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ABSTRACT

Consumer-oriented software systems have become the foundation on which
consumer data is collected and transported from the consumers to the data
processors. They are complex, with various interconnected, heterogeneous
components working together, making their security and privacy analysis
challenging, and impact on the user uncertain. In this work, we first explore how
security threats can arise in novel context in such systems by performing a security
evaluation of data-store based smart home platforms and the overall security risks
posed by the design of routines within such platforms. We analyze various
components of the smart home such as the platform’s permission enforcement
mechanism and the apps/services that connect to the smart home that are used
during the creation and execution of routines. We find that 1) platform’s
permission enforcement and access control model may be broken and allow for
attacker’s to bypass user’s consent to perform privileged tasks, 2) around 20% of
apps that connect to smart home platforms may have vulnerable SSL connections,
and 3) lateral privilege escalation in smart home platforms is possible with the help
of routines, wherein we demonstrate by compromising a smart home camera by
escalating our privilege gained with a smart home switch app. Secondly, to
develop a practical defense against the threats introduced by the routines, we
leverage the unique opportunity provided by the smart home i.e., validating
incoming state change requests by comparing with the observations gathered by
physical devices connected to the platform, for enhancing integrity in smart home
platforms. Using this insight, we propose HomeEndorser, which is a practical
framework to provide integrity guarantees to smart home platforms. To do so,
HomeEndorser endorses (or rejects) requests by apps or services to modify
Abstract Home Objects (AHOs) such as home or fire by enforcing integrity
policies based on the current state of devices in the home. By protecting against
malicious modifications of AHOs, HomeEndorser is able to prevent arbitrary
privilege escalation attacks that were possible by exploiting routines. Finally, to
understand how effectively stakeholders convey security and privacy risks to the
users, we designed the Polityzer framework to systematically analyze the privacy
postures of election campaign websites. Using Polityzer, we find a vast majority of
election campaign websites lack a privacy disclosure, and even in cases where
privacy policies were provided, they were often incomplete. We also found that
campaigns may be inadvertently sharing data with other campaigns through
common fundraising platforms, without disclosing such sharing.
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Chapter 1

Introduction

In the last decade, there has been a rapid rise in consumer-oriented software systems that

are focused on directly interacting with consumers to collect and process their data in

order to provide different services. Such systems can be very diverse in nature, including

systems like the Internet-of-Things (IoT) [100], mobile apps [117] and even online election

campaigns [122]. Consumer-oriented software systems have grown in prominence over the

last decade and have become the cornerstone through which consumer data is collected

and transported from the consumers to the stakeholders (e.g., usage behavior collected

through mobile apps) [145].

In addition to the diversity in terms of functionality and architecture, such software

systems are also composed of different subcomponents including the use of cloud APIs,

storage, third-party apps and integrations, third-party tools and other dependencies. For

instance, consider the smart home which is a popular subclass of the IoT domain. It

consists of not just many kinds of IoT devices, but also of several smart home platforms,

thousands of apps that integrate into the platforms and control the IoT devices and routines

(or automations) created by the users. Due to this layer of interdependencies, it is very

IEEE Copyright Note: In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of the College of William and Mary’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.
ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.
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challenging for the consumers to assess the risks in security and privacy when using these

software systems.

This dynamic nature of consumer-oriented software systems creates unique challenges

in order to analyze the inherent security and privacy risks. For example, security threats

that are well-known in traditional operating systems can manifest in these systems in novel

ways and context. Similarly, any privacy analysis of such systems needs to consider the

conflicts that could potentially arise due to the different privacy requirements of different

components operating within the same system. For instance, online election campaigns

and their fundraising platforms may have entirely different policies in dealing with the

consumer data they collect.

In order to truly assess the security and privacy implications of using these systems,

we need to first address the following inherent challenges:

1. Diverse systems built on inter-connected components (C1): With several heterogeneous,

interconnected components working together, the systems can also be increasingly com-

plex to understand given that each component may have its own functionalities, design

and interactions with other components. In order to gain a practical understanding of

the security and privacy challenges, we need to analyze such systems holistically. In

particular, it is critical to understand how security threats can arise due to the interplay

between the components.

2. Developing practical solutions (C2): Any solution or framework designed to identify or

prevent attacks in such software systems needs to account for all the inter-connected

subcomponents to be practical. It is also vital to leverage the abstractions provided by

the systems themselves so that the solution is adaptable.

3. Identifying the privacy requirements (C3): Given their diversity, the privacy requirements

that underpin consumer-oriented software can also vary a lot from one stakeholder to the

next. For example, the IoT vendors that sell and operate IoT devices fall under the for-

profit domain, and are thus governed by data privacy regulations such as the GDPR [73]

and CPRA [4]. However, the online election campaigns in the U.S. fall under the non-
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profit domain, and are thus not governed by any data privacy regulations. Hence, the

privacy analysis of such systems has to first consider the privacy requirements they are

operating under.

1.1 Thesis Statement

The inter-dependent components in consumer-oriented software systems pose significant

challenges in analysis as we outline above. For any evaluation of such systems to truly

reflect the real-world risks posed to consumers who use them, several factors need to be

considered.

For instance, consider the case of smart homes which are increasing in popularity among

consumers every year [198]. A typical smart home system that is deployed by a consumer

in their home consists not just of smart devices from multiple vendors, but also operates

under a smart home platform (that we detail in Chapter 2), and can be managed by

multiple mobile apps provided by different stakeholders (e.g., platform app, device vendor

app, or other third-party apps from the marketplace). Thus, tackling C1!C3 is not trivial

and requires a careful assessment of the system architecture, domain-specific considerations

(e.g., role of devices and automations), and the role that key stakeholders operating within

the ecosystem play in minimizing the security and privacy risks.

Therefore, the thesis statement of this work is the following:

A practical security and privacy evaluation of complex, consumer-oriented, software sys-

tems, must consider the risks arising due to their inter-dependent components.
In proving this thesis, we seek answers to the following research questions in this

dissertation.

• RQ1: How do threats arise due to the inter-dependent components? The

emphasis of the analysis presented in this dissertation will be on identifying security and

privacy threats that can manifest due to the inter-play among system components.
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• RQ2: How do we develop practical defenses against these threats? To tackle

the threats, the solutions need to be grounded on practical design decisions, with particular

focus on making use of domain-specific abstractions.

• RQ3: How effectively do stakeholders convey the risks to the users? Finally,

once we characterize the threats, the dissertation will also focus on the role of stakeholders

in conveying the risks to the users, and analyzing the effectiveness of their methods.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 provides background and

discuss related work of this dissertation. In Chapter 3, we first explore the architecture

of 2 popular smart home platforms, Google Nest and Philips Hue, with respect to how

integrations and routines function within them. Next, we analyze and identify problems

in their access control mechanisms as well as in their integrations. Finally, we carry out

an end-to-end privilege escalation attack in the smart home by exploiting vulnerable inte-

grations and routines (RQ1). In Chapter 4, we propose and implement the HomeEndorser

framework, which is a framework that enables platforms to supplement their defenses by

providing an integrity guarantee mechanism using information drawn from devices in the

home. HomeEndorser endorses legitimate requests made by integrations by validating the

requested changes with the device observations gathered at runtime while rejecting re-

quests that are inconsistent with the device observations (RQ2). Finally, in chapter 5, we

develop the framework Polityzer, using which we perform a systematic, large-scale analysis

of the privacy posture of U.S. election campaign websites. In particular, we identify the

types of data that campaign websites collect and identify several findings regarding the

systemic problems associated with their privacy disclosures (RQ3).
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Chapter 2

Background and Related Work

In Section 2.1 of this chapter, we first describe the general architecture and characteristics

of the smart home platforms that we study in Chapters 3 and 4. We also give a brief

background of 2 smart home platforms in particular, Google Nest and Philips Hue, whose

security analysis is discussed in detail in Chapter 3. Similarly, in Section 2.2, we describe

the structure of the federal election campaigns in the United States that are the subject

of our privacy analysis in Chapter 5. Finally, in Section 2.3, we discuss the related works

of this dissertation.

2.1 Home Automation via Centralized Data Stores

This section describes the general characteristics of data store-based platforms, i.e., smart

home platforms that use a centralized data store to facilitate routines. We provide the

background on two such platforms, namely (1) Google’s “Works with Nest” [143] platform

(henceforth called “Nest”) and (2) the Philips Hue lighting system [159] (henceforth called

“Hue”), which serve as the targets of our security evaluation. The Android apps for both

of the systems have over a million downloads on Google Play [82, 83], indicating significant

adoption, and far-reaching impact of our analysis.
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Central Data Store
app1

app2

appn

…

device1

device2

devicen

…

{v|v � Vdevice1}
<latexit sha1_base64="DjGWLBu1w5BvypumyTMtnN0GmGU=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgETyUpgh4LXjxWsB/QhLDZTNqlm03Y3RRKLHjxr3jxoIhX/4Q3/43bNgdtfTDweG+GmXlBypnStv1tldbWNza3ytuVnd29/YPq4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBqObmd8dg1QsEfd6koIXk4FgEaNEG8mvnrj5GD/gMXaZwB0/D2HMKPjO1J361Zpdt+fAq8QpSA0VaPnVLzdMaBaD0JQTpfqOnWovJ1IzymFacTMFKaEjMoC+oYLEoLx8/sMUnxslxFEiTQmN5+rviZzESk3iwHTGRA/VsjcT//P6mY6uvZyJNNMg6GJRlHGsEzwLBIdMAtV8YgihkplbMR0SSag2sVVMCM7yy6uk06g7dt25u6w1G0UcZXSKztAFctAVaqJb1EJtRNEjekav6M16sl6sd+tj0Vqyiplj9AfW5w8OZZcX</latexit><latexit sha1_base64="DjGWLBu1w5BvypumyTMtnN0GmGU=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgETyUpgh4LXjxWsB/QhLDZTNqlm03Y3RRKLHjxr3jxoIhX/4Q3/43bNgdtfTDweG+GmXlBypnStv1tldbWNza3ytuVnd29/YPq4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBqObmd8dg1QsEfd6koIXk4FgEaNEG8mvnrj5GD/gMXaZwB0/D2HMKPjO1J361Zpdt+fAq8QpSA0VaPnVLzdMaBaD0JQTpfqOnWovJ1IzymFacTMFKaEjMoC+oYLEoLx8/sMUnxslxFEiTQmN5+rviZzESk3iwHTGRA/VsjcT//P6mY6uvZyJNNMg6GJRlHGsEzwLBIdMAtV8YgihkplbMR0SSag2sVVMCM7yy6uk06g7dt25u6w1G0UcZXSKztAFctAVaqJb1EJtRNEjekav6M16sl6sd+tj0Vqyiplj9AfW5w8OZZcX</latexit><latexit sha1_base64="DjGWLBu1w5BvypumyTMtnN0GmGU=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgETyUpgh4LXjxWsB/QhLDZTNqlm03Y3RRKLHjxr3jxoIhX/4Q3/43bNgdtfTDweG+GmXlBypnStv1tldbWNza3ytuVnd29/YPq4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBqObmd8dg1QsEfd6koIXk4FgEaNEG8mvnrj5GD/gMXaZwB0/D2HMKPjO1J361Zpdt+fAq8QpSA0VaPnVLzdMaBaD0JQTpfqOnWovJ1IzymFacTMFKaEjMoC+oYLEoLx8/sMUnxslxFEiTQmN5+rviZzESk3iwHTGRA/VsjcT//P6mY6uvZyJNNMg6GJRlHGsEzwLBIdMAtV8YgihkplbMR0SSag2sVVMCM7yy6uk06g7dt25u6w1G0UcZXSKztAFctAVaqJb1EJtRNEjekav6M16sl6sd+tj0Vqyiplj9AfW5w8OZZcX</latexit><latexit sha1_base64="DjGWLBu1w5BvypumyTMtnN0GmGU=">AAACA3icbVBNS8NAEN3Ur1q/qt70slgETyUpgh4LXjxWsB/QhLDZTNqlm03Y3RRKLHjxr3jxoIhX/4Q3/43bNgdtfTDweG+GmXlBypnStv1tldbWNza3ytuVnd29/YPq4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBqObmd8dg1QsEfd6koIXk4FgEaNEG8mvnrj5GD/gMXaZwB0/D2HMKPjO1J361Zpdt+fAq8QpSA0VaPnVLzdMaBaD0JQTpfqOnWovJ1IzymFacTMFKaEjMoC+oYLEoLx8/sMUnxslxFEiTQmN5+rviZzESk3iwHTGRA/VsjcT//P6mY6uvZyJNNMg6GJRlHGsEzwLBIdMAtV8YgihkplbMR0SSag2sVVMCM7yy6uk06g7dt25u6w1G0UcZXSKztAFctAVaqJb1EJtRNEjekav6M16sl6sd+tj0Vqyiplj9AfW5w8OZZcX</latexit>

device1 State:
{v|v � Vdevice2}
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Figure 2.1: The general architecture of platforms that leverage centralized data stores. Note
that H is the universe of all home state variables, and Vdevicei

is the universe of all state variables
specific to devicei.

2.1.1 General Characteristics

Figure 2.1 shows the general architecture of DSB platforms, consisting of 3 main compo-

nents: apps, devices, and the centralized data store, which generally communicate over the

Internet. Additionally, a physical hub that facilitates local communication via protocols

such as Zigbee or Z-wave may be present (e.g., the Hue Bridge). The apps may either be

Web services hosted on the cloud, or mobile apps communicating via Web services. At

this juncture, we generalize apps as third-party software interacting with the data store,

and provide the platform-specific descriptions later.

The centralized data store facilitates communication among apps and devices via state

variables. The data store exposes two types of state variables: (1) Home state variables

that reflect the general state of the entire smart home (e.g., if the user is at home/away,

the devices attached to the home, the postal code), and (2) Device-specific state variables

that reflect the attributes specific to particular devices (e.g., if the Camera is streaming,

the target temperature of the thermostat).

Apps and devices communicate by reading from or writing to the state variables in

the data store. This model allows expressive communication, from simple state updates to

indirect trigger-action routines. Consider this simple state update: the user may change

the temperature of the thermostat from an app, which in turn writes the change to the

target temperature variable in the data store. The thermostat device receives an update

from the data store (i.e., reads the target temperature state variable), and changes its

target temperature accordingly. Further, as stated previously, expressive routines may
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also be implemented using the data store. For instance, the thermostat may change to its

“economy” mode when the home’s state changes to away, i.e., the thermostat’s app may

detect that the user has left the smart home (e.g., using Geofencing), and write to the

home state variable away. The thermostat may then read this change, and switch to its

economy mode.

A salient characteristic of DSB platforms is that they lean towards seamless home

automation by automatically interacting with devices and executing complex routines via

the data store. However, even among DSB platforms, there are some key differences, which

motivates our targeted analysis of the Nest and Hue platforms and their apps, as we discuss

below.

We observe that while both Nest and SmartThings execute routines, there is a key

difference in how routines are managed in these platforms. SmartThings allows users to

create and manage routines from the SmartThings app itself, thereby providing users with

a general view of all the routines executing in the home [194]. In contrast, Nest routines

are generally implemented as decentralized third-party integrations. Third-party products

that facilitate routines provide the user with the ability to view and manage them. As a

result, the Nest platform does not provide the user with a centralized view of the routines

that are in place. Due to this lack of user control, Nest smart homes may face unique

security risks and challenges, which motivates this security analysis. Similarly, we observe

that the Philips Hue platform may be another interesting variant of DSB platforms. That

is, Hue integrates homogeneous devices related to lighting such as lamps and bulbs, unlike

Nest and SmartThings that integrate heterogeneous devices, and represents a drastically

simpler (and hence unique) variant of home automation platforms that use centralized data

stores. As a result, the analysis of Hue’s attack surface has potential to draw attention

to other similar, homogeneous platforms, which is especially important considering the

fragmentation in the smart home product ecosystem [47]. To our knowledge, this work is

the first to analyze this relatively new class of smart home platforms, and specifically, Nest

and Hue.
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A] structures:
<structure1 ID>

away = “home”
eta_begin = “1970-01-01T00:00:00.000Z”
postal_code = “00000”
thermostats = [<thermostat1 ID>, …, thermostatn ID]  
cameras = [ <camera1 ID>, …, <cameran ID>]
…

B] devices:
thermostats:

has_fan = true
target_temperature_c = 27
ambient_temperature_c = 24
…

<thermostatn ID>
…

cameras:
<camera1 ID>

is_online = true
is_streaming = true
web_url = “https://home.nest.com/cameras/…”
…

<cameran ID>
…

… (other device types)

<thermostat1 ID>

Figure 2.2: A simplified view of the centralized data store in Nest.

2.1.2 Nest Background

The Works with Nest platform integrates a heterogenous set of devices, including de-

vices from Nest (e.g., Nest thermostat, Nest Cam, Nest Protect) as well as from other

brands (e.g., Wemo and Kasa switches, Google Home, MyQ Chamberlain garage door

opener) [143]. This section describes the key characteristics of Nest, i.e., its data store, its

access control model, and routines.

Data store composition: Figure 2.2 shows a simplified, conceptual view of the cen-

tralized data store in Nest. Note that the figure shows a small fraction of the true data

store, i.e., only enough to facilitate understanding. Nest implements the data store as a

JSON-format document divided into two main top-level sections: structures and devices.

A structure represents an entire smart home environment such as a user’s home or office,

and is defined by various state variables that are global across the smart home (e.g., Away

to indicate the presence or absence of the user in the structure and the postal_code to

indicate the home’s physical location). The devices are subdivided into device types (e.g.,

thermostats, cameras, smoke detectors), and there can be many devices of a certain type,

as shown in Figure 2.2. Each device stores its state in variables that are relevant to its type;

e.g., a thermostat has state variables for humidity, and target_temperature_c, whereas a
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camera has the variables is_online and is_streaming. Aside from these type-specific vari-

ables, devices also have certain variables in common; e.g., the alphanumeric device ID, the

structure ID of the structure in which the device is installed, the device’s user-assigned

name, and battery_health.

Access Control in Nest: Nest treats third-party apps, Web services, and devices that

want to integrate with a Nest-based smart home as “products”. Each Nest user account

has a specific data store assigned to it and any product that requests access to the user’s

data store needs to be first authorized by the user using OAuth 2.0. Nest defines read or

read/write permissions for each of the variables in the data store. Some variables, e.g.,

the list of all thermostats in the structure, are always read-only. A product that wants to

register with Nest must first declare the permissions that it needs (e.g., thermostat read,

thermostat read/write) in the Nest developer console. When connecting a product to Nest,

during the OAuth authorization phase, the user is shown the permissions requested by

the product. Once the user grants the permissions, a revocable access token is generated

specific to the product, the set of permissions requested, and the particular smart home to

which the product is connected. This token is used for subsequent interactions with the

data store.

Accessing the Nest data store: Devices and applications that are connected to a

particular smart home (i.e., the user’s Nest account) can update data store variables to

which they have access, and also subscribe to the changes to the state of the data store.

Nest uses the REST approach for these update communications, as well as for apps/devices

to modify the data store. The REST endpoints can be accessed through HTTPS by any

registered Nest products.

Routines in Nest: In Nest, the user cannot create or view routines in a centralized inter-

face (i.e., unlike SmartThings). Instead, apps may provide routines as opt-in features. For

example, the Nest smoke alarm’s smoke_alarm_state variable has three possible values,

“ok”, “warning”, and “emergency”. When this variable is changed to “warning”, other smart
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home products (e.g., Somfy Protect [224]) can be configured to trigger and warn the user.

2.1.3 Hue Background

Unlike Nest, which is a platform for heterogeneous devices, Philips Hue deals exclusively

with lighting devices such as lamps and bulbs. As a result, the centralized data store of

Philips Hue supports much simpler routines. Hue implements its data store as a JSON

document with sections related to (1) physical lighting devices, (2) semantic groups of these

devices, and (3) global config variables (such as whitelisted apps and the linkbutton). To

connect a third-party management app to a user’s existing Hue system, the app identifies a

Hue bridge connected to the local network, and requires the user to press a physical button

on the bridge. Once this action is completed by the user, the app receives a username token

that is stored in the whitelisted section of the Hue data store. Whitelisted apps can then

read and modify data store variables as dictated by Hue’s access control policy, which

grants all authorized apps the same access regardless of their purported functionality.

2.2 U.S. Federal Election Campaigns

Federal elections in the U.S. can be divided into two categories (termed ’regular elections’

from hereon): i) the Presidential election that elects the President, and ii) the Congres-

sional elections that elect the members of the Congress. The presidential election occurs

every four years while the congressional elections occur every two years. Further, the

US Congress is divided into two branches – the House of Representatives (termed simply

‘House’ from hereon), which consist of 435 voting members and six delegates, and the

Senate, which consist of 100 members. The members of the House and Senate serve terms

of two and six years respectively. Hence, all 435 members (and 6 delegates) of the House

get elected every two years while only a third members of the Senate get elected every

two years, as was the case in the 2020 election where 32 Senate seats and 441 House seats

(including six delegates) were contested.
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Outside of the regular elections that occur every two years, special elections are held

when there are vacancies for any Congressional seats before the regular elections. There

were 11 special elections in 2020: eight for House seats and three for Senate seats[20].

Furthermore, all the regular elections to the House, the Senate and the Presidency are

preceded by primary elections, where the political parties select a candidate that advances

to the regular elections [125]. The analysis in Chapter 5 incorporates the election cam-

paigns of all candidates (including those eventually elected) for both the Presidential and

Congressional elections of 2020, including special elections and primaries.

Finally, all candidates who raise/spend over $5000 must register their campaigns and

file financial reports with the Federal Election Commission (FEC) [63]. The FEC discloses

this information in a searchable database, including the state and district that a candidate

is registered in as well as the amount of money raised and spent [61]. In this work, we

treat the FEC database as the ground truth regarding the candidates participating in the

election.

2.3 Related Work

We now discuss prior work that are related to different parts of this dissertation work.

SSL analysis in apps: Smart home platforms are an extension of the new modern OS

paradigm, the security problems in smart home platforms are similar to prior modern OSes

(e.g., application over-privilege, incorrect enforcement). As a result, some of the same tech-

niques may be applied in detecting such problems, e.g., our work uses automated testing to

derive permission maps and compares the maps to the platform documentation, in a man-

ner similar to Felt et al.’s seminal evaluation of Android permission enforcement [64]. We

also leverage lessons from prior work on SSL misuse [60, 152, 172, 196] to perform the SSL

Analysis (Section 3.4.2) and the MiTM exploit (Section 3.5). The lack of transitivity in ac-

cess control that we observe is similar to prior observations on Android [65, 35, 132, 131];

however, the implications are different in the smart home. The novelty of our work is
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rooted in using lessons learned from prior research in modern OS and application secu-

rity to identify problems in popular but under-evaluated platforms such as Nest and Hue,

and moreover, in demonstrating the potential misuse of home automation routines for

performing lateral privilege escalation.

Security evaluation of Smart home platforms: While prior work analyzes IoT apps

to study the potential for adversarial misuse [51], our work is the first to demonstrate an

end-to-end lateral privilege escalation attack involving routines (Section 3.5). This focus

on adversarial misuse and a demonstrated end-to-end attack distinguishes our work from

closely-related work in smart home security, such as the security evaluation of the Smart-

Things platform and its apps by Fernandez et al. [66], and systems such as IoTSAN [144]

and the Soteria [33] that detect the side-effects of the concurrent execution of Samsung’s

SmartApps. Aside from our 11 novel findings (F1!F11), the value of our work is in its

holistic evaluation of home automation security, i.e., as we study the permission text arti-

facts, product review-based defenses, and the detrimental impact of platform evolution on

the feasibility of analysis.

In a similar vein as this work, prior work by Surbatovich et al. [201] has analyzed the se-

curity and privacy risks associated with IFTTT recipes, which are trigger-action programs

similar to routines. The key difference is that Surbatovich et al. examines the safety of

individual recipes, while our work explores routines that may be safe on their own (e.g.,

when home, turn off the Nest Cam), but which may be used as gadgets by attackers to

attack a high-integrity device from a low-integrity device. Our holistic analysis is com-

plementary to such per-routine analysis, as well as per-device security analysis performed

in prior work, such as Sukhvir et al.’s attack on the communication and authentication

protocols in Hue and Wemo [147], or Sivaraman et al.’s attack on the home’s firewall using

a malicious device on the network [187]).

Preventing API misuse in platforms: Much prior work in smart home security has fo-

cused on reducing the misuse of sensitive APIs, through improvements to the platform per-
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mission model (e.g., risk-based permissions [171], functionality-based enforcement [119]),

providing users with context of an API access (e.g., ContexIoT [110]), enforcing least

privilege using context from the app’s description (e.g., SmartAuth [212]), and, when

all else fails, forensic analysis by integrating fine-grained provenance tracking into apps

(e.g., ProvThings [217]). At first glance, the problem that we describe in Chapter 4 may

also seem to be one of over-privilege or API misuse; however, the approach of removing

privileges (or completely preventing third-parties from accessing Abstract Home Objects

(AHOs) (Chapter 4) would be impractical because several third-party integrations may

truly need access to AHOs, and denying them access may come at prohibitive usability

costs. Instead, our solution in Chapter 4, HomeEndorser, presents a more direct solution

to the lack of integrity for AHOs in the smart home. Hence, we assert that addressing

this problem as API misuse by retrofitting existing defenses would be both ineffective and

impractical.

Centralized smart home state modifications: An alternative to securing shared

states, as opposed to our solution in Chapter 4 is centralizing them and only allowing

trusted third parties to modify them, as Schuster et al. explore using “environmental situ-

ation oracles” [181] or ESOs. The ESO model aims to provide privacy (and not integrity),

i.e., to prevent several parties from persistently accessing the user’s private information

(e.g., location) to generate a shared state (e.g., home), by only allowing one dedicated

trusted app per shared state. The key difference between ESOs and our proposed solution

is that our approach does not require a trusted party to take upon itself the responsibility

of accurately generating the value for a shared state, which may introduce compatibility

issues by requiring a separate trusted app for every AHO to be approved by various stake-

holders such as users, platform vendors, and device vendors. Instead, our solution applies

an endorsement policy that sanity checks a proposed AHO change based on consistency

with expected device states.

Finally, a related problem of endorsing operations has also been explored in Android.
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Android devices contain many sensors (e.g., camera and microphone) that apps may use if

authorized. Android depends on users to authorize the sensors that apps may use, but a

malicious app may access a sensor at will once authorized [183]. To address this problem,

researchers have explored methods to endorse authorized sensor operations by comparing

the context of the sensor operation request to authorized contexts. For instance, user-

driven [176, 175] access control requires that applications use system-defined GUI gadgets

associated with particular operations to endorse the sensor operation associated with a

user input event unambiguously. The AWare [157] and EnTrust [156] systems permit

applications to choose their own GUI gadgets, but restrict applications to employ the

same GUI configuration (e.g, layout) to endorse a sensor operation. For IoT systems,

rather than GUI contexts, we find that state changes are associated with physical events,

enabling them to be endorsed based on properties of those physical events.

Election data and security analysis: The Internet Society has performed data protec-

tion, privacy, and security analysis of presidential campaigns since 2016 [106]. The 2020

audit was limited to 20 presidential campaigns, whereas our work covers a 2060 senate,

house, and presidential campaigns, and provides specific analysis of collected data-types

relative to privacy policies. Further, our email study builds upon Podob et al. [163]’s work,

which found evidence of sharing among campaigns and PACs. In addition to what Podob

et al. study, we also explore contradictions between a campaign’s sharing practice and

their privacy policy, and show the types of data being shared and the issues in disclosure

practices.

Consolvo et al. [44] conducted interviews with campaign personnels to understand their

security practices and perceptions about the use of digital assets, finding vulnerabilities

and risk due to this use. To safeguard against such vulnerabilities, various organizations

have outlined recommendations for campaigns [68, 150, 104, 67]. Our work instead focuses

on the campaign websites and complements prior work by outlining the gaps in privacy and

security posture of campaign websites. Finally, prior work [126] has also studied the de-
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ceptive and clickbait-oriented tactics in campaign email contents to incentivize interaction.

We instead seek to understand how the campaign websites collect the contact information

(including email) of the users, and how its use and sharing is disclosed to the users.

Targeted ads, profiling using social media: Prior work has focused on the privacy

impact of social-media based voter profiling and targeted advertising, especially following

the Cambridge Analytica scandal [108][180][92][177]. Additionally, prior research has ana-

lyzed the impact of voter profiling through big data on election outcomes [75] and tried to

predict election results based on user activities collected from twitter [195][72]. In contrast,

our work focuses on campaign websites and user data that is collected directly through

that medium by the campaigns, rather than targeted advertising through social media.

