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ABSTRACT

Modern microprocessors utilize branch prediction and speculative execution to enhance
instruction throughput. Instead of stalling the pipeline and waiting for branch targets to
be computed, the CPU consults branch predictors for a possible destination and performs
speculative execution. These microarchitectural techniques improve the efficiency of
instruction pipelining and out-of-order execution, enabling higher performance and better
resource utilization. Despite their widespread adoption, the potential security implications
of branch misprediction and transient execution have not drawn much attention until
recently.
Around early 2018, the discovery of Spectre attacks exposed critical vulnerabilities in
CPUs, undermining both software and hardware isolation and confidentiality. These
attacks exploit the side effects of speculative execution stemming from branch predictions.
By manipulating branch predictors to generate incorrect predictions, an attacker can
trigger speculative execution to bypass bound checks or operate on arbitrary memory
space. Consequently, such exploits can access sensitive data during speculative execution
and then exfiltrate the information through various microarchitectural side channels.
Spectre and its variants pose a significant security threat that is challenging to mitigate,
and existing defenses often come with substantial performance overheads. This dissertation
tackles the threat from two perspectives. We first enhance the understanding of exploitable
hardware primitives by introducing new transient trojan attacks. Second, we propose
secure microarchitecture designs without compromising performance.
We first challenge the perception that the triggers and effects of transient execution attacks
are fully understood and that the existing protections leave no room for any attack to
occur. We present transient trojans, software modules that conceal malicious activity
within transient execution mode. These trojans appear entirely benign, pass static and
dynamic analysis checks, but reveal sensitive data when triggered. To construct these
trojans, we conducted a comprehensive analysis of the current attack surface in light of
recommended mitigation techniques. We uncovered new exploitation techniques through
reverse-engineering branch predictors in a selection of recent x86_64 processors.
Leveraging these findings, we design three types of transient trojans, showcasing their
ability to evade detection and their effectiveness. Second, we present the secret token
branch predictor unit (STBPU), a secure BPU design to defend against collision-based
speculative execution attacks and BPU side channels with minimal performance impact.
Securing branch predictors is challenging, as techniques like partitioning or flushing the
BPU only partially mitigate collision-based exploits. Moreover, such mitigations
compromise branch prediction accuracy, leading to overall CPU performance degradation.
STBPU resolves these challenges by customizing BPU data representations for each
software entity that requires isolation. Furthermore, STBPU monitors related hardware
events and preemptively adjusts BPU data representations.
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Chapter 1

Introduction

1.1 Introduction

The branch predictor unit (BPU) plays a pivotal role in the modern CPU microarchitecture.

From conditional branch to indirect jump, branch instructions have various forms, yet

they all sit in the critical link between the instruction fetching and execution. It is

well known that fully resolving a branch is a slow process, and CPU issuing stalls will

impede overall machine performance [17, 17, 46, 135]. Thus, rather than waiting for the

branch resolution, the modern CPU employs BPU to guess its outcome using different

prediction schemes [161, 129, 68, 98]. Every branch destination predicted from BPU then

facilitates the speculative execution on the potential path. As a result, BPU becomes an

essential component at the front-end, guarding the performance and efficiency of CPU deep

pipelining.

Despite many works [161, 129, 131, 133, 132, 130, 68, 98] being proposed to improving

BPU performance, the security of BPU has been an overlooked topic. In early 2018, the

Spectre attack [79] revealed BPU could be manipulated to derive transient execution on

arbitrary locations, including malicious payloads. As a result, attackers can bypass bound

checks and detection, gain high privilege, access user secrets, etc. More importantly, the
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nature of branch prediction and the fundamental aspects of using prediction to trigger

speculative executions makes securing BPU and CPU front-end a challenging task. So

far, no state of the arts can mitigate all attacks nor operate without heavily affecting the

performance. On the other hand, more exploits [33, 95, 76, 81, 128] have been discovered,

escalating the threat on commodity machines.

This dissertation focuses on addressing the BPU security and the related performance

challenges against microarchitectural attacks in two folds: 1) reverse-engineering modern

CPU branch predictors for hidden vulnerabilities and 2) proposing secure BPU protection

mechanisms while minimizing the associated overhead in performance.

1.1.1 Exploring Branch Predictors for Constructing Transient Execution

Trojans

1.1.1.1 Problem Statement

As noted above, although the security community has been proposing protections since

the debut of the Spectre attack, we believe that the triggers and effects of transient

execution attacks have not been fully understood. Consequently, the de facto solutions,

while being recommended, leave much room for advanced exploits. In particular, hardware

manufacturers such as Intel responded to transient execution attacks with microcode

updates. The most widely deployed mitigation comes with multiple techniques, eliminating

malicious branch poisoning by limiting or disabling BPU lookup. Throttling branch

prediction could result in high performance overhead. Thus, the mitigation only takes

action at specific scenarios to reduce the cost. However, the validity of its protection

region reminds unknown and needs to unfold. This work explores hidden BPU behaviors

to uncover exploration mechanisms and constructs advanced attacks to break the existing

protection model provided by the widely-used microcode BPU protections.
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1.1.1.2 Contributions

We reverse-engineer several branch predictors from modern CPUs, including Intel Haswell

(i7-4800MQ), Skylake (i7-6700K), Kaby Lake (i7-8550U), and AMD Ryzen (1950X) for

hidden branch prediction mechanisms. Utilizing the uncovered schemes, we present the

transient (execution) trojans, a new type of practical attack that conceals the malicious

activity within transient execution mode and bypass existing protection and detection. In

summary, our research on exploring branch predictors for constructing transient execution

trojans makes the following contributions:

• Our reverse-engineering study uncovers three hidden indirect branch prediction

mechanisms and anomalies, allowing us to tailor different transient execution trojans.

• We uncover a new branch instruction collision mechanism based on early BPU

accesses, allowing attackers to construct small and portable trojans that can avoid

being detected by current techniques based on code analysis.

• To improve transient trojans’ stealthiness and effectiveness, we propose a technique

to disperse transient gadgets.

• We analyze the static prediction mechanism of indirect branch skipping. We demon-

strate that such a mechanism is vulnerable to bypassing existing gadget detection

techniques and constructing trojans.

• We apply analysis to a wide range of binaries and demonstrate a high prevalence of

potentially dangerous branch collisions. Attackers can exploit such naturally occurring

collisions for transient trojans construction and obfuscation.

• We provide insights on protection techniques and suggest approaches to remove the

threat from uncontrolled transient execution.
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1.1.2 STBPU: A Reasonably Safe Branch Predictor Unit

1.1.2.1 Problem Statement

As mentioned before, BPU and BPU research mainly focus on performance. Even under

the recent microarchitectural threats such as Spectre [79], the security community tends

to mitigate the vulnerability from other related components such as designing secure

caches [152, 74, 154, 118, 37, 147, 90] and memory buses [126, 12, 87]. This is because the

critical role BPU plays for CPU frontend acceleration cannot tolerate any reduction in

performance from security mechanisms. However, the aforementioned indirect solutions,

plus a handful of attempts of direct approach on BPU [85, 52, 149], cannot fully address

the BPU vulnerabilities. For instance, recent µop caches disclosure primitive [123] can

leverage BPU for more powerful transient execution attacks without any implicit or explicit

data access, voiding their security guarantee of the state of the art protections such as

STT [162] and context-based fencing [140]. Such incompleteness in protection calls for a

new safe branch prediction mechanisms that can combine strong security guarantees with

low performance overhead. In this work, we propose STBPU, a safe BPU design that is

immune to collision-based attacks and BPU side channels.

1.1.2.2 Contributions

We present a secret token branch predictor unit (STBPU) design to protect branch predictors

against collision-based side channel and speculative execution attacks. STBPU prevents

controlled branch collisions which can lead to unsafe branch mistraining and malicious

speculative execution and side-channel. STBPU provides unique branch representation

for each software entity in the form of address mappings and encrypting branch lookup

information in BPU. Specifically, each software entity is associated with a unique, randomly-

generated secret token (ST) that customizes its data representations. In addition, STBPU

re-randomizes STs by monitoring runtime hardware events, which stops potential attackers

from reverse-engineering the ST tokens.
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In summary, our work of STBPU makes the following contributions:

• We propose STBPU, a safe BPU design that provides strong isolation guarantees with

low overheads. STBPU protects against speculative execution attacks and eliminates

BPU side channels.

• We provide insight on how to adapt the design of STBPU on related front-end

components such as defense the recent µop cache attacks, which can bypass state-of-

the-art protection mechanisms, e.g., invisible speculation and fencing.

• We provide a detailed analysis of the attack surface and examine STBPU with in-

depth security analysis. This allows us to find a balance between isolation, design

simplicity, and low performance overhead.

• We build an automated framework to derive lightweight ST-dependent remapping

functions, allowing ST processing to fulfill the rigorous strict timing constraint.

• Our security analysis proves secure isolation provided by STBPU against recent fast

algorithm attacks and future attacks.

• We evaluate STBPU performance on advanced prediction mechanisms, e.g., TAGE_

SC_L and Perceptron, and show low overhead even with extreme security settings.

6



1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a comprehensive

background on Branch Prediction Units (BPUs) and their role in facilitating speculative

execution in modern CPUs. It then explores transient execution vulnerabilities and the

attacks centered around BPUs, and reviews the existing mitigations. Furthermore, the

chapter highlights the motivation, emphasizing the need of uncovering unknown transient

attack vulnerabilities and the importance of secure microarchitectural designs. Chapter 3

explores the construction of transient execution trojans through the manipulation of branch

predictors. This chapter details the process of uncovering new vulnerabilities within BPUs

and demonstrates the development of novel transient execution attacks. Chapter 4 presents

the Secret Token Branch Predictor Unit (STBPU), a novel design aimed at securing BPUs to

against collision-based speculative execution attacks and BPU side channels. This chapter

elaborates on the design and implementation of STBPU and evaluates its effectiveness

in mitigating both known and potential speculative execution attacks without imposing

significant performance overheads.

Chapter 5 concludes the dissertation with a summary of the findings and contributions

and suggests directions for future work in enhancing processor security against speculative

execution attacks.
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Chapter 2

Background & Motivation

In this chapter, the first section presents a high-level overview of different BPU substructure

principles with a baseline model in recent Intel processors. Then, we provide an overview of

BPU design features vulnerable to BPU attacks. Next, we explore the current BPU attack

surface with BPU design features exploit

2.1 Branch Prediction and BPU structures

A branch is an instruction that causes any deviation from sequential instruction processing.

When CPU front-end encounters branch instructions, the address of next instruction is

unknown until branch instruction is fully resolved by the pipeline. To avoid costly pipeline

stalls, the front-end relies on BPU to predict most likely execution path and continues

processing instructions in speculative mode. If the prediction later determined incorrect,

the CPU detects a mispredictions and reverts effects of speculative execution.

Thus, Branch prediction is critical for CPU performance as it allows processes to avoid

costly pipeline stalls on branch instructions. Instead of waiting for a branch to fully resolve,

the CPU executes further instructions in speculative mode using predictions from the

BPU. Mispredictions result in erroneous speculative execution which requires the CPU to

restore the state before speculative execution started and re-execute the correct instruction

sequence. A good BPU must have low latency to allow speculative execution to begin as

8



soon as possible and have high accuracy to reduce mispredictions that trigger expensive

roll-backs. Since the BPU is situated on the critical path of the CPU front-end, it directly

impacts the pipeline performance. Even a slight reduction in BPU accuracy or increase in

latency may greatly affect overall CPU speed.

A typical ISA permits the following types of branch instructions. Using x86_64 as an

example: i) Direct jumps/calls where target addresses are encoded as an offset from the

current instruction pointer and stored as an immediate value. To calculate the target CPU

needs to perform an addition. ii) Conditional jumps that are only taken if a certain flag in

the flag register is set. The target of this branch is encoded similarly to direct jumps. iii)

Indirect jumps/calls where targets are stored in a register or in memory, and can change

throughout program execution. iv) Return instructions are a special type of indirect jumps

where the target is stored on top of the call stack. In addition, various interrupts and

exception-triggering instructions can be viewed as branches. However, they are typically

not predicted by the BPU.

Although hardware manufacturers typically keep design details confidential, recent

reverse-engineering efforts have unveiled insights of the branch prediction unit (BPU)

models used in Intel processors. These findings [42, 79, 164, 44, 93, 83] enable us to

construct a baseline model for illustrating and evaluating the STBPU design. The baseline

model mirrors the branch predictor, including structure sizes, utilized in the Intel Skylake

microarchitecture. STBPU is adaptable to various branch predictor configurations and

designs, e.g., [129, 131]. This is possible because STBPU does not interfere with underlying

prediction mechanisms. STPBU only alters the branch instruction representation inside

different BPU data structures. We validate the efficiency of STBPU by integrating it with

several advanced predictors, such as TAGE-SC-L [132] and Perceptron [68], demonstrating

that it incurs minimal performance overheads in their STBPU-protected variants (marked

with ST_ prefixes) as elaborated in §4.6.

The BPU consists of the following main components: shift registers such as the global

history register (GHR) and branch history buffer (BHB), branch target buffer (BTB),
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Figure 2.1: A branch predictor components and workflow

pattern history table (PHT), and return stack buffer (RSB). Different structures are used

in combination to generate predictions dependent on specific branch types. Figure 2.1

depicts how these structures are utilized during a BPU lookup with highlighted components

that are modified by STBPU. The figure also shows several important functions which are

referenced later. In addition, two hybrid directional prediction mechanism i.e Tage and

Perceptron are also introduced.

Shift registers such as GHR and BHB are used in the BPU as a low-cost way of retaining

complex branch history. GHR stores the global history of taken/not-taken branches. For

instance, the register shifts and adds 1 or 0 for new taken/not-taken branches, respectively.

BHB is used by the indirect branch predictor. Its purpose is to accumulate the branch

context. When a branch instruction is executed, its virtual address is folded using XOR

and mixed with the current state of BHB [79]. This context is used as part of BTB lookup,

enabling BPU to predict the target of an indirect branch when it depends on both branch

virtual address and the sequence of previously executed branches.

BTB serves the purpose of caching target addresses of branch instructions. It is implemented

as an 8-way, 4096-entry table. Each entry stores a truncated address of the 32 least significant

address bits of the target. Function 5 is then utilized to convert a 32-bit entry into a 48-bit

10



virtual address during prediction by combining 16 higher bits from the branch instruction

pointer with 32 lower bits from BTB. While the BTB is used to store targets for all branch

types, it has two addressing modes. In mode one, the virtual address of a branch instruction

is used to compute an index and tag. In mode two, in addition to virtual address, the BHB

is used to perform a lookup. Mode two is only used when predicting indirect branches,

and serves as a fall-back mechanism for predicting returns. This addressing enables storing

multiple targets for a single indirect branch depending on the context [42, 164, 79].

PHT is a large (16k entry) table consisting of n-bit (e.g. 2-bit) saturating counters;

each counter implements a simple finite-state machine with states ranging from strongly

non-taken to strongly-taken. This structure is used as a base predictor to predict the

direction of conditional branches. Previous studies [62, 22, 164, 44] indicated the presence

of a mechanism similar to gshare [161] with two distinct modes of addressing: i) a simple

1-level mode where the virtual memory address of a branch is used to find a PHT entry, and

ii) a more complex 2-level mode where the branch virtual memory address is hashed with

global history register (GHR), enabling accurate prediction of the branches with complex

patterns.

RSB is used to predict return instructions. The RSB is implemented as a fixed size

(16-entry) hardware stack [93, 83]. A call instruction pushes a return address on the RSB,

and a return instruction pops it. Similar to the BTB, RSB stores only 32 bits of the target.

Due to limited capacity, the RSB can underflow. In this case, returns are treated as indirect

branches, and the indirect predictor is utilized for prediction.

Hybrid Directional Predictors combine a base directional predictor such as the PHT

with a complex predictor designed to leverage extended branch histories to make accurate

predictions. For example, TAGE-based predictors [129, 131] use several tagged predictor

banks to store predictions; these banks are indexed simultaneously using the branch

address combined with increasing branch history sequences. To further increase accuracy,

newer TAGE variants combine additional small but effective structures such as a loop

predictor [130] and statistical corrector [133, 132]. The Perceptron predictor [68] perform
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directional prediction using simple form of learning where the actual outcome of a branch

is used to adjust weights for predictions, akin to a simple neural network. The hash-

based Perceptron predictor [141] uses hashed indexing to reduce area requirements while

maintaining prediction accuracy.

2.2 Transient Execution Attacks

Several key types of transient execution attacks [31, 8] originate from vulnerabilities

that allow attackers to manipulate branch predictor decisions. These attacks begin with

poisoning CPU branch predictor with specific branch execution history to cause either

indirect branch collisions (Spectre variant 2) or mistrained conditional branches (variant 1)

in victim space [79]. The BPU misprediction further leads to speculative execution along

an incorrect path of instructions, also known as gadgets. While the malicious instructions

executing in transient mode cannot change the architectural state (e.g., write into memory),

they can still leave detectable patterns inside microarchitectural components such as CPU

caches. These patterns are not cleared with the rolled-back when the misprediction is

detected. A sophisticated attack can be constructed where BPU is poisoned in such a way,

triggering CPU first reads sensitive data, then reveals it by leaving detectable traces in

microarchiectural structures.

