
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2024

Automated Bug Report Management To Enhance Software Automated Bug Report Management To Enhance Software

Development Development

Yang Song
College of William and Mary - Arts & Sciences, songyang9446@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Song, Yang, "Automated Bug Report Management To Enhance Software Development" (2024).
Dissertations, Theses, and Masters Projects. William & Mary. Paper 1727787973.
https://dx.doi.org/10.21220/s2-wk2w-hn09

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1727787973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1727787973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-wk2w-hn09
mailto:scholarworks@wm.edu

Automated Bug Report Management to Enhance Software Development

Yang Song

Jiamusi, Heilongjiang, China

Bachelor of Mathematics, Sichuan University, China, 2016

A Dissertation presented to the Graduate Faculty of
The College of William and Mary in Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary in Virginia
August 2024

Copyright by Yang Song 2024

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Yang Song

Approved by the Committee, May 2024

Committee Chair

Assistant Professor Oscar Chaparro, Computer Science

William & Mary

Associate Professor Robert Michael Lewis, Computer Science

William & Mary

Professor Denys Poshyvanyk, Computer Science

William & Mary

Professor Weizhen Mao, Computer Science

William & Mary

Assistant Professor Kevin Moran, Computer Science

 College of William & Mary

 College of William & Mary

 College of William & Mary

 College of William & Mary

University of Central Florida

Research approved by

Protection of Human Subjects Committee

Protocol number(s): PHSC-2019-01-22-13374

PHSC-2020-04-27-14262

Date(s) of approval: 01/22/2019

04/27/2020

ABSTRACT

Bug report management is crucial yet challenging process that affects the efficiency
of software development process. It involves reporting, triaging, detecting dupli-
cates, assigning, localizing, fixing bugs, and thorough verification. The high volume
and variety of bug reports complicate these tasks, highlighting the need for in-
novative solutions to improve the process and boost development efficiency. This
dissertation explores the potential of automating the bug management process to
optimize the effectiveness of software development and maintenance. It focuses on
three key stages of bug management: reporting, assignment, and localization, pre-
senting four innovative solutions for these phases.

First, it discusses the challenges faced by developers due to poor-quality bug reports
on GitHub, often lacking crucial details. To address this, the dissertation leverages
machine learning to automatically analyze user-written bug reports, identifying key
elements of the software system. It aims to automate bug report analysis and inform
reporters to provide the missing information timely, thereby enhancing the quality
of bug reports and aiding developers in bug triage and resolution.

Second, the dissertation proposes an interactive bug reporting system for end-users,
implemented as a task-oriented chatbot named Burt. This system guides users
through the bug reporting process, offering real-time feedback on each element of
a bug description and interactive suggestions to bridge the knowledge gap between
end-users and developers. It is designed to make bug reporting more engaging and
user-friendly while ensuring the generation of high-quality, informative reports.

Third, the dissertation investigates the efficacy of automated methods for recom-
mending developers for bug reports in open-source software projects. It reveals that
these methods do not perform consistently across different reports, leading to a pro-
posal for using the most effective method for each report, assessed through machine
learning. The findings suggest a gap in the understanding of real-world bug assign-
ment processes and call for further research.

Lastly, the dissertation explores different deep learning models that can automati-
cally localize buggy UI screens and components from the bug descriptions of mobile
apps. This approach is critical for understanding, diagnosing, and resolving under-
lying bugs in GUI-centric software applications.

Together, these contributions present a comprehensive strategy for enhancing the
automated bug report management process, promising significant improvements to
the efficiency and effectiveness of the software development process.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures ix

1 Introduction 2

1.1 Contributions . 5

1.1.1 Automated Bug Report Analysis and Quality Assessment . . . 5

1.1.2 Interactive Bug Reporting for End-Users 6

1.1.3 Automated Buggy Mobile App UI Localization 7

1.1.4 Bug Assignment Approaches Recommendation 8

1.2 Dissertation Organization . 9

2 Background 10

2.1 Bug Report Management . 10

2.2 Bug Reporting Tools . 11

2.3 Bug Report Quality Analysis . 12

2.4 Interactive Bug Reporting Systems . 13

2.5 UI Representation Learning . 14

3 Automating Bug Report Analysis and Quality Assessment 16

i

3.1 Introduction . 17

3.2 BEE’s Approach . 18

3.2.1 BEE’s Usage Scenario and Features 18

3.2.2 Under the Hood of BEE . 20

3.2.2.1 Issue Classification . 20

3.2.2.2 Sentence Classification 21

Sentence representation 21

Classification models . 21

3.2.2.3 Detecting Missing Elements 22

3.2.3 Implementation . 22

3.3 Evaluation . 23

3.3.1 Data . 23

3.3.2 Methodology . 24

3.3.3 Results . 25

3.4 Related work . 26

3.5 Conclusions and Future work . 27

4 Interactive Bug Reporting for (Android App) End-Users 29

4.1 Introduction . 30

4.2 BURT: A Chatbot for Bug Reporting 32

4.2.1 Graphical User Interface (GUI) 33

4.2.2 Natural Language Parser (NL) 34

4.2.3 Dialogue Manager (DM) . 36

4.2.3.1 Dialogue Flow for Bug Element Quality Checks (OB/E-

B/S2R) . 37

4.2.3.2 Dialogue Flow for Suggesting S2Rs 38

4.2.3.3 Collecting Input Values 39

ii

4.2.4 Report Processing Engine (RP) 39

4.2.4.1 App Execution Model 39

4.2.4.2 Dialogue Quality Processor 41

4.2.4.3 S2R Response Predictor 44

4.2.5 BURT Implementation . 44

4.3 Empirical evaluation design . 45

4.3.1 Apps and Bug Dataset . 46

4.3.2 RQ1 & RQ2: BURT’s User Experience 47

4.3.2.1 BURT Bug Reporter Recruitment 47

4.3.2.2 Bug Assignment and Reporting 48

4.3.2.3 BURT’s User Experience Assessment 48

4.3.3 RQ3: BURT’s Intrinsic Accuracy 49

4.3.4 RQ4: BURT’s Bug Report Quality 49

4.3.4.1 Itrac: A Web Form for Bug Reporting 50

4.3.4.2 Bug Reporting with Itrac 50

4.3.4.3 Measuring Bug Report Quality 51

4.4 Results and Analysis . 51

4.4.1 RQ1: BURT’s Perceived Usefulness 52

4.4.2 RQ2: BURT’s Perceived Ease of Use 54

4.4.3 RQ3: BURT’s Intrinsic Accuracy 55

4.4.4 RQ4: Bug Report Quality . 57

4.5 Limitations and Threats to Validity 59

4.6 Related work . 61

4.7 Conclusions . 63

4.8 Data-Availability Statement . 63

5 Recommending Bug Assignment Approaches for Individual Bug Reports 64

iii

5.1 Introduction . 65

5.2 Study 1: Bug Assignment on Individual Bug Reports 67

5.2.1 Dataset . 67

5.2.2 Bug Assignment Approaches 68

5.2.3 Metrics and Methodology . 69

5.2.4 Results . 70

5.3 Study 2: Recommending the Best Performing Approach 71

5.3.1 Model Features . 71

5.3.2 Models and Methodology . 72

5.3.3 Results and Discussion . 73

5.4 Threats to Validity . 75

5.5 Related work . 75

5.6 Conclusions and Future Work . 76

6 Automated Localization of Buggy Mobile App UIs from Bug Descriptions 77

6.1 Introduction . 78

6.2 Background, Problem, and Motivating Example 82

6.2.1 Bug Descriptions and App UI Screen/Components 82

6.2.2 Problem and Motivating Example 84

6.3 Study 1: Buggy UI Localization . 86

6.3.1 Retrieval Approaches . 86

6.3.2 Synthetic Dataset Construction 89

6.3.2.1 Synthetic OB Generation 90

6.3.2.2 Synthetic Retrieval Data 93

6.3.3 Real Dataset Construction . 94

6.3.3.1 Bug Report Selection 95

6.3.3.2 Bug Description Annotation 96

iv

6.3.3.3 Retrieval Corpus Collection 96

6.3.3.4 Ground Truth Construction 98

6.3.3.5 Summary of the Collected Retrieval Data 99

6.3.4 Approach Execution . 100

6.3.4.1 GPT-4 Customized Prompting and Execution 100

6.3.4.2 Model Fine-tuning and Execution 106

6.3.5 Evaluation Metrics . 107

6.3.6 Results . 108

6.3.6.1 RQ1: Screen Retrieval Results 108

6.3.6.2 RQ2: Component Retrieval Results 111

6.3.6.3 RQ3: Results vs. query qualities & retrieval difficulties 114

6.3.6.4 Discussion . 116

6.4 Study 2: Improving Bug Localization 120

6.4.1 UI-based Bug Localization in Code 121

6.4.2 Using Buggy UIs for Bug Localization 122

6.4.3 Approach Execution, Dataset, and Metrics 124

6.4.4 Results . 125

6.5 Threats to Validity . 126

6.6 Related Work . 127

6.7 Conclusions . 128

7 Conclusion and Future Work 129

7.1 Main Contributions . 130

7.2 The Vision for Future Work . 131

Bibliography 133

v

ACKNOWLEDGMENTS

Above all else, I would like to express my deepest appreciation to my advisor,
Professor. Oscar Chaparro, whose guidance, patience, and encouragement have
been invaluable throughout this journey. His vast knowledge, profound insights,
and tireless dedication to excellence have been an inspiration to me. I am
immensely grateful for his patience, for challenging me to think critically, and for
the countless hours he has spent reviewing and providing feedback on my work. In
addition to his academic guidance, his kindness and wisdom have made a world of
difference in my personal life. He has been a steady source of support, advice, and
encouragement through the ups and downs. I am incredibly fortunate to have had
him as not only the best advisor I’ve ever known, but also as an role model for my
future career. This dissertation would not have been possible without his
invaluable support, and for that, I am profoundly grateful.

I would like to thank my Ph.D. committee members, Professor Oscar Chaparro,
Professor Robert Michael Lewis, Professor Denys Poshyvanyk, and Professor
Weizhen Mao for their extremely valuable and constructive feedback.

I would also like to extend my thanks to my collaborators Junayed Mahmud, Ying
Zhou, Antu Saha, Nadeeshan De Silva, Professor Kevin Moran, Professor Denys
Poshyvanyk, Professor Andrian Marcus, and many others. I’m grateful to
collaborate with these excellent researchers and to have received their valuable
advice.

Finally, I would like to thank my family and friends for standing by me with
constant support and encouragement all the way. In particular, I want to thank
my cousin Ye Song for her steadfast support. And I must give a special shout-out
to my constant companion, Corky, my beloved cat, who has been my loyal
companion throughout this long, lonely and hard journey. Thank you, Corky!

vi

In loving memory of my mom, your love has always been my spiritual support

throughout my life. I will always love and miss you with all my heart.

This work is dedicated to you.

vii

LIST OF TABLES

3.1 Detection performance of OB, EB, and S2R sentences and missing

elements in bug reports . 26

4.1 Apps and bug dataset . 47

4.2 Questionnaire for evaluating BURT’s user experience 49

4.3 Quality assessment results for bug reports (BRs) collected by Burt

and Itrac . 54

4.4 S2R quality by bug reporting experience 58

5.1 Bug assignment performance for each system 70

5.2 % of reports for which the approaches perform best 70

5.3 Bug assignment performance on the test set 74

6.1 Statistics of the synthetic dataset of OB/bug descriptions 92

6.2 Examples of templates used to generate synthetic OB/bug descriptions 94

6.3 Dataset statistics for SL and CL . 99

6.4 Screen/component retrieval results on synthetic data 108

6.5 Screen Localization (SL) Results . 110

6.6 Component Localization (CL) Results 114

6.7 Bug Loc. Performance via Buggy UI Localization 126

viii

LIST OF FIGURES

3.1 Bee’s feedback generated for bug report #95598 from Eclipse [2],

which is submitted on GitHub [1]. 28

4.1 BURT’s graphical user interface . 34

4.2 Burt’s dialogue flow for quality checking 36

4.3 Dialogue Flow for S2R Predictions . 38

4.4 User experience results for BURT (Q1-Q5) 51

6.1 Bug report #191 from the WiFi Analyzer app [40] 83

6.2 Example of the UI screen/component localization process for an OB/bug

description of the WifiAnalyzer app [40]. 83

6.3 The prompt template for screen localization 104

6.4 The prompt template for component localization 105

6.5 Buggy screen of a bug from Aegis App [5] 112

6.6 SL results for different query quality levels 115

6.7 CL results for different query quality levels 116

6.8 SL results for easy- and hard-to-retrieve tasks 117

6.9 CL results for easy- and hard-to-retrieve tasks 118

6.10 Buggy screen of a bug from GnuCash App [4] 119

ix

Automated Bug Report Management to Enhance Software

Development

Chapter 1

Introduction

The development and maintenance of software is a complicated process. Regardless of the

advancements made in technology, software defects, also known as bugs, pose significant

challenges to the efficiency of software development processes. The bug report or bug

management process plays a crucial role in addressing these problems by providing a

systematic process from identifying bugs to fixing bugs. The lifecycle of software bug

management is a comprehensive process, integral to the development and maintenance of

high-quality software systems [152]. This process consists of a series of important stages.

It starts with the initial documentation or reporting of bugs, followed by a bug triage phase

to assess their priority and severity, the detection of duplicate bug reports, and assigning

the bugs to appropriate developers. After successfully reproducing the bug, it goes into the

resolution phase. The resolution process starts with pinpointing the location of the bug

within the software program, known as bug localization. This resolution then undergoes

change design and impact analysis, leading to its implementation, which may include code

refactoring. The cycle concludes with thorough verification and validation through code

review and testing, and ends with the delivery of the solution via version control systems,

building, deployment, and integration into the existing software environment [205, 124,

172, 239].

The bug management process is overwhelmed by the high volume and diversity of

2

CHAPTER 1. INTRODUCTION 3

bug reports, complicating tasks like reporting, assignment, localization, and resolving.

This dissertation focuses on the potential of automating the bug management process to

improve the efficiency of software development and maintenance, with a particular focus

on the phases of the bug management lifecycle: bug reporting, bug assignment, and bug

localization.

Bug Reporting Traditional bug reporting processes need users or testers to manually

report a software defect [15, 20, 24, 29, 33, 34, 68]. This manual process, however, can be

inefficient and error-prone, which may result in low-quality bug reports that hamper the

bug resolution process. Over the past few years, research on automated bug reporting sys-

tems has made substantial progress [104, 161, 111, 123, 174, 163]. The goal is to minimize

human errors and increase efficiency by enabling automatic identification, documentation,

and reporting of software defects. Despite these advancements, there are still several chal-

lenges to overcome, and a considerable research gap exists in the understanding, design,

and application of these systems. They were usually complex, creating a high barrier of

entry for individuals with little or no experience. Moreover, they merely provided struc-

tured tools for the reporting process, without any interactive support to assist the users,

making the process less engaging and user-friendly for users.

The dissertation is motivated by this context to address the challenges by investi-

gating various methods for automating the bug reporting process. It seeks to provide a

comprehensive understanding of the design and implementation of automated bug report-

ing systems and assesses their impact on software development efficiency.

Bug Assignment Complex software systems, comprising multiple modules or compo-

nents, encounter numerous bugs and require maintenance by a large number of developers

each with their own unique skills and knowledge. Manual bug assignment for a large-

scale software system is not straightforward, is prone to human errors and inconsistencies,

and often delays bug resolution, thus prompting the need for automated assignment tech-

niques [239, 57, 197]. A variety of automated methods employing machine learning, deep

learning, and information retrieval techniques have been developed to facilitate bug as-

CHAPTER 1. INTRODUCTION 4

signment, aiming to match bug reports with suitable developers by analyzing the content

and context of each report [58, 199, 204, 214]. However, these methods often adopt a gen-

eralized approach that may not cater effectively to the unique characteristics of individual

reports, leading to variability in their effectiveness.

The dissertation is motivated by this context to address the challenges by conducting

an empirical study on different automated bug assignment techniques. It aims to assess

the feasibility and efficiency of autonomously identifying and employing the most effective

assignment technique for each specific report.

Bug Localization Researchers have been working to automate bug localization by

developing approaches that automatically retrieve and rank potentially buggy files or

code snippets, often treating the task as a text retrieval problem [53, 110, 148]. The

fundamental limitation of these methods lies in the assumption that bug reports and

source code exhibit term overlap, an assumption undermined by the considerable semantic

gap between the bug report descriptions and code terminology. This challenge becomes

particularly evident in the context of mobile applications [156], where bug resolution

crucially involves the identification of the UI screens and components involved in the bug

(Buggy UI Localization). Given the UI-centric nature of mobile apps, accurately locating

the buggy UI elements is essential for effective bug resolution, highlighting the unique

requirements and challenges of bug localization within this context.

This dissertation explores whether it is possible to improve Text Retrieval-based bug

localization by information from the graphical user interface (GUI). It investigates different

methods for automatically locating buggy UI elements based on bug descriptions, and also

the effectiveness of those buggy UI localization methods to improve the traditional bug

localization approaches.

In this dissertation, we introduce four works that target to address the above chal-

lenges. Firstly, we leverage machine learning to automatically analyze user-written bug

reports and provide feedback to reporters and developers. Secondly, we propose an inter-

active bug reporting system for end-users, which provides guided reporting of essential bug

1.1. CONTRIBUTIONS 5

report elements, instant quality verification, and graphical suggestions. Thirdly, we inves-

tigate how effective automated bug assignment approaches are in suggesting developers

for bug reports, emphasizing the need for further research to deepen our understand-

ing of developers’ bug report assignment methods and to enhance automated bug triage

techniques. Finally, we empirically explore how deep learning models can automatically

localize buggy UI screens and components from the bug descriptions of mobile apps, thus

improving the traditional bug localization approaches.

1.1 Contributions

1.1.1 Automated Bug Report Analysis and Quality Assessment

Bug reports are crucial for developers in software bug identification and resolution [3, 66,

97, 67, 238, 237, 187, 182]. Key elements in these reports include the system’s observed

behavior (OB), steps to reproduce the bug (S2R), and the software’s expected behavior

(EB) [237, 67, 97, 85, 77]. However, the quality of these reports is far from satisfactory,

with many being incomplete, unclear, or lacking in essential details. This was highlighted

in 2016 when developers from over 1.3k open-source projects penned a letter to GitHub,

expressing their frustration at often receiving bug reports without the S2R and system

version [3]. This not only inflates the time and effort developers expend on triage and

fixing tasks but can render bug reproduction and rectification impossible. The core issue is

the absence of a robust feedback and quality verification mechanism within issue trackers.

To address this challenge, we present Bee, a plugin that enhances GitHub’s issue

tracker capabilities. It provides vital feedback to reporters and developers about OB, EB,

and S2R in bug reports. Utilizing machine learning models, Bee analyzes submitted issues,

distinguishing bug reports from enhancement suggestions or questions. It can identify

sentences describing OB, EB, and S2R and detect the omission of these elements. It

informs reporters about missing elements so that they can provide the information timely.

Designed to assist developers by structuring bug descriptions and researchers via a public

1.1. CONTRIBUTIONS 6

web API for various tasks, Bee is universally applicable. It can analyze any bug report

for any software system and is easy to install in any GitHub repository. Bee is designed

to notify reporters of incomplete information in their bug reports, support developers

in bug triage and resolution, and stimulate advancements in research on automated bug

management.

1.1.2 Interactive Bug Reporting for End-Users

Bug report management, a key and expensive task in software engineering, mainly involves

handling bugs that cannot be reported automatically. A significant proportion of these

bugs, typically seen in open-source software, are associated with functional issues that

need manual reporting. To facilitate effective bug triage and resolution, high-quality

bug reports that describe at least the incorrect behavior, steps to reproduce the bug,

and the expected correct behavior are required. However, generating such reports often

presents challenges, primarily due to the knowledge gap between the end-users and the

developers [163, 125]. This gap usually arises from end-users’ lack of understanding of the

software internals and what information developers find essential.

Current bug reporting systems do not adequately address this knowledge gap, as they

often do not provide sufficient guidance on what and how information should be reported,

and lack feedback mechanisms for the information provided by reporters. Consequently,

the onus of providing high-quality information falls on the reporters. We propose that an

interactive reporting solution, such as a chatbot, can help to bridge this knowledge gap

by guiding end-users through the reporting process, providing interactive suggestions and

immediate quality verification. In this work, we introduce a task-oriented dialogue system

for Bug Reporting Burt, designed to provide real-time feedback for each element of a

bug description, guide corrections where needed, and bridge the knowledge gap between

end-users and developers. The proposed system has been evaluated empirically and has

been found to improve the quality of bug reports. This work paves the way for a new

approach to end-user bug reporting, transitioning from static to interactive bug reporting

1.1. CONTRIBUTIONS 7

systems, and is expected to serve as a foundation for a new generation of interactive bug

reporting systems.

1.1.3 Automated Buggy Mobile App UI Localization

The range of tasks associated with bug report management exhibits considerable varia-

tion across different software domains. For mobile apps, one task that is central to fixing

reported bugs is identifying the UI screens and components that cause and/or show a

reported issue (Buggy UI Localization). Given the UI-driven nature of mobile apps, bugs

typically manifest through the UI, hence the identification of buggy screens and compo-

nents is important to localizing the buggy behavior and eventually fixing it. However,

this task is challenging as developers must reason about bug descriptions, which are often

low-quality, and the visual or code representations of UI screens.

This research explores the feasibility of automating the task of Buggy UI Localiza-

tion through a comprehensive study that evaluates the capabilities of two textual and

three multi-modal deep learning (DL) techniques. Buggy UI Localization is critical for

assisting developers during bug triage and resolution and also plays a significant role

in enhancing the effectiveness of existing automated bug report management techniques

[231, 230, 105, 195, 78, 194]. For example, an automated Buggy UI Localization approach

can facilitate the automated replication of reported bugs [231, 230], guide the genera-

tion of test cases to verify if the reported bugs can be replicated [105], and improve the

quality of bug descriptions by aligning them more closely with UI screens/components.

Notably, an automated buggy UI localization approach presents an opportunity for Burt

(Section 1.1.2) to greatly enhance its ability to direct users in reporting bugs, by offer-

ing more precise feedback on UI elements related to the described bugs. Furthermore,

this approach can augment textual bug reports with UI screenshots, assisting develop-

ers in more effectively understanding and resolving issues, and has potential applications

in bug localization and duplicate bug report detection using visual information. Signifi-

cantly, integrating automated Buggy UI Localization with the Burt dialogue system has

1.1. CONTRIBUTIONS 8

a potenitial to significantly improve the system’s ability to guide users in reporting bugs

by providing precise feedback on bug descriptions related to specific UI components.

The study explores the application of textual and multi-modal (visual-textual) deep

learning or large language model (LLM) techniques to Buggy UI Localization, examining

three specific models: two text-based model (SBert [179] and OpenAI-txt-embed [50]),

and three multi-modal learning models (Clip [175], Blip [146] andGPT-4 [48]). To evalu-

ate model effectiveness, we introduced two datasets: a synthetic one for model fine-tuning

and a real dataset for testing, including manual annotations from actual bug reports.

SBert, Clip, and Blip were fine-tuned on the synthetic dataset. Meanwhile, we directly

utilize GPT-4 and OpenAI-txt-embed’s APIs due to their exceptional zero-shot capa-

bilities as OpenAI has not provided the option to fine-tune these models. Our results

demonstrate the effectiveness of DL models, particularly LLMs, for automatically local-

izing buggy UI screens and components from the bug descriptions of mobile apps, while

also highlighting Buggy UI Localization can be useful to automate and improve buggy

code localization approaches.

1.1.4 Bug Assignment Approaches Recommendation

Software projects often face the challenge of efficiently triaging and solving numerous

daily bug reports, necessitating the assignment of these reports to developers with the

right expertise. While various automated approaches, utilizing machine learning or infor-

mation retrieval techniques, have been proposed to recommend suitable developers based

on bug report data (e.g., [54, 58, 122, 199, 204, 214]), these methods tend to adopt a

one-size-fits-all strategy that may not perform equally well across different reports due to

their unique characteristics. An empirical study examining three distinct assignment tech-

niques across thousands of bug reports from open-source systems revealed that no single

method consistently outperforms others, highlighting the variability in their effectiveness.

This finding led to the exploration of a novel approach named Mix, which aims to auto-

matically identify and apply the most effective assignment technique for each individual

1.2. DISSERTATION ORGANIZATION 9

report. Although Mix shows promise in improving recommendation accuracy, it still falls

short of maximizing potential benefits, suggesting the need for further research into better

understanding developers’ practical bug assignment behaviors and enhancing automated

assignment methodologies.

1.2 Dissertation Organization

The remainder of this dissertation is structured as follows. Chapter 2 outlines the back-

ground and conducts a thorough literature review of our research topics. Chapter 3

introduces Bee, a tool that automatically analyzes user-written bug reports and provides

feedback to reporters and developers. Chapter 4 presents Burt, an interactive bug re-

porting system for end-users, implemented as a task-oriented chatbot. Chapter 5 presents

an empirical investigation into the effectiveness of automated bug assignment approaches.

Chapter 6 shows an empirical study that explored the effectiveness of deep learning models

for automatically localizing buggy UI screens and components from the bug descriptions

of mobile apps, and evaluates their effectiveness in improving bug localization. Finally,

Chapter 7 summarizes this dissertation and discusses the ongoing and future research

works.

Chapter 2

Background

2.1 Bug Report Management

Bug report management plays a crucial role in software development and maintenance [152].

This process consists of the entire lifecycle of a bug, starting from its initial reporting to its

eventual resolution and verification. The first step in this lifecycle is bug reporting, where

users and developers encounter unforeseen issues such as crashes, errors, and malfunctions

in functionality, and report these problems through issue or bug tracking systems. This

initial step is crucial as it provides developers with the necessary information to diagnose,

locate, and finally solve these issues within the code.

A comprehensive bug report usually consists of several key components: metadata

about the bug (like severity, affected system version, and priority), a textual description

of the issue in natural language, and any supplementary materials (screenshots, logs, etc.)

that provide further context [237, 97, 187]. The textual bug description is crucial, as it

outlines the bug’s observed behavior, the steps to reproduce, and the expected behavior,

aiding developers in the debugging process. Increasingly, the inclusion of visual aids like

screenshots and recordings/videos, has become valuable in bug documentation. As a

result, there’s a growing trend towards the use of visual aids to more effectively capture

and document bugs, particularly in mobile applications [91, 106, 142].

10

2.2. BUG REPORTING TOOLS 11

Following the submission of bug reports, the management process involves triage, as-

signment, resolution, and verification of these reports. During triage, reports are evaluated

and prioritized based on their urgency and impact, ensuring that the most critical bugs

are addressed promptly. The assignment phase assigns bugs to the appropriate developers

for resolution, after which the resolved issues are verified to ensure they are adequately

addressed. This organized management of bug reports enhances software quality by en-

abling timely identification and resolution of bugs and enhanced communication among

developers and stakeholders. In essence, bug report management is essential at every stage

of development, significantly contributing to the project’s success by saving time, reducing

development costs, and improving overall productivity.

2.2 Bug Reporting Tools

A range of issue/bug tracking tools are widely utilized for bug reporting in software

by users. Some examples of these well-known web-based, general-purpose tools include

Bugzilla [17], Jira [24], and GitHub’s Issues [20], BugHerd [41], ClickUp [44], among oth-

ers. Significantly, these tools provide a comprehensive solution for managing and resolving

bugs and issues in software development, which goes beyond just reporting bugs. They

typically provide templates with various fields for users to detail software bugs, including

a textual bug description field and other custom fields, allowing for the organization of

issues by different metrics (such as severity, priority and assignee and due date etc.) and

customization of the bug reporting workflow to meet the needs of specific projects. Certain

tools like BugHerd [41] focuses on actionable bug reporting by automating screenshot cap-

ture and gathering crucial details like browser, operating system, among others, to build

actionable and detailed reports directly from the website. This capability significantly

aids non-technical stakeholders in reporting issues accurately.

Besides these platforms, specialized applications exist that enhance functionality for

various software types, particularly for mobile and web apps. Popular bug reporting

2.3. BUG REPORT QUALITY ANALYSIS 12

tools like Embrace [45], Instabug [49], Bugsee [33], and Shake [51] are tailored for mobile

applications offering easy setup and integration via SDK installation. Meanwhile, tools like

Bugsnag [42] and Gleap [47] are versatile, supporting both mobile and web applications.

These tools feature user-friendly interfaces for both technical and non-technical users and

automatically capture essential data during bugs or crashes, including screenshots, user

interactions, network data, and logs. Additionally, they may provide advanced diagnostics,

such as stack traces and device information, alongside direct user communication options

like live chat. Some tools like Bugseee [33] emphasize visual aids, using screenshots,

annotated media, and high-definition video recordings to enhance issue comprehension and

resolution. Certain tools distinguish themselves with innovative features: Instabug [49]

allows users to report a bug and send feedback by shaking their device, while Gleap [47]

has an AI bot, Kai, that can automatically answer support questions.

2.3 Bug Report Quality Analysis

Despite the improvements made by introducing tools that allow users to attach screenshots

or videos to bug reports, and even automatic data capture and recording features for

mobile apps, textual descriptions remain important for developers to comprehend and

solve bugs. This significance is underscored by the fact that not all users provide visual

data, and advanced bug reporting tools with these capabilities are often not open-source,

require in-app installation, and incur additional subscription costs. Consequently, textual

bug description continues to be crucial, especially for most open-source tools like GitHub

Issues. These platforms may offer templates to encourage the submission of essential

information such as observed and expected behavior, along with steps to reproduce the

bug. However, the submission of low-quality reports, including incomplete, unclear, or

ambiguous ones, remains a common issue indicated by numerous studies and developers

[101, 236, 74, 113, 237, 105, 136, 3].

Researchers have developed techniques to enhance the capture and management of

2.4. INTERACTIVE BUG REPORTING SYSTEMS 13

high-quality information in bug reports. These methods aim to identify essential elements

within reports, analyze their quality, and provide feedback to contributors on potential

issues. Specific approaches include predicting a bug report’s quality based on readability

and keyword presence proposed by Zimmermann et al. [237]. Hooimeijer et al. [121] mea-

sures report properties to forecast triage outcomes. et al. [221] identify invalid, duplicate,

or incomplete reports through collaborative information. Additionally, Imran et al. [126]

proposed to suggest follow-up questions for incomplete reports. et al. [78] evaluated the

quality of the S2Rs in bug reports through the Euler tool.

Different from previous studies, our research focuses on enhancing the quality of text-

based bug reports by pinpointing missing information such as observed/expected behavior

and reproduction steps at the sentence level in reports submitted by end-users for any

type of software (see Chapter 3). The primary goal is to furnish reporters with practical

guidance on improving their descriptions, thereby enhancing the overall quality of bug

reporting.

2.4 Interactive Bug Reporting Systems

As introduced in Section 2.2, most bug reporting tools are available for both developers

and end-users, such as GitHub Issue, which allows developers and users to communicate

through comments on submitted bug reports. Tools like Instabug [49] allows developers

to send updates to users who reported an issue via in-app chats. Moreover, Gleap [47]

supports live chat with users so that their questions can be answered in real-time. Nev-

ertheless, these tools offer interactive features only after the submission of bug reports,

which means they do not offer guidance or feedback during the bug reporting phase. More-

over, verifying the quality of bug reports through comments and in-app chats requires a

non-negligible amount of manual effort. Thus, enabling users to write high-quality bug re-

ports from the beginning could significantly reduce time and communication costs, thereby

speeding up the bug resolution process.

2.5. UI REPRESENTATION LEARNING 14

Our research focuses on bugs related to Graphical User Interface (GUI) for mobile

apps. In this field, there have been efforts to enhance the bug reporting systems for

mobile apps. Moran et al. [163] proposed Fusion, a web-based system that allows the

user to report the S2Rs graphically by selecting (via dropdown lists) images of the GUI

components from the static/dynamic analysis of app screens and actions (taps, swipes,

etc.) that can be applied on them. More recently, Fazzini et al. proposed EBug [104], a

mobile app bug reporting system similar to Fusion that suggests potential future S2Rs

to the reporter while they are writing them.

This thesis introduces multiple improvements over existing methods by presenting

a task-oriented chatbot designed for interactive bug reporting in Android applications.

Distinct from current bug reporting systems, our chatbot assists end-users in identifying

and reporting key elements of bug reports (such as Observed Behavior, Expected Behavior,

and Steps to Reproduce). It also offers immediate feedback on any issues with the reported

information and generates visual recommendations for the elements likely to be mentioned

in the reports (see Chapter 4).

2.5 UI Representation Learning

Our new bug reporting system is tailored for GUI-related bugs in mobile applications. A

key feature within this system is to locate/retrieve buggy UI elements through textual bug

reports, which we refer to it as Buggy UI Localization. To accomplish this, understanding

how to accurately represent UI elements is essential. Various GUI representation learning

approaches have been developed for mobile or web applications. The goal of UI represen-

tation learning is to encode UI elements or related text into embeddings [147, 119, 61, 151],

supporting downstream tasks like image captioning or text-image retrieval. A key appli-

cation of UI representation learning is mapping (a.k.a. grounding) textual instructions

to UI action/elements [173, 149, 217]. Pasupat et al. [173] evaluated three baseline mod-

els to ground natural language commands to web elements. Li et al. [149] addresses the

2.5. UI REPRESENTATION LEARNING 15

grounding problem by utilizing transformers models, based on three synthetic datasets

for training. Other applications are UI image captioning [206, 165, 90] and UI compo-

nent labeling [89, 150, 90], which typically leverage multi-modal models. Although this

grounding task may appear similar to Buggy UI Retrieval, there are significant differ-

ences that make it difficult to adapt those models to our problem. For example, Li et

al.’s approach [149] requires a sequence of screens where the instructions are performed,

and then locating the corresponding UI component for each instruction. In contrast, our

work focuses on identifying the buggy UI elements without any prior information about

which screens are relevant. Furthermore, our study deals with bug descriptions, which are

considerably more complicated than UI instructions [86].

Another category of models that can be utilized for our research objectives includes

general-purpose deep learning models, such as multi-modal models like Vision-Language

models. These supervised models are capable of processing and interpreting both images

and text prompts, such as Clip [175], Blip [146], Flamingo [55], etc. Vision-Language

models usually consists of various combinations of transformer-based encoders or decoders.

Those models are trained by different pre-training objectives through different pre-training

objectives, such as contrastive learning, masked language modeling, and image-text match-

ing, among others. In addition to multi-modal models, our research has also made use of

text-only models, such as SBert [179], a neural text-based language model derived from

a pre-trained model Bert [99], as well as embedding models from OpenAI [50].

Recently, the advent of Large Language Models (LLMs) or Large Multimodal Models

(LMMs), such as GPT-4 [48], Claude-3 [43], and Gemini [46], which have been trained on

extremely large datasets, demonstrate remarkable capabilities in both natural language

understanding and visual understanding. These models possess a significant zero-shot

capability, allowing us to perform tasks without specific training or hard coding, even when

pre-trained on general-purpose datasets [179, 146, 175]. Additionally, they can benefit from

test-time techniques developed for LLMs, such as few-shot learning and chain-of-thought

prompting [209, 227].