Further, prior work has also raised concerns about voter privacy in the age of online polit-

ical campaigning [115, 98]. We build upon such concerns and study the privacy impact of

political campaigns through the overall privacy posture of their websites.

Privacy policy analysis: Prior work has analyzed various aspects of privacy policies such

as their availability in mobile apps [27, 231, 87, 48], readability and comprehension [128, 28,

109], as well as analyzing their vagueness [18, 24, 88], consent and opt-out choices [179, 151],

contradictions [17, 46, 228, 88], and regulatory compliance [27, 28]. Our work instead

focuses solely on the privacy policy availability of campaign websites and performs a semi-

automated analysis on the policy text to glean disclosed data objects, for which we leverage

past works (e.g., Polisis [88]) where appropriate.
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Chapter 3

Exploring the Security of Data

Store-Based Home Automation

Internet-connected, embedded computing objects known as smart home products have

become extremely popular with consumers. The utility and practicality afforded by these

devices has spurred tremendous market interest, with over 20 billion smart home products

projected to be in use by 2020 [71], with an estimated market revenue of 43 billion USD

by 2025 [198]. The diversity of these products is staggering, ranging from small physical

devices with embedded computers such as smart locks and light bulbs, to full fledged

appliances such as refrigerators and HVAC systems. In the modern computing landscape,

smart home devices are unique as they provide an often imperceptible bridge between

the digital and physical worlds by connecting physical objects to digital services via the

Internet, allowing the user to conveniently automate their home. However, because many

of these products are tied to the user’s security or privacy (e.g., door locks, cameras), it

is important to understand the attack surface of such devices and platforms, in order to

build practical defenses without sacrificing utility.

As the market for smart home devices has continued to mature, a new software paradigm

has emerged to enable home automation via the interactions between smart home devices

and the apps that control them. These interactions may be expressed as routines, which
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are sequences of app and device actions that are executed upon one or more triggers, i.e.,

an instance of the trigger-action paradigm in the smart home. Routines are the building

block of home automation [204, 209, 58, 166], and hence, it is natural to leverage routines

to characterize existing platforms.

If we categorize available platforms based on how routines are facilitated, we ob-

serve two broad categories: (1) API-based Smart Home Managers such as Yeti [226],

Yonomi [227], IFTTT [101], and Stringify [200] that allow users to chain together a diverse

set of devices using APIs exposed by device vendors, and (2) platforms such as Google’s

Works with Nest [141], Samsung SmartThings [192], and Philips Hue [160] that leverage

centralized data stores to monitor and maintain the states of IoT devices. We term these

platforms as Data Store-Based (DSB) Smart Home Platforms. In DSB platforms, complex

routines are executed via reads/writes to state variables in a central data store. We discuss

the characteristics and architecture of DSB platforms in Chapter 2.

Key observations: This work is motivated by a key observation that while routines

are supported via centralized data stores in all DSB platforms, there are differences in

the manner in which routines are created, observed, and managed by the user. That

is, SmartThings encourages users to take full control of creating and managing routines

involving third-party apps and devices via the SmartThings app. On the other hand, in

Nest, users do not have a centralized perspective of routines at all, and instead, manage

routines using third-party apps/devices. This key difference may imply unique security

challenges for Nest. Similarly, being a much simpler platform within this category of DSB

platforms, Hue represents another unique and interesting instance of the DSB platform

paradigm.

Contributions in this Chapter: In this chapter, to answer RQ1, we perform a sys-

tematic security analysis of some of the less studied, but widely popular, data store-based

smart home platforms, i.e., Nest and Hue. In particular, we evaluate (1) the access control

enforcement in the platforms themselves, (2) the robustness of other non-system enforce-
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ment (e.g., product reviews in Nest), (3) the use, and more importantly, the misuse of

routines via manipulation of the data store by low-integrity devices,1 and finally, (4) the

security of applications that integrate into these platforms.

To our knowledge, this work is the first to analyze this relatively new class of smart

home platforms, in particular the Nest and Hue platforms, and to provide a holistic analysis

of routines, their use, and potential for their misuse in DSB platforms. Moreover, this work

is the first to analyze the accuracy of app-defined permission descriptions and prompts,

which provide highly critical context to the user. Furthermore, we provide a detailed

account of our vulnerability disclosure experience with four separate vendors, and discover

that certain vulnerabilities may not always be fixable. Finally, we study the ramifications

of platform evolution on the transparency and artifacts required for security analysis. In

doing so we not only discover concrete problems in DSB platforms, but also use empirical

analysis to reveal challenges for feasibly performing similar research studies in the near

future. Our novel findings (F1!F11) are summarized as follows:

• Misuse of routines – The permission model in Nest is fine-grained and enforced accord-

ing to specifications (F1), giving low-integrity third-party apps/devices (e.g., a switch)

little room for directly modifying the data store variables of high-integrity devices (e.g.,

security cameras). However, routines supported by Nest allow low-integrity devices/apps

to indirectly modify the state of high-integrity devices, by modifying the shared variables

they rely on (F4).

• Lack of systematic defenses – Nest does not employ transitive access control enforce-

ment to prevent indirect modification of security-sensitive data store variables; instead,

it relies on a product review of application artifacts before allowing API access. We

discover that the product review process is insufficient and may not prevent malicious

exploitation of routines; i.e., the review mandates that apps prompt the user before

modifying certain variables, but does not validate what the prompt contains, allowing
1In the context of our study, we define a device as high-integrity if it is advertised as security-critical by

the device vendor (e.g., Nest Cam) while those that are not security-critical are referred to as low-integrity
(e.g., Philips Hue lamp).
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apps to deceive users into providing consent (F5). Moreover, permission descriptions

provided by apps during authorization are also often incorrect or misleading (F6, F9),

which demonstrates that malicious apps may easily find ways to gain more privilege than

necessary (F7), circumventing both users and the Nest product review (F8).

• Lateral privilege escalation – We find that smart home apps, particularly those that

connect to Nest and have permissions to access security-sensitive data store variables,

have a significantly high rate of SSL vulnerabilities (F10). We combine these SSL flaws

with the findings discussed previously (specifically F4!F9) and demonstrate a novel

form of a lateral privilege escalation attack. That is, we compromise a low-integrity app

that has access to the user’s Nest smart home (e.g., a TP Link Kasa switch), use the

compromised app to change the state of the data store to trigger a security-sensitive

routine, and indirectly change the state of a high-integrity Nest device (e.g., the Nest

security camera). This attack can be used to deceive the Nest Cam into determining

that the user is home when they are actually away, effectively disabling it.

• Lack of bare minimum protections – Unlike Nest, the access control enforcement

of Hue is woefully inadequate. Third-party apps that have been added to a user’s

Hue platform may arbitrarily add other apps without user consent, despite an existing

policy that the user must consent to by physically pressing a button (F2). Making

matters worse, an app may remove other apps integrated with the platform by exploiting

unprotected data store variables in Hue (F3). These vulnerabilities may allow an app

with seemingly useful functionality (i.e., a Trojan [118]) to install malicious add-ons

without the user’s knowledge, and replace the user’s integrated apps with malicious

substitutes. While repeating our experiments on a version of Hue updated to address

these issues, we discover that Hue’s mitigation is only partially successful (F11).

The rest of the chapter is structured as follows: Section 2.1 describes the key attributes

of DSB platforms. Section 3.1 provides an overview of our security evaluation, and Sec-

tions 3.2!3.4 describe our individual analyses. Section 3.5 demonstrates an end-to-end
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attack, and Section 3.6 provides a detailed account of the vendors’ response to our findings.

Section 3.7 describes our empirical study of the feasibility of our security analyses with

6 additional smart home platforms. Section 2.3 describes the related work. Section 3.8

concludes with lessons learned.

3.1 Overview of Analysis in this Chapter

This work analyzes the security of home automation platforms that rely on centralized

data stores (i.e., DSB platforms). Third-party apps are the security principals on such

platforms, as they are assigned specific permissions to interact with the integrated devices.

That is, as described in Section 2.1, DSB platforms consist of (1) third-party apps that

interact with the smart home (i.e., centralized data store and devices) by acquiring (2)

platform permissions, and execute a complex set of such interactions as (3) trigger-action

routines. Our analysis methodology takes these three aspects into consideration, starting

with platform permissions, as follows:

A. Analysis of Platform Permissions (Section 3.2): We analyze the enforcement of

platform permissions/access control to discover inconsistencies by automatically building

permission maps.

B. Analysis of Routines (Section 3.3): While analyzing permission enforcement shows

us what individual devices can accomplish with a certain set of permissions, we perform

an experimental analysis with real devices to identify the interdependencies among devices

and apps through the shared data model, and the ramifications of such interdependencies

on the user’s security. Additionally, Nest does not enforce transitive access control to

prevent dangerous side-effects of routines, but instead employs a product review process

as a defense mechanism. We analyze the effectiveness of this review process using the

permission prompts used by existing apps as evidence.

C. Analysis of Third-party Apps (Section 3.4): We analyze the permission descrip-
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tions presented by mobile apps compatible with Nest to identify over-privileged apps, or

apps whose permission descriptions are inconsistent with the permission requested. We

then analyze the apps for signs of SSL misuse, which we will further leverage to indirectly

exploit security critical devices.

We combine the findings from these three analyses to demonstrate an instance of a

lateral privilege escalation attack in a smart home (Section 3.5). That is, we demonstrate

how an attacker can compromise a low-integrity device/app integrated into a smart home

(e.g., a light bulb), and use routines to perform protected operations on a high-integrity

product (e.g., a security camera).

3.2 Evaluating Permission Enforcement

The centralized data store described in Section 2.1 may contain variables whose secrecy or

integrity is crucial; e.g., unprotected write access to the web_url field of the camera may

allow a malicious app to launch a phishing attack, by replacing the URL in the field with

an attacker-controlled one. To understand if appropriate barriers are in place to protect

such sensitive variables, we perform an analysis of the permission enforcement in Nest and

Hue.

Our approach is to generate and analyze the permission map for each platform, i.e., the

variables that can be accessed with each permission, and inversely, the permissions needed

to access each variable of the data store. Note that while this information should ideally be

available in the platform documentation, prior analysis of similar systems has demonstrated

that the documentation may not always be complete or correct in this regard [64, 66].

3.2.1 Generating Permission Maps

We generate the permission map using automated testing as in prior work on Android [64].

We use two separate approaches for Nest and Hue, owing to their disparate access control

models.
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Approach for Nest: We first created a simulated home environment using the Nest

Home Simulator [142], and linked our Nest user account to this simulated smart home.

We then created our test Android app, and connected our test app to the simulated home

(i.e., our Nest user account) as described in Section 2.1.2. Note that the simulated smart

home is virtually identical to an end-user’s setup, such that real devices may be added to

it. Using the simulator allows us to investigate the data store information of Nest devices

(e.g., the Smoke/CO detector) that we may not have installed.

In order to generate a complete view of the data store, we granted our test app all of the

15 permissions in Nest (e.g.,Away read/write, Thermostat read), and read all accompanying

information. To build the permission map for Nest’s 15 permissions, we created 15 apps,

such that each app requested a single unique permission, and registered these apps to our

developer account in the Nest developer console. Note that we do not test the effect of

permission combinations, as our goal is to test the enforcement of individual permissions,

and Nest’s simple authorization logic simply provides an app with a union of the privileges

of the individual permissions.

We then connected each of the 15 apps to our Nest user account using the procedure

described in Section 2.1.2. We programmed each app to attempt to read and write each

variable of the data store (i.e., the previously derived complete view). We recorded the

outcome of each access, i.e., if it was successful, or an access control denial. In the cases

where we experienced non-security errors writing to data store variables (e.g., writing data

with an incorrect type), we revised our apps and repeated the test. The outcome of this

process was a permission map, i.e., the mapping of each permission to the data store

variables that it can read and/or write.

Approach for Hue: We followed the procedure for Hue described in Section 2.1.3 to get

a unique token that registers our single test app with the data store of our Hue bridge.

In Hue, all the variables of the data store are “readable” (i.e., we verified that all the

variables described in the developer documentation [160] can be read by third-party apps).
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Therefore, to build the permission map, we first extracted the contents of the entire data

store. Then, for each subsection within the data store, our app made repeated write

requests, i.e., PUT calls with the payload consisting of a dummy value based on the

variable type (i.e., String, Boolean and Integer). All the variables that were successfully

written to using this method were assigned as “writable” variables. Similarly, our app made

repeated DELETE calls to the API and the variables that were successfully deleted were

assigned as “writable” variables. This generated permission map applies to all third-party

apps connected to Hue, since the platform provides equal privilege to all third-party apps.

3.2.2 Analyzing Permission Maps

The objective behind obtaining the permission map is to understand the potential for

application overprivilege, by analyzing the granularity as well as the correctness of the

enforcement. We analyze the permission map to identify instances of (1) coarse-grained

permissions, i.e., permissions that give the third-party app access to a set of security-

sensitive resources that must ideally be protected under separate permissions, and (2)

incorrect enforcement, i.e., when an app has access to more resources (i.e., state variables)

than it should have given its permission set, as per the documentation; e.g., apps on

SmartThings may lock/unlock the door lock without the explicit permission required to

do so [66].

To perform this analysis, we first identified data store variables that may be security

or privacy-sensitive. This identification was performed using an open-coding methodology

by one author, and separately verified by another author, for each platform. We then

performed further analysis by separately considering each such variable, and the permis-

sion(s) that allow access to it. A major consideration in our analysis is the security impact

of an adversary being allowed read or read/write access to a particular resource. More-

over, our evaluation of the impact of the access control enforcement was contextualized

to the platform under inspection. That is, when evaluating Nest, we took into considera-

tion the semantic meaning and purpose of certain permissions in terms of the data store
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variables, as described in the documentation (e.g., that the Away read/write permission

should be required to write to the away variable [135]). For Hue, we only considered the

security-impact of an adversary accessing data store variables. Our rationale is that the

Hue platform defines the same static policy (i.e., same permissions) for all third-party

apps, and hence, its permission map can be simply said to consist of just one permission

that provides access to a fixed set of data store variables. As a result, we judge application

over-privilege in Hue by considering the impact of an adversarial third-party app reading

from or writing to each of the security-sensitive variables identified in Hue’s permission

map.

The creation of the permission maps for both Nest and Hue requires the application

of well-studied automated testing techniques, and as such, can be replicated for similar

platforms, with minor changes to input data (e.g., the permissions to test for).

3.2.3 Permission Enforcement Findings (F1 ! F3)

Finding 1: The permission enforcement in Nest is fine-grained and correctly

enforced, i.e., as per the specification (F1). We observe that the Nest permission map

is significantly more fine-grained, and permissions are correctly enforced, relative to the

observations of prior research in similar platforms (e.g., the analysis of SmartThings [66]).

Some highly sensitive variables are always read-only (e.g., the web_url where the camera

feed is posted), and there are separate read and read/write permissions to access sensitive

variables. Variables that control the state of the entire smart home are protected by dedi-

cated permissions that control write privilege; e.g., the away variable can only be written

to using the Away read/write permission, the ETA variable has separate permissions for

apps to read and write to it (i.e., ETA read and ETA write), and the Nest Cam can only

be turned on/off via the is_streaming variable, using the Camera + Images read/write

permission that controls write access to it. Moreover, since many apps need to respond to

the away variable (i.e., react when the user is home/away), device-specific read permis-

sions (e.g., Thermostat read, Smoke + CO read) also allow apps to read the away variable,
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eliminating the need for apps to ask for higher-privileged Away read permission. The sep-

arate read and read/write permissions are correctly enforced, i.e.,our generated permission

map provides the same access as is defined in the Nest permission documentation [135].

This is in contrast with findings of similar analyses of permission models in the past (e.g.,

the Android permission model [64], SmartThings [66]), and demonstrates that the Nest

platform has incorporated lessons from prior work in permission enforcement.

Finding 2: In Hue, the access control policy allows apps to bypass the user’s

explicit consent (F2). We discovered two data store variables that were not write-

protected, and which have a significant part to play in controlling access to the data

store and the user’s smart home. First, any third-party app can write to the linkbutton

flag. Recall from Section 2.1.3 that the user has to press the physical button on the Hue

bridge device to authorize an app’s addition to the bridge. The physical button press

changes the linkbutton value to “true”, and allows the app to be added to the whitelist of

allowed third-party apps. However, we discovered that once installed, an app can toggle

the linkbutton variable at will, enabling third-party apps to add other third-party apps to the

smart home without the user’s consent. This exploitable access control vulnerability can

allow an app with seemingly useful functionality to install malicious add-ons by bypassing

the user altogether. In our tests, we verified this attack with apps that were connected to

the local network. This condition is feasible as a malicious app that needs to be added

without the user’s consent may not even have to pretend to work with Hue; all it needs is

to be connected to the local network (i.e., a game on the mobile device from one of the

people present in the smart home). Note that it is also possible to remotely perform this

attack, which we discuss in Section 3.6 (F11).

Finding 3. In Hue, third-party apps can directly modify the list of added

apps, adding and revoking access without user consent (F3). Hue stores the

authorization tokens of apps connected to the particular smart home in a whitelist on the

Hue Bridge device. While analyzing the permission map, we discovered that not only
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could our third-party test app read from this list, it could also directly delete tokens from

it. We experimentally confirmed this finding again, by removing Alexa and Google Home

from the smart home, without the user’s consent. An adversary could easily combine

this vulnerability with (F2), to remove legitimate apps added by the user, add adversary-

controlled apps (i.e., by keeping the linkbutton “true”), all without the user’s consent. More

importantly, users do not get alerts when such changes are made (i.e., since it is assumed

that the enforcement will correctly acquire user consent). Hence, unless the user actually

checks the list of integrated apps using the Hue Web app, the user would not notice these

changes.

While the Nest permission model is robust in its mapping of data store variables and

permissions required to access them, Section 3.3 demonstrates how fields disallowed by

permissions may be indirectly modified via strategic misuse of routines, and describes

Nest’s product review guidelines to prevent the same [137]. Section 3.4 describes how badly

written and overprivileged apps escape these review guidelines, and motivate a technical

solution.

3.3 Evaluating Smart Home Routines

Prior work has demonstrated that in platforms that favor application interoperability but

lack transitive access control enforcement, problems such as confused deputy and applica-

tion collusion may persist [65, 35, 132, 131]. Smart homes that facilitate routines are no

different, but the exploitability and impact of routines on smart homes is unknown, which

motivates this aspect of our study.

Recall that routines are trigger-action programs that are either triggered by a change

in some variable of the data store, or whose action modifies certain variables of the data

store. While both Nest and Hue share this characteristic, routines in Hue are fairly limited

in scope, and their exploitation is bound to only affect the lighting of the smart home. As

a result, the security analysis in this section is focused on the heterogeneous Nest platform

that facilitates more diverse routines.
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3.3.1 Methodology for the Analysis of Routines

While using the simulator as described in Section 3.2 allows us to understand what routines

are possible on the platform, i.e., what variables might be manipulated, and what Nest

devices (e.g., the Nest Cam, Nest Thermostat) are affected as a result, we performed

additional experiments with real apps and devices to study existing routines in the wild.

For this experiment, we extended the smart home setup previously discussed in Section 3.2

with real devices.

We started by collecting a list of devices that integrate with Nest from the Works with

Nest website [143]. Using this initial list and information from the website, we purchased

a set of 7 devices that possessed a set of characteristics relevant to this study, i.e., devices

that (1) take part in routines (i.e., as advertised on the website), (2) are important for the

user’s security or privacy, and (3) are widely-known/popular with a large user base (i.e.,

determined by the number of installs of the mobile client on Google Play). We obtained

a final list of devices (7 real and 2 simulated) to our Nest smart home, namely, the Nest

Cam (i.e., a security camera), Hue light bulb, Belkin Wemo switch, the MyQ Chamberlain

garage door opener, TP Link Kasa Smart Plug, Google Home, Alexa, Nest Thermostat

(simulated), and the Nest Protect Smoke & CO Alarm (simulated). Some security-sensitive

devices did not participate in routines at the time of the study, and hence were excluded

from our final device list.

We connected these devices to our Nest smart home using the Android apps provided

by device vendors, and connected a small set of smart home managers (e.g., Yeti [226]

and Yonomi [227]) to our Nest smart home as well. For each device, we set up and

executed every routine described on the Works with Nest as well as on the device vendor’s

website, and observed the effects on the rest of the smart home (especially, security-sensitive

devices). Also, we manipulated data store variables from our test app, and observed the

effects on previously configured routines and devices.
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3.3.2 Smart Home Routine Findings (F4 ! F5)

Finding 4. Third-party apps that do not have the permission to turn on/off

the Nest Cam directly, can do so by modifying the away variable (F4). The Nest

Cam is a home monitoring device, and important for the users’ security. The is_streaming

variable of the Nest Cam controls whether the camera is on (i.e., streaming) or off, and can

only be written to by an app with the permission Camera r/w. The Nest Cam provides a

routine as a feature, which allows the camera to be automatically switched on when the

user leaves the home (i.e., when the away variable of the smart home is set to “away”),

and switched off when the user returns (i.e., when away is set to “home”). Leveraging

this routine, third-party apps such as the Belkin Wemo switch can manipulate the away

field, and indirectly affect the Nest Cam, without having explicit permission to do so. We

tested this ability with our test app (see Section 3.2) as well, which could indirectly switch

the camera on and off at will. This problem has serious consequences; e.g., a malicious

test app with the away r/w permission may set the variable to “home” when the user is

away to prevent the camera from recording a burglary. The key problem here is that a

low-integrity device/app can trigger a change in a high-integrity device indirectly, i.e., by

modifying a variable it relies on, which is an instance of the well-known information flow

integrity problem. Moreover, this is not the only instance of a high-integrity routine that

relies on away; e.g., the Nest x Yale Lock can lock automatically when the home changes

to away mode [223].

Nest has a basic defense to prevent such issues: application design policies that apply

to apps with more than 50 users [137]. App developers are required to submit their app

for a product review to the Nest team once the app reaches 50 users, and a violation of

the rather strict and detailed review guidelines can result in the app being rejected from

using the Nest API. One of the review policies (i.e., specifically policy 5.8) states that

“Products that modify Home/Away state automatically without user confirmation or direct

user action will be rejected.” [137]. Nest users may be vulnerable in spite of this defense,
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Figure 3.1: The Keen Home app asks the user to modify the thermostat’s mode, but in reality,
this action leads to the entire smart home being set to “home” mode, which affects a number of
other devices.

for two reasons. First, as attacking a smart home is an attack on a user’s personal space,

it is feasible to assume that most attacks that exploit routines will be targeted (e.g., to

perform burglaries). Assuming that the adversary can use social engineering to get the

user to connect a malicious app to their Nest setup, a targeted attack on a specific user

will succeed in spite of the policy, as the app would be developed solely for the targeted

user and hence will have <50 users, and be exempt from the Nest product review. Second,

it is unclear how apps are checked against this policy; our next finding demonstrates a

significant omission in Nest’s review.

Finding 5. Nest’s product review policies dictate that the apps must prompt

users before modifying away , but there is no official constraint on what the

prompt may display (F5). Consider an example in Figure 3.1, which shows one such

prompt by the Keen Home app [222] when the user tries to change the temperature of

the thermostat. That is, when the user tries to change the temperature of the thermostat

while the away variable is set to “away”, the app requires us to change it to “home” before

the thermostat temperature can be changed. This condition is entirely unnecessary to

change the temperature. More importantly, it presents the prompt to the user in a way

that states that the home/away modes are specific to the HVAC alone. This is in contrast

to the actual functionality of these modes, in which a change to the away variable affects

the entire smart home; i.e., we confirmed that the Nest Cam gets turned off as well once
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we agree to the prompt. It is important to note that the Keen Home app has successfully

passed the Nest product review, and has over 1000 downloads on Google Play [81]. This

case demonstrates that the Nest product review does not consider the contents of the

prompt, and a malicious app may easily misinform the user and make them trigger the

away variable to the app’s advantage. Finally, in Section 3.4.1 we demonstrate that the

problem of misinforming the user is not just limited to runtime prompts described here,

but extends to application-defined install-time permission descriptions (F6!F9).

3.4 Security Analysis of Nest Apps
In this Section, we investigate the third-party apps integrated with Nest. Unlike prior

work [66], we not only report the permissions requested by apps, but also analyze the

permission descriptions displayed to the user at install-time. Additionally, we analyze the

rate of SSL misuse by both general smart home management apps as well as apps integrated

with Nest. For this section, we do not consider the Hue platform as it has a limited

ecosystem of apps as compared to Nest. We derived two datasets to perform the analyses

that we describe in this section, the Appsgeneral dataset, which contains 650 smart home

management apps extracted from Google Play, and the Appsnest dataset, which includes

39 apps that integrate into the Nest platform (out of the total 130 Works with Nest apps,

i.e., 30%). Thus, while we cannot say that our analysis and findings (F6!F9) generalize

to all the apps compatible with Nest, they certainly apply to a significant minority (i.e.,

30%).

3.4.1 Application Permission Descriptions

In the Nest platform, developers provide permission descriptions that explain how an

app uses a permission while registering their apps in the Nest developer console. These

developer-provided descriptions are the only direct source of information available to the

user to understand why an app requires a particular permission, i.e., Nest itself only

provides a short and generic permission “title” phrase that is displayed to the user along
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with the developer-defined description (e.g., for Thermostat read, the Nest phrase is “See

the temperature and settings on your thermostat(s)”). Owing to their significant role in

the user’s understanding of the permission requirements, we analyze the correctness of such

developer-defined descriptions relative to the permissions requested.

3.4.1.1 Analysis Methodology

As described in Section 2.1, upon registering permissions at the developer console, devel-

opers are granted an OAuth URL that they can direct the user to for obtaining an access

token. As a result, permissions are not encoded in the client mobile app or Web app (i.e.,

unlike Android), which makes the task of extracting permissions difficult. However, we

observe that the permissions that an app asks for are always displayed to the user for

approval (i.e., when first connecting an app to their Nest smart home using OAuth). We

leverage this observation to obtain permissions dynamically, i.e., by executing apps to the

point of integrating them with our Nest smart home, and recording the permission prompt

displayed for the user’s approval.

3.4.1.2 Nest App Findings (F6!F9)

The two permissions that dominate the permission count are Away read/write and Ther-

mostat read/write, requested by 20 and 24 apps respectively, from the Appsnest dataset.

Our specific findings from this analysis are as follows:

Finding 6. A significant number of apps provide incorrect permission descrip-

tions, which may misinform users (F6). As shown in Table 3.1, we found a total of

15 permission description violations in 13/39 apps from the Appsnest dataset. We classify

these incorrect descriptions into four violation categories (i.e., VC1 ! VC4), based on

the specific manner in which they misinform the user, such as requesting more privileges

than required for the described need (e.g., read/write permissions when only reading is

required), or misrepresenting the effect of the use of the permission (e.g., stating Away as

affecting only the thermostat). That is, over 33.33% of the apps we could integrate have

violating permission descriptions.
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Figure 3.2: An example from the Nest documentation on OAuth authorization [136] that displays
a permission description violation (specifically, VC1) for the Away r/w and Camera + images r/w

permissions. The developer’s permission description indicates that the FTL Lights only need to
read data store variables, in both cases.

Finding 7. In most cases of violations, apps request read/write permissions

instead of read (F7). In nine cases, apps request the more privileged read/write ver-

sion of the permission, when they should have clearly requested the read version, as per

their permission description (i.e., VC1 in Table 3.1). For example, consider the “MyQ

Chamberlain” app (Table 3.1, entry 3), which asks for the thermostat read/write permis-

sion, but whose description only suggests the need for the thermostat read permission,

i.e., “Allows Chamberlain to display your Nest Thermostat temperature in the MyQ app”.

More importantly, a majority of the violations of this kind occur for the Away read/write

and Camera+Images read/write permissions, which may have serious consequences if these

overprivileged apps are compromised, i.e., as Away read/write regulates control over in-

dicating whether a user is at home or out of the house, and Camera+Images read/write

may allow apps to turn off the Nest cam via the is_streaming variable. These violations

exist in spite of Nest guidelines that mention the following as a Key Point: “Choose ‘read’

permissions when your product needs to check status. Choose ‘read/write’ permissions to

get status checks and to write data values.” [135]. Finally, we found that the Nest docu-

mentation may itself have incorrect instructions, e.g., the Nest’s documentation on OAuth

2.0 authentication [136] shows an example permission prompt that incorrectly requests the

Away read/write permission while only needing read access, i.e., with the description “FTL

Lights turn off when the room is empty”, as shown in the Figure 3.2.
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Finding 8. The Nest product review is insufficient when it comes to reviewing

the correctness of permission descriptions and requests by apps (F8). The

Nest product review suggests the following two rules, violating which may cause apps to

be rejected: (1) “3.3. Products with names, descriptions, or permissions not relevant to

the functionality of the product”, and (2) “3.5. Products that have permissions that don’t

match the functionality offered by the products” [137]. Our findings demonstrate that the 16

violations discovered violate either one or both of these rules (e.g., by requesting read/write

permissions, when the app only requires read). The fact that the apps are still available

suggests that the Nest product review may not be rigorously enforced, and as a result,

may be insufficient in protecting the attacks discovered in Section 3.3.