Not all branch mispredictions allow for transient execution attacks. A branch must be

unresolved for a number of cycles to allow transient instructions from the wrong execution

path to access sensitive data and leave traceable instances by initializing cache accesses.

The number of instructions executed in this way, before the branch is resolved, is known

as the width of speculative window [54]. Wide speculative windows are created if the

information required for the branch resolution is stored in RAM. In this case, a branch

can stay unresolved for hundred of cycles [96]. There are two distinct scenarios that create

dangerous speculative windows. (1) When the data that determines conditional branch

direction (taken or non-taken) is not located in CPU caches, and the BPU mispredicts

its direction. (2) When the target of an indirect branch is not in CPU cache while BTB

12



contains an incorrect target due to a collision with another branch. These two scenarios

describe Spectre variants 1 and 2 accordingly [79]. The second type (variant 2) of transient

execution is potentially more dangerous since it allows the attacker to choose what code

will be speculatively executed by poisoning the BTB. Moreover, in such an attack, the

attacker can force transient execution to operate in the return-oriented-programming [134]

fashion, allowing execution of instructions not present in the original binary [79]. In this

work, we study this type of transient execution attacks.

2.3 BPU Centered Attacks

Reuse-based (RB) Eviction-based (EB)
Home effect (HE) Away effect(AE) Home effect (HE) Away effect (AE)

Attack steps

BTB:
1. V: jmp s→ d; BTB ← (s, d)
2. A: jmp s→ d′; (s, d) reused
3. A sees misprediction
PHT:
1. V: jt s→ d; PHT ← (s, t)
2. A: jnt s→ s+ 1; (s, t) reused
3. A sees misprediction
RSB:
1. V: call s→ d; RSB ← (s+ 1)
2. A: ret → s′; (s+ 1) reused
3. A sees misprediction

BTB:
1. A: jmp s→d
2. V: jmp s→d’
3. V speculatively executes d
PHT:
1. A: jnt s→ d; PHT ← (s, t)
2. V: jt s→ d; (s, nt) reused
3. V speculatively executes s+ 1
RSB:
1. A: call s→ d; RSB ← (s+ 1)
2. V: ret → s′; (s+ 1) reused
3. V speculatively executes s+ 1

BTB:
1. A: jmp s→d; BTB ← (s, d)
2. V: jmp s’→d’; BTB← (s′, d′)
|H(s) = H(s′), (s, d) is evicted

3. A sees s mispredicted
PHT:
PHT entries are not evicted
RSB:
1. A: call s→ d;
RSB ← (s+ 1) then fills RSB
2. V: call s′ → d′;
RSB ← (s′ + 1) evicting (s+ 1)
3. A sees misprediction

BTB:
1. V: jmp s→ d; BTB ← (s, d)
2. A: jmp s′ → d′; BTB← (s′, d′)
|H(s) = H(s′)

3. V: CPU uses static prediction
PHT:
PHT entries are not evicted

RSB:
1. V: call s→ d; RSB ← (s+ 1)
2. A: overflows RSB by
looping call s′ → d′

3. V: CPU uses static prediction

Adversarial
effects

Soure and target branch addresses
and calls, taken/nontaken
patterns[11, 44, 86, 42, 83]

Timing channel due to A
controlling predictions in V [11],
speculative execution attacks
[79, 83, 33, 93, 128, 164]

V’s jmp taken/nontaken[11] and
call pattens, branch
instruction virtual address[79]

Timing channel due to A forcing
static default predictions[11],
speculatively execute gadget
at static prediction address[30]

A: attacker; V: victim; jmp s→ d: jump from s to d; call s→ d: call function d from callsite s;
BTB/PHT/RSB← (s, d): store target d for branch s in BTB/PHT/RSB; H(): BTB/PHT hash function; s+ 1: next

instruction after s

Table 2.1: Attack surface classification for BPU collision-based attacks by event and adversarial
effect types

BPU can be manipulated to enable attacks of different types. For example, an attacker

can attempt to passively observe and recover branch instruction patterns. This happens

during side and covert channel attacks. On the other hand, an attacker can actively

manipulate the BPU state by executing branch instructions. Such a state triggers a

malicious speculative execution causing data leakage. Moreover, attacks range based on

what BPU property they utilize. First, there are attacks that exploit the most fundamental

principle of BPU to make predictions based on the previous behavior of a branch. E.g., if

a conditional branch was taken 100 times in a row, it is likely to be taken the next time.

An example of such an attack is Spectre-v1 [79]. Second, there are attacks that exploit
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branch collisions (aliasing). Collisions appear when two different branch instructions map

into the same BPU entry and affect one another’s behavior. In this work, we focus only on

collision-based attacks. We believe that mitigating them is an important task on its own for

a number of responses. i) There exist a large number of well-documented collision attacks

that have truly devastating effects on security [164, 33, 30, 20, 104]. ii) Protecting from non-

collision attacks requires different principles, such as delaying speculative execution [124]

or limiting its observability [162]. iii) Even in systems that implement safe speculation,

branch collisions can still happen, causing side channel attacks. Because of that, we believe

protecting from collision and non-collision attacks are two orthogonal tasks.

There are two BPU features that are present in nearly all CPUs that make collision-

based attacks possible. First, the BPU data structures are shared among all software

executed on a CPU core, enabling branch collisions between different processes. Second,

the BPU operates with compressed virtual addresses. For instance, out of 48 bits of branch

virtual address, only 30 are utilized. Then, these bits are further compressed [79]. This

allows branch collisions to appear within the same virtual address space, e.g., collisions

between different branches in kernel and user process [42]. The deterministic nature of

the BPU makes it possible for an attacker to trigger collisions in a controlled way. Our

proposed solution aims at eliminating such determinism to prevent attacks.

We present a detailed overview of the collision-based attack surface in Table 2.1. First,

we classify attacks by where adversarial effect takes place, either within the attacker’s code

(home effect) or in the victim’s code (away effect). Secondly, we classify by the kind of the

effect. A collision in BPU structures results in either data placed by another software entity

being reused, or such data will be evicted and replaced. We refer to these as reuse-based

and eviction-based attacks correspondingly. The table summarizes attacks caused by BPU

collisions and their steps. Please note that there can be different adversarial effects enabled

by same type of collision. For instance, a collision in BTB between two different branches

can result in i) BTB-data reuse, ii) BTB-eviction and iii) activating malicious speculative

execution. While i) and ii) results in side channel leakage of branch-related information
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iii) is used as part of speculative execution attack to reveal victim’s memory contents. As

can be seen from the table, there is a diverse range of dangerous collision-based attacks.

A solution like STBPU, while eliminating collision-based BPU attacks, can substantially

improve security properties of microprocessors.

2.4 Existing Protections of BPU Transient Execution Attacks

Recently, several countermeasures have been developed to mitigate transient execution

attacks. The majority of the proposed techniques focus on mitigating Spectre V2, as it is

potentially the most dangerous variation. Although many promising protections techniques

have been recently introduced by academia [70, 159, 151, 54, 51, 75], current systems are

mostly protected by a few techniques developed by hardware manufacturers and software

vendors. Below we summarize a set of protections that are universally enabled on today’s

systems regardless of OS type. Please note that for simplicity, we focus only on Intel-based

machines. Next, we explore existing secure BPU designs and their limitations in comparison

with STBPU. Last but not list, we compare STBPU protection and the countermeasures

using other defense vectors.

2.4.1 Retpoline Sequences

Spectre v2 attacks require an indirect jump or call instruction to create a wide transient

execution window. A simple compile-time solution proposed by Google [146] is to replace all

indirect branches with special instruction sequences known as retpolines. These sequences

emulate indirect branch functionality by pushing branch targets on stack and then executing

a ret instruction. When predicting target for returns CPU relies on RSB instead of BTB for

which poisoning is significantly more difficult [65]. Although using retpolines is considered

an effective countermeasure, recent attacks on the RSB call into question the security of

retpoline sequences [82, 94]. In addition, as stated by Intel, Skylake and newer processors

are allowed to rely on the BTB for predicting return targets when RSB underflowing

occurs [65]. This can make even retpoline-compiled binaries vulnerable.
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We performed analysis to find out how common retpolines are on a typical machine.

Our analysis included all executables, libraries, and kernel modules on our test machine

running the most recent and fully updated version of Ubuntu. We found no retpoline

compiled common executables/libraries. The kernel and a small portion of kernel modules

were found to be compiled with retpolines resulting in only ≈0.06% of total binaries in the

entire system being protected. This is potentially due to developers viewing retpolines as

an overkill protection that results in code bloating and performance degradation [112, 137]

since the system is already protected with the microcode-based protections.

2.4.2 System-wide Microcode-Based Protections

Intel responded to transient execution attacks with microcode updates introducing three new

features: indirect branch restricted speculation (IBRS) which limits speculative execution in

privileged modes, indirect branch prediction barrier (IBPB), which prevents cross-process

BTB poisoning, and single thread indirect branch predictors (STIBP), which prevent BTB

poisoning across hyper-threads [66]. We reveal more detail of microcode-based mitigations

in section 4.7.1.

It is important to note that microcode-based protections do not completely eliminate the

threat from transient execution. They are designed to protect from known attack scenarios

while minimizing performance overhead. For instance, while IBRS by principal is capable

to completely disallow speculation of indirect branch targets and thus dangerous transient

execution, due to very high performance overhead it is only enabled for kernel, kernel

modules, and SGX enclaves on most systems [122]. Similarly, IBPB, together with STIBP,

can disallow BTB poisoning between processes and threads, but currently is enforced

selectively after performing context switch into a sensitive process [66].

2.5 Transient Trojan Motivation and Current Attack Surface

We argue that the currently used protection model still leaves possibilities for attacks.

Figure 2.2 demonstrates a typical attack surface of a fully patched system denoting attack
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Figure 2.2: Transient execution attack surface

vectors still remaining active. Arrow tail indicates attacker branch, and arrowhead indicates

victim branch locations. Two vectors are particularly useful for constructing transient

trojans, denoted by 1 and 2 in the figure. 1 is possible because neither IBPB or STIBP

can protect against scenarios in which the poisoning branch and the branch being poisoned

are located within the same address space. In Section 3.2.3.1, we demonstrate how such

collisions can be easily created by leveraging newly discovered collision patterns. 2 is possible

because IBRS protects only the code running in privileged modes from being influenced

by unprivileged code 1. This permits kernel to poison the BTB and trigger malicious

transient execution inside user process. We explore trojans based on this phenomenon in

Section 3.2.2.

2.6 STBPU’s Motivation and Protection Scope

Figure 2.3 lays two main groups of BPU-centered speculative execution attacks: collision-

based e.g., spectre-w2 and history-based e.g., spectre-v1 utilizing different BPU properties.

The first group exploits branch collisions (aliasing) that appear when two branch

instructions located at different addresses map into the same BPU entry and affect each

other’s behavior (target). As depicted in Figure 2.3 in dotted circles, existing secure BPU

designs and enhancements tend to resolve these attacks but all have incomplete protection

coverage or unsupported performance. We provide detail in §2.4.
1IBRS implementation may vary between CPU generations and OS policies enabling or disabling this

vector
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Figure 2.3: STBPU protection region v.s. the others

The second group exploits the most fundamental property of BPU, to record branch’s

statistics and then activate speculative execution based on such statistics. This makes

BPU trainable by attackers via providing branch execution history. These attacks are

often mitigated by non-BPU protections, including secured cache designs [115, 156, 153];

shadow structures to hide the effects of erroneous speculative executions [71, 160]; tracking

speculative data flow for invisible speculations [162, 116, 88] and offline gadget detectors [105,

55], etc.

Depicted as solid square in Figure 2.3, non-BPU protections trying to cover both groups

of attacks often introduce high costs on performance and resource. More importantly, they

overlook BPU as an attack vector i.e., BPU is still prone to collisions, resulting critical

penalty in security. For instance, researchers recently discovered micro-op cache (also called

decoded stream buffer, DSB) as disclosure primitive [123]. Depicted as lightest grep area

in Figure 2.3, This new timing channel can leverage BPU for more powerful transient

execution attacks that does not require implicit or explicit data access, bypassing several

existing mitigations such as STT [162] and context-based fencing [140] and voiding their

security guarantee on both spectre-v1 and spectre-v2.
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The incompleteness in protection motivates us to propose, STBPU, a safe BPU design

that is immune to collision-based attacks and BPU side channels and lifts non-BPU

protections’ inherent overhead towards all-around security. As depicted as the dash-dotted

circle, STBPU focuses on protecting collision-based attacks but is not limited to it. The

aforementioned new µop-cache attacks are interesting cases, showing the STBPU design

can mitigate more powerful spectre-v1 variant.

In i see dead µop attack variant 2 [123], an attacker first prime certain micro-op cache

sets and performs Spectre-v1 type of mis-training on a authorization check and a followed

transmitting indirect branch instruction in a victim method. Next, attacker enters untrusted

input. The authorization check will fail. If enabled, non-BPU mitigations such as fencing or

speculative data flow control will restrict the followed instructions from dispatch or being

visible. However, they do not prevent this secret-dependent indirect branch from being

speculatively fetched, further leaving a footprint in the micro-op cache. As a result, the

attacker can probe the micro-op cache set and infer the secret. On the other hand, such

attacks become inapplicable with the STBPU design of DSB. This is due to ST remapping

makes DSB indexing non-deterministic. As a result, on both priming and probing stage,

the attacker loses the control on both the entry branch address and DSB set mapping even

within the same address space.

DSB caches stream decoded micro-ops from multiple decoders after the branch prediction

stage, making it naturally applicable to use ST remapped address for its own indexing

without additional latency. As DSB is enabled only through branch [67], a consistent

isolation can be maintained via ST remapping and ST re-randomization. We analyze

similar mechanism with more complicated BPU attacks in §4.5. Since STBPU substructure

modification will be detailed in §4.3, we omit the DSB discussion detail as it is similar and

simpler.

History-based attack such as Spectre-v1 leverages the correlation between the natural

consequence of prediction and the unsafe follow-up front-end acceleration. Thus, we believe

Spectre-v1 mitigation should be outside of BPU such as by existing non-BPU protections,
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an orthogonal safe speculative execution control, or a safe loop stream detection (LSD)

unit. STBPU benefits these protections by largely reduce their surface of enforcement,

granting better performance.

STBPU will focuses on defend against collision-based attacks and BPU side-channels.

Evidenced by a large number of well-documented dangerous exploits, they are responsible

from critical data leakage to speculatively executed arbitrary code. Categorized by their

mechanisms in §2.3, we will analyze the security STBPU against these dangerous exploits

in §4.5.
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Chapter 3

Branch Predictor & Transient

Execution Trojans

3.1 Introduction

Increased performance of modern processors largely relies on various hardware units

performing activities ahead of time. For example, when the processor encounters a branch

instruction, a type of instruction that alters the normal sequential execution flow, the branch

prediction unit (BPU) predicts the address of the following instruction instead of waiting

for the correct address to be computed. In order to avoid damaging the architectural state,

execution based on predicted data is performed in a special transient (or speculative) mode,

which permits roll-backs to previous states. If the prediction is correct, the execution along

the predicted path continues. Otherwise, the CPU reverts any changes made by executing

incorrect instructions. Recent transient (or speculative) execution attacks, including

Meltdown [89] and Spectre [79], demonstrated how such performance optimizations can be

manipulated to force victim programs to leak sensitive data by leaving detectable traces

in microarchitectural data structures such as CPU caches. These attacks are capable of

violating the most fundamental principles of memory safety, including user-kernel isolation.

From early 2018, these attacks opened up a new class of microarchitectural threats and
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quickly spawned many variations [31, 150, 77, 94, 82, 128, 44].

Numerous mitigation techniques have been proposed to protect from transient execution

attacks. These techniques range from serializing instructions [78, 66, 4], avoiding danger-

ous code sequences [5], flushing hardware data structures [2, 4], and limiting transient

execution [159, 70] to disabling microarchitectural covert channels [35, 29, 75, 45]. We

provide a more detailed description of current protection schemes in Section 2.5. Hardware

manufacturers, including Intel and AMD, responded to the threat of transient execution

attacks with a series of microcode updates. While being effective in mitigating the main

problem, such microcode-based countermeasures noticeably reduce performance [112].

In this work, we argue against the widely spread perception that the triggers and effects

of transient execution attacks are fully understood, and recommended protections leave

no room for any attack to occur. We do so by constructing transient trojans. These

malicious software modules conceal their malign functionality in transient execution mode,

and unlike previously demonstrated attacks [79, 150, 77, 33], do not require an external

attacker controlled process to activate the hidden functionality. First, we perform a reverse

engineering study of branch predictor mechanisms in recent Intel and AMD processors

and discover several new branch collision triggering techniques. These techniques enable

portable, self-contained trojans that can be included in sensitive software (for instance, by

a malicious open-source project contributor). Then, we construct software modules that

encapsulate all attack components (poisoning and victim branches) inside a single process.

