output

tensors. Employing dependency analysis, a local dependency graph can be constructed to

visualize all look-aheaded tensors, as showcased in Fig. 5.2. This graphical representation

facilitates a comprehensive understanding of the inter-tensor dependencies and serves as

a valuable tool for optimizing tensor allocation across GPUs, ultimately enhancing data

reusability and reducing redundant memory transfers.

When considering all vectors that have been previewed as part of the look-ahead pro-

cess, the scenario is illustrated in Fig. 5.3. In this specific group of preloaded inputs, each

vector comprises four tensor pairs requiring computation. Vectors 1 and 2 are consistent

with the configurations described in Fig. 5.1 and Fig. 5.2, respectively.

Additionally, vectors 4 and 5 are introduced in this example. For vector 4, there

5.2. MULTI-GPU SCHEDULING 103

Figure 5.3: Sub-graph generation from vectors. Vector 1 brings two redundant
memeory copies and vector 4 brings one redundnat memory copy.

are four kernel computations, which, if assigned to GPUs on a per-vector basis, would

necessitate one memory copy, labeled as 11. However, it is crucial to note that the current

input consists of a group of vectors rather than isolated vectors. This grouping presents

a unique opportunity to reorganize these vectors through combination and reordering,

potentially leading to more efficient resource utilization and reduced memory transfers.

Moreover, a local dependency graph is constructed, as depicted at the top of Fig. 5.3.

This graph highlights the dependencies between vectors 1 and 2, as well as between vectors

4 and 5. Notably, there are no dependencies between vectors 1 and 4, indicating that these

vectors can be processed independently of each other.

This comprehensive understanding of inter-vector dependencies, facilitated by the local

dependency graph, enables a more informed and strategic approach to vector assignment

5.2. MULTI-GPU SCHEDULING 104

Figure 5.4: Vector reorganization. Generated local graphs can help reorder tensor
pairs and form new organized vectors.

and scheduling on the available GPUs. By exploiting the lack of dependencies between cer-

tain vector pairs, we can optimize the scheduling process, ultimately leading to enhanced

data reuse and reduced memory copy operations.

Fig. 5.4 depicts the outcome of reorganizing the vectors in the provided example.

Given that there is no dependency between vector 1 and vector 4, these two vectors can

be merged, allowing for the deferral of the original kernel calculations in vector 2. This

fusion of vectors results in a distinctive scheduling approach.

Upon combining vectors 1 and 4, it becomes feasible to allocate four tensor pairs to

each GPU to maintain a balanced workload. Consequently, the first three tensor pairs, all

of which share the same input tensors 1 and 2, can be assigned to GPU 1. This strategic

assignment notably reduces the redundant memory copies from three (tensors 1, 2, and

11) to just one (tensor 13).

In conclusion, the process of locality analysis encompasses evaluating reuse distances to

ascertain the optimal combination size, as well as reordering the tensor pairs based on the

construction of a local dependency graph. The example provided elucidates how locality

analysis significantly contributes to leveraging data reusability and minimizing memory

transfers, ultimately enhancing the overall efficiency of the system. Through this strategic

5.2. MULTI-GPU SCHEDULING 105

Figure 5.5: Scheduling Algorithm Overview

approach, we are able to optimize resource utilization and reduce overhead, paving the

way for more efficient and effective GPU scheduling.

5.2.3 Locality-aware Scheduling Algorithm

The scheduling algorithm depicted in Fig. 5.5 encompasses three integral steps, each

contributing to the optimal assignment of tensor pairs to GPUs.

Step 1: Locality Analysis

In this initial phase, the algorithm scrutinizes all the input vectors, evaluating the

nearest reuse distance of output tensors. Absence of reuse within the group indicates no

dependencies, halting further vector combinations. Conversely, vectors exhibiting depen-

dencies are amalgamated until such dependencies become apparent. Subsequently, the

algorithm constructs local dependency graphs based on the analyzed dependencies within

this vector group. This enables the identification of vectors lacking dependencies, yet

remaining uncombined due to their original loading order.

Step 2: Vector Reorganization

Following the locality analysis, the algorithm proceeds to reorganize the vectors. This

involves reevaluating reuse distances to facilitate vector combinations, as well as utilizing

the local dependency graphs to reorder or postpone certain tensor pairs between vec-

tors. This step is crucial as it enhances data reusability and reduces memory transfers,

5.3. EVALUATION 106

optimizing the overall efficiency of the system.

Step 3: Tensor Pair Scheduling

The final step employs the MICCO framework to meticulously schedule the tensor

pairs. The objective is to maximize the reuse of repeated tensors while maintaining a

tolerable level of workload imbalance across GPUs. The MICCO framework plays a pivotal

role in achieving this balance, ensuring optimal utilization of resources. The resulting

assignment is then saved, providing a reusable solution for future instances involving the

same input file configurations.