Finding 9. Apps often incorrectly describe the Away field as a local field of

the Nest thermostat, which is misleading (F9). One example of this kind (VC2 in

Table 3.1) is the Keen Home app described in Section 3.3 (Table 3.1. entry 12), which

states that it needs Away read/write in order to “Allow Smart vent to read the state of

your Thermostat and change the state from Away to Home”. As a result, Keen Home

misrepresents the effect and significance of writing to the Away field, by making it seem

like Away is a variable of the thermostat, instead of a field that affects numerous devices in

the home. Gideon and Muzzley (entries 10 and 11 in Table 3.1) exhibit a similar anomaly.

Our hypothesis is that such violations occur because Nest originally started as a smart

thermostat that gradually evolved into a smart home platform. Finally, in addition to

misleading descriptions classified as VC1 and VC2, we discovered apps whose permission

descriptions did not relate to the permissions requested (VC4), and apps whose descriptions

satisfied both VC1 and VC2 (VC3).

The accuracy of permission descriptions is important, as the user has no other source

of information upon which to base their decision to trust an app. Nest recognizes this, and

hence, makes permissions and descriptions a part of its product review. The discovery of

inaccurate descriptions not only demonstrates that apps may be overprivileged, but also
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that Nest’s design review process is incomplete, as it puts all its importance on getting the

user’s consent via permission prompts (e.g., in Findings 5!9), but not on what information

is actually shown.

3.4.2 Application SSL Use

The previous section demonstrated that smart home apps may be overprivileged in spite

of a dedicated product review. An adversary may be able to compromise the smart home

by exploiting vulnerabilities in such overprivileged apps. Thus, we decided to empirically

derive an estimate of how vulnerable smart home apps are in terms of their use of SSL

APIs, an important attack surface.

We used two datasets for this experiment, i.e., the Appsgeneral dataset consisting of 650

generic smart home (Android) apps crawled from Google Play, and an extended version

of the Appsnest dataset, i.e., the AppsnestExt dataset, which consists of 111 Android apps

built for Works with Nest devices (i.e., including the ones for which we do not possess

devices). We analyzed each app from both the datasets using MalloDroid [60], to discover

common SSL flaws.

Finding 10. A significant percentage of general smart home management apps,

as well as apps that connect to Nest have serious SSL vulnerabilities (F10).

20.61% (i.e., 134/650) of the smart home apps from the Appsgeneral dataset, and 19.82%

(i.e., 22/111) apps from the AppsnestExt dataset, have at least one SSL violation as flagged

by MalloDroid. Specifically, in the AppsnestExt dataset, the most common cause of an SSL

vulnerability is a broken TrustManager that accepts all certificates (i.e., 20 violations),

followed by a broken HostNameVerifier that does not verify the hostname of a valid cer-

tificate (i.e., 11 violations). What is particularly worrisome is that apps such as MyQ

Chamberlain and Wemo have multiple SSL vulnerabilities as well as the Away read/write

permission. Next, we demonstrate an end-to-end attack on the Nest security camera, using

one of the SSL vulnerabilities discovered from this analysis, and the NestAway read/write

permission.
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3.5 Lateral Privilege Escalation

While our findings from the previous sections are individually significant, we demonstrate

that they can be combined to form an instance of a lateral privilege escalation attack [162],

in the context of smart homes. That is, we demonstrate how an adversary can compromise

one product (device/app) integrated into a smart home, and escalate privileges to perform

protected operations on another product, leveraging routines configured via the centralized

data store.

This attack is interesting in the context of smart homes, because of two core assump-

tions that it relies on (1) low-integrity (or non-security) smart home products may be easier

to directly compromise than high-integrity devices such as the Nest Cam (i.e., none of the

SSL vulnerabilities in F10 were in security-sensitive apps), and (2) while low-integrity de-

vices may not be able to directly modify the state of high-integrity devices (F1), they may

be able to indirectly do so via automated routines triggered by global smart home variables

(F4). (3) Moreover, since the low-integrity device is not being intentionally malicious, but

is compromised, the product review process would not be useful, even if it was effective

(which it is not, as demonstrated by F5!F9). This last point distinguishes a lateral priv-

ilege escalation from actions of malicious apps that trigger routines (e.g., the “fake alarm

attack” discussed in prior work [66]). These conditions make lateral privilege escalation

particularly interesting in the context of smart home platforms.

Attack Scenario and Threat Model: We consider a common man-in-the-middle (MiTM)

scenario, similar to the SSL-exploitation scenarios that motivate prior work [60, 172]. Con-

sider Alice, a smart home user who has configured a security camera to record when she is

away (i.e., using the away variable in the centralized data store). Bob is an acquaintance

(e.g., a disgruntled employee or an ex-boyfriend) whose motive is to steal a valuable from

Alice’s house without being recorded by the camera. We assume that Bob also knows that

Alice uses a smart switch in her home, and controls it via its app, which is integrated with

Alice’s smart home. Bob follows Alice, and connects to the same public network (e.g., a
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Listing 3.1: The Kasa app’s unencrypted GET request.
1 {"data":{"uri":"com.tplinkra.iot.authentication.impl.RetrieveAccountSettingRequest"},
2 "iotContext":
3 {"userContext":{"accountToken":"<anonymized alphanumeric token>",
4 "app":{"appType":"Kasa_Android"},
5 "email":"<anonymized>",
6 "terminalId":"<anonymized>"}}, ...

coffee shop), sniffs the access token sent by the switch’s app to its server using a known

SSL vulnerability in the app, and then uses the token to directly control the away variable.

Setting the away to “home” confuses the security camera into thinking that Alice is at

home, and it stops recording. Bob can now burglarize the house without being recorded.

The Attack: The example scenario described previously can be executed on a Nest smart

home, using the Nest Cam and the TP Link Kasa switch (and the accompanying Kasa

app). We compromise the SSL connection of Kasa app, which was found to contain a

broken SSL TrustManager in our analysis described in Section 3.4. We choose Kasa app

as it requests the sensitive Away read/write permission, and has a sizable user base (1M+

downloads on Google Play [80]). It is interesting to note that the Kasa app has also passed

the Nest product review process and is advertised on the Works with Nest website [140],

but can still be leveraged to perform an attack. We use bettercap [23] as a MiTM proxy to

intercept and modify unencrypted data. Additionally, as described in the attack scenario,

we assume that (1) the victim’s Nest smart home has the Nest Cam and the Kasa switch

installed, (2) the popular routine which triggers the Nest Cam to stop recording when the

user is home is enabled, and (3) the user connects her smartphone to a network to which

the attacker has access (e.g., coffee shop, office), which is a common assumption when

exploiting SSL-misuse [60, 172].

The attack proceeds as follows: (1) The user utilizes the Kasa app to control the

switch, while the user’s mobile device is connected to public network. (2) The attacker

uses a MiTM proxy to intercept Kasa app’s attempt to contact its own server, and supplies

the attacker’s certificate to the app during the SSL handshake, which is accepted by the
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Kasa app due to the faulty TrustManager. (3) The Kasa app then sends an authorization

token (see Listing 3.1) to the MiTM proxy (i.e., assuming it is the authenticated server),

which is stolen by the attacker. This token authorizes a particular client app to send

commands to the TP Link server. (4) Using the stolen token, the attacker instructs the

TP Link server to set the smart home’s away variable to “home”, while the user is actually

“away”. This action is possible as the TP Link server (i.e., Web app) has the -Away

read/write permission for the user’s Nest smart home. (5) This triggers the routine in the

Nest Cam, which stops recording.

In sum, the attacker compromises a security-insensitive (i.e., low-integrity) product

in the system, and uses it along with a routine to escalate privileges, i.e., to modify the

state of a security-sensitive (i.e., high-integrity) product. It should be noted that while

this is one verified instance of a lateral privilege escalation attack on DSB smart home

platforms, given the broad attack surface indicated by our findings, it is likely that similar

undiscovered attacks exist.

3.6 Vulnerability Reporting Experience and Current Status

We reported the discovered vulnerabilities to Philips (F2, F3), Nest/Google (F4!F10),

and TP Link (F10) in mid-2018. Since then, vendors have responded, confirmed our

findings, and even deployed fixes. This section describes our reporting experience with the

vendors, if any fixes were deployed, the effectiveness of those fixes, backed by additional

experimental analysis.

3.6.1 SSL Vulnerability in TP Link’s KASA

We reported the details of the SSL vulnerability exploited in Section 3.5 to TP-Link, who

acknowledged the issue and resolved it to a bug in the Android 4.x compatibility library.

While TP Link did not elaborate on the exact part of the library that was problematic,

they stated that future updates of the Kasa app would contain a fix. We statically and
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dynamically analyzed the most recent version of the Kasa app (version 2.13.0.858), and

confirmed that (1) the vulnerable lines of code (i.e., a TrustManager that accepts all

certificates) were still present, however, (2) they were not being used for SSL connections,

as our dynamic MiTM attack (Section 3.5) did not work.

3.6.2 Vulnerable Nest routines, and misinformation in third-party Works

with Nest apps

Nest does not have a dedicated issue tracker for developers to report security vulnerabilities.

Therefore, we provided a detailed bug report to Nest through their customer support,

split into two reports: (1) Report 1, describing the vulnerability of security-sensitive Nest

devices to lateral privilege escalation, via routines (F4), and (2) Report 2, describing the

inconsistent prompts, permission descriptions, and SSL misuse in third-party Works with

Nest apps ( F6,F7, F9, F10), as well as the problems in Nest’s product review process (F5

and F8).

1. Response from Nest: Nest did not confirm Report 1, but acknowledged that it

was forwarded to their concerned engineers. Moreover, Nest recommended us to publicly

disclose Report 2, along with the identities of the offending apps, in the Nest community

forum 2 to bring the matter to the attention of Nest developers. However, as Report 2

contained sensitive information involving potentially vulnerable and overprivileged apps,

we decided against disclosing it in a public forum and asked Nest to notify the developer

through a private channel, but received no further response.

Due to the lack of a sufficient response from Nest, we directly submitted two reports

to Google through their bug reporting system3. Note that Nest operated independently

from Google from 2015 to 2018, and hence, reporting to Google was a non-obvious step at

that time.
2https://www.nest-community.com/s/
3https://www.google.com/appserve/security-bugs/m2/new
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2. Google’s response to Report 1 and current status: Initially, a member of Google’s

security team suggested that the lateral privilege escalation was purely due to the SSL vul-

nerability in TP Link’s KASA app, and hence, not relevant to Google or Nest. However,

we explained how routines in Nest were key for the attack, which could be leveraged by

compromising any low-security device (and not just KASA), the engineers assigned to the

bug report acknowledged the existence of a design-level flaw in Nest routines. Further,

we also clarified that the attacker did not have to be on the victim’s network to perform

the attack. When asked for suggestions to improve the design and rectify the flaw, we

provided three concrete recommendations, namely: warning users before enabling routines

that affect security-sensitive devices, thorough application reviews to identify overprivi-

leged apps, and temporarily suspending/deprecating routines that affect security-sensitive

devices based on a state variable that can be written by untrusted third-party applications.

However, we realize that either of these suggestions may not be acceptable to the platform

considering the negative impact on user experience. This exchange highlights the need for

platforms to make changes at a design level, as fixing these problems after they have already

occurred is hard.

3. Google’s response to Report 2 and current status: As of today, most of the issues

described in this report remain un-addressed, including the instances of misinformation

in the Nest documentation itself (see F7). Google’s response was that the onus of fixing

these issues in apps was on the third-party app developers to review the permissions that

their apps request. Due to this, Google, like Nest, suggested that the findings could be

disclosed to the developers either directly or through their product forums. However, it

should be noted that all the reported apps had undergone direct scrutiny from Nest through

their review process and passed that process before deployment to the end-user. Moreover,

overprivileged apps that violate the platform’s review process are harmful for the platform,

as they may be leveraged by attackers to perform privilege escalation, as demonstrated

previously in this chapter. This exchange brings up a crucial question, for situations
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where the platform may not be willing to even address the over-privilege in existing apps

when reported by consumers or researchers: Who should the end-user should deem liable

in the instance of a security incidence involving a smart home app; the developer of an

overprivileged app, or the platform that vetted the app and allowed users to install it?

3.6.3 Permission Enforcement Vulnerabilities in Hue

We reported findings F2 and F3 to Philips Lighting (i.e., the owner of the Hue brand) along

with a proof-of-concept script demonstrating the attacks. Philips Lighting acknowledged

the existence of the vulnerabilities and confirmed that they were working on a firmware

update that would deploy access control policies to address the issues, and were manually

curating a list of verified apps as a stopgap measure in the meanwhile.

Hue informed us that the latest release version 1931069120 mitigates these vulnerabil-

ities. According to the API changelog published with the firmware update, Hue claims to

have made two key changes to the Hue data store to address F2 and F3, i.e., ensured that

(1) applications cannot write to the linkbutton variable and (2) whitelist entries can only

be deleted via a cloud application-key.

This section describes our efforts to experimentally evaluate these claims, and their

effectiveness at addressing F2 and F3. Our analysis relies on the two kinds of third-party

apps allowed on Hue, i.e., local and cloud apps, which we describe next, followed by our

methodology and findings.

Local and Cloud Hue apps: Our exploits for the Philips Hue platform demonstrated in

Section 3.2 (F2 and F3) can be executed from a local app, i.e., a third-party app installed

on a device connected to the same local network as the Hue bridge. For a feasible attack

via a local app, the attacker-controlled app simply needs to be on the same network (i.e.,

not necessarily on a device owned by the user). However, Hue supports another kind of

third-party app, a cloud app, which uses the Hue remote API to remotely issue commands

to the lights, and unlike local apps, does not need to be connected to the local network
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(however, it does need a proxy local app, as we discuss later).

3.6.3.1 Analyzing the Updated Hue API, from both local and remote apps

We tested the effectiveness of Hue’s mitigations from both an attacker-controlled local app

(wmlocalapp), as well as a cloud app (wmremoteapp). That is, we first used wmlocalapp

(created in Section 3.2) to test whether our exploits for F2 and F3 still worked on the new

Hue local API. Then, we created a cloud app named wmremoteapp in Hue’s developer

portal by specifying only its name, a brief description, and OAuth callback URL, which

was instantly approved after submission to Hue (i.e., may not have undergone any review,

beyond some extremely lightweight static analysis at most).

Further, as all the commands to the Hue lights are executed through the Hue bridge, we

had to register a local app that would act as a proxy for the cloud app to execute requests

through the Hue bridge (i.e., wmlocalproxyapp). The process for registering this proxy is

interesting, as it has direct implications on Hue’s security claims, and our findings from this

experiment: we used the access token for the remote app to remotely issue a linkbutton=true

command to the hue endpoint URL https://api.meethue.com/bridge/0/config, which simulated

the button-press on the Hue bridge for a brief period of time, within which wmremoteapp

issued a POST request to whitelist its local proxy app (i.e.,wmlocalproxyapp). At the end

of this process, we were issued a cloud application key, with which we could make calls

identical to the local API calls, via the endpoint URL

https : //api.meethue.com/bridge/ < application-key >. We used this cloud application

key to attempt our exploits for F2 and F3 in a scenario where the attacker controls a cloud

app.

3.6.3.2 Key Results from Updated Analysis

Our analysis reveals that while Hue’s changes indeed address some of the major shortcom-

ings of its access control policy, the platform is still vulnerable.
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Specifically, we confirmed that F3 no longer affects Hue, i.e., the new version prevents

apps from deleting other apps from the whitelist. Further reverse-engineering revealed

that Hue enforces this policy by obfuscating the application-key of the apps in the whitelist

section of the data store. That is, apps cannot delete what they cannot address. However,

this also means that the effectiveness of the mitigation relies on the complexity of the

obfuscation; it will be invalid once an adversary devises a way to generate obfuscated

names from arbitrary application metadata. An access control policy for the whitelist

(i.e., which Hue had discussed with us earlier as a possible mitigation) would be a more

fundamental solution to this problem. Further, we discovered that F2 still holds, and even

bypasses Hue’s product review-based defenses, which leads to the following finding:

Finding 11. Cloud apps can bypass user consent repeatedly (F11). Since a cloud

app must have an accompanying local app to execute commands using the Hue bridge,

it is reasonable to allow cloud apps with a valid OAuth token to modify the linkbutton

and add their local counterpart app remotely. However, in our experiments, we discovered

that wmcloudapp could modify linkbutton repeatedly, and thus, register multiple local apps.

Moreover, local apps are not bound to the remote app that installed them. Hence, wm-

cloudapp could install as many local apps as we wanted, and they would persist even after

the user removed the misbehaving wmcloudapp. The most important facet of this prob-

lem is that our misbehaving wmcloudapp is registered with Hue, and hence it would have

been possible for users to install it. However, note that we ensured that our misbehaving

app was clearly marked as a test application, and that no real user installed it during our

experiments.

3.7 Feasibility of Analyzing Evolving Smart Home Platforms

The market for smart home products and platforms is now reaching a critical mass in

terms of consumer adoption. This has resulted in an ecosystem of rapidly evolving and

fragmented platforms. As of now, we do not have a concrete understanding of how platform
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evolution helps, or hurts, the applicability of existing security analysis approaches. Acquir-

ing such an understanding would be instrumental in helping future security researchers

recognize the opportunities as well as challenges posed by evolving characteristics of smart

home platforms.

We pose a seemingly simple but nuanced research question: How feasible would the

analysis performed in our work be on smart home platforms in the near future? To address

this question, we (1) identify the essential, platform-independent properties that facilitate

the security analyses explored in this work, and (2) evaluate six additional platforms to

understand if they exhibit these properties. We conclude the section by identifying the

foremost challenge for similar research in the future, drawing from the evidence obtained

in our evaluation.

3.7.1 Platform-independent essential properties

The security evaluation performed in Sections 3.2!3.4 can be categorized into five inde-

pendent analyses: (A1) an analysis of platform permission enforcement, (A2) the accuracy

of install-time permission descriptions, (A3) the accuracy of runtime permission prompts

, (A4) the security impact of routines, and (A5) SSL misuse by third party mobile apps.

We now identify the five platform-independent essential properties that facilitate these

analyses:

Property 1 - (P01): Availability of public API access to test permission en-

forcement. In order to test whether the purported permission enforcement mechanisms

that exist in a given platform function properly in practice, it is necessary to have ac-

cess to public facing platform APIs that would enable us to generate permission maps via

automated testing (i.e., for A1, Section 3.2).

Property 2 - (P02) Platform-mandated third-party-specified permission descrip-

tions. Smart home platforms generally inform users about the effect of platform permis-

sions (e.g., that the home/away r/w permission can “Set Home and Away”, as seen in
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Figure 3.2). However, some platforms (e.g., Nest) may also require developers to provide

additional context to the user, via install-time permission descriptions describing why their

app needs a particular permission. The availability of such descriptions is critical for un-

derstanding how applications may misinform users about their actual intent, and violate

platform design policies (i.e., for A2, Section 3.4.1).

Property 3 - (P03) Platform-mandated third-party-specified runtime permission

prompts. In addition to install-time descriptions, platforms may also require applications

to use run-time prompts before performing a sensitive action (e.g., as Nest does for home-

/away), thereby allowing the user to make a more informed decision. These prompts are

necessary to understand if a third-party application’s actual use of a permission is valid

(i.e., for A3, Section 3.3).

Property 4 - (P04) Published third-party routines for home automation. Rou-

tines or automations are generally supported by platforms through third-party integrations,

i.e., by integrating devices directly via Zigbee or Z-wave, or indirectly by provisioning API

access to third-parties, or through third-party IoT apps hosted on the platform itself (e.g.,

SmartThings SmartApps). As routines may be exploited by attackers, the availability of

third-party routines is critical for assessing the presence or prevalence of vulnerabilities

that would facilitate attacks such as the lateral privilege escalation attack explored in this

work (i.e., for A4, Sections 3.3 and 3.5).

Property 5 - (P05) Availability of third-party mobile applications. Smart home

platforms are inextricably tied to mobile apps that provide users with a convenient means of

controlling various aspects of their smart home, and even facilitate routines (e.g., Yeti [226]

and Yonomi [227]). The availability of mobile apps is not only needed for analyzing the

security of the communications used by the apps themselves (i.e., for A5, Section 3.4.2),

but also for understanding the use of permission descriptions and prompts by third-parties

(i.e., for A2!A3, Sections 3.3 and 3.4.1).
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3.7.2 Evaluation of 6 Additional Smart Home Platforms

We analyzed six smart home platforms (in addition to Nest and Hue) for the presence

of properties P01!P05, in order to understand the feasibility of performing A1!A5 on

them. Table 3.2 summarizes the results of this feasibility analysis. We now provide a brief

overview of our general empirical evaluation methodology, followed by the results of the

feasibility analysis for each platform.

General Evaluation Methodology: We followed a systematic, 4-step methodology for

the feasibility analysis: (1) Platform Selection. We selected six platforms from popular

publicly available smart home platforms, based on one foundational trait that precedes

P01!P05: allowing the integration of third-party routines, mobile apps, and devices.

(2) Testing for Public APIs. For each platform, we then determined the availability

of public APIs from all available sources (e.g., documentation, official website). If we

could register as a developer with the platform, acquire an API key, and make API calls

to access platform resources, we considered P01 satisfied (i.e., conversely, platforms that

allowed API access to a limited/closed set of partners did not satisfy P01). (3) Analyzing

Permission Models. We examined the provided developer documentation to extract the

permission model, and to determine if developers were required to specify custom install-

time permission descriptions (P02) and runtime prompts (P03) to provide users with more

context. Moreover, we examined whether the prompts could be programmatically triggered

for analysis through integration of our own test app/device to the platform (i.e., and

hence, tested the extent to which P03 was satisfied). (4) Mining third-party clients.

We tried to acquire artifacts that represent routines, such as IoT apps published in markets

(e.g., the SmartThings public repo [192]), descriptions of automation in text-form on the

platform’s website (e.g., the Works with Nest website [143]), or automations enabled by

third-party mobile apps integrated with the platform. Aside from testing for P04, this step

also allowed us to test for P05 (i.e., as we searched for mobile apps as well).

We carefully considered platform-specific nuances when executing Steps 1!4, and ex-
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perimentally confirmed our claims for all platforms. The rest of this section pro-

vides a brief overview of each analyzed platform, followed by a summary of our analysis

results.

3.7.2.1 Nest v1 and v2

Google is closing its Works with Nest platform on August 31, 2019 in favor of a more tightly-

integrated Works with Google Assistant platform.4 We term this new platform Nest v2,

while the current version we analyzed in Sections 3.2!3.5 of this chapter is termed as Nest

v1. The transition from v1 to v2 impacts the feasibility of security analysis, as it changes

the fundamental nature of Nest, i.e., from an open, decentralized platform to a relatively

closed platform (i.e., with API access to select vendors) centralized around the Google

Assistant.

Results of the Feasibility Evaluation for Nest v2: From our analysis, we conclude

that the closed nature of Nest v2 violates most of the properties, rendering corresponding

analyses performed in this chapter infeasible. For instance, the ability of researchers to

access the API in Nest v2 will be constrained, as the platform is geared towards helping

vendors integrate their devices or products with Google Assistant. At most, researchers

will be able to create their own virtual device and an interface for Google Assistant to

access that device (i.e., unlike Nest v1, which has a general-purpose public API that can

be used to access multiple other devices and resources). Thus, Nest v2 violates P01, making

it infeasible to automatically test for gaps in access control enforcement (A1).

Further, Nest v2 does not require developers to write custom permission descriptions

or prompt the user before using a permission, as permissions are acquired by Google As-

sistant when integrating the device with the platform. Hence, Nest v2 loses the context of

requiring/using permissions, violates P02 and P03, and invalidates A2 and A3. Moreover,

routines will only be created and managed via Google Assistant, which means that no
4https://blog.google/products/google-nest/helpful-home/
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repositories of routines will be available, requiring researchers to analyze potential routines

(e.g., from integrations described on the Works with Google Assistant website). Hence,

P04 is partially satisfied, and it may be somewhat feasible to perform A4, although in-

credibly difficult to do so with completeness or at scale. Finally, since the Google Home

mobile app is the only official way for the user to access the platform, we do not foresee

the development of third-party mobile apps that integrate with Nest v2. However, it is

common for vendors to provide mobile apps as alternate mediums to control their devices,

and since some vendors are being tightly integrated to Nest v2 after a thorough review

process 5, Nest v2 may potentially partially satisfy P05, and hence, A5.

3.7.2.2 SmartThings Classic and v2

A particularly interesting aspect of SmartThings is that it allows developers to publish

Groovy-based IoT apps (i.e., called SmartApps) in a platform-provided market. This

existing SmartThings “Classic” platform is now being phased out in favor of the new

SmartThings v2 platform6 launched on March 18, 2018 that drastically deviates from

this characteristic, i.e., SmartThings v2 has eliminated Groovy-based SmartApps. In-

stead, SmartApps are now manifested as Web hook endpoints [191] or AWS Lambda

functions [190] in SmartThings v2, which integrate with SmartThings via its API.

Results of our Feasibility Analysis for SmartThings Classic and SmartThings

v2: Our analysis confirms that all properties except P02 and P03 hold for SmartThings

Classic (i.e., as SmartThings does not mandate developer-specified permission descriptions

or prompts). Hence, a majority of our analyses are feasible on the classic version (i.e.,A1,

A4, and A5). However, the changes in SmartThings v2 make A4 and A5 partially infeasible.

Specifically, P04 is affected due to the lack of centrally published and hosted SmartApps

in SmartThings v2, i.e., as SmartApps will be reduced to remote endpoints whose code is

unavailable for analysis, which will leave researchers with only text descriptions of routines
5https://www.blog.google/products/google-nest/updates-works-with-nest/
6https://blog.smartthings.com/news/smartthings-updates/the-new-smartthings-app-is-here/
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on vendor websites, rendering A4 partially feasible. Similarly, while third-party mobile app

integration is technically possible, it is currently unavailable, which means that P05 does

not fully hold, and performing A5 would be infeasible at least in the near future.

3.7.2.3 HomeKit

Apple HomeKit [95] is a proprietary framework that allows interaction among different

devices (called accessories) in the home through iOS apps. Once the accessories are inte-

grated into the HomeKit framework, users can remotely control or automate them via iOS

apps.

Results of Feasibility Analysis for HomeKit: While HomeKit is a closed platform

similar to Nest v2, it does provide hobbyists with API-support to explore/test the plat-

form. This access would allow researchers to create their own accessories (i.e., devices),

while the typical iOS testing and development tools may be used for analyzing the per-

mission enforcement, and access to these devices (i.e., fully satisfying P01 and facilitating

A1). Further, developers are required to specify “usage descriptions”, in a “NSHomeK-

itUsageDescription” field, which is why P02 holds, facilitating A2 (however, A3 is not

applicable as there are no mandated prompts). Routines are not available in one place,

but can be acquired by analyzing the Home app, i.e., P04 partially holds, and hence A4

is partially feasible. Finally, as mobile apps are integral to this model, A5 is feasible.

3.7.2.4 Home Assistant

Home Assistant [93] is an open-source framework for smart home management. Unlike

other proprietary platforms where the users need to rely on the server for communication

between devices, Home Assistant gives an option of hosting the server locally.

Results of Feasibility Analysis for Home Assistant: Home Assistant’s open na-

ture provides valuable opportunities for analysis. For instance, it is open source, allowing

researchers to build it locally and automate the creation of the permission map as we
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discovered in our initial exploration (i.e., A1 is feasible). Note that Home Assistant does

not enforce device-level permissions, but instead, enforces access control among multiple

users (i.e., hence, the scope of the permission map changes). Publicly available automa-

tions [94] satisfy P04 and facilitate A4. Similarly, third-party apps for Home Assistant

are not numerous, but exist, satisfying P05 and facilitating A5. However, Home Assistant

does not exhibit P02 and P03 due to the uniqueness of its permission model, i.e., the user

can directly define centrally managed groups that have a specific access to certain smart

home resources, which precludes permission descriptions or prompts, making A2 and A3

inapplicable.

