
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2024

Emergent Capabilities Of Llms For Software Engineering Emergent Capabilities Of Llms For Software Engineering

Conor O'Brien
College of William and Mary - Arts & Sciences, csxobrien@gmail.com

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
O'Brien, Conor, "Emergent Capabilities Of Llms For Software Engineering" (2024). Dissertations, Theses,
and Masters Projects. William & Mary. Paper 1727787986.
https://dx.doi.org/10.21220/s2-889y-nd72

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1727787986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1727787986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-889y-nd72
mailto:scholarworks@wm.edu

Emergent Capabilities of LLMs for Software Engineering

Conor S. O'Brien

Alexandria, Virginia, United States

Bachelor of Science, College of William & Mary, 2022

A Thesis presented to the Graduate Faculty
of the College of William and Mary in Virginia in
Candidacy for the Degree of Master of Science

Department of Computer Science

The College of William and Mary in Virginia
August 2024

© Copyright by Conor S. O'Brien 2024

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Science

Conor S. O'Brien

Approved by the Committee, July 2024

Committee Chair

Professor Denys Poshyvanyk, Computer Science

College of William & Mary

Professor Adwait Nadkarni, Computer Science

College of William & Mary

Professor Oscar Chaparro, Computer Science

College of William & Mary

ABSTRACT

A growing interest for Large Language Models (LLMs) is how increasing their size
might result in changes to their behavior not predictable from relatively smaller-scaled
models. Analyzing these emergent capabilities is therefore crucial to understanding and
developing LLMs. Yet, whether LLMs exhibit emergence, or possess emergent
capabilities, is a contested question. Furthermore, most research into LLM emergence
has focused on natural language processing tasks and models suited for them.

We focus on investigating emergence in the context of software engineering, and
recontextualize the discussion of emergence in the context of prior research. We
propose a multifaceted pipeline for evaluating and reasoning about emergent
capabilities of LLMs in any context and instantiate this pipeline to analyze the
emergent capabilities of the CodeGen1-multi model across four scales ranging from
350M parameters to 16.1B parameters. We examine the model's performance on the
software engineering tasks of automatic bug �xing, code translation, and commit
message generation. We �nd no evidence of emergent growth at this scale on these
tasks and consequently discuss the future investigation of emergent capabilities.

TABLE OF CONTENTS

Acknowledgments iv

Dedication v

List of Tables vi

List of Figures vii

1 Introduction 2

1.1 Overview . 2

1.1.1 Motivation . 2

1.2 Background . 3

1.3 Related Work . 4

1.4 De�nition of Emergence . 5

1.5 Research Goal . 6

2 Methodology 7

2.1 Models . 7

2.2 Metrics . 8

2.3 Tasks . 9

2.4 Evaluating Emergence . 10

2.4.1 Linear regression evaluation . 11

2.4.2 Checklist . 12

i

3 Results 14

3.1 Bugs2�x . 14

3.1.1 Prompting strategy . 15

3.1.2 Results . 16

3.1.3 Checklist . 17

3.1.3.1 Results . 17

3.2 Code translation . 22

3.2.1 Prompting strategy . 22

3.2.2 Results . 23

3.3 Commit message generation . 25

3.3.1 Prompting strategy . 26

3.3.2 Results . 26

4 Analysis 28

4.1 Bootstrapping . 28

4.1.1 Bugs2�x . 29

4.1.2 Bugs2�x (Checklist) . 29

4.1.3 Code2code . 30

4.2 Discussion . 30

4.2.1 Insights about CodeGen1-multi 30

4.2.2 Limitations of Metrics . 31

4.2.3 Limitations of the Testing Harness 31

5 Conclusion 33

5.1 The Future of Emergent Capabilities . 34

A Experimental Setup 35

A.1 Obtaining test cases . 35

ii

A.1.1 Code re�nement (aka Bugs2�x) 35

A.1.1.1 Checklist . 36

A.1.2 Code translation (aka CodeTrans) 37

A.1.3 Commit message generation . 38

A.2 Querying the model . 38

B Unused Methodology 40

B.1 Multiple-Choice Answer Extraction . 40

B.1.1 Evaluating Model Choices . 40

B.1.1.1 First branch evaluation 41

B.1.1.2 Aggregate normalized logit evaluation 41

B.1.1.3 Event-based evaluation 42

iii

ACKNOWLEDGMENTS

Thanks to my team of advisors�Dr. Denys Poshyvanyk, Daniel Cardenas, and
Alejandro Velasco�who made time to meet with me and help me sort through my
ideas and objectives. In particular, thanks to Dr. Poshyvanyk, for suggesting this topic
and for helping me navigate the landscape of writing a thesis and completing a M.S.
degree. Thanks to Daniel for providing with me key references and insights into the
landscape of emergence in LLMs. Thanks to Alejandro for helping develop my intuition
for this project and showing me important context in which it sits. Thanks also to the
members of my Defense Committee, Dr. Adwait Nadkarni and Dr. Oscar Chaparro.

Thanks also to my family and friends, whose moral support and camaraderie gave me
strength; I could never imagine myself without them. In particular, thanks to my good
friends, Sebastian Rios-Melean and Tetra Silverberg, fellow W&M alumni, whose
statistical expertise and understanding greatly improved my own understanding of the
statistical methods required for this project to �ourish.

Thanks also to the members of the W&M graduate administration, in particular
Vanessa Godwin, Dale Hayes, and Victoria Thompson Dopp, whose e�orts, insights,
clari�cations, and responsivity made the thesis process navigable, attainable, and
remarkably smooth. I am ever appreciative of all the time and e�ort they expended
helping me understand and meet deadlines and requirements; a more caring and dutiful
administration cannot be conceived.

Last, thanks to all those who instructed me during my academic journey. Thanks to all
the teachers throughout my life who have fostered in me a love and passion for
mathematics, computer science, and learning. Thanks to William & Mary, whose
facilities, classes, and community have provided me with an enriching environment to
grow and learn in. Thanks also to all the online resources which have allowed me to
appreciate many di�erent concepts in computer science, especially Grant Sanderson of
3Blue1Brown, whose informative video series on machine learning not only gave me a
strong intuition for ML techniques, but gave me an epiphany for how to utilize the
underlying logits of a model's output in a creative manner.

�Oh give thanks to the Lord, for he is good; for his steadfast love endures forever!�
�1 Chronicles 16:34.

iv

In memoriam Raghu �razetime� Ranganathan, a remarkable K programmer, whose life

was taken from us too soon.

