3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2024

Probing With Displacements For Variance Reduction And The
Effectiveness Of Sketched Krylov Eigenvalue Solvers

Heather Maria Switzer
College of William and Mary - Arts & Sciences, hmswitzer@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Switzer, Heather Maria, "Probing With Displacements For Variance Reduction And The Effectiveness Of
Sketched Krylov Eigenvalue Solvers" (2024). Dissertations, Theses, and Masters Projects. William & Mary.
Paper 1727787875.

https://dx.doi.org/10.21220/s2-phv5-yw33

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1727787875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1727787875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.21220/s2-phv5-yw33
mailto:scholarworks@wm.edu

Probing with Displacements for Variance Reduction and the Effectiveness of
Sketched Krylov Eigenvalue Solvers

Heather M. Switzer

Chester, VA, USA

Associate of Science, Richard Bland College, 2015
Bachelor of Science, Longwood University, 2018
Master of Science, The College of William & Mary, 2020

A Dissertation presented to the Graduate Faculty
of The College of William and Mary in Virginia in Candidacy for the Degree of
Doctor of Philosophy

Department of Computer Science

The College of William and Mary in Virginia
July 2024



© Copyright by Heather M. Switzer 2024



APPROVAL PAGE

This Dissertation is submitted in partial fulfilliment of
the requirements for the degree of

Doctor of Philosophy

%Mﬂ

Heather M. Switzer

Approved by the Committee, July 2024

e

Committee Chair
Professor Andreas Stathopoulos, Computer Science

College of William & Mary

i

Professor Qun Li, Computer Science
College of William & Mary

Bur /&m
Associate Professor Bin Ren, Computer Science
College of William & Mary

Proded pumac

Assistant Professor Pradeep Kumar, Computer Science
College of William & Mary

" Dr. Jennifer Loe
Sandia National Laboratory



Mobile User


ABSTRACT

Scientific Computing is a multidisciplinary field that intersects Computer Science,
Mathematics, and some other discipline to address complex problems utilizing
computational systems. Numerical Linear Algebra (NLA), a subfield within
Scientific Computing, develops and analyzes numerical algorithms for tasks
involving linear operators such as matrices and their transformations. This
dissertation focuses on developing kernels for two specific areas of NLA.

Firstly, we explore variance reduction methods for trace estimation. In Lattice
Quantum Chromodynamics (LQCD), computing the trace of a matrix inverse is
crucial for investigating interactions among quarks and gluons in subatomic space.
However, directly computing a matrix inverse is computationally expensive,
motivating the use of stochastic methods to estimate the trace directly. Higher
accuracy models result in a high variance of the trace estimator, necessitating
techniques such as probing that leverage the structure of LQCD matrices to reduce
this variance. More recently, the development of so-called “disconnected diagrams”
in LQCD requires the sum of certain off-diagonal elements in the matrix inverse,
rendering classical probing ineffective. In this work, we propose an extension to
the probing method that can lessen the variance of the trace estimator in such
scenarios.

Secondly, we investigate the viability of a technique that uses randomized subspace
projections in Krylov-based iterative methods to approximate a subset of the
eigenpairs of a large matrix. A common computational bottleneck for iterative
methods comes from the need to orthogonalize the basis being constructed to
ensure the accurate extraction of eigenpair approximations. While randomized
subspace projections, often referred to as “sketching” methods, were originally
introduced to reduce the size of large least-squares problems into more manageable
ones, it was later observed that sketching techniques can be integrated into
iterative methods to extract information from a non-orthogonal basis with minimal
accuracy lost. We investigate the efficiency of these sketching methods using two
iterative methods, Lanczos and Generalized Davidson, with and without
restarting, within the high-performance software library PRIMME.



TABLE OF CONTENTS

Acknowledgments

Dedication

List of Tables

List of Figures

1 Introduction

2 Background

2.1
2.2

2.3

2.4

2.5

Notation and Conventions . . . . . . . . .. . ... ... ... ....
Matrix Properties and Decompositions . . . . . . ... .. ... ...
2.2.1 The Eigenvalue Problem . . . . . ... ... ... ..., ...

2.2.1.1 The Singular Value Decomposition . . . . . . . . ..
Variance Reduction Techniques in LQCD . . . . . . .. ... ... ..
2.3.1 Finding the Trace of a Matrix Inverse . . . . . . . . ... ...
Krylov-based Iterative Methods . . . . . . . . ... ... ... ....
24.1 Lanczos . . . . . . . .