3.7.2.5 OpenHAB

OpenHAB is an open-source framework that users can host locally or on the OpenHAB

cloud service. Devices (i.e., things) are integrated with OpenHAB via bindings (i.e., similar

to device handlers in SmartThings). Users can then leverage these integrated things to cre-

ate routines (called rules). While OpenHAB provides bindings for various communication

protocols, there is no permission system in place to connect the third-party service.

Results of Feasibility Analysis for OpenHAB: OpenHab is similar to Home Assistant

in that it is a highly customizable open platform, but unlike Home Assistant, there is no

permission enforcement system in place. Thus, P01!P03 do not hold for OpenHAB, and

A1!A3 are not applicable. However, as a significant number of OpenHAB rules (i.e.,

routines) can be found in dedicated forums,7 P04 holds, and A4 is feasible. Similarly,

because there are third party apps that interface with this platform (P05) an app-based

analysis of this platform (A5) is possible.
7https://community.openhab.org/c/tutorials-examples
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3.7.3 The challenge for future security research

Our feasibility evaluation reveals several interesting aspects of the smart home ecosystem.

For example, some platforms such as Apple HomeKit, Home Assistant, and OpenHAB

do not implement permissions at the granularity of a device (i.e., instead, only imple-

ment multi-user separation, which is further absent in OpenHAB), a coarse-grained model

that would be trivial to exploit once an authorization token is stolen (i.e., even without

a transitive exploit such as a lateral privilege escalation). More importantly, it demon-

strates alarming trends for future research in this area. That is, none of the platforms

are amenable to all of A1!A5, even partially (i.e., except Nest v1 which was the initial

focus of this chapter). More importantly, we see that as platforms evolve, they become less

open and transparent to introspection by security researchers. For instance, SmartApps

in SmartThings v2 are hidden behind endpoints on the Web, and no longer as open to

scrutiny as those in SmartThings v1. Similarly, Nest v2 abstracts platform API, routines,

and most functionality behind the Google Assistant API, which is not public and only

available to certain certified partners. This is in complete contrast with the publicly acces-

sible API of Nest v1 that enabled the analysis in our work. To continue investigating the

security of smart home platforms, researchers must overcome the overwhelming challenge

of (1) identifying and mining novel sources of routines and apps at scale, and

(2) developing alternate methods of accessing platform APIs, which includes

engaging platform vendors to acquire official API access.

3.8 Lessons from the Study

Our findings (F1)!(F11) demonstrate numerous gaps in the security of DSB platforms.

We now distill the core lessons from our security findings from Nest and Hue, as well as

the feasibility analysis with six additional platforms.

Lesson 1 : Seamless automation must be accompanied by strong integrity guarantees. It
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is important to note that the attack described in Section 3.5 can not be addressed by

reducing overprivilege or via product reviews, since none of the components of the attack

are overprivileged (i.e., including TP Link Kasa), and our findings demonstrate that the

Nest product review is insufficient (F5!F9). The attack was possible due to the integrity-

agnostic execution of routines in Nest (F4). To mitigate such attacks, platforms need

information flow control (IFC) enforcement that ensures strong integrity guarantees [25],

and future work may explore the complex challenges of (1) specifying integrity labels for

diverse devices and (2) enforcing integrity constraints without sacrificing automation.

Lesson 2: Nest Product Reviews would benefit from at least light-weight static analysis.

Our findings demonstrate numerous violations of the Nest design policies that should have

been discovered during the product review. Moreover, the review guidelines also state that

products that do not securely transmit tokens will be rejected [137], but our simple static

analysis using MalloDroid discovered numerous SSL vulnerabilities in Nest apps (F10), of

which one can be exploited (Section 3.5). We recommend the integration of light-weight

tools such as MalloDroid in the review process.

Lesson 3: The security of the smart home indirectly depends on the smart phone (apps).

Smartphone apps have been known to be susceptible to SSL misuse [60], among other

security issues (e.g., unprotected interfaces [35]). Thus, unprotected smartphone clients

for smart home devices may enable the attacker to gain access to the smart home, and

launch further attacks, as demonstrated in Section 3.5. Ensuring the security of smart

phone apps is a hard problem, but future work may triage smartphone apps for security

analyses based on the volume of smart home devices/platforms they integrate with, thereby,

improving the apps that offer the widest possible attack surface.

Lesson 4: Popular but simpler platforms need urgent attention. The startling gaps in the

access control of Hue demonstrate that the access control of other simple (i.e., homoge-

neous) platforms may benefit from a similar holistic security analysis (F2, F3, F11).

Lesson 5: New Analysis Methods are required as smart home platforms become more re-
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strictive to integrations. Our feasibility analysis in Section 3.7 demonstrates how popular

smart home platforms are becoming less transparent, and more amenable to security analy-

sis. While this tighter control can help to alleviate certain security problems such as public

API misuse, or side-stepping review protocols, it also shifts more control into the hands

of the platforms, making them more difficult to examine. Thus, new methods of analysis

that work within the boundaries of modern platform restrictions are needed. For instance,

acquiring and studying the security implications of the increasingly common user-driven

routines (i.e., those created by users through interactive platform-provided UIs) offers a

potentially viable alternative to studying the developer-provided IoT apps.

3.9 Chapter Summary

Smart home platforms and devices operate in the users’ physical space, hence, evaluating

their security is critical. In this chapter, we evaluate the security of two such platforms,

Nest and Hue, that implement home automation routines via centralized data stores. We

systematically analyze the limitations of the access control enforced by Nest and Hue, the

exploitability of routines in Nest, the robustness of Nest’s product review, and the security

of third-party apps that integrate with Nest. Our analysis demonstrates ten impactful

findings, which we leverage to perform an end-to-end lateral privilege escalation attack in

the context of the smart home. Our findings motivate more systematic and design-level

defenses against attacks on the integrity of the users’ smart home.
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Table 3.1: Permission description violations discovered in Works with Nest apps

Application Incorrect Permission Description

VC1: Requesting Read/Write instead of Read

1. Home alerts “thermostat read/write: Allows Home alerts to notify you when the
Nest temperature exceeds your threshold(s)”

2. Home alerts “away read/write: Allows Home Alerts to notify you when someone
is in your home while in away-mode”

3. MyQ Chamberlain “thermostat read/write: Allows Chamberlain to display your Nest
Thermostat temperature in the MyQ app”

4. leakSMART “thermostat read/write: Allows leakSMART to show Nest Ther-
mostat room temperature and humidity. New HVAC sensor mode will
notify you to shut off your thermostat if a leak is detected in your HVAC
system.”

5. Simplehuman Mirror “Camera+Images read/write: Allow your simplehuman sensor mir-
ror pro to capture and recreate the light your Nest Cam sees”

6. Iris by Lowe’s “structure read/write: View your Nest Structure names so Iris can
help you pair your Nest Structures to the correct Iris Places”

7. Heatworks model 1 “away read/write: Allows the Heatworks MODEL 1 to be placed
into vacation mode to save on power consumption while you’re away”

8. Feather Controller “Camera+Images read/write: Allows Feather to show you your
camera and activity images. Additionally, Feather will allow you to
request a snapshot.”

9. Heatworks model 1 “thermostat r/w: Allows your Heatworks MODEL 1 water heater to
go into vacation mode when your home is set to away”

VC2: Describing Away as a property of the thermostat alone, rather than a property of entire home

10. Gideon “away read/write: Allows Gideon to read and update the Away state
of your thermostat”

11. Muzzley “away read/write: Allows Muzzley to read and update the Away
state of your thermostat”

12. Keen home smart vent “away read/write: Allows Smart vent to read the state of your Ther-
mostat and change the state from Away to Home”

VC3: Both VC1 and VC2

13. WeMo “away read/write: Allows your WeMo products to turn off when
your Nest Thermostat is set to Away and on when set to Home.”

14. IFTTT thermostat service “thermostat read/write: Now you can turn on Nest Thermostat
Applets that monitor when you’re home, away and when the tempera-
ture changes.”

VC4: Descriptions that do not relate to the permission

15. IFTTT thermostat service “away read/write: Now you can set your temperature or turn on the
fan with Nest Thermostat Applets on IFTTT”

16. Life360 “away read/write: We need this permission to automatically turn
on/off your nest system”

Table 3.2: Feasibility of Analyses A1!A5 on various smart home platforms.

Analysis Nest v1 Nest v2 SmartThings
Classic

SmartThings
v2

HomeKit Home
Assistant

OpenHAB

A1: Permission Enforcement X ⇥ X X X X ⇥

A2: Permission Description Ac-
curacy

X ⇥ ⇥ ⇥ X ⇥ ⇥

A3: Permission Prompt Accu-
racy

X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

A4: Impact of Routines X* X* X X* X* X X
A5: SSL Misuse in Third Party
Apps

X X* X X* X X X

X= feasible, ⇥ = not feasible, and X* = partially feasible
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Chapter 4

HomeEndorser: Practical Integrity

Validation in the Smart Home

The popularity of smart home devices [199] can be attributed in part to the convenience

of home automation, wherein smart home devices automatically react to changes in the

user’s physical environment. For example, the user may configure a security camera to

begin recording when they leave home, but turn OFF when they return to preserve their

privacy [124]. Such automation is often expressed using trigger-action programs known as

routines, that execute a device action (turning OFF the camera) in response to a trigger

(e.g., “away” to “home”).

Routines are often enabled via third-party integrations/services, which automate device-

actions by leveraging platform APIs, as we discuss in Chapter 2. Particularly, third-parties

use the APIs to modify two distinct types of objects, device states (e.g., the ON/OFF state

of a light bulb), and abstract home objects (AHOs) that are not device-specific (e.g., home-

/away, hereby referred to as the home AHO). These AHOs are in fact computed in several

ways, often through third-party services (e.g., set by the user [114], inferred by querying a

combination of device states [97], or using some other proprietary approach [185].

A particularly dangerous attack vector that emerges from this setting is where adver-

saries gain privileged access to devices indirectly, by falsifying an AHO that a high-integrity
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device depends on (via a routine). For instance, consider a situation wherein an adversary

may want to disable the security camera to perform a burglary unnoticed, but may not

have direct API access to it. Any routine installed that can modify an AHO that the

security camera may depend upon to deactivate, such as home/away being set to “home,”

may disable the security camera without direct access [112, 113]. At its core, this is an

integrity problem analogous to those seen in operating systems: a high-integrity process

(here, the security camera) relies on the value of an object (i.e., the home AHO), which can

be modified by untrusted parties. Hence, smart home platforms must directly address the

lack of integrity validation of AHO-changes caused by automation. This framing deviates

from previously proposed mitigations that aims to reduce over-privilege [171, 119, 212] or

restrict permission-use based on the runtime context of an API access [110]. Such miti-

gations impose infeasible usability penalties, while not addressing the fundamental lack of

integrity.

Information flow control (IFC) has often been proposed to ensure the integrity of in-

formation consumed by sensitive processes [25, 69, 129, 55, 116, 230], through dominance

checks that regulate flows based on subject and object labels [25]. However, a naive IFC

approach may result in significant false denials. For instance, IoT platforms may attempt

to ensure integrity by marking the home AHO with a high-integrity label and third-party

services as low-integrity, which will block a service chosen by the user to update home,

resulting in a false denial from the user’s perspective (e.g., 19/33 Nest integrations from a

prior dataset [112] would be blocked under this model).

IFC systems rely on endorsement [32, 116, 230, 229] to overcome this limitation, al-

lowing trusted programs to change labels of objects to permit flows that would normally

violate IFC. However, determining the conditions where an endorsement would be allow-

able in IoT systems is a challenge; indeed, prior work has often avoided directly addressing

this problem, and generally facilitates endorsement by assigning the authority to certain

trusted high-integrity processes, thereby delegating the task of determining how to endorse

correctly to the programmer or administrator [116, 230, 37, 182? ]. However, in our case,
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smart home users may lack information about dependencies among devices and AHOs to

do this correctly. So, we ask instead: Is there something else we can rely on to provide

endorsement for practical integrity validation?

Yes – the cyber-physical nature of the smart home provides us with a unique oppor-

tunity for practical endorsement, in the form of ground truth observations from devices

(i.e., device state changes) that can be used to validate proposed changes to AHOs. For

instance, we can endorse the change to the home AHO (from “away” to “home”) if the door

lock was legitimately unlocked (i.e., with the correct keycode) recently, since the lock being

unlocked represents the home owner’s intent and attempt to enter the home. In addition,

rather than only depending on one device, we can leverage all the devices that may observe

state changes that may correlate with each sensitive AHO change, such as motion sensors,

cameras, microphones, etc. that may be available to detect changes that support the home

AHO change. Thus, we state the following claim that forms the foundation of this work:

Abstract home objects (AHOs) shared among third-party services and devices for the

purpose of home automation are inherently tied to a home’s physical state. Thus, any

state change or modification to an AHO via an API call can be endorsed using the local

context of the home, consisting of changes in a combination of device states.

Contributions in this Chapter: To answer RQ2, we introduce the paradigm of home

abstraction endorsement to validate changes to AHOs initiated by untrusted API calls, and

propose the HomeEndorser framework to enable it. HomeEndorser does not continuously

monitor AHOs, but focuses on API-induced changes to AHOs, and performs a sanity

check using policies that rely on recent physical state changes in smart home devices. If

the check fails, the state change is denied, and the user is informed. HomeEndorser’s

preemptive action prevents future automation based on maliciously changed AHOs. We

make the following contributions in exploring this novel design space:

1. Home Abstraction Endorsement: We introduce the paradigm of home abstraction

endorsement, which leverages the state changes of local devices to endorse proposed changes

to AHOs, thereby making IFC endorsement practical by exploiting the cyber-physical
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nature of the smart home.

2. The HomeEndorser Framework: We design the HomeEndorser framework to im-

plement this practical approach to endorsement, consisting of (1) a policy model that allows

a unified expression of location-specific device instances within a single policy (e.g., en-

dorsing home via multiple physical entry points), (2) a platform-based reference monitor

that mediates all sensitive state changes using these policies, and finally, (3) a mechanism

to enable experts to generate endorsement policy templates (defined once for all homes),

which HomeEndorser then automatically instantiates for each home (considering device

availability and placement), enforcing the most restrictive but feasible policy.

3. Evaluation: We implement HomeEndorser on HomeAssistant, a popular open-source

smart home platform, and evaluate it using experimental and empirical analyses. We first

demonstrate that the idea of home abstraction endorsement is feasible, even when using a

limited set of correlating devices, by generating policies to endorse changes to the home

AHO. We demonstrate the generality of our policy model by identifying several attributes

that may be used to endorse five additional AHOs. We then demonstrate the effective-

ness of HomeEndorser’s integrity validation using a case-study approach. Moreover, we

test 10 realistic home usage scenarios [111], and 400 realistic home automation event se-

quences [124] in a smart home (apartment) testbed to demonstrate that HomeEndorser is

generally not susceptible to false denials, and in fact, may prevent accidental unsafe situa-

tions. We demonstrate HomeEndorser’s practical performance overhead with micro/macro

benchmarks (9.7-12.2% on average). Finally, we demonstrate the modest effort required

to generate policy templates, configure HomeEndorser in end-user homes, and integrate

HomeEndorser in popular smart home platforms.

4.1 Chapter Motivation

Smart home platforms such as SmartThings [193] and Nest [138] provide permission-

protected APIs that enable seamless integration of diverse third-party services, ranging
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Figure 4.1: An attack on the security camera through the manipulation of two shared state
objects by adversary-controlled integrations.

from software support for devices (e.g., the TP Link Kasa [80] and Wemo [84] mobile/-

cloud apps), to third-party automation platforms that enable user/developer-provisioned

routines (e.g., IFTTT [101] and Yonomi [227]). Platform-provided API access allows the

third-party service to read/write to two broad categories of “states” in the home: (1) de-

vice states, i.e., values associated with individual devices such as the security camera (e.g.,

the ON/OFF state, battery status), and (2) abstract home objects (AHOs) that are not

associated with any specific device, and instead may be computed in several ways, often by

taking into account the user’s choice. For example, an object that stores whether the user

is home or away is an AHO (i.e., the home AHO), and a third-party service designated by

the user may compute it based on the location of the user’s phone [205], or using a propri-

etary/undisclosed method/device [185], or through a direct command from the user [114].

The use of AHOs by third-party services may lead to severe consequences for the integrity

of the home, as we discuss in a motivating example inspired from prior attacks [112, 113]:

Motivating Example: Alice has a security camera in her home to deter burglars. For

automated monitoring, Alice has configured two routines (as advertised by Simplisafe [184]

and Nest [139]): (R1) the camera turns ON when Alice leaves home, and (R2) the camera

turns OFF when Alice returns home. Additionally, Alice has integrated several third-party

services (e.g., TP-link Kasa app to control her Kasa switch).

Bob seeks to burglarize Alice’s home when she is away without being monitored by

the camera, and controls one (or more) third-party services connected to Alice’s home.

This can happen through one of several ways: (1) Alice installed Bob’s service, (2) Bob

compromised a vulnerable service (as demonstrated by prior work [112][113]). Hence, Bob
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can access the APIs with the permissions assigned to the service he controls. Using this

access, Bob modifies home to the value “home”, falsely suggesting that Alice is home and

triggering (R1), thereby disabling the camera. Bob can then burglarize Alice’s home

without being monitored, as shown in Figure 4.1.

This problem is not just limited to the home AHO. Consider another AHO, the

security_state, which is often used in routines to control security-related devices such

as cameras and glass break detectors [15, 174] . That is, security devices are armed when

security_state is set to “deter”, and disarmed/ignored when it is set to “ok” (similar

to routines from Ring [174] and TotalConnect [15]). If Bob controls a service with access

to security_state, he can set it to “ok” and disable the camera. That is, adversaries

may falsify one of many AHOs to transitively manipulate a highly sensitive device.

4.1.1 API Misuse as an OS Integrity Problem

At first glance, the problem described in the motivating example may appear as an “ap-

plication” security problem, which prior work has attempted to address using program

analysis techniques, i.e., by analyzing or instrumenting IoT apps (i.e., developer-defined

automation programs) to limit privileges or API use [110, 171, 119, 217, 33, 144, 34, 212].

However, there are two major shortcomings of treating this problem as one of “application”

security: (1) “IoT apps” are not visible/available anymore. Platforms have consistently de-

viated from hosting third-party automations/code as “apps” on the platform itself, and

towards a model where third parties simply obtain API access, with the code hosted on

the third party developer’s cloud [193, 134]. Third parties simply issue commands remotely

to the platform’s API endpoints, and hence, the platform (or security enhancements to it)

do not have the visibility or access needed to analyze/instrument apps for security. (2)

The fundamental lack of integrity cannot be fixed purely by limiting privileges. Even when

privileges are limited to only third-parties that truly need them (e.g., through program

analysis/instrumentation), an adversary may yet compromise a third-party service that

needs access (e.g., the Kasa app with access to the home AHO [112, 113]), and leverage
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its permissions to transitively attack a high integrity device, as shown in the motivating

example. Thus, limiting privileges, or assigning them in entirety to a trusted third party

(e.g., as proposed in the ESO approach [181]), does not eliminate the issue.

To summarize, Bob transitively attacks a high-integrity device, i.e., by modifying AHOs

to trigger routines that manipulate it, because Bob cannot compromise or modify (via API)

directly. That is, this problem is a smart home-specific instance of the classical OS integrity

problem (e.g., Biba integrity [25]), wherein a high-integrity process (i.e., the camera) relies

on an object (i.e., the home AHO) which can also be modified by low-integrity process

(e.g., the Kasa integration). Therefore, our work seeks to treat the underlying limitation

of the OS, i.e., the fundamental lack of integrity validation.

4.1.2 The Need for Integrity Validation

As high-integrity devices rely on AHOs such as home, traditional wisdom dictates that

low-integrity (or third-party) integrations must be disallowed from writing to these objects.

However, recall that in existing platforms (e.g., SmartThings and Nest), AHOs are often

computed by third-party services chosen by the user, and such integrations may genuinely

need to modify AHOs to perform their functionality. Thus, disallowing the user’s choice of

third-party integration from writing to AHOs is bound to break numerous useful services

that the user relies on (e.g., IFTTT, Yonomi, Kasa), which is a prohibitive cost in terms

of user experience that platforms may find undesirable. For example, in 2019, Google

announced an end to its “Works with NEST” developer program in favor of a more restricted

“Works with Google Assistant” program that would only be open to vetted partners [78],

but immediately backtracked [79, 210, 40] given significant opposition from both users

and third-party integrations/developers [50, 211, 49, 102, 213], eventually offering a more

flexible program that allowed a broader set of developers access to internal home states

(including AHOs) [79].

Therefore, there is a need for a solution that is (1) backwards compatible or practical,

i.e., does not break functionality by preventing third-parties from accessing AHOs, and
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(2) effective, i.e., which enables integrity validation for devices that rely on AHOs. To this

end, this work proposes the moderate route of proactive integrity checking, i.e., runtime

validation of proposed changes to AHOs, which will enable reasonable integrity validation

while being compatible with platform design and integration choices.

4.2 HomeEndorser Design Goals

This work introduces the novel paradigm of home abstraction endorsement that provides

a strong integrity guarantee for AHOs, defined as follows: In the event that an untrusted

service uses the platform API to modify a critical AHO, e.g., home or security_state,

the modification will be allowed iff it is consistent with the local state of the home, composed

of the physical device states. Our approach builds upon the concept of trusted “guards” in

the Biba integrity model [25], wherein a high integrity subject cannot receive input from

a low integrity subject unless it is endorsed by a trusted guard. Similarly, in the smart

home, we envision endorsement policies that apply trusted device states and hence serve

as the trusted guards, ensuring the validity of API requests to change the AHOs that

high-integrity devices rely on.

Our design is guided by the following goals:

G1 Expressive and Grounded Endorsement Policies. The endorsement policy structure

must be designed in a way that allows it to express common deployment factors in

smart homes that may affect the endorsement, such as device availability and locality.

Moreover, the policy generation mechanism must be grounded in real devices and their

characteristics for practical relevance.

G2 Complete Mediation. Third party services are generally deployed in cloud environ-

ments outside the platform’s control, as simple cloud end-points that can make REST

API calls [77, 193]. Hence, the reference monitor should be app-agnostic, i.e., should

not depend on the analysis/instrumentation of apps/services, but should provide com-

plete mediation for all API calls that modify AHOs, irrespective of app logic.
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Figure 4.2: A conceptual overview of physical home endorsement.

G3 Tamperproofness. While our endorsement approach relies on device states, several

device states may be modifiable by untrusted services using the platform API. We

need to build a reference monitor that only relies on trustworthy states modifiable

only by devices.

G4 Freshness. The task of endorsing an AHO change may require the reference monitor

to examine recent changes in the states of physical devices, rather than simply reading

the current state (e.g., as sensor states may reset after apprising the platform of an

event). Hence, the reference monitor must have trusted access to historical states.

G5 Minimal Performance/Management Overhead. The framework should minimize any

delay perceivable by the user, as well as deployment and management effort.

4.3 The HomeEndorser Framework

We propose HomeEndorser, a framework that enables home abstraction endorsement by

developing the methods and systems necessary to achieve the design goals G1!G5.

Figure 5.1 provides an overview of our approach. When a third party service at-

tempts to modify an AHO, the platform first enforces a permission check. We envision

an additional integrity check enabled by HomeEndorser for endorsing the proposed change.

For arriving at an endorsement decision for the proposed AHO-change, HomeEndorser

checks the corresponding endorsement policy that relies on recent changes in specific device-

attributes/states (e.g., motion detected/undetected, or door lock locked/unlocked). For

example, for endorsing a proposed change in the home AHO from “away” to “home”, one
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possible policy would be as follows: if door-lock has been unlocked recently (i.e., using the

correct keycode), then ALLOW the change, else DENY.

HomeEndorser’s policies are automatically instantiated in the context of the specific

home (i.e., the availability and placement of devices), from expert-defined policy tem-

plates. To enable this approach of one-time template-definition followed by flexible in-

stantiation that is compatible with all (or most) user homes, we first define a policy model

that can express deployment-considerations such as device locality and availability, ad-

dressing G1 (Sec.4.3.1). Additionally, we design a policy-template generation methodology

that allows experts to define endorsement policy templates in a systematic, ground-up

manner (Sec. 4.3.3), using (i) automatically-generated endorsement attributes, i.e., device-

attributes that can be trusted for endorsement, due to being either read-only or treated

as highly restricted by platforms (ensuring tamperproofness and addressing G3), and (ii)

a manual open coding approach to identify inferences from changes to these endorsement

attributes that can be used to endorse specific AHO-changes. On deployment, HomeEn-

dorser uses these expert-defined templates to instantiate a home-specific most restrictive

but feasible policy for each AHO-change that needs to be endorsed, defined as an instanti-

ation of the policy template that contains the largest aggregate of device-attributes (with

the assumption that including more device-attributes would make the inference stronger),

but which is also supported given the devices present in the home and their locality.

HomeEndorser’s reference monitor is integrated into the user’s smart home platform

in the form of an endorsement check in the platform’s subsystem responsible for executing

all API calls, thereby ensuring complete mediation, and addressing G2 (Sec. 4.3.2). When

a third-party makes an API call to modify an AHO-change that HomeEndorser endorses,

HomeEndorser invokes the most restrictive but feasible policy corresponding to that AHO-

change. To check the policy, HomeEndorser uses a state machine to retrieve the most

recent change in each relevant device-attribute included in the policy (G4). We consider

the most recent change, rather than the current state of the device-attribute, as the two

may be different (since most sensors reset after a change), and because the most recent
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changes provide the context for endorsing the proposed AHO change. This design decision

is instrumental in eliminating unnecessary false denials (see Section 4.5.4).

Threat Model: We consider a network-based adversary with the ability to control/-

compromise any third-party integration/service connected to the target’s home (e.g., as

demonstrated by prior work [112, 66]). The attacker’s objective is to indirectly modify

or disable high integrity devices (e.g., security camera) using compromised or malicious

third-party services. The adversary may issue API commands to the target’s home that

may affect device states; however, the adversary does not have the ability to compromise

devices in the home by other means (i.e., which is a standard assumption in work that

deals with API misuse [34, 51, 52]). The adversary cannot compromise the platform and

the platform app; explicitly, the adversary cannot censor notifications sent from the plat-

form to the user. Devices may be offline. Finally, we do not account for byzantine fault

tolerance, but point to complementary prior work [26] that verifies reported device-states.

4.3.1 Policy Model

A key challenge for HomeEndorser is designing a policy model that can alleviate two

practical constraints. First, unlike our motivating example where a single device-attribute

(i.e., the UNLOCKED state of the door lock) was used for endorsing home, in practice,

endorsement policies may consist of more than one device-attribute that must be checked

together. Second, the device location is an important factor in deciding what they can

endorse. For example, while a door lock on the front door as well as a door lock on the back

door can both indicate that the user is home, the two endorsements are naturally mutually

exclusive. We account for these constraints with a policy design that can be expressed as

a Disjunctive Normal Form (DNF) boolean formula, as follows:

Definition 1 (Endorsement Policy). The policy for endorsing a change in AHO x to value

y, Px(y), is a DNF formula composed of one or more location-specific predicates (Li), i.e.,

Px(y) = L1 _ L2 _ ... _ Ln, where a location-specific predicate is defined as follows:

Definition 2 (Location-specific Predicate). A location-specific policy predicate Li for
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location i (e.g., entryway), i.e., Li = dj ^ dk ^ ...dm, is a conjunction of one or more

device-attribute checks dj, defined as follows:

Definition 3 (Device-attribute Check). A device-attribute check dj is a condition dj == s,

where s is a physical state that the particular device-attribute must have exhibited in the

recent past, for the device-attribute check to return true.

To illustrate, let us express the policy from the motivating example for endorsing the

home AHO’s change to “home”. We express the policy using a door lock and a motion

sensor at the entry way, as well as the same devices at the rear entrance:

Phome(home) = (door-lock_lock == UNLOCKED ^

motion_sensor == ACTIVE)front-door

_

(door-lock_lock == UNLOCKED ^

motion_sensor == ACTIVE)back-door

The above policy considers both the door lock being unlocked, and motion being sensed, to

prevent false negatives. That is, for both the conditions above to be true, a user would have

to unlock the door and then enter, i.e., confirming that they are home. On the contrary, if

the user unlocks but leaves without entering, this policy condition would correctly result in

a denial (as shown in Section 4.5.4). Similarly, the disjunction between the location-specific

predicates enables their independent evaluation, thereby allowing the AHO-change as long

as either one evaluates to a true result. Finally, we define two policy actions: ALLOW

and DENY, corresponding to the true or false values that the DNF formula results in,

respectively.