v

LIST OF TABLES

3.1 Results for pairs on CodeGen1 multi. Bolded results indicate maximum

attained performance for best prompt. CodeBLEU operated on Java ASTs. 17

3.2 Results for pairs on CodeGen1 multi. Bolded results indicate maximum

attained performance for best prompt, and bolded linear statistics suggests

nonlinear data. CodeBLEU operated on Java ASTs. 18

3.3 Summary results for linear regressions performed on perturbed results.

The x-axis is the Levenshtein distance between the original prompt and

the perturbed prompt. The y-axis is the amount the perturbed prompt

improved the model's performance relative to the original prompt. b1 is

the regression's slope, b0 is its intercept, s is the standard error, and r2

is coe�cient of determination. 21

3.4 Results for pairs on CodeGen1 multi. Bolded results indicate maximum

attained performance for best prompt. CodeBLEU operated on C♯ ASTs. 25

3.5 Results for pairs on CodeGen1 multi. Bolded results indicate maximum

attained performance for best prompt. 27

vi

LIST OF FIGURES

3.1 CodeGen1-multi performance on �rst 100 CodeXGLUE Bugs2�x test cases,

assessed by the metrics Exact Match, BLEU, and CodeBLEU (operating

on Java ASTs), and prompted by prompt0, prompt1, and prompt2 de-

scribed in Section 3.1.1. 16

3.2 CodeGen1-multi performance on �rst 100 CodeXGLUE Bugs2�x test cases

(perturbed according to the transformations described in Section 3.1.3),

assessed by the metrics Exact Match, BLEU, and CodeBLEU (operat-

ing on Java ASTs), and prompted by prompt0, prompt1, and prompt2

described in Section 3.1.1. 18

3.3 Scatterplot of the relationship between the Levenshtein distance between

the original, unmodi�ed test case and the corresponding perturbed test

case on the x-axis, and the relative performance increase from the BLEU

score of the unmodi�ed test case to the BLEU score of the perturbed test

case; positive y-values indicate improvement. 19

3.4 Scatterplot of the relationship between the Levenshtein distance between

the original, unmodi�ed test case and the corresponding perturbed test

case on the x-axis, and the relative performance increase from the Code-

BLEU score of the unmodi�ed test case to the CodeBLEU score of the

perturbed test case; positive y-values indicate improvement. 20

vii

3.5 CodeGen1-multi performance on �rst 100 CodeXGLUE Code2code test

cases, assessed by the metrics Exact Match, BLEU, and CodeBLEU (op-

erating on C♯ ASTs), and prompted by prompt0, prompt1, prompt2,

prompt3, and prompt4 described in Section 3.2.1. 24

3.6 CodeGen1-multi performance on the �rst 100 test cases from the CoDiSum

dataset, assessed by the metrics B-Moses and B-Norm, and prompted by

prompt0 described in Section 3.3.1. 27

4.1 Bootstrapping with S = 50 and N = 500 over the CodeXGLUE Bugs2�x

task, assessed by metrics BLEU and CodeBLEU, over the results of prompt-

ing CodeGen1-multi with prompts prompt0, prompt1, and prompt2 as

described in Section 3.1.1. (The Exact Match metric is omitted, as it is

0 across all datapoints.) . 29

4.2 Bootstrapping with S = 50 and N = 500 over the CodeXGLUE Bugs2�x

Checklist perturbed task, assessed by metrics Exact Match, BLEU, and

CodeBLEU, over the results of prompting CodeGen1-multi with prompts

prompt0, prompt1, and prompt2 as described in Section 3.1.1. 29

4.3 Bootstrapping with S = 50 and N = 500 over the CodeXGLUE Code-

Trans task, assessed by metrics Exact Match, BLEU, and CodeBLEU,

over the results of prompting CodeGen1-multi with prompts prompt0,

prompt1, prompt2, prompt3, and prompt4 as described in Section 3.2.1. 30

viii

Emergent Capabilities of LLMs for Software Engineering

Chapter 1

Introduction

1.1 Overview

1.1.1 Motivation

Whether Large Language Models (LLMs) can exhibit capabilities which appear unpredictably

upon scaling them large enough is both an alarming and powerful prospect. This phenomenon

has the potential to both unlock new planes of improvement on tasks, as well as unprecedented

harmful capabilities. Therefore, establishing a reliable methodology of investigating emergent

capabilities is crucial to responsible and continued development of LLMs.

While much research has been conducted on LLM's emergent capabilities in the domain

of natural language processing (NLP), most of the discourse until now has focused primarily

on assessing whether researchers have correctly demonstrated the phenomenon as a property

of models, or if it is the case that researchers have merely induced these �ndings by choice

of metric [21], or if emergent capabilities are better explained through its prowess in the more

generic ability to learn from examples in its input, or as a description of capabilities which do

not strongly require reasoning [11].

Our study seeks to investigate emergent capabilities exclusively in the context of software

engineering tasks, a novelty in the discourse. Software engineering tasks and the corresponding

capabilities required of LLMs to solve them di�er notably from those required to solve natural

2

language processing tasks. Furthermore, our study analyzes capabilities relevant to the �eld

of software engineering, such as automatic bug �xing and commit message generation, data

about which would be relevant to LLMs targeting this domain designed to assist programmers

in this �eld.

1.2 Background

A principal objective of deep learning is to solve problems for which classical programming is

inadequate or exorbitantly di�cult. Instead of, say, writing code which solves a problem, deep

learning employs a model which attempts to solve a target goal; this model can be thought

of a function, which ideally transforms the input to the desired output. The model undergoes

training, where it attempts to learn general patterns and knowledge from what it is shown,

which has the e�ect of re�ning this function iteratively. The exact composition of this model

varies greatly depending on many factors, such as the task trying to be solved and which data

is available to train the model.

The transformer model was �rst articulated by Vaswani et al. [25]. Transformer-based

models use a mechanism called attention, which enables models to e�ciently examine and

prioritize information from various points in the input.

Since its conception, the Transformer model has become the backbone of many Large

Language Models, and the basis for much research in model design. Transformer-based models

typically are either autoregressive (or unidirectional) [25] or bidirectional, as in BERT [4]. In

autoregressive Transformers, the model's attention can only project to prior tokens, whereas

attention in bidirectional Transformers projects both before and after the current token being

processed.

Although state-of-the-art LLMs have proven increasingly capable on a wide variety of tasks

[2] [9], especially in the domain of Natural Language Processing, many models and model

architectures are trained on and adapted to the realm of software engineering: T5 [16] spawned

CodeT5 [26], BERT[4] spawned CodeBERT [5], and LLaMA [24] spawned Code Llama [20].

3

In other words, there is widespread precedent for developing LLMs speci�c to the domain

of software engineering. Likewise, though research on emergence in LLMs hitherto has been

focused on NLP tasks, virtually none has been directed predominately towards the �eld of

software engineering.

1.3 Related Work

The notion of emergent capabilities has long been a subject of inquiry in the �eld of machine

learning. As early as 2020 and 2021, researchers were concerned about the negative side e�ects

of increasing model scale, particularly with increasingly larger models adopting the explicit and

implicit biases featured in their training sets, and their ability to mimic coherent human speech

and articulation [1], based on concerns and research done into the various kinds of bias found

in models such as BERT, GPT-2, and GPT-3 [6] [7].

Researchers have used the term emergence to refer to capabilities models acquired through

training that they were not explicitly trained for, as in Nijkamp et al.'s paper documenting

the CodeGen family, where the term is used to describe the model's capability to synthesize

programs from comment descriptions [13]. The rigorous study of emergent capabilities, how-

ever, was made most prominent with Wei et al., where emergent capabilities are framed not

as capabilities acquired without explicit intentions, but as sharp, unpredictable jumps in perfor-

mance [27]. Their �ndings suggest that LLMs, through certain tasks and prompting methods,

when scaled high enough (e.g. by training compute or parameter count), can unexpectedly and

noticeably break plateaued performance.

However, various researchers contest the claim that these models exhibited emergent capa-

bilities whatsoever. Shae�er et al. [21] suggest the appearance of emergence is better explained

by the metrics used to assess model performance, rather than as some property of the model

itself; they implicate nonlinear and discontinuous metrics as a confounding factor in Wei et

al.'s results. Other research by Lu et al. suggests what appears to be emergent capabilities

are better explained as the results of in-context learning, that is, the model's ability to derive

4

crucial information from the context it is prompted with and apply that knowledge to the task

at hand [11].

1.4 De�nition of Emergence

Broadly, a model-task-metric-prompt quadruplet exhibits emergence if and only if the model

performs poorly on the task at lower scales, well on higher scales, and the improvement in

performance does not linearly correspond with the increased scale; in other words, emergent

performance is characterized by unexpected and unpredictable jumps in performance. In this

section, we provide a high-level de�nition of emergence, which can be instantiated with partic-

ular models, tasks, evluative metrics, and prompting techniques to establish emergence.

More speci�cally, we de�ne emergence to be a property of (model, task, metric, prompt)

quadruplets. A model may perform non-emergently on a variety of tasks, so it is important to

distinguish between them when discussing emergence. As per Wei et al., the good performance

of di�erent prompting strategies may themselves be emergent capabilities [27]. Last, the inclu-

sion of metrics in this de�nition is informed by observations that emergence may appear only

under certain metrics [21].

If a model exhibits emergent under a variety of di�erent, relevant metrics, especially con-

tinuous ones as per Schae�er et al. [21], we may also say emergence is a property of (model,

task, prompt) triplets, and that the model is emergent under that task with that prompting

strategy. Likewise, if a model is emergent under a variety of di�erent prompting strategies and

metrics, we may say emergence is a property of (model, task) pairs, and that the model is

emergent under that task.

As varying model scale is de�nitionally required to observe emergence, when we talk about

a model in our de�nition, we implicitly require a set or family of models which di�er only by

some measure of scale. Therefore, emergence is also a property of a subset of model scales;

in theory, new models in the family could be produced, either of larger or smaller scale outside

the observed range, or as intermittent scales between observed model scales. Therefore, by our

5

methods, a classi�cation of emergence is a label only upon a view of particular, existing scales,

and not a classi�cation of all the possible views of the model.

1.5 Research Goal

Our overall research goal is to investigate emergence by varying parameter count on publicly

available LLMs as it manifests in particular models on downstream tasks, assessed by metrics,

enumerated in Section 2.2.

RQ1 What e�ect does varying the scale of CodeGen1-multi models have upon its perfor-

mance on tasks of code repair, code translation, and commit message generation?

RQ2 Between which model scales, if any at all, do emergent capabilities appear?