2.4.1.1 Generalized Davidson . . . . . .. ... ... .. ..
242 PRIMME . . ... . ...
Sketching . . . . . . . . . ...

vi

vii

1x



3 Probing for the Trace Estimation of a Permuted Matrix Inverse

Corresponding to a Lattice Displacement 32
3.1 Introduction . . . . . . . ... 32
3.2 Related Works . . . . . . . . .. 35
3.2.1 Classical Probing . . . ... .. ... ... ... ... ..... 36
3.2.2 Removing Deterministic Bias . . . . . .. ... ... ... .. 38
3.2.3 Hierarchical Probing . . . . .. ... ... ... ........ 39
3.24 Deflation . . . . . ... 40
3.3 Probing for Permutations . . . . . . .. ... ... 41
3.3.1 Coloring with Displacements Algorithm . . . . . . . ... . .. 44
3.3.2  Lower Bound on the Number of Colors . . . . ... ... ... 48
3.3.3 Clearances . . . . . . . . . .. 53
3.3.4 Multiple Displacements . . . . . . .. ... ... ... ..... 53
3.3.5 Tiles . . . . . . 54
3.4 Experiments . . . . . . . ... 56
3.4.1 Number of Colors Computed . . . . . ... ... ... ..... 57
3.4.2 Comparisons to Other Methods . . . . .. ... ... .. ... 58
3.4.3 Using one coloring for all displacements . . . . . . . . .. ... 61
3.5 Chapter Summary . . . ... ... .. ... 65

4 Exploring Krylov Methods with Sketched Rayleigh-Ritz in PRIMME 68

4.1 Introduction . . . . . . . ... 68
4.2 Subspace Embeddings . . . . .. ... 72
4.2.1 Sparse Dimension Reduction Map . . . . . .. ... ... ... 73
4.2.2 Subsampled Random Fourier Transform . . ... . ... ... 73
4.3 Sketched Rayleigh-Ritz . . . . . . ... ... .. ... ... ... .. 74
4.3.1 Whitening . . . . . . ... 76

i



4.3.2 Stabilization . . . . . . ... 77

4.4 Lanczos with Sketched Rayleigh-Ritz . . . . . ... .. ... .. ... 78
4.4.1 Thick-Restarted Lanczos with SRR . . . . .. ... ... ... 82
4.5 Experiments with Lanczos . . . . . . . .. .. ... ... ... .... 83
4.5.1 Complexity Analysis of Unrestarted Lanczos . . . . . . . . .. 85
4.5.2 PRIMME Experiments . . . . . .. ... ... ... ...... 87
4.5.3 Convergence of the Ritz Pairs . . . . . . ... ... ... ... 89
454 Run Times . . . .. ... 92
4.6 Generalized Davidson with Sketched Rayleigh-Ritz . . . . . ... .. 94
4.7 Experiments with Generalized Davidson . . . . . .. ... ... ... 97
4.7.1 Complexity Analysis of Generalized Davidson . . . .. .. .. 97
4.7.2 PRIMME Experiments . . . . . .. ... ... ... ...... 99
4.7.3 Convergence of the Ritz Pairs . . . . . . ... ... ... ... 101
4.7.4 Timing Comparisons . . . . . . . . . . . ... .. .. .. ... 103
4.8 Chapter Summary . . . . . . . . ... 106
Conclusion 108
5.1 Summary of Contributions . . . . . . . . . ... ... ... ...... 108

Proving the Lower Bounds on the Number of Colors Needed For

Coloring a Lattice with Displacements 111
A.1 Proof for Theorem 1 . . . . . . . .. ... . ... .. ... ..., 111
A.2 Proof for Theorem 2 . . . . . . . .. ... ... ... 111
A.3 Proof for Theorem 3 . . . . . . . .. ... ... ... 112
A4 Proof for Theorem 4 . . . . . . . .. ... ... 112
A.5 Proof for Theorem 5 . . . . . . . .. ... ... 113

A51 Case (T, T): . . . . . 114

iii



iv



ACKNOWLEDGMENTS

I would like to begin by thanking my doctoral advisor, Dr. Andreas Stathopoulos,
for his support and encouragement over the past six years. He drove me to be a
better and more confident researcher, and I could not have asked for a better
mentor.

I am also grateful to my dissertation committee: Dr. Qun Li, Dr. Bin Ren, Dr.
Pradeep Kumar, and Dr. Jennifer Loe. Thank you for your time, flexibility, and
critiques when preparing this dissertation.