For Bob to circumvent HomeEndorser, he could attempt to modify home at the very

moment when Alice is performing what are semantically opposite actions, but sufficient for

the endorsement of home. For instance, Alice could be leaving, which would also involve (1)

unlocking the door, and (2) triggering the door-way motion sensor. A naive implementation

of our policy model would be susceptible to this attack, as it would consider the above
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device state changes, even if performed in the opposite sense, to be evidence that Alice is

returning home, because it matches Phome(home). However, smart home devices provide

unique device attribute values even for similar actions, i.e., the state value for unlocking

the door using the keypad is different relative to simply unlocking it from the inside (i.e.,

“owner” in the former case, and “manual” in the latter). Our policy templates 4.3.3 and

enforcement (Section 4.3.2) consider device-attribute values at this precise granularity,

preventing such an attack.

4.3.2 Secure and Practical Enforcement

We integrate HomeEndorser’s enforcement into the smart home platform, to enable it to

mediate all API commands from third-parties before they are executed (G2). This decision

is influenced by how third-party services are currently integrated, i.e., as cloud endpoints

that use RESTful APIs to interact with the platform, but execute on their own proprietary

servers, without a way for the platform to inspect them (e.g., Nest and SmartThings v3).

Therefore, our decision ensures that the endorsement check will occur regardless of how the

integration is implemented, or where it is deployed. We now describe our platform-level

enforcement in terms of its three design components, as shown in Figure 4.3.

1. Deployment-aware Policy Instantiation: When HomeEndorser is first set up in a

home, it leverages the platform’s internal bookkeeping systems to extract all the devices

and device-locations. Then, for each AHO the user decides to endorse, it uses the policy

templates generated by experts (as described later in Section 4.3.3 to instantiate the most
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restrictive but feasible policy, i.e., the policy that contains the largest aggregate of device-

attributes, given what devices are available in the home, and where they are located. Such

dynamic instantiation is necessary to apply the policy templates to any home, as (1) a

typical user’s setup is unlikely to have all the devices specified in the policy template,

and simply using all the devices in the template (which would be the universally most

restrictive policy) would always deny the state change. (2) the policy templates need to be

configured as per the different locations in which devices are placed in the home, and (3) the

enforced policies need to adapt as the user’s smart home evolves (e.g., through device

addition/removal), to provide the enforcement applicable to the current setup. Thus,

HomeEndorser computes and then enforces the most restrictive but feasible policy for that

specific home, and also reinstantiates/updates the policy upon a configuration change,

such as the addition, removal, or relocation of a new device.

2. The Endorsement Check: HomeEndorser mediates all API requests, but only

invokes the endorsement check if one of the AHOs selected by the user for endorsement is

about to be modified, in a manner similar to performance-preserving hook activations as

previously proposed for Android [91] (G5). The check consists of retrieving the policy for

the specific AHO-change being endorsed and collecting state information from the device-

attributes in the policy. If the policy decision is ALLOW, then the proposed change is

allowed to go through; else, it is denied, and the user is notified. A key component of this

check is HomeEndorser’s platform state machine that retrieves the device-attribute values,

as described next.

3. Retrieving the most recent changes using the Platform State Machine: A

naive approach of executing an endorsement check would be to query each device for its

current state at the time of endorsement. However, such a check would most certainly

fail and lead to a false denial because most sensors detect and report a change, and then

reset to a predefined neutral state. For example, recall the endorsement policy predicate to

endorse home consisting of the door lock and the motion detector (assuming one location
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for simplicity):

door-lock_lock == UNLOCKED ^ motion_sensor == ACTIVE

Unless the check happens exactly at the moment the user enters, the motion detector

will reset to its INACTIVE state immediately after detecting motion, causing a false de-

nial. Thus, for correct endorsement, we check the most recent but fresh change in the

device states (G4), i.e., the last state change before the state automatically reset, within

a configurable time threshold to ensure freshness (e.g., one minute).

A state machine that keeps track of all device state changes provides HomeEndorser’s

reference monitor with this data, by tracking changes through callbacks placed in the

entities that represent devices on the platform (e.g., device handlers in SmartThings, or

device-integrations in HomeAssistant). Every time the state of a device changes, the state

machine callback is invoked to store the most recent state change along with the timestamp.

The timestamp helps HomeEndorser discard states that are older than the preconfigured

threshold, thereby preventing old states from causing false allows (G4).

4.3.3 Data-driven Policy Template Generation

Figure 4.4 provides an overview of our data-driven methodology to allow experts (e.g.,

security researchers, platform vendors) to specify endorsement policy templates that are

representative of what real device states can enable (G1), which HomeEndorser automati-

cally instantiates in the context of end-user homes (as previously described in Section 4.3.2).

We begin by automatically creating a device-attribute map, i.e., a comprehensive mapping
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Figure 4.5: Specification of device-attributes in the SmartThings device handler preamble.

between device types (e.g., cameras, door locks) and the attributes they embody. We then

define the endorsement attributes to be used for tamperproof endorsement, and describe

our approach for identifying them (G3). Finally, we use an open coding methodology

for identifying the observations and inferences that can be made from the endorsement

attributes, which are then used to generate policy templates (using the model from Sec-

tion 4.3.1).

1. Generating the Device-Attribute Map: We develop a methodology to create a real-

istic device-attribute map from platform documentation and existing device-abstractions,

such as SmartThings “device handlers”. We select the following information sources for

building the map, based on platform popularity, and the potential of obtaining realis-

tic mappings: (1) a device-resource map from the Open Connectivity Foundation (OCF)

specification [148], used by the open source platform IoTivity [107], (2) the Nest data

store [141], (3) the SmartThings capability reference [189], and (4) SmartThings device

handlers [178]. As each of these sources exhibits a unique representation of devices and

attributes, we develop customized, automated methods for extracting device-attributes

from each source. To elaborate, OCF explicitly specifies a device types, the attributes

associated with each device type in a JSON document [149], which we automatically an-

alyze to obtain a device-attribute map for OCF. Similarly, the Nest data store provides

a mapping of device-attributes in JSON-like format, which we similarly query. Smart-

Things provides a capability reference [189], which lists attributes (i.e., capabilities) that

devices may choose to exhibit, via developer-defined device handlers, which are software

proxies for devices that facilitate device-interaction with the platform. To extract a device-
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attribute map from SmartThings, we automatically analyze the 334 device handlers from

the SmartThings repository [178], and capture the device-attribute relationships evident

in the preamble (seen in Figure 4.5).

2. Trusted Endorsement Attributes for Tamperproof Endorsement: We observe

that similar to AHOs, several device-attributes are modifiable by third-parties through

the platform APIs, either for legitimate purposes or due to over-privilege. Therefore, for

tamperproof endorsement, HomeEndorser must be able to trust the information received

from the participating endorsers i.e., device-attribute pairs (G3). We achieve this goal by

defining a trusted subset of device-attributes to be used for our checks, i.e., endorsement

attributes. We propose two categories of endorsement attributes: (1) read-only attributes,

i.e., which are only writable by devices, and not via API calls, rendering them read-

only from the third-party API caller’s perspective (e.g., motion sensor reading), and (2)

designated attributes, which are writeable in theory, but are considered high-integrity by

platforms and prior security research [201, 41] alike (e.g., locking the door lock), and

hence, heavily restricted. For example, Nest allows its own platform app to unlock the

locks integrated with it (e.g., the Nest X Yale Lock [76]), but does not allow third-party

apps to do the same. Therefore, both read-only and designated device attributes would

have a higher integrity level than an AHO such as home, and hence, would be trusted to

endorse it.

We identify read-only device-attributes in a manner similar to our approach for extract-

ing the device-attribute map, i.e., by parsing platform documentation and device handler

code. For identifying designated attributes, we leverage the rationale of popular platforms

for assigning integrity levels to attributes only writable by the platform app, particularly

those belonging to security-sensitive devices.

3. Generating Policy Templates from Inferences: We now address the question of

how the endorsement attributes are used to endorse a specific AHO, by designing a holis-

tic inference study. This template generation process is a one-time, expert-driven effort.
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Table 4.1: AHOs inferred from Endorsement Attributes

AHO Endorsement attributes
home <security-panel, disarmed>
home <motion-sensor, active>
fire <temperature-sensor, temperature>
fire <smoke-detector, smoke-alarm-state>

safety_state <co-detector,co-alarm-state>
illuminance <blind,openLevel>

We begin by identifying 5 additional AHOs, by considering the objects that have been

previously examined and found to be susceptible to transitive attacks [51, 112], and by

considering AHOs not mentioned in prior work, but which we encountered when building

our device-attribute map (e.g., the security_state from Nest, which prior work does

not account for). Then, we consider each device-attribute, and identify the type of infor-

mation sensed or observed by that device-attribute, which we then translate to an inference

that could be used for endorsing an integrity-sensitive change in one or more of the AHOs.

For example, the device-attribute pair <security-panel, disarmed> indicates that the secu-

rity panel/keypad was recently disarmed, which may indicate that the user recently arrived

home, and hence, provide an inference to endorse the home AHO’s proposed change to

“home”. As a key principle in the construction of policies is the a combination of device

inferences, we combine inferences to construct deployment-independent policy templates

using the structure defined in Section 4.3.1. An example set of inferences are shown in

Table 4.1.

4.4 HomeEndorser Implementation

This section describes our policy specification study, as well as the reference monitor im-

plemented in HomeAssistant. Our data is available in our online appendix [19].

1. Policy Specification Study: We automatically generated a combined device-attribute

map from all the data sources consisting of 100 device-types and 510 device-attribute pairs.

We found that these pairs utilized 41 endorsement attributes, i.e., read-only or designated

device-attributes. Two authors then independently identified the inferences that could
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be drawn from these endorsement attributes to endorse changes in one or more of our 6

AHOs. When identifying inferences, the coders disagreed on 12 out of the 510 device-

attribute pairs (2.4% disagreement rate), which were resolved through mutual discussion.

The inferences led to 10 endorsement attributes for home AHO alone, all of which can be

used to instantiate policies by HomeEndorser as we describe in Section 4.3.2. Note that

the generation of the device-attribute map was fully automated and directly derived from

platform sources, and hence, did not result in any disagreements.

2. Implementation on HomeAssistant: We implemented HomeEndorser in Home-

Assistant, a popular open-source smart home platform, for two main reasons: (1) the

availability of source code, and (2) the centralized execution of automation and state

changes. Similar to the platform state machine described in Section 4.3.2, HomeAssistant

has a state machine component that persistently records all device states. HomeEndorser

modifies this state machine to keep track of the most recent state changes and their times-

tamps. It also hooks into the state machine to intercept the incoming state change requests

to mediate all API accesses. Furthermore, HomeAssistant has a component known as an

Event Bus, which announces and logs the addition/removal of devices, among other events.

HomeEndorser adds callbacks in the Event Bus and re-instantiates the endorsement poli-

cies in response to any change in device deployment. Finally, HomeEndorser keeps track of

device-connectivity using HomeAssistant’s built-in mechanisms, and falls-back to the next

most restrictive policy in case a device becomes unavailable at runtime.

4.5 HomeEndorser Evaluation

We evaluate the effectiveness and practicality of HomeEndorser through the following

research questions:

• HomeEndorser-RQ1: (Feasibility of the policy model) Is it feasible to produce endorse-

ment policies using only a small subset of trusted endorsement attributes?

• HomeEndorser-RQ2: (Generalizability of the policy model) Do policies exist for en-
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dorsing AHOs other than home?

• HomeEndorser-RQ3: (Security) Does HomeEndorser prevent an attacker from esca-

lating privilege to a high-integrity device (e.g., a camera) using one or more AHOs?

• HomeEndorser-RQ4: (False Denials) What is the rate of false denials in typical be-

nign usage, i.e., when users intentionally cause AHO changes, and over a period of home

automation usage?

• HomeEndorser-RQ5: (Runtime Performance) What is the performance overhead in-

troduced by HomeEndorser?

• HomeEndorser-RQ6: (Cost) How much effort is required to integrate and deploy

HomeEndorser?

We evaluate HomeEndorser-RQ1!HomeEndorser-RQ6 using a diverse array of

empirical and experimental methods. We first derive an endorsement policy template

for the home AHO 10 endorsement attributes, allowing us to automatically instantiate

a maximum of 1023 policies based on device availability, which demonstrates feasibil-

ity in several home deployments, even with a limited number of endorsement attributes

(HomeEndorser-RQ1). Further, we demonstrate that HomeEndorser may generally ap-

ply to 5 additional AHOs drawn from platform documentation and prior work, as these

AHOs may be endorsed using policy templates composed of 5 device attributes on av-

erage (HomeEndorser-RQ2). We then deploy 11 devices (7 real, 4 virtual) in a real

home to perform a case study wherein we assume that the attacker’s goal is to disable

the security camera by tampering with AHOs that the camera depends on. Our exper-

iments demonstrate that HomeEndorser effectively endorses the two AHOs that can be

tampered with to disable the camera (HomeEndorser-RQ3). We perform 10 additional

realistic scenarios obtained from (or inspired by) prior work [111] that represent various

ways in which the user would intentionally change AHOs, and demonstrate that Home-

Endorser correctly allows all of the intentional AHO changes, resulting in no false denials

(HomeEndorser-RQ4). Furthermore, we evaluate HomeEndorser’s performance with
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400 realistic smart home usage sequences (consisting of 8191 events in total) obtained

from Helion [124], which results in 605 endorsement checks (all for benign execution) that

HomeEndorser endorses correctly, with no false positives. Further, we demonstrate prac-

tical performance overheads using macro and microbenchmarks (HomeEndorser-RQ5).

Finally, we demonstrate the minimal costs of deploying HomeEndorser, by (i) quantify-

ing the effort required by experts to generate policy templates, (ii) demonstrating how

HomeEndorser simplifies deployment by automatically instantiating policies without im-

posing any burden on the user, and (iii) distilling key properties that a platform would

need in order to integrate HomeEndorser, qualitatively analyzing 4 popular smart home

platforms, and demonstrating the feasibility of integrating HomeEndorser in them with

modest engineering effort (HomeEndorser-RQ6).

Table 4.2: Real and Virtual Devices in Evaluation

Device real/virtual Number
August Door Lock real 1

Blink Camera real 1
Philips Hue Motion+Illuminance+Temp. Sensor real 1

Aotec Door Sensor real 1
Security Panel virtual 1
Presence Sensor virtual 1
Beacon Sensor virtual 1
Thermostat virtual 1

Wemo Switch real 1
Philips Hue Lamp real 1

Google Home real 1

Experimental Setup: We integrated HomeEndorser into HomeAssistant (v0.112.0.dev0),

running on a Macbook Pro machine with 16GB of RAM. Further, we connected 7 smart

home devices to our smart home, and created 4 other virtual devices (see Table 4.2 for the

full list). Our choice of devices was limited by compatibility with HomeAssistant, with

a bias towards known/popular brands and device types that would allow us to evaluate

HomeEndorser’s endorsement. We installed these devices in a room as shown in Figure 4.6,

influenced by effective deployment recommendations from prior work [111], e.g., placing

the August door lock and the Aeotec door sensor on the main door, and the motion
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Figure 4.6: Layout of the physical device placement

sensor in the hallway directly past the door, and the Blink camera placed inside the room.

We interacted with the real devices physically and with the virtual devices through the

HomeAssistant UI.

Table 4.3: Sample policies for endorsing home (“away”!“home”)

Policy

P1 <security-panel, disarmed> ^ <motion-sensor, active>
P2 <Doorlock, unlocked> ^ <presence-sensor, active> ^ <beacon, active>
P3 <Garage-doorlock,unlocked> ^ <beacon,active>

4.5.1 Feasibility of the Policy Model (HomeEndorser-RQ1)

We do not expect users to possess all possible device-combinations that endorse a specific

AHO. Instead, our approach enables the instantiation of a large and diverse set of candidate

policies to increase the possibility of finding a policy that contains the limited set of devices

the user possesses.

Using the approach specified in Section 4.3.3, we identified 10 endorsement attributes,

for endorsing the home AHO (i.e., the change from “away” to “home”), which could lead

to 1023 potential policies. However, since HomeEndorser enforces the most restrictive but

feasible policy dynamically by instantiating the template in the context of the home, it

can automatically adjust to cases where any subset of the 10 endorsement attributes are

present and enforce the most restrictive policy for that particular subset. For example, as

shown in Table 4.3, a user who has a door lock and motion sensor, or another who has

a security panel, or another who has a garage doorlock and a presence sensor, would all

be able to endorse home using HomeEndorser (our online appendix [19] provides the full
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list of potential policies). This demonstrates that our approach is feasible, i.e., we can

define a large number of diverse policies for an AHO (i.e., home), using a limited set of

endorsement attributes, and hence, support a diverse array of device-deployment scenarios

(HomeEndorser-RQ1).

4.5.2 Generalizability of the Policy Model (HomeEndorser-RQ2)

To demonstrate the generalizability of our policy model, we consider 5 additional AHOs

(i.e., security_state, fire, water leak, illuminance, and safety_state).

For each AHO, we identified endorsement attributes from the device-attribute map and

generated inferences using the process from Section 4.3.3. Our process resulted in 41

inferences (cumulatively) that would be useful for endorsement, with each AHOs being

endorsed using at least 3 device-attributes (examples provided in Table 4.1 in Section 4.3.3).

This demonstrates that our approach is generalizable to AHOs other than home, i.e.,

similar policies are feasible for 5 other AHOs (HomeEndorser-RQ2).

4.5.3 Case Study: Protecting the Security Camera from Privilege Es-

calation (HomeEndorser-RQ3)

Given the attacker’s goal to tamper with a high-integrity device that they cannot directly

access (e.g., a security camera), HomeEndorser’s endorsement checks prevent the attacker

from affecting malicious changes to any AHO that the aforementioned device depends on.

Thus, we assume the threat described in the motivating example (Sec. 4.1), where the

camera depends on both the home and security_state AHOs, and experimentally

demonstrate HomeEndorser’s effectiveness using two attack scenarios.

Malicious Scenario 1 – Bob modifies home: We deploy a malicious third-party service

controlled by the attacker, Bob. We assume that Alice has granted to the service the

permission (i.e., a REST API token) to write to the home AHO. When Alice is out of

the home, Bob writes to the value “home” to home, to disable the camera. Without
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HomeEndorser, the home AHO will change, allowing Bob to remotely disable the security

camera; however, we consider that Alice uses HomeEndorser with the policy Phome1(home):

Phome1(home) = (door-lock_lock == UNLOCKED ^

motion_sensor == ACTIVE)front-door

Thus, when Bob writes to home, the policy Phome1(home) is checked as follows: HomeEn-

dorser queries the state machine, and obtains the most recent change to the door lock as

well as the entryway motion detector. Since the door lock was not unlocked, and the mo-

tion detector has also not detected motion recently, the policy returns a DENY decision,

preventing the attack. It is also important to note that Bob could attempt to circum-

vent HomeEndorser’s policy by satisfying one of the two conditions in it, e.g., by sliding

a thin object (e.g., a card) through the door to trigger the motion sensor; however, the

conjunction among device-attributes prevents this attack.

Malicious Scenario 2 – Bob modifies security_state: We deploy a malicious

third-party service controlled by Bob, to which Alice has granted the permission to write

to the security_state AHO. Bob will attempt to set the security_state to “ok”

(as opposed to “deter”), which will trigger a routine that turns off the camera. Without

HomeEndorser, the security_state state will successfully change, allowing Bob to

disable the camera; however, we consider that Alice uses HomeEndorser with the policy

Psecurity_state1(ok):

Psecurity_state1(ok) = (security-panel == DISARMED ^

motion_sensor == ACTIVE)front-door

When Bob writes to security_state, Psecurity_state1(ok) is checked. Since the se-

curity panel was not disarmed and the motion sensor was not active recently, the policy

returns a DENY decision, preventing the attack. Thus, HomeEndorser successfully endorses

both of the AHOs on the transitive attack path to the security camera.
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4.5.4 Intentional AHO Changes and Normal Usage (HomeEndorser-

RQ4)

Users may themselves choose to change AHOs (e.g., by manually selecting home mode

in their platform mobile app after getting home), or by using a third-party service that

automatically requests appropriate state changes based on the user’s location (e.g., when

the user arrives home). We derive a set of 10 realistic user behavior scenarios from prior

work [111] to use as our benign examples, and enact those scenarios in our apartment

testbed. We summarize 3/10 scenarios that are exemplary of HomeEndorser’s decisions in

response to benign user behavior, with the rest available in Table 4.6.

Scenario 1 – Unlocking the house, and then leaving: Alice returns home and opens

the front door after unlocking the front door lock. However, she gets a call from her office

and leaves immediately without entering, accidentally also leaving the door open in the

process. Regardless, Alice’s home/away service accidentally requests the home AHO to

change to “home” (i.e., even when Alice has actually left), which would disable the camera

and leave the home unmonitored. In response to the request, HomeEndorser gathers the

recent states of the devices to check against the policy Phome2(home).

Phome2(home) = (door-lock_lock == UNLOCKED ^

motion_sensor == ACTIVE ^ door_sensor == ACTIVE)front-door

The policy constraints are partially satisfied, as the door lock was recently manually un-

locked, and the door sensor’s state changed to “open”. However, as Alice did not enter, the

motion sensor did not detect any motion, and the policy results in a correct denial, pre-

venting an unsafe situation in which the camera is turned off while the home is vulnerable

(i.e., the door is unlocked). That is, HomeEndorser’s composite policy design leverages

additional devices such as the motion detector to provide stronger endorsement, and hence,

is useful for preventing accidental but unsafe changes.

Scenario 2 – Disarming the security panel and entering: In this scenario, Alice

returns home and inputs the key-code in the security panel near the door, disarming the
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home. She then enters the home triggering the motion sensor. At the same time, a home

security service requests change to the security_state AHO on Alice’s behalf, from

“deter” to “ok”, which if allowed, would disable the security camera, as well as any other

security devices (e.g., alarms).

HomeEndorser gathers the recent states of the devices to check against the policy

Psecurity_state1(ok) (provided previously in Section 4.5.3). Since the security panel was

manually disarmed and the motion sensor was active recently as well, the policy is satisfied

and the state change is correctly allowed.

Scenario 3 – Direct state change request: Alice returns, and manually changes the

home AHO to “home” using the HomeAssistant UI. HomeEndorser identifies that the

request was not made through the REST API, and allows it without checking the policy,

honoring the user’s explicit intent.

In addition to home usage scenarios provided by prior work [111], we also evaluate

HomeEndorser’s performance under realistic home automation usage, as generated by He-

lion [124], a recent system that learns the naturalness of home automation and generates

large realistic home automation event sequences that are more representative of smart

home usage than the random events used in prior work [110].

Performance under realistic home automation usage: For this experiment, we exe-

cuted a set of 400 unique event sequences provided by Helion [90] consisting of 8191 total

events and 64 unique devices on our testbed (with HomeEndorser), which required us to

create 51 virtual devices in addition to 13 that were already present. To assess the accuracy

of the endorsement, we save a snapshot of all the device states at the time HomeEndorser

makes a decision and automatically compare all the snapshots against the policy in effect.

Upon executing these event sequences with HomeEndorser, we observed that HomeEn-

dorser was invoked in 605 home AHO state changes, and made the correct decision in all

of them, i.e., correctly allowing AHO state change in 562 cases and correctly denying it in

43 cases.
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Backwards Compatibility: One of our key objectives is to build a practical framework

that does not crash or in any other way impede legitimate functionality. Therefore, we

evaluate the backwards compatibility of HomeEndorser with automation developed by

real users or app developers (i.e., IoT apps or user-driven routines). For this, we randomly

selected 20 automations from the SmartThings repository [178]. We then leveraged our

existing deployment of HomeEndorser and set up 10 of these automations in HomeAssistant

that were applicable to the devices in our deployment, filtering out the remaining 10 for

which we did not have devices. We then triggered the automations throughout the day,

in a random order and at random times, while constantly monitoring for system crashes,

dropped or delayed device actions, or any other unusual device, automation, or platform

failures. Note that since this is an automated experiment, certain automated triggers may

be denied due to endorsement checks; we consider these denials as legitimate, and not

failure cases. Throughout the whole observation period, we did not observe any crashes

or device failures. Note that the selection of routines included one involving home shared

state changing from away to home that was denied throughout the day, i.e., when user is

home, disarm the security panel. On the other hand, routines that were changing states

not endorsed by HomeEndorser were allowed throughout the day.

To summarize, our evaluation demonstrates that HomeEndorser does not cause false

denials under benign behavior. In fact, as shown previously in scenario 1, its denials prevent

accidental and harmful state changes by users (i.e., and hence, are correct) (HomeEndorser-

RQ4). We further observed that in several cases, by the time the endorsement was re-

quested (i.e., time of REST API call), the relevant devices (e.g., motion sensors) had

reverted to their default states (e.g., the motion sensor reverted to the “inactive” state).

This means that if we had only checked the current state of the devices, i.e., the state

at the time of endorsement, the endorsement check would have resulted in a false denial.

However, HomeEndorser’s approach of checking the most recent change prevents such po-

tential false denials. Finally, we did not observe any device or automation crashes/failures

in the home in response to HomeEndorser’s endorsement, whether executing with Helion’s
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scenarios or otherwise.

Table 4.4: Performance overhead of HomeEndorser (HE) (in comparison with the unmodified
HomeAssistant baseline)

No. Operation HE Baseline (ms) HE (ms) Overhead(ms) Overhead(%)
1. Policy Instantiation

(Boot up time)
23.851 ± 1.738 33.669 ± 5.042 9.818 41.16

2. Policy update during runtime - 4.350 ± 0.515 - -
3. Changing non-endorsed

AHO (Hook invocation cost)
9.854 ± 0.723 9.916 ± 0.814 0.062 0.63

4. Changing endorsed AHO
(Endorsement check cost)

9.451 ± 0.605 10.367 ± 0.482 0.916 9.69

5. Automation execution with
endorsed AHO

16.582 ± 2.388 18.598 ± 0.669 2.016 12.16

6. Automation execution with
non-endorsed AHO

14.609 ± 1.026 14.311 ± 0.477 -0.298 -2.04

4.5.5 Runtime Performance (HomeEndorser-RQ5)

We compute microbenchmarks to capture each aspect of the platform that HomeEndorser

affects, in particular, the time taken for (1) policy instantiation (i.e., additional delay at

boot time), (2) policy update during runtime (i.e., overhead of device addition/removal)

(3) the endorsement hook invocation cost (i.e., overhead of an API call to a state not being

endorsed), and, (4) the endorsement check (i.e., overhead of an API call to a state being

endorsed). Furthermore, we perform 2 macrobenchmarks to assess the overall end-to-end

impact of HomeEndorser on the execution times of remote IoT services that leverage the

REST API for (5) executing an automation involving an AHO being endorsed, and (6)

executing an automation involving an AHO not being endorsed.We measure the worst-case

performance by performing all measurements with the largest policy, i.e., the policy in-

volving the maximum number (i.e., 7) of device-attributes that can be instantiated in our

device deployment (i.e., P109, online appendix [19]). We compute baselines for the bench-

marks using an unmodified build of HomeAssistant with the same devices, and perform

each experiment 50 times in both environments. Table 4.4 shows the mean results with

95% confidence intervals.

Results: As seen in Table 4.4, HomeEndorser has negligible performance overhead for
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operations that do not involve the AHO being endorsed, i.e., the hook invocation cost

when calling an API that modifies a non-endorsed AHO (microbenchmark), as well as

executing an automation that changes a non-endorsed AHO (macrobenchmark), with the

overhead falling within the error margin.

For endorsed AHOs, HomeEndorser adds only 0.916ms (9.69% overhead) to an AHO-

change invoked via an API call (microbenchmark), and adds 2.016ms (12.16% overhead)

to the overall execution time of an automation execution that changes an endorsed AHO

(macrobenchmark). In fact, the maximum overhead of 9.818ms (41.16%) that HomeEn-

dorser adds is to the overall bootup time of HomeAssistant, which is not that frequent,

and not perceivable by the user. This is due to the fact HomeEndorser’s policy instantia-

tor is called repeatedly as HomeAssistant adds devices during bootup. After the bootup,

the overhead to update policies when devices get added or removed is only 4.350 ms. Fi-

nally, we note that the endorsement check overhead is not dependent on the policy size, as

HomeAssistant’s (and hence HomeEndorser’s) state machine obtains device state changes

in parallel.