To examine these questions, we �rst establish a general methodology in Chapter 2; this

pipeline can be applied to a variety of circumstances where one wishes to ascertain whether

an LLM exhibits emergence. We then instantiate this pipeline speci�cally with the CodeGen1-

multi model, our tasks, and our metrics. In furtherance of answering RQ1, we provide the

results of applying this pipeline in Chapter 3, and in furtherance of answering RQ2, we analyze

whether our results suggest emergence in Chapter 4. Finally, we summarize our �ndings on

these research questions in Chapter 5.

6

Chapter 2

Methodology

To establish more precise con�dence in verdicts of emergence, we propose a formalized system of

evaluating emergence which uses two methods for visualizing whether models display emergence

on the observed scale: By �tting the data to linear models to observe emergent growth, and

by leveraging Ribeiro et al.'s CheckList method to explore model performance beyond mere

accuracy assessments [19]. By assessing the models from multiple angles, we will be able to

assert whether the model-task-metric-prompt quadruplet exhibits emergence.

2.1 Models

We analyze how the model family �CodeGen1-multi� with parameter counts 350M, 2.7B, 6.1B,

and 16.1B performs on various software engineering tasks (see Section 2.3). CodeGen1-multi

is built upon the natural language model CodeGen1-nl by training it further on open-source

code snippets in multiple programming languages; CodeGen1-nl is predominately trained on

English text [13]. The ability to perform well on software engineering tasks other than program

synthesis is crucially important to detecting emergence.

We invoke the models deterministically with a temperature of 0, using the full width of the

provided inputs as the context window, and truncating experiments after the generated output

exceeds 500 tokens. Our proposed pipeline can naturally measure the e�ect of temperature on

model performance in the same way it showcases variance in bootstrapping.

7

2.2 Metrics

To evaluate the quality of the outputs the model gives on each of the software engineering-

related tasks, we use the following metrics: Exact Match, BLEU (along with specializations

B-Moses and B-Norm), and CodeBLEU.

Exact Match (EM) is a discontinuous metric which simply computes the proportion of

answers the model gives when completing a task which exactly match the reference answer.

EM grades the model's responses with a score from 0 to 1, where higher is better. For example,

if the model produces exactly the reference solution in 37 of the 100 given cases, the EM metric

is given as 37/100 = 0.37.

BLEU is a metric designed to simulate human evaluation of machine translated text [15],

which has since seen widespread use in NLP and ML [17]. The metric computes the proportion

of N -grams (i.e., runs of N consecutive words) that appear in the model's answer against

the number of N -grams which appear in the reference answer. We adapt Lu et al.'s [12]

implementation of the BLEU metric to support the variant metrics such B-Moses and B-Norm.

These metrics are specializations of BLEU that normalize their inputs to be lowercased text

before grading. Although BLEU and B-Norm apply Lin et al. 2004 smoothing [10], B-Moses

does not. Said smoothing operates by incrementing both the numerator and denominator before

calculating the precision of how well a givenN -gram matches the reference. We con�gure BLEU

and its metric specializations with N -grams sized up to N = 4. The BLEU family of metrics

grades the model on a score from 0 to 1, where higher is better.

CodeBLEU is a metric devised by Ren et al. [18] which adapts BLEU to process computer

code rather than natural language text by considering the Abstract Syntax Tree (AST) struc-

ture of the code of the model's answer and the reference code. We use the implementation

codebleu==0.6.1 hosted on Pypi [3], which in turn is based on the aforementioned paper.

Like BLEU, CodeBLEU grades the model on a score from 0 to 1, where higher is better.

In furtherance of RQ1, we select EM both as a baseline metric measuring the model's ability

to produce the expected results exactly, and we select BLEU and CodeBLEU as more nuanced

8

metrics which might better exhibit growth curves. As for assessing emergent capabilities in

furtherance of RQ2, we consider Schae�er et al. contention that the emergence Wei et al.

observed is better explained as a mirage induced by discontinuous metrics [21] by choosing EM

(a discontinuous metric) as a basis for discussing how metric continuity may a�ect emergence

and contrasting it with the continuous metrics BLEU and CodeBLEU. If EM were to exhibit

emergence while BLEU and/or CodeBLEU did not, this would corroborate this claim of Schae�er

et al.

2.3 Tasks

Code repair: To evaluate the Code repair task (automatic bug �xing), we evaluate the tested

models over CodeXGLUE's [12] Bugs2�x task (aka Code-re�nement), using the EM, BLEU,

and CodeBLEU metrics. The Bugs2�x task consists of Java methods consolidated onto a single

line, with the names of variables, types, strings, etc., consistently replaced by generic names

such as TYPE_1 and STRING_3. The task is to provide the corrected version of this code in a

similar format. For example, given

private TYPE_1 getType (TYPE_2 VAR_1) { TYPE_3 VAR_2 = new TYPE_3 (

↪→ STRING_1) ; return new TYPE_1 (VAR_2 , VAR_2) ; }

the bug �xer is expected to produce

private TYPE_1 getType (TYPE_2 VAR_1) { TYPE_3 VAR_2 = new TYPE_3 (

↪→ STRING_1) ; return new TYPE_1 (VAR_2 , VAR_2 , this , VAR_1) ; }

as output.

Code translation: To evaluate the Code translation task, we evaluate the tested models

over CodeXGLUE's [12] CodeTrans task (aka code-to-code-trans), using the EM, BLEU, and

CodeBLEU metrics. The CodeTrans task consists of Java methods consolidated onto a single

line. The task is to provide equivalent C♯ code in a similar format. For example, given

public void serialize(LittleEndianOutput out) {out.writeShort(

↪→ field_1_vcenter);}

9

the code translator is expected to produce

public override void Serialize(ILittleEndianOutput out1){out1.WriteShort(

↪→ field_1_vcenter);}

as output.

Commit message generation: To evaluate the Commit message generation task, we evaluate

the tested models over CoDiSum's data [28] using BLEU, as well as a subset of the metrics

used by Zhang et al. [29], namely, B-Moses and B-Norm, described in detail in [23]. We

also considered testing upon Zhang et al.'s data [29] but elected not to, as the length of

the prompted data surpassed the tenable resources allocated for running the model. See the

elaboration in Section 3.3.

2.4 Evaluating Emergence

To evaluate emergence and answer RQ2, we utilize a preponderance of evidence model of

argumentation, which aims to put forward enough evidence that suggests emergence in a

particular case is more likely true than not, without asserting so incontrovertibly. Given the

di�culty in meaningfully interpreting LLMs based on their composition, which makes black-

box testing the most approachable method for evaluating LLMs, purely analytical solutions for

emergence are elusive, so we introduce two objective measures of emergence which can be used

to help establish a preponderance of evidence in favor of or against a verdict of emergence in

an LLM: Regression modeling the graded results of the LLM on the task, and perturbation

via Checklist. In short, failing to match a regression (in our case, a linear regression) suggests

emergent growth, and a model performing comparably under the perturbed test cases indicates

robust knowledge, which in turn strengthens a suggestion of emergent growth; �ourishing

under those circumstances may itself be an indicator of further emergent capabilities gained

speci�cally because of the perturbations. Taking these suggestions into consideration may

establish su�cient evidence to indicate that it is more likely for the model to exhibit emergent

capabilities than not.

10

We adapt Wei et al.'s technique of scaling curve analysis, which relies on visual inspection of

the linearity of logarithmic plots to demonstrate emergence [27], to rely on black-box regression

tests on the attained data to test for predictable growth. Although the exact nature of these

tests can vary depending on the experimental setup, we choose to evaluate linear regressions

on the attained data (model performance graded by various metrics) to assess for non-linear

growth. Non-linear growth is a proxy variable unpredictability; as we only have a limited view of

the true shape of the performance graph as seen through four di�erent model con�gurations,

we choose to evaluate a linear regression model rather logarithmic or exponential regression

models to avoid over�tting the curves to the limited datapoints. This restriction does not

exist generally, and using this pipeline in circumstances where more data is available demands

considering additional regressions.

Considering the results of these evaluation tactics in tandem suggests emergence on a model-

task-metric-prompt quadruplet, and consequently on a model-task pair. Following Schae�er

et al. [21], the most important metrics to consider are continuous metrics, as discontinuous

metrics may induce the mirage of emergence.

2.4.1 Linear regression evaluation

First, we employ a statistics-driven approach which is more suitable for the speci�cs of our

experiments to ascertain if the model exhibits emergent growth anywhere in our observed

range, as per RQ2, as we do not have such �ne-grained control over model scale as Wei et al

had. We instead evaluate the emergence of a model-task-metric-prompt quadruplet by �tting

the evaluated results to a linear regression model and then measuring the resultant error.