The College of William & Mary has provided me with an incredibly welcoming
and encouraging environment, largely due to the Computer Science department
administrators: Vanessa Godwin, Dale Hayes, and Jacqulyn Johnson. Thank you
for all your help and advice and for giving me a safe space to talk when needed.

Thank you to those who encouraged me to pursue this degree and built me up
when I had no confidence in myself. Dr. Julian Dymacek, Dr. Robert
Marmorstein, and Dr. Thomas Wears, I could never have done this without you
all, and you have my endless appreciation.

I have met many friends and mentors while pursuing this degree, including Steven
Goldenberg, Kenneth Koltermann, Nathan Cooper, and Eloy Romero, to whom I
am endlessly grateful. I am also thankful for my emotional support rodents:
Peanut Butter and Jelly the gerbils, Cheeto the Syrian hamster, and Ashe the
Russian dwarf hamster.

Lastly, I would like to thank my family, especially my parents, Kenneth and Jean
Switzer, and my brother, Paul Switzer, for always supporting me and being my
pillars during this journey, and my aunt, Dr. Maria Puccio, for being my role
model since I was a child.



This dissertation is dedicated to my parents, Paul, Selina, and Biscuit.

vi



3.1

3.2

3.3

3.4

3.5

3.6

4.1

LIST OF TABLES

Formulas for size of the clique |C(d, «, 5)|, if & > p and (k + p) is
even, with o = | %2 | and 8 = [%52]. If (k +p) is odd, use Equation
313, e
Tile sizes for each (p, k)-coloring for a 32% x 64 lattice with the dis-
placement in the first dimension (corresponding to the z,x,y,t di-
mensions of the application). . . . . . . . .. ... ... L.
Time (in seconds) to run each (p, k)-coloring with tile sizes outlined
in Table 3.2 and the resulting number of colors is shown in Table 3.4.
The first number is the smallest number of colors achieved for distance-
k, displacement p, on the tiles of size as noted in Table 3.2. The
second number is the lower bound for that (p, k) from Equation 3.13.
The estimation of traces and variances for 1,000 RNVs run without
probing for different values of p and k compared to probing with
displacements and 10 RNVs. . . . . . .. ... ...
The average percentage of neighbors at exactly distance-k that do not
get eliminated from the trace estimator when using a (8, 10)-coloring
to find other displacements. The lattice size used is 32% x 64 with a

tile size of 32%. . . . ..

Operation count for each step in the unrestarted Lanczos algorithm

in PRIMME when used without sketching . . . . ... .. ... ...

vii

o7

o7



4.2

4.3

4.4

4.5

Operation count for each step in the unrestarted Lanczos algorithm
in PRIMME when used with sketching . . . . .. ... .. ... ...
The list of matrices used for testing the unrestarted Lanczos and Gen-
eralized Davidson methods with and without sketching in PRIMME.
“Constructed” refers to matrices built ourselves using Matlab.
Operation count for each step in the Generalized Davidson algorithm
in PRIMME when used without sketching . . . . ... .. ... ...
Operation count for each step in the Generalized Davidson algorithm

in PRIMME when used with sketching . . . . .. ... ... .. ...

viil

89



3.1

3.2

3.3

3.4

3.5

3.6

LIST OF FIGURES

Using a shifted 1D Laplacian A with 32 nodes and periodic boundary
conditions, Figure 3.1a shows A~! permuted into color-blocks based
on a distance-3 coloring before probing vectors are applied. Figure
3.1b shows the result of these color blocks after applying the probing
vectors to the shifted Laplacian inverse, A~ © HH*. . . . . . . . ..
Applying a power and displacement to a matrix representation of a
1D toroidal lattice. The red diagonal represents the locations of the
elements corresponding to the wanted displacement. . . . . . . . . ..
The neighborhood N?(0, p, k) and how 1D coloring is sufficient when
2
The distance-k clique shown in grey of the neighborhood N3(0, p, k)
which is shown as wireframes, when p < k and (k + p) is even as
described in Theorem 4. . . . . . . . . . ... ... .. ... ...,
Distance-k cliques of N*(0,p, k) when (k + p) is odd as shown in
Theorem 5. Set C(d,«, 3) is the grey set in the center, set S is the
red hyper-surface on the right, and 7" is the blue hyper-surface on the
tOp. . e
The ratio of the minimum number of colors achieved with a (p, k)-
coloring to the theoretical lower bound in Table 3.4. Each column is