Chapter 3

Automating Bug Report Analysis

and Quality Assessment

This work introduces Bee, a tool that automatically analyzes user-written bug reports

and provides feedback to reporters and developers about the system’s observed behavior

(OB), expected behavior (EB), and the steps to reproduce the bug (S2R). Bee employs

machine learning to (i) detect if an issue describes a bug, an enhancement, or a question;

(ii) identify the structure of bug descriptions by automatically labeling the sentences that

correspond to the OB, EB, or S2R; and (iii) detect when bug reports fail to provide these

elements. Bee is integrated with GitHub and offers a public web API that researchers

can use to investigate bug management tasks based on bug reports. We evaluated Bee’s

underlying models on more than 5k existing bug reports and found they can correctly

detect OB, EB, and S2R sentences as well as missing information in bug reports. Bee

is an open-source project that can be found at https://git.io/JfFnN. A screencast

showing the full capabilities of Bee can be found at https://youtu.be/8pC48f_hClw.

This work has been published at FSE 2020 [192]

16

https://git.io/JfFnN
https://youtu.be/8pC48f_hClw

3.1. INTRODUCTION 17

3.1 Introduction

Bug reports are essential in helping developers triage, replicate, locate, and fix the bugs in

the software [3, 66, 97, 67, 238, 237, 187, 182]. From the information that reporters provide

in bug reports, the system’s observed (unexpected) behavior (OB), the steps to reproduce

the bug (S2R), and the software expected behavior (EB) are among the most important

elements for developers [237, 67, 97, 85, 77]. These elements are typically expressed by

end-users or developers in free-form natural language through issue trackers.

While these elements are essential, they are often incomplete, unclear, or not provided

at all by the reporters [3, 74, 237]. Indeed, in 2016, developers from more than 1.3k open-

source projects wrote a letter to GitHub expressing their frustration that bug reports are

often submitted without the S2R and the system version [3]. The consequence of this is

that developers often spend too much effort triaging and fixing the problems [237, 74, 113],

and often, they cannot even reproduce and fix the bugs in the code [101, 236]. One of

the main reasons for having low-quality bug reports is the lack of feedback and quality

verification of issue trackers. In the GitHub letter [3], developers demand improvements

to GitHub’s issue tracker to ensure higher-quality bug reports. However, as of today,

no major improvements have been made by GitHub. The alternative for some projects

is to provide templates in the issues, explicitly asking for the OB, EB, S2R, and other

information. Unfortunately, this approach does not guarantee that reporters will submit

high-quality bug reports and developers still need to reach out to reporters asking for

clarifications or more information.

In this work, we introduce Bee (Bug rEport analyzEr), a tool that provides

feedback to reporters and developers about the OB, EB, and S2R in bug reports. Bee

is an app that extends the capabilities of GitHub’s issue tracker, by analyzing incoming

issues submitted by end-users on GitHub repositories. Through its machine learning

models, Bee can detect if an issue reports a bug, an enhancement (e.g., a feature), or a

question. For bug reports, Bee can automatically identify the sentences that describe the

3.2. BEE’S APPROACH 18

OB, EB, and/or S2R, and detect if the reporter does not provide any of these elements.

Bee adds comments and labels to the bug report to alert reporters (and developers)

about missing elements so that they can provide the information timely. Bee is meant

to assist developers, by structuring the bug descriptions via automated identification and

labeling of OB, EB, and S2R sentences, allowing them to quickly spot these elements.

Bee is also meant to assist researchers through a public web API for OB, EB, and S2R

identification, which they can use for investigating and automating tasks that are based

on these elements, such as bug reproduction [232, 137], test case generation [105], bug

localization [80, 82], duplicate bug report detection [84], and bug report quality assessment

[85, 77].

Bee can analyze any bug report, written in any textual form and format, for any

software system. Bee can be installed in seconds, in any GitHub repository. Inspired by

prior work (including ours) [237, 163, 224, 121, 221, 75, 77], Bee’s main vision is to perform

fine-grained quality assessment of bug reports and support reporters and developers in bug

reporting and management.

3.2 BEE’s Approach

Bee (Bug rEport analyzEr) is a GitHub app that analyzes GitHub issues submitted

by end-users, and provides feedback to reporters and developers about the system’s OB,

EB, and S2R.

3.2.1 BEE’s Usage Scenario and Features

Bee can be installed easily in any repository through Bee’s installation website [11]. The

users just have to follow a few steps for installing the app in their repositories. The current

version of Bee does not require any configuration from the user.

Once installed, Bee analyzes any issue reported by the project users or developers, as

shown in Figure 3.1. Since Bee focuses on bug reports, the first step of the tool, right

3.2. BEE’S APPROACH 19

after an issue is submitted h1 , is to automatically check if the issue describes a bug, as

opposed to an enhancement (e.g., a feature) or a question. If so, Bee tags the issue with

the label Bug h2 and proceeds with further analysis of the bug report. Figure 3.1 illustrates

a report submitted on GitHub that describes a bug for the Eclipse project [1]. Such a bug

was originally submitted by one developer on Eclipse’s issue tracker [2]. If the issue is not

a bug report, Bee tags the issue with a label corresponding to the type (enhancement or

question), without further analyzing its content. This initial categorization of the issue is

intended to help developers prioritize and manage the reported problems.

Bee analyzes the title and description of a bug report, focusing on the OB, EB, S2R.

Bee can detect when any of these elements is not provided by the reporter. In that case,

Bee makes a comment in the issue h3 , alerting the reporter about the missing information

and asking her to provide the information. Besides, Bee assigns the issue to the reporterh4 and tags the issue with the label info-needed h5 . This feedback encourages reporters to

provide the information needed by the developers. If all the three elements are provided

by the user, Bee makes a comment indicating the bug report appears to be complete.

Bee provides additional feedback by structuring the bug description. This feature is

meant to support developers (and reporters) in understanding and assessing the quality

of the OB, EB, and S2R, by helping them easily identify these elements in the bug report.

The bug report is structured automatically by Bee in an additional comment h6 , which
contains the bug title and description as provided in the original issue (with the same

format), but with the sentences labeled as OB , EB , or S2R (see Figure 3.1). Bee

labels the sentences with the respective icon(s), at the end of the sentences, only if they

convey the OB, EB, or S2R. Notice that a single sentence can convey one or more of the

three types of information. The decision of labeling the sentences rather than re-organizing

them into sections is made so that the (structured) bug description is easier to understand.

Bee supports any issue format, including GitHub’s Markdown format, and does not

impose any particular discourse on the users. This means that reporters can write their

issues as they normally do. Bee treats each code snippet in the issue as a single piece of

3.2. BEE’S APPROACH 20

text, and identifies if they provide information about the OB, EB, and S2R. When this is

the case, Bee tags the snippets at the end of the code block. Reporters get alerted about

Bee’s feedback via email if they have email notifications enabled on GitHub.

Finally, Bee offers a public web API for automated OB/EB/S2R identification in

textual documents. Users can send API requests containing any piece of text, Bee parses

the text into sentences and returns them to the user, each one marked as OB, EB, and/or

S2R. These elements can be incorporated in existing or new tools, and can be leveraged

to perform automated bug localization [80, 82], duplicate bug report detection [84], bug

report quality assessment [85, 77], and other tasks that rely on bug reports [232, 137, 105].

3.2.2 Under the Hood of BEE

Bee performs automated textual classification to determine the type of issue (bug, en-

hancement, or question) and the type of sentence (OB, EB, and/or S2R) for bug reports.

Based on the sentence-level classification, Bee determines if the bug report does not con-

tain any of the three elements.

3.2.2.1 Issue Classification

For classifying issues, Bee relies on the classification model of Ticket Tagger [135], which

is based on fastText [133]. The model is a multi-class linear neural model that receives

the set of n-grams (i.e., sequences of n consecutive words) extracted from the issue title

and description, and outputs the probability distribution of the issue over the predefined

categories [135]. The model is pre-trained using 30k issues from 12k GitHub projects and

classifies an issue into one of three categories: bug report, enhancement, or question. These

categories are among the default labels of GitHub Issues [6]. The model can detect bug

reports, enhancements, and questions with more than 82%, 76%, and 78% precision/recall,

respectively, as indicated by its evaluation [135].

3.2. BEE’S APPROACH 21

3.2.2.2 Sentence Classification

If an issue is detected as a bug report, Bee proceeds to classify each one of its sentences.

Sentence representation The sentences of a bug report are represented as binary

vectors based on n-grams and part-of-speech (POS) tags. This representation captures

sentence vocabulary, word types, relations between consecutive words, and syntactic pat-

terns that can help with the classification. To represent the sentences, Bee first parses the

text of the bug report using the Stanford CoreNLP library [157]. The bug description is

split up into sentences, considering the title as a single sentence. Then, n-grams and POS

tags are extracted from each sentence using tokenization, lemmatization, and POS tag-

ging. Bee extracts {1,2,3}-grams and {1,2,3}-POS tags, which correspond to sequences

of one, two, and three consecutive words and POS tags, respectively. Each element of the

vector represents an n-gram or a POS tag and takes the value one (1) if the sentence con-

tains the element, and the value zero (0) otherwise. The size of the vector for a sentence

is 902,565, which is the number of n-grams + POS tags found in the data we used to train

the classification models. Bee keeps an index of n-grams and POS tags for building the

vector representation of the sentences. Stop word removal is not performed as (some of)

these words can help determine the meaning of the sentences (OB, EB, and S2R) [85].

Classification models Inspired by our prior work [85], we use linear Support Vector

Machines (SVMs) for classifying the sentences. SVMs are robust learning algorithms for

high-dimensional and sparse data, used in text classification [129, 168]. Since the sentences

in bug reports are relatively short, which means their vectors are highly sparse, SVMs are

a good option for their classification.

Rather than relying on one multi-class SVM for classifying the sentences, Bee im-

plements three binary SVMs, one for each of the information types (OB, EB, S2R). For

example, the SVM for OB classifies a sentence as OB (the sentence conveys the OB) or

non-OB (the sentence conveys other information than the OB). The SVMs for EB and

3.2. BEE’S APPROACH 22

S2R work the same way for their respective elements. By using three classifiers, Bee can

detect if a sentence conveys any combination of information elements (e.g., OB and EB,

OB and EB and S2R, etc.). Also, this approach allows us to evaluate Bee’s classification

performance easily.

Each SVM is trained using 116,084 sentences from 5,067 bug reports, where each

sentence is represented as vectors, as described above. Section 3.3.1 provides more details

about this dataset. Since the data is imbalanced, we train the SVMs by tuning their

parameter j = C+/C−, which balances the cost factors for incorrect predictions of positive

(C+) and negative sentences (C−) [168]. Larger j means higher penalty on false positives

(e.g., non-OB sentences predicted as OB), while lower j means higher penalty on false

negatives (e.g., OB sentences predicted as non-OB). We select the best parameters j

during the training of all three models (see Section 3.3.2).

Once the sentences of a bug report are represented as vectors, Bee executes each

SVM model on each sentence to determine its respective information type (OB, EB, S2R,

a combination of these, or other information). Based on these results, Bee can tag each

sentence on GitHub.

3.2.2.3 Detecting Missing Elements

Since each sentence of the bug report is identified as OB, EB, S2R, or other information,

Bee can use these categories to determine if the entire report fails to provide any of the

three elements. If no sentence is detected as OB/EB/S2R, then it means the bug report

does not provide the OB/EB/S2R. If this is the case, Bee makes a comment about this

situation, alerting the user and encouraging her to provide the missing information.

3.2.3 Implementation

Bee is mainly implemented using Node.js runtime environment, ensuring fast, real-time

processing. Bee is built as a GitHub App, which uses GitHub’s Webhooks and REST

API that allows integration with GitHub’s issues tracker [8]. These technologies are used

3.3. EVALUATION 23

to obtain newly-submitted issues (their text, reporter, and other data), make comments

on the issues, and assign users and labels to them. Bee’s underlying classification models

are implemented using the fastText [133] and the SVMlight frameworks [128], which are

also known for being fast during training and execution. Bee currently analyzes a bug

report in around 3-5 seconds.

3.3 Evaluation

We evaluated Bee’s models to measure their expected performance in identifying the

OB, EB, and S2R in bug reports. Bee’s website contains the replication package of the

evaluation [10].

3.3.1 Data

We compiled the bug reports used in our prior research [85, 80, 82, 84], which amount to

5,067 reports from 35 different software systems (e.g., Eclipse, Firefox, Docker, WordPress

Android, OpenJPA), spanning different domains (e.g., data storage, software development,

machine learning, virtualization, web browsing) and types (e.g., desktop, web, mobile,

libraries). The bug reports contain 116,084 sentences total (including the title), where

the ones describing the OB, EB, and S2R are manually annotated to make up the ground

truth. Nearly 12% of the sentences describe the OB, 2% describe the EB, and 6% describe

the S2R; 82% of the sentences describe other types of information. The proportion of

positive and negative instances for OB, EB, and S2R is close to 1:8, 1:54, and 1:16,

respectively. This indicates the data is extremely imbalanced, which may lead to biased

and less effective models. We address this issue in two ways: (1) we tune the parameter

j of the SVMs; and (2) we use oversampling of the positive sentences (OB, EB, and S2R)

using SMOTE [88], which generates synthetic instances nearby the positive sentences in

the vector space. Although undersampling may also be helpful, it has the risk of discarding

useful sentences for training the models, hence we prefer using oversampling. The average

3.3. EVALUATION 24

(median) # of sentences in a bug report is 23 (9), and out of these, 3 (2) are marked as

OB, 1 (1) is marked as EB, and 2 (2) are marked as S2R. On average (median), 21 (6)

sentences are not marked as OB, EB, or S2R.

For evaluating the detection of missing elements, we use the same data and consider

a bug report missing OB, EB, and S2R as one without sentences marked as OB, EB, and

S2R, respectively. Only 2% of the bug reports do not provide any OB, and nearly 69%

and 45% of them do not provide any EB and any S2R, respectively.

3.3.2 Methodology

We performed 10-fold cross validation (10-CV) [177, 76] to measure the expected detec-

tion accuracy of each of the three SVMs models (for OB, EB, and S2R). We randomly

partitioned the data into 10 equal folds, using 8 folds for training, one fold for validation,

and the remaining fold for testing. At each execution of the 10-CV approach, different

folds compose the data sets, thus guaranteeing that all the sentences are used for model

training, validation, and testing. The validation sets as disjoint and are used for SVM

tuning. The testing sets are also disjoint and used for accuracy measurement. Note

that we perform 10-CV on all the sentences in our data, as opposed to the sentences of

each software system. We followed this approach since our prior work revealed similar

performance between project-based and cross-project evaluation settings [85]. We applied

SMOTE only to the training sets, which allowed measuring the models’ accuracy on actual

data, without synthetic sentences.

We measured the models’ detection performance using precision, recall, accuracy, and

F1 score. We tuned the parameter j of each SVM model with the values 0.1, 0.2, ...,

and 1, on each validation set. For each element type (OB, EB, S2R), we train 10 SVM

models (i.e., for 10 j values), select the best model using the validation set, and estimate

its accuracy on the testing set using the selected metrics. The best model is the one

achieving the highest F1 score. This process is repeated 10 times, following the 10-CV

approach. The best SVM parameter j is 0.2 for OB and S2R, and 0.1 for EB. The overall

3.3. EVALUATION 25

results are computed by aggregating the true/false positives and negatives across the 10

testing sets, and then computing the metrics.

3.3.3 Results

The overall results of sentence classification are shown in Table 3.1. Bee’s SVM models

achieve 87%+ recall, which indicates their ability in correctly detecting OB, EB, and S2R

sentences. Note that recall is most almost perfect for EB (about 98%). The results mean

that Bee correctly detects the 3 OB, 1 EB, and 2 S2R sentences (out of 23 on average)

expected in a typical bug report (according to our data). However, recall comes at the

cost of precision, which is nearly 70% for all three models. The positive prediction rate of

the models is 14.2%, 2.5%, and 7.4% for OB, EB, and S2R, respectively. This indicates

that, on average, nearly 3, 1, and 2 sentences of a typical bug report are predicted as OB,

EB, and S2R, however, the prediction is correct for ≈2.1, 0.7, and 1.4 sentences (on avg.),

respectively.

Table 3.1 also shows the overall performance of Bee at detecting missing OB, EB, or

S2R in an entire bug report. The results show low performance when detecting missing

OB. However, only 2% of the bug reports are expected to lack this information, therefore,

we anticipate a negligible effect of the misclassifications produced by the tool in practice.

This observation is supported by Bee’s high accuracy (≈97%). When detecting missing

EB and S2R, Bee achieves substantially higher precision (93%+) and recall (70%+).

Precision is almost perfect when detecting missing EB. Given the results, we can expect

a few cases in which reporters are bothered with false alerts. The recall results mean that

in about 1 (and 3) out of 10 bug reports, the tool fails to detect missing EB (and S2R).

Since Bee is accurate in most bug reports, we expect Bee to have a positive effect on bug

report quality and the bug resolution process.

In summary, Bee’s models are conservative as they try not to miss any of the OB, EB,

and S2R sentences in a bug report. This produces fewer false negatives, at the expense of

more false positives (at sentence level). This phenomenon translates into high precision

3.4. RELATED WORK 26

(i.e., few false alarms) and lower recall (i.e., more misdetections) when detecting missing

elements in entire bug reports.

Table 3.1: Detection performance of OB, EB, and S2R sentences and missing elements
in bug reports

Sentences Missing elements

OB EB S2R OB EB S2R

Precision 72.6% 70.0% 72.0% 33.3% 99.7% 93.4%
Recall 87.9% 98.4% 90.8% 33.7% 88.7% 70.4%

Accuracy 94.7% 99.2% 97.4% 97.4% 92.0% 84.4%

3.4 Related work

A few efforts have been made to automatically identify and extract the OB, EB, and

S2R from bug reports, by using heuristics and machine learning [237, 67, 97, 85, 77, 228].

Examples of heuristics include matching keywords such as “observed results” to identify

the OB, or using regular expressions to detect bullets as proxies to the S2R [237, 67, 97].

Since these approaches often fail to capture the diverse discourse [85] found in bug reports,

machine-learning-based approaches, like the ones Bee implements, have been proposed

[85, 77, 228]. Our prior work [85] used SVMs based on textual features to detect when bug

reports lack the EB and S2R. More recently, SVM- and sequence-labeling-based techniques

have been proposed to identify S2R sentences in bug reports from mobile apps [228, 77].

Many approaches have been proposed to classify issues into bug reports, feature re-

quests, enhancements, questions, and other categories [135, 9, 113, 235, 56, 202, 216, 112].

These approaches typically implement machine learning models that use textual features

for classification. Bee uses Ticket Tacker’s pre-trained model [135] to identify if a newly-

submitted issue reports a bug.

Different from prior work, Bee identifies the OB, EB, and S2R, at sentence level, in

bug reports written by end-users in any form and for any software system. Bee’s features

enable many applications in bug management, as indicated by prior work [232, 137, 105,

3.5. CONCLUSIONS AND FUTURE WORK 27

80, 82, 84, 85, 77].

3.5 Conclusions and Future work

Bee is an open-source tool, integrated with GitHub, that uses machine learning to au-

tomatically (1) detect the type of user-written GitHub issues (bug report, enhancement,

or question), (2) identify and label sentences describing the system’s observed behavior

(OB), expected behavior (OB), the steps to reproduce (S2R) the bug in bug reports, and

(3) detect if these elements are not provided by the reporters. Bee is meant to alert

reporters about missing information in their bug reports, assist developers on bug triage

and resolution, and foster new research developments on automated bug management.

The evaluation of Bee’s underlying models, using 5k+ bug reports, provides evidence of

its high accuracy in identifying the OB, EB, and S2R in bug reports. Given the results,

we anticipate Bee can have a positive effect on bug report quality and bug management,

yet this is to be confirmed by our planned user studies. Improvements to Bee include

the implementation of a mechanism to automatically retrain Bee’s models based on user

feedback and autocompleting missing bug report elements.

3.5. CONCLUSIONS AND FUTURE WORK 28

Figure 3.1: Bee’s feedback generated for bug report #95598 from Eclipse [2], which is
submitted on GitHub [1].

Chapter 4

Interactive Bug Reporting for

(Android App) End-Users

Many software bugs are reported manually, particularly bugs that manifest themselves

visually in the user interface. End-users typically report these bugs via app reviewing

websites, issue trackers, or in-app built-in bug reporting tools, if available. While these

systems have various features that facilitate bug reporting (e.g., textual templates or

forms), they often provide limited guidance, concrete feedback, or quality verification to

end-users, who are often inexperienced at reporting bugs and submit low-quality bug

reports that lead to excessive developer effort in bug report management.

We propose an interactive bug reporting system for end-users (Burt), implemented

as a task-oriented chatbot. Unlike existing bug reporting systems, Burt provides guided

reporting of essential bug report elements (i.e., the observed behavior, expected behavior,

and steps to reproduce the bug), instant quality verification, and graphical suggestions

for these elements. We implemented a version of Burt for Android and conducted an

empirical evaluation study with end-users, who reported 12 bugs from six Android apps

studied in prior work. The reporters found that Burt’s guidance and automated sug-

gestions/clarifications are useful and Burt is easy to use. We found that Burt reports

contain higher-quality information than reports collected via a template-based bug re-

29

4.1. INTRODUCTION 30

porting system. Improvements to Burt, informed by the reporters, include support for

various wordings to describe bug report elements and improved quality verification. Our

work marks an important paradigm shift from static to interactive bug reporting for end-

users. This work has been published at FSE 2022 [195].

4.1 Introduction

Bug report management is an important and costly software engineering activity. While

certain types of bugs can be reported automatically via a known oracle (e.g., crashes),

recent studies have illustrated that more than half of the bugs reported in open source

software relate to functional problems with no automatically identifiable oracle [201] and,

hence, must be reported manually. High-quality bug reports are essential for bug triage

and resolution and they are expected to describe at minimum the observed (incorrect) be-

havior (OB), the steps to reproduce the bug (S2Rs), and the expected (correct) software

behavior (EB) [67, 143, 237].

One of the main difficulties that contributes to quality issues in end-user bug reporting

is the knowledge gap between end-users and developers [163, 125]. That is, there is often

a gap between what end-users know and what developers need [237], generally due to the

fact that users are both unfamiliar with the internals of the software and with the explicit

types of information that are important for developers (e.g., the OB, EB, and S2Rs).

Most current reporting systems are not designed to address the above-mentioned

knowledge gap between end-users and developers. In particular, current systems are typ-

ically lacking along two important dimensions: (1) they offer limited guidance related to

what needs to be reported and how it needs to be reported; and (2) no feedback is offered

to reporters on whether the information they provided is correct or complete. In conse-

quence, given the static nature of these bug reporting interfaces, the burden of providing

high-quality information rests on the reporters.

We posit that an interactive reporting solution can help to bridge the developer–end-

4.1. INTRODUCTION 31

user knowledge gap. Inspired by prior work on question/answering systems for debug-

ging [139], we argue that a conversational agent (i.e., a chatbot) can successfully guide

end-users through the reporting process, while offering interactive suggestions and instant

quality verification.

In this work, we introduce and evaluate a task-oriented dialogue system for BUg

RepoRTing (or Burt) that is capable of providing instant feedback for each element of a

bug description (i.e., OB, EB, and S2Rs), while actively guiding corrections, where needed.

Burt combines novel and state-of-the-art techniques for dynamic software analysis, nat-

ural language processing, and automated report quality assessment. We designed and

developed the current version of Burt to work for Android apps, but its architecture is

platform-agnostic and it can be instantiated, with some engineering effort, for other types

of GUI-based applications (e.g., web-based, desktop, or iOS-based). In particular, Burt

constructs a graph of program states using both crowdsourced app usage data and auto-

mated GUI-based exploration techniques. The chatbot then parses and interprets end-user

descriptions of various bug report elements by matching them to states and transitions in

the constructed graph, and produces graphical suggestions regarding information that is

likely to be reported (e.g., the next S2Rs). Additionally, Burt recognizes when end-users

provide incomplete or ambiguous information and suggests improvements or clarifications

to the users. Traditional task-oriented chatbots typically have direct access to a struc-

tured and easily parseable knowledge-base [26]. In contrast, Burt is more complex, as

it reconciles high-level descriptions provided by end users and matches these to technical

program information, bridging the end-user to developer knowledge gap.

We evaluated Burt empirically, asking 18 end-users, with various levels of prior bug

reporting experience, to report 12 bugs from six Android apps using a prototype imple-

mentation of Burt. We found that the guidance and automated suggestions/clarifica-

tions made by the chatbot were accurate, useful, and easy to use, and the collected bug

reports are high-quality. We asked 18 additional end-users to report the same bugs with a

template-based bug reporting system (Itrac) and compared the quality of these reports

4.2. BURT: A CHATBOT FOR BUG REPORTING 32

to those reported with Burt. Burt reports have fewer incorrect and missing S2Rs than

the Itrac reports. We also found that Burt helps novice bug reporters provide more

correct steps, and experienced reporters avoid missing steps.

In summary, the contributions of this work are as follows:

• Burt, the first task-oriented, conversational agent that supports end-users in report-

ing bugs (currently for Android apps), with features such as automated suggestions,

real-time feedback, prompts for information clarification, and graphical cues.

• The results of an empirical evaluation involving 36 end-users that investigates user

experiences, preferences, and attributes of interactive bug reporting with Burt, as

well as the quality of the resulting bug reports.

Our work opens the door to a new way of thinking about end-user bug reporting, using

conversational agents, shifting the state of the art from static to interactive bug reporting.

While Burt is a prototype, we expect that it will serve as the foundation for a new class

of interactive bug reporting systems, combining elements of existing static systems with

features of conversational agents [109].

4.2 BURT: A Chatbot for Bug Reporting

We propose a task-oriented chatbot for BUg RepoRTing (Burt). Burt offers a variety of

features for interactive bug reporting such as the ability to (i) guide the user in reporting

essential bug report elements, (ii) check the quality of these elements, (iii) offer instant

feedback about issues, and (iv) provide graphical suggestions.

Burt is designed to collect three key elements for developers during bug triage and

resolution [237, 143, 187]: the observed behavior (OB), the expected behavior (EB), and

the steps to reproduce the bug (S2Rs). Burt collects these from the user through a

dialogue and generates a web-based bug report containing textual descriptions for these

elements with attached screen captures of the system.

4.2. BURT: A CHATBOT FOR BUG REPORTING 33

Burt’s design consists of three main components, inspired by the typical architecture

of task-oriented dialogue systems [109], which adapt techniques from automated program

analysis and natural language processing to facilitate bug reporting. Burt’s Natural

Language Parser (NL) parses the relevant information from end-user responses to the

chatbot. The Dialogue Manager (DM) dictates the structured conversation flow for

Burt’s reporting process and handles the presentation of multi-modal (e.g., screenshots

and text) information to the user. Finally, the Report Processing Engine (RP) maps

information parsed from user responses to various states in a program execution model for

a given app in order to assess bug element quality. The current version of Burt is designed

for Android apps and builds its execution model using a combination of automated app

exploration and crowdsourced user traces. In this section, we present Burt’s components

in detail.

4.2.1 Graphical User Interface (GUI)

We designed Burt as a web-based application that includes both a standard chatbot

interface along with additional visual components as illustrated in Fig. 4.1. The Chat

Box allows the end-user to provide textual descriptions of the OB, EB, and S2Rs as

well as interact with the graphical information that Burt displays (e.g., recommendations

of the next S2Rs via screenshots). The Reported Steps Panel enumerates and displays

the S2Rs that the user has reported. The textual description of the reported steps can be

edited and the last reported step can be deleted, if the user makes a mistake and wishes

to correct it. The Screen Capture Panel displays screen captures of the last three

S2Rs. The Quick Action Panel provides buttons to finish reporting the bug, restart

the bug reporting session, and (pre)view the bug report being created – these can be

activated anytime. The Tips Panel displays recommendations to end-users on how

to use Burt and how to better express the OB, EB, and S2Rs. The tips change depending

on the current stage of the conversation.

4.2. BURT: A CHATBOT FOR BUG REPORTING 34

1 - The Chat Box2 - Reported Steps Panel
4 - Quick Action

Panel

3 - Screen Capture Panel

5 - Tips Panel

Figure 4.1: BURT’s graphical user interface

4.2.2 Natural Language Parser (NL)

Burt parses the OB, EB, and S2R descriptions provided by end-users using dependency

parsing via the Stanford CoreNLP toolkit [157]. This process obtains the tree of gram-

matical dependencies [31] between words in a sentence and extracts the relevant words

from the tree. This parsing technique is needed by the Report Processing Engine to assess

the quality of parsed bug report elements and to help direct the flow of conversation (see

Sec. 4.2.4.2).

Burt first utilizes the heuristic-based approach introduced by Chaparro et al. [87] to

identify the type of a sentence (e.g., conditional, imperative, or passive voice) for each

message received from the user. This approach implements heuristics (based on depen-

4.2. BURT: A CHATBOT FOR BUG REPORTING 35

dency parsing and part-of-speech tagging [157]) to identify discourse patterns in OB, EB,

and S2R descriptions [87]. Once the sentence type is identified, Burt executes a series of

algorithms to extract the relevant words from the sentence, based on prior work on quality

assessment of S2Rs [78]. In essence, we implemented 16 parsing algorithms that traverse

the grammatical trees [31] of end-user sentences which have a different structure depending

on the sentence type (e.g., conditional or imperative). Each algorithm parses sentences

of one type. All the 16 algorithms implemented for the different types of OB/EB/S2R

sentences can be found in our online replication package [35].

Burt parses a single sentence using the following format:

[subject] [action] [object] [preposition] [object2] where the subject is the

actor (e.g., the user or an app component) performing the action, which is an operation

or task (e.g., tap, create, crash); the object is an “entity” directly affected by the action,

and object2 is another “entity” related to the object by the preposition. An “entity”

is a noun phrase that may represent numeric/textual app input, domain concepts, GUI

components, etc. Depending on the sentence, its type, and whether it describes an OB,

EB, or S2R, the words (e.g., the subject, preposition or object2) extracted from the

entity are required or optional.

For example, for the Mileage Android app [27], the OB sentence “The average fuel econ-

omy shows a NaN value”, written in present tense, is parsed as [average fuel economy]

[shows] [NaN value]. The EB sentence “fuel economy statistics should be calculated

correctly”, which uses the modal “should”, is parsed as [average fuel economy] [is]

[calculated]. The S2R sentence “Save the car fillup”, written imperatively, is parsed

as [user] [saves] [car fillup].

Some sentences describe a combination of OB, EB and S2Rs in a single phrase. For

example, the sentence “The app stopped when I added a new time range” describes both an

OB and a S2R. This sentence is parsed by Burt as [app] [stopped] as the OB, and [add]

[new time range] as the S2R. In this example, Burt extracts the S2R from the sentence

as follows. First, it locates the adverb “when” in the parsed grammatical tree, then it

4.2. BURT: A CHATBOT FOR BUG REPORTING 36

Prompt User

for OB/EB/S2R

Descrip6on

User Writes

OB/EB/S2R

Screen
Match?

Check OB/EB/S2R

Quality

Show

Screens to User
Select One

Screen

Ask for Next Bug

Report Element

Ask User to

Rephrase

User

Re-phrases

OB/EB/S2R

Suggest Likely

Screens from

Current Posi6on

User Selects

One, Mul6ple,

or No Screens

Screen
Selected?

Suggest

Addi6onal

Screens

User Selects

One, Mul6ple,

or No Screens

Ask User

if they

would like

addi6onal

screen

sugges6ons

(if any)

User

Responds Yes

or No

Response

Prompt User for

S2R Descrip6on

User Writes

S2R

Figure 4.2: Burt’s dialogue flow for quality checking

follows the relationship that leads to the verb “add” for which “when” is the adverbial

modifier. Next, Burt locates the verb’s nominal subject “I” and its direct object “time

range”. If these relationships do not exist in the tree, the sentence is not conditional, as

expected. Otherwise, Burt extracts the verb “add” as the action and the noun phrase

“time range” as the object. In the end, this sentence is parsed as the S2R: [add] [new

time range].

When multiple sentences compose a single user message, Burt only parses the initial

sentence. When Burt is unable to parse a user message (e.g., because it cannot identify

the subject), it asks the user to rephrase the sentence. Burt’s Tips Panel and user

guide suggests patterns to the user to phrase the OB, EB, and S2Rs.

4.2.3 Dialogue Manager (DM)

Burt’s dialogue flow consists of three main phases: OB, EB, and S2R collection. Burt’s

dialogue is multi-modal in nature, and is capable of suggesting both natural language

4.2. BURT: A CHATBOT FOR BUG REPORTING 37

and graphical elements, such as screenshots, to help guide the user through the reporting

process. The DM relies upon the RP engine to assess the quality of bug elements reported

by end users (see Sec. 4.2.4.2). While Burt’s dialogue flow proceeds linearly to capture

each bug element (the OB, EB, and S2Rs, in that order), the dialogue flow is similar for all

elements. There are two main dialogue flows that Burt navigates: (i) performing quality

checks on written bug report elements (applies to all bug elements), and (ii) automated

suggestion of S2Rs (for S2Rs only). Next we describe these two main dialogue flows.

4.2.3.1 Dialogue Flow for Bug Element Quality Checks (OB/EB/S2R)

Before the dialogue begins, a user must select the target app by clicking on its icon. Then,

Burt’s dialogue flow for quality checking, illustrated in a modified swimlane diagram in

Figure 4.2, is initiated, starting with the OB. To begin the quality checking process, Burt

prompts the user to provide the bug element (OB/EB/S2R). Burt automatically parses

the description of the element and the RP engine verifies its quality (see Sec. 4.2.4.2).

If the OB/EB/S2R is matched to an app screen from Burt’s execution model (see

Sec. 4.2.4.1), Burt asks the user for confirmation of the matched screen. If the user

confirms, Burt proceeds to the next phase of the conversation (e.g., asking for the EB or

next S2Rs), otherwise, Burt asks the user to rephrase the bug element.

If there are no app screen matches, Burt informs the user about the issue and asks

her to rephrase the OB/EB/S2R. Once the user provides a new description, the quality

verification procedure is re-executed. If there are multiple matches, Burt provides a

list of up to five app screenshots (derived from the app execution model) that match

the description. The user can then inspect the app screens and select the one that she

believes best matches her description of the bug element. If none are selected, Burt

suggests additional app screens if any. If the user selects one app screen, Burt saves

the bug element description and screen, and proceeds to collecting the next bug element.

After three unsuccessful attempts to provide a high quality OB description, Burt records

the (last) provided OB description for bug report generation. This process proceeds for

4.2. BURT: A CHATBOT FOR BUG REPORTING 38

Prompt User

for OB/EB/S2R

Descrip6on

User Writes

OB/EB/S2R

Screen
Match?