Speci�cally, let y be the observed performances of the model across family sizes x. We

compute the series of predicted values from a linear model ŷ using a linear regression. To

assess how well this linear model �ts our observations, we employ Root Mean Square Deviation

(RMSD) and Mean Absolute Error (MAE), the formulae for which are as follows:

11

RMSD(x, y) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.1)

MAE(x, y) =
1

n

n∑
i=1

|yi − ŷi| (2.2)

After computing these metrics, we employ a binary cuto� at some threshold T , below or

equal to which model-task-metric-prompt quadruplets are considered to have linear output, and

above which they are considered to be potentially emergent. In our case, we employ a cuto�

of T = 0.10 for both metrics.

2.4.2 Checklist

The Checklist utility designed by Ribeiro et al. o�ers more robust methods to assess NLP

models beyond mere accuracy assessments [19]. Although suited more for NLP tasks, we adapt

the Checklist Editor template functionality to generate novel test cases for software engineering

tasks based on perturbing existing test cases. By observing how the model performs on the

modi�ed tests as compared to the original tests, as well as accounting for the amount the

modi�ed test deviates from the original, we attain a better understanding of how exactly the

model comprehends the task. These insights, in turn, may strengthen or weaken a verdict of

emergence and consequently inform the decision made for RQ2; consider the di�erent cases of

how the perturbations a�ect the model's performance:

i. Maintains performance. If a model performs well on the original test cases while perform-

ing comparably on the modi�ed test cases, this suggests that the capabilities the model has

learned are quite general and robust, which in turn would strengthen a verdict of emergent

capabilities existing.

(This also technically covers the case of maintaining poor performance; this would only

further weaken a verdict of emergence.)

12

ii. Degrades performance. Contrarily, if a model performs well initially but performance

deteriorates drastically on the modi�ed data, it may suggest that, even in the face of

apparent emergence, the capabilities the model has acquired are in fact quite limited.

iii. Improves performance. Although it may seem unusual, there is also a third case worth

mentioning, where the model does not perform well on the original test cases, and perfor-

mance improves on the modi�ed test cases; this may suggest the modi�cations themselves

might enable the model to do well, either emergently or not.

Furthermore, we may assess the relationship between degree of perturbation (i.e., Leven-

shtein distance between original and modi�ed test cases) and performance attained for a more

granular picture of the model's resiliency to degrees of changes.

13

Chapter 3

Results

To answer RQ1 and examine the e�ect of varying the scale of the CodeGen1-multi model, we

run 100 experiments on models with parameter sizes 350M, 2.7B, 6.1B, and 16.1B, for each of

the various prompting strategies we explored on each of the tested software engineering tasks:

Code repair (Section 3.1), code translation (Section 3.2), and commit message generation

(Section 3.3). Each experiment consists of a test case passed as input through a prompt

template, which in turn is passed through each of the four model scales of CodeGen1-multi,

and the output is obtained as the �rst full line of output the model produces in response. This

output is then compared with the reference answer using one of a few metrics (Exact Match,

BLEU or BLEU variants with di�erent parameters, and/or CodeBLEU).

3.1 Bugs2�x

CodeXGLUE's [12] Bugs2�x (aka Code-Code/code-re�nement) paired with the four model

families in CodeGen1 multilingual (parameter sizes 350M, 2B, 6B, and 16B) serve as the basis

for testing our pipeline.

For this prototype, we look at the �rst 100 test case pairs in small/test.buggy-�xed.buggy

and small/test.buggy-�xed.�xed. Although our pipeline is phrased in terms of multiple trials

per datapoint, as we are running the cases deterministically, there is no di�erence between

running each test case once and each test case multiple times.

14

3.1.1 Prompting strategy

We evaluated two di�erent prompts, which we term prompt0 and prompt1. We enumerate our

prompts, indicating where line breaks exist in the prompt by also including the literal \n; we

use {buggy_code} to indicate where the test case, the buggy code that needs to be repaired,

is inserted into the prompt, before everything is passed through to the model. Where the line

is too long to display all on one line, and must be broken, we indicate that with ↪→.

Prompt ID Prompt Template

prompt0

// the buggy version of the code\n

{java_code }\n

// the fixed version of the code\n

prompt1

// You are given a piece of buggy code. Your task

↪→ is to fix the error , and generate the

↪→ corrected code. Fix the following code:\n

{buggy_code }\n

prompt2

// You are given a piece of buggy code. Your task

↪→ is to fix the error , and generate the

↪→ corrected code. Fix the following code:\n

{buggy_code }\n

// The following code is correct :\n

We decided on prompt0 after small-scale experimentation as to how the model responds

to various similar prompting techniques. We include prompt1 as a more traditional prompting

technique. We introduce prompt2 as a combination of both prompt0 and prompt1, inspired by

manually examining some of the more intelligible results that prompt1 emitted, which emitted

the exact phrase // The following code is correct:\n in a few instances.

15

3.1.2 Results

To answer RQ1 and examine the e�ect of varying the scale of the CodeGen1-multi model, we

run 100 experiments on each of the prompts prompt0, prompt1, and prompt2 for the code

repair task.

Figure 3.1: CodeGen1-multi performance on �rst 100 CodeXGLUE Bugs2�x test cases, as-
sessed by the metrics Exact Match, BLEU, and CodeBLEU (operating on Java ASTs), and
prompted by prompt0, prompt1, and prompt2 described in Section 3.1.1.

16

Metric Prompt 350M 2.7B 6.1B 16.1B RMSD MAE

EM prompt0 0 0 0 0 0 0

prompt1 0 0 0 0 0 0

prompt2 0 0 0 0.0100 0.0015 0.0012

BLEU prompt0 0.4882 0.5006 0.4571 0.5607 0.0252 0.0218

prompt1 0.1416 0.1801 0.2297 0.1747 0.0307 0.0256

prompt2 0.4920 0.5989 0.4642 0.5689 0.0526 0.0449

CodeBLEU (Java) prompt0 0.6139 0.6464 0.5699 0.6492 0.0304 0.0248

prompt1 0.1867 0.2634 0.3133 0.2636 0.0412 0.0375

prompt2 0.5934 0.6909 0.5499 0.6595 0.0537 0.0453

Table 3.1: Results for pairs on CodeGen1 multi. Bolded results indicate maximum attained
performance for best prompt. CodeBLEU operated on Java ASTs.

3.1.3 Checklist

The format of the Bugs2�x dataset employs dummy sequential variable names such as TYPE_1,

TYPE_2, METHOD_1, etc. We mutate the same 100 test cases used for the main task via

a modi�ed version of the Checklist perturb utility [19]. Please see Appendix A.1.1.1 for an

elaboration of how this works.

3.1.3.1 Results

To answer RQ1 and examine the e�ect of varying the scale of the CodeGen1-multi model, we

run 100 experiments on each of the prompts prompt0, prompt1, and prompt2 for the code

repair task, varying the corresponding experiments from the baseline code repair task using

Checklist perturbations.

17

Figure 3.2: CodeGen1-multi performance on �rst 100 CodeXGLUE Bugs2�x test cases (per-
turbed according to the transformations described in Section 3.1.3), assessed by the metrics
Exact Match, BLEU, and CodeBLEU (operating on Java ASTs), and prompted by prompt0,
prompt1, and prompt2 described in Section 3.1.1.

Metric Prompt 350M 2.7B 6.1B 16.1B RMSD MAE

EM prompt0 0.0100 0 0.0100 0.0100 0.0041 0.0033

prompt1 0 0 0 0 0 0

prompt2 0 0 0.0200 0.0100 0.0073 0.0063

BLEU prompt0 0.5918 0.6004 0.5456 0.6042 0.0231 0.0199

prompt1 0.1605 0.1759 0.3572 0.0145 0.1037 0.0890

prompt2 0.5509 0.6197 0.5399 0.6149 0.0326 0.0278

CodeBLEU (Java) prompt0 0.6802 0.6761 0.6131 0.6867 0.0294 0.0254

prompt1 0.1853 0.2495 0.4194 0.0521 0.1145 0.0952

prompt2 0.6154 0.6983 0.6321 0.6983 0.0312 0.0264

Table 3.2: Results for pairs on CodeGen1 multi. Bolded results indicate maximum attained
performance for best prompt, and bolded linear statistics suggests nonlinear data. CodeBLEU
operated on Java ASTs.