a different displacement. . . . . . . .. ... oL

ix

38



3.7 Speedups of probing with displacements over unprobed Hutchinson
using each (p, k)-coloring from Table 3.5 to find tr(P,A™ ). . . . . . .
3.8 Speedup of probing with displacements with (p, k)-colorings over clas-

sical probing with (0, k)-colorings to find tr(P,A ') using Equation

3.9 The speedups over unprobed Hutchinson for each (p, k,)-coloring to
find tr(P, A7), Vne{0,..,8} . . . . .. ...

3.10 The relative error (Equation 3.17) for each (p, k,)-coloring used to
find tr(P,A7Y),Vne{0,..,8}. . . . ... ..

4.1 Comparisons of convergence between 3-term Lanczos with sRR uti-
lizing whitening and 3-term Lanczos with sRR utilizing stabilization
to manage the condition number of the basis. . . . ... .. ... ..

4.2 The convergence of 3-term Lanczos with classical RR alongside the
condition number of the Krylov basis being built. . . . . . ... . ..

4.3 Comparisons of convergence between 3-term TRL with classical RR
and sRR for a maximum basis size of 100. . . . . . .. ... ... ..

4.4 The ratio of operation counts between unrestarted Lanczos with and
without sketching. The top plot depicts when the number of eigen-
pairs sought is 100, and the bottom plot shows when the number of
sought eigenpairs is 1,000. . . . . . . . . ..o

4.5 The convergence of the 1st, 50th, and 100th Ritz values using the
3-term Lanczos method with sRR and the FO Lanczos method with

RR when run of the matrices listed in Table 4.3. . . . . . . . . . . ..

90



4.6

4.7

4.8

4.9

4.10

4.11

The largest 100 eigenpairs returned to the user after all sought eigen-

pairs are marked as converged or the maximum basis size of 1,000

was reached. Results are shown for 3-term Lanczos with sketching

and FO Lanczos with and without sketching for each matrix listed in
Table 4.3 . . . . . . . . 91
The breakdown in runtime for 3-term Lanczos and FO Lanczos run

with and without sketching over 1,000 iterations with timings achieved

from the 8-core Intel Xeon CPU E5-4627 v2 on the left and 32-core

960 Xeon Skylake on the right. . . . .. ... .. ... ... .. ... 93
The ratio of operation counts between Generalized Davidson with and
without sketching. The top plot depicts when the number of sought
eigenpairs is 100, and the bottom plot shows when the number of
sought eigenpairs is 1,000. The restarted basis size equals the number

of sought eigenpairs. . . . . . . . . ... .. L 98
The convergence of the targeted Ritz pair when running GD with a
maximum basis size of 250 (left) and 1,200 (right) and seeking 100

Ritz pairs. . . . . . . . 101
Comparisons of the 100 largest magnitude Ritz pairs returned from
PRIMME for Generalized Davidson for a maximum basis size of 250
(right) and 1,200 (left). Only the results from matrices QuadraticDiag

and LaplaciandD are shown. . . . . . . . .. ... .. ... .. .. .. 103
The breakdown in average runtime per iteration for GD run with a
maximum basis size of 250 (left) and 1,200 (right) when searching for

100 Ritz pairs. . . . . . . . . o 104

X1



Probing with Displacements for Variance Reduction and the

Effectiveness of Sketched Krylov Eigenvalue Solvers



Chapter 1

Introduction

Scientific Computing is a field that intersects Mathematics, Computer Science, and some
other discipline to develop and analyze algorithms for tackling complex numerical problems.
This is done via advancements in high-performance computing, mathematical modeling,
and theory. It finds application in diverse fields such as materials science, computational
chemistry, computational physics, mechanical engineering, and even in social sciences such
as linguistics and economics [60, 42|. Within Scientific Computing, Numerical Linear
Algebra (NLA) emerges as a critical subfield that uses matrix operations and techniques
to develop algorithms for effectively estimating solutions to problems. Common problems
found in this field include the eigenvalue problem, the singular value decomposition, and
solving systems of linear equations [98].

Direct matrix methods involving a square matrix A with n rows and columns often
have computational complexities of O(n?). Notable examples of these direct methods
include solving a system of linear equations Az = b, accurately finding all solutions to the
equation Az = Az, and finding A’s inverse, denoted A~!. These methods do not scale
well for matrices of large sizes, even on high-performance computing systems. Due to this,
practitioners often use stochastic and iterative methods to approximate solutions more cost-
effectively. This dissertation focuses on two distinct applications of these approximation

methods.