4.5.6 Effort Required to Integrate and Configure HomeEndorser

(HomeEndorser-RQ6)

This section describes the effort required to deploy and integrate HomeEndorser. Partic-

ularly, we demonstrate that (1) experts can generate policy templates for HomeEndorser

using the systematic semi-automated methodology defined in Section 4.3.3 with minimal

effort and time, (2) HomeEndorser can automatically instantiate its policies in end-user

homes as per the availability and placement of devices, which significantly reduces configu-

ration effort, and finally (3) most platforms may directly integrate HomeEndorser without

any design-level extensions, which indicates its practicality (HomeEndorser-RQ6).

1. Effort by experts: HomeEndorser’s semi-automated, data-driven, process for gen-

erating policy templates is a one-time effort, as described in Section 4.3.3, and templates

only need to be updated when new functionality emerges in an entire category of devices
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such as door locks (i.e., and not individual brands), or when an entirely new category of

device is introduced to the market. The only manual effort involves the identification of

the endorsement attributes from attribute inferences (as described in Section 4.3.3). For

instance, it took 2 authors around 4 workdays to identify the 10 endorsement attributes for

the home AHO, from the 510 device-attributes automatically identified by our approach.

3. Platform integration: Through lessons learned during our implementation of Home-

Endorser, we distill 4 key platform-properties that are necessary to successfully integrate

HomeEndorser in a smart home platform, in a way that satisfies the general purpose of

physical home endorsement, as well as certain enforcement-related design goals (G2!G4).

We then discuss these identified properties in the context of 4 popular platforms, namely

IoTivity [107], OpenHAB [153], SmartThings [193], and Nest/Google Assistant [77], and

estimate the effort that would be required for the wide-spread integration of physical home

endorsement, across all platforms.

Property 1 (Prop1) - Ability to obtain device states: In order for HomeEndorser to cor-

rectly enforce the policies, it has to be able to obtain states from all devices involved in

the policies. Ideally, the platform should have a Platform State Machine that can readily

provide device state information.

Property 2 (Prop2) - Complete mediation of state changes: For HomeEndorser to inter-

cept all incoming API requests that seek to change AHOs, and trigger endorsement checks

(G2), the platform must have a central component that intercepts all the API requests.

Furthermore, this component must be unmodifiable by third parties (G3).

Property 3 (Prop3) - Timestamp information of device states: HomeEndorser requires re-

cent device state information to prevent any false positives that can occur because of

devices reporting cached states or the platform itself reporting the and old/last known

state because of an unresponsive device (G4).

Property 4 (Prop4) - Ability to monitor device changes: HomeEndorser needs the ability
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to dynamically adapt its policies based on the current setup of the smart home, and hence,

the platform needs to monitor the addition, removal, and change in placement of devices.

Table 4.5: The (minimal) cost of Integrating HomeEndorser with respect to the properties
identified in Section 4.5.6

HomeAssistant IoTivity OpenHAB SmartThings Nest
Prop0 X X X X* X*
Prop1 X X X X* X*
Prop2 X X X X X*
Prop3 X ⇥ X X X*
Prop4 X X X X* X*

X = Directly portable, X* = Directly portable, but needs confirmation from source code, ⇥ =
design-level constraint/extension

Table 4.5 shows the results of our platform analysis based on Prop1 ! Prop4, and par-

ticularly, demonstrates that only IoTivity requires a design-level extension for integrating

HomeEndorser (in terms of Prop3), and all other platforms may feasibly integrate Home-

Endorser, sometimes with negligible engineering efforts. Each integration may require

minor adjustments, e.g., for HomeAssistant, we modified the state machine for complete

mediation, whereas in OpenHAB, we would need to implement a reference monitor across

various bindings (i.e., hook into services exposed as bindings), in a manner similar to how

extensible access control has been previously implemented in OSes such as Linux [225]

and Android [91]. While IoTivity provisions states to the reference monitor (Prop2), a

state machine with the ability to collect freshness information will need to be implemented

(Prop3), which would be a design-level extension. Finally, we mark certain properties for

Nest and SmartThings as X* in Table 4.5 as we can almost certainly assert that they can

integrate HomeEndorser with minimal engineering efforts, we would need source code to

confirm.

4.6 Threats to Validity of this Chapter

With HomeEndorser’s systematic and data-driven approach, our work lays the groundwork

for secure and practical endorsement for AHOs in the smart home. The threats to the
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validity of our approach and results are discussed below:

1. Byzantine Fault Tolerance: We rely on devices to not be compromised and to report

correct states, as stated in the threat model in Section 4.3 (although HomeEndorser does

dynamically adapt to devices that may be offline/non-responsive). That said, HomeEn-

dorser’s integrity validation of AHOs complements prior efforts [26] that aim to validate

device states via fingerprinting, and combining the two approaches is a promising future

direction.

2. Completeness and Rigor of Policy Generation: The device-attribute map used for

identifying endorsement attributes was automatically constructed from platform-provided

resources (Section 4.3.3). This map, consisting of 510 device-attribute-pairs, is an evolving

dataset that is as complete as the information sources used to derive it (e.g., device han-

dlers, capability maps), and new device attributes/types that emerge may be integrated

into it with minimal effort. Furthermore, we used systematic, 2-author, open coding to

identify the endorsement attributes from this map that would enable endorsement of each

of the 6 AHOs (Section 4.4). This approach resulted in negligible disagreements (i.e., only

2.4%), illustrating high confidence in the identified inferences.

3. Multi-user smart homes: Similar to most prior work in the area of smart home API

misuse [110, 171, 119, 217], HomeEndorser does not claim to address multi-user scenarios,

which are a novel but orthogonal design challenge. Further, we note that certain AHOs

(e.g., fire) may be independent of the number of users, and moreover, HomeEndorser’s

location-specific policy-predicates (Section 4.3.1) may also mitigate the implications of

multiple simultaneous device-interactions.

4. Device Availability and Placement: HomeEndorser’s policies consist of a diverse

range of devices.Hence, the user does not need to have all the devices, as HomeEndorser can

automatically choose the most restrictive policy that is applicable to a user’s home based on

device-availability and placement information obtained from the platform (Section 4.3.2).

However, we assume optimal device placement and sensor configuration to be out of scope,
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and direct the reader to complementary work that informs on optimal deployment [111].

4.7 Chapter Summary

This chapter presents the HomeEndorser framework, which validates proposed changes in

high integrity abstract home objects (AHOs) in correlation with device states. HomeEn-

dorser aims to address the threat posed by compromised/malicious services that may use

their authorized API access to change AHOs in a way that causes high-integrity devices

to behave unsafely. To do this, HomeEndorser leverages the insight that changes in AHOs

are inherently tied to a home’s physical environment, enabling each sensitive change to

be endorsed by correlating to changes in physical device states. HomeEndorser provides a

policy model for specifying endorsement policies in terms of device state changes, and a

platform reference monitor for endorsing all API requests to change AHOs. We evaluate

HomeEndorser on the HomeAssistant platform, finding that we can feasibly derive policy

rules for HomeEndorser to endorse changes to 6 key AHOs, preventing malice and acci-

dents with feasible performance overhead. Finally, we demonstrate that HomeEndorser

is backwards compatible with most popular smart home platforms, and requires modest

human effort to configure and deploy.
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Table 4.6: Realistic Scenarios used in evaluation of HomeEndorser

Scenario User Behavior Incoming request Policy involved HomeEndorser behavior

S4 : En-
tering
the home

Alice returns home, un-
locks the front door lock
and opens the door. She
then closes the door and
enters, triggering the mo-
tion sensor near the door.
Around the same time, her
home/away tracker service
requests a state change
from away to home using
REST API.

An app requests a
state change from
away to home us-
ing REST API.

Phome2
= (door-

lock_lock ==
UNLOCKED ^
motion_sensor
== ACTIVE ^
door_sensor ==
ACTIVE)front-door

HomeEndorser gathers the re-
cent states of the devices.
Since the door lock was man-
ually unlocked and the sensors
were active recently, the policy
is satisfied and HomeEndorser
allows the change, as Alice in-
tended.

S5 : A
home
without
a smart
door lock

Alice does not possess a
smart door lock, but has a
presence sensor and a mo-
tion sensor. She enters the
home, triggering the sen-
sors in the hallway.

An app requests a
state change from
away to home us-
ing REST API.

Phome3(home) =
(presence_sensor
== ACTIVE ^
motion_sensor ==
ACTIVE)front-door

Since only the sensors are
present, HomeEndorser gath-
ers the recent states of only
the sensors. As they were re-
cently active, the policy is sat-
isfied and the state change is
correctly allowed.

S6 :
Enter-
ing the
house
without
closing
the door

Alice comes home and
opens the front door after
unlocking the front door
lock manually. She leaves
the door open, and comes
in by triggering the motion
sensor in the hallway.

An app requests a
state change from
away to home us-
ing REST API.

Phome2
= (door-

lock_lock ==
UNLOCKED ^
motion_sensor
== ACTIVE ^
door_sensor ==
ACTIVE)front-door

HomeEndorser gathers the re-
cent states of the devices.
Since the door-lock was man-
ually unlocked and the sensors
were active recently, the policy
is satisfied and the state change
is endorsed.

S7 : Un-
locking
the home
and leav-
ing

Alice comes home and
opens the front door after
unlocking the front door
lock manually. She steps
outside immediately after
entering and closes the
door behind her, thereby
triggering the door sensor
again.

An app requests a
state change from
away to home us-
ing REST API.

same as Phome2
HomeEndorser gathers the re-
cent states of the devices. The
door lock was manually un-
locked and the door sensor was
triggered both when opening
and closing the door. How-
ever, the motion sensor was not
active recently so the policy
is not satisfied and the state
change is denied.

S8 :
Diverse
device
setup1

Alice comes home and
opens the front door after
unlocking the front door
lock manually. She comes
in by triggering the motion
sensor and the beacon sen-
sor in the hallway.

An app requests a
state change from
away to home us-
ing REST API.

Phome3
= (door-

lock_lock ==
UNLOCKED ^
motion_sensor
== ACTIVE ^
door_sensor ==
ACTIVE ^ bea-
con_sensor ==
ACTIVE)front-door

HomeEndorser gathers the re-
cent states of the devices.
Since the door-lock was man-
ually unlocked and the sensors
were active recently, the policy
is satisfied and the state change
is endorsed.

S9 :
Diverse
device
setup2

Alice comes home and in-
puts the keycode in the se-
curity panel near the door,
disarming the home. She
then enters the home trig-
gering the motion sensor in
the hallway.

An app requests a
state change from
away to home us-
ing REST API.

Phome4
= (security-

panel == DISARMED
^ motion_sensor
== ACTIVE ^
presence_sensor ==
ACTIVE)front-door

HomeEndorser gathers the re-
cent states of the devices.
Since the security panel was
manually disarmed and the
motion sensor was active re-
cently as well, the policy is sat-
isfied and the state change is
endorsed.

S10 :
Home
with just
2 devices

Alice comes home and un-
locks the front door lock
manually. She comes in by
triggering the motion sen-
sor in the hallway.

An app requests a
state change from
away to home us-
ing REST API.

Phome5
= (door-

lock_lock ==
UNLOCKED ^ mo-
tion_sensor ==
ACTIVE

HomeEndorser gathers the re-
cent states of the devices.
Since the door lock was man-
ually unlocked and the motion
sensor was active recently, the
policy is satisfied and the state
change is endorsed.
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Chapter 5

Polityzer: Understanding the Privacy

Practices of Political Campaigns

Political campaigns are increasingly relying on their online presence, i.e., social media,

campaign websites and mobile apps, to engage with potential voters. Campaigns have

been observed to leverage their web presence as one of the primary means of gathering

information on voters, which is often combined with publicly and commercial sources to

create accurate profiles of individual voters [173, 8]. Such information is often personal,

e.g., email, phone number, and salary, and highly private in some cases, e.g., citizenship,

partner’s name and contact information, with serious privacy implications [98]. To our

knowledge, while the use and impact of social media on election campaigns has been previ-

ously studied [43][72][123][186], the privacy posture of campaign websites is yet unexplored

at a large scale.

The privacy practices of campaign websites must be systematically studied for four

reasons. First, political campaigns are (at least in the U.S.) generally classed as “nonprofit

organizations”, and hence, data privacy regulations such as California Privacy Rights Act

(CPRA) do not apply to them [4]. This gap in regulation may mean a lack of incentive

in following privacy best practices. Second, while U.S. political campaigns are required

by the Federal Election Commission (FEC) to collect donor names, mailing addresses,
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occupation, and employer [62], they may collect significant additional private data. Third,

prior work shows that campaigns often share data [163], and deploy aggressive tactics to

get users to submit information [208] or interact with their political emails [126]. Fourth,

campaign websites are ephemeral in nature, and hence, it is unclear what happens to user

data after the election. Thus, the user may lose any agency over their data to prevent future

misuse, in which case, transparent disclosure of collection and sharing practices by the

website is the only recourse for users. These factors, along with the increased transparency

users desire regarding the use of their political data [188], and the governmental interest in

regulating this space [74, 57, 103, 215], motivate us to empirically understand the privacy

posture of campaign websites.

This chapter describes Polityzer, a semi-automatic framework for a systematic, large-

scale analysis of the privacy practices of political campaign websites. The design of Poli-

tyzer leverages the fact that political campaigns generally interact with potential voters,

volunteers, and donors through the campaign websites, and thus the privacy implications

of political campaigns can be approximated through a comprehensive analysis of campaign

websites. We use Polityzer to analyze the websites of 2060 campaigns established for the

2020 US Presidential, Senate, and House elections, to answer four fundamental research

questions (RQs):

Polityzer-RQ1 (Collection) – What data do campaigns collect from their websites?

Polityzer-RQ2 (Disclosure) – Do campaigns properly disclose the collection, sharing

and retention of this data to users?

Polityzer-RQ3 (Conflict) – Does the collection and sharing of campaign data conflict

with their privacy disclosures?

Polityzer-RQ4 (Risk) – Do campaign websites expose users to privacy or security risks

such as malware or trackers?

Polityzer addresses these questions through a semi-automated methodology that com-

bines text and website analysis: First, it extracts unique types of privacy-sensitive data col-
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lected by election campaigns, through an analysis of forms contained in campaign websites

(Polityzer-RQ1). Second, it compares the collected data types against the campaign web-

site’s privacy policy to assess whether campaigns properly disclose the collection to users

(Polityzer-RQ2). Third, it facilitates a study to measure the conflicts in a campaign’s

privacy disclosure (Polityzer-RQ3) by examining the privacy policies of campaigns and

fundraising platforms to understand potential/indirect collection (and sharing) not dis-

closed in a campaign’s policy, but may occur due to the use of the fundraising platform.

Finally, it leverages popular security tools (VirusTotal[13], ApiVoid[12]) to assess the gen-

eral security and privacy-hygiene of campaign websites in terms of malware, hosting, and

SSL/TLS misuse (Polityzer-RQ4). The contributions of this chapter are summarized as

follows:

• Polityzer: We design and implement Polityzer to enable large-scale analysis of the

privacy practices of political campaign websites. Polityzer is highly precise in terms of

identifying campaign sites without privacy policies, with a false positive rate of 1.29%.

• Study: We use Polityzer to perform the first large-scale analysis of the privacy practices

of campaign websites, analyzing 2060 sites of House, Senate, and Presidential candidates

from the 2020 U.S. election.

• Findings: Our analysis leads to 20 key findings that demonstrate significant privacy

gaps. For instance, we find that 70.78% campaigns do not provide privacy disclosures,

of which 64.27% that collect sensitive data. Similarly, even where privacy policies are

present, 41.22% campaigns do not properly disclose data collection. Moreover, we find

that 144/162 (88.89%) campaigns among those with privacy policies may be inadver-

tently (and without disclosure) sharing data with other campaigns through the use of

the common fundraising platforms. We also find security weaknesses and use of trackers

in campaigns that collect user data. These findings echo prior concerns regarding the

privacy practices of political campaigns [99, 54], and demonstrate how websites are in-

deed used by campaigns to collect private data at scale, but without transparency and

accountability.
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• Dataset: To enable future research, we curate a dataset of 2060 campaign websites and

507 privacy policies belonging to senate, house, incumbents, and presidential candidates.

Our artifact is available in our online appendix [165].

5.1 Motivation

Political campaigns collect user data from three key sources: publicly available information

(e.g., voter rolls), commercial sources (i.e., data brokers or other campaigns), and their

campaign websites and apps. Campaigns do not consider one source more important

than the other, but instead, aggregate data collected from all sources to form complete

profiles on individual voters [173, 8]. Websites, in particular, are critical for three reasons.

First, websites enable campaigns to scale their data collection beyond what door-to-door

campaigning allows. More importantly, websites provide campaigns with “organic traffic”,

i.e., people who naturally navigate to the site or find it via search, and are hence much

more likely to donate, volunteer, or register and provide email and other information [197].

As we see later in Section 5.4.2, this importance is evident from the fact that 40.91% of the

campaigns registered to the FEC in 2020, including almost all of the winning campaigns,

had active websites at the time of the election, many of which collected data outside of

what the FEC mandates.

Second, websites also enable campaigns to reliably fill in the gaps in their voter profile

databases obtained from other sources. For instance, voters have expressed the desire

and ability to opt out from providing their contact information on voter rolls to prevent

spam messages [31]; however, campaign websites and apps have been observed collecting

the contact information of voters’ friends and social connections [203], thereby completing

profiles potentially against the voters’ wishes. We see similar cases of data collection

(e.g., partner’s name and email, friends’ names and email) in Section 5.5.2. Finally, after

elections, it is a standard practice for candidates to rent out or sell their databases to

other candidates, PACs, political parties, or private brokers [167], potentially to recuperate
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campaign expenditure [203]. That is, campaign websites form an integral data collection

vantage point for candidates, helping them collect, aggregate and monetize the data of

citizens, in a manner that is quite similar to for-profit social networks, or other commercial

websites that face far more scrutiny.

Therefore, given the critical position of campaign websites in a candidate’s data ag-

gregation apparatus, this chapter seeks to empirically understand their privacy posture,

further motivated by the increasing interest from governments, evidence of user concern

over collection of sensitive political data, and the harm that may befall users if researchers

overlook campaign websites, as this section describes.

5.1.1 Expectations of Governments and Regulators

Governments, at least in Europe, are cognizant of the privacy risk from data collection by

campaign websites, and hold them to the same privacy standards as for-profit organiza-

tions. To elaborate, the European Union has taken the lead in protecting the privacy of

political data collected by (campaign or other) websites, by classifying “political data” as a

special, opt-in, category of personal data under the GDPR [74], i.e., which cannot be pro-

cessed without the owner’s explicit consent. The GDPR also requires election campaigns

to inform the users about collected data and the purpose behind the collection, and also

to hold the collected data securely [57]. Individual countries in Europe have also issued

specific regulatory guidance for political campaign websites, e.g., the UK’s guidance for

processing personal data for political campaigning purposes [103] in compliance with both

GDPR and the UK’s Data Protection Act [207].

In contrast, the United States does not have a regulation that specifically governs

private data collection by political campaigns. Instead, the U.S. has so far specified

bare-minimum expectations that prevent the government (including members of the U.S.

Congress) from misusing private voter data, such as the “Franking Privilege”, which pre-

vents members of congress from using such data for election campaigns [42]. However,

there are signs that this status quo is changing, potentially due to the significant push for
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consumer data privacy around the globe, and calls by privacy advocates for presidential

candidates’ websites to be held to a higher standard than for-profits [203].

To elaborate, the U.S. Congress is currently considering the Voter Privacy Act [215]

which seeks to grant voters access to personal data that campaigns have on them, and rights

to erase their data from campaign databases and prohibit targeted ads. This act targets any

political candidate, campaign, or entity using an “interactive computer service” for data

collection, i.e., a campaign website or mobile app. Among other things, this proposed

act mandates campaigns to disclose the categories of personal information collected on

an individual, thus significantly strengthening the transparency around campaign data

practices. Such emerging regulations and existing precedents from the EU motivate our

data-driven analysis of political campaign websites.

5.1.2 User Expectations and Desire for Privacy

There is strong evidence that users are increasingly concerned about data collected for

political purposes, e.g., a survey following the Cambridge Analytica scandal found that

73.9% of users were concerned about websites using their data for political purposes [188].

However, to our knowledge, there is no prior work that systematically studies what users

precisely expect from political campaigns in terms of digital data privacy. To better un-

derstand user expectations in this context, we build upon prior work in Web privacy.

To elaborate, prior work [161] shows that in the general context of data collected by

websites, uninformed users have no expectations of online privacy. However, users desire

strong privacy guarantees once they are exposed to privacy policies, and informed on the

ways in which their data is collected and used [161]. This shift in behavior is particularly

evident in the for-profit context, wherein privacy studies [170, 168, 221] and pertinent

regulation [73, 3] have caused user-awareness and privacy expectations to mature over

the last decade. For example, a 2021 survey [36] showed that 86% users cared about

data privacy, with 79% willing to act to protect their privacy and 47% already switching

companies over data privacy practices.
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We anticipate that the case of political data is no different, i.e., users only care when

informed. That is, even in the early stages of the use of Web data in political campaigning,

users expressed their discomfort when explicitly asked about profiling and data aggregation

by campaigns, with one noting that “I would not know any person who would be okay with

some outside group having access to that much personal data” [169]. Thus, even if user

expectations are unclear at present, it would be premature to conflate the lack of awareness

with a lack of desire for data privacy in the political context, given ample evidence about

how strongly the public feels about data privacy in general [36, 188, 53, 85, 29, 155]. Our

hope is that our timely, empirical, evaluation of campaign websites, particularly during a

major US election cycle, would inform users on what data campaigns collect and share,

and motivate users to expect stronger guarantees comparable to the for-profit context.

5.1.3 Why Should Researchers Care?

Although Section 5.1.2 provides evidence that users are likely to expect privacy guarantees

for political data, we also entertain a counter-possibility: what if users don’t care at all?

One might argue that since users support the campaign, they may not expect the privacy

guarantees they expect from for-profits, effectively “donating” their data for a cause. This

argument motivates a pivotal question for researchers: should we exempt campaign websites

from analysis simply because users blindly trust them and want to help them?

The answer to this question is no, both due to the debatable premise that users trust

campaigns to such a degree, and the severe harms that will result from overlooking political

campaigns just because users trust them. To elaborate, there is no evidence to suggest

that users trust political campaigns enough to forego the rights to their private information

in perpetuity. In fact, a prior survey demonstrates that users have a very dim view of

the public sector, with only 11% considering them as “trusted” to protect their private

information [130]. This potential lack of immediate trust could explain why campaigns

have to resort to aggressive tactics to collect data, e.g., such as staging a photo op with

Santa Claus for kids, and then required voters to sign up with their email addresses to
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download their children’s photos [208].

Alternately, even if a user did trust a campaign and willingly provided data for a

cause, such blind faith may be unwarranted and harmful, due to campaign behavior after

elections. For instance, a candidate in the 2016 presidential election was found to have sold

the email list collected via their website to rivals, and separately, rented the email list out,

charging $10,500 per unsolicited email sent to their 675k subscribers [164]. Similarly, an

app from a 2016 presidential campaign shared the contact list and location data of voters

with Cambridge Analytica[214], potentially for building “psychological profiles” of the user

and their contacts [206]. Regardless of how much the user supports a candidate’s cause, it

is implausible that they would condone behavior such as selling out their data to rivals.

Finally, campaigns often switch party affiliation after the election [21], or alternately,

voters themselves change their minds [220, 158]. This transience of voter-campaign rela-

tionships makes it ill-advised to assume that voters providing data to a campaign relinquish

their rights in perpetuity. Considering these factors, it is incumbent on researchers to an-

alyze the privacy posture of campaign websites, and usher in increased transparency into

their data collection and usage, to protect users even if, and precisely because, they may

blindly trust campaigns.

5.2 Ethical Considerations

Politics is a sensitive subject, and we are cognizant of the several ethical “lines" that this

work could cross if performed without significant care. Therefore, to preempt harm, and

with the goal of uncovering privacy gaps agnostic of political implications, we imposed

a set of ethical constraints on this work, based on four guiding principles: (P1) Focus

on privacy, and not politics, (P2) Limiting harm to candidates, (P3) Limiting harm to

campaign resources, and (P4) Transparency. This section describes these principles and

the constraints we impose to adhere to them.
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5.2.1 P1: Focus on Privacy, and not Politics

Our goal is to highlight the gaps in the privacy postures of US political campaigns, and

understand their implications on user privacy. As the loss of privacy affects users regardless

of their political inclination, our position is that all political campaigns, regardless of

affiliation, should adhere to privacy best practices. Therefore, we seek to limit our analysis

and discussion to only what is relevant with respect to user privacy, and prevent a partisan

interpretation of our results, as user privacy should be a bipartisan issue.

With this rationale, we impose the following constraint on the study: we refrain from

analyzing our data in terms of specific political parties, affiliations, or the known political

positions of individual candidates. To elaborate, we strip the party designation of candi-

dates from the collected data before performing any analysis on it (which also prevents

biasing ourselves), and do not later seek to attach party-specific insights in our findings.

Instead, our analysis considers general congressional designations; e.g., House, Senate and

Presidential candidates, and committee memberships.

5.2.2 P2: Limiting Harm to Candidates

Although prior work explicitly discloses the names of organizations with privacy gaps

(e.g., PolicyLint[17], PoliCheck[18], TaintDroid[56]), we deliberately refrain from disclosing

the identity of candidates/campaigns in our findings to prevent reputational harm. To

elaborate, we do not name candidates and anonymize any identifiable information when

describing the data, results, findings, or our interaction with candidates. Similarly, we

anonymize the composition of sub-samples of campaigns chosen for our sharing analysis

in Section 5.7 to further mitigate harm. Finally, we paraphrase our interactions with

campaigns rather than quoting them verbatim and redact any personal information to

prevent harm and de-anonymization of the candidate. As our only correspondence was

for the responsible disclosure of findings, the interaction does not warrant seeking an IRB

approval [133].
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5.2.3 P3: Limiting Harm to Campaign Resources

Over the course of the study, we take several decisions to minimize or prevent harm to

campaign resources or personnel. Particularly, we do not interact with any human subject

or collect information about any human at any stage of our analysis. To analyze data

sharing among campaigns, we use the same black-box analysis approach employed in prior

work [163][126]. Specifically, our experiment also involves providing a valid but fictional

email address to the campaign website and monitoring sharing by analyzing emails au-

tomatically delivered to our inbox, without the involvement of any human subject. As

expected, we only received automated campaign ads during the entire study, which causes

negligible harm to the system. Our only interaction with the campaigns occurred after

the study, during the disclosure of findings, as described in Section 5.10.2. Finally, our

automatic crawler respects robots.txt files in campaign websites, which we then collect

manually.

5.2.4 P4: Transparency

While we take significant care to prevent a partisan interpretation of this chapter (P1),

one might argue that not discussing political affiliations may in fact have a partisan effect,

i.e., that of hiding patterns of misbehavior in one political party. That is, the need for full

transparency in terms of revealing the political affiliations is directly at odds with that of

keeping the focus on privacy and off politics.

The position of the authors is that the benefits of a non-partisan interpretation of our

results, in the form of enabling future research, informing the public, and motivating pol-

icymakers to regulate campaigns regardless of affiliation, are far superior to the perceived

loss of transparency, i.e., we choose to adhere to P1, at the cost of P4. However, to enable

future researchers (or the general public) to make full (transparent) use of our data and

analysis, we will release our raw data and code, including the crawled campaign websites.

As this data is already publicly accessible, releasing it does not cross any ethical bound-

aries, while our framework, Polityzer, will allow researchers to perform similar analysis
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Figure 5.1: Overview of the Polityzer framework

based on political factors such as party affiliation, if they so choose.

5.3 Overview

Motivated by the criticality of campaign websites for user data collection, emerging expec-

tations from governments regarding political data privacy, increasing user concerns, and

the significant harms to users if campaign websites escape scrutiny, our analysis takes a

normative position, i.e., that the websites of political campaigns be held to similar privacy

standards as those of for-profit organizations. This position reflects in our research ques-

tions (Polityzer-RQ1!Polityzer-RQ4), and guides our design and use of Polityzer.