18

Figure 3.3: Scatterplot of the relationship between the Levenshtein distance between the
original, unmodi�ed test case and the corresponding perturbed test case on the x-axis, and the
relative performance increase from the BLEU score of the unmodi�ed test case to the BLEU
score of the perturbed test case; positive y-values indicate improvement.

19

Figure 3.4: Scatterplot of the relationship between the Levenshtein distance between the
original, unmodi�ed test case and the corresponding perturbed test case on the x-axis, and
the relative performance increase from the CodeBLEU score of the unmodi�ed test case to the
CodeBLEU score of the perturbed test case; positive y-values indicate improvement.

20

Metric Prompt Scale b1 b0 s r2

BLEU prompt0 350M 0.00289 0.11581 0.00066 0.40513

2B 0.00332 0.09547 0.00062 0.47775

6B 0.00071 0.21571 0.00090 0.07892

16B 0.00258 0.14091 0.00070 0.34689

BLEU prompt1 350M 0.00264 -0.09425 0.00103 0.25031

2B 0.00219 -0.03233 0.00116 0.18676

6B 0.00180 0.07927 0.00114 0.15795

16B 0.00135 -0.15816 0.00077 0.17407

BLEU prompt2 350M 0.00207 0.12434 0.00098 0.20815

2B 0.00180 0.18934 0.00059 0.29702

6B 0.00169 0.18680 0.00086 0.19569

16B 0.00272 0.13498 0.00063 0.39901

CodeBLEU prompt0 350M 0.00182 0.08116 0.00064 0.27576

2B 0.00245 0.04318 0.00058 0.39084

6B 0.00033 0.14633 0.00082 0.04129

16B 0.00155 0.10037 0.00061 0.24874

CodeBLEU prompt1 350M 0.00237 -0.08471 0.00094 0.24636

2B 0.00238 -0.04852 0.00096 0.24202

6B 0.00192 0.02296 0.00099 0.19237

16B 0.00106 -0.11905 0.00078 0.13647

CodeBLEU prompt2 350M 0.00124 0.08723 0.00087 0.14225

2B 0.00100 0.13036 0.00047 0.21161

6B 0.00095 0.13864 0.00074 0.12805

16B 0.00185 0.08718 0.00050 0.34904

Table 3.3: Summary results for linear regressions performed on perturbed results. The x-axis
is the Levenshtein distance between the original prompt and the perturbed prompt. The y-axis
is the amount the perturbed prompt improved the model's performance relative to the original
prompt. b1 is the regression's slope, b0 is its intercept, s is the standard error, and r2 is
coe�cient of determination. 21

Across the prompts, we can see from the positive b1 slope values that there is a positive

but tenuous correlation between Levenshtein distance and performance improvement across all

metrics; furthermore, we can also see that in many cases, especially in prompt0 and prompt2,

the perturbations had a uniquely positive impact on most of the tests.

Worth noting is the marked decrease in performance for prompt1 at the 16.1B parameter

scale: The decrease is so drastic, that it is classi�ed as su�ciently non-linear by our models,

and could suggest negative emergence if read in a vacuum. However, manually inspecting the

outputs under these con�gurations, we hypothesize this is a re�ection of the limitations of our

testing harness which secures the output from the model. See Section 4.2.3 for an extended

discussion.

3.2 Code translation

CodeXGLUE's [12] CodeTrans (aka Code-Code/code-to-code-trans) paired with the four model

families in CodeGen1 multilingual (parameter sizes 350M, 2B, 6B, and 16B) serve as the basis

for testing our pipeline.

For this prototype, we look at the �rst 100 test case pairs in test.java-cs.txt.java and

test.java-cs.txt.cs. Although our pipeline is phrased in terms of multiple trials per datapoint,

as we are running the cases deterministically, there is no di�erence between running each test

case once and each test case multiple times.

3.2.1 Prompting strategy

We evaluated three di�erent prompts, which we term prompt0, prompt1, and prompt2. We

enumerate our prompts, indicating where line breaks exist in the prompt by also including the

literal \n; we use {java_code} to indicate where the test case, the Java code that needs to

be translated into C♯, is inserted into the prompt, before everything is passed through to the

model. Where the line is too long to display all on one line, and must be broken, we indicate

that with ↪→.

22

Prompt ID Prompt Template

prompt0

// original code.java\n

{java_code }\n

// code.cs version of code.java\n

prompt1

// code.java\n

{java_code }\n

// code.cs\n

prompt2

// This code is written in Java. Reproduce the

↪→ same exact code in C#.\n

{java_code }\n

prompt3

// original code.java\n

{java_code }\n

\n

// code.cs version of code.java\n

prompt4

// This code is written in Java. Reproduce the

↪→ same exact code in C#.\n

{java_code }\n

// This code is written in C#.\n

3.2.2 Results

To answer RQ1 and examine the e�ect of varying the scale of the CodeGen1-multi model,

we run 100 experiments on each of the prompts prompt0, prompt1, prompt2, prompt3, and

prompt4 for the code translation task.

23

Figure 3.5: CodeGen1-multi performance on �rst 100 CodeXGLUE Code2code test cases,
assessed by the metrics Exact Match, BLEU, and CodeBLEU (operating on C♯ ASTs), and
prompted by prompt0, prompt1, prompt2, prompt3, and prompt4 described in Section 3.2.1.

24

Metric Prompt 350M 2.7B 6.1B 16.1B RMSD MAE

EM prompt0 0 0 0 0 0 0

prompt1 0 0 0 0 0 0

prompt2 0 0 0 0 0 0

prompt3 0 0 0 0 0 0

prompt4 0 0 0 0 0 0

BLEU prompt0 0.1474 0.1273 0.1394 0.1491 0.0078 0.0063

prompt1 0.1212 0.0719 0.0693 0.1429 0.0269 0.0254

prompt2 0.0886 0.0364 0.0083 0.0247 0.0245 0.0227

prompt3 0.1295 0.1218 0.1164 0.1281 0.0052 0.0046

prompt4 0.0717 0.1021 0.0994 0.1029 0.0103 0.0092

CodeBLEU (C♯) prompt0 0.2286 0.2366 0.2607 0.2682 0.0074 0.0064

prompt1 0.1936 0.1596 0.1796 0.2655 0.0201 0.0190

prompt2 0.1814 0.0948 0.0330 0.0646 0.0442 0.0401

prompt3 0.2169 0.2187 0.2370 0.2529 0.0038 0.0031

prompt4 0.1992 0.1816 0.1551 0.1866 0.0159 0.0129

Table 3.4: Results for pairs on CodeGen1 multi. Bolded results indicate maximum attained
performance for best prompt. CodeBLEU operated on C♯ ASTs.

3.3 Commit message generation

Whereas with other model-task pairs where we tested multiple prompts per task, we elected not

to move forward with prompting techniques beyond our preliminary explorations of prompt0.

Fitting the entire di� in working memory for the model proved infeasible for many prompts,

exhausting the GPU resources we had available to test the models. Furthermore, the datasets

we examined (CoDiSum [28] and those by Zhang et al. [29]) are given as outputs of the

diff command and the corresponding expected natural language commit message. Although

the CodeGen-multi and CodeGen-mono models were built atop the corresponding CodeGen-nl

25

natural language models, we theorize the combination of the unfamiliar syntax of diff with

the less-comfortable natural language output explains the model's abysmal performance on this

task. Using Large Language Models to generate helpful summaries of commit messages is an

area of growing research [8], which motivated our initial pursuits, but to pursue this subdomain

of research with this model, datasets phrased as providing separate code snippets representing

the state of the commit before and after the change might be a more fruitful approach.

3.3.1 Prompting strategy

We evaluated one prompt, prompt0. We enumerate our prompt, indicating where line breaks

exist in the prompt by also including the literal \n; we use {diff_output} to indicate where

the test case, the raw output of running the pertinent diff command, is inserted into the

prompt before being passed through to the model.

Prompt ID Prompt Template

prompt0

/* diff of changes\n

{diff_output }\n

*/\n

// a summary of the above diff is:\n

// -

3.3.2 Results

To answer RQ1 and examine the e�ect of varying the scale of the CodeGen1-multi model, we

run 100 experiments on prompt0 for the commit message generation task.

26

Figure 3.6: CodeGen1-multi performance on the �rst 100 test cases from the CoDiSum dataset,
assessed by the metrics B-Moses and B-Norm, and prompted by prompt0 described in Sec-
tion 3.3.1.