The first part of this dissertation explores advancements in variance reduction tech-
niques for computing the trace of a square matrix. The frace problem, which involves
summing all elements in the main diagonal of a square matrix, is essential in fields such
as quantum mechanics [74], signal processing [28], data mining [17], and quantum Monte
Carlo [3]. The trace of a matrix A, tr(A), has also been shown to equal the sum of the
eigenvalues of A, including all geometric and algebraic multiplicities [82]. Existing research
has predominantly focused on determining the trace of a matrix function, f(A), denoted
as tr(f(A)). In most cases, f(A) is the matrix inverse (A~!), the logarithm of a matrix
(logA), or the matrix exponential (expA).

The application for our research lies in the field of Lattice Quantum Chromodynamics
(LQCD) [79], where computing the trace of a matrix inverse is a critical part of the
simulation and analysis of the interactions between quarks and gluons in subatomic space
[65]. In this context, the Dirac operator, used to represent the behavior of quarks in space-
time, is discretized into a 4-dimensional regular toroidal lattice, which can then be stored
as a matrix. As previously mentioned, directly computing the inverse of a matrix with n
rows and columns has a computational complexity of O(n?) and requires O(n?) storage in
memory. Alternatively, estimating tr(A!) can be reformulated as an expectation value
problem, and thus stochastic methods, most notably the Hutchinson estimator, can be
used to estimate this value [51].

The variance of a stochastic estimator is a measure of the variability of the estima-
tor’s mean. A high variance indicates a large dispersion of the results, requiring more
samples for an accurate solution. Therefore, the Hutchinson estimator often incorporates
variance reduction techniques to enhance accuracy, some of which include deflation [38],
preconditioning [13], importance sampling [60], and probing [96].

Probing uses a coloring of the graph of the matrix A to construct probing vectors. These
probing vectors take advantage of the structure of matrices found in LQCD to guarantee
the removal of those off-diagonal elements in A~! that contribute the most to the variance

of the Hutchinson estimator [96]. Graph coloring assigns “colors” to vertices in a graph such

3



that if two vertices share an edge, they can not share a color [52, 67]. More of a variance
reduction can be achieved by constructing probing vectors from a higher-distance coloring,
i.e., coloring the graph of A*, albeit with an increased computational cost. An extension
of this method, hierarchical probing, ensures that if probing vectors constructed from a
k-distance coloring does not achieve a specified reduction in variance, probing vectors can
be constructed for a higher-distance coloring without discarding any previous work [89].

While these methods have proven effective for estimating tr(A~1), the study of dis-
connected diagrams in LQCD necessitates the approximate sum of specific off-diagonal
elements in A~! corresponding to a displacement in one of the lattice dimensions [39]. In
simpler terms, rather than seeking tr(A~!), we now aim to approximate tr(PA~!), where
P represents a permutation matrix. Conventional techniques like probing and hierarchical
probing have shown limited effectiveness, as they do not effectively eliminate the largest
variance-causing terms from the estimator.

Our work explores novel variance reduction methods to enhance the accuracy of the
Hutchinson estimator in the context of disconnected diagrams. Specifically, we introduce a
probing technique that accommodates lattice displacements by adapting the graph coloring
scheme. Additionally, we conduct a lower-bound analysis to determine the minimum num-
ber of colors required to color the graph of A given a coloring distance k, a single-dimension
lattice displacement p, and the number of lattice dimensions d. Finally, experimental eval-
uations are performed to compare the effectiveness of this new method against existing
approaches, leveraging the LQCD software library, Chroma [29].

The second part of this dissertation investigates the application of randomized sub-
space embedding techniques within Krylov-based iterative methods. Iterative methods
are primarily utilized for solving systems of linear equations or approximating the eigen-
pairs of a matrix A € F"*™. Given a normal starting vector of length n, Krylov-based
iterative methods, or Krylov methods for short, iteratively build a basis V' € F**¢ from
which approximate solutions can be extracted. Without the cost of the matrix-vector

multiplications, iterative methods have a computational complexity of O(nd?), where d

4



represents the number of iterations performed [98, 82]. The computational complexity of
the matrix-vector multiplication cost is O(nd) for sparse matrices but it grows to O(n?d)
for dense matrices. Moreover, the more ill-conditioned a matrix, the larger the number
of iterations required to meet convergence. Therefore, iterative methods are particularly
useful for sparse matrices and when d < n.