Malicious functionality concealed in transient execution mode can remain unnoticed in

software even after undergoing rigorous security checks such as symbolic execution [19],

taint analysis [36], model checking [47], various methods to detect traditional software

backdoors [136, 142, 127, 125, 157], and even existing Spectre detection tools [5, 54, 151, 3].

According to recently proposed transient attack classification by Canella et al. [31], transient

trojans described in this work present a practical example of the same address space transient

execution attacks. We argue that transient execution ubiquitously present in nearly all

today’s CPUs is a natural fit for concealing malicious code since it offers an execution mode
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that is completely invisible to existing binary and source code analysis techniques.

In summary, this work makes the following contributions:

1. We perform a reverse-engineering study1 of the BPU to uncover the mechanisms

responsible for indirect branch prediction and ways to manipulate them. This allows

us to construct three types of trojans, each relying on a different BPU anomaly.

2. We present a new branch instruction collision mechanism based on early BPU accesses.

First, the mechanism allows attackers to construct trojans that can avoid being

detected by current techniques based on code analysis. Second, it permits creations

of small and portable trojans.

3. We propose a technique to disperse transient gadgets, improving their stealthiness

and effectiveness.

4. We analyze the static prediction mechanism and conclude that it can result in skipped

indirect branches, which we use to bypass existing gadget detection techniques and

to construct trojans.

5. We present an analysis of current binaries that demonstrates a high prevalence of

potentially dangerous collisions reaching hundreds of thousands in large binaries. We

argue that such naturally occurring collisions can be used to hide malicious trojans

as well as constructing trojans from existing code.

6. Finally, we analyze protection techniques and suggest approaches to remove the threat

from uncontrolled transient execution.

Responsible Disclosure Research findings in this work have been reported to Intel and

AMD.

3.1.1 Threat Model and Assumptions

We assume that the attacker is a malicious developer who is capable of delivering software

that seems benign before being activated by a trigger condition. The user (victim) may run
1Experiments were performed on Intel Haswell (i7-4800MQ), Skylake (i7-6700K), Kaby Lake (i7-8550U),

and AMD Ryzen (1950X) machines running recent and fully patched Ubuntu OS with microcode patches
installed.
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static or dynamic analysis and information flow control tools. Moreover, for trojans based

on newly discovered collision patterns (Sections 3.2.1 and 3.2), the user can run existing

Spectre gadget detection tools [5, 54, 151, 3]. The malicious code can be distributed in the

form of a precompiled binary, source code, a shared library, or a commit to an open-source

project. We assume the attacker has general knowledge about the configuration of the

victim’s machine, such as CPU microarchitecture generation, versions of shared libraries,

and kernel.

3.2 Transient Execution Trojans

In this section, we present transient trojans, programs that can compromise security while

containing no malicious instruction sequences in any place reachable by normal execution

flow. Even though these trojans appear benign, they output sensitive data when malicious

transient execution is activated. The basic building block for a trojan is a condition in

which transient execution temporarily violates the architectural state of a program. One of

such violations is when two branch instruction collide in BTB. As a result, the body of

one branch is executed with data in registers from another branch. This enables a basic

memory safety violation, which can lead to sensitive data leakage.

In this section, we describe reverse engineering of mechanisms used to predict indirect

branches. We introduce three distinct types of trojans, each utilizing a different kind of

BPU anomaly. We show that a malicious developer or an open-source contributor can

compose a self-contained software module in which malicious functionality is concealed

in transient execution. Unlike previous works [79, 150, 77, 33], which require a separate

malicious process controlled by the attacker for BTB poisoning, our self-contained trojans

could combine all attack components, including BTB poisoning, in one single process.

3.2.1 Branch Target Prediction Mechanisms

Modern BPUs are capable of predicting both direct and indirect branches with high accuracy.

The mechanisms for predicting targets of these two branch types differ substantially.
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Figure 3.1 demonstrates a simplified target prediction mechanism overview. Since the

target of a direct branch (including direct calls, jumps, and conditional branches) is fixed,

it is predicted by BPU simply caching previously calculated target and storing it in a

set-associative BTB [111]. As in any set-associative cache, each lookup is done using index,

tag, and offset bits. Index bits determine BTB set for the lookup, while tag and offset allow

selection from multiple entries in the same set. To predict the target of a direct branch,

the BPU performs a simple lookup based on the branch source address. The address bits

are typically hashed to reduce the number of bits stored as tag in BTB.

However, this mechanism is not sufficient for effectively predicting indirect branches

because a single indirect branch may jump to different destinations depending upon data

the program is processing. Thus a prediction mechanism must account for the context

in which the branch is executed. Current BPUs do so by associating indirect branches

with patterns of previously executed branches. This is achieved using the mechanism

called the branch history buffer (BHB), a shift register structure that serves the purpose of

accumulating the branch context. The context is composed by hashing addresses bits of

every committed branch instructions with current BHB value [58]. Then compressed BHB

value is used to perform target lookups. Such a predictor allows storing multiple targets

for a single indirect branch and accurately predicting targets in cases when they depend on

previous code sequences.

To maximize the utilization of the BPU storage resources, instead of storing targets

for direct and indirect branches in separate structures, both predictors share a single large

BTB as in hybrid predictors [32]. The two predictors differ by the type of BTB addressing

modes they use: instruction-pointer based (IP-based) and branch history buffer based

(BHB-based).

In IP-based addressing, the index, tag, and offset for a BTB lookup are calculated solely

based on a subset of the branch instruction virtual address bits. This mode is primarily

used for direct branches.

In BHB-based addressing, the lookup is performed based not only on branch instruction
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address but also on the state of BHB. For instance, compressed BHB value can be used as

the BTB tag, allowing to store multiple targets for a single indirect branch. This mode

is exclusively utilized by indirect branches. However, when BPU is processing an indirect

branch, the two predictors are used concurrently with the prediction selected based on

accuracy monitoring for each entry stored in BTB. We provide details further in this section.

While finding an entry based on index calculating and tag matching reminds a normal

cache operation, BTB operates differently compared to regular caches. We performed a

reverse engineering study to understand the BTB configuration and how branch address

bits are used for lookups. We use direct branches to study the IP-based addressing mode.

In the first step, we observe that, on Skylake processors, only 30 least significant bits from

the branch source address are used for lookups, and the bits [47:30] are ignored, confirming

results of previous studies [42]. Then we determine the associativity of the BTB. Assuming

bits from the most significant chunk of the remaining [29:0] are used as tag, we create n

branch instructions with mismatching tags by flipping these bits. We keep other address

bits identical to make matching index and offset. We make each of these branches having a

non-matching target. Then we execute this branch sequence twice, observing BTB miss

events for any of them during the second time. We use hardware performance counters [1]

to detect BPU events. A BTB miss indicates the BTB does not have enough ways in a

given set to store all n targets resulting in eviction of one of the targets. We observed no

misses for n < 9 and a stable miss pattern when n ≥ 9, indicating that BTB contains 8

ways.

Next, we find which address bits are used as index. To do so, we execute a set of 8

branches that occupies an entire BTB set. Then, one more branch is executed while flipping

its address bits in range [29:0]. If the flipped bit is used as tag, all 8+1 branches will have

identical indexes and be assigned to the same set. In such case, one of the 8 targets will be

evicted. However, if the flipped bit is used as index, the branch with the flipped bit will go

into a different set, and no evictions will appear. Then we check if any of the 8 branches were

evicted from BTB. This way, we identify that bits [13:5] are used as index providing 29 total
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sets resulting in 4 096 total BTB entries. This suggests bits [29:14] used as tag. Previous

research [58, 79] determined that tag bits are folded together using a simple XOR operation:

tag= ai ⊕ ai−8|i ∈ [29, 22], where a is the branch instruction address. We observed that

the exact addressing scheme and bit folding function varies on different microarchitectures.

For instance, Haswell processors appear to use tag= ai ⊕ ai−9|i ∈ [30, 22] folding function.

Finally, the remaining bits [4:0] are used as the offset. The exact role of the offset in

the context of BTB is unclear. However, the presence of offset is indicated by multiple

sources [59, 73, 15]. In general case, the offset can be viewed as a second tag requiring a

full match to produce a BTB hit. However, as we discover in Section 3.2.3.1, the matching

is done using a more complex function, which can produce additional collisions resulting in

potentially malicious transient execution.

Prediction

f2

Committed
Branches

f3f1 

offsetindextag
29 14 13 5 4 0

Way0-7

tagtarget offset
040731 0

=? f4

Vaddr: BHB

Figure 3.1: Branch target prediction mechanism combining direct and indirect branch
prediction logic. Functions f1 − 3 are bit compression functions; f4 is bit matching function.
Mechanisms used for trojan construction are highlighted red

3.2.1.1 Addressing Modes for Indirect Branch Prediction

Predicting indirect branches based on the context in which they are executed is a logical

strategy. Consider a switch-case expression in C. It is typically implemented by calculating

the resulting target and jumping to this target via an indirect jump instruction. The code

pattern executed prior to the switch is likely to affect which target will be taken. For this
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scenario, the BHB-based prediction mechanism is accurate. However, many switch-case

expressions also have the default case, a single target for multiple different (unrecognized)

contexts. In this case, the BHB-based mechanism will not be optimal. Instead, the simple

IP-based approach will correctly predict the same target regardless of the context. We

hypothesize that BPU uses both mechanisms concurrently.

To verify our reasoning, we designed an experiment in which the same indirect branch is

executed in multiple different contexts. The contexts are created by varying taken-not-taken

patterns of preceding 50 conditional branches. Our experiment included the following

contexts: A → a, B → b and R1..k → r, where {A,B,R1..k} are branch contexts and

{a, b, r} are target addresses for each corresponding context. Contexts A and B have their

own targets, while k contexts share a common target r. Executing an indirect branch in

different contexts while observing its misprediction rate via hardware performance counters

allows us to detect when each addressing scheme is used. For instance, a pattern ABABAB

has mispredicted branches for the first two times and correct predictions (hits) for the

following ones. This is because the branch predictor quickly learns the dependency between

context A and target a and between B and b.

Table 3.1 presents experimental data collected from running two demonstrative patterns

1 000 times and averaging the results. The first pattern shows how after the branch is

executed for the first time, the predictor learns its target to be a. Because of that, it

mispredicts the target when we execute it in context R1 → r. However, any consequent

execution in random context Rn → r is correctly predicted to go to r. It also shows how

the branch is correctly predicted when we execute it in static context A → a second time.

These observations show that the branch predictor is capable of predicting the same branch

instruction using two independent modes.

The second pattern demonstrates how two addressing modes work in parallel; i.e., the

predictor simultaneously checks whether a branch is available using either of the schemes.

If it finds a matching tag using any of the schemes, it proceeds with the stored target. In

Figure 3.1, we demonstrated BPU design that can produce such behavior.
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These observations allow us to identify two distinct types of indirect branch collisions.

Type 1 collisions are when both the BHB state and the reduced branch source address

are matched, and the BPU uses BHB-based addressing. Type 2 collisions are when only

the branch addresses are matched while mismatching the state of BHB, and the BPU uses

IP-based addressing.

Pattern 1 Pattern 2
Pattern A R1 R2 R3 A A R1 B R2 A R3 B R4

Observation M M H H H M M M H H H H H
Miss rate 0.99 0.99 0.0 0.0 0.05 0.99 0.99 0.99 0.02 0.14 0.0 0.04 0.0

Table 3.1: Misprediction rate observed in two different patterns composed by varying the
BHB context. H represents hit, and M represents misprediction

3.2.1.2 Selecting Branch Type for BTB Poisoning

Previous attacks based on BTB poisoning [79, 150, 77, 33] used type 1 collisions. In these

works, a victim branch was poisoned from a different process by executing an indirect branch

on matching virtual addresses while mirroring the BHB state via repeating behavior of

preceding branches. Such setup is less suitable for constructing real-world transient trojans

since they must be self-contained; the branch performing poisoning and the branch being

poisoned must be located within the same address space. From now on, we refer to the

former as writer branch or WB, and the latter as reader branch or RB. To construct

a trojan based on type 1 collisions, an RB and a WB must be placed at the addresses

producing collisions, and have identical BHB states when executing. This is a challenging

task due to mapping function f2 and BHB update function f3 (from Figure 3.1) unknown

or partially reverse-engineered [58, 79]. Even if these functions are fully reverse-engineered,

BHB training would require highly irregular code sequences that can be easily detected.

Intuitively, using type 2 collisions is a better option. However, collisions of this type

require that both an RB and WB are executed in a new BHB branch context each time. This

can be done by running sequences of random taken/not-taken conditional branches before

executing WB and RB. This is problematic because unique BHB states will eventually start

to repeat, forcing the BPU to switch to the BHB-based mode of addressing. In addition,
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such code would be highly irregular.

A desired mechanism for constructing trojans must 1) produce reliable collisions when

RBs and WBs are located in the same address space; and 2) be easy to mask as benign

code. We propose to use direct branches as WBs since 1) they are always handled by the

simple IP-based addressing mode making BTB writes more deterministic; and 2) they are

common in regular applications with approximately every 4-7th instruction being a direct

branch making them easy to mask as normal code.

3.2.1.3 Finding Branch Collisions

We hypothesize that the mechanism used to predict direct branches is exactly the same as

the IP-based addressing mode for indirect branches. If this hypothesis is true, constructing

a trojan becomes straightforward. If we match the address bits used for the tag, index, and

offset in a direct WB and an indirect RB, the WB will poison the RB. This will result in

speculatively executing code pointed by WB’s target when the CPU processes the RB.

To verify this hypothesis, we design an experiment depicted in Figure 3.2, which allows

to reliably identify addresses that result in branch collisions. In this experiment, a direct

jump instruction located at address addrWB jumping to addrT1 acts as a WB. An indirect

jump is located at addrRB jumping to addrT2 acts as an RB. Then we place a transient

gadget at address addrT3. This gadget accesses a variable dat, loading it into CPU’s data

cache. If the two branches collide, then mispredicted RB results in transient execution

going to addrT3, activating the gadget which loads the variable dat into the cache. We

detect RB mispredictions using hardware performance counters while measuring the latency

to access dat tells us if the gadget was activated. By moving these branches and gadget

instructions in virtual address space and observing collisions, we can effectively scan address

space to find addresses that create collisions and analyze corresponding target calculation

mechanisms. Using this setup, we make several important observations.

Observation 1: Direct branches can serve as WBs, and indirect branches can serve as

RBs creating ideal grounds for trojan construction. Moreover, indirect RBs do not need to
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addrWB  jmp T1

addrT1  nop

        ... ...

        mov T2, %rbx

addrRB  jmp *%rbx   

addrT2  ret

addrT3  mov dat, %rax

regular execution

PMC(MISPREDICTION) =      1         0    
latency(dat) =   ~45   ~230  

  collision?
  yes      no

transient execution

addrT3[47:32]= addrWB[47:32]

addrT3[31:0] = addrT1[31:0]

Figure 3.2: Collision detection experiment setup

be executed in a new context every time, as explained in Section 3.2.1.1.

Observation 2: Reduced data stored in BTB (tag and target bits) allows to create

collisions within a single process and redirect execution to malicious address. For instance,

BTB stores only 32-bit target [79], and to compose the 48-bit prediction target, the CPU

simply concatenates branch source address bits [47:32] with the 32-bit target from BTB.

This enables attackers to use relative addressing.

Observation 3: We tested different types of branch instructions and concluded that any

direct branch can serve as a WB, including calls and conditional jumps.

Observation 4: Our initial tests demonstrated a 50% rate of successful poisoning.

However, this rate can be improved if direct a WB is executed multiple times, indicating

the possibility of a tournament mechanism [53] selecting the most accurate predictor.

3.2.1.4 Predictor selector mechanism

To investigate the nature of observation 4, we conduct the following experiment. We place

an indirect branch (i) and a direct branch (d) at colliding addresses and make them having

mismatching targets. Since d always uses the simple IP-based addressing mode, the BTB

will contain an incorrect target when predicting i using this mode. By preceding i with

a fixed sequence of conditional branches, we guarantee identical BHB states. As a result,
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BHB-based mode will always produce a correct prediction. If a tournament mechanism

is present, we expect the predictor selector mechanism being affected by executing both

of the branches. In particular, when we execute d, it will be correctly predicted using

the IP-based mode. This will increase the confidence of this mode. In contrast, when i is

executed, a misprediction from the IP-based mode and a hit from the BHB-based mode

will decrease the former and increase the latter predictor’s confidence.

Observing i’s correct/incorrect prediction patterns allows to detect which predictor is

currently in use. A mispredicted observation indicates the IP-based mode usage, while

correctly predicted branch tells BHB-based mode is in use. By executing sequences composed

from these two branches and observing i’s prediction accuracies, we can detect when each

predictor wins the tournament. We execute patterns created by invoking i and d in a

random order while collecting the misprediction patterns. Figure 3.3 demonstrates our

observations from several characteristic repeated patterns. Please note that demonstrated

prediction patterns are from a single execution of i (denoted by capital I) in multiple

rounds. By manually inspecting these patterns, we noticed that the observed behavior

resembles a finite state machine (FSM) implemented using a 2-bit counter as the system

appears switching between 4 stable states. It is possible to manipulate such a mechanism.