In summary, this three-step algorithm synergizes locality analysis, vector reorgani-

zation, and tensor pair scheduling to optimize GPU resource utilization, enhance data

reusability, and reduce memory transfers. The ability to save and reuse assignment results

for recurrent input configurations further contributes to the efficiency and effectiveness of

the scheduling process.

5.3 Evaluation

To evaluate the performance improvements of the multi-GPU scheduler in data reusabil-

ity, three real-world datasets are applied to measure the reduced memory transfers and

leveraged data reuse. The baseline is to schedule a single vector each time. The mem-

ory transfer ration is calculated by the number of reduced memory copied divided by the

total number of redundant memory copies produced by the baseline. The improved data

reusability ratio is the number of the increased reused tensors divided by the total number

of tensors. The Table 5.1 shows the detailed information.

Table 5.1: Improvements of Real Correlation Functions.

Function
Assignment on 4 GPUs Assignment on 8 GPUs

Memory Transfers Reusability Memory Transfers Reusability
a0.111 A1M 79.93% 50.86% 77.79% 61.14%
f0.000 A1pP 62.12% 36.20% 61.75% 44.02%

roper.000 G1g 70.84% 31.57% 83.15% 68.57%

5.4. SUMMARY 107

Table 5.2: Real Many-body Correlation Functions. ’Ratio’ means the impact of
the baseline memory transfer on the total execution time. ’OOM’ means the performance
is hard to measured due to the mixed computation.

Function Memory Impact Reduced Memory Ratio Speedup

a0.111 A1M 41.48% 114.7 GB 79.93% 1.49x

f0.000 A1pP 64.67% 146.72 GB 62.12% 1.67x

roper.000 G1g OOM 1.77 TB 70.84% OOM

According to the Table 5.1, the locality-aware multi-GPU scheduling framework can

achieve up to 79.93% reduced redundant memory copies in 4 GPUs and 83.15% in 8 GPUs.

The scheduling framework can also achieve obvious improved data reusabiliy ratio, up to

50.86% in 4 GPUs and 68.57% in 8 GPUs.

The Table 5.2 shows the memory impact, which means the percentage of the memory

transfer time of the total execution time of the baseline. The memory transfer takes up

64.67% time of the total execution in the correlation function f0.000 A1pP. Table 5.2 also

claims the reduced memory size of the scheduler based on the baseline. The scheduler can

achieve up to 1.67x times speeup.

5.4 Summary

In summary, the multi-GPU scheduler has been successfully extended to accommodate

the novel input characteristics arising from the pipeline batching generation. This en-

hanced approach enables the looking-ahead strategy, allowing for executing a group of

vectors rather than adhering to a vector-by-vector computation model. Based on the lo-

cality analysis, the scheduler constructs local dependency graphs. These graphs play a

crucial role in reorganizing the input vectors, culminating in improved data reusability

and a reduction in memory transfers between GPUs. This optimized process not only en-

hances efficiency but also contributes to a more streamlined and effective GPU scheduling

experience.

Chapter 6

Conclusion

This dissertation introduces four innovative frameworks designed to expedite two distinct

irregular applications across general GPU architectures, encompassing both AMD and

NVIDIA GPUs.

Application 1: Parallel Recommendation System

The first application revolves around a parallel recommendation system characterized

by a computation-intensive kernel. The challenges herein include data dependence, load

imbalance, and the handling of large datasets. To address these issues, this disserta-

tion unveils a CPU/GPU heterogeneous framework, meticulously crafted to implement an

efficient parallel eALS-based matrix factorization recommendation system.

Application 2: Many-Body Correlation Functions

The second application pertains to the calculation of many-body correlation functions,

a task that is both computation-intensive and memory-intensive. The optimization strate-

gies for this application, therefore, necessitate a careful balance between computational

load and I/O reduction. The dissertation’s contributions to accelerating these correla-

tion functions are threefold. First, a GPU memory management framework dedicated

to eliminating multiple instances of memory redundancy, thereby optimizing memory us-

age. Second, an enhanced multi-GPU scheduling framework which aims to strike the

optimal balance between load balancing and data reuse, ensuring efficient GPU utiliza-

108

CHAPTER 6. CONCLUSION 109

tion. Third, a locality-aware multi-GPU scheduler. By constructing local dependency

graphs to reorganize input tensors, this scheduler enhances data reusability and minimizes

memory transfers between GPUs.

These three frameworks have been seamlessly integrated into a real-world scientific

system, demonstrating their practicality and effectiveness in optimizing GPU-accelerated

computations. Together, these frameworks encapsulate a comprehensive solution to the

challenges posed by the two aforementioned irregular applications, showcasing the disser-

tation’s significant contribution to the field of GPU computing.