Figure 5.1 illustrates the design of Polityzer, composed of the following modules:

1. Campaign Collector: The Campaign Collector builds a database of the election

campaign websites, and consists of a campaign URL database that houses the input website

links of the campaigns, and an automated website crawler which downloads all the websites

listed in the campaign URL database and stores them in a campaign websites repository

for analysis. While campaign URLs can be directly fed into the Data collector manually,

to enable large-scale collection, we develop an automated approach that collects candidate

information from the FEC and uses Ballotpedia[22] to extract their campaign website URL
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(see Section 5.4.1).

2. Campaign Processor: The Campaign Processor automatically extracts useful infor-

mation from the website pages using 3 submodules; (i) the URL Extractor that extracts

the external/outbound links as well as any trackers that may be present, (ii) an Input

Form Extractor that extracts the input forms in the website through which user data is

collected, and (iii) the Privacy Policy Extractor which checks whether the website has a

privacy policy document and extracts it.

3. Analyzer: The Analyzer performs 4 types of analyses on the processed websites;

(i) Data type analysis (Polityzer-RQ1) to understand the scope of private data collec-

tion (Section 5.5), (ii) Privacy Policy Analysis (Polityzer-RQ2) to understand disclosure

practices (Section 5.6), (iii) Conflict analysis (Polityzer-RQ3) to discern conflicts in the

privacy disclosures of campaigns (Section 5.7) and, (iv) URL analysis (Polityzer-RQ4)

to characterize the general security posture of the campaign website (Section 5.8).

4. Result Aggregator: Once the analysis is complete, the Result Aggregator generates

a privacy report containing the aggregated results per campaign. We describe the results

of each submodule of Analyzer in Sections 5.4!5.8.

5.4 Campaign Collector

For our analysis to be tractable, we use the campaign collector to download the websites

belonging to the following federal races in the U.S.: (1) House elections, (2) Senate elec-

tions, and (3) Presidential election, as previously described in Section 2.2. We now describe

our methodology, followed by an overview of the resultant datasets.

5.4.1 Website Collection Methodology

The collector module takes campaign links as input and downloads and organizes the

websites per campaign type i.e. House, Senate or President. The campaign links can be

fed to Polityzer automatically or manually, depending on whether an automated process
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is viable for a given election. For our analysis of the US-based campaigns, we constructed

an automated pipeline using two data sources; (i) the FEC, and (ii) Ballotpedia. We now

describe this pipeline followed by the methodology to build the campaign repository.

1. Obtaining candidate lists from the FEC: As discussed in Section 2.2, the FEC

database is the ground truth for obtaining the list of all federal election candidates in

the US election [63], which we use to obtain candidate names and metadata (e.g., state,

district, and party affiliation).

2. Resolving campaign websites of individual candidates: The FEC database does

not link to the candidates’ websites as candidates are only obligated to provide names,

addresses, and party information. Hence, the challenge is to obtain a candidate’s campaign

URL with only their name and metadata, which we address using third-party sources along

with web searches.

First, we search for corresponding candidate profiles in a non-profit political encyclo-

pedia, Ballotpedia [22]. These profiles include the candidates’ campaign URLs, which we

seek, the accuracy of which is ensured by dedicated Ballotpedia staff. However, obtaining

a Ballotpedia profile for a candidate is non-trivial. To elaborate, a typical URL for a can-

didate’s Ballotpedia profile is simply https://ballotpedia.org/<candidate-name>.

Just appending a candidate’s name to this URL template does not work, as the candidates

use their legal name in their FEC registration while Ballotpedia profiles use their informal

names that are often different; e.g., “John Doe” (Ballotpedia profile name) could be reg-

istered as “Jonathan Doe” (legal name) with the FEC. Further, to distinguish candidates

with the same name, Ballotpedia also appends the candidate’s home state to the profile

URL, i.e., .../John_Doe_(State1) and .../John_Doe_(State2).

To address these challenges, we supplement our approach with Google search to iden-

tify the correct Ballotpedia profile URL of the candidates. For each candidate, we cre-

ate a Google search query using both their FEC-provided name and the metadata (e.g.,

state, party registration). We obtain the correct Ballotpedia profile by performing three
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additional checks on the top 10 search results, i.e., we check if (1) the URL root is

ballotpedia.org, (2) the URL format is that of a Ballotpedia profile, i.e.,

ballotpedia.org/candidate_name or ballotpedia.org/candidate_name_(state),

and (3) the URL contains the candidate’s last name. This approach always finds a candi-

date’s Ballotpedia profile, if present, because the search query involves relevant information

(e.g., district/state) that automatically narrows down the search space, never returning

>one match.

Once we have the Ballotpedia profile URLs for the candidates, we automatically extract

the campaign website link listed in the profile using an HTML parser. Note that not all

candidates have websites listed on their Ballotpedia profile. We do not directly perform

Web searches for the campaign website for such candidates, as there is no ground truth

outside Ballotpedia to validate the mapping.

3. Downloading websites to build the campaign repository: The collector module

uses an automated crawler built using scrapy-selenium [38] that spawns a headless browser

with a user-agent specifying Mozilla as the browser. The crawler takes input in the form

of a campaign URL and downloads the HTML pages as well as other website resources

(e.g., PDFs and CSVs) into a campaign repository. The crawler uses a breadth-first-search

approach, and traverses all links up to a fixed depth starting from the homepage. Default

depth is set at two to allow the crawler to finish within a reasonable timeframe, regardless

of the relative website sizes in terms of number of links present, but can be re-configured

as per user needs. Note that the crawler does not traverse outbound links (i.e., links that

point to external web pages on other domains), and instead saves the link and terminates

that specific search.

5.4.2 Results of Campaign Website Collection

We collected all the House, Senate and Presidential candidates that were registered for the

U.S. general election of 2020 in the FEC database [61] as of September 10, 2020, which

yielded a total of 5036 candidates. This list contained duplicates, as the same candidate
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may register for multiple offices simultaneously. Removing such duplicates brought the

total number of unique candidates to 4885.

As described in Section 5.4.1, our automated pipeline to resolve candidate websites

helped us map 3259 (66.7%) of the candidates to their respective Ballotpedia profiles. The

missing 33.3% can generally be attributed to missing Ballotpedia profiles. Of these 3259

Ballotpedia profiles, 2630 provided a URL to the campaign website, i.e., we obtained the

campaign website links for 53.83% (2630/4885) of the overall sample of unique candidates

identified from the FEC database. We further manually added 68 incumbent senators who

were not participating in the election and hence, were absent from the FEC database, using

the same methodology to obtain their campaign websites. We did not consider four retiring

senators and one vice-presidential candidate whose website redirected to the presidential

candidate’s website.

Finally, we used the crawler to download the campaign websites. Not all campaigns

were active at this point, since the primaries (see Section 2.2) had completed and many

candidates had dropped out. As a result, some of the website links were dead or led to

404 errors. The collector successfully downloaded 2060 (40.91%) websites, including

13 that belonged in multiple groups e.g., dropping their presidential campaign to run for

house or senate. The downloads were completed on November 2, 2020, a day before the

election.

To better understand the privacy practices in terms of candidates that appeared on

the final ballot, versus those that had already dropped out, or those that are in office (and

may or may not be re-contesting), we define a campaign “status” terminology. Campaigns

whose candidates appeared on the final ballot in November were categorized as active, while

those that did not (potentially due to a primary election loss) were classified as inactive.

This classification was applied to the Senate, House, and Presidential campaigns, resulting

in 6 datasets (i.e., house_active, house_inactive, senate_active, senate_inactive, presi-

dent_active, president_inactive). Finally, the 68 incumbent senators not up for re-election

were classified as senate_incumbents, the seventh dataset.
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Table 5.1: Dataset Overview

Dataset No. in our dataset Total in FEC Cand./seat
house_active 952 (90.49%) 1052

house_inactive 710 (31.84%) 2252 7.49
senate_active 112 (94.92%) 118

senate_inactive 151 (37.44%) 406 16.375
senate_incumbents 68 - -
president_active 4 (100%) 4

president_inactive 63 (5.32%) 1204 1208
total 2060 (40.91%) 5036

Table 5.1 shows the number of websites in the 7 datasets. The collector was able to

download a higher percentage of websites for active candidates in all categories, which is ex-

pected, as active candidates were likely to have operational websites until the election. The

lowest download rate occurred for president_inactive dataset, which is also explainable, as

the number of candidates was quite large for what would eventually be one seat. Finally,

all campaigns in senate_incumbents had operational campaign websites even though they

were not running, potentially accruing user data even when the candidates may not be

actively campaigning.

5.5 Analysis of Data Collection (Polityzer-RQ1)

To obtain an estimate of what is at stake, Polityzer first seeks to understand the collection

of private user data by campaigns. Certain data types must be collected by US campaigns

to fulfill donor reporting obligations imposed by the FEC. Hence, Polityzer covers all data

types, irrespective of the FEC requirements, but distinguishes FEC vs non-FEC data types

when discussing privacy implications.

5.5.1 Methodology

Polityzer approximates the types of private data collected by campaign websites through

an analysis of HTML forms, using the Input Forms Extractor in the Campaign Proces-

sor module shown in Figure 5.1. The Input Forms Extractor automatically extracts all

forms from each campaign website and extracts the “labels” adjacent to each input field,

producing a label-set for each campaign website to enable analysis.

103



We use a manual approach to identify private data types from the label-set for each

campaign. Our goal is to identify private data in a political context, such as voter registra-

tion information or party affiliation, as these political types may not be present in existing

ontologies, e.g., that of PoliCheck [18]. For coverage, we ensure that the final set for each

campaign contains the union of types identified from our labeling and those in PoliCheck’s

ontology.

5.5.2 Results and Findings

Table 5.2 shows the data types collected by campaigns and their distribution across our

datasets. We split the collected data types into three categories: (1) FEC-required data

types such as fine-grained location, employer information and occupation, (2) non-FEC

data objects, i.e., private data such as gender and party affiliation collected by campaigns

at their own discretion, and (3) FEC* data types, e.g., information such as credit card

numbers, or banking information that are not explicitly required by the FEC, but need to

be maintained as a part of the donation records/receipts. We have manually identified

and associated the data types to the corresponding campaign websites in each relevant

finding in this section.

Finding 1: 1462 (70.97%) of campaigns collected personal information through

their websites (F1). Table 5.2 shows the 28 unique data types collected, with at least

one candidate collecting data of each type. We found an additional 139 (6.75%) cam-

paigns collecting political opinions on issues such as education, guns, and abortion rights.

Although these opinions are not PII, they are often collected along with at least an email

or a phone number on the same form, and hence, are sufficient to allow campaigns to build

user profiles without explicit consent.

Finding 2: Campaigns collect highly private data types that are not required

by the FEC (F2). As shown in Table 5.2, all categories of campaigns, i.e., house, senate

or presidential campaigns as well as active or inactive categories, collect multiple data types

that do not need to be reported to the FEC, indicating that the purpose of the website
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Table 5.2: Data collected by campaign websites. FEC indicates data required by the FEC,
!-FEC indicates data not required by the FEC, FEC* indicates the data not explicitly required
by the FEC, but often a part of donation receipts shared with the FEC.

Class Data type House Senate President total
act. inact. act. inact. incumb. act. inact.

name 661 397 82 72 47 4 34 1297
FEC location_coarse 532 228 66 40 51 4 19 940

location_fine 313 134 36 23 24 3 8 541
employer_info 100 52 18 13 13 4 5 205

occupation 95 45 16 11 14 2 4 187
email_address 709 443 88 80 58 4 42 1424
phone_number 478 252 70 39 39 4 19 901

website 78 52 11 5 3 2 5 156
education_info 16 5 2 1 0 5 0 29
social_media 15 5 1 2 1 2 1 27

language 6 9 0 0 0 0 1 16
friend_email 2 1 0 1 4 0 1 9
date_of_birth 2 4 1 0 1 1 0 9
friend_name 2 1 0 1 4 0 0 8

party_affiliation 4 2 0 0 0 2 0 8
!-FEC resume 4 1 0 1 0 1 0 7

union_status 2 0 0 0 0 1 0 3
photo_self 1 1 0 0 0 0 0 2
fax_number 4 0 0 0 0 0 0 4

age 0 3 0 0 0 0 0 3
gender 4 3 0 0 0 0 0 7

partner_name 1 0 1 0 0 0 0 2
partner_employer 1 0 1 0 0 0 0 2

parent_phone 1 0 0 0 0 0 0 1
parent_email 1 0 0 0 0 0 0 1
parent_name 1 0 0 0 0 0 0 1

citizenship_status 0 0 0 1 0 0 0 1
race 0 1 0 0 0 0 0 1

creditcard_info 34 15 4 7 6 1 0 67
FEC* banking_info 6 3 2 1 3 0 0 15

pay_method 24 20 9 6 4 1 0 64
retired_info 34 12 7 3 9 1 0 66

extends beyond just collecting donation. Email and phone numbers are the most common,

which campaigns may associate with other sources to form complete profiles on users, as

discussed in Section 5.1. Other sensitive non-FEC data types are education information,

date of birth, resume, gender, party affiliation and in rare cases, even race, union status

and photo of the user. Such data is highly private, and may enable invasive campaigns to

profile voters, and sell/share the profiles in perpetuity (see Section 5.1.3).

Finding 3: Communication-related PIIs are the most collected data types (F3).

Among campaigns that collect at least one data type, email is collected by at least 98.96%
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Table 5.3: Top 10 most collected data types among campaign websites

Datatype count (total=1446)
email_address 1431 (98.96%)

name 1304 (90.18%)
location_coarse 918 (63.49%)
phone_number 903 (62.45%)
location_fine 535 (37.0%)

password 245 (16.94%)
employer_info 174 (12.03%)

occupation 167 (11.55%)
username 150 (10.37%)
website 134 (9.27%)

campaigns (Table 5.3). Additionally, phone numbers are collected by 62.45%, meaning

that communication related data types are among the most collected, and is indicative

of the fact that communication with likely voters is one of the primary objectives of a

campaign website. Note that some websites also collect username and passwords, most

likely due to the presence of template login pages, as we verified with five randomly chosen

websites. We have removed these two fields from the list of data types.

Finding 4: Campaigns collect data that impacts the privacy of people other

than the user (F4). We found that 12 campaigns collect contact information of the

user’s friends and parents, i.e., their names and email addresses, echoing prior evidence

of campaign apps collecting contact lists [10] (see Section 5.1). These requests are often

presented as a means of sharing the campaign, i.e., wherein the user “shares" the campaign

with their friends by submitting the friend’s name and email. Similarly, a campaign website

collected information on the user’s parents as part of a fellowship application. At least two

campaigns also collected partner’s name and employer information as part of the donation

form. Such collection is by nature without consent, since the entity whose data is being

shared cannot consent, and harms the privacy of people that are not directly interacting

with the campaign. As we discuss later in F6, “friend’s email and name” were among the

data types not disclosed in the privacy policies of several campaigns.

Finding 5: Campaigns collect social and economic opinions of users along with

their PII, thereby gaining the ability to directly associate individual users to
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Table 5.4: Campaigns’ collection of political opinions with PII in the same page

Dataset Collect political opinion with PII No privacy policy
house_active 34 (3.6%) 21 (61.76%)

house_inactive 12 (1.69%) 9 (75%)
senate_active 4 (3.57%) 0 (0%)

senate_incumbents 2 (2.94%) 1 (50%)
senate_inactive 5 (3.31%) 2 (40%)
president_active 2 (50%) 0 (0%)

president_inactive 2 (3.17%) 0 (0%)
total 61 (2.96%) 33 (54.10%)

their political leanings (F5). 69 campaigns collect opinions on various issues such

as abortion, immigration, guns, and taxes through a survey page or their volunteer sign

up forms. A user’s beliefs on these issues is often a reliable indicator of their political

leanings [70]. As it is a common practice to share voter data [163], this may lead to

the exposure of the user to unsolicited micro-targeted ads from campaigns they did not

directly interact with, even if the user trusts the specific campaign collecting the data (see

Section 5.1.3). Of the 141 webpages of the 69 campaigns that collect such opinions, 127

pages (90.0%) from 61 campaigns (88.41%) do so while also collecting either an email or a

phone number from the same page, allowing the campaigns to map the political stances to

an individual. More importantly, using the analysis from Section 5.6, we find that 33/61

(54.10%) of these campaigns lack a privacy policy, as we show in Table 5.4.

In summary, the collection of such a wide-range of private data underscores the critical

position of websites in the data aggregation apparatus of campaigns.

5.6 Analysis of Privacy Disclosure (Polityzer-RQ2)

Privacy policies play a critical role in conveying how campaigns handle the significant sen-

sitive data they collect via their websites. Moreover, privacy policies may also reveal if the

data is being shared with third-parties such other political campaigns. This analysis fo-

cuses on understanding whether the privacy policies in campaign websites properly convey

such relevant information accurately to the user.
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5.6.1 Methodology

As existing privacy regulations (e.g., CCPA [3]) do not apply to political campaign web-

sites, we do not assume that a campaign website will have a “Privacy Policy” link on the

main page, as is the best practice, also mandated by CCPA. Instead, we seek to find any

form of privacy disclosure in the website, which allows us to deduce if campaigns disclose

their privacy practices to users, and how accurate the disclosure are with respect to the

private data they collect. Our analysis is organized in two steps:

Step 1 – Checking the campaign website for a privacy disclosure: For each cam-

paign website, we first attempt to check if the website provides a privacy disclosure, i.e.,

not a privacy policy per se, but any document that describes the collection and shar-

ing of private data. For this, Polityzer searches campaign websites using a bag of words

approach which searches for any hyperlinks (e.g., https://<campaign-url>.com/

privacy-policy/) or link-text (e.g., “Privacy Statement”) that may contain terms in-

dicative of a privacy disclosure. We obtain this set of disclosure-related terms from prior

work [121], and increment it with additional words that may indicate privacy or any legal

disclosure, specifically, “terms”, “conditions” and “disclosure”, leading to the following set of

privacy disclosure-related terms: [privacy, terms, conditions, notice, statement, disclosure].

Finally, after Polityzer automatically extracts all the hyperlinks containing the disclosure-

related terms in a campaign website, we manually check each shortlisted link to confirm

whether it truly leads to a privacy policy page, which we extract for further analysis. In

the spirit of performing a conservative analysis, we consider cases where the link pages led

to empty/error pages as “having a privacy policy”, given the presence of the hyperlink.

Step 2 – Analyzing the privacy policies for collection and sharing accuracy:

We use Polisis [88] to extract collection and sharing statements from the privacy policies,

followed by manual annotation of data mentioned in the statements, and a comparison with

the data actually collected by the campaigns, as found in Section 5.5. To elaborate, for each

privacy policy, we automatically use the Polisis API [89] to obtain a category prediction for
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each sentence (e.g., “collection”, “sharing”). To elaborate, we extract sentences receiving

the highest confidence scores for “collection” or “sharing”, which are most relevant to our

goal.

Once the collection/sharing sentences are identified, we manually annotate them to

identify data objects in the sentences (e.g., name, address), looking for precise data ob-

jects and ignoring generic terms. For instance, in the sentence "we may collect personal

information including your name and email", we annotate only the name and the email

address. This annotation was performed by two authors in 10 days, wherein the first au-

thor identified the data objects in the sentences, which were then confirmed by the second

author.

Finally, for each campaign, we compare the data objects extracted from the sentences

with the corresponding set of data objects collected by the campaign’s website (i.e., ob-

tained from our analysis in Section 5.5). This analysis allows us to identify several types of

anomalies, including data objects that the campaign collects but does not disclose in the

privacy policy. Further, we also analyze the sharing sentences to identify explicit mentions

of sharing data with other candidates, campaigns, or committees, and perform a general

search for mentions of FEC disclosure requirements.

5.6.2 Results and Findings

Table 5.5: Missing privacy policies in campaign websites

w/o priv.policy collecting priv. data
house_active 640/952 (67.22%) 441/640 (68.98%)

house_inactive 589/710 (83.38%) 359/589 (60.95%)
senate_active 52/112 (45.54%) 34/52 (65.39%)

senate_incumbents 15/68 (23.53%) 11/15 (73.33%)
senate_inactive 122/151 (82.12%) 65/122 (53.28%)
president_active 0 (0%) 0 (0%)

president_inactive 40/63 (66.67%) 27/40 (67.5%)
total 1458/2060 (70.78%) 937/1458 (64.27%)

Out of the 2060 websites we analyzed, Polityzer’s automated approach for privacy

link extraction led to 975 campaigns with potential privacy disclosures (i.e., 975 links),

and conversely, 1085 websites without disclosures. Recall that Polityzer’s automated ap-
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Table 5.6: Total privacy policy extracted for analysis per dataset

Dataset No. of priv.policy extracted
house_active 267

house_inactive 90
senate_active 56

senate_incumbents 49
senate_inactive 19
president_active 4

president_inactive 22
total 507

proach is conservative, i.e., it gives significant benefit of the doubt to campaigns and

over-approximates to find all potential privacy disclosures. Hence, its effectiveness is in

terms of a low false positive rate, with a positive being the lack of a privacy disclosure.

Upon manual validation of this result, we find only 14/1085 false positives, i.e., a false

positive rate (FPR) of 1.29%. Of the 14/1085, four used different terms to describe their

disclosure (i.e., disclaimer, transparency, fine print, and ToS), five were hosted with third

party sites (e.g., pastebin), and five resulted from link extraction errors in Polityzer.

We further manually refined the 975 potential privacy disclosure links from Polityzer,

and found 560 actual privacy policies, and 415 were not. Of these 560 we were able

to extract a final 507 disclosures for analysis, with the rest leading to 404 errors.

Table 5.6 shows the distribution of analyzed privacy policies per dataset.

We also validated the 415 websites without disclosures from our manual refinement of

the 975 potential disclosure links, and found that 28 were marked in error. To summa-

rize, we identified 1458 websites as lacking privacy disclosures, considering 42/1500 false

positives (i.e., overall 2.8% FPR), with Polityzer’s automated keyword-based approach

suffering from only 1.29% (14/1085) FPR.

Finally, recall that we used Polisis to identify collection and sharing statements from

privacy policies, and filter out the rest. Thus, “effectiveness” in this context would be the

ability of Polisis to identify most of the collection/sharing sentences, and conversely, filter

out or miss as few as possible, i.e., have few false “negatives” (with a positive being a

relevant collection/sharing sentence). To understand if using Polisis filters out relevant
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sentences, we manually validated each of the 14,454 sentences filtered out by Polisis. We

found that only 465/14454 sentences were incorrectly labeled as not being “collection” (339

sentences) or “sharing” (126 sentences), i.e., a false negative rate of 3.22%. We manually

integrated these sentences into our analysis.

Our analysis of privacy disclosures led to the following findings, which have all been

manually validated.

Finding 6: 1458/2060 (70.78%) of the campaign websites did not have a pri-

vacy disclosure, of which, 937/1458 (64.27%) collect private data (F6). As

shown in Table 5.5, of the 70.78% campaigns lacking privacy disclosures, it is concerning

that 937 (64.27%) collect private user data, including sensitive information such as credit

card, employer information, phone number, and location. We also observe that active

campaigns were more likely to offer a privacy disclosure than inactive campaigns, likely

due to the longer period of time the campaign websites were actively engaging with users

and potentially subject to scrutiny.

Table 5.7: Data collection without privacy disclosure.

Dataset Undisclosed
house_active 118/267 (44.19%)

house_inactive 49/90 (54.44%)
senate_active 10/56 (17.86%)

senate_incumbents 16/49 (32.65%)
senate_inactive 7/19 (36.84%)
president_active 3/4 (75%)

president_inactive 6/22 (27.27%)
total 209/507 (41.22%)

Finding 7: 209/507 (41.22%) of campaigns do not fully disclose all private data

in their privacy policy. (F7). Similar to F5, Table 5.7 shows how inactive campaigns are

more likely not to disclose all collected private data, relative to active campaigns. Table 5.8

lists the top 10 undisclosed types. These data types that were not disclosed include (1)

data types that were most collected such as phone number (111/507 or 21.89%), email

(88/507 or 17.36%) and location (47 or 9.27%), (2) data types known to be shared with

third-parties (including the FEC) such as occupation (24/507 or 4.73%) and employer
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Table 5.8: Top 10 Most commonly undisclosed datatypes

Datatype count (total=507)
phone_number 111 (21.89%)
email_address 88 (17.36%)
location_coarse 80 (15.78%)

name 71 (14.01%)
location_fine 47 (9.27%)

password 34 (6.71%)
employer_information 29 (5.72%)

occupation 24 (4.73%)
website 14 (2.76%)

credit_card_info 13 (2.56%)

information (29/507 or 5.72%), and (3) sensitive demographic data such as retirement

status (10/507 or 1.97%), party affiliation (4/507 or 0.79%) and race (2/507 or 0.39%).

Even data types that affect the privacy of the user’s friends (e.g., friend’s email, 2/507 or

0.39%) were not disclosed. Conversely, 316/507 (62.33%) campaigns disclose data types

that they do not collect in practice, potentially due to the use of templates (see Section 5.9).

Finding 8: 389/507 (76.73%) campaigns disclose sharing with third-parties in

their privacy policy (F8). However, this does not mean they explicitly mention who the

third-party is; i.e., campaigns may not mention sharing with other political campaigns,

or even with the FEC. As campaigns are known to sell voter data after elections (see

Section 5.1.3), this lack of transparency is particularly concerning.

Table 5.9: Campaign websites that disclose sharing data with other campaigns

Dataset Share with other campaigns
house_active 91/267 (34.08%)

house_inactive 23/90 (25.56%)
senate_active 23/56 (41.07%)

senate_incumbents 20/49 (40.82%)
senate_inactive 5/19 (26.32%)
president_active 2/4 (50.0%)

president_inactive 15/22 (68.18%)
total 179/507 (35.31%)

Finding 9: 179/507 (35.31%) campaigns mention sharing data with other polit-

ical campaigns (F9). Sharing with other campaigns, especially to the campaign’s central

party, may be a standard practice [163]. However, only 35.31% of mention sharing their
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data with other political campaigns, despite its privacy implications on the user. This

trait is more prevalent among active campaigns (see Table 5.9). Similarly as in the case

of F8, this finding reflects the norm for campaigns to share data with other campaigns,

sometimes even rivals [164].

Finding 10: None of the campaigns explicitly discuss their retention practices

in relation to the completion of campaign (F10). We used keyword-matching us-

ing ‘retain‘ or ‘retention‘ to find 165/507 campaigns that discuss retention practices. Of

these 165 campaigns, none of them explicitly discuss what happens to user data upon the

completion of the campaign. When campaigns do discuss retention of data for a period

of time in 54 instances, they do so by providing vague and non-descriptive explanation.

For instance, campaigns may say they retain data as long as "necessary for business pur-

pose“, or "necessary for fulfillment of purpose for which data was given“. Further, with

the campaign likely ending, users have no recourse to prevent data misuse once it is col-

lected. This finding shows why researchers must investigate campaign websites regardless

of how much users trust them (Section 5.1.3), as without committing to a retention policy,

campaigns gain perpetual access to user data, which is undesired given the transience of

user-campaign relationships, and general campaign (mis)behavior after elections.

5.7 Inter-campaign Sharing Analysis (Polityzer-RQ3)

Users may expect their shared data to stay with the campaign they engaged with. This

section explores data sharing among campaigns through an experiment, and by analyzing

the conflicts between the privacy disclosures of political campaigns and major fundraising

platforms.

5.7.1 Methodology

We performed two studies to understand the privacy implications of data sharing among

campaigns. First, we conducted an email experiment to evaluate if candidates share private

email addresses with others. Second, we identified campaigns connected to the two most
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prominent fundraising platforms and analyzed the privacy policies of the platforms as well

as the connected campaigns for conflicts.

1. Experimentally studying email data proliferation: We signed up for the newslet-

ters of 26 campaigns evenly distributed among major political parties, consisting of ten

Senate, ten House and two Presidential candidates, as well as four House and Senate cam-

paigns from our state, to increase the likelihood of a response owing to the local reference.

To observe the effects of sharing our emails with each of the 26 entities in isolation

from the others, we used 26 dedicated email accounts. We examined the domains of the

senders to identify emails from external parties, i.e., if the domain differed from that of

the campaign website we signed up with. Additionally, we visited the external domain to

identify its affiliation (i.e., another campaign, or a PAC). We refer the readers to the study

by Podob et al. [163] for a more exhaustive analysis of the sharing practices involving all

major campaigns in the 2016 election.

2. Understanding conflicts among the privacy policies of platforms and cam-

paigns: We observe that political campaigns often create parallel instances on fundraising

platforms such as ActBlue[1], WinRed[5], Anedot[2] or DonorBox[7], which act as pay-

ment providers and also central avenues for attracting voters. As campaigns point to

these platforms from their websites, data exchange between the campaign website and the

fundraising platform is highly likely. Therefore, we explore conflicts between the privacy

policies of campaigns and their fundraising platforms.