Check OB/EB/S2R

Quality

Show

Screens to User
Select One

Screen

Ask for Next Bug

Report Element

Ask User to

Rephrase

User

Re-phrases

OB/EB/S2R

Suggest Likely

Screens from

Current Posi6on

User Selects

One, Mul6ple,

or No Screens

Screen
Selected?

Suggest

Addi6onal

Screens

User Selects

One, Mul6ple,

or No Screens

Ask User

if they

would like

addi6onal

screen

sugges6ons

(if any)

User

Responds Yes

or No

Response

Prompt User for

S2R Descrip6on

User Writes

S2R

Figure 4.3: Dialogue Flow for S2R Predictions

each bug element starting with the OB. S2Rs are treated slightly differently since Burt

can also predict S2Rs as we describe next.

4.2.3.2 Dialogue Flow for Suggesting S2Rs

BURT suggests potential next S2Rs that the user may have performed during actual app

usage, depending on the last reported step and the user-selected screen that is having the

problem, i.e., the OB screen. Figure 4.3 illustrates this process. This dialogue flow uses a

predictive algorithm that uses Burt’s execution model (see Sec. 4.2.4.3). The suggestions

are displayed as a list of app screens, each screen representing a S2R. Each S2R in the list

displays the screen capture with a textual description placed below the image. The screen

capture is visually annotated with a yellow oval highlighting the GUI component (e.g., a

button) executed by the step. The user can select none, one, or multiple of the suggested

4.2. BURT: A CHATBOT FOR BUG REPORTING 39

S2Rs. When a S2R is selected, Burt suggests additional S2Rs if any. When none are

selected and Burt has more suggestions, Burt asks the user if she wants to get more

suggestions. If so, Burt displays them. Otherwise, Burt prompts the user to describe

the next S2R.

4.2.3.3 Collecting Input Values

User input from type-like steps (e.g., “I entered 5 gallons”) are extracted by Burt from

the object or object2 of the parsed S2Rs, by identifying literal values or quoted text. If

the input value is missing or generic (i.e., not a literal or “text”), Burt prompts the user

to provide the input. This is only activated if the matched S2R is confirmed by the user

as a correct S2R.

4.2.4 Report Processing Engine (RP)

Burt’s RP Engine is composed of three sub-components: (i) the App Execution Model,

(ii) the Dialogue Quality Processor which maps parsed bug report elements to app states

from the model, and (iii) the S2R Response Predictor which infers likely next S2Rs, given

an existing set of S2Rs already mapped to the execution model.

4.2.4.1 App Execution Model

The app execution model is a graph that stores sequential GUI-level app interactions (e.g.,

taps, types, or swipes performed on screen GUI components) and the app response to those

interactions (i.e., app screens). These interactions and app responses are produced using

two strategies: (1) by executing an automated systematic app exploration adapted from

CrashScope’s GUI-ripping Engine [162, 164], and (2) by recording (crowdsourced) app

usage information from app end-users or developers. Both the systematic app exploration

and app usage data are collected before Burt is deployed for use.

App Execution Model Data Collection. This is Burt’s plat-form-specific part

4.2. BURT: A CHATBOT FOR BUG REPORTING 40

and would be constructed differently for non-Android applications. Burt uses a version

of CrashScope’s GUI-ripping engine [162, 164] to generate app execution data in the

form of sequential interactions. CrashScope enables dynamic analysis of Android apps

that utilizes a set of systematic exploration strategies (e.g., top-down and bottom-up)

and has been shown to exhibit comparable coverage to other automated mobile testing

techniques [162]. For a detailed description of the engine, we refer the readers to Moran et

al.’s previous work [162, 164]. As in prior work [111, 65, 96, 64, 116], we instantiate

data collection by recording low-level app event traces using the getevent, sendevent,

uiautomator utilities included in the Android OS and SDK.

Collecting crowdsourced user app usage data serves two main purposes: (1) increase

the coverage of app states and screens in Burt’s execution model; and (2) augment the

model with scenarios that are common during normal app usage. Section 4.2.5 describes

the procedure that we implemented to collect the crowdsourced data. Crowdsourced data

collection leads to the same types of app events as the automatic app exploration does.

App Execution Model Structure. The execution model is a directed weighted

graph G = (V,E), where V is the set of unique app screens with complete GUI hierarchies

[13], and E is a set of app interactions performed on the screens’ GUI components. In

this model, two screens with the same number, type, size, and hierarchical structure of

GUI components are considered a single vertex. E is a set of unique tuples of the form

(vx, vy, e, c), where e is an application event (tap, type, swipe, etc.) performed on a GUI

component c from screen vx, and vy is the resulting screen right after the interaction

execution. Each edge stores additional information about the interaction, such as the

textual data input (only for type events) and the interaction execution order dictated by

the app usage (manual or automatic). The graph’s starting node has only one outgoing

interaction, which corresponds to the application launch. A GUI component is uniquely

represented by a type (e.g., a button or a text field), an identifier, a label (‘OK’ or

‘Cancel’), and its size/position in the screen. Additional information about a component

is stored in the graph, for example, the component description given by the developer,

4.2. BURT: A CHATBOT FOR BUG REPORTING 41

the parent/children components, and an annotated screen capture of the app highlighting

the GUI component being interacted with. The screen captures are used in the screen

suggestions made by Burt (see Sec. 4.2.4.3).

The graph edges have a weight which indicates the likelihood of a given app interaction

represented as a state transition. The weights are utilized by the S2R Response Predictor

(see Sec. 4.2.4.3), which aims to suggest S2Rs that end-users would perform when normally

using given app features. To enable accurate predictions, Burt assigns higher weights to

interactions executed by humans than those executed automatically by CrashScope.

To accomplish this, Burt sets the weight of an edge to the number of times it was

executed in the collected usage data. If an edge is not executed by a human, but was

executed by CrashScope’s systematic exploration, then edge weight is set to one, even if

CrashScope executes the same interaction multiple times. While this weight assignment

scheme is straightforward, it proved to be effective (see Sec. 6.3.6).

4.2.4.2 Dialogue Quality Processor

Based on prior work [78], Burt’s quality definition is based on the ability to match a

textual bug description (OB, EB, or S2R) to the screens (states) and interactions (edges)

of the execution model. A textual description is considered to be high-quality if it can

be precisely matched to the execution model, otherwise it is deemed low-quality. This

definition and Burt’s dialogue features that prompt users to improve low-quality descrip-

tions aim to reduce the knowledge gap between the reporters, who are unfamiliar with

app internals and may not know how to express a bug, and developers, who define and

implement the vocabulary captured in Burt’s execution model.

Assessing OB Quality. Burt first builds a query to the app execution model by

concatenating the non-empty elements from the parsed description, namely the subject,

action, object, and object2. Then, it preprocesses the query using lemmatization [157]

and attempts to retrieve all matching GUI components via an adapted version of the

matching procedure proposed by prior work [78]. This procedure computes the similarity

4.2. BURT: A CHATBOT FOR BUG REPORTING 42

score between the query and the elements from a GUI component, namely the component

label, the description, and the ID specified by the original developer. The similarity is

computed based on a normalized length of the longest common substring between query

and the component elements. If such similarity is greater than or equal to 0.5, then there is

a match, otherwise there is a mismatch. If the initial query does not match an app screen,

Burt runs a different query by using only the subject, since, based on our experience, it

may indicate a key GUI component that is directly related with a bug.

Burt keeps a list of the app screens with at least one matching GUI component. Such a

list is sorted in increasing order by the distance between the starting state in the execution

model and the matched state. If this list is empty, it means the OB description does not

use vocabulary from the app screens and needs to be rephrased. If this list contains only

one element, it is used to show the user the potential buggy app screen, which the user

has to confirm as correct or incorrect. Otherwise, if the list contains multiple elements, it

is used to display the possible buggy app screens so that the user decides the appropriate

screen. The selected OB screen by the user is tracked in the execution model and is used

for (1) EB description matching, (2) the prediction of the next S2Rs, and (3) asking the

user if the last provided S2R is the last step to replicate the bug.

Assessing EB Quality. Burt performs the matching approach described above using

the parsed EB description against the OB screen confirmed by the user. Burt assumes

the OB screen is the one that should work correctly, therefore, it attempts to match the

EB description to it. If the user did not select an OB screen, the EB matching is bypassed

and the EB description is saved for generating the bug report. If the EB description does

not match the OB screen, it means the vocabulary used in the EB description is different

from the OB screen, and the EB description should be rephrased. However, rather than

prompting the user to rephrase it, Burt asks the user if the OB screen is the one that

should work correctly.

Assessing S2R Quality. Burt adapts the step resolution/matching algorithm pro-

posed by Chaparro et al. [78] and performs exploration of the execution model driven by

4.2. BURT: A CHATBOT FOR BUG REPORTING 43

the matching of the reported S2Rs. By default, Burt assumes the first S2R performed

by a user is launching the app and the current graph state is set to be the first app screen

that results from this operation.

For a provided S2R description, starting from the current state, Bee traverses the

graph in a depth-first manner and performs step resolution on each state. Step resolution

is the process of determining the most likely app interactions that the S2R refers to in a

particular state (i.e., app screen). The result is a set of resolved interactions for the S2R

on the selected states. If the S2R resolution fails for these states (either with a mismatch

or a multiple-match result), then it means that either: (1) there are app states not present

in the execution model, or (2) the S2R description is of low-quality.

The resolved interactions are matched against the interactions (i.e., the edges) from

the graph, by matching their source state vx, the event e, and the component c. If a pair

of interactions match, then they are considered to be the same interaction. The matching

returns a set of interactions from the graph that match the resolved ones. If this set is

empty, it means that the resolved interactions were not covered by the app exploration

and the quality assessment returns a low-quality result with a mismatch. If the reason for

the mismatch is because of multiple-component or -event match (i.e., the S2R description

matches multiple GUI components or map to multiple events), Burt considers the S2R

as ambiguous, and Burt indicates that the S2R’s action corresponds to multiple events,

or the object or object2 match multiple GUI components. If there is a no-match, Burt

specifies the problematic vocabulary from the S2R elements: action, object, object2, or

any combination of these.

Otherwise, if the set of resolved interactions is not empty, Burt proceeds with selecting

the most relevant interaction that corresponds to the S2R description, by selecting the

one whose source state is the nearest to the current execution state in the graph.

4.2. BURT: A CHATBOT FOR BUG REPORTING 44

4.2.4.3 S2R Response Predictor

BURT predicts the next S2Rs that a user may have performed in practice. The prediction

is executed during the following dialogue scenarios (see Fig. 4.3): (1) when an OB screen

from the execution model has been selected/confirmed by the user, (2) when the S2R

collection phase starts, (3) right after the user confirms a matched S2R for her S2R

description, or (4) when the user has already selected one or more S2Rs suggestions.

Burt implements a shortest-path approach to predict the next S2Rs. First, Burt

determines the paths between the current graph state and the corresponding OB state.

Then, Burt computes the likelihood score based on the execution model edge weights.

Burt uses the equation below to compute the score Sp of an n-edge path p =

{w1, w2, ..., wn}, with wk being edge k’s weight:

Sp =
1
n

∑
kwk +

1
n

The first term in the sum is the average weight among all path edges and the second term

is a factor that favors shorter paths.

Once the paths are ranked by their scores (in descending order), these are modified

to include loops, i.e., steps that lead to the same app screen (e.g., types for providing

input values). Then, only the first five steps for each path are selected. With only the

first five steps, all unique paths are kept and only the top-2 paths are saved for being

presented to the user. The first one is always presented and if the user does not select

any of the steps as being the next S2Rs and wants more suggestions, the second path is

presented next. Every time the user selects a suggested step as being the next step, the

prediction/suggestion process restarts with new predictions.

4.2.5 BURT Implementation

Burt is currently implemented as a web application with two major components: the

front-end, developed with the React Chatbot Kit [28], and the back-end, developed with

Spring Boot [30]. Burt’s implementation is tailored for Android applications, however,

its underlying techniques are generic enough to be easily implemented for other types of

4.3. EMPIRICAL EVALUATION DESIGN 45

software — the App Execution Model Data Collection is the only platform-specific part.

To collect the crowdsourced app usage traces for Burt, two computer science stu-

dents, who did not have knowledge of our studied bugs, were instructed to use the apps’

features as they typically would do, and recorded traces that exercise key app features.

Additionally, two researchers recorded sequences simulating app developers who test the

apps. These traces were converted and merged into app execution models for each of the

studied apps as described in Sec. 4.2.4.1. In practice, developers can utilize recorded tests,

crowdsourced data, or automated app exploration techniques with a “one-time” cost for

building the app execution model.

4.3 Empirical evaluation design

We conducted two user studies to evaluate: (1) Burt’s perceived usefulness and usability;

(2) Burt’s intrinsic accuracy in performing bug report element quality verification and

prediction; and (3) the quality of the bug reports collected with Burt, compared with re-

ports collected by a template-based bug reporting system. We aim to answer the following

research questions (RQs):

RQ1: What Burt features do reporters perceive as (not) useful?

RQ2: What Burt features do reporters perceive as (not) easy to use?

RQ3: What is the accuracy of Burt in performing bug element quality verification and

prediction during the bug reporting process?

RQ4: What is the quality of the bug reports collected by Burt compared to reports collected

by a template-based bug reporting system?

To answer the RQs, we selected a set of Android app bugs used in prior research

(Sec. 4.3.1), and asked bug reporters to report these bugs using Burt and to evaluate

their experience (Sec. 4.3.2). We analyzed the conversations the reporters had with Burt

4.3. EMPIRICAL EVALUATION DESIGN 46

and measured how accurate Burt was during the reporting process (Sec. 4.3.3). Then, we

asked additional participants to report the same bugs with a template-based bug reporting

system (Secs. 4.3.4.1 and 4.3.4.2), and analyzed the collected bug reports to measure their

quality based on bug element correctness (Sec. 4.3.4.3). We present and discuss the results

in Sec. 6.3.6. Our user studies were approved by an Institutional Review Board (IRB)

and conducted remotely due to restrictions related to COVID-19.

4.3.1 Apps and Bug Dataset

We selected 12 Android app bugs from the bug dataset provided by Cooper et al. [96].

The apps in the dataset support different app domains and have been studied in prior

research [65, 78, 163, 162]. The apps are: AntennaPod (APOD) [14] – a podcast man-

ager, Time Tracker (TIME) [32] – a time-tracking app, Android Token (TOK) [12] – a

one-time-password generation app, GnuCash (GNU) [21] – a personal finances manager,

GrowTracker (GROW) [22] – a plant monitoring app, and Droid Weight (DROID) [19] –

a personal weight tracking app. This dataset provides, for each bug, the APK installer

that contains the bug, the description of the incorrect (observed) app behavior (OB), the

expected app behavior (EB), and the (minimal) list of the steps to reproduce the bug

(S2Rs).

From the 60 bugs (35 crashes and 25 non-crashes) in Cooper et al.’s dataset [96],

we selected 12 bugs (7 crashes, 1 handled error, and 4 non-crashes) using a stratified

random approach (see Table 4.1). We randomly selected two bugs for each of the six

apps, ensuring that the bugs represent a variety of bug types that manifest visually on

the device (crashes, GUI issues, functional bugs, etc.) and have a diverse number and

type of S2Rs (taps, types, swipes, etc.). Six bugs contain 5 − 9 (minimal) S2Rs, and six

bugs contain 10 − 16 (minimal) S2Rs (see Table 4.1). The 12 bugs are reproducible on

a specific web-based Android emulator configuration (virtual Nexus 5X with Android 7.0

configured via the Appetize.io [16] service).

4.3. EMPIRICAL EVALUATION DESIGN 47

Table 4.1: Apps and bug dataset

App Bug ID # of S2Rs Bug type

APOD
CC3 11 Incorrect color in GUI component
RB 5 Error message on screen

DROID
CC5 7 Crash
CC6 12 Crash

GNU
CC9 13 Duplicated GUI component
RC 5 Crash

GROW
CC5 10 Crash
RC 8 Crash

TIME
CC1 16 GUI component disappears
CC4 9 Crash

TOK
CC2 10 Crash
CC7 6 GUI component does not appear

4.3.2 RQ1 & RQ2: BURT’s User Experience

We asked participants to report a selected subset of bugs using Burt, and evaluate their

experience via an online questionnaire.

4.3.2.1 BURT Bug Reporter Recruitment

We reached out to 36 potential participants with mixed experience in bug reporting from

our personal network, who were not involved in or aware of the purpose of this work.

They were offered a $15 USD gift card for participation. From these, 24 users completed

the study and data from six participants was discarded due to low-effort answers, thus

resulting in valid responses from 18 participants. Four of the six participants did not treat

the study seriously, that is, they submitted incomplete reports (e.g., only the OB was

reported) and answered all survey questions with the same response. The remaining two

participants reported completely different bugs to the ones assigned. Five participants

had not reported a software bug before, nine had reported five or fewer bugs, and the

remaining four had reported more than five bugs. The participants were unfamiliar with

Burt and the selected apps/bugs.

4.3. EMPIRICAL EVALUATION DESIGN 48

4.3.2.2 Bug Assignment and Reporting

Each of the 18 participants was randomly assigned to report three bugs (from the 12

selected) with Burt, each bug corresponding to a distinct app. The reporters were in-

structed to report the bugs in a given (random) order to account for potential learning

biases. The bug reporting procedure consisted of five tasks which included the users: (i)

watching a short instructional video that explained how to use Burt via an example;

(ii) familiarizing themselves with the apps on the web-based emulator; (iii) watching a

video demonstrating the observed and expected behavior for each assigned bug (with an-

notations to ensure proper understanding); (iv) reproducing the bugs on the web-based

emulator; and (v) reporting each bug with Burt. We aimed to control for participant

understanding of the bugs so that the effect of potential misunderstandings was minimized.

4.3.2.3 BURT’s User Experience Assessment

After the participants reported the three assigned bugs, they answered an online question-

naire that was meant to assess Burt’s usefulness and ease of use and to obtain feedback for

potential improvements to Burt. Table 4.2 shows the questions asked to the participants,

which are inspired by the PARADISE [114] evaluation framework.

To address RQ1, we focused on evaluating Burt’s four main features: (1) Burt’s app

screen suggestions for the OB, EB, and S2Rs; (2) Burt’s ability to parse and match the

OB, EB, and S2R descriptions provided by the user; (3) Burt’s messages and questions

given to the user; and (4) Burt’s panel of reported S2Rs, which allows the user to visualize

and edit the reported S2Rs. Questions Q1-Q5 in Table 4.2 aim to address RQ1 and

used a 5-level Likert scale [171]. We asked the participants to (optionally) provide a

justification/rationale for their answers. Each bug involved multiple screen suggestions,

OB/EB/S2R user descriptions, and Burt messages/questions. Questions Q1-Q3 refer to

the frequency of these user interactions with Burt.

To address RQ2, the reporters assessed Burt’s overall ease of use (Q5) and indicated

4.3. EMPIRICAL EVALUATION DESIGN 49

Table 4.2: Questionnaire for evaluating BURT’s user experience

ID Question
Q1 How often were Burt’s screen suggestions useful?

Q2
How often was Burt able to understand your
OB/EB/S2Rs?

Q3
How often were you able to understand Burt’s
messages/questions?

Q4 Was Burt’s panel of reported steps useful?
Q5 How easy to use was Burt overall?

Q6
Which of Burt’s features did you find easy/difficult
to use?

Q7
What additional functionality (if any) would you
like to see in Burt?

Burt’s specific features that were easy or difficult to use for them (Q6). Q5 used a used

a 5-level Likert scale and Q6 requested an open-ended response. The reporters were also

asked to indicate additional features they would like to see in Bee (Q7). Additional open-

ended questions were asked (not shown in Table 4.2) to obtain feedback on how to improve

Burt.

4.3.3 RQ3: BURT’s Intrinsic Accuracy

To answer RQ3, we analyzed the conversations that the reporters had with Burt to

determine: (1) how often Burt was able to correctly match OB/EB/S2R descriptions

to the app execution model as confirmed by the reporters; and (2) how often the user

selected one or more of the suggested app screens as being correct (i.e., they match the

reporters’ OB/EB/S2R descriptions). We computed statistics on the (meta)data that

Burt collected from the conversations, such as, the type of messages that Burt asked

and the type of user responses (as defined by Burt’s Dialogue Manager – see Sec. 4.2.3).

4.3.4 RQ4: BURT’s Bug Report Quality

We describe the methodology to answer RQ4 in this section.

4.3. EMPIRICAL EVALUATION DESIGN 50

4.3.4.1 Itrac: A Web Form for Bug Reporting

We implemented a web/template-based bug reporting interface, called Itrac, using Qualtrics [36].

Itrac offers the same features of professional issue trackers (e.g., GitHub Issues [20] or

JIRA [24]), for reporting the OB, EB, and S2Rs. Specfically, Itrac provides text boxes

with explicit prompts that ask for the bug summary/title and the OB, EB, and S2Rs.

In addition, Itrac prompts the reporter to provide the S2Rs using a numbered list (via

a given template). The reporters can write freely their own bug descriptions in the text

boxes and also attach images/files. We use Itrac rather than an existing professional is-

sue tracker to simplify the reporting process for the reporters because they can use Itrac

without having to log into a service.

4.3.4.2 Bug Reporting with Itrac

Following the methodology described in Sect. 4.3.2.1, we recruited 18 more end-users, who

did not participate in the Burt study, and asked them to report a subset of bugs using

Itrac. These reporters did not know about Burt, Itrac, and the selected apps/bugs,

and had a similar bug reporting experience to that of the group who reported the bugs

with Burt. Five of the new reporters had not previously reported a software bug, eight

had reported one to five bugs, and the remaining five had reported more than five bugs.

We assigned the same sets of three bugs used in the Burt study to the new users

(trying to match the bug reporting experience) and instructed them to report the bugs

using Itrac in the same order from before. Prior to reporting the bugs, the participants

were instructed to: (i) familiarize themselves with the apps by using them on the web-

based emulator; (ii) watch a video demonstrating the bugs (with annotations to ensure

proper understanding); and (iii) reproducing the bugs on the web-based emulator.

4.4. RESULTS AND ANALYSIS 51

Never Rarely Sometimes O!en Always

Screens

OB

EB

S2Rs

Messages

Panel

Useless Somewhat Useless Neutral Somewhat Useful Useful

Difficult Somewhat Difficult Neutral Somewhat Easy Easy

Ease of Use

Figure 4.4: User experience results for BURT (Q1-Q5)

4.3.4.3 Measuring Bug Report Quality

We estimate the quality of the collected bug reports (via Burt and Itrac) by assessing the

correctness of the OB, EB, and S2Rs described in the reports, based on the quality model

proposed by Chaparro et al. [78]. Three authors manually compared each collected report

with the ground truth scenarios from Cooper et al.’s dataset [96], which included correct

descriptions of the OB and EB and a minimum viable set of S2Rs. Using this methodology,

we computed the following: (i) the number of incorrect OB/EB/S2R descriptions; and (ii)

the number of missing S2Rs. To limit the effect of subjective assessments, two authors

performed the bug report analysis independently and a third author reviewed the results,

reaching consensus among all three in case of discrepancies. In order to determine how

helpful Burt and Itrac are for novices or more experienced reporters, we analyzed bug

report quality across different levels of bug reporting experience.

4.4 Results and Analysis

We present and discuss the results of our evaluation for each RQ.

4.4. RESULTS AND ANALYSIS 52

4.4.1 RQ1: BURT’s Perceived Usefulness

Fig. 4.4 summarizes the users’ answers on: (i) their perceived usefulness of Burt’s screen

suggestions (row labeled Screens); (ii)Burt’s ability to understand the user’s OB, EB, and

S2R descriptions (rows OB, EB, and S2Rs); (iii) how often they were able to understand

Burt’s messages and questions (row Messages); (iv) their perceived usefulness of Burt’s

panel of reported S2Rs (row Panel); and (v) Burt’s overall ease of use (row Ease of Use).

App Screen Suggestions. Half of the 18 participants (9) agreed that Burt’s app

screen suggestions were often useful, and the other half (9) agreed they were sometimes

useful. As for their rationales, one participant mentioned that the next S2R screen sugges-

tions ”were useful because they shortened the time it took me to explain how to reproduce

the bug”. Other participants highlighted that the suggestions ”were helpful in making

sure I was providing the exact steps I wanted to describe”, or that Burt “gave very good

suggestions when it could figure out which screen had the bug based on the initial report”.

Some of the participants even hoped that Burt can provide suggestions more frequently.

These results illustrate the usefulness of Burt’s app screen suggestions.

Some participants noted, though, that “the suggestions were a little inaccurate”. We

found that the inaccuracies stemmed from Burt not being able to recognize/match the

user’s OB description because of generic wording, without details (e.g., “the app crashed”).

Note that the Burt’s S2R suggestions are not activated if the OB description is not

matched to an app screen, which affected the reporters experience. Also, the participants

recommended that it would be useful to have suggestions of “bug triggering screenshots”,

as currently, Burt’s screen captures may not show the bug that the user wants to re-

port. The participants also found some suggestions confusing because the screen captures

for the S2Rs highlight “non-existent buttons”. This stems from Burt’s systematic GUI

exploration technique, which can execute events on GUI components such as, layouts or

views, which are often not visible to the user.

OB, EB, and S2R Understanding. The reporters have a positive overall impression

4.4. RESULTS AND ANALYSIS 53

on how often Burt understood their OB, EB, and S2R descriptions. Specifically, Burt

was able to often or always (sometimes) understand the OB/EB/S2R descriptions of

9/10/11 (9/6/6) participants (out of 18). Only two/one participant(s) felt that Burt

rarely recognized their EB/S2Rs.

Our analysis of the open-ended answers also reveals that some participants were gen-

erally satisfied with Burt in terms of bug description understanding. This can be seen

in comments such as “I’m quite satisfied with the recognition rate [for the S2Rs], even

better than talking to a real agent”, “It always understands my description of the OB/EB

when I tried to use keywords from apps”, “it was kind of easy for burt to understand my

(EB) description”, and “It can understand me to describe the error behavior”. However,

several participants had a less positive perception of Burt’s bug description understand-

ing stating that it is ”difficult to match Burt’s language”, they ”need to follow specific

pattern” so that Burt is able to understand, and they “usually had to paraphrase” their

descriptions. These comments stem from our design decision to limit the language that

users could use to describe the OB, EB, and S2Rs, and inaccuracies in bug description

matching. However, we observed, based on the reporters’ comments and their conversa-

tions with Burt, that the participants learned how to describe the OB/EB/S2Rs using

Burt’s preferred formats after reporting the first bug. Still, the reporters’ main recom-

mendation was to improve Burt’s ability to recognize additional vocabulary and ways of

phrasing the OB/EB/S2Rs.

BURT’s Messages and Questions. Eleven (of 18) participants often understood

Burt’s messages and questions, while six participants understood them sometimes. Only

in one case, the reporter rarely understood the messages/questions.

The analysis of their rationales reveals that generally Burt’s messages/questions were

“very easy to understand”. One participant wrote that Burt’s “wording was always clear

and I could always tell what Burt was asking for”, also echoed by multiple participants.

Some participants recommended to improve the messages and questions, as sometimes

they were unclear and too similar to each other. For example, for Burt’s question “Was

4.4. RESULTS AND ANALYSIS 54

Table 4.3: Quality assessment results for bug reports (BRs) collected by Burt and Itrac

App-Bug ID
of BRs Avg. # of S2Rs

Avg. # (%) of Avg. # (%) of # of BRs with# of BRs with
incorrect S2Rs missing S2Rs incorrect OB incorrect EB

ItracBurt Itrac Burt Itrac Burt Itrac Burt Itrac Burt Itrac Burt

APOD-CC3 5 5 4.6 7.4 0.6 (16.7%) 0.6 (9.7%) 6.4 (58.2%) 3.4 (30.9%) 0 1 0 3
APOD-RB 4 4 3.3 4.8 0.0 (0.0%) 1.8 (30.6%) 1.0 (20.0%) 1.0 (20.0%) 1 1 1 0

DROID-CC5 6 6 4 4.3 0.3 (11.1%) 0.5 (10.0%) 1.3 (19.0%) 0.7 (9.5%) 1 2 1 1
DROID-CC6 6 6 4.5 8.5 1.3 (44.4%) 1.2 (13.7%) 5.0 (41.7%) 2.0 (16.7%) 0 3 1 1

GNU-CC9 5 5 6.4 10.2 0.8 (26.7%) 0.2 (2.5%) 4.8 (36.9%) 3.2 (24.6%) 1 0 1 0
GNU-RC 3 3 4.7 4.3 0.0 (0.0%) 0.3 (6.7%) 0.0 (0.0%) 0.0 (0.0%) 0 1 0 0

GROW-CC5 4 4 4.8 7.5 1.3 (28.1%) 0.0 (0.0%) 4.5 (45.0%) 3.5 (35.0%) 0 0 0 0
GROW-RC 4 4 5.8 7.5 1.0 (30.0%) 0.5 (7.1%) 1.8 (21.9%) 1.5 (18.8%) 1 3 1 0

TIME-CC1 5 5 7.8 10.4 1.0 (24.0%) 0.2 (2.9%) 6.6 (41.3%) 6.2 (38.8%) 0 1 0 0
TIME-CC4 4 4 4.3 8 1.0 (24.4%) 0.3 (5.0%) 3.0 (33.3%) 1.3 (13.9%) 1 2 2 1

TOK-CC2 4 4 4.8 10.3 0.3 (8.3%) 0.8 (6.8%) 2.5 (25.0%) 0.5 (5.0%) 2 2 0 0
TOK-CC7 4 4 5 5.8 0.5 (16.7%) 0.3 (3.6%) 1.5 (25.0%) 0.8 (12.5%) 1 0 1 0

Overall 54 54 5 7.5 0.7 (20.4%) 0.6 (8.3%) 3.4 (32.0%) 2.1 (19.4%) 8 16 8 6

this the last S2R that you performed?”, the participants suggested to clarify which last

S2R Burt was referring to.

The Panel of Reported S2Rs. Burt’s panel of reported S2Rs was deemed to be

useful (somewhat useful) by 9 (6) participants. Only one participant found that the panel

was somewhat useless. The participants commented that the panel was “Very useful for

visualizing a bug report”, that “It was good to see what was getting logged”, and that it

was useful “as a way for me to review that the reproduction steps I entered are complete“.

Summary of findings for RQ1: Overall, reporters found Burt’s screen suggestions

and S2R panel useful. They also had a positive impression of Burt’s OB/EB/S2Rs

understanding and messages. Improvements are required for Burt to support additional

wording of bug report elements and more accurate suggestions.

4.4.2 RQ2: BURT’s Perceived Ease of Use

Twelve reporters indicated Burt was either easy or somewhat easy to use. Four reporters

were neutral, while two reporters expressed it was somewhat difficult to use (see Ease of

use in Fig. 4.4).

We analyzed the reporter responses regarding which of Burt’s features they found

easy/difficult to use. In general, the participants expressed that Burt’s GUI “is really

4.4. RESULTS AND ANALYSIS 55

helpful”, “concise”, and “easy to use and understand”. Multiple reporters indicated that

selecting Burt’s app screen suggestions was easy to use and some of them were very

enthusiastic about them. One reporter mentioned that ”I liked the screenshots a lot,

very easy to report the process to reproduce a bug”. Other reporters expressed that ”The

suggestions & confirmations were very easy to use. When it had the right idea, confirming

it was just a matter of clicking a button”, and that Burt “guides the user to provide a

”step-by-step” view”. The panel of reported steps was easy “to explore” and it was easy

to “remove events” from it.

The main reason behind usage difficulties was the limited vocabulary that Burt un-

derstands, also observed before for RQ1. The reporters recommended to let the users

upload their own screen captures when Burt is unable to attach screens to the user’s bug

descriptions, and the ability to delete/modify any step.

Finally, for both RQ1 & RQ2, we found no notable differences in Burt’s perceived

usefulness and ease of use between different levels of user’s bug reporting experience.

4.4.3 RQ3: BURT’s Intrinsic Accuracy

We analyzed the 54 conversations that reporters had with Burt to determine how often

Burt was able to correctly (1) match OB/EB/S2R descriptions to the execution model,

and (2) suggest relevant OB/S2R app screens to the reporters.

OB Reporting. We found that in 3 of 54 conversations (5.5%), Burt was able to

match the reporter’s OB description to the correct screen that showed or triggered the bug,

as confirmed by the reporter during the conversation. In 35 of 54 conversations (64.8%),

Burtmatched the OB description to multiple app screens. In those cases, Burt suggested

the top-5 matched screens so that the reporter selected the one s/he was referring to. In

29 of these 35 reports (80%), the reporter selected one of the suggested screens, while

in the remaining 6, the suggested screens were irrelevant. For the remaining 16 of the

54 conversations (29.6%), Burt was not able to match the OB description with any app

screen because of incorrect OB wording from the user and inaccuracies in Burt’s message

4.4. RESULTS AND ANALYSIS 56

parser and processing. Overall, Burt was able to correctly match their OB descriptions

in 32 of 54 of the conversations (59.3%).

EB Reporting. As described in Sect. 4.2.4.2, Burt can only match the reporter’s

EB description when there is a matched/selected OB screen. Otherwise, Burt collects

the EB description from the user as is. In the 32 cases when Burt can verify EB quality,

Burt was able to match the EB against the OB screen in 17 cases (53.1%) without having

to ask the reporter for confirmation. In 6 of the 32 cases (18.8%), the users confirmed the

matched OB screen when Burt asked them about that. In the remaining 9 cases (28.1%),

Burt was not able to parse the provided EB description.

S2R Reporting. Burt matched a written S2R with a step from the execution model

205 times in total across the 54 conversations (3.8 times per conversation on avg.). In

157 of these cases (76.6%), Burt was able to match S2Rs correctly. Burt predicted

and suggested the next S2Rs in 146 cases (4.6 times per conversation on avg.) for the

32 conversations where there was a matched/selected OB screen. We found that the

reporters selected 1.6 of the 3.9 suggested S2Rs (on avg.) in 91 cases (62.3%). In 13 of

the 32 conversations, the reporter always selected S2Rs from the suggested list, meaning

at least one suggestion was correct. In all the 54 conversations, Burt asked the user to

rephrase their S2Rs 176 times (3.9 times per conversation on avg.). We found that in at

least 59 of these cases (33.5%), the user made a mistake or described the step incorrectly

(e.g., “incorrect result” or “no more steps”).

Summary of findings for RQ3: The results support the users’ ratings (RQ1) on

how often Burt’s OB/S2R screen suggestion were useful and how often Burt was able to

understand the user’s OB/EB/S2R descriptions. The accuracy assessment revealed cases

where Burt’s struggles to parse and match the users’ descriptions, however, Burt is able

to continue with rephrasing prompts. The overall accuracy indicates that the techniques

we used in building Burt’s components are adequate. Improvements are planned for

future work to improve Burt’s accuracy.

4.4. RESULTS AND ANALYSIS 57

4.4.4 RQ4: Bug Report Quality

Table 4.3 summarizes the quality measures of the 54×2 = 108 bug reports, collected with

Itrac and Burt, for the 12 bugs in our dataset (each bug is reported in 3 to 6 reports).