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] http://docs.nvidia.com/cuda/cublas/. Nvidia, 2015.

[2] Ahmad Abdelfattah, Marc Baboulin, Veselin Dobrev, Jack Dongarra,

Christopher Earl, Joel Falcou, Azzam Haidar, Ian Karlin, Tz Kolev,

Ian Masliah, et al. High-performance tensor contractions for gpus. Procedia

Computer Science, 80:108–118, 2016.

[3] Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas F Wenisch,

John Danskin, and Stephen W Keckler. Selective gpu caches to eliminate

cpu-gpu hw cache coherence. In 2016 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA), pages 494–506. IEEE, 2016.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Mat-

sumura Kazuaki, and Aung Khin Mi Mi. Multi-gpu design and performance

evaluation of homomorphic encryption on gpu clusters. IEEE Transactions on Par-

allel and Distributed Systems (TPDS), 2020.

[5] Mohammed Fadhel Aljunid and DH Manjaiah. An improved als recommen-

dation model based on apache spark. In International Conference on Scientific

Computation and Statistics ICSCS), year=2018, organization=Springer.

[6] Y Aoki, T Blum, N Christ, C Dawson, K Hashimoto, T Izubuchi,

JW Laiho, L Levkova, M Lin, R Mawhinney, et al. Lattice qcd with two

dynamical flavors of domain wall fermions. Physical Review D, 2005.

110

BIBLIOGRAPHY 111

[7] Cédric Augonnet, Jérôme Clet-Ortega, Samuel Thibault, and Raymond

Namyst. Data-aware task scheduling on multi-accelerator based platforms. In 2010

IEEE 16th International Conference on Parallel and Distributed Systems, pages 291–

298. IEEE, 2010.

[8] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata

Ghose, Jayneel Gandhi, Christopher J Rossbach, and Onur Mutlu. Mo-

saic: a gpu memory manager with application-transparent support for multiple page

sizes. In Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 136–150, 2017.

[9] Sorav Bansal and Dharmendra S Modha. Car: Clock with adaptive replace-

ment. In USENIX Conference on File and Storage Technologies (FAST), volume 4,

pages 187–200, 2004.

[10] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali.

Groute: An asynchronous multi-gpu programming model for irregular computa-

tions. The ACM Special Interest Group on Programming Languages (SIGPLAN)

Notices, 2017.

[11] Evan Berkowitz, Thorsten Kurth, Amy Nicholson, Bálint Joó, Enrico

Rinaldi, Mark Strother, Pavlos M Vranas, and André Walker-Loud.

Two-nucleon higher partial-wave scattering from lattice qcd. Physics Letters B,

765:285–292, 2017.

[12] Alina Bibireata, Sandhya Krishnan, Gerald Baumgartner, Daniel Co-

ciorva, Chi-Chung Lam, P Sadayappan, J Ramanujam, David E Bern-

holdt, and Venkatesh Choppella. Memory-constrained data locality optimiza-

tion for tensor contractions. In International Workshop on Languages and Compilers

for Parallel Computing, pages 93–108. Springer, 2003.

BIBLIOGRAPHY 112

[13] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

COMPSTAT. Springer, 2010.

[14] Guoyang Chen, Yufei Ding, and Xipeng Shen. Sweet knn: An efficient knn

on gpu through reconciliation between redundancy removal and regularity. In 2017

IEEE 33rd International Conference on Data Engineering (ICDE), pages 621–632.

IEEE, 2017.

[15] Jie Chen, Robert Edwards, and Frank Winter. Graph-based contractions

with optimal evaluation strategies. ADSE03-LatticeQCD Application Strategy WBS

1.2.1.03, (Milestone ADSE03-7), 2017.

[16] Jie Chen, Robert Edwards, and Frank Winter. Performance enhancement to

the graph-based contraction calculations. ADSE03-LatticeQCD Application Strategy

WBS 1.2.1.03, (Milestone ADSE03-7), 2018.

[17] Jie Chen, Robert Edwards, and Frank Winter. Enabling graph based con-

traction calculations for multi-nucleon systems. ADSE03-LatticeQCD Application

Strategy WBS 1.2.1.03, (Milestone ADSE03-14), 2019.

[18] Jing Chen, Jianbin Fang, Weifeng Liu, Tao Tang, and Canqun Yang. clmf:

A fine-grained and portable alternating least squares algorithm for parallel matrix

factorization. Future Generation Computer Systems, 2018.

[19] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao.

Dynamic load balancing on single-and multi-gpu systems. In Parallel & Distributed

Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–12. IEEE,

2010.

[20] Maosen Chen, Tun Chen, and Qianyun Chen. An efficient implementation of

the als-wr algorithm on x86 cpus. In BMO. Springer, 2019.