For instance, executing i multiple times in a row increases the accuracy of the BHB-based

predictor and makes it more likely to be used for future branches.

Br. Pattern Hit/Miss Pattern
d I
d i I 
d I i
d d I i
d d i I

MHMH ...
HHHH ...
MHMH ...
MMMM ...
HHHH ...

BHB BHB BHB IP

d d dd

i
iii

M - misprediction H - hit
I - monitoring branch

d - direct branch
i - indirect branch

Figure 3.3: Misprediction patterns demonstrating the competition between the two addressing
modes and an FSM matching this behavior

In the effort to find the configuration of the FSM responsible for such behavior, we

32



performed the following analysis. First, utilizing the brute-force approach, we generated all

possible FSM configurations based on a 2-bit counter. The states of the FSM determine

which predictor addressing mode (IP or BHB based) is used. This resulted in 863 040

possible configurations. After removing configurations containing infinite loops and other

abnormalities, we reduced this number to 49 104. Next, we simulated these FSMs and

ran previously collected patterns through them while observing which predictor is utilized

each time. During this stage, we only keep the FSM configurations that match the real

system behavior, resulted in only 6 possible unique FSM configurations. We present one

such potential FSM in Figure 3.3. Please note, while this FSM configuration is capable of

modeling the real system behavior with high accuracy, the actual mechanism used in the

CPU may be different. Knowing the inner workings of the predictor selector, an attacker

can perform manipulations forcing the CPU to use the IP-based prediction mode to enable

simple collisions by triggering repeated execution of the colliding direct branch instruction.

3.2.2 Distant Collision Trojans

Now we introduce the first and most basic type of a transient trojan and demonstrate its

inner workings. This type of trojan is based on exploiting the BTB addressing scheme

where only partial address information is stored. This allows two distinct branches (WB

and RB) to collide in a way that when RB is mispredicted, the transient execution goes to

the target of WB violating the architectural state. For example, as we described earlier,

the tag stored in BTB is folded using a simple XOR operation. Suppose there is a direct

branch at address 0x400077 and an indirect branch at 0x4077 in the same process. These

branches will collide in BTB when the IP-based addressing mode is used. The attacker can

prepare a binary containing branches at colliding addresses. When the binary is deployed

on the victim machine, the collision is activated by calling normal API functions in a

specific order. In short, this type of transient trojans operates in the following way. First,

using a program API, the WB will be activated to write the poisoning entry into the BTB.

After that, the attacker trigger conditions for the RB to initialize transient execution, e.g.,
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issuing an API call to access a large array forcing the RB’s target to be removed from

CPU cache. Then, the RB is executed, and BPU uses the poisoned BTB entry to begin

transient execution of a gadget that accesses secret data and reveals secret values using

microarchitectural covert channels [99, 61, 34, 49, 41, 50, 13, 72]. We assume the attacker

being able to use return-oriented analysis techniques [57, 18, 109] to find or create code

sequences (gadgets) that, when executed in transient mode, result in a desired malicious

activity. Generally, gadgets can leak data by either 1) leaving traces in shared resources

such as CPU data caches [79] or 2) by affecting the timing of certain operations in a

controlled way. As demonstrated by Schwarz et al., such delays can be detected over a

network [128]. In addition, this type of trojans can be constructed by placing RB and WB

in different memory segments within a single application context. For instance, WB can be

placed (or existing branch can be utilized) in a library or kernel code segments, while RB

being located in trojan’s .text segment.

Please note, although we construct this type of the trojan utilizing a known branch

collision mechanism, we believe that our approach is substantially different. In existing

works, a lower privilege entity, such as an untrusted process poisons a branch in a higher

privilege entity such as an OS kernel or an SGX enclave [79, 150, 77, 33]. Such attacks are

currently mitigated via IBRS, which protects higher privileged entities (kernel and enclaves)

from lower privileged entities. We utilize poisoning vectors that are typically not hindered.

In current systems, collisions still occur in many ways as we summarized in Figure 2.2. The

two types of poisoning we will use for constructing trojans are 1) when higher privileged

entity poisons a lower privileged entity and 2) when poisoning happens within the same

privilege level.

3.2.2.1 Trojan example utilizing a system call

Assume a malicious developer whose goal is to construct a program that handles secret

data and, when triggered, leaks this data. A typical manual inspection or static/dynamic

analysis would look for any reference to the sensitive data to make sure they do not reveal
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it via a covert channel [39]. To show how a practical trojan can be constructed containing

no such references, we provide a simple demonstration in which poisoning is triggered by

executing a benign existing system call. Performing system calls is a normal activity for

any application and unlikely to cause concerns. During a system call, control is temporarily

transferred to the operating system. As a result, branches residing in kernel memory trigger

writes into the BTB. When the system call is completed, the execution transfers back to the

trojan without removing BTB entries placed during the kernel execution. If any of these

BTB entries have matching index, hashed tag, and offset bits with an indirect branch

in trojan’s code, the BPU will treat it as a hit. The predicted address will be composed by

concatenating the kernel branch’s 32 least significant target bits with the remaining 16 bits

from the trojan branch’s source address. If such an address contains executable memory,

transient execution will take place until CPU detects misprediction and rolls back to the

previous state. This will result in violated architectural state. We utilize this phenomenon

to construct a trojan that solely relies on normal code executed during a system call to

redirect transient execution to a place containing a malicious gadget within trojan’s code

segment.

During the trojan preparation stage, the developer performs an analysis of the environ-

ment in which the future trojan will run and finds a direct branch suitable for poisoning.

Typically, this branch needs to be in the final stage of a short system call routine. For our

proof-of-concept prototype, we choose a branch inside the open() system call. Then the

developer introduces a code construction that results in an indirect branch at the colliding

address while sensitive data is possible to reference (for instance, the pointer to that data

is in one of the registers). This indirect branch transfers regular execution to a benign

code containing no leakage instructions. As a result, static analysis will not raise any flags.

Modern-day compilers offer a wide range of code constructions that are compiled into code

with indirect branches such as virtual functions, function pointers, and computed gotos. In

addition, a trojan developer can use function alignment and memory mapped code region

techniques to easily achieve desired instruction placement.
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The next stage of the trojan preparation is finding a suitable transient execution gadget.

The gadget must first access the sensitive data and second leak its value via covert channels.

A high level schematic description of the trojan activity is depicted in Figure 3.4. For

each iteration of the attack, the attacker interacts with the trojan via API calls. Each call

activates the malicious function inside the trojan, which in turn performs a system call

causing BTB poisoning. After the function returns from the system call, it executes an

indirect jump, resulting in transient execution of the gadget. After this, the attacker probes

the system to obtain microarchitectural traces and recovers leaked data. To evaluate the

accuracy of this type of trojan, we collect data from 1 000 rounds of trojan execution. In

each round, the gadget is triggered 1 000 times. Then, we count the number of times the

gadget is successfully activated. The average success rate for this experiment is 12.79%.

Such a rate is within an acceptable range for most microarchitectural attacks. To compare

this result to a clean environment, we composed a prototype in which a WB and an RB

are both located inside user process memory segments. The average accuracy rate for this

configuration is 94.52%. Such a significant improvement is likely due to the normal side

effects of system call execution inside the kernel and a mode switch. For instance, system

call activity is more likely to evict gadget code from the instruction cache stopping the

transient execution attack. Please note that similar trojans can also be constructed by

using library functions instead of kernel code. Since library code is placed inside the process

address space, IBRS will not prevent the poisoning.

              benign function A:

                syscall               //sys_open

0x...8028daf9:  jmpq  *%rbx   //part of switch()

    true_dest:  <benign_code>

user Kernel

              do_sys_open:

0xf.f8129daf9:  ja  0xf.f8129db15

              transient gadget:

0x...8129db15:  <read_secret>

②①

③
④

Ⓧ execution (& transient exec.)

Figure 3.4: Transient trojan based on open() system call
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Please note that ASLR and KASLR can make these attacks challenging. However,

programs may be compiled without ASLR support and distributed in binary form. Even

if KASLR is enabled, its entropy is very small, making attacks still possible by placing

RBs at all potential collision addresses. To eliminate the dependency on hardcoded code

addresses, we develop two types of portable trojans that work regardless of code placement.

3.2.3 Portable Trojans

3.2.3.1 Early Front-end Branch Collisions

Timely branch predictions are very important for the performance of CPU front-end. BPU

is responsible for identifying branch instructions early and adjusting fetching to guarantee

delivery of instructions from the correct execution path to minimize the number of costly

roll-backs. Any slowdown in generating a prediction results in a front-end delay, which

propagates into other stages of the pipeline. However, to perform a lookup, BPU needs

to know the address of instruction’s last byte. This is because, typically, BPUs address

branches using their least significant byte. On a CISC processor with variable instruction

length, such information is not immediately available. A special front-end component,

called predecoder, is responsible for detecting instruction boundaries inside a prefetched

instruction cache line. We hypothesize that modern-day aggressive front-end designs may

avoid waiting for predecode to complete and activate transient execution based only on

partial information about potential branch instruction address. This can result in an early

front-end branch collisions where closely located branches collide due to uncertainty in

the boundaries of branch instructions. If this is true, then collisions may appear between

branches with mismatching least significant address bits. Several Intel patents [59, 73, 15]

refer to these bits as offset while not explaining their exact purpose.

To test the aforementioned hypothesis, we adapted the experiment depicted in Figure 3.2

with the following changes. First, we position both WB and RB within the same 64 byte

instruction cache line. This guarantees matching tag and index bits. Next, we make the

direct WB jump to a gadget that now leaks a value stored in register %rax. Before executing
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it, we always load a non-secret value in that register. The indirect RB, as previously, jumps

to a benign code. However, prior to that, it loads a secret value into the register %rax.

If the RB is poisoned by WB, the transient execution shall transfer to WB’s body but

with secret data loaded in the register. Finally, we execute the WB and RB in a loop and

observe effects. If poisoning happens, we detect the secret value leaked via the cache covert

channel. An adapted version of this experiment is demonstrated in Figure 3.7.

We use this setup to scan all possible positions of WB and RB and detect when poisoning

happens. As a result, we were able to find stable collision patterns on all tested Intel

processors. These patterns indicate a partial offset bits matching mechanism. In particular,

on Skylake and Kaby Lake processors: WB and RB collide either if all offset bits are

matched or if bit 5 in WB address is 1 and 0 in RB address. Thus when generating a

prediction for the indirect RB, the BPU mistakingly uses the target of another branch

instruction located in one of the subsequent memory locations. On Haswell, a similar

pattern exists, however, with bit 4 triggering these collisions instead of 5. These patterns

are demonstrated in Figure 3.5.

This intriguing pattern variation between CPU generations sheds some light on the

likely root that causes this collision mechanism. To investigate it, we carefully compared

microarchitectural front-end optimizations involved in early instruction processing in Haswell

and Skylake processors [6]. Our reasoning is that the mechanism responsible for the behavior

must be located in the pipeline before the instruction predecoder and size of instruction

blocks it processes is double in Skylake compared to Haswell.

By carefully examining related front-end components [6], we concluded that the decoded

streaming buffer (DSB) [121, 7] is a potential root cause. In Intel processors, DSB (also

referred as µop cache) helps to avoid decode/predecode delay by storing ready to execute

microcode operations (µops). The most performance benefit comes from situations where

instruction decoding is delayed, for instance, due to an instruction cache miss or decoders

being busy. It also reduces power consumption by suppressing overall decoder activity [138].

Branch prediction while executing µops stored in DSB is equally important for performance
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Figure 3.5: Branch collision patterns within the same cache line on Haswell and Skylake
CPUs

as it can trigger µops dispatched directly from the DSB to instruction decode queue,

which naturally bypasses all the pre-decoding and decoding stages [120]. However, branch

prediction in this stage is challenging due to the specifics of addressing in DSB where the

virtual address of only the first instruction inside a tracking window block (32 bytes on

Skylake) is stored [69]. Since a single macro instruction can be decoded into a different

number of µops; entries in DSB are not aligned with regular instructions in virtual memory.

Therefore, the DSB does not have sufficient information on the boundaries of a branch

µop. To perform a precise BTB lookup, the DSB logic would have to compute macro-op

address from the virtual address of the first µop in the DSB block and the offset. That

would significantly increase the mechanism’s complexity. Alternatively, DSB can request

predictions without specifying the instruction location within its window. We argue that

our experimental data suggests the existence of such mechanisms. Our attack example

demonstrates how this premature BPU lookup can result in incorrect predictions and

malicious transient execution. It is worth mentioning that the size of the DSB tracking

window enlarged from 32 Bytes in Haswell to 64 Bytes in Skylake and Kaby Lake. This

may explain the bit-4 and bit-5 observations on these CPUs.

Please note, that this collision mechanism initially appears less stable and is sensitive

to surrounding code and branch activity of the program. The average attack success rate

in a series of experiments was 4.86%. This is due to this type of collision relying on tight
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race conditions and contentions inside the front-end components. We tackle this problem

by developing an automated collision optimization technique based on an evolutionary

algorithm approach in Section 3.3.

Please note that the collision mechanism described above also works when combined

with other collisions types. For example, if two branches have tag and index bits matched

while mismatching higher (ignored) bits ([47:30]), and following the bit-5 collision pattern,

the collision will also occur. Figure 3.6 demonstrates this principle. Presented are results

from a Kaby Lake experiment in which we placed an RB at address 0x300110 and then

scanned for potential addresses where collisions can occur (0x100300100 – 0x100300140)

whilst monitoring access time to the variable that is only accessed from transient execution.

Low access latency indicates a collision happening. One such collision is between addresses

0x300110 and 0x100300110. This is due to the full index, tag, and offset match. As

seen from the graph, there are additional bit-5 collisions occurring when the WB crosses

the 32-byte boundary, and offset collisions start taking place. For simplicity, we will refer

to all such collisions as bit-5 collisions regardless of microarchitecture and whether or not

they are combined with other collision patterns.

Full Match Collision bit-5 Collisions

Figure 3.6: Demonstration of the two collisions types
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3.2.3.2 Constructing a Portable Trojan

Trojans based on the early front-end branch collisions can achieve great covertness and

portability. This is mainly due to two reasons. First, they do not rely on placing branch

instructions far away from each other, contributing to their small size. Second, they do not

rely on fixed addresses (aside from offsets within the cache line). This permits them to

function when ASLR is enabled. In this type of trojans, all attack components (WB, RB,

and the transient gadget) are encapsulated in a small chunk of code that fits into one or

few cache lines. As a result, a malicious developer can prepare a portable block of normal

C/C++ code that when compiled will act as a trojan. Such trojan will function as expected

even if compiler reorders the functions inside binary or the executable is run with ASLR.

This opens new vectors for spreading transient trojans. Instead of standalone applications,

they can be distributed as shared libraries, patches, or via multi-party software development

projects. The requirement for code to be aligned within a 64-byte block is possible to fulfill

using various code optimization techniques such as function attributes [48] available in

most compilers.

We demonstrate the functionality of the bit-5 collision by creating a simple trojan

consisting of two functions, f1 and f2. The high-level overview is presented in Figure 3.7.

We assume f1 is a function that has access to sensitive data. For instance, this can

happen when f1 is a secret key manipulation function, and the key is loaded in one of the

architectural registers in function’s prologue (for example %rax). In addition, f1 contains

an indirect branch instruction. This can happen because of a switch() statement or a call

to a virtual method. The code in f1 does not contain any instructions capable of leaking

secret data via covert channels. It assumed that this function will be inspected for that

matter. Another function f2 is a not-sensitive function that is located directly below f1 in

virtual memory, permitting the bit-5 poisoning. Since f2 does not contain any memory

accesses to sensitive data, the presence of a transient gadget in its body does not violate

security properties and will not be flagged as dangerous code during analysis. However,
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due to the branch collision, f2’s function body will be executed (in transient mode) in the

context of f1. By context here we understand the data accessible by each function. This

enables a unique transient execution attack. Due to colliding branches, the architectural

state is violated in such a way that results in the body of one function to execute with the

context (data) of another function. For demonstration, we utilize a gadget similar to the

gadgets used in prior work [79, 150, 77, 33]. The gadget reads the secret byte and then

reveals its value by initiating a memory access using the address dependent on that value.