S2R Quality. Overall, as shown in Table 4.3, Burt reports contain fewer incorrect

S2Rs than Itrac reports on avg. (8.3% vs. 20.4%) and fewer missing S2Rs (19.4%

vs. 32%), compared to the ground-truth scenarios of the 12 bugs. We performed an

analysis to verify whether there there statistically significant differences between Burt

and Itrac on the percentage of incorrect and missing S2Rs. We applied the Wilcoxon

signed-rank test [120] and Cliff’s delta (CD) [94] on the results, across the 12 bugs (at

95% confidence level), since we have paired ordinal measurements (for each bug) that do

not necessarily follow normal distributions. We found that Burt’s bug reports have fewer

incorrect (p = 0.0261) and fewer missing steps (p = 0.0025) than Itrac’s reports, with a

large effect size (CD = 0.5 and 0.527, respectively).

The main reasons for incorrect S2Rs are generic/unclear step wording (4 in Burt and

36 Itrac reports), duplicate S2Rs (13 in Burt reports, zero in Itrac reports), and extra

S2Rs (10 in Burt and one in Itrac reports). Examples of steps with unclear/generic

wording include “Add comment“ or “I searched for tech“, where the user either refers to

high-level app features, which map to multiple steps that are not explicit, or does not

specify which GUI components should be used and/or which action should be applied on

them. Extra S2Rs are irrelevant reported steps (e.g., “I did nothing else“). We identified

two main reasons for duplicate S2Rs: (1) user mistakes; and (2) duplicate app screens

suggested by Burt and selected by the users. The latter stems from the design of Burt’s

execution model that considers structural variations of the same screen as different screens

(see Sec. 4.2.4.1). An example is when the users employ different keyboard layouts (e.g.,

numeric vs. alphanumeric) to enter input values on the same screen.

OB/EB Quality. More Burt reports have an incorrect OB description compared to

Itrac reports (16 vs. 8 out of 54 reports), while a comparable number of Burt and Itrac

4.4. RESULTS AND ANALYSIS 58

reports have an incorrect EB description (8 vs. 6). We found that there is no statistically

significant difference between the number of Burt and Itrac bug reports with incorrect

expected behavior (p = 0.1586), with a small effect size (CD = 0.222) in favor of Burt.

Fewer Itrac reports than Burt reports have an incorrect observed behavior (p = 0.0352),

with a medium effect size (CD = 0.361).

The incorrect OB/EB descriptions (in 18 Burt reports and 10 Itrac reports total)

occurred either because the participants did not provide enough details about the bug

(e.g., “the app crashed”) or they described their inability to perform an action rather

than describing the bug itself (e.g., “I can’t add/delete a comment” vs. “Crash when

trying to add/delete a comment”).

For the 18 Burt reports, we found that, in 14 cases the users described the OB/EB

incorrectly to begin with and Burt correctly prompted them to rephrase them. Nonethe-

less, they still reported an incorrect OB/EB. In four cases, Burt accepted the incorrect

OB/EB, and in only three of the cases, Burt prompted incorrect OB/EB reporting after

the user correctly described them. This is mainly due to Burt’s current limitation on the

OB/EB wording.

Summary of findings for RQ4: Overall, Burt bug reports contain higher-quality

S2Rs than Itrac bug reports, and comparable EB descriptions. The results indicate that

improvements to Burt are needed to better collect OB descriptions from the reporters.

Table 4.4: S2R quality by bug reporting experience

Reporting # of BRs
Avg. # of Avg. % of Avg. % of

S2Rs incorrect S2Rs missing S2Rs
experience Itrac Burt Itrac Burt Itrac Burt Itrac Burt

Novice 15 15 3.5 6.7 33.6% 6.7% 45.6% 31.3%
Intermediate 24 27 5.2 7.5 20.1% 11.5% 35.5% 20.0%
Experienced 15 12 6.1 8.6 7.6% 3.2% 12.8% 3.2%

Overall 54 54 5 7.5 20.4% 8.3% 32.0% 19.4%

Novice vs. Experienced Bug Reporters. Our original expectation was that

Burt would help novice reporters more than Itrac, as the experienced reporters likely

used template-based reporting systems before.

4.5. LIMITATIONS AND THREATS TO VALIDITY 59

We compared the quality of the bug reports across different levels of user’s bug report-

ing experience. While we did not observe notable differences in terms of OB/EB quality,

we found differences in S2R quality, which we discuss. Table 4.4 shows the S2R quality

results for three groups: novice bug reporters (with no prior reporting), intermediate re-

porters (who had reported 1-5 bugs), and experienced reporters (who had reported 6+

bugs).

Regarding incorrect S2Rs, experienced and intermediate reporters produced about

twice as many incorrect S2Rs with Itrac, compared to Burt (33.6% vs. 6.7%, and

20.1% vs. 11.5% on avg., respectively). At the same time, novices produced about five

times more incorrect steps with Itrac than with Burt (7.6% vs. 3.2% on avg.). This

indicates that Burt helps novices most to avoid incorrect S2Rs.

Table 4.4 tells a different story for missing S2Rs. Novices and intermediate reporters

missed ≈1.5 times fewer S2Rs with Burt, compared to Itrac, while experienced reporters

missed four times fewer S2Rs with Burt. Surprisingly, this indicates that Burt helps

experienced reporters most to avoid missing steps.

We do not speculate on the reasons behind these observations, as more in-depth studies

are needed for proper explanations.

4.5 Limitations and Threats to Validity

Before Burt is deployed for use, either systematic app exploration data or crowdsourced

app usage data needs to be collected to construct the app execution model. The eval-

uation results indicate that Burt performs reasonably well with the data collected by

CrashScope and only four people. However, we expect that additional data (more cov-

ered states and scenarios) would improve Burt’s quality verification of reported elements

and screen/step suggestions, enabling the reporting of different bug types, under a variety

of reproduction scenarios. To confirm our expectations, additional studies are needed for

future work.

4.5. LIMITATIONS AND THREATS TO VALIDITY 60

Burt is evaluated in a lab setting where reporters were exposed to the bugs through

videos, rather than letting them find the bugs while using the apps, as users would do

in real life. As in prior studies [78, 163], we adopted this setting mainly to reduce par-

ticipant effort and fatigue. To address the lack of knowledge about the apps/bugs, we

instructed the users to get familiar with the apps by using them and with the bugs by

reproducing them on the emulator before they reported the bugs. We addressed potential

bug misunderstandings via 2/3-word annotations added to the videos.

A diverse group of reporters participated in the studies, who have different levels of

bug reporting experience. Since we offered the reporters a monetary incentive for their

participation and some of them are students from our institution(s), they may have been

motivated to diligently provide high-quality bug reports, which may not necessarily be the

case in a real-life scenario. However, we expect this factor to have a minimal impact on

the results since (1) we used the same procedure to recruit both Burt and Itrac users,

and (2) the bug reporting experience in both reporter groups are almost the same (only

two Itrac users have a different experience).

Our evaluation did not consider how easy or difficult it is (for developers) to under-

stand and reproduce the Itrac and Burt bug reports. Instead, we focused on assessing

bug report quality, as done by prior work [78]. Assessing bug report understanding and

reproduction is in our plans for future work. Additionally, we did not account for the

complexity of the bugs in our dataset. However, we selected bugs of diverse types and

distributions of the S2Rs. Our future work will investigate how bug complexity affects

Burt.

Finally, given the relatively expensive nature of our evaluation, we limited it to 12

bugs from six apps, reported by 36 participants, which affects the external validity of our

conclusions. A larger evaluation, possibly performed on a larger sample of apps, bugs,

and participants is in our plans for future work.

4.6. RELATED WORK 61

4.6 Related work

We discuss Burt’s advancements in relation to prior work.

Issue/Bug Reporting Systems. A variety of systems currently enable end-users

and developers to manually report software bugs, namely, issue/bug trackers (e.g., GitHub

Issues [20] or JIRA [24]), built-in bug reporting interfaces in desktop and web apps (e.g.,

Google Chrome [29]), in-app bug reporting frameworks (e.g., BugSee [33]), app stores

[34, 15], and Q&A platforms [68]. These systems typically consist of web/GUI forms

(with text-based templates) that allow reporters to provide bug descriptions, indicate

bug/system metadata, and attach relevant files. Some of these systems collect techni-

cal information (e.g., configuration parameters) and offer screen recording that enable

graphical bug reporting.

While existing systems provide features that facilitate bug reporting, they offer limited

guidance to bug reporters, lack quality verification of bug report information, and do not

provide concrete feedback on whether this information is correct and complete. These

are some of the main reasons for having low-quality bug reports, which have important

repercussions for developers [238, 237].

Researchers have explored improving bug reporting interfaces, as we do in this work.

Moran et al. [163] proposed Fusion, a web-based system that allows the user to report

the S2Rs graphically by selecting (via dropdown lists) images of the GUI components and

actions (taps, swipes, etc.) that can be applied on them. More recently, Fazzini et al.

proposed EBug [104], a mobile app bug reporting system similar to Fusion that suggests

potential future S2Rs to the reporter while they are writing them. Record-and-replay

tools [161, 111, 123, 174] offer the ability to record user actions during app usage (e.g.,

when a bug is found) and replay them later.

Burt offers two main advancements over prior techniques like Fusion. First, Burt

was designed to support end-users with little or no bug reporting experience. For example,

Fusion was not created to specifically cater to end-users, as inexperienced users found

4.6. RELATED WORK 62

it more difficult to use as compared to alternatives [163]. Second, whereas past systems

helped to provide structured mechanisms to facilitate the reporting process (e.g., through

drop-down selectors) they do not offer interactive assistance when reporting a bug. Burt

offers such interactivity through its automated suggestions, real-time quality assessment,

and prompts for information clarification.

Bug Report Quality Analysis. Surveys and interviews with developers and end-

users [237, 143, 187] have identified the observed software behavior (OB), the expected

behavior (EB), and the steps to reproduce (S2Rs) the bugs as essential bug report elements

for developers during bug triage and resolution. Unfortunately, such elements are often

missing, unclear, or ambiguous, as indicated by numerous studies and developers [101,

236, 74, 113, 237, 105, 136, 3], which have a negative impact on bug report management

tasks.

In consequence, researchers have proposed techniques to better capture and manage

high-quality information in bug reports. Prior work [67, 87, 192, 231] proposed ways to

automatically identify different essential elements in bug reports (e.g., S2Rs [229, 155]),

analyze their quality, and give feedback to reporters about potential issues in them. In

particular, Zimmermann et al. [237] proposed an approach to predict the quality level of

a bug report based on factors such as readability or presence of keywords. Hooimeijer et

al. [121] measured quality properties of bug reports (e.g., readability) to predict when a

report would be triaged. Zanetti et al. [221] proposed an approach based on collaborative

information to identify invalid, duplicate, or incomplete bug reports. Imran et al. [126]

proposed an approach to suggest follow-up questions for incomplete reports. Song et

al. [192, 87] proposed a technique to detect when the OB, EB, and S2Rs are absent in

submitted bug reports. Chaparro et al. [78] evaluated the quality of the S2Rs in bug

reports through the Euler tool, which integrates dynamic app analysis, NLP and graph-

based approaches.

Our work builds upon prior research for the automated quality verification of bug

descriptions by developing quality checks for new types of bug elements (i.e., OB/EB)

4.7. CONCLUSIONS 63

and by designing dialogue flows capable of guiding the user during the bug reporting

process.

4.7 Conclusions

Burt is a task-oriented chatbot for interactive Android app bug reporting. Unlike ex-

isting bug reporting systems, Burt can guide end-users in reporting essential bug report

elements (i.e., OB, EB, and S2Rs), provide instant feedback about problems with this

information, and produce graphical suggestions of the elements that are likely to be re-

ported.

Eighteen end-users reported 12 bugs from six Android apps and reported that, overall,

Burt’s guidance and automated suggestions/clarifications are accurate, useful, and easy

to use. The resulting bug reports are higher-quality than reports created via Itrac, a

template-based bug reporting system, by other 18 reporters. Specifically, Burt reports

contain fewer incorrect and missing reproduction steps compared to Itrac reports. We

observed that Burt is most helpful to novice reporters for avoiding incorrect S2Rs. Sur-

prisingly, Burt seems to be most useful to experienced reporters for avoiding missing

reproduction steps.

The reporters provided feedback for refining the supported dialog, by including support

additional wordings to describe the OB, EB, and S2Rs. The studies also revealed areas of

improvement for Burt with respect to the verification of the reported elements.

4.8 Data-Availability Statement

We provide an online replication package [35] that contains a complete implementation

of Burt, Burt’s app execution data, code and data about Burt’s evaluation, and docu-

mentation that enables the verification and validation of our work and future research on

bug reporting systems.

Chapter 5

Recommending Bug Assignment

Approaches for Individual Bug

Reports

Multiple approaches have been proposed to automatically recommend potential develop-

ers who can address bug reports. These approaches are typically designed to work for

any bug report submitted to any software project. However, we conjecture that these

approaches may not work equally well for all the reports in a project. We conducted an

empirical study to validate this conjecture, using three bug assignment approaches ap-

plied on 2,249 bug reports from two open source systems. We found empirical evidence

that validates our conjecture, which led us to explore the idea of identifying and apply-

ing the best-performing approach for each bug report to obtain more accurate developer

recommendations. We conducted an additional study to assess the feasibility of this idea

using machine learning. While we found a wide margin of accuracy improvement for

this approach, it is far from achieving the maximum possible improvement and performs

comparably to baseline approaches. We discuss potential reasons for these results and con-

jecture that the assignment approaches may not capture important information about the

bug assignment process that developers perform in practice. The results warrant future

64

5.1. INTRODUCTION 65

research in understanding how developers assign bug reports and improving automated

bug report assignment. This work has been published on arXiv [193].

5.1 Introduction

Many software projects receive hundreds of bug reports on a daily basis that need to be

triaged and solved timely [239, 57, 197]. An important step in the bug triage process is to

assign the bug reports to the developer who has the proper expertise to solve the reported

bugs. Given the high volume of incoming reports, this process is often time-consuming

[239, 57, 197]. Hence, researchers have proposed approaches to automatically recommend

potential developers for a bug report (e.g., [54, 58, 122, 199, 204, 214]). These approaches

implement a variety of techniques, e.g., machine learning (ML) [70] or information retrieval

(IR) [159], and leverage bug report information such as past reports or bug fixes, or the

developers who processed these artifacts.

Existing bug assignment approaches use different artifact information and ways to

encode such information for automatically recommending potential developers. More im-

portantly, these approaches are typically designed to be general-purpose, i.e., they are

designed to work for all the reports submitted to a software project. However, we con-

jecture that these approaches may not work equally well for all the reports in a software

project, given their internal recommendation mechanisms, which may not account for

particular nuances that each bug report has (e.g., the bug type and specific information

reported for such a type).

In this work, we first report an empirical study (a.k.a. Study 1) that aims to validate

such conjecture. We executed three bug report assignment techniques,

that use distinct techniques (e.g., ML or IR) and information from various software

artifacts, on 4,929 bug reports from three open-source systems. We compared how often

the three approaches perform best in recommending the ground-truth developers for the

reports. We found that no single approach performed best for the majority of the bug

5.1. INTRODUCTION 66

reports in each system. Instead, each of the three approaches performs better for some

reports and worse for others, which means that these approaches do not work equally well

for all the bug reports in a project.

The results motivated us to investigate the idea of automatically identifying the best

approach for each individual bug report and running the predicted approach to produce

more accurate developer recommendations. In this way, we would combine the advantages

of the three approaches to produce better recommendations. To the best of our knowledge,

this is the first work that investigates this idea for automated bug assignment (more details

are given in Section 5.5).

We report an additional study (a.k.a. Study 2) to assess the feasibility of this idea by

using machine learning (ML). We experimented with multiple ML models to recommend

the best-performing bug assignment approach for each bug report. These models are

trained and evaluated using the same bug report dataset from Study 1 and 23 features that

encode possible relationships between the reports and the approaches. Once the models

detect the best-performing approach for a report, this is applied to the report to obtain

a list of potential developers who can address the reported bug. We call this approach

Mix. The results show that, while there is a wide margin of accuracy improvement by

perfectly recommending the best approach for individual reports, Mix is far from achieving

the maximum possible improvement and performs comparably to using the individual

assignment approaches on all the reports. We discuss potential reasons for these results

and conjecture that existing approaches may not capture important information about the

bug assignment process that developers perform in practice. The results warrant future

research in understanding how developers assign bug reports in practice and improving

automated bug report assignment.

5.2. STUDY 1: BUG ASSIGNMENT ON INDIVIDUAL BUG REPORTS 67

5.2 Study 1: Bug Assignment on Individual Bug Reports

We conducted an empirical study to validate the conjecture that existing bug report

assignment techniques do not work equally well for all the bug reports in a software

project. Specifically, the study aimed to answer the following research question:

RQ1: How do bug report assignment approaches perform and compare when applied on

individual bug reports?

5.2.1 Dataset

We collected bug report data for two open source projects, namely Angular.js (Angular)

and WordPress Android (WordPress), which have been used in prior work [184, 87]. An-

gular is a web framework and WordPress is an Android app for website creation. These

projects were selected because they are active, large (90kLOC+), support different do-

mains, and involve a large number of developers (171 and 40 for Angular and WordPress,

respectively).

We used the GitHub API to download all of the project issues submitted until Oct.

2020. For each issue, we collected the ID, the title/summary and description, the status,

the date-time of submission, the labels, and the person who was assigned to solve the

issue. We used the issue labels to identify the bug reports: those issues tagged with the

label “bug” by the project maintainers. We only used those reports that were closed and

had one or more commits that fixed the bug (read below). We collected 905 and 1,344

reports for Angular and WordPress, respectively.

As in prior work [184, 122], we built the set of developers who fixed the bug for each

bug report (i.e., the ground truth). We consider the developer assigned to solve the bug

on the issue tracker as well as the developers who pushed the code changes to solve the

bugs as the ground-truth developer set for each report. To build the developer sets, we

identified the associated commits with each bug report by using regular expressions on

the commit and bug report comments. From the identified commits, we extracted the

5.2. STUDY 1: BUG ASSIGNMENT ON INDIVIDUAL BUG REPORTS 68

developers who authored or committed the code changes. The avg. number of developers

that fixed the bug in the collected bug reports is 1.4 (Angular) and 1.1 (WordPress). We

applied tokenization, stop word removal, and stemming on all the textual data (e.g., bug

reports).

5.2.2 Bug Assignment Approaches

We used different types of bug assignment approaches that leverage information from

various artifacts to recommend potential developers. We used an ML-based approach

(L2R [204]), an IR-based approach (Lucene), and another approach that leverages how

frequent the developers solve bugs (Freq). These approaches recommend a ranked list

of developers for a particular bug report (a.k.a. the query, formed by concatenating its

title/summary and description). Developers ranked higher in the list are considered to

have more expertise in addressing the report.

L2R is a state-of-the-art approach [204] (based on the Ranking SVM model) that

learns to rank tuples composed of a bug report and developer, based on 16 features that

represent the similarity/relevance between the report and the developer. For example,

a set of features leverage the textual similarity between the bug report and the code

files that a developer modified (via VSM [185] and BM25 [180]). Another set of features

leverage the textual similarity between potentially-buggy code files (as given by a bug

localization approach, based on the report) and the code files modified by the developer.

Given that the original approach was not made publicly available, we implemented L2R.

In our implementation, we use a Lucene-based bug localizer [77] as we were unable to

obtain the original localizer [218].

Lucene [115] is an IR-based approach that implements a variation of the classical

VSM [185] to compute the textual similarity between documents. We implemented a

Lucene-based approach where the documents are bug reports (similarly to prior duplicate

bug report detection work [181]). This approach finds the most similar past bug reports

to a particular report (the query), retrieves the developers that addressed the reports,

5.2. STUDY 1: BUG ASSIGNMENT ON INDIVIDUAL BUG REPORTS 69

and ranks them in the order in which the reports are ranked (from high to low textual

similarity).

Freq is an approach (inspired by prior work [208]) that ranks the project developers

based on the number of bug reports they have addressed. Developers that fixed a larger

number of reports are ranked higher by this approach.

5.2.3 Metrics and Methodology

We measured the performance of the three approaches using standard metrics used in

prior bug assignment studies [169, 204, 184].

HIT@k (H@k) is the percentage of bug reports (queries) for which at least one of

the expected developers (i.e., from the ground truth) is found in the top-k recommended

developers. We report H@k for k = 1− 5, as in prior work [169, 204]. MRR is the mean

of the queries’ reciprocal ranks. The reciprocal rank for a query is 1/rank, where rank is

the position of the first expected developer found in the ranked list of developers. MAP

is the mean average precision (AP) over all queries. The AP for a query is the average of

the precision values achieved at all the cutting points k of the ranked list of developers

(precision@k). Precision@k is the proportion of the top-k recommended developers that

are correct according to the ground truth. A higher H@k, MRR, and MAP indicate higher

bug assignment performance.

To train/evaluate L2R (as done in [204]), we sort the bug reports chronologically by

submission date-time and we split them up into 10 ten folds. The first x folds are used for

training (with x = 1...9), and fold x+1 is used for model testing. L2R’s overall performance

is computed with the metrics defined above, applied on the set of queries from all the folds

except the first one. The number of queries we used for measuring L2R’s performance is

803 (Angular) + 1,208 (WordPress). We measured Lucene’s and Freq’s performance on

the same query set to have a fair comparison among all the approaches.

The approach that achieved the lowest rank was considered the best approach for each

individual report/query. We computed the % of queries for which each approach performs

5.2. STUDY 1: BUG ASSIGNMENT ON INDIVIDUAL BUG REPORTS 70

best, including the cases when the approaches achieved the same (lowest) rank.

Table 5.1: Bug assignment performance for each system

Approach MRR MAP H@1 H@2 H@3 H@4 H@5
Angular

Freq 50.7% 43.6% 29.5% 49.6% 64.3% 75.5% 82.4%
Lucene 40.8% 36.0% 22.0% 37.6% 46.6% 56.4% 65.3%
L2R 52.0% 44.7% 31.4% 53.0% 65.3% 74.9% 80.5%

WordPress

Freq 49.3% 48.8% 28.5% 45.7% 60.9% 74.4% 80.7%
Lucene 56.9% 56.2% 38.2% 56.8% 68.6% 77.6% 82.7%
L2R 57.0% 56.2% 38.7% 56.0% 69.4% 79.6% 84.1%

Table 5.2: % of reports for which the approaches perform best

System L2R LC FR L2R/LC L2R/FR LC/FR All Total
Angular 21.2% 16.7% 17.5% 4.7% 26.3% 4.1% 9.6% 813

WordPress 19.5% 20.9% 13.4% 11.6% 9.9% 4.1% 20.6% 1,208
LC: Lucene, FR: Freq, All: L2R/LC/FR

5.2.4 Results

Table 5.1 shows the bug assignment performance achieved by each approach. The ap-

proaches perform differently for each system. For Angular, Freq and L2R achieve a sim-

ilar performance, while Lucene performs significantly lower. L2R’s MRR and MAP are

higher than those for Freq mainly because of the higher H@1-3. In terms H@4 and H@5,

Freq performs better than L2R. For WordPress, Lucene and L2R outperform Freq on all

metrics. Lucene and L2R perform similarly, L2R achieving slightly better MRR/ H@k

(except H@2).

Table 5.2 shows the distribution of bug reports for which the three approaches per-

formed best. A different distribution is observed for each system and the distributions are

not skewed toward one of the approaches. The proportion of reports for which a single

approach performs best ranges from 13.4% to 21.2%. For some queries, there are multiple

best-performing approaches. For example, for Angular, both L2R and Freq perform best

for 26.3% of the reports, while for WordPress, all three approaches perform best for 20.6%

5.3. STUDY 2: RECOMMENDING THE BEST PERFORMING APPROACH 71

of the reports. For each bug report, there is at least one approach that gives a more ac-

curate developer recommendation than the other approaches. This means that no single

approach performs equally well for all the reports, thus verifying our conjecture.

5.3 Study 2: Recommending the Best Performing Approach

The results from Study 1 motivated us to explore the idea of automatically recommending

the best-performing approach for each bug report. In this way, we would combine the

advantages of the three approaches to produce better developer recommendations.

We conducted an study to assess the feasibility this idea using machine learning (ML)

and 23 features that aim to capture relationships between the bug reports and the bug

assignment approaches. ML models recommend the best approach (Step 1), which is

applied on the bug report to obtain a ranked list of developers that can address the report

(Step 2). We coin this 2-step approach as Mix.

This study aimed to answer the following research question:

RQ2: What is the bug assignment performance of Mix compared to that of baseline bug

assignment approaches?

5.3.1 Model Features

We used 23 features that aim to capture possible relationships between the bug reports and

the bug assignment approaches. We selected 18 features from prior work on query quality

assessment [160] since these can be used to measure textual and statistical properties of

the bug report text and the textual corpora of past bug reports and past code changes

made by the developers, information that is leveraged by L2R and Lucene. We defined

additional five (5) features to capture the bug fixing distribution of developers in a project,

information that is leveraged by Freq. We summarize the features.

Specificity features (11/23) measure how specific the bug report text is compared to

the corpus of past bug reports (a.k.a. documents) [160] to differentiate relevant and

5.3. STUDY 2: RECOMMENDING THE BEST PERFORMING APPROACH 72

non-relevant documents. One specificity feature is the standard deviation of the inverse

document frequency of the bug report terms (stdev. IDF). If the stdev. IDF for a bug

report is low, L2R’s and Lucene’s recommendations may be impacted because the bug

report may not have discriminatory information to identify the relevant past reports.

Similarity features (6/23) measure the degree of textual similarity between the query

and the corpus of past bug reports or code files modified by the developers [160], informa-

tion used by Lucene and L2R, respectively. Higher similarity may indicate the existence

of many relevant documents to the report/query [160], potentially leading to better de-

veloper recommendations. One feature is the avg. Collection Query Similarity: the linear

combination between the frequency of a report term in the collection of past code files

and its IDF. This is computed by averaging over all query terms.

We used one (1/23) coherency feature that measures the average similarity between

pairs of past bug reports that contain a bug report term [160]. This feature measures how

focused a bug report is on a particular topic, expressed by its vocabulary. This information

is used by both Lucene and L2R.

The remaining five (5/23) features measure the bug fixing activity of the developers.

For example, some of these features measure the average/median/maximum # of reports

solved by the developer, and the # of active developers (information leveraged by Freq).

5.3.2 Models and Methodology

We used well-known classifiers/models, used in prior bug assignment research [70], namely

Random Forest, Naive Bayes, Decision Trees, and Logistic Regression, to automatically

assign a bug report to one of three classes (i.e., the approaches).

To train/evaluate the classifiers, we built ground-truth data based on the results pre-

sented in Table 5.2. For each bug report, we selected the approach with the lowest rank as

the ground-truth approach for the report. In the case of rank ties, we opted for randomly

selecting Freq, Lucene, or L2R as the ground-truth approach, to avoid data imbalance in

our classes by selecting a single approach (as we tried to do in pilot experiments), which

5.3. STUDY 2: RECOMMENDING THE BEST PERFORMING APPROACH 73

would potentially bias the classifiers. To address the potential effects of the randomness,

we repeat the experimental setting described in this subsection five times (i.e., having five

ground truth datasets).

To train the classifiers, we first sort the bug reports by submission date-time for each

system. Next, we take the first 70% for training/validation, and the remaining 30% for

testing. We use 5-fold cross validation to select the best parameters of each classifier using

a chronological splitting where the first x folds (with x = 1...4) are used for training and

the x+ 1 fold is used for validation.

We found the best parameters for each classifier as those that led to the largest weighted

avg. F1-score over the three classes on the validation sets. We measured the classification

performance of each classifier (with the best parameters) on the test set using weighted

avg. F1-score, precision, and recall. We average these values over the five runs for each

classifier to obtain an overall performance

We experimented with the four classifiers by running them in Mix’s 1st step. Then, in

the 2nd step, the predicted approach (given by the classifier) for each report was executed

to obtain a list of developers. Mix’s performance is measured using the metrics from Sect.

5.2.3 on the test set when using each classifier. To compute the overall Mix’s performance,

we averaged these metrics over the five runs. We report Mix’s best overall performance by

selecting the classifier that leads to the lowest MRR, as this metric might better capture

the scenario where the bug triager scans through the developer list until deciding the

developer for the bug report.

5.3.3 Results and Discussion

Table 5.3 shows the bug assignment performance of Mix (on the test set) compared to that

of the baseline approaches (L2R, Lucene, & Freq). The max row in Table 5.3 shows the

maximum performance that Mix can achieve if it used a classifier that perfectly predicts

the best approach for every bug report. The max results indicate that there is great

potential for Mix to improve bug assignment performance, yet the Mix results show that

5.3. STUDY 2: RECOMMENDING THE BEST PERFORMING APPROACH 74

Table 5.3: Bug assignment performance on the test set

Approach MRR MAP H@1 H@2 H@3 H@4 H@5
Angular

L2R 56.9% 49.9% 32.8% 61.9% 79.9% 87.7% 90.6%
Lucene 43.8% 39.0% 21.5% 40.5% 54.9% 67.5% 78.1%
Freq 57.4% 50.2% 34.9% 57.6% 76.5% 89.5% 93.7%
Mix 56.5% 48.9% 32.8% 59.7% 77.0% 88.4% 92.2%
Max 72.2% 62.6% 56.6% 75.8% 86.5% 91.4% 94.7%

WordPress

L2R 46.0% 45.3% 29.0% 41.7% 54.0% 62.4% 68.7%
Lucene 47.8% 47.2% 30.7% 44.3% 53.3% 61.4% 68.1%
Freq 40.4% 40.1% 23.4% 30.8% 41.9% 53.3% 63.2%
Mix 46.2% 45.7% 29.1% 41.1% 52.7% 61.8% 68.4%
Max 63.7% 62.8% 48.3% 61.8% 74.1% 81.3% 87.6%

it is still far from achieving the maximum performance, as are the baseline approaches.

For Angular, Mix (using Naive Bayes) achieves comparable performance to L2R/Freq’s

performance and superior performance to Lucene’s. Similarly, for WordPress, Mix (using

Decision Trees) achieves comparable performance to L2R/Lucene’s performance and supe-

rior performance to Freq’s. The results show that Mix does not perform more accurately

than all the baseline approaches.

We investigated this phenomenon by analyzing the overall classification performance

of the classifiers on the test set. We found that Naive Bayes achieves 30.6%, 36.7%, and

31.3% weighted avg. precision, recall, and F1, respectively, while Decision Trees achieve

32.9%, 34.4%, and 29.3% weighted avg. precision, recall, and F1, respectively. These

are average values over the five experimental runs. It is important to note that the %

of reports for each class (approach) range from 23% (min) to 40% (max) across the five

runs, which rules out potential problems related to data imbalance. One likely reason for

the classifier results is that the classifier features are not capturing enough information to

distinguish among the approaches. One potential solution to explore in our future work

is to use post-retrieval features [160] rather than only pre-retrieval features (as the ones

we currently used).

However, since the features we used for classification encode information that L2R,

5.4. THREATS TO VALIDITY 75

Lucene, and Freq leverage to make developer recommendations, one potential implication

of the results is that these (and other) approaches may also lack additional information

and factors that maintainers use in practice to assign bug reports to developers, that are

not necessarily found in software repository data (in bug reports, commits, source code,

etc.) [60]. For example, maintainers may assign reports to developers based on developer

availability at a given moment, developer’s technical background or experience (e.g., in

using specific technology), and different social structures and dynamics that can be found

in open source projects [71, 239]. In other words, maintainers may perform bug assignment

not entirely based on developer profiles defined by the past bug reports, code changes that

developers have addressed, and other information, as existing bug assignment techniques

attempt to model. We advocate for additional research to understand the way bug reports

are assigned to developers in practice.

5.4 Threats to Validity

As in prior work [184], we used project repository data to create bug assignment ground-

truth data. We minimized potential errors in bug reports and developer sets by (1)

selecting issues labeled as “bugs” by the original maintainers, and (2) by manually curat-

ing the extracted data. For example, we manually merged GitHub accounts that referred

to the same developer. We selected a diverse set of approaches according to the tech-

niques they implemented and the information they used. The results may not generalize

beyond the selected two open source projects. Expanding the studies with additional

approaches/systems is in our plans for future work.

5.5 Related work

A variety of approaches have been proposed to automatically assign bug reports to de-

velopers [54, 58, 59, 63, 70, 73, 122, 127, 132, 134, 138, 145, 154, 158, 169, 183, 184, 186,

188, 189, 198, 199, 200, 204, 215, 214, 222, 224, 225]. These techniques leverage multiple

5.6. CONCLUSIONS AND FUTURE WORK 76

sources of information such as past bug reports, source code, and bug tossing information,

and are typically designed to be applied to all bug reports in a project. In contrast, our

work aims to recommend specific approaches to individual bug reports to improve devel-

oper recommendations. To the best of our knowledge, this work is the first to investigate

this idea, yet similar work has been done to support other software engineering tasks

[160, 166, 92].

5.6 Conclusions and Future Work

We conducted an empirical study that applied three bug assignment approaches on 2k+

bug reports from two open source projects. We found that such approaches do not per-

form equally well when applied on all the bug reports from a software project. This

finding motivated us to explore the idea of automatically recommending and applying

the best-performing approach on individual bug reports via machine learning (ML). We

experimented with four ML models that learn from 23 features and found that this com-

posite approach is far from achieving the maximum possible performance, while achieving

comparable performance to that of the baselines approaches. We found that the features

utilized by the ML models may not capture enough information to distinguish between

approaches. A possible implication of this result is that bug assignment approaches do not

capture factors (e.g., developer availability) found in the way bug reports are assigned to

developers in practice. The results warrant future research in (1) defining effective features

to better distinguish assignment approaches, (2) understanding how developers perform

bug assignment in practice, and (3) incorporating additional information on automated

bug assignment approaches to better recommend developers.

Chapter 6

Automated Localization of Buggy

Mobile App UIs from Bug

Descriptions

Bug report management is a costly software maintenance process comprised of several

challenging tasks. For mobile apps, one task that is central to fixing reported bugs is

identifying the UI screens and components that cause and/or show a reported issue (Buggy

UI Localization). Given the UI-driven nature of mobile apps, bugs typically manifest

through the UI, hence the identification of buggy screens and components is important to

localizing the buggy behavior and eventually fixing it. However, this task is challenging

as developers must reason about bug descriptions, which are often low-quality, and the

visual or code representations of UI screens.

This work is the first to investigate the feasibility of automating the task of Buggy UI

Localization through a comprehensive study that evaluates the capabilities of two textual

and three multi-modal deep learning (DL) techniques. We evaluate such techniques at two

levels of granularity, Buggy UI Screen and Component localization. We evaluated such

techniques in both zero-shot and fine-tuned settings, using a manually curated dataset

of 228 real-life bug descriptions and corresponding UI screens/components to automate

77

6.1. INTRODUCTION 78

those 2 tasks. Our results illustrate the individual strengths of models that make use

of different representations, wherein models that incorporate visual information perform

better on screen retrieval tasks, and models that operate on textual screen information

perform better on component retrieval tasks – highlighting the need for a localization

approach that blends the benefits of both types of techniques. Furthermore, we study

whether Buggy UI Localization can improve traditional bug localization in source code,

and find that incorporating UIs leads to improvements of 4.77%-16.69% in Hits@10.