BIBLIOGRAPHY 113

[21] Wei-Sheng Chin, Bo-Wen Yuan, Meng-Yuan Yang, Yong Zhuang, Yu-

Chin Juan, and Chih-Jen Lin. Libmf: a library for parallel matrix factorization

in shared-memory systems. JMLR, 2016.

[22] Mohammad Dashti and Alexandra Fedorova. Analyzing memory manage-

ment methods on integrated cpu-gpu systems. In Proceedings of the 2017 ACM

SIGPLAN International Symposium on Memory Management, pages 59–69, 2017.

[23] Kelu Diao, Ioannis Papapanagiotou, and Thomas J Hacker. Harens: Hard-

ware accelerated redundancy elimination in network systems. In 2016 IEEE Interna-

tional Conference on Cloud Computing Technology and Science (CloudCom), pages

237–244. IEEE, 2016.

[24] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer.

The yahoo! music dataset and kdd-cup’11. In KDD Cup 2011. PMLR, 2012.

[25] Trilce Estrada, David A Flores, Michela Taufer, Patricia J Teller,

Andre Kerstens, and David P Anderson. The effectiveness of threshold-based

scheduling policies in boinc projects. In e-Science’06. IEEE, 2006.

[26] Maxime Gonthier, Loris Marchal, and Samuel Thibault. Locality-Aware

Scheduling of Independant Tasks for Runtime Systems. PhD thesis, Inria, 2021.

[27] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A

{GPU} cluster manager for distributed deep learning. In Proceedings of the USENIX

Conference on Networked Systems Design and Implementation {NSDI}, pages 485–

500, 2019.

[28] Feng-Kun Guo, Christoph Hanhart, Ulf-G Meißner, Qian Wang, Qiang

Zhao, and Bing-Song Zou. Hadronic molecules. Reviews of Modern Physics,

90(1):015004, 2018.

BIBLIOGRAPHY 114

[29] Jingoo Han, M Mustafa Rafique, Luna Xu, Ali R Butt, Seung-Hwan

Lim, and Sudharshan S Vazhkudai. Marble: A multi-gpu aware job scheduler

for deep learning on hpc systems. In CCGRID. IEEE, 2020.

[30] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast

matrix factorization for online recommendation with implicit feedback. In SIGIR,

2016.

[31] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland,

Marc Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer, and

Michela Taufer. Scalable i/o-aware job scheduling for burst buffer enabled hpc

clusters. In Proceedings of the International Symposium on High-performance Par-

allel and Distributed Computing (HPDC), 2016.

[32] Balázs Hidasi and Domonkos Tikk. Fast als-based tensor factorization for

context-aware recommendation from implicit feedback. In European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML KDD). Springer, 2012.

[33] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,

and P Sadayappan. Adaptive sparse tiling for sparse matrix multiplication. In

Proceedings of the Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2019.

[34] Chaofeng Hou, Ji Xu, Peng Wang, Wenlai Huang, and Xiaowei Wang.

Efficient gpu-accelerated molecular dynamics simulation of solid covalent crystals.

Computer Physics Communications, 184(5):1364–1371, 2013.

[35] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for

implicit feedback datasets. In ICDM. Ieee, 2008.

BIBLIOGRAPHY 115

[36] Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick

Siow Mong Goh. Scalable framework for mapping streaming applications onto

multi-gpu systems. In Proceedings of the Symposium on Principles and Practice of

Parallel Programming (PPoPP), 2012.

[37] Mohamed Assem Ibrahim, Hongyuan Liu, Onur Kayiran, and Adwait Jog.

Analyzing and leveraging remote-core bandwidth for enhanced performance in gpus.

In 2019 28th International Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 258–271. IEEE, 2019.

[38] John Jenkins, James Dinan, Pavan Balaji, Tom Peterka, Nagiza F Sam-

atova, and Rajeev Thakur. Processing mpi derived datatypes on noncontigu-

ous gpu-resident data. IEEE Transactions on Parallel and Distributed Systems,

25(10):2627–2637, 2013.

[39] John Jenkins, James Dinan, Pavan Balaji, Nagiza F Samatova, and Ra-

jeev Thakur. Enabling fast, noncontiguous gpu data movement in hybrid mpi+

gpu environments. In 2012 IEEE International Conference on Cluster Computing,

pages 468–476. IEEE, 2012.

[40] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan

Erez, and Alex Aiken. A distributed multi-gpu system for fast graph processing.

Proceedings of the VLDB Endowment, 11(3):297–310, 2017.

[41] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-pro: An effective im-

provement of the clock replacement. In USENIX Annual Technical Conference,

General Track, pages 323–336, 2005.

[42] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspec-

tives, and prospects. Science, 2015.