We design a simple approach to identify campaign websites connected to two major

fundraising platforms, Platform1 or Platform2. For each of the 2060 candidate websites we

automatically extract all the outbound links, and identify a connection if the root of any of

the outbound link is Platform1 or Platform2. We then compare the collection and sharing

statements from the privacy policies of the two platforms with those of the connected

campaigns (extracted using the methodology described in Section 5.6).
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5.7.2 Results and Findings

We categorize the emails received between November 5, 2020 to February 20, 2021 as

during-election emails, as the period includes the November election and the Senate runoff

election in Georgia. The emails from February 21, 2021 to September 14, 2022 are cat-

egorized as after-election emails. We received 1708 during-election emails and 933 after-

election emails, with an average of 65 during-election and 35 after-election emails per

campaign. All the findings from the analysis of these emails have been manually validated.

Finding 11: 3/26 campaigns shared our email with another entity without

disclosing in the privacy policy (F11). In total, 8/26 (30.77%) campaigns we studied

shared our emails with other political entities (such as PACs), five during-election and

three after-election. Of these eight, three make no mention of sharing user data with

other political entities in their respective privacy policies.

Table 5.10: Use of Platform1 or Platform2 for fundraising.

Dataset Use platform No privacy policy
house_active 567/952 (59.56%) 341/567 (60.14%)

house_inactive 269/710 (37.89%) 210/269 (78.07%)
senate_active 63/112 (56.25%) 11/63 (17.46%)

senate_incumbents 55/68 (80.88%) 13/55 (23.64%)
senate_inactive 60/151 (39.74%) 46/60 (76.67%)
president_active 3/4 (75.0%) 0/3 (0%)

president_inactive 22/63 (34.92%) 10/22 (45.45%)
total 1039/2060 (50.44%) 631/1039 (60.73%)

Finding 12: Of the 1039 campaigns that use fundraising platforms, 631/1039

(60.73%) do not have a privacy policy (F12). According to their privacy policies,

both Platform1 and Platform2 share user data with the campaigns. However, since 631

such campaigns do not have privacy disclosures, the privacy policies of both platforms are

rendered ineffectual in practice, i.e., the privacy guarantees promised by the platforms

to donors do not hold, due to data sharing with campaigns that provide no disclosure or

guarantees at all.

Finding 13: Campaigns using Platform1 for fundraising may be indirectly sharing

115



with other campaigns (F13). Platform1 in its privacy policy states that it may share

user data with third parties for marketing purposes, including other political committees

or campaigns that may be of interest to the user. This means that users donating to one

campaign may have their data shared with other campaigns. Hence, we argue that in the

spirit of good disclosure, campaigns should explicitly specify such sharing in their privacy

policies. However, of the 162 campaigns that use Platform1 and have a privacy policy, 144

(88.89%) campaigns do not disclose sharing with other campaigns or Platform1, despite

using Platform1 for fundraising.

5.8 Security Risk Analysis (Polityzer-RQ4)

Campaign websites collect extensive amounts of private and sensitive user data (Sec-

tion 5.5), often without adequate disclosure (Section 5.6, Section 5.7). Therefore, it is

important to evaluate the general security hygiene of these websites to develop an un-

derstanding of the risks associated with malicious or unintended data disclosure. We

performed three analyses, described below, followed by the findings.

1. Identifying malicious/phishing URLs: Building upon prior work [120, 30, 96] that

use Virustotal [13] as ground truth for identifying malicious websites, we first analyzed each

campaign website by passing each URL (including outbound links) included in the website

through VirusTotal’s API. We then aggregated the results from VirusTotal by checking

how many of the scanning engines in VirusTotal marked a URL as either “malicious” or

“phishing”.

2. Identifying and characterizing trackers: To check for the presence of trackers,

we used an existing tracker list that was originally designed for AdBlock [6]. For each

campaign website, we check if any of the associated URLs match the regular expression-

based rules from the tracker list. We also extract the root domain of the tracker upon

identification. As a final step to identify malicious (i.e., and not just undesirable) trackers,

we run the list of URLs of discovered trackers through VirusTotal.
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3. Checking whether websites use TLS: We send a GET request to the website URL

using https and label a website as “using TLS” if the response is successful.

Finally, we use APIVoid [12] to obtain general hosting information for deducing the

jurisdiction that would apply to the campaign website in case security problems were found.

For each candidate URL, we query APIVoid using REST APIs and obtain the following

information: the IP address of the server hosting the URL, server’s hosting company, and

the country where the website is hosted. We further analyze this data to identify campaigns

hosted outside of the US, since this study focuses on US political campaigns.

Table 5.11: No. of unsafe campaign websites across datasets

Dataset No. of unsafe sites
house_active 11/952 (1.16%)

house_inactive 4/710 (0.56%)
senate_active 0/112 (0%)

senate_incumbents 0/68 (0%)
senate_inactive 0/151 (0%)
president_active 0/4 (0%)

president_inactive 2/63 (3.17%)
total 17/2060 (0.83%)

Finding 14: Campaign websites are generally secure (F14). Although 17/2060

(0.82%) campaign websites were flagged as unsafe by at least one of the engines in Virus-

Total (Table 5.11), only four among them were flagged by at least two engines and only

one by more than two engines. This shows that at least 2052 (99.18%) campaign websites

were marked as secure by VirusTotal. Our results are conservative as we cannot analyze

false negatives, i.e., confirm the absence of malicious code in candidate websites, since

Polityzer’s dataset only consist of html pages and not the associated scripts.

Finding 15: Campaign websites are hosted on servers outside of the US (F15).

In all, 53/2060 websites were hosted by servers located outside the US, 15 of which were

well-known service providers such as CloudFlare and Google. After their removal, we

finally got 38 campaign websites hosted outside the US, in countries including Czechia,

Denmark, and Japan (full list in Table 5.12). We find that 33 of these sites belonged to

inactive campaigns while 5 belong to active campaigns.
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Table 5.12: non-US countries where websites are hosted

Country Num of campaigns
Canada 11
Germany 11
Australia 5
Japan 3
France 2

VietNam 1
UK 1

Lithuania 1
HongKong 1
Czechia 1
Denmark 1

As this analysis was performed after the election, it is unclear if the websites were always

hosted offshore, or bought by an offshore entity after the election. It is also possible that

once the campaign ends, URLs are bought by offshore entities for potentially malicious

future use, e.g., one URL in an inactive House campaign server is hosted by a company

called the Iranian Research Organization for Science & Technology located in Hong Kong.

That five active campaigns are hosted offshore is concerning, as they were still active

and collecting data at the time of the analysis. Due to the diverse laws govering data in

different countries, such offshore storage can have serious privacy implications for users;

e.g., recent changes in Hong Kong’s data security laws that allow the government to access

data stored in Hong Kong’s data centers [9, 11].

Table 5.13: No. of non-TLS websites

Dataset non-TLS sites Collect PII
house_active 66/952 (6.93%) 44/66 (66.67%)

house_inactive 65/710 (9.15%) 28/65 (43.08%)
senate_active 12/112 (10.71%) 6/12 (50%)

senate_incumbents 2/68 (2.94%) 2/2 (100%)
senate_inactive 16/151 (10.60%) 2/16 (12.5%)
president_active 0/4 (0%) 0

president_inactive 7/63 (11.11%) 4/7 (57.14%)
total 168/2060 (8.16%) 86/168 (51.19%)

Finding 16: 168 (8.16%) campaign websites do not use HTTPS for commu-

nication (F16). We observe that HTTPS adoption rate among the campaign websites

may be better than HTTPS adoption in general, which is around 80% for Alexa top
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100,000 [219][218]. As shown in Table 5.13, 86 (51.19%) of these non-HTTPS campaign

websites collect PII including phone numbers, fine-grained location, and credit card data.

Finding 17: Campaign websites have malicious outbound links (F17). 71 cam-

paigns had at least one outbound link that was classified as malicious by at least two

engines in VirusTotal. While the campaign website is unlikely to be malicious, this result

indicates that the links that campaigns include within their website may not be adequately

vetted.

Table 5.14: No. of campaign websites with trackers

Dataset w/ trackers w/o priv.policy
house_active 741/952 (77.84%) 467/741 (63.02%)

house_inactive 457/710 (64.37%) 361/457 (78.99%)
senate_active 90/112 (80.36%) 34/90 (37.78%)

senate_inactive 100/151 (66.23%) 74/100 (74%)
senate_incumbents 67/68 (98.53%) 15/67 (22.39%)
president_active 4/4 (100%) 0 (0%)

president_inactive 45/63 (71.43%) 23/45 (51.11%)
total 1504/2060 (73.01%) 974/1504 (64.76%)

Finding 18: 1504 (73.01%) campaign websites use trackers (F18). Trackers are

used extensively among the campaign websites, but are more likely in active campaigns (Ta-

ble 5.14). We found 280 unique trackers in the websites with www.google-analytics.com

and connect.facebook.net being the two most common. Among the 280 trackers,

two were identified as malicious: ad.yieldmanager.com (by one VirusTotal engine) and

www.freeresultsguide.com (by three engines).

Finding 19: 974/1504 (64.76%) of campaign websites with trackers do not

have a privacy policy (F19). Similar to Findings F5 and F10, inactive campaigns across

each data set are more likely to not have privacy policies despite having trackers in their

websites, which may lead to their users not even being aware of possible data collection.

Finding 20: 112/446 (25.11%) campaign websites do not mention trackers in

their privacy policies (F20). This is in keeping with the privacy policies of campaign

websites missing key data types, as we detailed in Finding F6. In both Findings F17 and

119



F18, it is important to note the loss of user data privacy resulting from trackers [59] e.g.,

trackers from Facebook or google analytics can collect privacy-sensitive user data from

websites[127].

5.9 Use of Privacy Policy Templates

Table 5.15: Extra data mentioned in the privacy policy but not collected in the website.

Dataset Extra in priv.policy
house_active 155 (58.05%) (total=267)

house_inactive 58 (64.44%) (total=90)
senate_active 36 (64.29%) (total=56)

senate_incumbents 36 (73.47%) (total=49)
senate_inactive 12 (63.16%) (total=19)
president_active 3 (75%) (total=4)

president_inactive 16 (72.73%) (total=22)
total 316 (62.33%) (total=507)

We found that 316/507 (62.33%) campaigns include data types in their privacy policy

that they do not collect in practice, as seen in Table 5.15. Some unique data types that

fall under this category are tax ID number, religion, phone contact list, and mobile device

ID number. The presence of such surplus datatypes can be explained in a number of

ways. First, the privacy policy of both the website and the mobile app of the campaign (if

present) could be the same, which means the data may still be collected, just not via the

website. Second, the campaign may intend to collect such data in the future or is using a

template privacy policy without removing such extra datatypes. Use of policy templates

among campaign websites is likely, based on our comparison of privacy policy texts, that

we discuss next. Finally, this could also be due to a gap in our analysis, as we only analyze

the form labels in webpages, and may miss form inputs if the form is improperly labeled

in the html.

To gauge the use of privacy policy templates across different campaigns, we compared

the text of each privacy policy with the rest of the privacy policies in our dataset. We do

this by first converting the privacy policy text into TF-IDF vectors [86] and calculating

their cosine similarity [14] with each other. For high likelihood of similarity, we only
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consider policies with over 98% of cosine similarity score as similar. Finally, we randomly

choose 5 privacy policies that have at least 1 similar privacy policy to assess their overall

privacy implication.

Finding 1: 239 privacy policies have at least one highly similar corresponding

policy.. The cluster with the highest number of similar privacy policies is 23, while the

cluster with the least number is 2. In the random sampling of 5 clusters we manually

analyze, the main part of the policy text were identical, with the only textual difference

being in the introductory paragraph. Due to this, the data types described within the

privacy policies were also identical.

Finding 2: Campaigns with similar privacy policy did not have similar data

collection practices.. In our analysis of 5 randomly chosen similar privacy policy clusters

of sizes 20, 8, 7, 4 and 2 respectively, we found no similarity in the types of data they

collect, despite the fact that the disclosure about the data types being the same. This

likely indicates that the privacy policies were simply written from a template (e.g., by

replacing the name of the campaign and the candidate) rather than as a way to rigorously

inform the user about the privacy practices corresponding to that campaign website.

5.10 Discussion

The severe privacy violations demonstrated in our analysis are all legal in the U.S., given

the lack of a dedicated privacy regulation applying to political campaigns. However, “legal”

does not mean “appropriate” here, i.e., similar violations by commercial websites would

have attracted significant scrutiny and criticism from both regulators and researchers, as

they have in the past [39, 45]. Our position is succinctly captured in this quote from the

Online Trust Alliance [105], who audited apps belonging to presidential candidates in the

2016 election: In light of worldwide privacy concerns and the court of public opinion, are

the candidates’ practices considered responsible or ethical? Should the next president of

the United States be held accountable to the same standards as a business? [203]. That is,
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we believe that the findings from this study expose inconsistencies that go beyond what

is expected in keeping with the spirit of good disclosure, as well as laws in prominent

(non-US) jurisdictions, and general consumer expectations of privacy. Several campaigns

that follow privacy best-practices may adhere to this view as well, such as the 29.22% that

provide privacy disclosures, 58.78% of which disclose all data collection.

In summary, the last decade has seen significant advancements in consumer data privacy

due to the concerted efforts of researchers to change the perceptions of both governments

and consumers, and this work seeks to initiate a similar transformation in this highly

relevant domain. To this end, we organize the discussion along three key areas: We

summarize the privacy implications of the findings (limitations discussed in Section 5.11).

We then explore why the campaigns’ privacy postures are this way, leveraging the responses

from campaigns contacted for responsible disclosure. Finally, we conclude with actionable

outcomes from this study that would help researchers as well as regulators bring about

tangible change and accountability in data privacy in this domain.

5.10.1 The Privacy Posture of Campaign Websites

Our findings show that campaign websites collect extensive amounts of highly sensitive

data (F1!F5), and confirm the important position websites occupy in the campaigns’

data aggregation apparatus, as outlined in Section 5.1. While the significant collection of

private data not required by the FEC (F2) is indeed concerning, we find that the privacy

risks from this collection are made severe due to the sharing practices, and a general lack

of transparent disclosure.

To elaborate, aside from common privacy violations, such as the lack of a privacy policy

(F6) or incomplete policies (F7), we find that many campaigns use boilerplate language

regarding sharing (F8), and some even share data with other campaigns without disclosing

such sharing at all (F11). Similarly, most campaigns with access to data from fundrais-

ing platforms lack privacy disclosures entirely (F12), rendering ineffective the guarantees

promised in the platform’s disclosure, as well as the disclosures of other campaigns that
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provide data to the platform (F13).

What is worse is that no campaign precisely discloses what happens to the data after

completion of the campaign (F10). The implication here is that once users provide data,

campaigns may use, share, and sell the data in perpetuity, without the data owner’s con-

sent. This perpetual ownership campaigns acquire not only exposes users to privacy harms

(e.g., data being sold to rivals [164]), but also to security risks such as identity fraud and

surveillance given the potential for data leaks [202, 16], especially in cases where the web-

sites are hosted in non-US jurisdictions (F15), use vulnerable communication (F16), or are

connected to malicious, non-vetted, entities (F17). The undisclosed presence of aggressive

trackers in many campaign websites (F19, F20) compounds these harms, by exposing the

user’s general browsing habits to the campaigns as well.

To summarize, the collection of a significant range of private data, coupled with insuffi-

cient disclosure, bad security practices, and undisclosed sharing, exposes users to significant

privacy risks and loss of agency. To put these findings into context, we make two final

observations:

Observation 1 (O1) – The campaign websites of 253 current lawmakers did not have a

privacy policy, of which, 200/253 collect personal information.

Observation 2 (O2) – 99 of these 253 lawmakers serve on privacy-relevant congres-

sional committees on cyber, technology, or consumer protection. Such committees often

scrutinize the security or privacy practices of businesses, e.g., 4 of these lawmakers partic-

ipated in a Senate hearing titled “Does Section 230’s Sweeping Immunity Enable Big Tech

Bad Behavior?”. We hope that the findings from this study help responsible members of

congress in holding their own campaigns to the same standards they govern.

5.10.2 Rationale for the Present Privacy Postures

During the responsible disclosure of our findings to campaigns without privacy policies,

we received 20 responses that provide insight into the campaigns’ rationale regarding data

privacy (see the online appendix [165] for details).
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Particularly, 6/20 campaigns were open to adding a privacy disclosure to their websites,

but were ill-equipped due to the lack of technical support or privacy know-how, some even

asking us for a template. These responses are encouraging as they show a willingness

to follow privacy best-practices. In contrast, 5/20 campaigns misunderstood the rationale

behind privacy disclosures, (incorrectly) arguing that privacy policies are non-binding, and

hence ineffectual. Another argued that since they did not collect data (which we verified to

be correct), they did not need one, which goes against commonly understood best-practices.

Further, some (3/20) did not consider their campaigns active, and hence saw no need

to retroactively add a privacy policy. However, we note that the websites were still active

at the time of this exchange, and could have been collecting data. Some others confused

our inquiry with their stance on privacy in general, or mistook us as service providers

proposing to create a policy for them (which could also explain the lack of responses from

campaigns).

Finally, 2/20 campaigns admitted that the absence of the privacy policy was directly

because of the lack of federal privacy regulation for campaigns. One candidate expressed

frustration at their party‘s privacy posture, and suggested us to convince their party to

require their candidates to have a privacy policy. The same candidate stated that they were

asked by the central party to share the campaign’s donor list, corroborating our findings.

Finally, the candidate also expressed the need for dedicated resources for campaigns, such

as a website that explains the best practices, provides templates, and how-tos, thereby

aiding the largely volunteer-run campaigns to develop a good privacy posture.

5.10.3 Towards Privacy, Transparency, and Accountability in Political

Campaign Websites
This chapter of the dissertation develops artifacts and insights that will benefit researchers,

users, and policymakers alike. Particularly, our data, results, and the HomeEndorser frame-

work will help researchers further explore privacy in the context of political campaigns,

and extend our methodology and analysis pipeline to analyze other relevant artifacts, such
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as campaign-related mobile apps. Moreover, researchers will be able to use HomeEndorser

to periodically evaluate campaigns, enabling longitudinal understanding of the privacy

postures of political campaign websites.

Similarly, we are encouraged to see legislative efforts [215] towards regulating the pri-

vacy practices of political campaigns in the U.S., particularly their digital components,

such as websites and apps. We envision that the measurement results and findings from

this study, as well as future research that builds upon it, will provide empirical grounding

for such legislative efforts. For instance, our findings motivate the dire need to require

campaign websites to provide privacy disclosures, particularly including details on how

long they retain user information. Such a criteria will not only force campaigns to be

transparent about their routine sharing or sale of data after the election, but also enable

users to make informed choices when committing their data to a particular campaign.

Finally, we see significant privacy benefits to users down the line. Particularly, we find

the general obscurity on the users’ privacy expectations from campaigns unsurprising, given

the lack of privacy studies to that end. The data and findings from our large scale study

provide a unique opportunity for researchers to address this gap, repeating prior work on

gauging user privacy expectations [161] in this critical context. More importantly, we hope

that just as prior work [161] found, presenting the public with the key measurements and

findings regarding the privacy practices of campaign websites may also educate them on

their privacy implications, motivating informed voters, who will then demand increased

privacy, accountability, and transparency, from the campaigns. This, in turn, may be the

final push needed for strong privacy legislations governing political data in the U.S., just

as user privacy concerns motivated regulations such as the GDPR and CPRA.

5.11 Threats to Validity

We list the threats to validity of this study, as follows:

Completeness of website collection and email study: Our dataset does not include

candidates whose Ballotpedia profile was not found or who did not have a campaign website
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link in their Ballotpedia profile. Similarly, our dataset does not include Political Action

Committees (PACs) and SuperPACs, as our primary focus was on the privacy practices

of campaigns. Further, we started the crawling from September 15, 2020, which was after

the primaries, so we may have “lost” some data that could otherwise have been collected.

Completeness of email study: The email study encompasses emails received between

November 5, 2020 to September 14, 2022, and only considers the top donation-earners.

For a more exhaustive analysis of the sharing practices of campaigns, we refer the readers

to the study by Podob et al. [163] which includes all major campaigns in the 2016 election

over a full election cycle.

Completeness of data type collection: For compiling the data types collected by

each campaign website, we automatically extract all the forms in all the webpages of the

website and extract the “labels” in those forms. In doing so, we may miss cases where input

fields are not bounded by proper <form> tags in the webpages or cases where input fields

that are present within forms are not properly labeled. Additionally, one author manually

resolved each of the extracted labels based on the limited context provided by the label

texts. The author discarded any labels that could not be reasonably resolved (e.g., label

texts such as input_1), including the labels meant for automated crawlers (e.g., ‘leave this

box empty‘). Hence, our methodology of data type collection (and the resultant findings)

offers a lower bound on the data collected by the campaign websites.

Using VirusTotal: VirusTotal has been widely used as the ground truth for malware

classification by prior work[120][30][96][154][216]. That said, VirusTotal’s engines are not

without flaws, particularly false positives due to over-approximation, and our findings

obtained through them (F12 and F15) should be interpreted as potential problems in this

context. Further, to counteract the infeasibility of validating the findings of VirusTotal’s

scanners, prior work generally uses a threshold for trusting the VirusTotal labels [120][30].

Therefore, like prior work [120], we consider a threshold of 1 engine, but report the number

of engines that label a website as malicious or phishing in our findings related to VirusTotal
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(Section 5.8), to allow an informed interpretation of our findings, and convey the potential

for false positives.

5.12 Chapter Summary

This chapter presented the Polityzer framework to evaluate the privacy practices of polit-

ical campaign websites, and the first large-scale study of this nature through an analysis

of 2060 campaign websites involved in the 2020 US elections. Our analysis of the collec-

tion, privacy-disclosure, sharing, and general security risks associated with campaigns that

collect highly-sensitive private data led to 20 key findings, which demonstrated critical in-

sufficiencies in several aspects of privacy. Through conversations with campaign organizers,

we further confirm the need for privacy standards that apply to political campaigns, which

may motivate campaigns to improve. The datasets and results generated through this

study will inform the development of such regulations and standards, while also enabling

future research in this relatively understudied area.
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Chapter 6

Future Work

This dissertation focuses on assessing the security and privacy risks of consumer-oriented

software systems and developing practical frameworks that can aid in reducing such risks.

In chapter 3, to answer RQ1 (i.e., how threats arise), we performed a holistic evaluation

of access control in platforms and exploitability in integrations that allowed us to perform

an end-to-end lateral privilege escalation attack. Specifically, we performed a study of 2

popular data-store based smart home platforms i.e., Philips Hue and Google Nest. From

our analysis, we found that Hue’s permission enforcement and access control model is

broken, and it allowed an adversary to arbitrarily modify privileged sections of the data

store, thereby allowing apps to remove legitimate apps or add malicious apps without the

user’s consent. On the other hand, we found that Google Nest’s app review process allowed

many apps with dubious or misleading permission prompts to integrate with the platform,

and making users vulnerable to overprivileged apps. Finally, we performed an end-to-end

lateral privilege escalation attack by exploiting a routine through which we were able to

compromise the security camera by first gaining access to a smart switch.

The key insights generated from chapter 3 allowed us answer RQ2 (i.e., developing

practical defenses) in chapter 4, where we explore a practical framework, HomeEndorser,

that provides the foundation of integrity guarantees in the smart home. Specifically, Home-

Endorser leverages the information readily available from the devices present in the home
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to validate whether incoming state change requests are consistent with the observations

of local device, thereby guarding arbitrary or malicious modifications by integrations of

protected entities called Abstract Home Objects (AHOs).

Finally, to answer RQ3 (i.e., how stakeholders convey risks), we develop a framework in

Chapter 5, Polityzer, to perform a privacy posture analysis of election campaign websites

in the US federal elections. Specifically, we analyzed the privacy-sensitive data types that

are collected via campaign websites, and how comprehensively they disclose the privacy

risks to the user through their privacy policies. The analysis led to 20 key findings, which

revealed, among other things, that a large majority (70.78%) of campaigns do not provide

a privacy policy at all, and even when they do, a significant portion (41.22%) do not fully

disclose all private data they collect in their privacy policy. We further discuss the need

for privacy regulations in this space that can potentially improve the status quo.

We now discuss research directions based off of Chapters 3!5 that we will explore in

the future.

Exploration of privacy posture of online election campaigns in other jurisdic-

tions: The findings from Chapter 5 revealed a significant gaps in the way current election

campaigns handle the disclosure of their privacy practices to the consumers. However,

while the federal election campaigns in the US provided an important data point, it is

vitally important that we conduct further studies in other jurisdictions to gain localized

insights into what privacy risks there are, and what solutions can best be explored in

those jurisdictions for improvement. For instance, in the European Union, political data is

protected under the General Data Protection Regulation (GDPR) [74], and election cam-

paigns need to abide by special disclosure requirements [57]. However, it is unclear how

well current election campaigns in the EU follow these disclosure requirements. An anal-

ysis of the EU election campaigns will also provide an important comparison with the US

campaigns and the two system of regulations (or lack thereof) that exists between the two

jurisdictions. Further, we will also analyze state-level and other local election campaigns
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in the US, many of whom also rely on campaign websites as their primary interaction point

with their constituencies.

Policy-to-Behavior analysis:: An immediate next area of research stemming from this

dissertation (in particular, Chapter 5) is the need to identify the conflicts between the ac-

tual behavior of the software artifacts with the privacy policies outlined in the stakeholder’s

disclosure document. In particular, mapping the security and privacy requirements from

privacy policies which are typically written in natural language (or in legalese) to the be-

havior of a software artifact remains an exciting but challenging research direction. The

focus of this future work is to build security frameworks that can identify these conflicts

by leveraging similar analysis and system design techniques we have used throughout this

dissertation. In particular, such automation frameworks are not just beneficial to the con-

sumers but are also extremely important to the software industry as well, as this will help

companies remain compliant to their own privacy policies and avoid heavy fines levied by

privacy regulations all over the world.

Vulnerabilities in Software Supply Chain: Throughout this dissertation, we explored

many tenets of the software supply chain issue, not just in terms of software artifacts

or dependencies (e.g., IoT platform, third party integrations/apps, automation/routines)

but also in terms of stakeholders (e.g. users, vendors, third party developers, online cam-

paigns, fundraising platforms). As attacks on the software supply chain become even more

prominent [146], it is vital to identify security vulnerabilities in other ecosystems (e.g., the

open-source software artifacts) and measuring their overall security and privacy impacts

on the consumers. This dissertation provides a foundation on which further such analysis

can be performed in the future.
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Chapter 7

Conclusion

In this dissertation, our main objective is to understand the security and privacy threats

that can arise in consumer-oriented software systems and understand their implications on

the end-users. To achieve this goal, we analyze these systems under 3 aspects: i) investigate

how threats can arise due to their various interdependent components, ii) design a practical

solution by leveraging the abstractions provided by such systems, and iii) analyze how

stakeholders convey these threats to the consumers.

In chapter 3, we analyze various components of two popular smart home platforms,

Philips Hue and Google Nest, in chapter 2, including their permission enforcement mecha-

nism, their app review process as well as the SSL problems in apps that have been approved

to work with these platforms. Our analysis lead to 10 salient findings with various security

implications, such as attackers being able to bypass user consent in Hue to the ineffective

app review process leading to dubious apps being approved in Nest. Finally, we leveraged

our findings to carry out, to our knowledge, the first end-to-end lateral privilege escalation

attack in smart homes wherein we compromise a smart switch and use that access to affect

the functionality of a security camera with the help of a platform-enabled routine.

Similarly, in chapter 4, we designed HomeEndorser, an endorsement framework that

aims to provide integrity guarantees to supplement the permission model in platforms

that will help the platform to better protect the modifications of Abstract Home Objects
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(AHOs), which are the main components through which routines are characterized. Thus,

HomeEndorser is able to minimize the effects of an attacker gaining improper access into

a smart home by validating incoming AHO modifications, and thereby preventing security

sensitive routines from being executed arbitrarily.

Further, in chapter 5, we designed Polityzer, a framework to systematically analyze the

privacy postures of election campaign websites. Using Polityzer, we find a large majority

of them lack a privacy disclosure. Even in cases where privacy policies were provided,

they are often incomplete. We also found that campaigns may be inadvertently sharing

data with other campaigns through common fundraising platforms, without disclosing such

sharing. Finally, we discuss the potential future directions stemming from this dissertation

in chapter 6.
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