6.1 Introduction

Bug report management is an essential, yet costly process for software projects, in partic-

ular for mobile apps [239]. It demands high developer effort [239, 237, 58, 103, 72, 203]

due in part to the potential for large volumes of reported bugs and the varying qual-

ity of submitted bug reports. These reports are the central artifact in bug manage-

ment [237, 239, 103, 86], as they directly impact downstream tasks such as bug triaging,

reproduction, localization, program repair, and even regression testing. Bug reports typi-

cally describe defects found during software development and usage, and are expected to

include, at minimum, the app’s observed (incorrect) behavior (OB), the expected behavior

(EB), and the steps to reproduce the bug (S2Rs) [67, 143, 237, 86, 190, 191].

One critical task in bug report management for mobile apps is the identification of UI

screens and components (e.g., buttons or text fields) that cause or display the reported

incorrect behavior of the app (i.e., the OB), a task that we term Buggy UI Localiza-

tion. This task is essential but can be difficult for developers, especially when many

incoming bug reports need to be addressed that may fail to include important details or

graphical information (e.g., buggy app screenshots [100]). In addition, mobile app de-

velopers are typically subject to constraints such as rapidly evolving platform APIs [153]

and the need to support fragmented device ecosystems [210], making this task even more

challenging. Despite the growing body of work on automating bug report management

6.1. INTRODUCTION 79

tasks [117, 53, 144, 219, 167, 93, 212, 140, 108, 79, 81, 233, 83, 231, 213, 230, 196], prior

work has not yet explored how to assist developers in Buggy UI Localization.

Compared to other types of software, mobile apps are inherently UI-centric, and past

studies have illustrated that a large majority of real bugs reported for mobile apps manifest

through the UI [131]. As such, an important first step toward understanding, diagnosing,

and resolving underlying bugs is localizing the buggy behavior to both a UI screen and

UI component(s). In fact, recent work has illustrated how UI information can be used

to improve traditional bug localization to code [156]. However, in that work, the UI

information was manually collected, and other prior research has not thoroughly explored

the potential of automating the task of Buggy UI Localization. Furthermore, this task is

cognitively demanding, as developers must reason about the (often poor) descriptions of

buggy behavior, and visual or code representations of UI screens [163].

In this context, it is clear that automating the process of localizing a bug that is

described in the OB of a report to both UI screens and components, would greatly assist

developers during bug triaging and resolution, and may also improve the effectiveness of

a wide range of existing techniques for automated bug report management and software

testing tasks [231, 230, 105, 195, 78, 194, 156]. For example, recent techniques that

leverage the S2Rs to automatically reproduce the reported bugs [231, 230] or generate

test cases [105] may benefit from a Buggy UI Localization approach that suggests buggy

UI screens, as these could be used to generate assertions that verify if the reported bugs can

indeed be replicated. Additionally, a Buggy UI Localization approach can help existing

techniques verify the quality of OB descriptions more accurately [195, 78, 194] by checking

how well the description maps to UI screens/components and thus give more accurate

feedback to the reporter about (un)informative or (un)clear bug descriptions. A Buggy

UI Localization approach may also be useful in enhancing textual bug reports with UI

screenshots so that it can assist developers in comprehending and resolving app issues

more effectively [170, 220, 52, 74, 237]. This can further benefit existing techniques that

detect duplicate bug reports using visual data [207].

6.1. INTRODUCTION 80

In this work, we present the first empirical study that investigates the feasibility of

automatically localizing bug descriptions to UI screens/components of mobile apps. Similar

to other types of bug localization, we formulate Buggy UI Localization as a retrieval task,

in which a bug description is used as query input to a retrieval engine that searches the

space of UI screens/components of an app and recommends a ranked list of candidates

that most likely correspond to a given bug description. Specifically, the study focuses

on two retrieval tasks: screen localization (SL), which involves retrieving UI screens,

and component localization (CL), which aims to retrieve UI components from a given

screen, relevant to the bug description.

The study investigates how the textual and visual information from UI screens/compo-

nents can be leveraged for Buggy UI Localization, and hence, explores the effectiveness of

pre-trained textual and multimodal deep learning (DL) techniques. Specifically, we exam-

ine five models: two text-based models (SentenceBert or SBert [179] and OpenAI’s

embedding model or OpenAI-txt-embed), and three multimodal models (Clip [175],

Blip [146] and GPT-4). We have made necessary adjustments and conducted exten-

sive experiments on these models as they are not tailored to solve our problem. While

large language models (LLMs) like GPT-4 show promising ”zero-shot learning” abili-

ties—generating the correct output without seeing any example of the task, the signif-

icance of fine-tuning remains, particularly for models smaller than LLMs, to align with

the nuances and requirements of the buggy UI localization task. Additionally, the lack

of a benchmark for model evaluation led us to create two novel datasets: a synthetic

dataset, and a real dataset. We fine-tuned three models (SBert, Clip, and Blip) using

the synthetic dataset and evaluated the effectiveness of the models in zero-shot and fine-

tuned settings using the real dataset. Regarding the two OpenAI models (GPT-4 and

OpenAI-txt-embed), we leveraged their APIs directly due to their exceptional zero-shot

capabilities, as OpenAI has not made fine-tuning options available for these models. The

synthetic dataset includes 2.8M OB descriptions automatically created for 23.9k mobile

app UI screens, via textual templates designed/implemented for a variety of mobile app

6.1. INTRODUCTION 81

bug types. The real dataset includes 228 OB descriptions and associated UI screens/com-

ponents, manually tagged in 87 real bug reports from the AndroR2 dataset [211]. The

dataset also includes associated buggy UI screens/components that we manually labeled

from a UI corpus created by employing GUI app exploration techniques [162], for 39 mobile

apps.

The results of our study illustrate that GPT-4 and OpenAI-txt-embed from Ope-

nAI perform best for SL and CL localization tasks, respectively. The best-performing

approaches suggest correct buggy UI screens (GPT-4) and components (OpenAI-txt-

embed) in the top-3 recommendations for 73% and 71.6% of the bug descriptions, respec-

tively. We also found the models tend to perform better for higher-quality bug descriptions

and easier-to-retrieve cases as judged by humans. The results show the feasibility and ef-

fectiveness of using existing DL, particularly multimodal large language models (LLMs),

for Buggy UI Localization.

To illustrate the practical usefulness of automated Buggy UI Localization, we further

studied how identified buggy UI screens from the best-performing SL model can improve

traditional bug localization approaches. To do this, we adapted the approach proposed

by Mahmud et al. [156] to filter or boost code files retrieved by existing bug localization

approaches using UI information, given an input bug description. That is, we implemented

an end-to-end automated approach that receives a bug description and set of screens and

(i) automatically identifies buggy UI screens from a corpus of automatically crawled UI

screens for a given app, (ii) computes semantic similarity between the bug description

and code files to retrieve potentially buggy files, and (iii) boosts the rankings of retrieved

code files related to identified Buggy UI screens and filters out those that are unrelated.

Using two bug localization tools applied to 79 bug reports we found that incorporating

information from the automatically identified Buggy UI screens can lead to 4.77% to

16.69% improvement in Hits@10, compared to baseline techniques that do not use UI data.

In summary, this work makes the following contributions:

6.2. BACKGROUND, PROBLEM, AND MOTIVATING EXAMPLE 82

1. A novel synthetic dataset of OB descriptions and associated UI screens/components

that can be utilized for pre-training/fine-tuning Buggy UI Localization techniques.

2. A novel dataset of real-life OB descriptions and associated buggy UI screens/com-

ponents that can be utilized for evaluating Buggy UI Localization techniques.

3. An empirical study that evaluates the effectiveness of five DL techniques of different

kinds, used for Buggy UI Localization. The study reveals different performances

achieved by the approaches for different types of OBs and retrieval tasks.

4. An empirical study that illustrates the usefulness of automated Buggy UI Localiza-

tion for improving the effectiveness of techniques that localize buggy code.

5. A complete replication package that provides data, source code, results, and instruc-

tions to reproduce our studies [37].

6.2 Background, Problem, and Motivating Example

6.2.1 Bug Descriptions and App UI Screen/Components

In this work, a bug description is the observed or incorrect app behavior (OB) textually

described in a sentence of a bug report. We focus on descriptions of bugs that manifest

visually on the device screen, which is the majority of bugs reported for the Android

ecosystem [69, 195]. Figure 6.1 shows an example of a real-life bug report for WiFi

Analyzer [40], an app for monitoring the strength and channels of surrounding WiFi

networks [39]. The bug/OB descriptions in the bug report are underlined and describe a

bug in which the app fails to show the keyboard to enter the WiFi’s SSID.

App UI screens implement one or more app features and represent the canvas upon

which UI components (a.k.a. widgets) are drawn. UI components are elements rendered

on a UI screen (e.g., buttons, text fields, or checkboxes) that allow end-users to interact

with the application. A screen is composed of a hierarchy of UI components and containers

6.2. BACKGROUND, PROBLEM, AND MOTIVATING EXAMPLE 83

Title: Can no longer enter text in SSID Filter TextView
Description: Cannot enter any text in the SSID Filter field.

Steps:
1. Click on Filter icon.
2. Click/tap on SSID Filter text field.
3. Keyboard does not pop up.

Expected Behaviour:
Should display keyboard and allow you to enter SSID filter text.

Figure 6.1: Bug report #191 from the WiFi Analyzer app [40]

Screen and UI Component
Extraction

UI Screen Retrieval (SR) UI Component Retrieval (CR)

Target
Device

Input
Generator

App
Model

Automated Input
Generation

Screen
Metadata

Screenshots

Screen Data
Component
Extraction

Observed Behavior

Cannot enter any text in
the SSID Filter field

12 3

WifiAnalyzer’s
UI Screens

#1

#2

…

Ranked List
of UI Screens

#nScreen
Retrieval
Engine

Semantic
Similarity

OB Text

Observed Behavior

Cannot enter any text in
the SSID Filter field

Buggy WiFi
Analyzer Screen

#1

#2

…

Ranked List
of Components

#3

Screen
Retrieval
Engine

Semantic
Similarity

OB Text

Component
Data

#n

Figure 6.2: Example of the UI screen/component localization process for an OB/bug
description of the WifiAnalyzer app [40].

(a.k.a. layouts) that group components together [13]. Figure 6.2 shows examples of UI

screens and their components for the WiFi Analyzer app. In this work, a UI screen is

represented as a screenshot and its corresponding UI hierarchy of components/containers

described in metadata. Each UI component is represented by a set of attributes, including

the component type (e.g., Button [13]), its label or text shown on the screen, an ID,

a description, and various visual properties such as the component’s visibility and size.

Buggy UI Screens/Components display unexpected, incorrect behavior of an app.

6.2. BACKGROUND, PROBLEM, AND MOTIVATING EXAMPLE 84

6.2.2 Problem and Motivating Example

We envision a system that suggests to the developer the UI screens (i.e., app screenshots)

that display or is related to the buggy app behavior reported in the bug/OB descriptions

of a bug report. The developer would then inspect the suggested UI screens and select one

or more screens that s/he deems display the reported bug. The system would then identify

(and highlight) the components in the selected buggy UI screens that are most related

to the reported bug. The suggestions of this system can help developers automatically

localize buggy UI screens/components [170, 220, 52, 74, 237], but also understand the

reported bug, and assist them in other bug management activities (e.g., bug reproduction).

Additionally, this system can be useful for various bug report management tasks, as it can

provide information to existing automated techniques that aim to reproduce bugs [231,

230], generate test cases [105], assess the quality of bug reports [195, 78, 194], and perform

bug localization in code [156]. In fact, in Section 6.4, we demonstrate the usefulness of this

system for augmenting techniques that perform traditional bug localization to functional

code. We investigate different underlying approaches for our envisioned system to localize

buggy screens/components from bug descriptions.

While bug reports provide information such as the steps to reproduce the bug (S2Rs),

which can be used to identify the buggy screens/components, we focus on OB descriptions

for at least two reasons [86]: (1) they convey the faults observed by the user, and (2) they

are often written using different wordings (even for a single bug type—see fig. 6.1). The

S2Rs (and other elements) in bug reports do not necessarily describe a bug and their

discourse is more constrained compared to that of OBs [86].

We formulate automated buggy UI localization as two retrieval tasks (see fig. 6.2):

screen and component localization. In screen localization (SL), a bug/OB description

(i.e., the query) is the input to a retrieval engine that searches the space of UI screens

of a given app and retrieves a list of UI screens ranked by their similarity to the bug

description, which indicates the likelihood of a UI screen to show or be affected by the

6.2. BACKGROUND, PROBLEM, AND MOTIVATING EXAMPLE 85

bug described by the query. The left side of fig. 6.2 illustrates the screen localization

process for one OB description from the bug report shown in fig. 6.1. The highlighted UI

screen with the green border is the buggy screen (initially unknown to the developer). The

two best approaches we studied (Blip & SBert) are able to retrieve the buggy screen as

their first suggestion. In component localization (CL), the retrieval engine searches

the space of UI components of a given screen and retrieves a list of components ranked by

a similarity score that indicates the likelihood of the components to show or be affected

by the bug. The right side of fig. 6.2 illustrates the component localization process for the

buggy UI screen of the bug description. The highlighted components in orange are the

ones that the bug description refers to, hence they are expected to be ranked higher by

the component retrieval engine. The two best-performing approaches we studied (SBert

& Blip), rank the buggy components in the first position.

We note that screen and component localization is impacted by the amount of infor-

mation that a bug/OB description contains (i.e., query quality) and the difficulty in

retrieving buggy UI screens/components (i.e., retrieval difficulty). As such, if the bug

description is poorly written or does not provide enough information about the bug (which

is common in bug reports [78, 195]), then a retrieval engine (or even a human) would have

a hard time identifying the buggy UI screens/components (if not familiar enough with the

app). This problem is exacerbated by the fact that the same bug can be described in a

variety of ways [86] – see fig. 6.1. Even if the OB is clear and informative, identifying the

buggy UI screens/components can be challenging when numerous similar UI screens/com-

ponents exist in the app. As an example, consider the last OB/bug description from the

Wifi Analyzer app shown in fig. 6.1: “Keyboard does not pop up”. The best approaches

we studied (Blip and SBert) retrieved the buggy screen and components in positions

21/16 and 6/12, respectively. This illustrates the difficulty of buggy UI localization, hence

in our study, we assess the performance of various approaches considering bug descriptions

of different quality levels and retrieval difficulty.

6.3. STUDY 1: BUGGY UI LOCALIZATION 86

6.3 Study 1: Buggy UI Localization

This study aims to investigate different methods for automatically locating buggy UI

screens/components based on bug/OB descriptions and measure their effectiveness for

this problem. To that end, we investigate existing retrieval approaches that leverage

textual and/or visual information from the bug descriptions and UI screen/components,

to perform screen and component localization. With this in mind, we formulate three

research questions (RQs):

RQ1: How effective are retrieval approaches at locating buggy UI screens (SL) from bug

descriptions?

RQ2: How effective are retrieval approaches at locating buggy UI components (CL) from

bug descriptions?

RQ3: How effective are retrieval approaches for different query quality and retrieval diffi-

culty levels?

To answer these RQs, we selected three supervised approaches of various kinds (sec-

tion 6.3.1). Then, we constructed a real-world dataset for evaluating the effectiveness of

the approaches (section 6.3.3). We executed the approaches (section 6.3.4) and measured

their performance with standard retrieval metrics (section 6.3.5).

6.3.1 Retrieval Approaches

We investigated three deep learning (DL)-based approaches and GPT4 that support text-

to-text or text-to-image retrieval for accomplishing OB-UI mapping tasks.

OpenAI’s Embedding Models (orOpenAI-txt-embed) [50] The embedding model

we used was released by OpenAI recently: text-embedding-3-large. The textual informa-

tion is sent to the embedding API endpoint to get an embedding that can be compared

with an embedding of another description to establish their semantic similarity. Accord-

6.3. STUDY 1: BUGGY UI LOCALIZATION 87

ing to OpenAI, text-embedding-3-large is their best-performing embedding model and can

create embeddings with up to 3072 dimensions.

SentenceBert (or SBert) [179] is a neural text-based language model, derived from a

pre-trained model, Bert [99]. SBert is utilized the same way OpenAI’s embedding model

is used for CL and SL. SBert augments the traditional Bert model with siamese and

triplet networks allowing for better support of tasks such as clustering and semantic search

with less computational overhead. SBert can be utilized for both screen and component

localization using the textual information in the bug description and UI screens/compo-

nents.

Generative Pre-trained Transformer 4 [48] (or GPT-4), created by OpenAI, is

a multimodal large language model (LLM). Unlike LLMs limited to textual data, GPT-

4 excels in handling both text and image inputs to produce text outputs. Multimodal

LLMs are usually trained on large-scale datasets which include not just text but also

various visual elements and can support a wide range of tasks with prompt engineering.

By simply describing natural language prompts, LLMs can be invoked to perform specific

tasks without requiring additional training or hard coding. In this work, we prompt GPT-

4 for both screen and component localization. While zero-shot learning has been proven

effective for simple tasks, its effectiveness diminishes when confronted with more complex

tasks that require logical reasoning and a multi-step resolution process, such as arithmetic,

commonsense, and symbolic reasoning [141, 176, 209]. To tackle this, researchers have

developed a strategy where they use step-by-step explanations, or rationales, to help LLMs

understand and solve these problems, known as chain-of-thought reasoning [209, 227].

Our SL/CL tasks are inherently complex, necessitating logical reasoning to interpret bug

reports and visual data for identifying buggy UI elements. Consequently, we adopt the

zero-shot chain-of-thought reasoning [141] to utilize GPT-4 to locate buggy UI elements.

Clip [175] is a neural multi-modal vision/language model that can learn semantic

embeddings from text and images, via a contrastive architecture. Given a text-image

pair, Clip can determine the similarity between the text and the image, hence it can be

6.3. STUDY 1: BUGGY UI LOCALIZATION 88

used for text-image or image-text retrieval. Clip was trained on a wide range of open-

source text-image datasets for a variety of domains and has been evaluated on multiple

downstream tasks under zero-shot settings, achieving similar performance as ResNet-50

[118] (e.g., on ImageNet [98]). Clip can be utilized for both screen and component

localization using textual information from the bug description and visual information

from UI screens/components.

Blip [146] is a neural multi-modal model for vision-language understanding and genera-

tion tasks. It utilizes a multi-modal encoder-decoder component (MED) and a captioning-

filtering (CapFilt) component, incorporating three types of losses to learn representations

from text and images: contrastive, matching, and language modeling losses. Blip’s Cap-

Filt improves the quality of training examples by generating synthetic labels for a given

image and by filtering noisy generated image-text pairs. Blip exhibited state-of-the-art

performance on image-text retrieval, image captioning, and question-answering tasks. We

used a Blip version optimized for text-image retrieval tasks, which implements the multi-

modal contrastive and matching losses only. Blip can be utilized the same way Clip is

used for screen and component localization.

While these models have been pre-trained with general-purpose data (e.g., images of

landscapes and corresponding captions/descriptions), they have been shown to perform

well under zero-shot settings [179, 146, 175] and also have been fine-tuned for diverse

tasks [223, 62, 95, 178]. This means they can learn rich visual and textual representations

that can be transferred to solving a diverse set of problems.

Besides the five models, we considered models specifically designed for mobile app

UI understanding tasks, including UIBert [61], VuT [151], and Screen2Vec [147].

However, UIBert and VuT’s source code and pre-trained models are not available and

Screen2Vec would require a significant adaptation effort for our task as the model is only

designed for generating UI screen embeddings from screen text and UI hierarchies; extra

modules would be required to adapt this model for Buggy UI Localization. We should

note, though, that we experimented with it as a zero-shot encoder to represent UIs and

6.3. STUDY 1: BUGGY UI LOCALIZATION 89

with an SBert model for representing bug descriptions, computing the cosine similarity

on both embeddings to establish similarity. Unfortunately, this led to poor performance

for both CL and SL, hence we decided to not report their performance in this work. Our

replication package contains those results [37].

Finally, we selected Lucene [115] as a baseline technique for text retrieval. Lucene is

an unsupervised approach that combines the classical vector space model (VSM), based on

the TF-IDF representation, and the boolean text retrieval model, to compute the (cosine)

similarity between a query and a document. Lucene can be utilized for SR/CR using the

textual information in bug descriptions and UI screens/components.

6.3.2 Synthetic Dataset Construction

We built a synthetic dataset of bug descriptions and associated UI screens/components

to fine-tune the selected DL models, given that no dataset exists for the OB-UI mapping

problem. We opted to create a synthetic dataset because the models require large amounts

of training data, and it would be extremely expensive to build it manually (e.g., manual

issue analysis).

To build our dataset, we leveraged the Rico-SCA dataset by Wang et al. [206], which

contains ≈24k UI screens (with screenshots, UI hierarchies, and metadata) for ≈6.4 An-

droid apps of different domains. This dataset is a subset of the popular Rico dataset [38]

and includes only UI screens with complete and accurate UI screenshots, hierarchies, and

metadata.

We adopted a multi-step procedure to generate screen/component OBs and associ-

ated UI screens/components. From this data, we defined the queries, the ground-truth

UI screens/components, and the corpus required for component and screen retrieval. Our

procedure was designed to generate realistic OB/bug descriptions from the Rico-SCA

UI screens/components, with the goal of generating a diverse and reasonable dataset that

could be used to help the models learn associations between related bug descriptions and

UI screens, even though the screens may not display a buggy app behavior.

6.3. STUDY 1: BUGGY UI LOCALIZATION 90

6.3.2.1 Synthetic OB Generation

To generate OBs, we designed bug description templates for a variety of mobile app bug

types [102] and specific UI component types. The templates were designed based on dis-

course patterns that prior work derived from real-life bug descriptions [86]. We designed

and implemented heuristics to extract the information from applicable UI screens/compo-

nents and fill in the templates. These heuristics were executed to generate bug descriptions.

This process was iterative and included manual validation of the templates and generated

OBs, which resulted in template and heuristic refinement to maximize data quality. Sim-

ilar procedures have been adopted to generate synthetic UI-level actions in the context of

command-UI grounding [61].

Table 6.2 provides examples of the OB templates we designed and the OB descriptions

the templates generate. Each template was created based on one or more discourse pat-

terns and is applicable to one bug type and different kinds of UI components. For space

reasons, we provide examples of these elements, but the full catalog of templates (and

their implementation) can be found in our replication package [37].

We now provide details about our OB generation procedure. Selecting Bug Types.

Based on the mobile app bug taxonomy from Escobar et al. [102] and a manual analysis

of bug reports, we selected nine (9) bug types that cover a variety of app problems,

including crashes, cosmetic issues, and incorrect GUI behavior. Specifically, we selected

seven UI bug types from Escobar et al.’s taxonomy [102] (e.g., Component with wrong

dimensions and Wrong text in component – see Table 6.2), which was derived from manual

analysis of Android app bug reports, bug-fixing commits, technical forum discussions,

Android documentation, prior bug taxonomies, and online app reviews. Additionally, we

selected two additional UI bug types (i.e., Unclickable/uneditable components), not found

in Escobar et al.’s taxonomy, by analyzing the titles of sampled bug reports we collected

to guide the design of component/screen OB templates (more details below).

Selecting Applicable UI Components. Next, we identified the UI components that (1)

6.3. STUDY 1: BUGGY UI LOCALIZATION 91

could be affected by the bug types, and (2) contained potentially useful information to

generate OB templates. For example, Uneditable component bugs are exclusive to EditText

components (i.e., text fields). Another example is a bug about Elements not listed in the

right order, which refers to UI components displayed in the wrong order. Since these are

bugs that affect regions of the screen (i.e., they would correspond to screen OBs), we

identified component containers such as ListView and ScrollView as potentially useful to

define proper templates and the screens these templates apply to.

Assigning Discourse Patterns to Bug Types. Prior work identified 90 discourse/linguis-

tic patterns that bug reporters recurrently use to express OB/bug descriptions [86], based

on the manual analysis of ≈3k bug reports from nine software projects (including one An-

droid app). Of these 90 patterns, 12 are commonly used by reporters and were found in

≈83% of the 3k reports. We assigned subsets of these 12 patterns to one or more bug types

when applicable. For example, incorrect text bugs can be expressed using the discourse

pattern NEG AUX VERB, which refers to OB sentences containing auxiliary verbs that

convey a negative discourse (e.g., “I cannot zoom in on the filter screen”).

Defining OB Templates. For each bug type, we generated one or more templates ap-

plicable to corresponding UI components or screens, by creating a phrase that followed a

discourse pattern. An OB template contains: (1) slots that represent either components

or screens (noted with squared brackets in table 6.2), and are filled in from UI screen/-

component metadata, (2) variable phrases are expressions that can be substituted with

synonyms to increase OB diversity (noted with braces in table 6.2), and (3) fixed phrases

are expressions that connect slots and variable phrases. An example of a template for

incorrect dimension bugs is “[component] {dimension} is {wrong}”, where [component] is

the slot that represents a UI component expression and {dimension} and {wrong} are vari-

able phrases that can be used as is or replaced with synonyms such as size and incorrect,

respectively.

Since we initially struggled to define screen OB templates, we guided our template

design based on a manual analysis of Android app bug reports. From the original 6,356

6.3. STUDY 1: BUGGY UI LOCALIZATION 92

Table 6.1: Statistics of the synthetic dataset of OB/bug descriptions

of UI screens # of UI components # of Component OBs # of Screen OBs # of Components & Screen OBs

Per app Total Per screen Total Per app Per screen Total Per app Per screen Total Per app Per screen Total

Training 3.6 (2) 15,268 12.4 (10) 189,612 416.4 (222) 115.5 (85) 1,751,224 20.7 (12) 7.1 (6) 61,631 252.4 (66) 76.0 (37) 1,812,855

Validation 3.8 (2) 3,685 12.5 (9) 45,915 429.6 (226) 114.2 (84) 417,538 22.2 (13) 7.1 (6) 15,747 257.9 (64) 73.8 (35) 433,285

Testing 3.9 (3) 4,949 12.6 (10) 62,444 449.6 (241) 116.1 (85) 570,953 22.3 (13) 7.1 (6) 20,749 269.1 (65) 75.5 (73) 591,702

Total 3.7 (45) 23,902 12.5 (10) 297,971 424.9 (226) 115.4 (85) 2,739,715 21.3 (13) 7.1 (6) 98,127 256.5 (65) 75.6 (37) 2,837,842

app/screen numbers are average values (median values in parenthesis)

bug reports mined by Wendland et al. [211], from which the AndroR2 dataset was built,

we took a representative random sample of reports (362 in total at a 95% confidence

level), analyzed their titles, and found that 59 titles describe screen-related bugs (i.e.,

those affecting the entire screen or regions of it). From these titles, we designed screen

OB templates, after we identified the corresponding discourse patterns from Chaparro et

al. [86].

Since screen OBs are more general than component OBs, as they refer to app features

or screen-level app behavior rather than specific components, we designed the screen OB

templates for screens with certain characteristics rather than templates applicable to every

screen in our dataset. With this strategy, we also aimed to help the models learn better

the associations between the OBs and screen characteristics. For example, the S2 template

in table 6.2 refers to updates that should happen in settings screens (identified by a search

for keywords such as settings or configuration in the screen/component metadata).

In total, we designed 38 templates, 21 for generating component OBs, and 17 for

generating screen OBs.

Designing Heuristics. We defined a predefined set of phrases to fill in the variable

phrases, by selecting one phrase randomly every time the template was applied.

To fill in template slots, we defined rules to compose phrases corresponding to com-

ponents and screens. These rules would select UI component metadata, particularly, the

component text (i.e., label), ID, description, type, and location, if/when available. For

6.3. STUDY 1: BUGGY UI LOCALIZATION 93

components, we selected the first available attribute among the text, description, and ID

(in that order), as the component phrase for the slot. To increase diversity, we randomly

appended the component type and/or the component location on the screen (based on

their coordinates and size). For example, for a text field with attributes (text: null, de-

scription: “SSID”, ID=null, type=“EditText”) possible created component phrases are

SSID, SSID text field, SSID text field at the top left corner, or SSID at the top left corner.

Similar rules were defined for generating screen phrases (i.e., extract screen names from

pre-processed activity names).

Generating OB Descriptions. The defined heuristics were implemented via algorithms

that applied the templates on the ≈24k UI screens. Only the visible UI components that

are leaf nodes in the UI hierarchy were processed to generate OB descriptions, as we

consider them as common candidates for reporters to include in their bug descriptions.

The algorithms generated unique OBs and avoided cases where the OBs were excessively

long (e.g., from long component metadata).

In total, we generated≈2.8M OB descriptions (75.6/256.5 per screen/app on average)—

see table 6.1. From these, ≈2.7M are component OBs (115.4/424.9 per screen/app on

average) and ≈98k are screen OBs (7.1/21.3 per screen/app on average).

OB Template/Heuristic Validation and Refinement. The templates, heuristics, and gen-

erated OBs were validated in multiple review sessions where a sample of OBs, generated by

different templates, was manually inspected by two or more researchers. The researchers

reviewed grammar, semantics, and how realistic the bug descriptions were, suggesting

adaptations to improve the templates and heuristics.

6.3.2.2 Synthetic Retrieval Data

We kept track of the UI screen used to generate each screen OB and the UI screen/com-

ponents used to generate each component OB. Based on this information, we defined the

queries, ground truth, and corpus for both screen (SR) and component retrieval (CR).

For SR, the queries are both component and screen OBs (≈2.8M total), the ground

6.3. STUDY 1: BUGGY UI LOCALIZATION 94

Table 6.2: Examples of templates used to generate synthetic OB/bug descriptions

Bug
Type [102]

Template Generated OB (App name)
Screens &
Compo-
nents

Discourse
Pattern [86]

Templates for Screen OBs

Elements not
listed in the
right order

S1: After {filtering} the
[list], the order of [list
item] did not change

After filtering the view items list,
the order of new cars did not

change (Autoportal)

Screens with
ListViews,
ScrollViews,

etc.

AFTER NEG

UI refresh
issue

S2: {Changes} in the
[screen] setting {will not

apply immediately}

Changes in the app settings will
not apply immediately

(smartChord)

Settings
screen

NEG AUX VERB

Issues in view
animation

S3: I cannot {zoom on}
the [screen]

I cannot pinch on the home wiki
screen (FANDOM)

All screens NEG AUX VERB

Templates for Component OBs

Component
with wrong
dimensions

C1: [Component] {size}
does not {match the

expected size}

The More options button does not
match the expected size (Daily

Reflections)

All
components

NEG AUX VERB

Wrong text in
component

C2: {Wrong} text in
[component]

Incomplete text in Invite your
friends textview (Chat Rooms)

Buttons,
TextViews,

etc.
VERB TO BE NEG

Unsupported
style in

component

C3: [Component] {shows}
{incorrect} {color}

ECONOMY button shows
incorrect text color when clicked

(PlayCast)

Radio
buttons,

TextViews,
etc.

NEG ADV ADJ

truth is their corresponding UI screen (one per query), and the retrieval corpus comprises

the screens that belong to a specific app (there are 3.7 screens per app, on average). SR

retrieval is performed per app (i.e., rather than across apps), as it would be executed in

practice.

For CR, the queries are only component OBs (≈2.7M total), the ground truth is

their corresponding UI component (one per query), and the retrieval corpus is the UI

components for a given screen (there are 12.5 components per screen, on average).

6.3.3 Real Dataset Construction

We built a dataset of real-life bug descriptions and relevant buggy UI screens/components

to assess the effectiveness of the models in a realistic setting. We collected OB descriptions

from a set of bug reports. Then, for each report, we collected a corpus of UI screens used

for screen localization, identifying the screens and components displaying the reported

6.3. STUDY 1: BUGGY UI LOCALIZATION 95

bug. Finally, for each screen, we extracted the UI components visible to the user as the

corpus for component localization.

6.3.3.1 Bug Report Selection

Since one of our goals, later in this work (see section 6.4), is to assess the usefulness of

Buggy UI Localization models for Buggy Code Localization (i.e., in short, bug localiza-

tion), we took a pragmatic approach to select the bug reports for this study. We started

selecting the 80 bug reports included in the bug localization dataset provided by Mahmoud

et al. [156]. In this way, we could reuse this data for this study and the bug localization

study reported in section 6.4.

Mahmoud et al.’s dataset was created based on the AndroR2 dataset [211, 130], which

consists of 180 manually reproduced bug reports for popular open-source Android applica-

tions hosted on GitHub. These reports were systematically collected from the project’s is-

sue tracker following a rigorous procedure (see [211, 130] for details). The dataset provides

APK files, buggy and bug-fixing commits, GitHub issue links, and scripts that replicate

the reported bugs (crash-, output-, navigation-, and cosmetic-related bugs [211, 130]).

To construct the bug localization dataset, Mahmoud et al. employed rigorous manual

procedure to collect ground-truth buggy Java files for the 180 AndroR2 reports. They

reproduced the reported bugs in a Pixel 2 Android emulator and for the reproducible

bugs, they inspected the bug-fixing commits to identify the Java files and lines of code

that were changed to fix the reported bug. From the 180, 100 reports were discarded

because: (1) their bugs are not reproducible, (2) included fixed non-Java files only, (3)

are no longer publicly available, or (4) included ambiguous code changes or commit IDs.

The 80 remaining reports were used for bug localization experiments by Mahmoud et al.,

and hence, we used them for our study. However, when collecting ground truth data

for Buggy UI Localization (see section 6.3.3.4), we discarded one bug report (from the

GnuCash app [?]) because we were unable to reproduce the reported bug, thus leaving

79 reports. To expand the set of bugs usable for this study, we selected 14 extra bug reports

6.3. STUDY 1: BUGGY UI LOCALIZATION 96

from the 100 discarded ones whose bug fixes were in XML resource files as opposed to

Java code and discarded 6 reports because we obtained errors trying to collect the retrieval

corpus for those reports (see section 6.3.3.3). This resulted in 8 extra bug reports, for a

total of 87.

From the 87 bug reports (1 to 8 per app), 32 describe an output problem, 23 report

an app crash, 23 describe a UI cosmetic issue, and 9 report a navigation problem. The

bug reports correspond to 39 Android apps (e.g., GnuCash [21], Mozilla Focus [17], K-9

Mail [25], WiFi Analyzer [40], Images to PDF [23]) of different domains (e.g., finance

tracking, web browsing, emailing, WiFi network diagnosis, and image conversion) and UI

layouts.

6.3.3.2 Bug Description Annotation

To collect bug descriptions, two researchers inspected and annotated the OB sentences

in the title and descriptions of the 80 bug reports. Based on the definition of OB and

the criteria to annotate OB sentences defined by Chaparro et al. [86], one author marked

every sentence of the bug reports that conveyed a bug manifesting in the UI. The second

author verified the first author’s annotations, marking missed OB sentences and incorrect

annotations, resulting in an agreement for 1774/1807 (≈98%) sentences (Cohen’s kappa

[18] of 0.91). The researchers solved disagreements via discussion and consensus. Reasons

for disagreement included mostly mistakes and misinterpretations (e.g., when sentences

described root causes in the code, rather than UI faults). In total, 228 sentences were

identified as OB/bug descriptions, which represent the queries for retrieval.