Metric Prompt 350M 2.7B 6.1B 16.1B RMSD MAE

B-Moses prompt0 0 0 0 0 0 0

B-Norm prompt0 0.0051 0.0014 0.0063 0.0059 0.0017 0.0015

Table 3.5: Results for pairs on CodeGen1 multi. Bolded results indicate maximum attained
performance for best prompt.

27

Chapter 4

Analysis

4.1 Bootstrapping

To analyze our results, we employ bootstrapping to resample our data. This gives us insights

as to the underlying structure of our data beyond what is visible by merely graphing the

aggregate statistics. Bootstrapping works by taking a random subsample of S data points

from the primary experimental sample, and performing the same statistic on that subsample.

This process is repeated N times. In our case, we apply bootstrapping to each parameter size,

forming a line graph of box plots showcasing the distribution of the bootstrapped resampling.

For all of our bootstrapping, we take subsample sizes S = 50 a total of N = 500 iterations.

28

4.1.1 Bugs2�x

Figure 4.1: Bootstrapping with S = 50 and N = 500 over the CodeXGLUE Bugs2�x task,
assessed by metrics BLEU and CodeBLEU, over the results of prompting CodeGen1-multi with
prompts prompt0, prompt1, and prompt2 as described in Section 3.1.1. (The Exact Match
metric is omitted, as it is 0 across all datapoints.)

4.1.2 Bugs2�x (Checklist)

Figure 4.2: Bootstrapping with S = 50 and N = 500 over the CodeXGLUE Bugs2�x Checklist
perturbed task, assessed by metrics Exact Match, BLEU, and CodeBLEU, over the results of
prompting CodeGen1-multi with prompts prompt0, prompt1, and prompt2 as described in
Section 3.1.1.

29

4.1.3 Code2code

Figure 4.3: Bootstrapping with S = 50 and N = 500 over the CodeXGLUE CodeTrans
task, assessed by metrics Exact Match, BLEU, and CodeBLEU, over the results of prompting
CodeGen1-multi with prompts prompt0, prompt1, prompt2, prompt3, and prompt4 as de-
scribed in Section 3.2.1.

4.2 Discussion

4.2.1 Insights about CodeGen1-multi

Throughout the various experiments and prompting methods, we extracted insights relevant to

future prompt engineering and testing of this model. We established experimentally that many

conventional prompting techniques and wisdoms that work well with modern LLMs such as

ChatGPT and LLaMA do not translate to CodeGen1-multi, such as natural language descrip-

tions following a structure which states the goal, describes what the model should and should

not do, and summarizing succinctly what the model should do; in fact, this approach appears

unilaterally deleterious towards extracting meaningful output.

We found that methods which appeared more like code enabled the model to not only

respond more coherently, but also perform better across our given metrics. Generally, the most

successful of our prompts phrase the task as a code comment, followed by the code, followed by

30

an additional code comment reiterating what the goal is. Furthermore, prompts can be re�ned

by inspecting prompt output for such code comments the model volunteers naturally.

4.2.2 Limitations of Metrics

There is a broad issue worth mentioning, that the metrics BLEU (including B-Moses and B-

Norm) and CodeBLEU are more concerned with the model's outputs being apparently similar

to reference solutions, instead of them being correct or useful. Of course, to assess the model's

output in this way would likely require extensive and involved human surveying; even supposing

willing and able human graders, the issues posed by inferring a rating with su�cient granularity

so as to extract meaningful verdicts of emergence is pressing and signi�cant.

Perhaps, even though Shae�er et al. claim emergent capabilities disappear when using

continuous metrics [21], those metrics lose sight of our actual goals of model correctness and

usefulness. Metrics are not designed to assess this, but to assess how close the produced

output matches, token-wise, the expected output, not allowing for signi�cant deviation, even

if, for all relevant purposes, it might be equally acceptable. A general solution to this problem

remains elusive and/or taxing, but it could perhaps be most easily addressed by examining

the question of emergent capabilities with respect to the software engineering domain of code

generation against test cases (or the inverse: test cases generation against existing code). In

these scenarios, models are a�orded the option for a diversity of answers, and grade the extent

of how functional the given answer is via code execution, which is exactly the metric that

corresponds to the desired properties of correctness and usefulness.

4.2.3 Limitations of the Testing Harness

As the CodeGen family of models does not respond well to conventional prompting phrased as

natural language task descriptions, and was prone to ramble indecisively far beyond a concise

answer, we made the decision to mirror the strict input format of the test cases for how we

expected the model to respond. Since the input test cases consisted of Java methods condensed

to a single line, we iteratively prompted the model in chunks until it produced a non-empty line,

31

or signaled end-of-text. Thus, we ended up considering only a single line as output from the

model for each test case. See Appendix A.2 for an elaboration on the speci�cs of our approach.

The model would likely perform di�erently if prompted with more conventionally formatted

code input (which spans multiple lines), and if we more leniently selected output from the model

as well-balanced Java code (again allowed to span multiple lines). Following manual inspection

of the model's answers, we found that many of its outputs consisted of a single comment line,

or the beginnings of a code snippet with clear intentions to complete the code in a format with

more typical whitespace (e.g., an open curly brace { followed by a line break). Thus, not only

does our testing examine the model's ability to, say, automatically �x bugs, but to do so while

complying with the simple, restricted input/output format.

This phenomenon was especially pronounced in our study of the Checklist perturbations

of the CodeXGLUE Bugs2�x task in Section 3.1.3.1; the model's performance at the highest

scale of 16.1B parameters under prompt1 drops drastically, so much so that the overall shape

of the graph is considered non-linear under our metrics for evaluating the linearity of emergent

jumps. As it turns out, the majority of the 16.1B outputs are some variation of // The

buggy code is: or sometimes giving a plain English attempt at describing what the bug itself

is (e.g., // The bug is that the method returns a Boolean, but it should return

a Cardigan.); these score very poorly compared to the smaller scales, which are able to comply

to the stricter output format. Had we implemented a more lenient testing harness which would

ignore comments like this, the model may have performed better at this scale for that prompt.

32

Chapter 5

Conclusion

We return to the research questions de�ned at the outset of our investigation.

RQ1 What e�ect does varying the scale of CodeGen1-multi models have upon its perfor-

mance on tasks of code repair, code translation, and commit message generation?

We �nd that varying the model scale of the CodeGen1-multi model from 350M parameters

to 16.1B parameters generally tends to improve performance slightly in a linear fashion, albeit

somewhat loosely; performance was not usually strictly increasing, nor was maximal performance

always attained with maximal tested model scale.

Even though varying model scale loosely improves model performance, we �nd that prompt-

ing technique is a stronger determiner of model performance, especially as, with some prompts,

increasing model scale negatively a�ects performance.

RQ2 Between which model scales, if any at all, do emergent capabilities appear?

Emergent capabilities did not appear at any model scales on any of our tasks with any of

our prompting methods.

This may be due to the fact Wei et al. did not encounter emergence on some tasks until

upwards of 10B to 1T parameters ([27], Appendix D). This may also be explained as not

�nding the right prompts which would enable our models to experience emergent capabilities.

Alternatively, it might well be the case that the CodeGen1-multi model is simply relatively

stable and predictable at these relatively small scales.

33

5.1 The Future of Emergent Capabilities

Reasoning about emergent capabilities is a di�cult task, fraught with doubts about the existence

of the phenomenon itself, as well as uncertainties as to discovering the right prompts and the

proper use of metrics. We hope that future research can utilize our pipeline for evaluating

emergence to aid future investigations into the question of emergent capabilities.

Whether models can exhibit emergent capabilities is a double-edged sword. The prospect of

untapped potential awaiting model designers, if only they provide the requisite increased scale,

is both tantalizing and trepidating, depending on the exact nature of the emergent capabilities

gained. The model may gain, say, superlative reasoning abilities emergently; it may also gain

superlative discriminatory abilities emergently. Conversely, establishing a verdict of no emergent

capabilities across a certain range of model scales would seem to bound the model's ability to

perform, but also establish a certain degree of con�dence in its stability.

Examining the question of emergence is an important step into assessing the interpretability,

stability, and predictability of a model. While most models are not released to be available by

discrete model scales, those training models can assess the intermediate models scaled by

training FLOPs for signs of emergence using our pipeline.

34

Appendix A

Experimental Setup

A.1 Obtaining test cases

Generally, where we select a subset of test cases from a given reference source, we do so by

extracting the �rst N test cases, as opposed to randomly sampling them. We observed that the

distribution of unique features (such as variable names) was apparently randomly distributed

throughout the documents, and inferred that there is no special ordering that would invalidate

the approach of taking the �rst N lines.