BIBLIOGRAPHY 116

[43] Hyeonjin Kim, Sungwoo Ahn, Yunho Oh, Bogil Kim, Won Woo Ro, and

William J Song. Duplo: Lifting redundant memory accesses of deep neural net-

works for gpu tensor cores. In 2020 53rd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pages 725–737. IEEE, 2020.

[44] Hyojong Kim, Ramyad Hadidi, Lifeng Nai, Hyesoon Kim, Nuwan

Jayasena, Yasuko Eckert, Onur Kayiran, and Gabriel Loh. Coda: En-

abling co-location of computation and data for multiple gpu systems. ACM TACO,

2018.

[45] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hye-

soon Kim. Batch-aware unified memory management in gpus for irregular work-

loads. In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 1357–1370, 2020.

[46] Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Pa-

nyala, Rohit Kumar Srivastava, Sriram Krishnamoorthy, and Pon-

nuswamy Sadayappan. Optimizing tensor contractions in ccsd (t) for efficient

execution on gpus. In Proceedings of the 2018 International Conference on Super-

computing, pages 96–106, 2018.

[47] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Kr-

ishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev,

and Ponnuswamy Sadayappan. A code generator for high-performance tensor

contractions on gpus. In 2019 IEEE/ACM International Symposium on Code Gen-

eration and Optimization (CGO), pages 85–95. IEEE, 2019.

[48] Marcin Knap and Pawe l Czarnul. Performance evaluation of unified mem-

ory with prefetching and oversubscription for selected parallel cuda applications on

nvidia pascal and volta gpus. The Journal of Supercomputing, 75(11):7625–7645,

2019.

BIBLIOGRAPHY 117

[49] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo

Mai, Paolo Costa, and Peter Pietzuch. Crossbow: scaling deep learning with

small batch sizes on multi-gpu servers. arXiv preprint arXiv:1901.02244, 2019.

[50] Swadhesh Kumar and PK Singh. An overview of modern cache memory and per-

formance analysis of replacement policies. In 2016 IEEE International Conference

on Engineering and Technology (ICETECH), pages 210–214. IEEE, 2016.

[51] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin

Herbordt. An investigation of unified memory access performance in cuda. In

2014 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6.

IEEE, 2014.

[52] Chen Li, Rachata Ausavarungnirun, Christopher J Rossbach, Youtao

Zhang, Onur Mutlu, Yang Guo, and Jun Yang. A framework for memory

oversubscription management in graphics processing units. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 49–63, 2019.

[53] Hao Li, Kenli Li, Jiyao An, and Keqin Li. Msgd: A novel matrix factorization

approach for large-scale collaborative filtering recommender systems on gpus. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 2017.

[54] Hao Li, Kenli Li, Jiwu Peng, and Keqin Li. Cusnmf: A sparse non-negative

matrix factorization approach for large-scale collaborative filtering recommender

systems on multi-gpu. In ISPA/IUCC. IEEE, 2017.

[55] Lingda Li and Barbara Chapman. Compiler assisted hybrid implicit and ex-

plicit gpu memory management under unified address space. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–16, 2019.

BIBLIOGRAPHY 118

[56] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fab-

rice Rastello, Atanas Rountev, and Ponnuswamy Sadayappan. Analytical

cache modeling and tilesize optimization for tensor contractions. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–13, 2019.

[57] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. An evaluation of

unified memory technology on nvidia gpus. In 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 1092–1098. IEEE, 2015.

[58] Ao Liu, Qiong Wu, Zhenming Liu, and Lirong Xia. Near-neighbor methods in

random preference completion. In the Association for the Advancement of Artificial

Intelligence (AAAI), 2019.

[59] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. Why gpus are slow at execut-

ing nfas and how to make them faster. In Int’l Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2020.

[60] Jiawen Liu, Dong Li, and Jiajia Li. Athena: High-performance sparse tensor

contraction sequence on heterogeneous memory. In International Conference on

Supercomputing (ICS), 2021.

[61] Peng Lu and Maalla Allam. Hybrid collaborative filtering recommendation

algorithm for als model based on a big data platform. In IEEE Advanced Information

Technology, Electronic and Automation Control Conference (IAEAC), 2021.

[62] Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Karol Kowalski,

and Gagan Agrawal. Optimizing tensor contraction expressions for hybrid cpu-

gpu execution. Cluster computing, 16(1):131–155, 2013.

[63] Devin A Matthews. High-performance tensor contraction without blas. SIAM

Journal on Scientific Computing, 40, 2016.

BIBLIOGRAPHY 119

[64] Nicolas Melot, Christoph Kessler, Jörg Keller, and Patrick

Eitschberger. Fast crown scheduling heuristics for energy-efficient mapping and

scaling of moldable streaming tasks on manycore systems. ACM Transactions on

Architecture and Code Optimization (TACO), 2015.