6.3.3.3 Retrieval Corpus Collection

To build the retrieval corpus for each bug description, we require the set of UI screens/-

components of the apps, including the buggy screens/components. To collect these data,

we employed: (1) a record-and-replay methodology used in prior studies [96, 195], and (2)

an automated app exploration methodology used by Chaparro et al. [78].

6.3. STUDY 1: BUGGY UI LOCALIZATION 97

The goal of the record-and-replay methodology was to collect the buggy UI screens for

each bug report and the UI screens navigated while reproducing the bugs. Two researchers

manually reproduced the reported bugs by executing the reproduction steps from the bug

report on a Pixel 2 Android emulator (the same emulator used by Mahmoud et al. [156]).

While reproducing the bugs, the researchers used the AVT tool [96, 195] to collect UI-event

traces and a video showing the user interactions of the app and the bug itself [164, 162].

These traces were replayed on the emulator via the TraceReplayer tool [156], which is able

to automatically collect app screenshots and UI hierarchies/metadata for the exercised

app UI screens.

The purpose of the automated app exploration methodology was to collect as many

UI screens for building the corpus. We executed a version of the CrashScope tool [164]

that implements multiple exploration strategies to interact with the UI components of

app screens in a comprehensive way, trying to exercise as many screens as possible. In the

process, CrashScope collects app screenshots and XML-based UI hierarchies/metadata

for the exercised app UI screens, in the same way TraceReplayer does it.

Since these two approaches can generate duplicate UI screens, we employed the ap-

proach by Chaparro et al. [78] to produce a unique set of UI screens for each of the 87

bug reports. This approach parses the hierarchies of the collected UI screens for an app

and establishes uniqueness between two screens if they have the same hierarchical struc-

ture (based on component types, sizes, and parent-children relationships). This implies

that two UI screens with the same structure but different text shown on the screen are

considered the same. Unique UI screens for each report were identified using a SHA hash

created from the hierarchy structure of the UI screens.

To create UI component corpora for each of the buggy UI screens we parsed the UI

hierarchy of the screen and identified the visible leaf components, which are typically the

ones shown to the user on the mobile device. However, we discard layouts and other

containers, thus focusing on labels, buttons, text fields, and other UI components that

users typically interact with.

6.3. STUDY 1: BUGGY UI LOCALIZATION 98

This procedure resulted in UI screen corpora containing ≈26 UI screens per bug report

on average, which will used for screen localization. We also collected UI component corpora

containing ≈17 UI components per screen on average, which will be used for component

localization.

6.3.3.4 Ground Truth Construction

During multiple annotation sessions, four researchers (a.k.a. annotators) first read and

understood the reported bugs, watching (if needed) the bug reproduction video collected

during the corpus collection step. Then, the annotators inspected the app screens from

the corpus to identify the buggy screens shown in the video and marked them as such in a

spreadsheet. The annotators identified and marked the buggy UI components in the same

spreadsheet. Each bug report was assigned to two annotators, making sure the annotators

had an even number of bug reports to annotate. For each bug report, the first annotator

identified the buggy UI screens/components and then the second annotator validated the

annotation by the first annotator. Both annotators would follow the procedure described

above, marking potential disagreements in a shared spreadsheet. At the end of each

annotation session, the annotators would meet to discuss disagreements (mostly because

of misinterpretation of the bugs), and reach a consensus to produce the final set of buggy

UI screens/components.

Besides identifying the buggy UI screens/components, the annotators rated the quality

of the bug descriptions based on the amount of information they provided to understand

the bug. Since the Buggy UI Localization tasks focus on individual bug descriptions, the

annotators judged the quality of single OBs in isolation. The annotators agreed on a

quality rating on a 1-5 discrete scale. A rating of 1 means the bug description does not

contain useful information to understand the problem. Conversely, a rating of 5 means the

description contains complete information to understand the bug. A rating of between 1

to 5 indicates that there is missing information in the OB that hinders bug comprehension.

Additionally, the annotators marked each bug description as easy or hard to localize, based

6.3. STUDY 1: BUGGY UI LOCALIZATION 99

Table 6.3: Dataset statistics for SL and CL

Statistic SL CL

of retrieval tasks/queries 228 254

of hard-to-retrieve tasks 111 130

of easy-to-retrieve tasks 117 124

Avg. # of buggy UI screens/comp. 2.06 (2) 1.86 (1)

Avg. of corpus size 25.97 (22) 17.11 (14)

Average (median) values per query/retrieval task

on the difficulty they encountered in identifying the buggy screens and components. A

common reason why bug descriptions were judged as hard to retrieve was that multiple UI

screens/components were similar, yet one or a few were really displaying the reported bug.

During the reconciliation sessions, disagreements were discussed and solved to produce the

final query quality and retrieval difficulty category for each bug description.

6.3.3.5 Summary of the Collected Retrieval Data

For screen localization (SL), the dataset contains 228 queries (see table 6.3) with 2.1

buggy UI screens on avg. as ground truth and 26 screens in the corpus on avg. Each

query represents a unique screen retrieval ask.

For component localization (CL), the queries can be reused for multiple retrieval tasks.

Since the OBs may be associated with multiple buggy screens, each screen represents a

task. This means we created 254 queries (or retrieval tasks), with 1.9 buggy UI components

as ground truth and 17.11 components in the corpus on avg.

In summary, we collected: OB descriptions (i.e., the queries), the retrieval corpus of UI

screens/components for each query (including app UI screenshots and cropped component

images, and their UI hierarchy with associated metadata: component text, ID, etc.), and

identified buggy UI screens/components (i.e., the ground truth).

6.3. STUDY 1: BUGGY UI LOCALIZATION 100

6.3.4 Approach Execution

In this research, we analyze five DL models: two text-based (OpenAI’s embedding model

and SBert) and three multimodal (GPT-4, Clip, and Blip). We fine-tuned three of

them—SBert, Clip, and Blip, which are supervised models—using the synthetic dataset

to assess their performance in both zero-shot and fine-tuned scenarios. For the two Ope-

nAI models, we leveraged their APIs for zero-shot evaluations due to their exceptional

zero-shot capabilities: the text-embedding-3-large model and gpt-4-vision-preview model,

which represent the most performant model of their respective domains. OpenAI has not

provided access for fine-tuning these two models.

6.3.4.1 GPT-4 Customized Prompting and Execution

We leverage the sophisticated image comprehension capabilities of GPT-4, aiming to

pinpoint buggy elements or screens based on textual descriptions of bugs. Through a

trial-and-error process, We craft effective prompts for both Component Localization (CL)

and Screen Localization (SL) tasks. Out of a selection, five bugs were chosen for prompt

construction, with the remainder allocated for evaluation. This sample covers 5 outputs,

3 report an app crash, 3 describe a UI cosmetic issue, and 1 report a navigation problem,

which mirrors the diversity encountered within the whole real dataset.

The prompt framework for the screen localization, detailed below fig. 6.3, begins

with defining ”Observed Behavior” and presenting the corresponding behavior, and then

the image of the screen. Subsequently, GPT-4 is instructed to compute a similarity

score reflecting the degree to which the UI screen shows the observed behavior or could

potentially manifest it. To ensure GPT-4’s success in this task, it was crucial to direct

its analysis based on specific guidelines distilled from our trial-and-error testing. These

guidelines include:

• Analyze only the elements that are immediately actionable and in the user’s current

focus. Background elements, even if related to the bug, should be disregarded if

6.3. STUDY 1: BUGGY UI LOCALIZATION 101

they are not in the active foreground and cannot be interacted with in the present

state of the UI.

• Directly relate the observed behavior with visible elements in the screenshot, without

speculating on what isn’t shown or inferring additional functionality. You should

not lower the score just because the bug is not actively occurring.

• Avoid assumptions about what is not explicitly shown.

These principles are designed to direct GPT-4 towards concentrating on visible and

active UI components, overlooking background details, and preventing speculative rea-

soning about unobserved functionalities or unnecessary assumptions. This guidance is

essential to ensure that GPT-4 does not unfairly reduce scores due to bugs not actively

occurring, a frequent observation in our pilot study. Given that images, unlike videos,

cannot depict ongoing actions, it’s necessary to underscore this point. For instance, in the

case of a bug report from Focus-android [7] that describes the observed behavior as ”URL

bar text sometimes cleared when pressing near the URL bar”, responses such as ”However,

it does not capture the bug occurring or provide evidence that it could occur in this state.”

illustrate the need for this specific guideline.

The prompt template for component localization, is outlined in the fig. 6.4, initiat-

ing similarly to the SL prompt by defining and presenting the observed behavior. However,

given the necessity for component localization to distinguish buggy components within a

screen’s component space (as outlined in section Section 6.2.2), a key distinction for CL is

we provide not just the image of the component but also the originating screen image for

contextual understanding. This dual imagery enables GPT-4 to more accurately interpret

the component’s image. This difference necessitates a unique prompt structure for CL,

considering its focus on the single component image, unlike SL’s focus on the entire screen.

Through a process of trial and error with the same five bugs used for SL, we developed a

set of four tailored guidelines for CL:

6.3. STUDY 1: BUGGY UI LOCALIZATION 102

• Focus solely on the cropped image’s UI component, assessing its visible functionality

and interaction elements (e.g., buttons, checkboxes) as they relate directly to the

observed behavior. High scores require clear, visible evidence of direct capability to

enact the described behavior, without assumptions or context extrapolation.

• Focus strictly on the UI component shown in the cropped image. Consider if this

exact component could be where the observed behavior directly occurs.

• Do not factor in indirect interactions or the possibility of a component affecting the

observed behavior from another location.

• Ignore whether the action described in the observed behavior is actively happening

in the cropped image. The focus is on the potential relevance of the UI component

to the described behavior.

These instructions are crucial in guiding GPT-4 to avoid errors such as overgeneraliza-

tion and inappropriate associations, by emphasizing the importance of focusing on the

functionality and location of the UI component without unnecessary speculation.

Additionally, for both SL and CL, we ask GPT-4 to provide its thought process in

a step-by-step manner before computing the final similarity score. Inspired by literature

on Zero-shot Chain of Thought (Zero-shot-CoT) reasoning [141], we found that LLMs

can effectively perform zero-shot reasoning by prefacing with ”Let’s think step by step”

during our trial-and-error process. Thus, we incorporate ”Break down your reasoning into

sequential steps before returning the similarity score” into our prompt, opting for a Zero-

shot-CoT approach rather than CoT or Few-shot-CoT is due to the practical constraints

of embedding images within GPT-4 API prompts, and we verified its efficiency through

evaluation.

Finally, we instruct GPT-4 to present the similarity score in a standardized format:

”Similarity score: 60”, enabling the use of regular expressions for score extraction and

subsequent evaluation. Given the non-determinism (i.e., inconsistent results with identical

6.3. STUDY 1: BUGGY UI LOCALIZATION 103

prompts) 1 of generative AI models such as GPT-4, we call the GPT-4 API three times

for every query and calculate the average similarity score. To handle scenarios where we

encounter errors such as ”too many requests” or receive unhelpful responses like ”I cannot

help,” we limit our attempts to a maximum of ten requests. We cease further requests

after the tenth attempt, regardless of whether we’ve received satisfactory responses. Thus,

if the first three requests yield valid responses, we discontinue any additional calls to the

API.

1In the literature, other terms like inconsistency, randomness, and instability are also used to describe
the concept of non-determinism.

6.3. STUDY 1: BUGGY UI LOCALIZATION 104

The sentence below is the Observed Behavior extracted from a bug report for

the mobile application {app name}. The Observed Behavior is the incorrect

application behavior manifested visually on the device screen when the user was

using the application.

Observed Behavior: {bug report}

I am also providing a screenshot of {app name} that shows one UI screen.

Based on the Observed Behavior and the screenshot provided, please compute

and return a similarity score in the range 0 to 100 in such a way that:

• A score closer to 100 means that it is more likely that the provided UI screen shows

the observed behavior or can cause the observed behavior to manifest, even though the

bug is not actively occurring in the image.

• A score closer to 0 means that it is more likely that the provided UI screen does not

show the observed behavior or can cause the observed behavior to manifest.

Guidelines for analysis:

• **UI Layer Clarity**: Analyze only the elements that are immediately actionable and

in the user’s current focus. Background elements, even if related to the bug, should be

disregarded if they are not in the active foreground and cannot be interacted with in

the present state of the UI.

• **Visual Relevance Evaluation**: Directly relate the observed behavior with visible

elements in the screenshot, without speculating on what isn’t shown or inferring addi-

tional functionality. You should not lower the score just because the bug is not actively

occurring.

• **Assumption Exclusion**: Avoid assumptions about what is not explicitly shown.

If you cannot provide a similarity score, please return 0. You need to return the

similarity score in this format: ”Similarity score: 60”. Break down your reasoning

into sequential steps before returning the similarity score.

Figure 6.3: The prompt template for screen localization

6.3. STUDY 1: BUGGY UI LOCALIZATION 105

The sentence below is the Observed Behavior extracted from a bug report for the mobile

application {app name}. The observed behavior is the incorrect application behavior

manifested visually on the device screen when the user was using the application.

Observed Behavior: {bug report}

You are provided with two images:

• A cropped image of a UI component.

• A full-screen screenshot of {app name} for context, illustrating where the cropped component

image was taken from.

Your task is to calculate a similarity score based on the observed behavior and the first

cropped component image provided in the range 0 to 100 in such a way that:

• A score closer to 100 means that it is more likely that the provided UI component shows the

observed behavior or can cause the observed behavior to manifest.

• A score closer to 0 means that it is more likely that the provided UI component does not show

the observed behavior or cannot cause the observed behavior to manifest.

Guidelines for analysis:

• **Direct Component Functionality**: Focus solely on the cropped image’s UI component,

assessing its visible functionality and interaction elements (e.g., buttons, checkboxes) as they

relate directly to the observed behavior. High scores require clear, visible evidence of direct

capability to enact the described behavior, without assumptions or context extrapolation

• **Specific UI Component Focus**: Focus strictly on the UI component shown in the cropped

image. Consider if this exact component could be where the observed behavior directly occurs.

• **Exclusion of Indirect Interactions**: Do not factor in indirect interactions or the possibility

of a component affecting the observed behavior from another location.

• **Behavior-Relevance Assessment**: Ignore whether the action described in the observed

behavior is actively happening in the cropped image. The focus is on the potential relevance

of the UI component to the described behavior.

If you cannot provide a similarity score, please return 0. You need to return the sim-

ilarity score in this format: ”Similarity score: 60”. Break down your reasoning into

sequential steps before returning the similarity score.

Figure 6.4: The prompt template for component localization

6.3. STUDY 1: BUGGY UI LOCALIZATION 106

6.3.4.2 Model Fine-tuning and Execution

We split the ≈6.4K apps in our synthetic dataset into training (65%), validation (15%),

and test sets (20%). The training set (i.e., the OBs and their ground truth for the training

apps) was used for fine-tuning the models, the validation set was used for hyper-parameter

tuning, and the test set for assessing model performance. We denote the fine-tuned models

by their name followed by the ft subscript; for example, we denote fine-tuned Clip as

Clipft.

For fine-tuning SBert, we required building sets of positive and negative pairs of OB

descriptions and textual documents of UI screens/components. UI component documents

were defined by concatenating the component text, description, and ID. UI screen doc-

uments were defined by concatenating the UI component documents. We experimented

with different strategies for building positive and negative pairs, but the one that led to the

highest performance was the following. Half of the training OBs and their corresponding

UI screen/components were used as positive pairs and the remaining half of OBs were used

to create negative pairs. To create these pairs we randomly selected screens from other

apps (for SR), or other components from the screen (for CR). Our replication package

describes the data creation strategies we experimented with and the results [37].

For fine-tuning Clip, we required pairs of OB descriptions and images of the ground-

truth UI screens/components. We experimented with different datasets created from the

training set. Using the entire training set for fine-tuning proved to be ineffective since

a single UI screen/component can have multiple OBs associated with it, which makes it

difficult for Clip to learn the distinction between different pairs containing the same image

(given its contrastive architecture). We experimented by using subsets of 1, 5, 10, and 15

OBs per image (selected from different bug types), all leading to better performance on the

synthetic test set. In the end, the best performance was obtained by using unique pairs of

OBs and images (i.e., one OB per image), preserving the distribution of component/screen

OBs of the training data, and using OBs of different bug types across different images.

6.3. STUDY 1: BUGGY UI LOCALIZATION 107

The performance on this data can be explained by Clip’s contrastive architecture.

Fine-tuning Blip requires the same information sources as Clip. Given Blip’s simi-

larity to Clip regarding architecture, we experimented with the same subsets of pairs and

the unique pairs of OBs and images as used for Clip.

Once fine-tuned, the models were tested on the synthetic test set as well as on the real

dataset. Lucene, being an unsupervised approach, was only tested on the aforementioned

data, following the same procedure as for SBert to create textual documents from UI

screens/components. Only for Lucene, we performed standard pre-processing on the

queries and documents (lemmatization, stop word removal, etc.).

6.3.5 Evaluation Metrics

We used standard retrieval metrics, widely used in prior studies [53, 144, 108, 96], to

measure the effectiveness of the models:

• Mean Reciprocal Rank (MRR): it gives a measure of the average ranking of the

first buggy UI screen/component in the candidate list given by a model. It is calculated

as: MRR = 1
N

∑N
i=1

1
ranki

, for N queries (ranki is the rank of the first buggy UI

screen/component for query i).

• Mean Average Precision (MAP): it gives a measure of the average ranking of

all the buggy UI screens/components for a query. It is computed as: MAP =

1
N

∑N
i=1

1
BU

∑BU
b=1 Pi(rankb), where BU is the set buggy UI screens/components for

query i, rankb is the rank of the buggy UI screen/component b, and Pi(k) =

buggy elements
k is the number of buggy UI screens/components in the top-k candidates.

• Hits@K (H@K): it is the percentage of queries for which a buggy UI screen/component

is retrieved in the top-K candidates.

All metrics give a normalized score in [0, 1]—the higher the score, the higher the retrieval

performance of the models. We executed the models and the baseline on the query sets

for SL and CL and computed/compared the metrics between these approaches.

6.3. STUDY 1: BUGGY UI LOCALIZATION 108

Table 6.4: Screen/component retrieval results on synthetic data

Approach
Screen Retrieval Component Retrieval

MRR H@1 H@2 H@3 H@4 MRR H@1 H@2 H@3 H@4

SBert 0.538 0.355 0.526 0.642 0.726 0.610 0.482 0.599 0.671 0.725
SBertft 0.590 0.418 0.587 0.699 0.774 0.747 0.667 0.740 0.783 0.818

Clip 0.492 0.304 0.470 0.591 0.679 0.474 0.334 0.449 0.522 0.582
Clipft 0.619 0.453 0.626 0.730 0.798 0.704 0.605 0.701 0.754 0.793

Blip 0.543 0.373 0.530 0.633 0.709 0.436 0.253 0.376 0.563 0.629
Blipft 0.628 0.475 0.634 0.724 0.788 0.698 0.612 0.688 0.733 0.768

6.3.6 Results

We present and discuss the effectiveness of the results of the approaches for both screen

(SL) and component localization (CL). We focus our discussion on MRR since the other

metrics show similar trends to the MRR results for all the models. Our replication package

contains the results of all the experiments we conducted [37]. In our pilot study, we used

five bugs to create effective prompts for both Component Localization (CL) and Screen

Localization (SL) tasks. To ensure fairness in our evaluation, we excluded these five

bugs. Consequently, this left us with 215 retrieval tasks/queries for SL and 229 retrieval

tasks/queries for CL for the evaluation.

6.3.6.1 RQ1: Screen Retrieval Results

Table 6.5 shows the screen localization performance of the approaches for 215 queries.

Only considering zero-shot for all models, the results reveal that GPT-4 performs the

highest (0.661 MRR), outperforming the second best OpenAI-txt-embed (0.565 MRR)

and the third best Blip (0.438 MRR) with a relative improvement of 17% and 50.9%

respectively. This suggests that GPT-4 has a strong ability to locate the most relevant

screens. SBert displayed moderate MRR score with 0.423 MRR. The remaining models

including Clip and Lucene achieve a similar MRR (Clip: 0.363, Lucene: 0.354). In

terms of H@K, GPT-4 consistently outperformed other approaches across all hit rates

by a considerable margin, with scores ranging from 0.544 at H@1 to 0.805 at H@5. For

6.3. STUDY 1: BUGGY UI LOCALIZATION 109

example, it outperforms the models with a maximum relative improvement of 33% H@1

(compared to OpenAI-txt-embed). The three models other than GPT-4 and OpenAI-

txt-embed achieve a similar H@1 from 0.197 (Clip) to 0.26 (SBert and Blip).

The exceptional performance of the GPT-4 model in all metrics can be attributed

to its advanced natural language and image understanding and reasoning capabilities. It

can sufficiently comprehend the intricate details within bug reports and extracts pertinent

details from mobile app screens. This ability enables it to effectively bridge the gap be-

tween written bug reports and their corresponding UI elements on screens, thus accurately

pinpointing errors on screens as described in bug reports.

Surprisingly, The OpenAI-txt-embed approach also performed well, with MRR and

MAP significantly higher than those of the SBert, Clip, and Blip models, falling just

behind the performance of GPT-4. This trend was consistent across H@1 through H@5,

indicating the robustness of the OpenAI-txt-embed approach. Notably, it excels beyond

other text-based models like SBert and Lucene. One possible factor for this success

could be the utilization of OpenAI’s best-performing text-embedding-3-large embedding

model. Despite the closed-source nature of OpenAI’s model that limits insight into its

technical details, the outcomes suggest that a sufficiently advanced embedding model

could serve as a more cost-efficient yet effective alternative to GPT-4.

Additionally, as the results show, fine-tuning affects the models’ performance, except for

Clip. It is important to note that the fine-tuning of Blip was done with text-image pairs

containing duplicate images across pairs (since there are multiple OBs per UI screen).

We attempted to train Blip with the same unique text-image dataset used for Clip,

consisting of 14.3k pairs. This was motivated mainly by the Blip’s contrastive/matching

losses, which might benefit from the unique dataset. However, Blip was not able to learn

from this dataset as we did not observe a steady, decreasing training loss. We attribute

this to the relatively low size of this dataset. Since Blip is a larger model than Clip

(224M vs 151M parameters), given its more robust architecture, it needs more data for

training.

6.3. STUDY 1: BUGGY UI LOCALIZATION 110

Table 6.5: Screen Localization (SL) Results

Approach MRR MAP H@1 H@2 H@3 H@4 H@5

SBert 0.423 0.427 0.260 0.417 0.472 0.535 0.559
SBertft 0.351 0.357 0.220 0.315 0.378 0.425 0.465

Clip 0.363 0.352 0.197 0.315 0.449 0.496 0.583
Clipft 0.391 0.369 0.276 0.331 0.402 0.441 0.520

Blip 0.438 0.440 0.260 0.449 0.528 0.583 0.661
Blipft 0.395 0.397 0.205 0.402 0.528 0.567 0.614

Lucene 0.354 0.357 0.228 0.323 0.417 0.472 0.512

OpenAI-txt-embed 0.565 0.530 0.409 0.572 0.647 0.712 0.744

GPT-4 0.661 0.613 0.544 0.642 0.730 0.791 0.805

Further, while the fine-tuning vs zero-shot results seem counter-intuitive at first, this

trend can be explained by the fact that 96.5% of the synthetic OBs are component OBs

which describe issues with a UI component rather than issues with regions or the entire

screen. As explained in section 6.3.2, we opted to design screen OB templates only appli-

cable for selected screens, rather than templates that apply to all the screens, as the latter

would likely make it difficult for the models to learn the relationships between the OBs

and screens. Given this, we expect the fine-tuned models to perform higher for component

OBs than for screen OBs (both can be used for screen retrieval), as the models would learn

more from training component OBs for screen retrieval. To validate our expectation, we

analyzed the MRR results of the approaches across the two query types in the data: screen

and component OBs. We found that all the approaches (except Clip) perform higher on

the component OBs than on the screen OBs, which confirms our expectation. However,

the non-tuned models show the same trends. Despite the models learn from the synthetic

data, the learned patterns seem to not follow the same patterns in the real data. Our

future work will investigate if improving the synthetic dataset with extra screen OBs can

improve model effectiveness.

6.3. STUDY 1: BUGGY UI LOCALIZATION 111

6.3.6.2 RQ2: Component Retrieval Results

Table 6.6 shows the component localization results of all the approaches for 229 retrieval

tasks. Note that although the number of OBs is 216, some OBs may have a different

component corpus for retrieval, one for each buggy screen in the ground truth (i.e., one

OB/bug description may correspond to multiple buggy UI screens).

When focusing solely on a zero-shot setting for all models, all DL approaches (besides

Clip) perform substantially higher (0.432+ MRR) than the baseline (Lucene), which

achieves 0.416 MRR and fails to retrieve UI component suggestions in 14 cases. The

OpenAI-txt-embed approach exhibits superior performance with the highest MRR of

0.622, indicating its robustness in accurately ranking the correct component at the top

of the list. The OpenAI-txt-embed method’s Hit Rates also show outstanding results,

progressively increasing from 0.467 at H@1 to 0.79 at H@5, suggesting that it not only

locates the correct component but also consistently ranks it highly.

GPT-4 shows second-highest performance with an MRR of 0.559. It maintains strong

Hit Rates across the board, culminating in an H@5 of 0.799, which is even better than

OpenAI-txt-embed model, demonstrating its effectiveness in component localization.

However, GPT-4 significantly trails the embedding model in terms of MRR and the met-

rics H@1 to H@3. Through a detailed manual review of the responses, we found multiple

factors contributing to its inability to accurately locate the correct buggy components.

A notable issue is GPT-4’s unstable capability to comprehend and accurately describe

component images within the given context. This inconsistency was evident as GPT-4

occasionally failed to process images, responding like Unfortunately, I cannot assist with

this request., or I’m sorry but I cannot provide a similarity score between the observed

behavior and the component image without the actual images to analyze. If you can pro-

vide the images I would be able to assist you further., among others. Sometimes, GPT-4

inaccurately focused on describing the function of the buggy component instead of the

component image itself, leading to erroneously high similarity scores for components not

6.3. STUDY 1: BUGGY UI LOCALIZATION 112

Figure 6.5: Buggy screen of a bug from Aegis App [5]

related to the bug, particularly when dealing with small-sized component images such as

icons. For example, for a bug report from Aegis app [5], the OB is ”If code refresh time is

set to 9999 - Aegis crashes”, and the buggy screen Figure 6.5 has 20 components. GPT-

4 misinterprets 12 out of 20 components, those 12 unrelated components are described

as a component showing a numeric input field with 9999 entered, which is marked by a

green square in Figure 6.5–the actual buggy component. Moreover, one component got

all responses like ”I’m sorry but I cannot assist with requests that involve processing or

analyzing specific images for content or context”, further highlighting its inconsistency. In

contrast, OpenAI-txt-embed model, leveraging direct metadata extracted from XML,

easily identifies the faulty component by associating them with relevant information like

”EditText” and ”9999,” thus proving to be more effective in locating buggy components.

6.3. STUDY 1: BUGGY UI LOCALIZATION 113

Notably, SBert achieves a slightly lower MRR of 0.542, trailing GPT-4 by a slim

margin of 3%. Moreover, it remains consistently strong across Hit Rates, achieving an

H@5 score of 0.773, which is also comparable with 0.799 H@5 of GPT-4. These results

indicate that text-only models are effective at suggesting buggy UI components based on

textual descriptions compared with multimodal models such as Clip and Blip, which are

at 0.416 and 0.432 MRR, respectively.

Additionally, as the results show, Blip’s fine-tuned version (SBertft) is the most

effective of all fine-tuned approaches, achieving a 0.501 MRR with a relative improvement

of 16% of Blip. However, the fine-tuned versions of the SBert and Clipmodels (SBertft

and Clipft) did not show the expected improvements over their respective non-fine-tuned

versions, even though Clipft achieves a slightly higher H@3 than Clip (0.493 and 0.48,

repestively), which indicates there is still room for improving the quality of the synthetic

dataset. This issue is further discussed in the Section 6.3.6.4

Several observations can be derived from these results. First, the superiority of the DL

models compared to Lucene suggests that DL models are better for component localiza-

tion. Second, the textual information present in the UI components of the screens seems

to be highly effective in performing localization, as indicated by OpenAI-txt-embed

and SBert results. Third, Blip’s superiority over Clip seems to stem from architec-

tural differences, as Blip is specifically designed for text-image matching (via two losses:

contrastive and matching), unlike Clip, which aims to learn joint representation for text

and images via contrastive learning without an explicit matching loss. Fourth, while it

may be counter-intuitive that text-only models outperform the multi-modal approaches,

we generally observed that OBs tend to describe the buggy components using a language

that is more similar to the component text observed by the user, which a text embedding

model like OpenAI-txt-embed is specifically designed for. While Blip also leverages

textual information from components, it does so based on the pixel data mainly, rather

than the actual component text extracted from the UI metadata. Finally, despite GPT-

4’s exceptional performance in image and natural language understanding, the inherent

6.3. STUDY 1: BUGGY UI LOCALIZATION 114

Table 6.6: Component Localization (CL) Results

Approach MRR MAP H@1 H@2 H@3 H@4 H@5

SBert 0.542 0.527 0.367 0.546 0.633 0.729 0.773
SBertft 0.415 0.406 0.253 0.393 0.502 0.555 0.590

Clip 0.416 0.403 0.249 0.384 0.480 0.581 0.629
Clipft 0.399 0.381 0.227 0.380 0.493 0.533 0.594

Blip 0.432 0.412 0.258 0.419 0.511 0.572 0.616
Blipft 0.501 0.472 0.349 0.472 0.546 0.629 0.703

Lucene 0.416 0.374 0.323 0.459 0.502 0.528 0.537

OpenAI-txt-embed 0.622 0.603 0.467 0.664 0.716 0.755 0.790

GPT-4 0.559 0.528 0.384 0.550 0.672 0.725 0.799

instability of generative models limits its effectiveness in the CL task. This observation

underscores that for component OBs, text-based models may be more appropriate. This

finding further reinforces our conclusion.

6.3.6.3 RQ3: Results vs. query qualities & retrieval difficulties

Query Quality. Figure 6.6 shows the screen localization results (based on MRR) across

different query quality ratings (from 1 to 5, 5 meaning most informative). Notably, GPT-4

achieves the highest MRR on the least informative queries (i.e., rating 1) among all models,

a comparable performance with the most informative queries (i.e., rating 5). This situation

indicates that GPT-4 is robust across various levels of query quality. Additionally, the

figure shows that while different approaches perform differently across the quality ratings,

all models achieve the best performance for the most informative queries (i.e., rating 5)

except Clip. Moreover, the performance trend is similar for all the models on the queries

with quality ratings 4 & 5 besides OpenAI-txt-embed.

Figure 6.7 shows the component localization results (based on MRR) across different

query quality ratings. The figure shows a general upward trend: most models (besides

GPT-4 and Clip) tend to perform better for higher-quality queries (rating 5) than lower-

quality queries (rating 1 & 2). Interestingly, those models do not display a steady increase

6.3. STUDY 1: BUGGY UI LOCALIZATION 115

Figure 6.6: SL results for different query quality levels

in MRR with the improvement of query quality; instead, there’s a notable peak at a

quality rating of 3, followed by a decline and then an eventual ascent, particularly obvious

for OpenAI-txt-embed which shows the highest MRR at rating of 3. Notably, GPT-4

shows a fluctuating pattern, peaking at a quality rating of 2, which is an unusual trend

compared to others like Lucene, which appears to increase in performance with higher

quality queries. Lucene mostly fails to retrieve any buggy components for the queries

with ratings 1 & 2 (43/66 cases). Of the 17 queries with a rating of 1, Lucene fails to

retrieve any component for 14 queries. For the remaining 3 queries, it cannot retrieve any

relevant component resulting in a 0 MRR.

For SL, we found a middle to high positive correlation between the OB quality and the

MRR results: a Spearman’s correlation of 0.7 to 1 across all models except GPT-4, Blip

(0.3 for both zero-shot and fine-tuned) and Clip. For CL, we found a high correlation:

Spearman’s correlation of 0.7 to 1 across all models except GPT-4 and Clip. The results

show that the models tend to perform better for higher-quality queries than lower-quality

6.3. STUDY 1: BUGGY UI LOCALIZATION 116

Figure 6.7: CL results for different query quality levels

queries for both SL & CL. Our replication package contains the # of queries per quality

ratings [37].

Retrieval Difficulty. Figures 6.8 and 6.9 show the retrieval results (based on MRR) for

easy- and hard-to-retrieve, for SL and CL respectively. For SL, all models perform higher

on easy-to-retrieve tasks, which is expected. The same results are found for CL, except

for Blip, Clip (zero-shot and fine-tuned), and SBertft. Regardless of the difficulty of

the tasks, GPT-4 performs highest for SR, and OpenAI-txt-embed performs highest

for CL. To recap, the results suggest a correlation between the difficulty of retrieval by

humans and the retrieval performance of the models: they tend to perform higher/lower

for easier/harder cases.

6.3.6.4 Discussion

SL vs. CL Our analysis revealed discrepancies in performance between SL (with MRR

ranging from 0.351 to 0.661) and CL (showing MRR from 0.399 to 0.622). Furthermore,

6.3. STUDY 1: BUGGY UI LOCALIZATION 117

Figure 6.8: SL results for easy- and hard-to-retrieve tasks

excluding the two best-performing models: GPT-4 and OpenAI-txt-embed, the MRR

values adjust to 0.351-0.438 and 0.399-0.542 for CL. Several factors make SL more chal-

lenging than CL. First, the corpus size is larger for SL than for CR (25.97 screens per app

vs. 17.11 components per screen on avg.). Second, SL is more abstract or general than

CL as the scope of SL is broader (all screens of the application vs. all components of a

screen). Additionally, OBs are generally written focusing on the component level as the

user interacts with the component while reproducing the bug. Third, the quality of the

OBs has an important impact on the results. For instance, “The color is unset.” is an OB

with a quality rating of 2, which is from the bug report [4] in GnuCash Android app [21].

The best SL model, GPT-4, identified the relevant screen (shown in Figure 6.10) for this

OB in the 21st place. However, the best CL model, OpenAI-txt-embed, identified the

relevant component in the 1st place. However, the exceptional capabilities of GPT-4 and

OpenAI-txt-embed help to bridge the gap. For example, GPT-4 accurately pinpoints

the relevant screen by recognizing that each account entry has a color strip which suggests

that colors are used to distinguish or categorize accounts. If the color is unset it would

likely affect these color strips, leading to the conclusion that it is the correct context where

6.3. STUDY 1: BUGGY UI LOCALIZATION 118

Figure 6.9: CL results for easy- and hard-to-retrieve tasks

such a bug could manifest, and thereby improving Blip’s rank to the 10th rank. GPT-4

could not rank it higher because GPT-4 observed the bug is not actively visible, despite

being instructed to overlook whether the bug is actively occurring in the prompt.