To evaluate the effectiveness of this type of trojans, we performed an experiment with

the code illustrated in Figure 3.7. We first execute function f2, which moves the non-secret

value 256 into the register %rax. Then it executes the WB, which transfers execution to the

gadget that outputs the value stored in the register via leaving a trace in cache. Next, we

execute function f1, which places the secret value 42 into the same register. Only f1 has

access to that value. The function then activates the RB, resulting in transient execution

jumping to the body of f2, which contains the gadget leaking the value stored in register

%rax. Please note, when the gadget instruction is executed in transient mode, the register

contains the secret value. After both functions are executed, we probe the cache covert

channel by checking all possible byte values transmitted by the gadget (from 0 to 255). If

no cache hits are observed, we record no byte transfer. If a transferred value is detected

other than 42, we detect an error. Otherwise, we register a correctly transmitted bit. In a

real-world trojan, capturing leaked bits is typically performed in another process, or it may

affect the timing of an externally observable event. However, for simplicity, we place all

components into a single process. In addition, to insure RB’s misprediction, we flush the

correct target from cache on every iteration. We configured our PoC to leak 10 kilobytes

of data and ran it 10 times. The average number of iterations required to transfer 1 byte

was 43.69, and the average error rate was 0.0450%. The large number of iterations indicate

that bit-5 poisoning does not happen frequently. In Section 3.3, we present an automated

approach to optimizing such trojans allowing to improve their throughput significantly.
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other space
WB region [0x60:0x7f]RB region [0x40:0x5f]

Ⓧ execution (& transient exec.)

       f1():  mov secret, %rax

              mov benign_code, %rbx

0x...401257:  jmp *%rbx

benign_code:  nop; ret            

       f2():  mov non_secret, %rax

0x...401277:  jmp gadget            

     gadget:  mov (%rax), %rcx

              load arr[%rcx * 256]

⑤

②

④
①

③

Figure 3.7: Portable transient trojan example

3.2.3.3 Dispersing Gadgets to Avoid Detection

Transient execution attacks rely on gadgets to leak sensitive data. Recently, several works

proposed detecting these gadgets [54, 151, 3, 5, 33]. They are largely based on performing

static binary analysis. To bypass such detection, we developed a technique based on the

newly discovered collision pattern. Static analysis tools rely on detecting code sequences

that result in the following actions: 1) memory location is read, and 2) another memory

access is performed with an address dependent on the value of the first operation. These

solutions use abstract interpretation of binary code to find data dependencies and match

activities with known malicious patterns. They are effective in detecting gadgets even if the

attacker tries to obfuscate them by using different variables and registers. However, abstract

code interpretation does not account for side effects of transient control flow transition

due to a bit-5 collision. We can utilize this anomaly to violate the architectural state and

disperse a transient gadget into two parts, each of which is not identified as a malicious

instruction sequence. Figure 3.8 shows a gadget consisting of 4 operations. Following the

described approach, we add an indirect jump instruction and refactor the code in such

a way that the first two operations are executed before the poisoned jump and the last

two after. From the architectural state point of view, the second part of the gadget will

never be executed. However, due to the poisoning, the transient execution will result in

full gadget execution. After this transformation, the code will produce exactly the same
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transient execution effect. Since we are the first to report the bit-5 collision; we believe

that this technique is capable of defeating solutions based on gadget detection.

To evaluate the effectiveness of this technique, we compared the number of iterations

required to leak 10KB using the bit-5 based trojan with and without dispersing the gadget.

To do that, we moved two of the gadget’s instructions before the RB. The average number

of iterations required to transfer 1 byte from 10 runs was 20.41, and the average error

rate was 0.0147%. These results indicate that dispersed gadgets are roughly two times

more efficient. This is due to reducing the number of gadget instructions that execute in

transient mode by moving them before the indirect jump. Therefore such a technique can

be used not only to avoid detection but also to improve the gadget performance.

jmp *%rbx

 . . .

mov secret, %rax

mul $256

add arr, %rax

mov (%rax), %rcx

DETECTED

disperse

mov secret, %rax

mul $256

jmp *%rbx

 . . .

add arr, %rax

mov (%rax), %rcx

Figure 3.8: Dispersing a transient gadget to avoid gadget detection tools. Solid arrows
indicate transient execution flow

3.2.4 Skipping Branch Trojans

3.2.4.1 Skipping indirect branches

In addition to collisions between different branches, CPUs we tested based on AMD Ryzen

and Intel Haswell architectures have another indirect branch-related anomaly that can be

used to construct trojans. In particular, when a prediction is not available in BTB, the CPU

simply skips the indirect unconditional branch instruction and proceeds to the following

instructions. In addition to constructing trojans, this mechanism can also be utilized to

confuse static or dynamic analysis tools. Consider a program in which a certain function

is invoked using an indirect call instruction. Assume its target is set during the program

initialization and never changes. A detection tool will be able to find this correlation and
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mark the program safe. However, due to indirect call skipping, a temporal architecture

state violation will take place. Intel documentation confirms that indirect branches may be

predicted non-taken [6].

3.2.4.2 Skipping based transient execution attack

The indirect branch skipping mechanism can be utilized to construct trojans with unique

properties as they do not rely on known elements of previous Spectre-related attacks. In

particular, they do not require conditional branches as in Spectre v1 or branch collisions as

in Spectre v2 to violate architectural state.

To demonstrate the practicality of this approach, we designed a simple trojan application

based on this mechanism and complied it using llvm. Figure 3.9 demonstrates its code

with the disassembly of the key elements. Two functions are called via function pointers,

and such calls are compiled to indirect call instructions. Function pointer f1 is used to

call the function that returns a secret value, which is then loaded into variable sec. The

function pointed by f2 loads a non-secret value into nonsec. After these two function calls,

a gadget code sequence reveals the value of nonsec. Since its value is not secret, it is not

considered a violation. According to System V ABI, functions are required to return the

values using %eax (or %rax) register. After the return, caller function stores %eax’s value

as a local variable on stack.

In the example code, the violation of architectural state happens when function call f1

is not skipped while f2 is skipped. This results in code 1 loading the secret value into

register %eax, followed by saving it in sec and then immediately transmitting execution

to code 2 , which stores %eax’s value in nonsec. As a result, both variables temporarily

hold exactly the same secret value. Then the gadget successfully reveals the value of the

secret data via the cache. Please note that to enable the condition when one function is

skipped while another is not, pointers f1 and f2 must be located in different cache lines.

This can be done by adding or removing local variables in the parent function. For this

experiment, we flush f2 from cache. In a real-world attack, this can be done by finding an
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eviction set [148].

To evaluate this trojan’s accuracy, we executed it on an AMD Ryzen machine leaking

1KB and ran it 10 times. The average number of vulnerable function activations required

to leak 1 byte of data was 888.07 with average error rate of 1.74%. Such a relatively

low success rate can be explained by the attack relying on an infrequent event when one

function is correctly predicted while another is mispredicted. The success rate can be

further improved by manipulating with BPU prediction mechanism.

typedef int (*fptr)(void);

int get_sec(){return 42;}

int get_nonsec(){return 0;}

int vuln(){

     int sec, nonsec, tmp;

     fptr f1,f2;

     f1 = get_sec;

     f2 = get_nonsec;

     sec = f1();

     nonsec = f2(); //skipping

     tmp = arr[nonsec * 256];}

callq  *-0x30(%rbp) 
mov    %eax,-0x20(%rbp)
callq  *-0x78(%rbp) //skipping
mov    %eax,-0x24(%rbp)
mov    -0x24(%rbp),%eax
shl    $0x8,%eax
movslq %eax,%rcx
mov    0x612050(,%rcx,4),%eax
mov    %eax,-0x7c(%rbp)

①

②

Figure 3.9: Transient trojan based on branch skipping

3.3 Improving Trojan Activation Rate

Effectiveness of transient trojans can be measured by their successful activation rate, which

is the percentage of cases when data is leaked compared to total activation attempts. In

our initial trojan implementation, the rate appears rather small, for instance, 12.79% and

4.86% for kernel and DSB based trojans, respectively. We noticed that trojans are sensitive

to their surrounding code, which can either increase or decrease the success rate. This effect

is especially noticeable for portable trojans since they are based on tight race conditions

within the CPU front-end. Surrounding code, the code that is executed right before or

immediately after the trojan’s critical parts can cause various effects (both positive and

negative). For instance, it can flush out buffers such as DSB, load store buffer, instruction

cache and introduce contention in decoders, functional units, and ports.
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Manually tuning trojans for these microarchitecture events is a difficult and meticulous

task. First of all, many of the front-end components are not completely reverse engineered.

Secondly, fine-tuning one property may affect other properties in a non-trivial way resulting

in success rate degradation. Instead of reverse engineering and manual fine-tuning, we

propose a method based on genetic programming that enables automatic trojan optimization

based on injecting lightweight code artifacts. These artifacts serve no purpose other than

creating various microarchitecture conditions and do not affect program’s architectural state.

Our method is shown to be effective, improving our initial portable trojan implementation

from 4.86% to 98.35% resulting in the leakage rate of 13.5 kilobytes per second.

In the first stage of our genetic algorithm approach, we transfer a trojan into a mutation

template. This template includes all elements of the original program with additional

anchors, places in source code where random activities will be added in the future. The

anchors are placed in locations that are likely to interfere with key elements of the trojan,

for instance, adjacent to WB and RB. We discovered that trojan accuracy could be affected

by adding blocks of nop instructions, which affect the code alignment and empty loops that

load CPU resources handling branches. For our initial experiment, we used the portable

trojan from Section 3.2.3.2. We placed a total of 15 anchors: 9 nop anchors and 6 loop

anchors. The nop anchors inject 0–150 nop instructions while each loop anchor injects a loop

with 0–8000 iterations. This results in 1043 possible combinations making the brute-force

approach not feasible.

Instead, we perform the optimization by starting from 100 initial candidate solutions.

We do so by randomly selecting values for each anchor. Then we use a simple genetic

algorithm to find an optimal configuration. We set our initial fitness threshold (trojan

success rate) at 20%. In each round, we apply an objective fitness function to each candidate,

removing all candidates that have an attack rate lower than the fitness threshold. Then

we sort the remaining by fitness score. A generator function performing crossover and

mutation is applied to a subset of the remaining candidates with the highest fitness scores to

create a new variation population of 100 candidates. During this phase, we apply a simple
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heuristic to avoid crossover between very similar candidates ensuring that we continue to

have population diversity in each round. This also reduces the risk that our algorithm

converges to a suboptimal solution. We also guarantee 20% of each population to be entirely

random to increase population diversity.

We compare the genetic programming approach to a simple random-based optimization.

Here instead of performing mutation, we keep generating random candidates and select

the best performing candidate in each round. Both approaches tested 2 000 trojans in 20

groups, 15 times, and their best 5 runs are demonstrated in Figure 3.10. The result shows

the maximum trojan attack rate only incrementing when a more optimized trojan is found.

The genetic algorithm converges to a trojan configurations that produce 90%+ attack rates,

finding trojans with high attack rates quicker and 30% higher than the randomization-based

approach. That highlights the benefits of using genetic algorithms for optimizing attacks

based on microarchitectural effects.
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Figure 3.10: Genetic and randomization optimizer comparison

3.4 Detecting Collisions in Existing Binaries

Branch instruction collisions can occur naturally in regular executables. A typical binary

on average contains one direct branch instruction per 4–7 instructions making collisions
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between indirect and direct branches a common event. An advanced attacker may construct

a trojan utilizing these collisions. In this section, we evaluate such naturally occurring

collisions in existing binaries and reason about their use in attacks. For our analysis, we

use Skylake architecture as a reference. We group all collisions in two types: portable and

non-portable. The portable collisions are based on bit-5 mechanism, and their functionality

is not tied to hard-coded addresses. Thus they function even in the presence of ASLR,

unlike the non-portable collisions, which are based on the distant collision mechanism from

Section 3.2.2. Each executable is analyzed in its normal running context to detect collisions

between branches in executable and its libraries.

We developed a light-weight binary analysis tool to find locations where WBs and RBs

produce portable and non-portable collisions. First, each binary is disassembled, then we

perform a search for all direct and indirect branch instructions. All potential WB and RB

instructions are then passed to a BTB mapping function, which is based on Skylake BTB

reverse engineering to find their index, tag, and offset bits. Our tool then identifies WB-RB

pairs that collide according to two types of collisions.

Figure 3.11 demonstrates the results gathered from processing 16,015 binaries native to

Ubuntu 18.04, including user applications, libraries, and kernel modules. The X-axis shows

total indirect branches in executable, while the Y-axis all possible collisions, including

collisions between library and code segments. Please note that since distant same address

space collisions are sensitive to ASLR, there will be different sets of collisions appearing

each time the program is rerun. Although at first this may appear as a negative effect, an

advanced attacker can use this phenomenon to further hide a malicious trojan by making it

activated only under certain ASLR bits. This makes the analysis of all potential collisions

and their effects infeasible. To give a high-level overview of the number of such collisions,

we perform the analysis with ASLR deactivated. At the same time, the DSB collisions are

not sensitive to ASLR. As seen from the result, existing binaries contain large numbers of

naturally occurring collisions of both types. The collisions tend to linearly grow with the

total count of indirect branches present in a given binary. For example, Google Chrome
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Figure 3.11: Analysis of branch collisions in existing binaries

executable contains a total of 170k indirect branches resulting in 136k portable and over

300 million non-portable collisions. Such a high number makes hiding malicious branches a

relatively easy task as the analysis of all potential transient execution effects becomes very

difficult.

As we discussed in Section 3.2.4.1, indirect branch instructions can violate architectural

state even when no collisions are present. Thus, every single indirect call and jump

instruction (X-axis in Figure 3.11) has the potential of doing so. As a result, we believe

any indirect branch should be treated as a potential security threat unless CPU design can

ensure that transient execution can never leak sensitive data.

3.5 Countermeasures

Since indirect branch instructions are required for our attacks to function, retpoline

sequences can be used as effective mitigation. However, retpolines must be added during

compilation and cannot be applied to precompiled binaries. Because retpolines lead to code

bloating and performance overhead [16], current binaries seldom use this technique.

Distant same address space branch collisions can be prevented if future BTB designs

store full addresses (e.g., tag and target) instead of their reduced or compressed versions.

However, such a design would significantly increase the BTB size and, therefore, costs of
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hardware.

Mitigating bit-5 collisions in hardware appears a more challenging task since it would

require a front-end redesign. For instance, a naïve solution is to delay BPU predictions until

instruction boundaries are determined. However, that would lead to introducing delays

when processing branch intensive µop sequences from DSB. Alternatively, a software-based

solution can be developed to sufficiently space direct and indirect branches with binary

editing at runtime or by manipulating compiler code generation primitives to prevent

placing direct and indirect branches in the same 64-byte block. However, that would lead

to significant code bloating. In addition, our collision detection tool can be used to find

potentially dangerous branches and inject in-place mitigations such as lfence instructions.

Future microarchitecture designs are urged to adopt better mechanisms that do not permit

branch instruction anomalies, for instance, by adding a type field in the BTB to prevent

direct and indirect branch collisions and avoiding indirect branch skipping. A recent work

by Yu et al. [163] proposed a light-weight hardware solution based on preventing unsafe

data accesses being forwarded to transient execution.

3.6 Related Work

To the best of our knowledge, our work is the first work analyzing the security effects of

branch collisions within same address spaces. In addition, we introduced a new type of

malicious software that utilizes transient execution in the form of self-contained transient

trojans represent.

Wampler et al. successfully created a malware program with a transient execution

payload [150]. However, malicious software modules presented in their work require a

separate activation process. Moreover, a correctly configured IBPB would force BTB

flushing on context switched, making poisoning across different processes impossible. All

types of our trojans work with current microcode-based protections enabled. Kiriansky and

Waldspurger developed Spectre 1.1, where transient buffer overflows can be used to jump

transient execution into arbitrary code. This Spectre buffer overflow attack can be used to
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redirect execution to instructions after a serialized instruction (Spectre V1 mitigation) [77].

Canella et al. performed an analysis of 12 Spectre variants, including the possibility of

multiple same address space Spectre attacks [31]. However, the analysis did not reason on

how these vectors can be utilized to construct practical exploits.

Recent works have been published regarding the detection and mitigation of Spectre

attacks. SPECTECTOR by Guarnieri et al. detects transient information flows [54], and

the principles behind this work can be applicable to the detection of transient trojans.

However, without a completely accurate collision model, this and similar tools may overlook

dangerous transient execution flows presented in this work. Our work makes a contribution

by expanding upon the existing collision model. Finally, Depoix et al. developed a method

of detecting Spectre attacks by identifying Spectre attacks using machine learning [38].

3.7 Conclusions

In this work, we presented a new type of practical attack based on transient execution. We

demonstrated transient trojans — malicious software modules that utilize BPU anomalies

happening inside software entities. In addition, we reverse-engineered the BPU addressing

scheme, which allowed us to detect new exploration mechanisms. Utilizing them, we were

able to create trojans that have several properties desirable for attackers such as being

portable, working in the presence of any microcode-based protection mechanisms, and the

ability to stay undetected by current detection tools. We believe our work improves the

current understanding of attacks based on transient execution by bridging the gap between

exploitable hardware primitives and constructing realistic attacks. This work has been

summarized and published in ASPLOS 2020 [164].
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Chapter 4

STBPU: A Reasonably Safe Branch

Predictor Unit

4.1 Introduction

Over the last few decades, a large number of protection techniques against software

attacks have been introduced making exploitation of traditional attack vectors such as

code injection or return-oriented programming challenging. With a decreasing number of

available targets for software attacks, the attention of adversaries is more frequently drawn to

exploitable weaknesses in hardware. Although hardware attacks such as microarchitectural

side channels [21, 110, 108, 9, 63, 11, 49, 91], covert channels [43, 61, 106, 99], and power

analysis [80, 101, 97, 10, 107] attacks have been known for a long time, only recently did

researchers demonstrate the true power of microarchitectural attacks with newly discovered

speculative execution attacks, such as Meltdown [89, 143] and Spectre [79, 33, 95, 76, 81, 128].