[65] Alexander S Minkin, Andrey A Knizhnik, and Boris V Potapkin. Gpu

implementations of some many-body potentials for molecular dynamics simulations.

Advances in Engineering Software, 111:43–51, 2017.

[66] Alok Mishra, Lingda Li, Martin Kong, Hal Finkel, and Barbara Chap-

man. Benchmarking and evaluating unified memory for openmp gpu offloading. In

Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in HPC,

pages 1–10, 2017.

[67] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-

tions of machine learning. MIT press, 2018.

[68] Paritosh Nagarnaik and A Thomas. Survey on recommendation system

methods. In IEEE International Conference on Electronics Circuits and Systems

(ICECS). IEEE, 2015.

[69] Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary Hall,

Paul D Hovland, Elizabeth Jessup, and Boyana Norris. Generating effi-

cient tensor contractions for gpus. In 2015 44th International Conference on Parallel

Processing, pages 969–978. IEEE, 2015.

[70] Israt Nisa, Aravind Sukumaran-Rajam, Rakshith Kunchum, and P Sa-

dayappan. Parallel ccd++ on gpu for matrix factorization. In General-Purpose

Computation on Graphics Processing Units (GPGPUs). 2017.

[71] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin,

Yanzhi Wang, and Bin Ren. Patdnn: Achieving real-time dnn execution on

BIBLIOGRAPHY 120

mobile devices with pattern-based weight pruning. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 907–922, 2020.

[72] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. The lru-

k page replacement algorithm for database disk buffering. Acm Sigmod Record,

22(2):297–306, 1993.

[73] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. Fast als-based matrix

factorization for explicit and implicit feedback datasets. In The ACM Recommender

Systems Conference (RecSys), 2010.

[74] Roman Poya, Antonio J Gil, and Rogelio Ortigosa. A high perfor-

mance data parallel tensor contraction framework: Application to coupled electro-

mechanics. Computer Physics Communications, 216:35–52, 2017.

[75] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone,

David B Kirk, and Wen-mei W Hwu. Optimization principles and application

performance evaluation of a multithreaded gpu using cuda. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pages 73–82, 2008.

[76] John E Savage and Mohammad Zubair. Evaluating multicore algorithms on

the unified memory model. Scientific Programming, 17(4):295–308, 2009.

[77] Philip Sedgwick. Spearman’s rank correlation coefficient. Bmj, 2014.

[78] Tao Shi and Steve Horvath. Unsupervised learning with random forest predic-

tors. Journal of Computational and Graphical Statistics, 2006.

[79] Yang Shi, Uma Naresh Niranjan, Animashree Anandkumar, and Cris

Cecka. Tensor contractions with extended blas kernels on cpu and gpu. In

BIBLIOGRAPHY 121

2016 IEEE 23rd International Conference on High Performance Computing (HiPC),

pages 193–202. IEEE, 2016.

[80] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil

Nagarkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna.

Goffish: A sub-graph centric framework for large-scale graph analytics. In Euro-Par.

Springer, 2014.

[81] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard

Kerbl, Mark Dokter, and Dieter Schmalstieg. Whippletree: Task-based

scheduling of dynamic workloads on the gpu. ACM Transactions on Graphics

(TOG), 2014.

[82] Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li,

Saoni Mukherjee, Carter McCardwell, Alejandro Villegas, and David

Kaeli. Hetero-mark, a benchmark suite for cpu-gpu collaborative computing. In

IISWC. IEEE, 2016.

[83] SN Syritsyn, JD Bratt, MF Lin, HB Meyer, JW Negele, AV Pochinsky,

M Procura, M Engelhardt, Ph Hägler, TR Hemmert, et al. Nucleon

electromagnetic form factors from lattice qcd using 2+ 1 flavor domain wall fermions

on fine lattices and chiral perturbation theory. Physical Review D, 2010.

[84] Wei Tan, Liangliang Cao, and Liana Fong. Faster and cheaper: Parallelizing

large-scale matrix factorization on gpus. In Proceedings of the International Sympo-

sium on High-performance Parallel and Distributed Computing (HPDC), 2016.

[85] Wei Tan, Shiyu Chang, Liana Fong, Cheng Li, Zijun Wang, and Lian-

gLiang Cao. Matrix factorization on gpus with memory optimization and approx-

imate computing. In 2018 International Conference on Parallel Processing (ICPP),

2018.

BIBLIOGRAPHY 122

[86] George Teodoro, Tahsin M Kurc, Tony Pan, Lee AD Cooper, Jun Kong,

Patrick Widener, and Joel H Saltz. Accelerating large scale image analyses

on parallel, cpu-gpu equipped systems. In IEEE Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2012.