Zero-shot vs fine-tuned models. For SL, Clipft achieves a better performance

than their zero-shot model. For CL, Blipft achieves a better performance than their

zero-shot model. Despite expectations, this improvement in performance with fine-tuning

was not observed across all models. The anticipation was that fine-tuned models, at least

for CL, would show enhanced performance because the synthetic dataset mainly contains

component OBs with few screen OBs, which should make the models adequately learn

the relationships between component OBs and images for CL. The primary reason behind

this lies in the training dataset, especially caused by non-negligible discrepancies between

synthetic OBs including both component and screen OBs. One possible reason is that

our generated synthetic OBs are limited in their wording variety and fail to capture the

broader spectrum of expressions found in actual bug reports. Moreover, despite efforts to

cover a wide range of bug types, discourse patterns, and variable templates in the creation

of synthetic OBs, they fall short of replicating the true complexity found in real bug

6.3. STUDY 1: BUGGY UI LOCALIZATION 119

Figure 6.10: Buggy screen of a bug from GnuCash App [4]

reports. Additionally, our synthetic OBs tend to focus more on cosmetic issues, whereas

real datasets encompass a broader array of bug types, including crash and navigation

bugs. Consequently, there’s a significant gap between the synthetic OBs, encompassing

both component and screen OBs, and their real-world counterparts, highlighting an area

for future enhancement of the synthetic dataset.

Textual vs multi-modal models. While we found that both textual and textual-

visual models achieve a reasonable performance for Buggy UI Localization, no single type

of model seems to stand out. GPT-4 and OpenAI-txt-embed were the best-performing

approaches, yet no single model was the best for both tasks. The results indicate that

both types of information, textual and visual, can be leveraged for Buggy UI Localization,

yet textual data seems to be more useful for CL, while visual data seems to be useful for

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 120

SL.

Design requirements for Buggy UI Localization approaches. The results sug-

gest that both textual and visual information alone are helpful for Buggy UI Localization.

However, there is still room for improving the localization performance and specialized

models may be required for this. We believe that both visual and textual information of

the UI screens should be blended to build a more sophisticated model to increase localiza-

tion performance. Other sources that can be explored are UI hierarchy information, which

has shown promising results for command/instruction UI grounding [149, 151]. Moreover,

for a successful localization approach, we may require potentially distinct models for each

task: SL & CL.

Finally, while our study showed that it is feasible to leverage the pre-trained models

for Buggy UI Localization, fine-tuning may be required to increase the performance of

these models. However, creating or obtaining a comprehensive dataset for model fine-

tuning is challenging because it should include OB descriptions of different types of bugs

and wordings similarly found in real bug reports, with corresponding ground truth data.

At the same time, such a dataset should include a variety of mobile apps and should

be sufficiently large for the models to effectively learn patterns from the data. At the

same time, creating a global model that applies to any mobile app and bug description

is challenging. Future work should explore the possibility of comparing global vs. local

models that work for specific apps. However, this brings an additional challenge: collecting

sufficiently large ground truth data for individual apps.

6.4 Study 2: Improving Bug Localization

To illustrate the practical usefulness of automated Buggy UI Localization, we conducted

an additional study that investigates how identified buggy UI screens from Blip, our

best-performing SL model, can improve traditional bug localization approaches. We aim

to answer the following research question:

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 121

RQ4: Can the identified buggy UI screens by Blip lead to improved bug localization per-

formance?

To answer this RQ, we adapted the approach proposed by Mahmud et al. [156] (sec-

tion 6.4.1) as an end-to-end automated bug localization technique (section 6.4.2), which

retrieves potentially buggy code files by leveraging the information from Blip’s suggested

buggy UI screens, given a bug description. We defined different pipelines that combine

Buggy UI Localization and traditional Bug Localization to source code (section 6.4.2)

and compared their performance with baseline techniques that do not use UI information

(section 6.4.3).

6.4.1 UI-based Bug Localization in Code

Mahmud et al. [156] demonstrated that mobile app UI interaction data can improve the

performance of four IR-based bug localizers that rely on bug reports (e.g., BugLocator

[234]). Their approach consists of modifying the initial ranking of potentially buggy code

files produced by a bug localizer for a given bug report, by boosting relevant files and/or

filtering out irrelevant files, or by performing reformulation. These operations (a.k.a.

augmentations) leverage information extracted from the UI screen that shows the reported

bug and the preceding 1-3 screens in a bug reproduction trace.

The information extracted from UI screens is UI terms, such as the activity and window

names of the screens, which are then matched against code file names to produce a set of

UI-related files. The UI terms and UI-related files are used by two augmentation methods:

(1) Reformulating queries: Two query reformulation strategies were defined based on

UI terms: query expansion by appending UI terms to bug reports, and query replacement

by using UI terms as the query; and (2) File re-ranking: three re-ranking strategies were

defined: filtering, boosting, and a combination of the two. Filtering involves removing files

that do not match UI-related files from the search corpus. Boosting elevates the ranking

of files in the search corpus that match UI-related files during the search. The filtering

and boosting strategy combines both techniques: ranking boosts files higher in the filtered

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 122

file corpus.

To re-rank files in the search corpus, Mahmud et al. extracted three types of UI-related

files using UI terms: (1) Mapping UI screen terms to files: the screen activity and

window names were extracted from screen metadata and code files were matched against

the activity/window terms; (2) Mapping UI component terms to files: components

in UI screens were mapped to files by finding references of the IDs associated with those

components within the file content; and (3) mapping exercised UI component terms

to files: the components of the screens that were exercised by the user during bug re-

production were mapped to files by finding references of the IDs associated with those

components within the file content.

Mahmud et al. employed four main configuration parameters to integrate UI infor-

mation into the IR bug localizers: (1) the number of UI screens in a reproduction trace,

specifically the last 2-4 screens, including the buggy one; (2) five types of UI information

sources (e.g., UI screen, exercised UI components) (3) query reformulation strategies; (4)

re-ranking strategies. In total, 657 configurations were defined and evaluated for each bug

localizer.

6.4.2 Using Buggy UIs for Bug Localization

Mahmud et al.’s approach [156] requires as input a trace of the UI screens and components

that the user interacted with to reproduce the bug described in a bug report. The trace

and the buggy UI screen in the trace are meant to be manually collected/identified by the

developer. Mahmud et al.’s approach then uses the metadata information from the buggy

screen and the 3-4 prior screens/components in the reproduction scenario as input to their

augmentation approaches that filter and boost potentially buggy code files retrieved by

an IR-based bug localization technique.

Our goal is to eliminate the manual effort of Mahmud et al.’s approach and define a

fully automated end-to-end pipeline of bug localization in code that leverages the buggy

UI screens recommended by a screen localizer. To that end, we adapted Mahmud et

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 123

al.’s approach by using our best screen localization approach (i.e., GPT-4) to suggest

the top 3-4 buggy UI screens as the only source of information needed by the bug

localization pipeline. In this way, no reproduction scenario and buggy screen need to be

collected/identified by the developers, thus eliminating the manual effort.

As such, we defined an approach that integrates both the screen localization and bug

localization pipelines since the ultimate goal is to produce a ranked list of potentially

buggy code files for a given bug report. The challenge in defining this combined approach

is that a bug report can contain multiple OB descriptions. If we execute GPT-4 on each

OB description, it would produce multiple lists of potentially buggy UI screens. Therefore,

this challenge is to decide which buggy screens should be given as input to the localization

pipeline, to produce a single ranking of buggy files.

To address this problem, we considered two options: (1) produce and provide a single

ranking of UI screens for the bug report, or (2) provide each ranking of UI screens (for each

OB description in the bug report) to the bug localization pipeline, to produce multiple

code file ranking, and then combine these rankings into a final code file ranking. For

option #1, we explored two strategies: (i) concatenate the OB descriptions in a bug

report and use the resulting query as input to GPT-4, and (ii) select only the first OB

description found in the bug report as a query to GPT-4. These two strategies (which

we call “Concat OBs” and “First OB”, respectively) would produce a single UI screen

ranking, which can be used by the bug localization pipeline to suggest a single code file

ranking for the bug report. As for option #2, to produce a single code file ranking, we

first averaged the similarity scores of each code file found in all the buggy file rankings to

produce a single similarity score for the file. Then, these combined similarities, for all the

files in the rankings, are used to produce a final code file ranking (i.e., sorting by these

similarities). We call this strategy “Individual OB”.

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 124

6.4.3 Approach Execution, Dataset, and Metrics

We selected the two best IR-based bug localization techniques from Mahmud et al.’s

study [156], namely Lucene [115] (adapted for the bug localization task) and BugLo-

cator [234], and executed them in our combined pipeline for bug localization. We

experimented with all 70 feasible configurations comprising the different augmentation

methods and UI information defined in the prior work. We also experimented by proving

the top 3 and 4 buggy UI screens suggested by Blip, following the best number of screens

found by Mahmud et al., for Lucene (3 screens) and BugLocator (4 screens).

We executed the three combined pipelines defined above (i.e., Concat OBs, First

OB, and Individual OB) using both bug localizers. However, we could not execute In-

dividual OB with BugLocator because the tool provided by the original authors [234]

does not provide the code file rankings, which are needed by Individual OB. The

pipelines were executed on 79 of the 80 bug reports from the bug localization bench-

mark provided by Mahmud et al. [156]. As mentioned in section 6.3.3.1, we excluded one

bug report because we could not reproduce the bug. We did not use the full set of 87 bug

reports used in the Buggy UI Localization because 8 bugs do not have any Java files as

the ground truth for bug localization.

The performance of the combined pipelines, using all possible configurations and IR

bug localizers, was measured and compared using Hits@k and its relative improvement

(RI), in line with the methodology followed by Mahmud et al. [156]. We used as baselines

the original IR bug localizers, without using any UI information. We aim to test if the

combined bug localization pipelines outperform the baselines. If so, we can conclude that

automated Buggy UI Localization is useful to improve bug localization in source code.

Note that, for the experiments with 4 screens, we used 77 bug reports as 2 bug reports

have only 3 screens in the SL corpus.

6.4. STUDY 2: IMPROVING BUG LOCALIZATION 125

6.4.4 Results

Table 6.7 shows the bug localization results for both IR bug localizers and the best config-

urations we obtained among all configurations. These results are obtained when GPT-4

suggests the top 3 and 4 buggy screens. Complete results, obtained from all configurations

and experiments we conducted, are found in our replication package [37].

For each pipeline, IR bug localizer, and number of buggy screens recommended by

GPT-4, we consistently found that the best configuration (i.e., the highest H@10 im-

provement compared to the baselines) is when filtering with GUI Screen Components

(SC), boosting with GUI Screen (GS), and an optional query expansion with GS (for both

Lucene and BugLocator). Like Mahmud et al. [156], we obtained the best results with

3 screens for Lucene and 4 screens for BugLocator.

Table 6.7 reveals that all the combined pipelines for bug localization lead to perfor-

mance improvement compared to the baselines, by 4.77% to 16.69% H@10. When using

Lucene, Concat OBs pipeline achieves the highest performance boost of 11.17%. Like-

wise, with BugLocator, Concat OBs also records the best performance gain at 16.69%,

which translates into retrieving the buggy code files in the top-10 results for seven more

bug reports, compared to the baseline. Moreover, when using BugLocator with Con-

cat OBs pipeline, there is a 16.69% increase in H@10, equivalent to 9 more successful

retrieval tasks.

We compare our results from table 6.7 with the results achieved by the best config-

urations obtained for Lucene and BugLocator by Mahmud et al. [156], since those

results represent a perfect identification of the buggy UI screen, along with the reproduc-

tion scenario. However, we must cautiously compare these results since the bug reports

used in both studies are not exactly the same. Significantly, our best configurations show

the comparable performance with the manual bug localization approach by Mahmud et

al. [156] (0.89 vs 0.9 H@10 for Lucene, and 0.82 vs 0.84 for BugLocator). These re-

sults demonstrate the effectiveness of our fully automated way of localizing buggy code

6.5. THREATS TO VALIDITY 126

files via Buggy UI Localization, eliminating the need for need manual effort in collecting

reproduction traces and the buggy screen that the prior work requires.

Given the results, we conclude that Buggy UI Localization can be useful to improve the

performance of UI-based bug localization in source code in a fully automated end-to-end

way.

Table 6.7: Bug Loc. Performance via Buggy UI Localization

Bug Localizer Approach
#

Screens
H@5 H@10

RI of
H@10

#Bug
Top10

Lucene

Baseline 3 0.75 0.80 - 63
Concat OBs 3 0.80 0.89 11.17% 70
First OB 3 0.77 0.87 9.54% 69

Individual OB 3 0.73 0.84 4.77% 67

BugLocator
Baseline 4 0.58 0.70 - 54

Concat OBs 4 0.73 0.82 16.69% 63
First OB 4 0.69 0.79 12.98% 61

6.5 Threats to Validity

Construct Validity. There may be subjectivity introduced in the dataset construction

when identifying the OB descriptions in the bug reports, their quality rating, retrieval dif-

ficulty levels, and the ground truth buggy screens/components. We mitigated this threat

by adopting a rigorous methodology to label and curate the data during joint sessions of

bug understanding, replication, and analysis among four researchers, reaching consensus

in all cases. Internal Validity. The selection of models affects the internal validity of our

results/conclusions. To mitigate this we covered both uni-modal (SBert and OpenAI-

txt-embed) and multi-modal (Clip, Blip andGPT-4) DL models for automating Buggy

UI Localization. For buggy code localization study, we conducted various experiments

with all feasible configurations on two localizers (Lucene and BugLocator) to obtain

the best-performing configuration. External Validity. The conclusions of our study

may not generalize to other retrieval models, bug descriptions, and apps. To improve the

6.6. RELATED WORK 127

generalization, we selected different types of models and built a real dataset containing a

variety of bug types, and apps that implement different GUIs for multiple domains.

6.6 Related Work

Mobile App Bug Report Management. Recent research [106, 195, 104, 226, 107]

has explored the use of bug reports of mobile apps to automate various bug report

management tasks. Researchers [231, 226] have proposed approaches to reproduce An-

droid bugs/crashes or generate test cases based on bug reports. However, these tech-

niques lack verification that the generated reproduction steps can trigger the reported

bugs. A Buggy UI Localization approach that identifies the buggy screen/components

can help generate assertions to this end. Song et al. [195] proposed a chatbot to help

end-users report Android bugs via visual guidance and automated quality verification

of bug descriptions. This chatbot can benefit from a Buggy UI Localization approach

by accurately assessing how the description corresponds or relates to UI screens/compo-

nents. Despite the growing body of research on automating bug report management

tasks (e.g., bug reporting [195, 104], reproduction [231, 106, 226, 231, 230], localiza-

tion [53, 212, 140, 108, 79, 81, 83], and others [107, 233]), prior work has not explored how

to automatically localize buggy UIs as we do.

UI Representation Learning and Applications. UI representation learning aims

to represent UI elements or text via embeddings [147, 119, 61, 151] for downstream tasks

such as image captioning [206, 165, 90] and UI component labeling [89, 150, 90]. One appli-

cation of UI representation learning is mapping (a.k.a. grounding) textual instructions to

UI action/elements [173, 149, 217]. Pasupat et al. [173] evaluated three models to ground

natural language commands to web elements. Li et al. [149] utilized transformers models

for this task, based on three synthetic datasets for training. Although this grounding task

may appear similar to Buggy UI Retrieval, there are significant differences that make it

difficult to adapt those models to our problem. For example, Li et al.’s approach [149]

6.7. CONCLUSIONS 128

requires a sequence of screens where the instructions are performed, and then locating

the corresponding UI component for each instruction. In contrast, our work focuses on

identifying the buggy UI screens and components without any prior information about

which screens are relevant. Furthermore, our study deals with bug descriptions, whose

language is considerably more complex than that of UI instructions [86].

6.7 Conclusions

This work reported the results of the first empirical study that investigated the effective-

ness of textual/visual neural models for automatically localizing buggy UI screens and

components from the bug descriptions of mobile apps. We evaluated the approaches for

screen and component retrieval, using a large-scale synthetic dataset and a real-life dataset

of manually-curated OB descriptions and ground truth UI screens/components.

The study revealed that the best-performing approaches can suggest correct UI screens

and components in the top-3 recommendations for 73% and 71.6% of the bug descriptions,

respectively. Our findings suggest that there is potential for improvement through more re-

fined model fine-tuning with enhanced synthetic datasets, and the models tend to perform

better for higher-quality bug descriptions. We also showed that Buggy UI Localization

can be useful to automate and improve buggy code localization approaches.

Chapter 7

Conclusion and Future Work

This dissertation discusses significant challenges in bug management across three areas:

Bug Reporting, Bug Assignment, and Bug Localization. Traditional bug reporting

is manual, inefficient, and prone to errors, leading to low-quality reports that hinder the

resolution process. Even though there has been advancement in automated bug reporting

systems, challenges remain, notably their complexity and a lack of interactive support.

In the realm of bug assignment within complex software systems, manual methods are

error-prone and automated techniques using machine learning or information retrieval

face challenges in catering to the unique characteristics of individual reports, affecting

their effectiveness. Furthermore, the process of bug localization, particularly in mobile

applications, faces significant challenges due to a semantic gap between bug reports and

source code, especially when identifying buggy UI elements, highlighting the need for more

sophisticated bug localization methods that consider graphical user interface information.

The dissertation aims to address these challenges by exploring methods to automate the

bug reporting process, assessing the feasibility and efficiency of automated bug assignment

techniques, and investigating ways to enhance bug localization through integration with

UI data. By addressing the inefficiencies and inaccuracies inherent in current practices,

this dissertation seeks to advance the understanding, design, and application of auto-

mated systems, ultimately improving software development efficiency and bug resolution

129

7.1. MAIN CONTRIBUTIONS 130

effectiveness.

7.1 Main Contributions

Our research contributions can be summarized as follows:

1. We proposed and evaluated Bee, an innovative tool that enhances GitHub’s issue

tracker capabilities. It provides vital feedback to reporters and developers about

OB, EB, and S2R in bug reports. Utilizing machine learning models, Bee analyzes

submitted issues, distinguishing bug reports from enhancement suggestions or ques-

tions. The results reveal that Bee can identify sentences describing OB, EB, and

S2R and detect the omission of these elements, and inform reporters about missing

elements so that they can provide the information timely.

2. We proposed and evaluated Burt, a novel interactive Android app bug-reporting

system, designed to provide real-time feedback for each element of a bug description,

guide corrections where needed, and bridge the knowledge gap between end-users

and developers. The proposed system has been evaluated empirically and has been

found to improve the quality of bug reports. This work paves the way for a new

approach to end-user bug reporting, transitioning from static to interactive bug

reporting systems, and is expected to serve as a foundation for a new generation of

interactive bug reporting systems.

3. We proposed and evaluated Mix, a novel approach that can automatically recom-

mend and apply the best-performing approach on individual bug reports via machine

learning (ML). Our results revealed that while these models perform comparably to

baseline approaches, they fall short of achieving maximum potential effectiveness,

indicating the selected features might not sufficiently differentiate between various

assignment strategies. Our result suggests a potential gap in how bug assignment

methods account for real-world considerations, such as developer availability, which

could explain the observed performance limitations. This highlights the need for

7.2. THE VISION FOR FUTURE WORK 131

research focused on improving feature selection for assignment strategies, under-

standing actual bug assignment practices, and enhancing automated systems with

more comprehensive information for accurate bug assignment.

4. We proposed and evaluated a fully automated end-to-end bug localization approach

for GUI-related bugs of mobile applications by automating identifying the UI screens

and components that cause and/or show a reported issue from textual bug descrip-

tions(Buggy UI Localization). For Buggy UI Localization, we explore the application

of textual and multi-modal (visual-textual) deep learning or large language model

(LLM) techniques to Buggy UI Localization. Our results demonstrate the effec-

tiveness of DL models, particularly LLMs, for automatically localizing buggy UI

screens and components from the bug descriptions of mobile apps, while also high-

lighting Buggy UI Localization can be useful to automate and improve buggy code

localization approaches.

7.2 The Vision for Future Work

The vision for future work is to develop an AI-powered bug tracking system. The ad-

vancements in AI, especially in Large Language Models (LLMs) and AI agents, present

an opportunity to transform traditional bug tracking systems. This system will feature

intelligent bug detection capabilities that are customized to support various software sys-

tems, significantly reducing the manual effort required in identifying issues. Moreover,

it will provide a more user-friendly interface to improve accessibility for developers of all

skill levels. For example, it will allow users to customize the workflows. The system would

also support automated detection of duplicate bugs, as well as automated bug reproduc-

tion and fixing. Additionally, the proposed system will integrate seamlessly with popular

development and project management tools, such as Slack, facilitating better communica-

tion and workflow integration. This integration will not only streamline the bug tracking

process but also enhance collaboration across development teams.

7.2. THE VISION FOR FUTURE WORK 132

In conclusion, this dissertation achieves important milestones towards improving the

automated bug report management process, specifically targeting Bug Reporting, Bug

Assignment, and Bug Localization. These four works illustrate the dissertation’s

substantial contributions to the field of automated bug report management. Furthermore,

it points out the challenges and potential directions for future research, underlining the

ongoing need for innovation in automated bug report management.

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] Bug report #95598 from eclipse submitted on github. https://github.com/

ysong10/fast_ALS/issues/645, 2005.

[2] Original bug report #95598 from eclipse. https://bugs.eclipse.org/bugs/show_

bug.cgi?id=95598, 2005.

[3] An open letter to github from the maintainers of open source projects. Available

online: https://github.com/dear-github/dear-github, 2016.

[4] Gnucash’s bug report #620. https://tinyurl.com/y3pw69ac, 2019.

[5] Aegis’s bug report #500. https://github.com/beemdevelopment/Aegis/issues/

500, 2020.

[6] Default labels on github issues. https://help.github.com/en/github/

managing-your-work-on-github/about-labels, 2020.

[7] Focus-androi’s bug report #3152. https://github.com/mozilla-mobile/

focus-android/issues/3152, 2020.

[8] Github developer: Using the github api in your app. https://developer.github.

com/apps/quickstart-guides/using-the-github-api-in-your-app/, 2020.

[9] Issue-label bot. https://github.com/marketplace/issue-label-bot, 2020.

133

https://github.com/ysong10/fast_ALS/issues/645
https://github.com/ysong10/fast_ALS/issues/645
https://bugs.eclipse.org/bugs/show_bug.cgi?id=95598
https://bugs.eclipse.org/bugs/show_bug.cgi?id=95598
https://github.com/dear-github/dear-github
https://tinyurl.com/y3pw69ac
https://github.com/beemdevelopment/Aegis/issues/500
https://github.com/beemdevelopment/Aegis/issues/500
https://help.github.com/en/github/managing-your-work-on-github/about-labels
https://help.github.com/en/github/managing-your-work-on-github/about-labels
https://github.com/mozilla-mobile/focus-android/issues/3152
https://github.com/mozilla-mobile/focus-android/issues/3152
https://developer.github.com/apps/quickstart-guides/using-the-github-api-in-your-app/
https://developer.github.com/apps/quickstart-guides/using-the-github-api-in-your-app/
https://github.com/marketplace/issue-label-bot

BIBLIOGRAPHY 134

[10] Replication package of Bee’s evaluation. https://github.com/sea-lab-wm/

bee-tool, 2020.

[11] ’s installation website. https://github.com/apps/bee-tool, 2020.

[12] Android token. https://f-droid.org/en/packages/uk.co.bitethebullet.

android.token/, 2021.

[13] Android’s layout and layout validation. https://developer.android.com/

studio/debug/layout-inspector, 2021.

[14] Antennapod. https://play.google.com/store/apps/details?id=de.danoeh.

antennapod&hl=en_US&gl=US, 2021.

[15] App store: Ratings, reviews, and responses. https://developer.apple.com/

app-store/ratings-and-reviews/, 2021.

[16] Appetize.io. https://appetize.io/, 2021.

[17] Bugzilla issue tracker - https://bugzilla.mozilla.org, 2021.

[18] Cohen’s kappa. https://en.wikipedia.org/wiki/Cohen%27s_kappa, 2021.

[19] Droid weight. https://fossdroid.com/a/droidweight.html, 2021.

[20] Github issue tracker - https://github.com/features, 2021.

[21] Gnucash. https://play.google.com/store/apps/details?id=org.gnucash.

android&hl=en_US&gl=US, 2021.

[22] Growtracker. https://f-droid.org/en/packages/me.anon.grow/, 2021.

[23] Images2pdf. https://play.google.com/store/apps/details?id=imagetopdf.

pdfconverter.jpgtopdf.pdfeditor&hl=en_US&gl=US, 2021.

[24] Jira bug reporting system - https://www.atlassian.com/software/jira, 2021.

https://github.com/sea-lab-wm/bee-tool
https://github.com/sea-lab-wm/bee-tool
https://github.com/apps/bee-tool
https://f-droid.org/en/packages/uk.co.bitethebullet.android.token/
https://f-droid.org/en/packages/uk.co.bitethebullet.android.token/
https://developer.android.com/studio/debug/layout-inspector
https://developer.android.com/studio/debug/layout-inspector
https://play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=de.danoeh.antennapod&hl=en_US&gl=US
https://developer.apple.com/app-store/ratings-and-reviews/
https://developer.apple.com/app-store/ratings-and-reviews/
https://appetize.io/
https://bugzilla.mozilla.org
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://fossdroid.com/a/droidweight.html
https://github.com/features
https://play.google.com/store/apps/details?id=org.gnucash.android&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=org.gnucash.android&hl=en_US&gl=US
https://f-droid.org/en/packages/me.anon.grow/
https://play.google.com/store/apps/details?id=imagetopdf.pdfconverter.jpgtopdf.pdfeditor&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=imagetopdf.pdfconverter.jpgtopdf.pdfeditor&hl=en_US&gl=US
https://www.atlassian.com/software/jira

BIBLIOGRAPHY 135

[25] K-9. https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en_

US&gl=US, 2021.

[26] Microsoft azure chatbot architecture. https://docs.microsoft.com/en-us/

azure/architecture/reference-architectures/ai/conversational-bot,

2021.

[27] Mileage. https://fossdroid.com/a/mileage.html, 2021.

[28] React chatbot kit. https://fredrikoseberg.github.io/

react-chatbot-kit-docs/, 2021.

[29] Report an issue or send feedback on chrome. https://support.google.com/

chrome/answer/95315, 2021.

[30] Spring boot. https://spring.io/projects/spring-boot, 2021.

[31] Stanford dependencies. https://nlp.stanford.edu/software/

stanford-dependencies.html, 2021.

[32] A time tracker. https://f-droid.org/en/packages/com.markuspage.android.

atimetracker/, 2021.

[33] https://www.bugsee.com, 2021.

[34] Write a review on google play. https://support.google.com/googleplay/

answer/4346705, 2021.

[35] Online replication package. 2022.

[36] Qualtrics: Survey software. https://www.qualtrics.com/core-xm/

survey-software/, 2022.

[37] replication package. https://anonymous.4open.science/r/bug_report_

mapping_anonymized, 2023.

https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.fsck.k9&hl=en_US&gl=US
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/conversational-bot
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/conversational-bot
https://fossdroid.com/a/mileage.html
https://fredrikoseberg.github.io/react-chatbot-kit-docs/
https://fredrikoseberg.github.io/react-chatbot-kit-docs/
https://support.google.com/chrome/answer/95315
https://support.google.com/chrome/answer/95315
https://spring.io/projects/spring-boot
https://nlp.stanford.edu/software/stanford-dependencies.html
https://nlp.stanford.edu/software/stanford-dependencies.html
https://f-droid.org/en/packages/com.markuspage.android.atimetracker/
https://f-droid.org/en/packages/com.markuspage.android.atimetracker/
https://www.bugsee.com
https://support.google.com/googleplay/answer/4346705
https://support.google.com/googleplay/answer/4346705
https://www.qualtrics.com/core-xm/survey-software/
https://www.qualtrics.com/core-xm/survey-software/
https://anonymous.4open.science/r/bug_report_mapping_anonymized
https://anonymous.4open.science/r/bug_report_mapping_anonymized

BIBLIOGRAPHY 136

[38] Rico dataset. https://interactionmining.org/rico, 2023.

[39] Wifi analyzer. https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer,

2023.

[40] Wifi analyzer’s issue #191. https://github.com/VREMSoftwareDevelopment/

WiFiAnalyzer/issues/191, 2023.

[41] bugherd bug reporting system - https://bugherd.com, 2024.

[42] bugsnag bug reporting system - https://www.bugsnag.com/?utm_

source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_

Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=

aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=

536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_

ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=

aw.ds, 2024.

[43] claude-3. https://www.anthropic.com/news/claude-3-family, 2024.

[44] clickup bug reporting system - https://clickup.com/templates/

bug-report-t-2z6mm47, 2024.

[45] embrace bug reporting system - https://embrace.io/product/

crash-reporting/, 2024.

[46] gemini. https://gemini.google.com/, 2024.

[47] gleap bug reporting system - https://www.gleap.io/in-app-bug-reporting,

2024.

[48] Gpt-4. https://openai.com/research/gpt-4, 2024.

[49] instabug bug reporting system - https://www.instabug.com/product/

bug-reporting, 2024.

https://interactionmining.org/rico
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/issues/191
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/issues/191
https://bugherd.com
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.bugsnag.com/?utm_source=aw&utm_medium=ppcg&utm_campaign=SEM_Bugsnag_PR_NA_ENG_EXT_Prospecting&utm_term=bugsnag&utm_content=536025543533&&gclsrc=aw.ds&&campaignid=14051841305&adgroupid=128124629231&adid=536025543533&gad_source=1&gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q5aNk_ZGXKfF8Tp6rclKpGZPY2dk1vCuktVTQYRKv675SuUBvioN50aAnjIEALw_wcB&gclsrc=aw.ds
https://www.anthropic.com/news/claude-3-family
https://clickup.com/templates/bug-report-t-2z6mm47
https://clickup.com/templates/bug-report-t-2z6mm47
https://embrace.io/product/crash-reporting/
https://embrace.io/product/crash-reporting/
https://gemini.google.com/
https://www.gleap.io/in-app-bug-reporting
https://openai.com/research/gpt-4
https://www.instabug.com/product/bug-reporting
https://www.instabug.com/product/bug-reporting

BIBLIOGRAPHY 137

[50] Openai embedding models. https://platform.openai.com/docs/guides/

embeddings, 2024.

[51] shake bug reporting system - https://www.shakebugs.com/bug-reporting/, 2024.

[52] Vishakha Agrawal, Yong-Han Lin, and Jinghui Cheng. Understanding the

characteristics of visual contents in open source issue discussions: a case study of

jupyter notebook. In EASE’22.

[53] Shayan A Akbar and Avinash C Kak. A large-scale comparative evaluation of

ir-based tools for bug localization. In MSR’20.

[54] Ethem Utku Aktas and Cemal Yilmaz. Automated issue assignment: results

and insights from an industrial case. Empirical Software Engineering, 25(5):3544–

3589, 2020.

[55] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech,

Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Milli-

can, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi,

Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob

Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand

Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, An-

drew Zisserman, and Karen Simonyan. Flamingo: a visual language model for

few-shot learning, 2022.

[56] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,

and Yann-Gaël Guéhéneuc. Is It a Bug or an Enhancement?: A Text-based

Approach to Classify Change Requests. In Proceedings of the Conference of the

Center for Advanced Studies on Collaborative Research: Meeting of Minds, pages

304–318, 2008.

[57] John Anvik, Lyndon Hiew, and Gail C Murphy. Coping with an open bug

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://www.shakebugs.com/bug-reporting/

BIBLIOGRAPHY 138

repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse Technology

eXchange (ETX’05), pages 35–39, 2005.

[58] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this

bug? In Proceedings of the 28th International Conference on Software Engineer-

ing (ICSE’06), pages 361–370, 2006.

[59] John Anvik and Gail C. Murphy. Reducing the effort of bug report triage:

Recommenders for development-oriented decisions. Transactions on Software Engi-

neering and Methodologies (TOSEM), 20(3):10:1–10:35, 2011.

[60] Jorge Aranda and Gina Venolia. The Secret Life of Bugs: Going Past the Er-

rors and Omissions in Software Repositories. In Proceedings of the 31st International

Conference on Software Engineering, pages 298–308, 2009.

[61] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Ras-

togi, Jindong Chen, et al. Uibert: Learning generic multimodal representations

for ui understanding. arXiv preprint arXiv:2107.13731, 2021.

[62] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto

Del Bimbo. Conditioned and composed image retrieval combining and partially

fine-tuning clip-based features. In CVPR’22.

[63] Olga Baysal, Michael W Godfrey, and Robin Cohen. A bug you like: A

framework for automated assignment of bugs. In Proceedings of IEEE 17th Inter-

national Conference on Program Comprehension (ICPC’09), pages 297–298. IEEE,

2009.

[64] Carlos Bernal-Cárdenas, Nathan Cooper, Madeleine Havranek, Kevin

Moran, Oscar Chaparro, Denys Poshyvanyk, and Andrian Marcus.

Translating video recordings of complex mobile app ui gestures into replayable sce-

narios. IEEE Transactions on Software Engineering, page to appear, 2022.

BIBLIOGRAPHY 139

[65] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Cha-

parro, Andrian Marcus, and Denys Poshyvanyk. Translating video record-

ings of mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering (ICSE’20), pages 309–321,

2020.

[66] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and

Sunghun Kim. Duplicate bug reports considered harmful ... really? In Proceed-

ings of the International Conference on Software Maintenance (ICSM’08), pages

337–345, 2008.

[67] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and

Sunghun Kim. Extracting Structural Information from Bug Reports. In Pro-

ceedings of the International Working Conference on Mining Software Repositories

(WCRE’08), pages 27–30, 2008.

[68] Aaditya Bhatia, Shaowei Wang, Muhammad Asaduzzaman, and Ahmed E

Hassan. A study of bug management using the stack exchange question and an-

swering platform. IEEE Transactions on Software Engineering, 48(2):502–518, 2022.

[69] Pallab Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Cha-

ran Koduru. An empirical analysis of bug reports and bug fixing in open source

android apps. In Software Maintenance and Reengineering (CSMR), 2013 17th Eu-

ropean Conference on, pages 133–143, 2013.

[70] Pamela Bhattacharya, Iulian Neamtiu, and Christian R. Shelton. Auto-

mated, highly-accurate, bug assignment using machine learning and tossing graphs.

Journal of Systems and Software, 85(10):2275–2292, 2012.

[71] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and

Premkumar Devanbu. Latent social structure in open source projects. In Pro-

BIBLIOGRAPHY 140

ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of

software engineering (FSE’08), pages 24–35, 2008.

[72] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, and Y. L.

Traon. Got issues? who cares about it? a large scale investigation of issue track-

ers from github. In Proceedings of the 24th International Symposium on Software

Reliability Engineering (ISSRE’13), pages 188–197, 2013.