These attacks are based on speculative (transient) execution, a performance optimization

technique present in nearly all of today’s processors. While this technique improving CPU

performance, with a carefully crafted exploit, it completely undermines memory protection,

giving unauthorized users the ability to read arbitrary memory [79, 89] and disable crucial

protections [76].
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Microarchitectural attacks are possible because performance optimizations such as

caches, prefetchers, and various predictors were not traditionally designed with security in

mind. For example, data structures used to implement these mechanisms are commonly

shared, making various conflicts possible. Some conflicts result in leakage of sensitive

data. One such mechanism is the branch predictor unit (BPU). Substructures within the

BPU are typically shared, and the stored data is compressed, prone to various branch

collisions. [40, 119]. This enables attacks such as side channels [10, 44, 42] that are capable

of leaking encryption keys or bypassing ASLR, and the recently introduced speculative

execution attacks [79, 76]. At the same time, shared BPUs are beneficial for performance.

They allow high utilization of hardware structures to reduce the cost and enable efficient

branch history accumulation. [103]. Therefore, naïve protections which disable sharing or

flush BPU structures have high performance overhead. Recent Intel microcode updates

introduced as a countermeasure against Spectre attacks [64] demonstrated that the overhead

from naiv̈e protections can be as high as 440% [137, 113].

Despite significant efforts directed towards designing other secure microarchitectural

components e.g., caches [152, 74, 154, 118, 37, 147, 90] and memory buses [126, 12, 87],

secure BPU designs remain a handful of attempts [85, 52, 149]. More importantly, none of

existing approaches completely eliminate BPU vulnerabilities. such as recent µop caches

attacks [123]. We propose Secret-Token Branch Prediction Unit (STBPU), a safe BPU

design aimed to protect against collision-based BPU attacks and eliminate BPU side

channels.

STBPU prevents collision-based side channel and speculative execution attacks by

disallowing software entities from creating controlled branch instruction collisions and thus

affecting each other in an unsafe way. This is done by customizing the branch representation

for each software entity in the form of address mappings and by encrypting data stored in

BPU. In STBPU, each software entity is provided with a unique, randomly-generated secret

token (ST) that customizes data representations. STBPU constantly monitors active attacks

with hardware events and re-randomizes STs to prevent attackers from reverse-engineering
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the ST tokens.

This work makes the following contributions:

• We propose, STBPU, a safe BPU design protects against speculative execution attacks

including fast algorithm attacks, provides strong isolation guarantees to eliminate to

BPU side channels, and incurs low overheads.

• We provide insight on how to adapt the STBPU design, invalidating the recent µop

cache attacks which can bypass mitigations e.g., invisible speculation and fencing.

• We design an automated frame to create lightweight ST-dependent remapping func-

tions and validate STBPU with in-depth security analysis .

• We evaluate STBPU performance on advanced prediction mechanisms e.g., TAGE_

SC_L and Perceptron and show low overhead even with extreme security settings.

4.2 Threat Model

We assume a powerful attacker that has a complete understanding of all hardware compo-

nents and structures in the STBPU. The attacker has access to normal reverse engineering

resources, such as time measurements and performance counters, and has access to a wide

variety of hardware covert channels. The STBPU design calls for new special purpose

registers as detailed in Section 4.3; the adversary is assumed to be unable to read/modify

the contents of these registers. Such a role is delegated to a privileged software entity (OS,

hypervisor) which attacker does not control.

We assume the attacker cannot gain access to ST for the victim process neither when it

is in the special purpose register, nor when system software stores it. Former is impossible

because the register can only be accessed from the privileged mode. Later happens only in

the event of system software compromise. The ST can be considered as part of processes’s

context that is saved and restored on context switches. The event of attacker gaining access

to context data would be equal to a full compromise. In such case, there is no point for

attacker to use side channels.

We consider attacks presented in Table 2.1 including both side channel attacks in which
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victim executes a sensitive data dependent branch branch as well as speculative execution

attacks where victim is forced to speculatively execute leakage gadget code. We assume

the following two attack scenarios:

Sensitive Process as Victim. In this scenario, an attacker tries to learn sensitive data

from a victim process by manipulating the BPU state and recording observations. The

attacker has control over user-level process co-located on the same CPU core and is capable

of performing activities that are normally allowed to untrusted process such as accessing

fine grain hardware timers via rdtscp instructions. We assume the victim and attacker

can either execute on two logical cores within the same physical core or share the same

logical core with time-slicing. This scenario also includes recently introduced transient

trojans [164] where collisions occurring within the same memory segments are exploited.

Kernel/VMM as Victim. The attacker takes a form of a software entity with lower

privilege level, i.e. untrusted user process. The attacker tries to learn sensitive data owned

by a higher privileged entity (OS kernel or VMM) by manipulating with BPU state and

recording observations. Here, victim and attacker share a same contiguous virtual address

space. Attacker is restricted from executing privilege instructions.

4.3 STBPU Design

As discussed in Section 2.6, BPU attacks are possible due to deterministic mapping

mechanisms, allowing attackers to create branch collisions. STBPU aims to stop these

attacks by replacing these deterministic mechanisms with keyed remapping mechanisms

which prevent branch collision construction. The design philosophy of STBPU is to create

different data representations for separate software entities inside the BPU data structures.

Each software entity requiring isolation is assigned a unique secret token (ST), which is a

random integer that controls how branch virtual addresses are mapped into BPU structures.

This ST is also used to encrypt/decrypt stored data. Compared to naïve protections based

on flushing or partitioning, our approach has a number of benefits.

Consider a protection scheme where branch target poisoning is prevented by flushing
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the BTB on context switches. Invalidating the entire branch target history will negatively

affect performance in cases where context switches are frequent. Similarly, to protect

from target collisions between kernel and user branches, BTB must be flushed on mode

switches (e.g. all syscalls). Partitioning hardware resources reduces the effective capacity

of BPU structures resulting in a higher miss rate and lower prediction accuracy. Instead, a

customized mapping approach allows separate software entities to co-exist in the BPU with

minimal performance overhead; performance evaluated in Section 4.6. STBPU utilizes two

key approaches to enable safe resource sharing.

• STBPU makes collision creation difficult by ensuring all remapping functions are

dependent upon both branch address and ST.

• STBPU detects when a potential attacker process has recovered sufficient information

that enables deterministic collision creation by monitoring hardware events.

4.3.1 ST re-randomization

The ST of the current process in the BPU is re-randomized once certain (OS controlled)

thresholds are reached. Note that in STBPU design, the OS is trusted and is responsible for

setting parameters such as the re-randomization threshold. This is a common assumption

for systems protecting against microarchitectural attacks since compromising OS gives the

attacker full control over the system, making such attacks non-necessary. On the other

hand, such a design choice makes our mechanism more flexible and permits the OS to

adjust the strength of enforcement based on factors such as whether a certain process is

considered sensitive or the attacker’s capabilities. For instance, if a more effective side

channel attack is discovered after STBPU is deployed, the underlying hardware mechanism

will still remain effective and will only require the OS to readjust the thresholds. Moreover,

for the extreme cases of sensitive processes the OS may opt to set the threshold as low as

1, forcing re-randomization after every branch instruction, effectively disabling the BPU

mechanism.

STBPU can be also adapted for systems with OS not trusted (e.g. SGX), then another
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system component needs to be responsible for managing tokens and thresholds. For instance,

in the case of SGX, the enclave entering routine can serve this purpose. Alternatively,

simple logic of ST management in STBPU should also enable hardware only implementation.

Re-randomizing ST effectively resets the customization of the BPU data representation for

that process. Although it leads to the loss of branch history (by making it unusable), our

analysis indicates that such events are infrequent. Re-randomizing the ST of one process

does not remove stored history of a process with a different ST. This is the key difference

compared to flushing-based approaches. We derive the re-randomization thresholds through

the analysis in Section 4.5.

While potentially dangerous, branch history sharing between programs benefits per-

formance. Consider a server application that spawns a new process for each incoming

connection. Since each process executes the same code, the accumulated BPU state is used

by the newly spawned process. This allows the new process to avoid the lengthy period of

BPU training. STBPU permits selective history sharing by allowing OS to provide multiple

copies of the same program to utilize the same ST value. However, when sharing is not

desired, each thread can be given a unique ST.

4.3.2 Hardware Mechanisms and Interfaces

Since current BPU designs are highly optimized in terms of performance and hardware cost,

we restrict ourselves to only modifying BPU mapping mechanisms, adding registers, and

encrypting stored targets. Such changes will provide similar performance to the unprotected

design and make STBPU agnostic to a particular BPU design. In STBPU, each hardware

thread is provided with an extra register to store the ST of the current process. Only the OS

is allowed to read/modify these registers, and these registers are inaccessible in unprivileged

CPU mode. As such, the OS facilitates history retention across context/mode switches

by loading the appropriate STs. We also add several model-specific registers (MSRs) that

store thresholds and counters for automatic ST re-randomization. These MSRs monitor

the events that indicate an active attacker process. We monitor two events: i) branch
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Baseline input STBPU input Output Function
1 32 s 32 ψ, 48 s 9 ind, 8 tag, 5 offs R1(80 7→ 22)
2 58 BHB 32 ψ, 58 BHB 8 tag R2(90 7→ 8)
3 32 s 32 ψ, 48 s 14 ind R3(80 7→ 14)
4 18 GHR, 32 s 32 ψ, 16 GHR, 48 s 14 ind R4(96 7→ 14)
t 48 s, L(GHR) 32 ψ, 48 s, L(GHR) 10/13 ind, 8/12 tag Rt(80↑ 7→ 25)
p 48 s 32 ψ, 48 s 10 ind Rt(80 7→ 10)

L(GHR) — represents geometric series of global history lengths
s — represents the source bits of branch instructions

Table 4.1: I/O bits for baseline and STBPU functions

mispredictions which includes incorrectly predicted direction of conditional branches and

targets of any branch, and ii) BTB evictions. In Section 4.5, we explain how these events

are utilized to deter BPU attacks. Initially, the counter values are set to their respective

threshold values. When an event is observed, the corresponding counter is decremented.

When a counter reaches 0, the current ST is re-randomized, and the CPU reset the counter

with the threshold value. The OS treats these registers as a part of software context saving,

and recovering their values on context/mode switches. We assume re-randomization is done

by fetching a value from low-latency in-chip pseudo-random number generator [92].

ip: ret (%rsp)
Return

ip: jmp ($addr)
Indir. jump/call

RSB

call ret

BTB

BHB

GHR

3

4

target pred

PHT

taken/nontaken

ip: jmp + n
Direct jump/call

ip: jcc + n
Cond. jump/call

2

1

a

b

5

φ
ψ remapping

encryption

STBPU
components:

φ

ψ

ψ

ψ

Figure 4.1: BPU with STBPU components highlighted

The ST register is a 64-bit register divided into two 32-bit chunks, ψ and φ. The first

chunk ψ acts as a key for a keyed remapping functions making BPU mapping unique for

each process. Figure 4.1 demonstrates the STBPU design on top of the components of
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a baseline branch predictor depicted in Figure 2.1. In STBPU, we replace functions 1 ,

2 , 3 and 4 with STBPU remappings R1..4 accordingly. We add functions Rt and Rp

that are used for STBPU implementation with the TAGE and Perceptron predictors. Both

baseline and STBPU remapping functions reduce input data (address, BTB, GHR bits)

into fixed size index, tag, and offsets used by the BPU to perform lookups. Section 4.4.1

describes how R1..4,t,p were selected. Additionally, these functions utilize the entire 48-bit

virtual address unlike legacy functions that use truncated address bits as inputs. This is

crucial to prevent the same address space attacks [164]. Table 4.1 details all input/output

bit changes between the baseline and STBPU models.

We use a simple scheme based on XOR to encrypt data stored in BPU structures to

stop attackers from redirecting execution to a desired speculative gadget even if collisions

occur. In the case of a collision, speculative execution will be redirected to an encrypted

(random) address. This will effectively stall malicious speculative execution. In STBPU,

every entry stored in BTB and RSB is XORed with φ of the current process. Note that

the baseline BPU stores only 32 bits of target addresses, so the 32-bit φ is sufficient for

encrypting all stored bits. We use a simple XOR encryption for two reasons: i) XOR

operations are extremely fast with trivial hardware implementation, and ii) automated

ST re-randomization makes the simple XOR encryption sufficiently strong (discussed in

Section 4.5). To decrypt data in BTB and RSB, we modify the function 5 , which XORs

target bits with φ before extending them to 48-bit address.

4.4 Implementation

In Section 4.3, we defined remapping functions R1..4,t,p which replace the methods of calcu-

lating indices, tags, and offsets for lookup purposes in the baseline BPU model. Remapping

functions R1..4,t,p can be thought of as non-cryptographic hash functions. Given the size con-

straints of the BPU structures, collisions between different inputs to functions R1..4,t,p will

occur; this fact prevents functions R1..4,t,p from providing cryptographic security, regardless

of implementation. This inherent weakness is remedied with periodic re-randomization
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of STs; the security of such re-randomizations are discussed in Section 4.5. The mapping

functions used in the baseline model are not fully reverse engineered, but we can safely

assume some fast compression functions are used with delays of no more than 1 clock cycle.

Using performance and security as our guides, we placed several important constraints

upon functions R1..4,t,p:

C1 The compute delay for R1..4,t,p must not exceed C clock cycles, where C may vary

from CPU to CPU. For our purposes, we choose C to be 1 clock cycle. We enforce

this by limiting the number for transistors of each remapping function on the critical

path.

C2 The function must provide uniformity : outputs of R1..4,t,p should be uniformly

distributed across their respective output spaces.

C3 The function must demonstrate avalanche effect [60]: The outputs of R1..4,t,p must

appear to be pseudo-random, and the relationship between inputs and outputs should

be non-linear.

We analyzed existing hardware supported hashing mechanisms, but found none that sat-

isfied our specific requirements. Specifically, existing multi-round hash functions exceed the

single CPU cycle constraint. Later we describe a mechanism we developed to automatically

generate remapping functions taking into account aforementioned constraints. In addition

to remapping, STBPU requires encryption of branch addresses stored inside BPU. We found

out that existing lightweight cryptographic functions are not suitable for our purposes for

two main reasons: First, using strong ciphers does not directly translate into better security

which are primarily designed to withstand known plaintext/ciphertext attacks. However,

STBPU threat model is much different as attackers never observe encrypted addresses

(ciphertext) nor partially matched plaintext/ciphertext. They only observe collisions (not

knowing with their own or victim’s branch) and need to reverse-engineer the rest of the

address bits. Besides, knowing their own STs does not provide immediate access to collision

creation or simplifies collision-based attacks. In Section 4.5, we show that the number of

mispredictions and evictions attackers must incur to successfully infer a ST far exceeds the
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thresholds that will trigger ST re-randomization. Thus, encrypting with a more advanced

cipher would not increase the level of security. Secondly, more sophisticated encryption

schemes introduce significant delays in CPU frontend. For instance, we explored PRINCE-

64 [27] and Feistel-Network [100] to encrypt stored branch targets. While comparably fast,

PRINCE-64 and Feistel-Network will still consume multiple clock cycles and consume more

energy due to higher number of gates compared to a simple subsingle-cycle XOR operation.

4.4.1 Automation of Finding Remapping Functions

Automated Remap Generation Algorithm. Designing the remapping mechanisms is a

multi-variable optimization problem. To solve it, we developed an algorithm that takes in a

list of hardware constraints, and randomly generates remapping function candidates. The

algorithm composes the function from a predetermined pool of primitives. Each remapping

function is iteratively generated and tested one layer at a time, where a layer is a block of

these primitives. After a layer is added, the current function is tested against the supplied

constraints. There are three possible scenarios that occur during each round of testing. i)

The current design satisfies all constraints, and subsequently stored for later optimization.

ii) The current design violates one or more constraints, and is discarded. iii) The current

design does not outright violate the constraints, but is incomplete. In case 3, our algorithm

changes the weights used for primitive selection during the creation of the next layer to

improve the current design.

Constraint Selection of C1. Our algorithm requires an input of several variable con-

straints for the generated remapping functions to satisfy C1. These constraints are: the

maximum count of transistors along the critical path, the maximum number of transistors

in parallel (breadth), the maximum number of total transistors for the design, the number

of input and output pins, the maximum number of functional layers (blocks) the design

can have, and the maximum number of wires an arbitrary wire can cross over.

Modern processors are designed to perform 15-20 gate operations in a single cycle [115],

which translates to roughly 30-45 transistors along the critical path. The delay incurred
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by each transistor in the critical path is relatively independent of the CPU clock cycle;

therefore, the faster the CPU’s clock cycle, the smaller the number of transistors that can

be completed within 1 clock cycle. Therefore, we assume 45 is the absolute maximum

number of transistors we allow in the critical path with preference set for shorter critical

paths.