[87] George Teodoro, Tony Pan, Tahsin M Kurc, Jun Kong, Lee AD Cooper,

Norbert Podhorszki, Scott Klasky, and Joel H Saltz. High-throughput

analysis of large microscopy image datasets on cpu-gpu cluster platforms. In 2013

IEEE 27th International Symposium on Parallel and Distributed Processing, pages

103–114. IEEE, 2013.

[88] Andres Tomas, Chia-Chen Chang, Richard Scalettar, and Zhaojun Bai.

Advancing large scale many-body qmc simulations on gpu accelerated multicore sys-

tems. In Proceedings of the 31st IEEE International Parallel Distributed Processing

Symposium (IPDPS), pages 308–319, 2012.

[89] Yaohung M Tsai, Weichung Wang, and Ray-Bing Chen. Tuning block size

for qr factorization on cpu-gpu hybrid systems. In International Symposium on

Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 2012.

[90] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil.

Software pipelined execution of stream programs on gpus. In IEEE/ACM Inter-

national Symposium on Code Generation and Optimization (CGO). IEEE, 2009.

[91] Pedro Valero-Lara, Ivan Mart́ınez-Pérez, Raül Sirvent, Xavier Mar-

torell, and Antonio J Pena. Nvidia gpus scalability to solve multiple (batch)

tridiagonal systems implementation of cuthomasbatch. In International Conference

on Parallel Processing and Applied Mathematics, pages 243–253. Springer, 2017.

[92] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Xiangy-

ong Ouyang, Sayantan Sur, and Dhabaleswar K Panda. Optimized non-

contiguous mpi datatype communication for gpu clusters: Design, implementation

BIBLIOGRAPHY 123

and evaluation with mvapich2. In 2011 IEEE International Conference on Cluster

Computing, pages 308–316. IEEE, 2011.

[93] Qihan Wang, Wei Niu, Li Chen, Ruoming Jin, and Bin Ren. Heals: A

parallel eals recommendation system on cpu/gpu heterogeneous platforms. In 2021

IEEE 28th International Conference on High Performance Computing, Data, and

Analytics (HiPC). IEEE, 2021.

[94] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy

Riffel, and John D Owens. Gunrock: A high-performance graph processing

library on the gpu. In Proceedings of the Symposium on Principles and Practice of

Parallel Programming (PPoPP), 2016.

[95] Brian Wheatman and Helen Xu. Packed compressed sparse row: A dynamic

graph representation. In 2018 IEEE High Performance Extreme Computing Con-

ference (HPEC). IEEE, 2018.

[96] Manda Winlaw, Michael B Hynes, Anthony Caterini, and Hans

De Sterck. Algorithmic acceleration of parallel als for collaborative filtering:

Speeding up distributed big data recommendation in spark. In IEEE International

Conference on Parallel and Distributed Systems (ICPADS), 2015.

[97] Q Wu, C Brinton, Z Zhang, M Cucuringu, A Pizzoferrato, and Z Liu.

Equity2vec: End-to-end deep learning framework for cross-sectional asset pricing.

In 2nd ACM International Conference on AI in Finance, 2021.

[98] Qiong Wu, G. Brinton Christopher, Zhang Zheng, Pizzoferrato An-

drea, LIU Zhenming, and Cucuringu Mihai. Equity2vec: End-to-end deep

learning framework for cross-sectional asset pricing. International Conference on AI

in Finance, 2021.

BIBLIOGRAPHY 124

[99] Qiong Wu, Adam Hare, Sirui Wang, Yuwei Tu, Zhenming Liu, Christo-

pher G Brinton, and Yanhua Li. Bats: A spectral biclustering approach to

single document topic modeling and segmentation. ACM Transactions on Intelli-

gent Systems and Technology (TIST), 2021.

[100] Qiong Wu, Adam Hare, Sirui Wang, Yuwei Tu, Zhenming Liu, Christo-

pher G Brinton, and Yanhua Li. Bats: A spectral biclustering approach to

single document topic modeling and segmentation. ACM Transactions on Intelli-

gent Systems and Technology (TIST), 12(5):1–29, 2021.

[101] Qiong Wu, Wen-Ling Hsu, Tan Xu, Zhenming Liu, George Ma, Guy Ja-

cobson, and Shuai Zhao. Speaking with actions-learning customer journey behav-

ior. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC),

pages 279–286. IEEE, 2019.

[102] Qiong Wu and Zhenming Liu. Rosella: A self-driving distributed scheduler for

heterogeneous clusters. arXiv preprint arXiv:2010.15206, 2020.

[103] Qiong Wu, Felix M Wong, Yanhua Li, Zhenming Liu, and Varun Kanade.

Adaptive reduced rank regression. Advances in Neural Information Processing Sys-

tems, 33:4103–4114, 2020.