A.1.1 Code re�nement (aka Bugs2�x)

To form the basis for our automatic code repair experiment, we selected the �rst 100 lines from

Code-Code/code-refinement/data/small/test.buggy-fixed.buggy as the input code,

and the corresponding �rst 100 lines from Code-Code/code-refinement/data/small/test

.buggy-fixed.fixed as reference solutions. Each line in each document represents a Java

code snippet, formatted without newlines or excess spaces, and each token is separated by

spaces with few exceptions. For example, VAR_1 . METHOD_2 () is presented with spaces

between each of these tokens, but certain language primitives, such as java.lang.String,

are presented without spaces.

35

A.1.1.1 Checklist

We apply the following bijective mapping on our base Bugs2�x test cases:

� VAR_k 7→ a or b or ... or z, excluding m and n given VAR_k ranged only up to VAR_12,

making more than 24 variables super�uous.

� TYPE_k 7→ Apple or Box or Cardigan or Doohickey or Egg or Gadget or Nicknack or

Thingy or Widget or Yak.

� INT_k 7→ sg, where s is chosen uniformly from the multiset {1, 1,−1} and g ∼ GX(p =

0.1) is sampled from a Geometric distribution with success probability p = 0.1; that is,

biased towards small, positive numbers, but potentially negative and potentially large.

� FLOAT_k 7→ round (clip (g,−1000, 1000) , 4) where g ∼ N (µ = 0, σ = 150) is sampled

from a Normal distribution with mean µ = 0 and variance σ = 150; that is, biased

towards numbers around zero, with 4 decimal places, and |g| ≤ 1000.

� CHAR_1 7→ 'a' or '@'; CHAR_2 7→ 'b' or '&'; CHAR_3 7→ 'c' or 'L'; CHAR_4 7→ 'd'

or '-'.

� STRING_1 7→ "" or "truth"; STRING_2 7→ "results" or "\n"; STRING_3 7→ "Input:

" or "orange"; STRING_4 7→ "abcdefghijklmnopqrstuvwxyz!.{}" or "00000000";

STRING_5 7→ "unchecked" or "Courier New"; STRING_6 7→ " " or "EOF"; STRING_7

7→ "Hello, World!" or "\t"; STRING_8 7→ "\r\n" or "________"; STRING_9 7→ "a

sdjiopfapsdfjpoiajdfpoais" or "9999888666441".

Using this mapping, we project the dummy placeholders to random entries in the mapping.

For example,

private TYPE_1 getType (TYPE_2 VAR_1) { TYPE_3 VAR_2 = new TYPE_3 (

↪→ STRING_1) ; return new TYPE_1 (VAR_2 , VAR_2) ; }

became

36

private Cardigan getType (Apple h) { Yak k = new Yak ("") ; return new

↪→ Cardigan (k , k) ; }

abiding by the mapping

� TYPE_1 7→ Cardigan

� TYPE_2 7→ Apple

� TYPE_3 7→ Yak

� VAR_1 7→ h

� VAR_2 7→ k

In practice, although we de�ned transformations for all placeholders that appeared in the

CodeXGLUE small/test.buggy-fixed.buggy dataset, we only encountered up to VAR_6,

TYPE_4, INT_2, FLOAT_1, and STRING_3 within the �rst 100 cases, and never encountered any

instances of CHAR_k.

A.1.2 Code translation (aka CodeTrans)

To form the basis for our code translation experiment, we selected the �rst 100 lines from

Code-Code/code-to-code-trans/data/test.java-cs.txt.java as the input code, and

the corresponding �rst 100 lines from Code-Code/code-to-code-trans/data/test.java-cs.txt.cs

as reference solutions. Each line in the java-cs.txt.java document represents a Java code

snippet, whereas each line the in the java-cs.txt.cs document represents a C♯ code snippet.

Unlike the test cases for the code re�nement task, tokens are not provided as tokens separated

by whitespace, but rather with whitespace inserted somewhat arbitrarily.

For example, consider the Java snippet and its corresponding C♯ snippet (comments ours):

// Java

public ObjectId getObjectId () {return objectId ;}

// C#

public virtual ObjectId GetObjectId (){return objectId ;}

37

A.1.3 Commit message generation

To form the basis for our commit message generation experiment, we selected the �rst 100

test cases from the CoDiSum dataset [28]. The input for each test case is the Linux command

diff with parameters of the �le paths of the changed �les along with its corresponding output

when invoked. The reference for each test case is the given English commit message associated

with the �le changes.

A.2 Querying the model

To interact with the CodeGen1-multi model, we use custom Python code and IPython Jupyter

Notebooks running atop of PyTorch, transformers, Pandas, SciPy, checklist, and numpy li-

braries.

The main feature of our querying approach is the generate_until algorithm, which op-

erates according to the following psuedocode:

Parameters inputs , stops , chunk_size , max_size.

current_size <- 0

current_inputs <- inputs

while(current_size < max_size) {

output_tokens <- model.generate(

current_inputs ,

max_new_tokens=chunk_size

)

// trim the input prompt from the output

output_tokens_so_far <- slice output_tokens after token_count(inputs)

output_string <- tokenizer.decode(output_tokens_so_far)

foreach(stop in stops) {

if(output_string contains stop) {

truncate output_string to first index of stop

return output_string

}

38

}

if(EOS_TOKEN in output_string) {

return output_string

}

current_inputs <- concat(current_inputs , output_tokens_so_fars)

}

return output_string

In words, it requests tokens from the model in a pre-determined chunk size (50 tokens at a

time in our experiments), and continues to do so until one of the following conditions is met:

1. The model generates an end of string token;

2. The model generates one of the requested stop characters (line breaks in our experiments);

or

3. The model generates a total number of tokens exceeding the requested maximum token

length (500 tokens in our experiments).

We prefer this algorithm to the default free-text generation method provided by the trans-

formers library as it adheres to the input-output format for our test cases and it bypasses the

tendency of the CodeGen1-multi model to ramble continuously; if we were to simply generate

until the end of string token was encountered with no other stops, we would overload the GPU

memory with too wide an input string, as the model is prone to repeating itself with and without

variations.

39

Appendix B

Unused Methodology

B.1 Multiple-Choice Answer Extraction

While our �nal research product consists of grading and extracting the free text responses of

LLMs, we developed and assessed a variety of methods to extract a multiple-choice answer

from a model by observing the underlying logits, suited towards such datasets as found in

BIG-Bench [22]. We include these methods here for discussion of future work. Of the three

approaches we discuss (First branch evaluation, Aggregate normalized logit evaluation, and

event-based evaluation), we recommend researchers investigating extracting multiple-choice

answers from LLMs via logits investigate both normalized logit evaluation (Section B.1.1.2)

and event-based evaluation (Section B.1.1.3). We hypothesize they may perform similarly (in

which case normalized logit evaluation should prove more computationally e�cient), but as

we did not end up using any multiple-choice datasets to investigate emergence, we have not

rigorously investigated either.

B.1.1 Evaluating Model Choices

Evaluating which choices a model is most likely to make is crucial to assessing how it thinks

and performs. While it is trivial to assess a model's preference for a choice between many

tokens by simply choosing the token with maximal logit likelihood, there is some latitude for

40

assessing the model's preference between multi-token choices. We investigated three di�erent

approaches to this problem, and selected 2 of them.

B.1.1.1 First branch evaluation

Intuitively expanding the trivial case of selecting the choice corresponding to the token with

maximal logit likelihood, we may iteratively apply this determination to corresponding tokens

in the choices in lockstep. That is, we can determine between K choices {A0, A1, · · · , AK−1}

by �nding the minimal token index i where max0≤k<K logit (Ak,i) is unique, and yielding the

choice index k corresponding to that maximal determination.

For example, given two choices of tokenized strings �prints| values| from| 1| to|

10� and �prints| values| from| 0| to| 22� (choice examples from [22]), the model �nds

no unique maximum until token index i=3 (as the options are identical up to that point), and

would make a �nal determination between the two choices by determining which of the tokens

� 1� or � 0� had higher logit likelihood.

This approach is �awed, however, as it will almost certainly never consider the entirety of

each option. Suppose the model prefers the choice �prints| values| from| 1| to| 10�

based on the � 1� token; the model would choose that same choice regardless of what comes

after it. Replacing the model's preferred choice with either of �prints| values| from| 1�

and �prints| values| from| 1| to| MAX|_|INT| and| explodes� would not change the

model's determination under the evaluation method as one might hope.

B.1.1.2 Aggregate normalized logit evaluation

To remedy the issues with the �rst branch evaluation approach above, it is clear the model

must consider each token in each choice to make an informed determination. Palacio et al.