Primitive Selection. Much research has been conducted into cryptographic hash prim-

itives [84, 26, 25, 167, 166] that provide building blocks for hash functions with strong

properties. We leverage these primitives from SPONGENT [26] and PRESENT [25] hashes.

Out of those S-boxes (establishing non-linearity by substations) are perhaps most critical.

To increase the simplicity of remapping function generation, we separate primitives into

two categories: non-invertible compression primitives and mixing primitives.

Non-invertible primitives tend to employ XOR logic gates to obfuscate the relationship

between input and output. For many such primitives, multiple inputs generate the same,

smaller output which makes reverse-engineering difficult. Combining multiple non-invertible

layers increases complexity of attacks aiming to pair a known output to an unknown input.

These primitives compress input size |m| to an output size |n| where |m| > |n|. Table 4.1

shows the disparity between the input and output sizes for R1..4,t,p functions, and indicates

the need for optimized compression primitives. Mixing primitives are primarily used to

introduce non-linearity to a hash design which makes deterministically changing the output

by varying the input difficult. These primitives are primarily composed of |m| 7→ |m|

sized S-boxes and P-boxes (performing permutations). Since the hardware complexity of

S-boxes increases superlinearly with the size of |m|, we limit our S-boxes to a maximum of

4 input/outputs. These S-boxes can be implemented efficiently with combinatorial logic or

transistor/diode matrices. P-boxes are constrained by the maximum wire crossover set for

the algorithm.

Validation of Uniformity (C2) and Avalanche Effect (C3)

Remapping functions that satisfy the hardware constraints are then tested against

constraints C2 and C3. We first employ the balls and bins analysis and compute the
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Figure 4.2: R1 remapping function construction

coefficient of variation (CV) of bins to approximate the uniformity (C2) of the output

space [117]. C3 is satisfied when a remapping adheres to a strict avalanche criterion. To

quantify the avalanche effect of F , for each input λ, we generate a set of unique inputs, S,

where each input in S differs from λ by a single bit flip. We then compute the hamming

distance between F (λ) and F (Si), for all inputs in S. Using these hamming distances, we

determine the CV of the hamming distances for a particular λ. We test each F with 1

million random inputs and compute the average hamming distance for all inputs. The ideal

case occurs when: i) the average hamming distance over 1 million random inputs is roughly

50%. ii) For all inputs, the CV of the average hamming distance for each input is 0. iii)

For all bit positions of an output of F , the difference between the minimum and maximum

hamming distances for a bit flip in any bit position is 0.

4.4.2 Optimization and Remapping Selection

The final selection of remapping functions R1..4,t,p is primarily based upon the results from

the previous tests. The result is a multiobjective optimization problem where the ideal

state for different desired metrics may be maximized or minimized. To make all metrics

comparable, we normalized each metric so that the optimal value is 0. We then considered

this to be a simple weighted optimization problem where we seek functions that yield the

lowest sum of all metrics recorded when testing for uniformity and the avalanche effect. Let

F be a particular function in the group of potential functions G for remapping function Ri,
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for i ∈ R1..4,t,p:

min
k∑
i

wig(F ), F ∈ G (4.1)

All weights were set to 1 to avoid prioritizing one metric over another. Further prioritizing

then can be done by hardware developers for a specific CPU design. For space reasons,

we do not show the designs for all of R1..4,t,p since they share many similar characteristics.

Instead, we show the chosen design for R1 in Figure 4.2 where stages 1, 3, and 5 are

substitution layers using 4 7→ 4 and 3 7→ 3 S-boxes. For space reasons, not all types of

S-boxes are shown. Under the design of R1, we show the logical mappings for S-boxes

used by PRESENT and SPONGENT. P-boxes are n 7→ n in size with the pin mappings

generated randomly by our remap function generator. C-S boxes are compression structures

that map |m| bits to an output size of |n| bits where |m| > |n|. This design of R1 has a

critical path length of 36 transistors, so it is capable of being computed within a single

clock cycle.

4.5 Security Analysis

We assume any attackers can have complete knowledge of all STBPU remapping functions,

full control of execution flow, and are capable of executing branches to/from any address

within their processes. The goal is to enable malicious branch instruction collisions that allow

mounting one of the collision-based attacks. STBPU makes collisions non-deterministic,

forcing the attackers to rely on either brute force approaches or reverse-engineering the

ST value. Further, attackers can utilize recently proposed fast attack algorithms such as

GEM [116] and PPP [114] that target randomized caches [24, 28].

4.5.1 Analysis of Branch Predictor Attacks under STBPU

An attacker possessing knowledge of their ST (ψ/φ) voids the security provided by the

STBPU because they can deterministically generate outputs with any of the remapping

functions used by the STBPU. Before we discuss how STBPU affects attacks on BPU, we
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Parameter: Description A: Branch in attacker(A)’s address space
Wstruct: Number of ways V : Branch in victim(V)’s address space
Istruct: Number of sets (indexes) ψa/v: A/V R() 32-bit token
Tstruct: Entry tag bit entropy φa/v: A/V target encryption token
Ostruct: Entry offset bit entropy τQ: Target of arbitrary branch Q
Ωstruct: Entry target bit entropy Q EQ: Entry stored for arbitrary branch Q

Table 4.2: Parameters used in STBPU analysis

show the parameters for security analysis in Table 4.2 and list several important axioms

below:

A1 Attackers do not know the numerical outputs of R1..4,t,p.

A2 Due to A1, all the current state of the STBPU must come from detection of mispre-

dictions and evictions.

A3 Attacker does not have inherent knowledge or control of ST of any process.

4.5.1.1 Target Injection Attacks

Recall that we encrypt the targets stored in the BTB and RSB through the following means:

EA = φa ⊕ τA. With Spectre V2, the attacker supplies a malicious τA using branch A that

collides with the victim’s branch V causing V to speculate with τA. With the SpectreRSB,

the attacker places a malicious return address τA on the stack that the victim speculates

with. In both cases, the target the victim will use from the STBTB or STRSB is now

τV = φa ⊕ τA ⊕ φv. If there is a Spectre gadget located in the victim’s address space

at address G, the attack is successful if τV = G. Due to A3, the attacker does not have

knowledge or control of φa or φv; consequently, the only variable the attacker can change

is the address of τA to make τV = G. The probability that τA results in τV = G is 1
ΩST BT B

or 1
ΩST RSB

. As such, the attacker must execute ΩST BT B
2 or ΩST RSB

2 different τA values to

have a 50% chance of successfully executing their target injection attack. Each incorrect

τA will result in the misprediction counter decrementing towards zero.
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4.5.1.2 Reuse-based Attacks

Address mappings are randomized so that there is only a probability that an arbitrary A

and V will collide in the STBPU. Even though A and V are mapped with R1..4,t,p, the

probability that attacker branch A collides with victim branch V in the STBTB/STPHT

is not bound by birthday attack complexity because V is a static, specific address. The

probability of collision is P (A ⇒ V ) = (1
I )( 1

TO ). Note, we break up the probability that

A and V are in the same set vs. the probability that A and V have matching tag and

offsets because tag/offset comparisons are only done if A and V are in the same set. This

adds uncertainty for reuse-based side channels where the attacker wishes to determine the

direction of V since a lack of misprediction by A or V could mean that A and V do not

collide, or that V was not taken. To increase the probability that an arbitrary A collides

with a static V , the attacker can execute a set of branches SB = {b1, ..., bn} where n is large

so that one branch in SB might collide with V . The probability that one of the branches

in S collides with V is P (SB ⇒ V ) =
∑n
i=1 P (SBi ⇒ V ). However, noise is added

using this method because it is possible that branches in SB will collide with each other.

The probability that two branches in SB collide can be approximated with birthday attack

complexity because the branches in SB are arbitrary.

In order to ensure that no branches in SB collide with any other branch in SB, the

attacker execute the following steps: i) Choose a new branch bnew with a new address in

attacker’s address space. ii) For every branch bi in SB , execute bi and bnew. iii) If no MISP.

between bi and bnew, SB = SB ∪ {bnew}. In order to achieve a 50% probability of collision

between A and a branch in SB, the size of SB must be ITO
2 . The number of MISPs M

and evictions E generated whilst generating SB of size n = ITO
2 can be approximated as

follows:

M ≈
n∑
i=0

j=i∑
j=0

1√
π
2 I

· 1√
π
2TO

= n(n+ 1))
2
√

π
2 I ·

√
π
2TO

E ≈ ITO

2 − IW

(4.2)
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Note the reuse-based side channel attacks on PHT do not generate evictions. The size

of the STBTB is IW which is significantly smaller than ITO
2 , so entries in the BTB will

constantly be evicted as the attacker grows SB.

Attacks such as BranchScope [44] and BlueThunder [62] are viable against processors

using hybrid directional predictors largely due to the inclusion of a base directional predictor

in these hybrid BPUs. Due to the complexity of TAGE tables and Perceptron weights,

it is significantly easier to maliciously modify the base directional predictor than the

complex TAGE/Perceptron structures. Since the remapping mechanisms used in our

TAGE/Perceptron structures are different than the remapping functions used for the base

directional predictor, little information is gained by an attacker observing mispredictions

from both the base and complex directional components. Due to A1, an attacker will not

know which TAGE bank or Perceptron weight set produced a prediction. The thresholds

for re-randomization stemming from mispredictions from the directional predictor are based

on the least complex attack on the directional predictor. More complex attacks will be

affected by re-randomization to a greater extent.

4.5.1.3 Same Address Space Attacks

Recently discovered same address space attacks [164] are classified as target injection

attacks, but in this case both A and V are located inside the attacker’s address space. As

such, encrypting the target of A with φa provides no security because V will decrypt τA

with φa. However, due to Ri, there is only a probability that A and V will collide; this

probability is the same as for reuse-based attacks. Therefore, the number of mispredictions

and evictions generated while performing a same address space attack are also approximated

by Equation (4.2).

4.5.1.4 Eviction-based Attacks

The attacker cannot deterministically create BTB eviction sets without knowing ψa since

address mappings change when ψa is re-randomized. With Wstbtb ways, detecting an

eviction in an arbitrary set requires Wstbtb + 1 colliding branches (same index, different tag
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and/or offset). The attacker wants to fill STBTB sets so that if V is executed, it disturbs

one of the attacker’s primed sets. To increase the chances that V will enter a primed

set, the attacker must prime as many sets as possible. Assuming the ideal case when the

attackers does not have conflicts between their own branches, they need to cover P ∗ I sets

to achieve P probability of a successful attack. For example, the probability that A enters

the same set as a static V is 1
I , so to have a 50% chance of priming the set V enters, the

attacker must prime I
2 sets. Naïvely, the probability of randomly guessing Wstbtb branches

to form a single set of branches Se that enters the same STBTB set is:

P (Se) = 1
IWstbtb−1 (4.3)

Since this probability is not favorable, the attacker could apply a fast algorithm

GEM [116] to construct every eviction set. The attackers uses GEM because bottom-up

strategies like PPP becomes less efficient without a partitioned randomized structure [114]

or specific cache conditions [24, 28, 139]. We assume the ideal scenario for the attacker is

when most of the branches tested follow a perfect uniformity. In this case, given a particular

branch, the probability to have W branches belonging to the same set is directly related to

the total number of test entries. For instance, there is a 50% probability that in a group of

IW
2 branches that at least W branches share the same index. Thus, in order to achieve P

attack rate, the attacker needs to test at least PIW branches as the initial set since the

total attack lines in L in GEM. (E.g., L > 44 for an efficient GEM in [116]). With the

original setting in GEM, the attacker sets the group size G = W + 1 and starts to eliminate

groups of branches. Although the total branch accesses will be approximately 2.3 ·W · L,

the total eviction number will be less as the majority of the probe during each iteration

will be hit. Since the probability that each group will produce an eviction is approximately

equal to 1 − 1/e. The evictions generated by testing will be negligible as (W + 1) · 1 − 1
e · n

since the total rounds n for GEM converge on the list of conflicting lines are relatively

small. However, when first placing L branches, the attacker has to trigger the same amount
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of evictions. Summarizing the procedure to construct required eviction sets above, we can

now approximate evictions numbers generated whilst building sets for P attack rate as

follows:

E ≈ PI × (PIW + (W + 1) × (1 − 1
e

) × 3) (4.4)

4.5.1.5 Re-randomization Thresholds for Baseline Model

STBPU has the same parameters as the baseline Intel Skylake BPU. The BTB has 8 ways

and 512 sets. The stored entries have a compressed 8-bit tag and a 5 bit offset. The PHT

has 1 way and 214 sets. Using Equation 4.2, the number of mispredictions and evictions an

attacker will trigger before a successful reuse-based side channel attack on BTB is 6.9 × 108

and ≈ 221, respectively. Correspondingly, for a PHT reuse-based side channel, the number

of triggered mispredictions is ≈ 8.38 × 105. For a BTB eviction-based side channel, the

average number of triggered evictions is I
2 or 5.3×105 per Equation 4.4. For Spectre V2 and

SpectreRSB, the number of triggered mispredictions is ≈ 231. To prevent attacks, we use

the lowest misprediction and eviction thresholds as the upper bounds for re-randomization

of ST when evaluating the performance of STBPU.

4.5.1.6 Denial-of-Service Attack on STBPU

While the primary goal of a typical attacker is to reveal some sensitive data via a side

channel or speculative execution attack, they can also attempt to perform a denial-of-service

(DoS) attack. In this attack, the goal is to cause an abnormal slowdown of a victim process

by triggering excessive branch mispredictions. We consider two DoS attack scenarios: i)

Eviction-based: attacker attempts to evict from BPU data associated with a branch that is

critical for the victim’s performance. ii) Reuse-based: attacker fills BTB with bogus data

hoping to make the victim speculatively execute code at a wrong address causing a delay

due to the recovery from incorrect speculative execution. On high level, STBPU makes

both of these attacks more challenging because they rely on branch instruction collisions

which are difficult to create in STBPU. Now we will discuss each attack in more detail.
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STBPU cannot eliminate the possibility of the first attack because, in STBPU, internal

data structures such as BTB remain to be shared. However, the attack becomes more

difficult to carry out with STBPU. Since the victim and attacker are guaranteed to use

different STs, the attacker must default to a brute force. Due to unknown branch-to-BTB

mappings, finding eviction sets becomes a difficult task. Since BTB is a set-associative

structure, to guarantee eviction of a certain entry, the attacker needs to find n branches

mapped into the same set, where n is the number of ways in BTB. Since the attacker is

blind, the attacker must rely on constantly executing a large number of branches hoping to

evict the victim’s entries.

The second attack is very difficult in the case of STBPU. In order to cause a hit in BTB,

the attacker’s and victim’s branches need to have the same index, tag, and offset after they

are remapped by STBPU mechanisms with different STs. Based on our analysis above,

such an event is unlikely to happen. Moreover, because the stored address is encrypted

with the ST of a different process, the predicted address would most likely point to an

invalid address. Thus, erroneous speculative execution would not happen.

4.6 Evaluation of STBPU Design
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Figure 4.3: Overall branch prediction accuracy: STBPU against other secure BPU models

Evaluating BPU design under realistic conditions is a challenging task. Firstly, sharing

BPU resources creates various possibilities for branch conflicts, which directly affect pre-

diction accuracy. Moreover, microcode-based protections, such as Intel’s IBRS and IBPB

are triggered by system events such as mode and context switches. These mitigations can

flush BPU resources to prevent BPU training or state leakage between user and kernel
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processes. Workloads that involve frequent system calls and interrupts may experience

performance degradation and negatively affect other programs executing on the same core.

Workloads involving frequent system calls and interrupts may see performance degradation,

also can potentially affect other programs executing on the same core. Contrarily, standard

benchmark suites, often compute-bound and not subject to frequent system or library

calls, may fall short in reflecting such impacts. Thus, an effective evaluation environment

requires capturing system-wide events and incorporating real applications. A trace-based

simulation is a logical choice for this. Meanwhile, understanding the complex performance

side effects caused by branch mispredictions and evictions require precise performance data

(e.g., IPC) using cycle -accurate simulators. To address the abovementioned aspects, we

evaluate STBPU using two distinct simulation frameworks.

First, we utilize the Intel processor trace (PT) technology to collect large amounts of

branch instruction traces captured from different workloads within the same CPU physical

core, including user applications that cause frequent mode switches and context switches

and the SPEC benchmarks. These traces then will be passed through an in-house BPU

simulator with the BPU baseline found in the Intel Skylake processor. The simulator also

runs different secure models such as STBPU and reports prediction accuracy. Secondly, to

evaluate fine-grained microarchitectural performance effects, we implemented the STBPU

mechanisms inside gem5 [23] and conducted simulations in syscall-emulation (SE) mode

using DerivO3CPU model with configurations that mimic similar modern processors. The

detailed configuration is listed in Table 4.3. All gem5 simulations were performed by

simulating 110 million instructions with a warm-up of 10 million instructions.