[104] Qiong Wu, Felix Ming Fai Wong, Zhenming Liu, Yanhua Li, and Varun

Kanade. Adaptive reduced rank regression. arXiv preprint arXiv:1905.11566, 2019.

[105] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster scheduling

for deep learning. In {OSDI}, pages 595–610, 2018.

BIBLIOGRAPHY 125

[106] Li Xie, Wenbo Zhou, and Yaosen Li. Application of improved recommendation

system based on spark platform in big data analysis. Cybernetics and Information

Technologies, 2016.

[107] Xiaolong Xie, Wei Tan, Liana L Fong, and Yun Liang. Cumf sgd: Paral-

lelized stochastic gradient descent for matrix factorization on gpus. In Proceedings

of the International Symposium on High-performance Parallel and Distributed Com-

puting (HPDC), 2017.

[108] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Par-

allelized stochastic gradient descent. In Proceedings of the International Conference

on Neural Information Processing Systems (NIPS), 2010.

126

VITA

Qihan Wang

Qihan Wang is a PhD Candidate in the Department of Computer Science at The College

of William & Mary. Her PhD advisor is Prof. Bin Ren. Her research interests mainly

include High Performance Computing, GPU architecture, and machine learning. Her PhD

research works have been accepted by IPDPS 2022, TACO 2021, HiPC 2021 and Smart

Health 2020. Previously, she received her Bachelor of Software Engineering at Beihang

University in 2017.

	Efficient Parallelization Of Irregular Applications On Gpu Architectures
	Recommended Citation

	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Parallel Recommendation System
	Parallel Many-body Correlation Functions

	Contributions
	Dissertation Organization

	HEALS: A Parallel eALS Recommendation System on CPU/GPU Heterogeneous Platforms
	Introduction
	Problem Statement
	Coarse-Grained Computation
	Workload Unbalance
	Memory Limitation

	Algorithm Analysis
	Fast eALS Algorithm
	Computation Pattern Analysis

	System Overview
	architecture-adaptive data format
	Sparse Matrix
	Dense Matrix

	Hybrid CPU/GPU Collaboration Model
	Multi-level Concurrency Design
	Adjusting Data Partition Dynamically

	Hardware-based Accelerating Techniques
	Loop Transformation
	Accelerating GPU Parallel Reduction

	Evaluation
	Experiment Settings
	Environment
	Datasets
	State-of-the-art Works to Compare

	Overall Improvement
	Performance Analysis: Optimization Breakdown
	Recommendation Efficiency

	Related Work
	Summary

	MemHC: An Optimized GPU Memory Management Framework for Accelerating Many-body Correlation
	Introduction
	Background
	Correlation Functions
	Redstar System
	Data Hierarchy
	Kernel Computation Analysis

	Redundancy and Reusability Analysis
	Memory Redundancy Analysis
	Data Reusability Chances

	System Overview
	Memory Reduction Optimizations
	Memory Reusability Optimization
	Data Reorganization
	On-demand Synchronization
	Memory Oversubscription: Pre-Protected Eviction
	LRU Eviction Policy
	Pre-Protected LRU Eviction Policy

	Evaluation
	Experiment Methodology
	Overall Performance Improvements (without Oversubscriptions)
	Performance Analysis in General Correlation Functions
	Breakdown Analysis
	 Exploring Portability on NVIDIA and AMD GPUs
	Exploring CPU/GPU Communications in Unified Memory
	Exploring Hadron Contraction Kernel

	Memory Oversubscriptions in General Correlation Functions
	User Case: Evaluation in Redstar System

	Related Work
	Discussion
	Summary

	MICCO: An Enhanced Multi-GPU Scheduling Framework for Many-Body Correlation Functions
	Introduction
	Background
	Many-body Correlation Function
	Topological Representations
	Challenges and Opportunities

	Interplay between Data Reuse and Load Balance
	Data Reuse and Load Balance Trade-off Analysis
	Factors Impacting the Data Reuse-Load Balance Trade-off
	The Impact of Local Reuse Pattern on the Trade-off
	The Impact of Reuse Bounds on the Trade-off

	Multi-GPU Scheduling Framework
	System Overview
	Heuristic Scheduling Algorithm
	Regression Model

	Evaluation
	Experiment Setup
	Overall Performance Evaluation
	Performance analysis
	Case Study: Real-world Datasets in Redstar System

	Related Works
	Summary

	Locality-aware Multi-GPU Scheduling for Many-Body Correlation Functions
	Problem Statement
	Pipeline Batch Generation
	Motivation

	Multi-GPU Scheduling
	Interplay between Cost and Benefit of Pipeline Batching
	Instance Analysis: locality Graph and Vector Reorganization
	Locality-aware Scheduling Algorithm

	Evaluation
	Summary

	Conclusion
	Bibliography
	Vita