[73] Gerald Bortis and Andre Van Der Hoek. Porchlight: A tag-based approach

to bug triaging. In Proceedings of the 35th International Conference on Software

Engineering (ICSE’13), pages 342–351. IEEE, 2013.

[74] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmer-

mann. Information Needs in Bug Reports: Improving Cooperation Between De-

velopers and Users. In Proceedings of the Conference on Computer Supported Co-

operative Work (CSCW’10), pages 301–310, 2010.

[75] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Fer-

rucci. Not all bugs are the same: Understanding, characterizing, and classifying

bug types. Journal of Systems and Software, 152:165–181, 2019.

[76] Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and

subsequent selection bias in performance evaluation. Journal of Machine Learning

Research, 11(Jul):2079–2107, 2010.

[77] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, An-

drian Marcus, Massimiliano Di Penta, Denys Poshyvanyk, and Vincent

Ng. Assessing the quality of the steps to reproduce in bug reports. In Proceed-

ings of the 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE’19), pages

86–96, 2019.

BIBLIOGRAPHY 141

[78] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, An-

drian Marcus, Massimiliano Di Penta, Denys Poshyvanyk, and Vincent

Ng. Assessing the quality of the steps to reproduce in bug reports. In Proceed-

ings of the 27th ACM Joint Meeting on the Foundations of Software Engineering

(ESEC/FSE’19), pages 86–96, 2019.

[79] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using

bug descriptions to reformulate queries during text-retrieval-based bug localization.

ESE’19.

[80] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using ob-

served behavior to reformulate queries during text retrieval-based bug localization.

In Proceedings of the IEEE International Conference on Software Maintenance and

Evolution (ICSME’17), pages 376–387. IEEE, 2017.

[81] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using ob-

served behavior to reformulate queries during text retrieval-based bug localization.

In Proceedings of the 33rd IEEE International Conference on Software Maintenance

and Evolution (ICSME’17), pages 376–387, 2017.

[82] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. Using bug

descriptions to reformulate queries during text-retrieval-based bug localization. Em-

pirical Software Engineering, 24(5):2947–3007, 2019.

[83] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Mar-

cus. Reformulating queries for duplicate bug report detection. In SANER’19.

[84] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Mar-

cus. Reformulating queries for duplicate bug report detection. In Proceedings of the

IEEE 26th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER’19), pages 218–229. IEEE, 2019.

BIBLIOGRAPHY 142

[85] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massim-

iliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng.

Detecting missing information in bug descriptions. In Proceedings of the 11th ACM

Joint Meeting on the Foundations of Software Engineering (ESEC/FSE’17), pages

396–407, 2017.

[86] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massim-

iliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng.

Detecting missing information in bug descriptions. In Proceedings of the 11th Joint

Meeting on the Foundations of Software Engineering (ESEC/FSE’17), pages 396–

407, 2017.

[87] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massim-

iliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng.

Detecting missing information in bug descriptions. In Proceedings of the 11th Joint

Meeting on the Foundations of Software Engineering (ESEC/FSE’17), pages 396–

407, 2017.

[88] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip

Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 16:321–357, 2002.

[89] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu,

Guoqiang Li, and Jinshui Wang. Unblind your apps: Predicting natural-

language labels for mobile gui components by deep learning. In ICSE’20.

[90] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey

Nichols, and Xiaoyi Zhang. Towards complete icon labeling in mobile appli-

cations. In CHI’22.

[91] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey

BIBLIOGRAPHY 143

Nichols, and Xiaoyi Zhang. Extracting replayable interactions from videos of

mobile app usage, 2022.

[92] Qiuyuan Chen, Xin Xia, Han Hu, David Lo, and Shanping Li. Why my code

summarization model does not work: Code comment improvement with category

prediction. ACM Transactions on Software Engineering and Methodology (TOSEM),

30(2):1–29, 2021.

[93] Agnieszka Ciborowska and Kostadin Damevski. Fast changeset-based bug

localization with bert. In ICSE’22.

[94] Norman Cliff. Ordinal methods for behavioral data analysis. Psychology Press,

2014.

[95] Marcos V Conde and Kerem Turgutlu. Clip-art: Contrastive pre-training for

fine-grained art classification. In CVPR’21.

[96] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin

Moran, and Denys Poshyvanyk. It takes two to tango: Combining visual

and textual information for detecting duplicate video-based bug reports. In Pro-

ceedings of the 43rd IEEE/ACM International Conference on Software Engineering

(ICSE’21), pages 160–161, 2021.

[97] Steven Davies and Marc Roper. What’s in a Bug Report? In Proceedings of

the International Symposium on Empirical Software Engineering and Measurement

(ESEM’14), pages 26:1–26:10, 2014.

[98] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In CVPR’09.

[99] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

BIBLIOGRAPHY 144

[100] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for

me! characterizing non-reproducible bug reports. In MSR’14.

[101] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. Works for

Me! Characterizing Non-reproducible Bug Reports. In Proceedings of the Working

Conference on Mining Software Repositories (MSR’14), pages 62–71, 2014.

[102] Camilo Escobar-Velásquez, Mario Linares-Vásquez, Gabriele Bavota,

Michele Tufano, Kevin Moran, Massimiliano Di Penta, Christopher

Vendome, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. Enabling

mutant generation for open-and closed-source android apps. TSE’20.

[103] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E Hassan. Chaff from the

wheat: Characterizing and determining valid bug reports. TSE’18.

[104] Mattia Fazzini, Kevin Patrick Moran, Carlos Bernal-Cardenas, Tyler

Wendland, Alessandro Orso, and Denys Poshyvanyk. Enhancing mobile

app bug reporting via real-time understanding of reproduction steps. IEEE Trans-

actions on Software Engineering, page to appear, 2022.

[105] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro

Orso. Automatically translating bug reports into test cases for mobile apps. In

Proceedings of the 27th ACM International Symposium on Software Testing and

Analysis (ISSTA’18, pages 141–152, 2018.

[106] Sidong Feng and Chunyang Chen. Gifdroid: an automated light-weight tool

for replaying visual bug reports. In ICSE’22.

[107] Sidong Feng, Mulong Xie, Yinxing Xue, and Chunyang Chen. Read

it, don’t watch it: Captioning bug recordings automatically. arXiv preprint

arXiv:2302.00886, 2023.

BIBLIOGRAPHY 145

[108] Juan Manuel Florez, Oscar Chaparro, Christoph Treude, and Andrian

Marcus. Combining query reduction and expansion for text-retrieval-based bug

localization. In SANER’21.

[109] Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to con-

versational ai. Foundations and Trends in Information Retrieval, 13(2-3):127–298,

2019.

[110] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the

use of relevance feedback in ir-based concept location. In 2009 IEEE international

conference on software maintenance, pages 351–360. IEEE, 2009.

[111] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.

Reran: Timing- and touch-sensitive record and replay for android. In Proceedings of

the 35th International Conference on Software Engineering (ICSE’13), pages 72–81,

2013.

[112] Don Goodman-Wilson. Automating issue triage with

github and recast.ai, 2018. https://github.blog/

2018-10-31-automating-issue-triage-with-github-and-recastai/.

[113] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan

Murphy. Characterizing and predicting which bugs get fixed: An empirical study

of Microsoft Windows. In Proceedings of the International Conference on Software

Engineering (ICSE’10), pages 495–504, 2010.

[114] Melita Hajdinjak and France Mihelič. The paradise evaluation framework:

Issues and findings. Computational Linguistics, 32(2):263–272, 2006.

[115] Erik Hatcher and Otis Gospodnetic. Lucene in Action. Manning Publications,

2004.

https://github.blog/2018-10-31-automating-issue-triage-with-github-and-recastai/
https://github.blog/2018-10-31-automating-issue-triage-with-github-and-recastai/

BIBLIOGRAPHY 146

[116] Madeleine Havranek, Carlos Bernal-Cárdenas, Nathan Cooper, Oscar

Chaparro, Denys Poshyvanyk, and Kevin Moran. V2s: a tool for translating

video recordings of mobile app usages into replayable scenarios. In Proceedings of

the IEEE/ACM 43rd International Conference on Software Engineering (ICSE’21),

pages 65–68, 2021.

[117] Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. Duplicate bug report

detection using dual-channel convolutional neural networks. In ICPC’20.

[118] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In CVPR’16.

[119] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu,

Nevan Wichers, Gabriel Schubiner, Ruby Lee, and Jindong Chen. Ac-

tionbert: Leveraging user actions for semantic understanding of user interfaces. In

AAAI’21.

[120] Myles Hollander, Douglas A Wolfe, and Eric Chicken. Nonparametric

statistical methods. John Wiley & Sons, 2013.

[121] Pieter Hooimeijer and Westley Weimer. Modeling Bug Report Quality. In

Proceedings of the 22nd International Conference on Automated Software Engineer-

ing (ASE’07), pages 34–43, 2007.

[122] Md Kamal Hossen, Huzefa Kagdi, and Denys Poshyvanyk. Amalgamating

source code authors, maintainers, and change proneness to triage change requests.

In Proceedings of the 22nd International Conference on Program Comprehension

(ICPC’14), pages 130–141, 2014.

[123] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. Versatile yet lightweight

record-and-replay for android. In Proceedings of the 2015 ACM SIGPLAN Interna-

BIBLIOGRAPHY 147

tional Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications (OOPSLA’15), pages 349–366, 2015.

[124] Dorota Huizinga and Adam Kolawa. Automated defect prevention: best prac-

tices in software management. John Wiley & Sons, 2007.

[125] Da Huo, Tao Ding, Collin McMillan, and Malcom Gethers. An empirical

study of the effects of expert knowledge on bug reports. In Proceedings of the In-

ternational Conference on Software Maintenance and Evolution (ICSME’14), pages

1–10, 2014.

[126] Mia Mohammad Imran, Agnieszka Ciborowska, and Kostadin Damevski.

Automatically selecting follow-up questions for deficient bug reports. In In proceed-

ings of the 18th IEEE/ACM International Conference on Mining Software Reposi-

tories (MSR’18), pages 167–178, 2021.

[127] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage

with bug tossing graphs. In Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the Symposium on The Foundations of Soft-

ware Engineering (ESEC/FSE’09), pages 111–120, 2009.

[128] Thorsten Joachims. Making large-scale svm learning practical. LS8-Report 24,

Universität Dortmund, LS VIII-Report, 1998.

[129] Thorsten Joachims. Text categorization with support vector machines: Learning

with many relevant features. In Proceedings of the European Conference on Machine

Learning, pages 137–142. Springer, 1998.

[130] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia

Rubin, and Mattia Fazzini. An empirical investigation into the reproduction of

bug reports for android apps. In SANER’22.

BIBLIOGRAPHY 148

[131] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia

Rubin, and Mattia Fazzini. An empirical investigation into the reproduction of

bug reports for android apps. In 2022 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 321–322. IEEE, 2022.

[132] Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid

Eldh, and Per Runeson. Automated bug assignment: Ensemble-based ma-

chine learning in large scale industrial contexts. Empirical Software Engineering,

21(4):1533–1578, 2016.

[133] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas

Mikolov. Bag of tricks for efficient text classification. arXiv preprint

arXiv:1607.01759, 2016.

[134] Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Maen Hammad.

Assigning change requests to software developers. Journal of Software: Evolution

and Process, 24(1):3–33, 2012.

[135] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano

Panichella. Ticket tagger: Machine learning driven issue classification. In Proceed-

ings of the IEEE International Conference on Software Maintenance and Evolution

(ICSME’19), pages 406–409, 2019.

[136] Gün Karagöz and Hasan Sözer. Reproducing failures based on semiformal

failure scenario descriptions. Software Quality Journal, 25(1):111–129, 2017.

[137] Gün Karagöz and Hasan Sözer. Reproducing failures based on semiformal

failure scenario descriptions. Software Quality Journal, 25(1):111–129, 2017.

[138] K. Kevic, S. C. Müller, T. Fritz, and H. C. Gall. Collaborative bug triag-

ing using textual similarities and change set analysis. In Proceedings of the 6th

BIBLIOGRAPHY 149

International Workshop on Cooperative and Human Aspects of Software Engineer-

ing (CHASE’13), pages 17–24, 2013.

[139] Amy J. Ko and Brad A. Myers. Debugging reinvented: Asking and answering

why and why not questions about program behavior. In Proceedings of the 30th

International Conference on Software Engineering (ICSE’08), page 301–310, 2008.

[140] Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug

localization: Do they matter? In Proceedings of the Conference on Automated

Software Engineering (ASE’14), pages 803–814, 2014.

[141] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and

Yusuke Iwasawa. Large language models are zero-shot reasoners, 2023.

[142] Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto,

Kaze Shindo, Yasutaka Kamei, and Naoyasu Ubayashi. Do visual issue

reports help developers fix bugs? a preliminary study of using videos and images

to report issues on github. In Proceedings of the 30th IEEE/ACM International

Conference on Program Comprehension, ICPC ’22, page 511–515, New York, NY,

USA, 2022. Association for Computing Machinery.

[143] Eero I. Laukkanen and Mika V. Mäntylä. Survey reproduction of defect

reporting in industrial software development. In Proceedings of the International

Symposium on Empirical Software Engineering and Measurement, ESEM’11, pages

197–206, 2011.

[144] Jaekwon Lee, Dongsun Kim, Tegawendé F Bissyandé, Woosung Jung,

and Yves Le Traon. Bench4bl: reproducibility study on the performance of

ir-based bug localization. In ISSTA’18.

[145] Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong.

Applying deep learning based automatic bug triager to industrial projects. In

BIBLIOGRAPHY 150

Proceedings of the 11th Joint Meeting on foundations of software engineering (ES-

EC/FSE’17), pages 926–931, 2017.

[146] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping

language-image pre-training for unified vision-language understanding and genera-

tion. In ICML’22.

[147] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers.

Screen2vec: Semantic embedding of gui screens and gui components. In CHI’21.

[148] Wei Li, Qingan Li, Yunlong Ming, Weijiao Dai, Shi Ying, and Mengting

Yuan. An empirical study of the effectiveness of ir-based bug localization for large-

scale industrial projects. Empirical Software Engineering, 27(2):47, 2022.

[149] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Map-

ping natural language instructions to mobile ui action sequences. arXiv preprint

arXiv:2005.03776, 2020.

[150] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan.

Widget captioning: Generating natural language description for mobile user inter-

face elements. arXiv preprint arXiv:2010.04295, 2020.

[151] Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani, and Alexey Gritsenko.

Vut: Versatile ui transformer for multi-modal multi-task user interface modeling.

arXiv preprint arXiv:2112.05692, 2021.

[152] Bennett P Lientz and E Burton Swanson. Software maintenance manage-

ment. Addison-Wesley Longman Publishing Co., Inc., 1980.

[153] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas,

Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api

change and fault proneness: A threat to the success of android apps. In Proceedings

BIBLIOGRAPHY 151

of the 9th Joint Meeting on Foundations of Software Engineering (FSE’13), pages

477–487, 2013.

[154] Mario Linares-Vásquez, Kamal Hossen, Hoang Dang, Huzefa Kagdi,

Malcom Gethers, and Denys Poshyvanyk. Triaging incoming change requests:

Bug or commit history, or code authorship? In Proceedings of the 28th IEEE In-

ternational Conference on Software Maintenance (ICSM’12), pages 451–460. IEEE,

2012.

[155] Hui Liu, Mingzhu Shen, Jiahao Jin, and Yanjie Jiang. Automated classifi-

cation of actions in bug reports of mobile apps. In Proceedings of the 29th ACM

International Symposium on Software Testing and Analysis (ISSTA’20), pages 128–

140, 2020.

[156] Junayed Mahmud, Nadeeshan De Silva, Safwat Ali Khan, Seyed Hooman

Mostafavi, SM Mansur, Oscar Chaparro, Andrian Marcus, and Kevin

Moran. On using gui interaction data to improve text retrieval-based bug localiza-

tion. ICSE’24, 2024.

[157] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose

Finkel, Steven Bethard, and David McClosky. The stanford corenlp natural

language processing toolkit. In Proceedings of the Annual Meeting of the Association

for Computational Linguistics (ACL’14), pages 55–60, 2014.

[158] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports using a

vocabulary-based expertise model of developers. In Proceedings of the 6th Inter-

national Working Conference on Mining Software Repositories (MSR’09), pages

131–140, 2009.

[159] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug

reports using a vocabulary-based expertise model of developers. In MSR’09, pages

131–140, 2009.

BIBLIOGRAPHY 152

[160] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian

Marcus, and Andrea De Lucia. Predicting query quality for applications of text

retrieval to software engineering tasks. ACM Transactions on Software Engineering

and Methodology (TOSEM), 26(1):3, 2017.

[161] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Ot-

ten, Daniel Park, and Denys Poshyvanyk. On-device bug reporting for an-

droid applications. In Proceedings of the IEEE/ACM 4th International Conference

on Mobile Software Engineering and Systems (MOBILESoft’17), pages 215–216,

2017.

[162] Kevin Moran, Mario Linares-Váquez, Carlos Bernal-Cárdenas,

Christopher Vendome, and Denys Poshyvanyk. Automatically Discovering,

Reporting and Reproducing Android Application Crashes. In Proceedings of the In-

ternational Conference on Software Testing, Verification and Validation (ICST’16),

pages 33–44, 2016.

[163] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and

Denys Poshyvanyk. Auto-completing Bug Reports for Android Applications. In

Proceedings of the Joint Meeting on Foundations of Software Engineering (FSE’15),

pages 673–686, 2015.

[164] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas,

Cristopher Vendome, and Denys Poshyvanyk. Crashscope: A practical tool

for automated testing of android applications. In Proceedings of the 39th IEEE/ACM

International Conference on Software Engineering (ICSE’17), pages 15–18, 2017.

[165] Kevin Moran, Ali Yachnes, George Purnell, Junayed Mahmud, Michele

Tufano, Carlos Bernal Cardenas, Denys Poshyvanyk, and Zach

H’Doubler. An empirical investigation into the use of image captioning for auto-

mated software documentation. In SANER’22.

BIBLIOGRAPHY 153

[166] Laura Moreno, Gabriele Bavota, Sonia Haiduc, Massimiliano Di Penta,

Rocco Oliveto, Barbara Russo, and Andrian Marcus. Query-based con-

figuration of text retrieval solutions for software engineering tasks. In Proceedings

of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE’15),

pages 567–578, 2015.

[167] Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei

Shen. On the use of stack traces to improve text retrieval-based bug localization. In

Proceedings of the Conference on Software Maintenance and Evolution (ICSME’14),

pages 151–160, 2014.

[168] K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learn-

ing with a knowledge-based approach – a case study in intensive care monitoring.

In International Conference on Machine Learning (ICML), pages 268–277, Bled,

Slowenien, 1999.

[169] H. Naguib, N. Narayan, B. Brügge, and D. Helal. Bug report assignee rec-

ommendation using activity profiles. In Proceedings of the 10th Working Conference

on Mining Software Repositories (MSR’13), pages 22–30, 2013.

[170] Maleknaz Nayebi. Eye of the mind: Image processing for social coding. In

ICSE’20.

[171] Abraham Naftali Oppenheim. Questionnaire Design, Interviewing and Attitude

Measurement. Pinter Publishers, 1992.

[172] Kai Pan, Sunghun Kim, and E James Whitehead. Toward an understanding

of bug fix patterns. Empirical Software Engineering, 14:286–315, 2009.

[173] Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and

Percy Liang. Mapping natural language commands to web elements. arXiv

preprint arXiv:1808.09132, 2018.

BIBLIOGRAPHY 154

[174] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. MobiPlay: A Remote

Execution Based Record-and-replay Tool for Mobile Applications. In Proceedings of

the 38th International Conference on Software Engineering (ICSE’16), pages 571–

582, 2016.

[175] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel

Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,

Jack Clark, et al. Learning transferable visual models from natural language

supervision. In ICML’21.

[176] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jor-

dan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Ro-

man Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob

Menick, Albin Cassirer, Richard Powell, George van den Driessche,

Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese,

Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Ue-

sato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese,

Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David

Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent

Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Ne-

matzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou,

Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai

Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby

Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,

Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan

Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Brad-

bury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason

Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell,

Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne

BIBLIOGRAPHY 155

Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving.

Scaling language models: Methods, analysis insights from training gopher, 2022.

[177] Sebastian Raschka. Model evaluation, model selection, and algorithm selection

in machine learning. arXiv preprint arXiv:1811.12808, 2018.

[178] Hanoona Rasheed, Muhammad Uzair Khattak, Muhammad Maaz, Salman

Khan, and Fahad Shahbaz Khan. Fine-tuned clip models are efficient video

learners. arXiv preprint arXiv:2212.03640, 2022.

[179] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[180] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance frame-

work: BM25 and beyond. Now Publishers Inc, 2009.

[181] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of

duplicate defect reports using natural language processing. In Proceedings of the

29th International Conference on Software Engineering (ICSE’07), pages 499–510,

2007.

[182] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical

study of reported bugs in server software with implications for automated bug di-

agnosis. In Proceedings of the International Conference on Software Engineering

(ICSE’10), pages 485–494, 2010.

[183] Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. Crowdsourced

bug triaging: Leveraging q&a platforms for bug assignment. In International Con-

ference on Fundamental Approaches to Software Engineering, pages 231–248, 2016.

[184] Ali Sajedi-Badashian and Eleni Stroulia. Guidelines for evaluating bug-

assignment research. J. of Software: Evolution and Process, 32(9):e2250, 2020.

BIBLIOGRAPHY 156

[185] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Communications of the ACM, 18(11):613–620, 1975.

[186] Aindrila Sarkar, Peter C Rigby, and Béla Bartalos. Improving bug triag-

ing with high confidence predictions at ericsson. In Proceedings of the 35th Inter-

national Conference on Software Maintenance and Evolution (ICSME’19), pages

81–91, 2019.

[187] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. What Makes a

Satisficing Bug Report? In Proceedings of the International Conference on Software

Quality, Reliability and Security (QRS’16), pages 164–174, 2016.

[188] Ramin Shokripour, John Anvik, Zarinah M. Kasirun, and Sima Zamani.

Why so complicated? simple term filtering and weighting for location-based bug

report assignment recommendation. In Proceedings of the Working Conference on

Mining Software Repositories, pages 2–11, 2013.

[189] Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani. A

time-based approach to automatic bug report assignment. Journal of Systems and

Software, 102:109–122, 2015.

[190] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. The significance of

bug report elements. ESE’20.

[191] Yang Song and Oscar Chaparro. Bee: a tool for structuring and analyzing

bug reports. In FSE’20.

[192] Yang Song and Oscar Chaparro. Bee: a tool for structuring and analyzing

bug reports. In Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE’21), pages 1551–1555, 2020.

BIBLIOGRAPHY 157

[193] Yang Song and Oscar Chaparro. Recommending bug assignment approaches

for individual bug reports: An empirical investigation, 2023.

[194] Yang Song, Junayed Mahmud, Nadeeshan De Silva, Ying Zhou, Os-

car Chaparro, Kevin Moran, Andrian Marcus, and Denys Poshyvanyk.

BURT: A Chatbot for Interactive Bug Reporting. In ICSE’23.

[195] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin

Moran, Andrian Marcus, and Denys Poshyvanyk. Toward interactive bug

reporting for (Android app) end-users. In FSE’22.

[196] Yanqi Su, Zheming Han, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,

and Qinghua Lu. Constructing a system knowledge graph of user tasks and failures

from bug reports to support soap opera testing. In ASE’22.

[197] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards more

accurate retrieval of duplicate bug reports. In Proceedings of the 26th International

Conference on Automated Software Engineering (ASE’11), pages 253–262, 2011.

[198] Xiaobing Sun, Hui Yang, Xin Xia, and Bin Li. Enhancing developer recom-

mendation with supplementary information via mining historical commits. Journal

of Systems and Software, 134:355–368, 2017.

[199] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen. Fuzzy set-

based automatic bug triaging. In Proceedings of the 33rd International Conference

on Software Engineering (ICSE’11), pages 884–887, 2011.

[200] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and Tien N.

Nguyen. Fuzzy set and cache-based approach for bug triaging. In Proceedings of

the 19th Symposium and the 13th European Conference on Foundations of Software

Engineering (ESEC/FSE ’11), pages 365–375, 2011.

BIBLIOGRAPHY 158

[201] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and

Chengxiang Zhai. Bug characteristics in open source software. Empirical Software

Engineering, 19(6):1665–1705, 2014.

[202] Ferdian Thung, David Lo, and Lingxiao Jiang. Automatic defect catego-

rization. In Proceedings of the 19th Working Conference on Reverse Engineering

(WCRE’12), pages 205–214. IEEE, 2012.

[203] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. Automated prediction

of bug report priority using multi-factor analysis. Empirical Software Engineering,

20(5):1354–1383, 2015.

[204] Yuan Tian, Dinusha Wijedasa, David Lo, and Claire Le Goues. Learning

to rank for bug report assignee recommendation. In Proceedings of the 24th IEEE

International Conference on Program Comprehension (ICPC’16), pages 1–10. IEEE,

2016.

[205] Davor C̆ubranić. Automatic bug triage using text categorization. In Proceed-

ings of the 16th International Conference on Software Engineering and Knowledge

Engineering (SEKE’04), pages 92–97. KSI Press, 2004.

[206] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and

Yang Li. Screen2words: Automatic mobile ui summarization with multimodal

learning. In UIST’21.

[207] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang.

Images don’t lie: Duplicate crowdtesting reports detection with screenshot informa-

tion. IST’19.

[208] Song Wang, Wen Zhang, and Qing Wang. Fixercache: Unsupervised caching

active developers for diverse bug triage. In Proceedings of the 8th ACM/IEEE In-

BIBLIOGRAPHY 159

ternational Symposium on Empirical Software Engineering and Measurement, pages

1–10, 2014.

[209] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian

Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought

prompting elicits reasoning in large language models, 2023.

[210] Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps. In Proceedings of

the 31st IEEE/ACM International Conference on Automated Software Engineering

(ASE’16), pages 226–237, 2016.

[211] Tyler Wendland, Jingyang Sun, Junayed Mahmud, SM Hasan Mansur,

Steven Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. Andror2:

A dataset of manually-reproduced bug reports for android apps. In MSR’21.

[212] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and

Hong Mei. Boosting bug-report-oriented fault localization with segmentation and

stack-trace analysis. In Proceedings of the Conference on Software Maintenance and

Evolution (ICSME’14), pages 181–190, 2014.

[213] Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo. Data quality matters: A

case study on data label correctness for security bug report prediction. TSE’21.

[214] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang.

Improving automated bug triaging with specialized topic model. IEEE Transactions

on Software Engineering, 43(3):272–297, 2017.

[215] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Dual analysis for recom-

mending developers to resolve bugs. Journal of Software: Evolution and Process,

27(3):195–220, 2015.

BIBLIOGRAPHY 160

[216] Bowen Xu, David Lo, Xin Xia, Ashish Sureka, and Shanping Li. Efspredic-

tor: Predicting configuration bugs with ensemble feature selection. In Proceedings

of the Asia-Pacific Software Engineering Conference (ASPEC’15), pages 206–213,

2015.

[217] Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck,

James Landay, and Monica S Lam. Grounding open-domain instructions to

automate web support tasks. arXiv preprint arXiv:2103.16057, 2021.

[218] Xin Ye, Razvan Bunescu, and Chang Liu. Learning to rank relevant files for

bug reports using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (ESEC/FSE’14),

pages 689–699, 2014.

[219] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word

embeddings to document similarities for improved information retrieval in software

engineering. In Proceedings of the International Conference on Software Engineering,

pages 404–415, 2016.

[220] Nor Shahida Mohamad Yusop, John Grundy, and Rajesh Vasa. Reporting

usability defects: do reporters report what software developers need? In EASE’16.

[221] Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and

Frank Schweitzer. Categorizing bugs with social networks: A case study on four

open source software communities. In Proceedings of the International Conference

on Software Engineering (ICSE’13), pages 1032–1041, 2013.

[222] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Using

developer-interaction trails to triage change requests. In Proceedings of the 12th In-

ternational Working Conference on Mining Software Repositories (MSR’15), pages

88–98, 2015.

BIBLIOGRAPHY 161

[223] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin

Cui, Yu Qiao, Peng Gao, and Hongsheng Li. Pointclip: Point cloud under-

standing by clip. In CVPR’22.

[224] Tao Zhang, Jiachi Chen, He Jiang, Xiapu Luo, and Xin Xia. Bug report

enrichment with application of automated fixer recommendation. In Proceedings

of the 25th International Conference on Program Comprehension (ICPC’17), pages

230–240, 2017.

[225] Wei Zhang. Efficient bug triage for industrial environments. In Proceedings of

the 36th IEEE International Conference on Software Maintenance and Evolution

(ICSME’20), pages 727–735. IEEE, 2020.

[226] Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William GJ

Halfond. Automatically reproducing android bug reports using natural language

processing and reinforcement learning. arXiv preprint arXiv:2301.07775, 2023.

[227] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and

Alex Smola. Multimodal chain-of-thought reasoning in language models, 2023.

[228] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. Auto-

matically extracting bug reproducing steps from android bug reports. In Inter-

national Conference on Software and Systems Reuse (ICSR’19), pages 100–111.

Springer, 2019.

[229] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. Auto-

matically extracting bug reproducing steps from android bug reports. In Proceedings

of the International Conference on Software and Systems Reuse (ICSR’19), pages

100–111, 2019.

[230] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavu-

luru, William GJ Halfond, and Tingting Yu. Recdroid+: Automated end-

BIBLIOGRAPHY 162

to-end crash reproduction from bug reports for android apps. ACM Transactions

on Software Engineering and Methodology (TOSEM), 31(3):1–33, 2022.

[231] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang,

and William G.J. Halfond. Recdroid: Automatically reproducing android appli-

cation crashes from bug reports. In Proceedings of the 41st IEEE/ACM International

Conference on Software Engineering (ICSE’19), pages 128–139, 2019.

[232] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang,

and William GJ Halfond. Recdroid: automatically reproducing android appli-

cation crashes from bug reports. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), pages 128–139. IEEE, 2019.

[233] Jian Zhou and Hongyu Zhang. Learning to rank duplicate bug reports. In

Proceedings of the 21st International Conference on Information and Knowledge

Management (CIKM’12), pages 852–861, 2012.

[234] Jian Zhou, Hongyu Zhang, and David Lo. Where should the bugs be fixed?

more accurate information retrieval-based bug localization based on bug reports. In

2012 34th International conference on software engineering (ICSE), pages 14–24.

IEEE, 2012.

[235] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining text

mining and data mining for bug report classification. Journal of Software: Evolution

and Process, 28(3):150–176, 2016.

[236] Thomas Zimmermann, Nachiappan Nagappan, Philip J. Guo, and Brendan

Murphy. Characterizing and predicting which bugs get reopened. In Proceedings of

the International Conference on Software Engineering (ICSE’12), pages 1074–1083,

2012.

[237] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha

BIBLIOGRAPHY 163

Just, Adrian Schröter, and Cathrin Weiss. What Makes a Good Bug Re-

port? IEEE Transactions on Software Engineering, 36(5):618–643, 2010.

[238] Thomas Zimmermann, Rahul Premraj, Jonathan Sillito, and Silvia

Breu. Improving bug tracking systems. In Proceedings of the International Con-

ference on Software Engineering (ICSE’09), pages 247–250, 2009.

[239] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen

Xu. How practitioners perceive automated bug report management techniques.

TSE’18.

	Automated Bug Report Management To Enhance Software Development
	Recommended Citation

	signature_page _1_ (3) (1)
	YangSong_s_Dissertation_revised (1) (1)
	Acknowledgments
	Dedication
	List of Tables
	List of Figures
	Introduction
	Contributions
	Automated Bug Report Analysis and Quality Assessment
	Interactive Bug Reporting for End-Users
	Automated Buggy Mobile App UI Localization
	Bug Assignment Approaches Recommendation

	Dissertation Organization

	Background
	Bug Report Management
	Bug Reporting Tools
	Bug Report Quality Analysis
	Interactive Bug Reporting Systems
	UI Representation Learning

	Automating Bug Report Analysis and Quality Assessment
	Introduction
	BEE's Approach
	BEE's Usage Scenario and Features
	Under the Hood of BEE
	Issue Classification
	Sentence Classification
	Sentence representation
	Classification models

	Detecting Missing Elements

	Implementation

	Evaluation
	Data
	Methodology
	Results

	Related work
	Conclusions and Future work

	Interactive Bug Reporting for (Android App) End-Users
	Introduction
	BURT: A Chatbot for Bug Reporting
	Graphical User Interface (GUI)
	Natural Language Parser (NL)
	Dialogue Manager (DM)
	Dialogue Flow for Bug Element Quality Checks (OB/EB/S2R)
	Dialogue Flow for Suggesting S2Rs
	Collecting Input Values

	Report Processing Engine (RP)
	App Execution Model
	Dialogue Quality Processor
	S2R Response Predictor

	BURT Implementation

	Empirical evaluation design
	Apps and Bug Dataset
	RQ1 & RQ2: BURT's User Experience
	BURT Bug Reporter Recruitment
	Bug Assignment and Reporting
	BURT's User Experience Assessment

	RQ3: BURT's Intrinsic Accuracy
	RQ4: BURT's Bug Report Quality
	Itrac: A Web Form for Bug Reporting
	Bug Reporting with Itrac
	Measuring Bug Report Quality

	Results and Analysis
	RQ1: BURT's Perceived Usefulness
	RQ2: BURT's Perceived Ease of Use
	RQ3: BURT's Intrinsic Accuracy
	RQ4: Bug Report Quality

	Limitations and Threats to Validity
	Related work
	Conclusions
	Data-Availability Statement

	Recommending Bug Assignment Approaches for Individual Bug Reports
	Introduction
	Study 1: Bug Assignment on Individual Bug Reports
	Dataset
	Bug Assignment Approaches
	Metrics and Methodology
	Results

	Study 2: Recommending the Best Performing Approach
	Model Features
	Models and Methodology
	Results and Discussion

	Threats to Validity
	Related work
	Conclusions and Future Work

	Automated Localization of Buggy Mobile App UIs from Bug Descriptions
	Introduction
	Background, Problem, and Motivating Example
	Bug Descriptions and App UI Screen/Components
	Problem and Motivating Example

	Study 1: Buggy UI Localization
	Retrieval Approaches
	Synthetic Dataset Construction
	Synthetic OB Generation
	Synthetic Retrieval Data

	Real Dataset Construction
	Bug Report Selection
	Bug Description Annotation
	Retrieval Corpus Collection
	Ground Truth Construction
	Summary of the Collected Retrieval Data

	Approach Execution
	GPT-4 Customized Prompting and Execution
	Model Fine-tuning and Execution

	Evaluation Metrics
	Results
	RQ1: Screen Retrieval Results
	RQ2: Component Retrieval Results
	RQ3: Results vs. query qualities & retrieval difficulties
	Discussion

	Study 2: Improving Bug Localization
	UI-based Bug Localization in Code
	Using Buggy UIs for Bug Localization
	Approach Execution, Dataset, and Metrics
	Results

	Threats to Validity
	Related Work
	Conclusions

	Conclusion and Future Work
	Main Contributions
	The Vision for Future Work

	Bibliography