ISA Single thread: X86-64, 3.4GHz; SMT: Alpha, 3.4GHz
BPU BTB entries: 4096, 8-way, RAS size: 16
Core 8-issue, OoO, IQ/LQ/SQ entries: 64/32/32, ROB: 192, ITLB/DTLB: 64/64
Cache L1-I/L1-D: 32KB/32KB both 8-way, L2: 256KB 4-way, LLC: 4MB 16-way

Table 4.3: Parameters used in gem5 simulation
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4.6.1 Re-randomization Threshold

In Section 4.5, we demonstrate the misprediction and eviction thresholds for ST re-

randomization when various STBPU attacks have a P attack success rate. For BranchScope

attack, to have a 50% chance of success, the number of triggered mispredictions is estimated

at ≈ 8.38 × 105. For a BTB eviction-based side channel attack, the number of triggered

evictions is ≈ 5.3 × 105. These are the lower-bound numbers of mispredictions and evictions

triggered by any attack discussed in this work. We aim to re-randomize ST well before the

attacker has a reasonable probability of a successful attack. To do so, we utilize results

from the previously discussed security analysis and derive the re-randomization thresholds

as follows. We first denote the attack complexity C as the least number of evictions or

mispredictions that the attack needs to trigger to succeed with a 50% chance. Please note

that we use 50% probability rather than 100% since on average the attacker will succeed

with half the number of attempts needed for the fully exhaustive key search. Let the

variable r be the attack difficulty factor and Γ be the re-randomization threshold. As such,

Γ = r · C. An attack has a 50% success rate when r = 1. For instance, if r = 0.1, then

the re-randomization thresholds for mispredictions and evictions are set to 8.3 × 104 and

5.3 × 104, while 4.15 × 104 and 2.65 × 104 when r = 0.05. For further experiments, we

set r to 0.05 and derive the re-randomization thresholds from this value as it offers strong

security guarantees with a low impact on performance.

4.6.2 STBPU Performance Evaluation

4.6.2.1 Prediction Accuracy with real branch trace

We evaluate the STBPU impact on BPU accuracy and compare it to existing naïve

protections modeled after microcode protections based on flushing or partitioning BPU

resources. To do so, we utilize our trace-based BPU simulator based on Intel PT technology.

It avoids simulating the complex state of microarchitectural components. Instead, it is

designed to allow rapid testing of BPU models using branch traces from a live system
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running a variety of real-world scenarios.

Each simulation instance is collected from an Intel Core i7-8550U machine that captures

traces from a live physical core and includes any OS/library code executed, including

naturally occurring context, mode switches, and interrupts. This allows realistically

simulating complex cross-process BPU effects and assessing how BPU flushing or ST re-

randomization affects performance. To evaluate single-process compute-bound scenarios, we

collected 23 traces from different workloads in SPEC CPU 2017. In addition, we captured

traces from user and server applications, including Apache2 workloads under different

prefork settings, Google Chrome traces when running single or multiple browser workloads,

MySQL server, and OBS Studio.

Introduced in Section 2.1, our baseline BPU model is based on recent reverse-engineering

insights of Intel processors [42, 79, 164, 44, 93, 83]. We applied the ST mechanisms from

Section 4.3.2 to the baseline BPU model as the STBPU implementation. We also created

two models that mimic the baseline model with Intel’s microcode-based protections, namely

µcode protection 1 and 2, modeling IPBP+IBRS protection with and without STIBP. Please

note that microcode-based protections cannot prevent branch collisions from occurring

within the same context. To prevent such collisions, more structural BPU changes are

required. In particular, instead of storing compressed and truncated addresses in BTB, the

full 48-bit address must be stored. As a result, the number of entries the BTB is capable of

storing must be reduced (assuming unchanged hardware budget). We refer to such a model

as conservative, which fully prevents any known collision-based BPU attack by flushing or

partitioning. Note that STBPU achieves the same security level via customizing BPU data

representations, and has better performance.

The result from simulating the above five models is demonstrated in Figure 4.3 where we

aggregate all the effective predictions into a single metric: overall accuracy effective (OAE).

OAE counts a branch correctly predicted if all necessary target and direction predictions

are correct; otherwise, it’s counted as mispredicted. Figure 4.3 shows the overall accuracy of

the various BPU models against the SPEC2017 benchmarks and user applications. STBPU
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demonstrates an average 1.3% overall effective prediction accuracy penalty. For comparison,

the microcode and the conservative BPU models suffer at least around 12% overall accuracy

loss with multiple cases of nearly 30% reduction. With this, we conclude that based on

the BPU accuracy data STBPU outperforms the heavy-handed [56, 144, 145] microcode

protections that utilize flushing and partitioning.

4.6.2.2 Cycle Accurate Evaluation using gem5

Our next evaluation focuses on the comprehensive impact of STBPU on Out-of-Order (OoO)

CPU in terms of cycle accurate performance, evaluating effects of STBPU on advanced

branch predictors, and SMT performance. We tested three advanced BPU models: TAGE_

SC_L_8KB, TAGE_SC_L_64KB [132], and PerceptronBP [68]. To demonstrate the

consistency of accuracy between gem5 and our previous evaluation, we also ported and

tested our baseline model from Section 4.6.2.1. We refer to it as SKLCond. We compared

the direction prediction accuracy between SKLCond in gem5 with our previous baseline

model using the same workloads. We observed on average less than 5% direction prediction

difference which validates our simulator consistency.

We treated the aforementioned four BPUs as baseline models and implemented four

STBPU models. In single process evaluations, we simulated each pair of STBPU models

and their non-ST counterparts across 18 SPEC2017 workloads. Figure 4.4 illustrates the

reduction of direction / target predictions rate and the normalized IPC between STBPU

designs and their non-secure counterparts. We observe all 4 STBPU designs can achieve

less than 2% reduction on average target prediction rate and less than 1.3% reduction on

average of direction prediction rate. The less than 4% average IPC reduction demonstrates

the high effectiveness of STBPU designs.

We used the same eight BPU models in our gem5 SMT simulations. Instead of running

a single workload at a time, we grouped the individual workloads in pairs and simulated

these pairs in SMT mode. In order to accurately evaluate the STBPU impacts on overall

throughput, we calculated the Harmonic means (Hmeans) [102] of IPCs since each workload
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is equally valued. Figure 4.5 displays the overall IPC and the impact on accuracy. We

observed the ST_SKLcond models suffer the most in SMT mode. This is because running

tasks in SMT mode introduces more frequent ST re-randomizations. However, the reduction

of throughput is less than 5%. We believe this is because the ST_SKLcond model does

not have a separate threshold register as TAGE models do for TAGE-table mispredictions.

This causes more frequent direction mispredictions as shown in the first chart of Figure 4.5.

This effect further affects the overall performance. On the other hand, the advanced BPU

models overall retain their efficiencies with minimized accuracy reduction and throughput

slowdown.

4.6.2.3 Aggressive ST Re-randomization and Performance

It is common to see a constant arms race between protection mechanisms and more advanced

attack algorithms [114, 116] and new hardware vulnerabilities [164, 123], potentially improv-

ing attack rates by orders of magnitude. STBPU can withstand faster attack algorithms

by tightening the ST re-randomization thresholds. While enhancing the BPU resilience

agaisnt attacks, the more aggressive ST rerandomization frequencies can also affect the

prediction accuracies. To study such performance impact, we experimented with lowering

the r parameter. This is equivalent to assuming any future threats increase the attack

efficiency to 10 times, 100 times, and even more.

To demonstrate an extreme case, we select an advanced BPU model that is sensitive to

branch history loss and thus re-randomizations. We test it under SMT scenarios that are

more prone to branch mispredictions and evictions. Figure 4.6 demonstrates how reducing

the r parameter affects the performance of the TAGE_SC_L BPU protected with STBPU.

It shows that the thresholds can be safely reduced and maintain accuracy above 95%.

However, setting the threshold too low results in ST re-randomizations happening after

every few hundreds of mispredictions or evictions. This practically ceases any BPU training.

We argue that the C2 constraint (uniformity) of remapping prevents STBPU from

interfering with the nature of BPUs and applications having high prediction rates. On
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the other hand, without uncovering both attacker and victim’s STs, an attacker tends to

pollute his own program with deliberately generated events like evictions, resulting in more

frequent ST updates.

4.7 Related Work

Branch collision-based attacks can be mitigated in different ways, resulting into different

scope of protection. For instance, to avoid leaking secret key bits from RSA secret key

operation, one can rewrite the exponentiation calculation code to avoid secret-key dependent

branches [14]. On the other hand, when flushing branch predictor on context switch attacks

such as Spectre v2, Jump-over-ASLR and other attacks can be fully mitigated. To this end

we chose to compare STBPU to the existing mitigations, other hardware-based defenses

and BPU designs that can deliver similar protection scope i.e., being capable of suppressing

both side channel and speculative execution attacks.

4.7.1 Existing Microcode-based Mitigations

CPU manufacturers such as Intel provide microcode update to protect exising CPUs agaisnt

speculative execution attacks. These Technologies include Indirect Branch Restricted

Speculation (IBRS), Indirect Branch Prediction Barrier (IBPB), and Single Threaded

Indirect Branch Prediction (STIBP) [64]. IBRS prevents higher level processes from

speculating with entries provided by lower level processes by flushing. IBPB provides

protection by flushing the contents of the BPU on context switches. While effectively

removing the interference from the branch prediction on other processes, flushing the BPU

removes useful history often come with a very costly performance overhead [137, 113]. As

a result, in practice, they are not used to their full extent and are only enabled by the OS

in critical cases such as protecting kernel or a handful of processes. Additionally, recent

research demonstrated exploitable branch collisions within same address space [164, 123].

Therefore enforcing security only during context switch is not complete. STIBP logically

segments the BPU so that branch prediction of on the same physical assemblage does not
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interfere with each other. In contrast, STBPU works regardless of context switch activity.

We choose to compare performance of STBPU to protection mechanisms derived from such

protections as they, when properly activated, can provide strong BPU isolation.

4.7.2 Other Defense Directions against Spectre Attacks

While many defenses have been proposed from different directions, they also all suffer from

various limitation such as stopping too few Spectre variant or BPU attacks or drawing too

much performance overheads.

CEASER [115], SCATTERCACHE [156], and RPCache [153] use hardware supported

block ciphers to change addresses mapping in cache; STBPU remappings deviate from

these works with better protection range and fits in more restricted hardware timing

constraints. SafeSpec [71] introduces multiple shadow structures to hide the effects of

erroneous speculative execution. The effects of speculation are only visible once speculation

has been confirmed to be correct. InvisiSpec [160] prevents attackers from seeing changes

to caches as a result of speculative execution. Similar to the other protections that focus

on monitor and control data visibility in and out of cache, these cannnot stop a range

of the attacks through other covert-channels [123]. Given that, STBPU does not use the

cache as the defensive vector, and instead, draws its security from continually changing

how addresses are mapped and how branch look-up prediction information is stored in

the BPU. Perspectron [105] identifies Spectre and cache based attacks before execution

through the use of perceptorns, but does not provide any follow-up protections. Conditional

Speculation [88] splits up condition branches into safe and unsafe instructions only allows

speculative execution of safe conditionals while STBPU allows safe acceleration on all

branches. NDA [155] protects against Meltdown and Spectre attacks by preventing data

from propagating to their dependencies speculatively. This approach differs from our design

as it does not change the data representations or mappings in the BPU, only what happens

after a branch is taken.
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4.7.3 Existing Secure Designs of BPU

Several previous academic works proposed BPU modifications to protect against side

channel and speculative execution attacks. BRB [149] stores and reloads the entire history

of the directional predictor for each process, effectively mitigating PHT collision-based

attacks such as BranchScope. BSUP [85] first encrypts the PC and then encrypts the

entries of BPU, making it unsuitable for SMT processors.

Zhao et al. [168] encode branch contents (directions and destination histories) and

indexes using thread-private random numbers to achieve isolation between threads or

privilege levels. Their approaches re-generate random numbers upon context and mode

switches, which cannot defend against the transient execution attacks from same-address-

space [164, 158]. Besides, our work implements ST re-randomization based on BPU events

allowing efficient branch history retention.

The BPU in the Samsung Exynos processor is also protected with XOR-based encryption

as branch history data enhancement [52]. Since this mechanism aims to prevent speculative

execution attacks such as Spectre variant 2, Exynos only encrypts stored branch targets of

indirect branch instructions and returns. However, other forms of branch collisions may still

result in side channel leakage [168]. Additionally, in Exynos, an output of the hash function

serves as a key for encrypting branch target data. It is derived from a number of process and

machine-specific inputs. In our work, the OS is given more flexibility for managing the ST,

which allows selective branch history sharing, adjustment of re-randomization frequency,

and enforcing BPU isolation for various types of software entities such as sandboxes and

libraries.

4.8 Conclusions & Accessibility

We presented the STBPU, a safe branch prediction design that defends against BPU side

channel and speculative execution attacks. We performed an systematization of BPU

related attacks and provided a detailed security analysis agaisnt the most recent attack
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models. While retaining secuity, we demonstrate the high effeciency across both real-world

models and advanced models. We plan to release our simulation tools, gem5 modification,

and more details in STBPU desgin, evaluations, and hw estimation.

We then evaluated the STBPU against the baseline Intel Skylake BPU with/without

current microcode protections, and against a theoretical conservative BPU design that

has similar security benefits to STBPU. Finally, we added out STBPU principles into

modern branch predictor designs. Out 8KB and 64KB ST-TAGE-L-SC models achieved

high performance with less than 2% IPC overhead, and our 64KB ST-Perceptron model

received less that 11% overhead. This work has been summarized and published in DSN

2022 [165].
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Figure 4.4: STBPU single workload evaluation in gem5
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Figure 4.5: Gem5 Multi-workload (SMT) Evaluation of STBPU
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Figure 4.6: Effects on performance when using more aggressive re-randomization thresholds
with the TAGE_SC_L_64KB BPU, result are averaged from 42 combinations of SPEC CPU
2017 workload pairs. The X-axis represents the r parameter.
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Chapter 5

Conclusion

This dissertation has presented a comprehensive exploration of transient execution

vulnerabilities, side-channel attacks, and defenses, with a particular focus on the role of

branch prediction units (BPUs) in modern microprocessors. Through a detailed examination

of the mechanisms behind branch prediction and speculative execution, we have uncovered

new vulnerabilities and proposed innovative defense mechanisms. Our work is situated

within the broader context of ongoing efforts to secure microprocessors against a range of

speculative execution attacks and side-channel attacks, which have highlighted the security

challenges posed by modern microarchitectural optimization techniques.

5.1 Main Contributions

Our research contributions can be summarized as follows:

1. Exploring Branch Predictors for Constructing Transient Execution Tro-

jans: We have identified previously unknown vulnerabilities within BPUs that can

be exploited to construct transient execution trojans. By reverse-engineering branch

predictors in recent x86_64 processors, we have unveiled hidden branch predic-

tion mechanisms that allow for the creation of these trojans, demonstrating their

stealthiness and practicality.
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2. STBPU: A Reasonably Secure Branch Predictor Unit: We proposed the Secret

Token Branch Predictor Unit (STBPU), a novel BPU design that offers robust defense

against collision-based speculative execution attacks and BPU side channels. STBPU

incorporates unique branch representation for each software entity, ensuring strong

isolation and significantly reducing the potential for speculative execution attacks

without imposing substantial performance overheads. Through security analysis

and performance evaluation, we have demonstrated the effectiveness of STBPU in

defending against a wide range of attacks while maintaining minimal performance

impact.

5.2 Implications and Future Directions

The findings from this dissertation have implications for the design and security of future

microprocessors. By highlighting the vulnerabilities within BPUs and proposing effective

defenses, we contribute to the ongoing efforts to balance performance optimizations with se-

curity requirements. The STBPU design, in particular, represents a direction for developing

secure microarchitectures that do not compromise on performance.

For future research, several directions are worth exploring:

• Further Refinement of STBPU: While STBPU represents a solution in BPU

security, further research could further explore optimizations to enhance its perfor-

mance and security. Additionally, the adaptability of STBPU to other speculative

execution vulnerabilities beyond those addressed in this dissertation requires further

investigation.

• Broadening the Scope of Secure Microarchitecture Designs: Beyond BPUs,

other components of the CPU microarchitecture may also harbor vulnerabilities that

could be exploited through speculative execution attacks. Future work should aim to

identify these vulnerabilities and develop comprehensive defense mechanisms.

• Cross-layer Security Approaches: As demonstrated by the complexity of spec-

ulative execution attacks, securing modern microprocessors requires cross-layer ap-
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proaches and in-depth defenses that spans hardware design, system software, and

application software. In comparison to proposing future hardware design, securing

existing and legacy devices is also critical and challenging. Integrating the insights

from this dissertation with efforts at other layers of the computing stack presents a

promising research direction.

In conclusion, this dissertation contributes to the critical task of securing microprocessors

against speculative execution attacks and CPU side-channel attacks. By focusing on the

vulnerabilities associated with branch prediction and speculative execution, we have shed

light on the challenges and opportunities for designing secure microarchitectures. The

proposed STBPU design represents a direction in the quest for secure, high-performance

computing. As the computing landscape continues to evolve, it is imperative that security

considerations remain at the forefront of microprocessor design and optimization strategies.
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