[14] utilize an aggregate method of normalizing a model's logits to match predicted tokens with

corresponding Abstract Syntax Tree nodes. We can leverage this approach to rank multiple-

choice answers.

41

This method works simply by summing the logit likelihoods corresponding to each token

in each choice, thereby considering each token, and dividing by the number of tokens in each

choice, making sure the model does not unduly favor longer choices. Then, the choice with

maximal average evaluation is chosen.

More precisely, we can determine between K choices {A0, A1, · · · , AK−1} by calculating

ANLE(Ak) =
1

N

N−1∑
i=0

logit(Ak,i)

and �nding the choice index k for max0≤k<K ANLE(Ak).

Intuitively, adding together logits has an e�ect similar to adding directional vectors together;

tokens with a large positive logit value act as strong positive directional vectors, tokens with

smaller positive logit value act as weaker ones, and tokens with negative logit values act as

directional vectors pointing in the opposite direction. This can be visualized by examining the

sum as it moves along a reverse logistic curve.

B.1.1.3 Event-based evaluation

An alternative approach is to consider the model's outputs under the context of probability.

This is motivated by leveraging the actual approach to free response generation in a con-

strained context. One can imagine a Monte Carlo simulation of many di�erent free response

inquiries to the model, and tallying how frequently the available choices occur. However, this

is computationally expensive, and even infeasible for su�ciently long choices.

That being said, we need not actually employ such a simulation to calculate the odds of

obtaining each choice. Using the softmax function, we can transform the logit space at a

particular context point into a probability distribution, just as a transformer model would do to

choose a token during free response generation. We can then chain these individual probabilities

together to give an overall probability for the choice, rank our choices correspondingly, and

choose the choice which is most likely to occur.

42

More precisely, when presented with K choices {A0, A1, · · · , AK−1} and a question con-

sisting of a string of H tokens, we can determine the most likely option the model would

generate as argmax0≤j<K P (Aj |H).

To arrive at P (A|H), let A = a0a1 · · · aN−1 be a string of tokens. Given a context string of

tokens H, we can interpret A as a sequence of conditional events, and evaluate the probability

of generating the string A given H as

P (A|H) = P (a0|H)× P (a1|Ha0)× P (a2|Ha0a1)× · · · × P (aN−1|Ha0a1 · · · aN−2)

≡
N−1∏
j=0

P

(
aj

∣∣∣∣∣H
j−1∑
k=0

ak

)

(where
∑

here indicates concatenation). Each probability P
(
aj

∣∣∣H∑j−1
k=0 ak

)
corresponds

exactly to aj in the softmax probability distribution of the model's logits after providing it the

context H
∑j−1

k=0 ak of all tokens preceding it. Thus, each component probability is readily

calculated, and consequently, so is P (A|H).

43

Bibliography

[1] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-

garet Shmitchell. On the dangers of stochastic parrots: Can language models be too

big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans-

parency, FAccT '21, page 610�623, New York, NY, USA, 2021. Association for Computing

Machinery.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[3] Konstantin Chernyshev. Pypi/k4black/codebleu. https://pypi.org/project/

codebleu/0.6.1/, 2024. Version 0.6.1.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.

44

https://pypi.org/project/codebleu/0.6.1/
https://pypi.org/project/codebleu/0.6.1/

[5] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou.

Codebert: A pre-trained model for programming and natural languages, 2020.

[6] Wei Guo and Aylin Caliskan. Detecting emergent intersectional biases: Contextu-

alized word embeddings contain a distribution of human-like biases. In Proceedings of the

2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES '21. ACM, July 2021.

[7] Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Web-

ster, Yu Zhong, and Stephen Denuyl. Social biases in NLP models as barriers for

persons with disabilities. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,

editors, pages 5491�5501, Online, July 2020. Association for Computational Linguistics.

[8] Siyuan Jiang and Collin McMillan. Towards automatic generation of short sum-

maries of commits, 2017.

[9] Daniel Martin Katz, Michael James Bommarito, Shang Gao, and Pablo

Arredondo. Gpt-4 passes the bar exam. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 382(2270):20230254, 2024.

[10] Chin-Yew Lin and Franz Josef Och. ORANGE: a method for evaluating au-

tomatic evaluation metrics for machine translation. In COLING 2004: Proceedings of

the 20th International Conference on Computational Linguistics, pages 501�507, Geneva,

Switzerland, aug 23�aug 27 2004. COLING.

[11] Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Mad-

abushi, and Iryna Gurevych. Are emergent abilities in large language models just

in-context learning?, 2023.

[12] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Am-

brosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang,

45

Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming

Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu

Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code un-

derstanding and generation. CoRR, abs/2102.04664, 2021.

[13] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo

Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large language

model for code with multi-turn program synthesis, 2023.

[14] David N Palacio, Alejandro Velasco, Daniel Rodriguez-Cardenas,

Kevin Moran, and Denys Poshyvanyk. Evaluating and explaining large language

models for code using syntactic structures, 2023.

[15] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311�318, 2002.

[16] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring

the limits of transfer learning with a uni�ed text-to-text transformer, 2023.

[17] Ehud Reiter. A Structured Review of the Validity of BLEU. Computational Linguistics,

44(3):393�401, 09 2018.

[18] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel

Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a

method for automatic evaluation of code synthesis, 2020.

[19] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer

Singh. Beyond accuracy: Behavioral testing of nlp models with checklist, 2020.

[20] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai

Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal

46

Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bit-

ton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-

han Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Tou-

vron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Syn-

naeve. Code llama: Open foundation models for code, 2024.

[21] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities

of large language models a mirage?, 2023.

[22] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb,

Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya

Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz,

Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexan-

der W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-

rish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Am-

brose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen,

Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew

Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, An-

gelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio

Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul

Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal,

Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karaka³, B. Ryan

Roberts, Bao Sheng Loe, Barret Zoph, Bartªomiej Bojanowski, Batuhan

Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno

Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion,

Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta,

César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng,

Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian

Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez,

47

Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft,

Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan

Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,

Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi

Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard,

David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis

Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Di-

ganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho

Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Se-

gal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie

Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Er-

dem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim,

Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh

Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet,

Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo,

Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Glo-

ria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari,

Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi,

Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu

Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap

Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee,

Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng,

James Zou, Jan Koco«, Jana Thompson, Janelle Wingfield, Jared Ka-

plan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei,

Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh,

Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu,

Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller,

John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg,

48

Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr,

Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil

Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Ka-

terina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel,

Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta,

Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds,

Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando,

Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Lud-

wig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem

�enel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen

Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco

Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn,

Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leav-

itt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,

Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen,

Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube,

Michaª Sw¦drowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir

Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Ti-

wari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini,

Mukund Varma T, Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta

Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron,

Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,

Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel,

Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy,

Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale

Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan

Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut,

Pinyu Hwang, Piotr Miªkowski, Piyush Patil, Pouya Pezeshkpour, Priti

49

Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta

Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Mil-

lière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa,

Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman

Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan

Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan

Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou,

Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman,

Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous,

Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Se-

bastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Ham-

dan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh,

Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Tosh-

niwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon

Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-

Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Ste-

fan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen

Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi,

Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao

Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbor-

des, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkiny-

ili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg,

Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Sha-

ham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak,

Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Sriku-

mar, William Fedus, William Saunders, William Zhang, Wout Vossen,

Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadol-

lah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin

50

Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,

Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zi-

jie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the imitation game: Quantifying

and extrapolating the capabilities of language models, 2023.

[23] Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi Han, Hongyu Zhang,

Dongmei Zhang, and Wenqiang Zhang. On the evaluation of commit message

generation models: An experimental study, 2021.

[24] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,

Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman

Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,

Edouard Grave, and Guillaume Lample. Llama: Open and e�cient foundation

language models, 2023.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, � ukasz Kaiser, and Illia Polosukhin. Attention is

all you need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

volume 30. Curran Associates, Inc., 2017.

[26] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. Codet5:

Identi�er-aware uni�ed pre-trained encoder-decoder models for code understanding and

generation, 2021.

[27] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebas-

tian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald

Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang,

Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022.

[28] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and

Jian Lu. Commit message generation for source code changes. In Proceedings of the

51

Twenty-Eighth International Joint Conference on Arti�cial Intelligence, IJCAI-19, pages

3975�3981. International Joint Conferences on Arti�cial Intelligence Organization, 7 2019.

[29] Linghao Zhang, Jingshu Zhao, Chong Wang, and Peng Liang. Using large

language models for commit message generation: A preliminary study, 2024.

52

	Emergent Capabilities Of Llms For Software Engineering
	Recommended Citation