Krylov methods build a basis V' € F?*¢ that spans the Krylov subspace of A, denoted
Ka(A,b). When seeking eigenvalues, b € F" is typically a normal random vector or an
initial guess for an eigenvector (or sometimes a linear combination of the required eigen-
vectors). Other methods may build a space that deviates from a Krylov space with the
goal of achieving faster convergence. Regardless of how V is built, when seeking a sub-
set of the eigenpairs of A, the Rayleigh-Ritz method (RR) can extract approximations of
these pairs from V' [82]. However, for the RR method to be numerically stable, V' must be
orthonormal. Maintaining the orthonormality of the basis during its construction can be
achieved using orthogonalization methods such as Householder reflections [50| or Classical
Gram-Schmidt [19], each having trade-offs in speed and accuracy. These orthogonaliza-
tion methods are costly but also require many synchronization points, limiting scalability
in parallel computers. For these reasons, frequent applications of orthogonalization and
inefliciencies in Level 1 BLAS routines can introduce bottlenecks in computation [22].

In their work [72|, Nakatsukasa and Tropp highlighted the potential of incorporating
randomized subspace embedding methods, also known as sketching methods, into RR for
approximating the eigenpairs of a matrix. While sketching was traditionally used to alle-
viate computational costs associated with solving least-squares problems within iterative
methods for linear solvers [11], |72] observed that RR can be reformulated as a least-squares
problem, allowing sketching to be used in conjunction with RR. RR with sketching (sRR)
enables the extraction of approximate eigenpairs of A from the basis V' without V having
to be orthonormal, which can alleviate the computational bottleneck of reorthogonaliza-
tion techniques in Krylov methods. However, sRR introduces its own computational costs,

including storing and maintaining a sketched Krylov basis. Additionally, sketching poten-

5



tially requires more iterations to achieve the desired accuracy of the approximate eigenpairs
of A.

Based on these observations, several questions arise: (1) When does the additional
computational overhead of sketching become more economical than maintaining an or-
thonormal Krylov basis? (2) Do certain Krylov methods work better with sRR than
others? (3) On average, how many more iterations does sketching require from the Krylov
method to achieve convergence comparable to the classical method?

To address these questions, we extend the C/C++ high-performance software library
PRIMME [91] to incorporate the Lanczos iterative method and sRR. We then enable the
use of SRR in both Lanczos and the existing Generalized Davidson method. Lanczos was
selected for the simplicity of its implementation, as it iteratively constructs a basis V using
only a 3-term recurrence [58], and its optimal convergence properties when approximating
a small subset of the extremal eigenpairs of large, sparse, symmetric matrices.

When searching for many eigenpairs, the size of the basis built by Lanczos may become
too large to store efficiently, and convergence may begin to stagnate due to instability in the
method. Both of these issues can be addressed using basis restarting techniques. Therefore,
we consider both the Thick-Restarted Lanczos and Unrestarted Lanczos algorithms used
in conjunction with sRR [93].

After examining the Lanczos with SRR, our attention shifts to the Generalized Davidson
(GD) iterative solver [26]. GD stands out as a more robust method that expands the basis
with the residuals of the first unconverged pairs. Preconditioning techniques can also be
used inside GD, expediting convergence. In theory, GD is identical to the Lanczos method
without preconditioning.

By implementing sRR within these methods, we aim to provide insight into the trade-
offs between computational efficiency, accuracy, and convergence rate associated with
sketching techniques compared to their nonsketched counterparts.

The subsequent sections of this dissertation will unfold as follows:



Chapter 2: This chapter will establish essential notation conventions utilized through-
out this document and introduce key concepts crucial for understanding the work described.

Chapter 3: Delving into the specifics of the first part of our research, this chapter will
go into detail about our work with variance reduction techniques for computing the trace
of a permuted matrix inverse in the context of Lattice Quantum Chromodynamics.

Chapter 4: The second part of our research focuses on investigating the efliciency of
Krylov methods when coupled with sketched Rayleigh-Ritz. We provide insights into the
advantages and limitations of these techniques.

Chapter 5: At the conclusion of this dissertation, we discuss the current status of our

work, as well contributions our work offers.



Chapter 2

Background

In this chapter, we lay the foundation for background information pertinent to under-
standing the subsequent chapters of this dissertation. Section 2.1 provides mathematical
and matrix notation utilized throughout this document. Following this, in Section 2.2, we
define various properties of matrices and introduce the eigenvalue problem along with the
singular value decomposition. Section 2.3 gives background information regarding variance
reduction techniques used for trace estimation in LQCD, serving as a prelude to Chapter
3. Section 2.4 will provide a general background for Krylov-based iterative methods, with
randomized subspace embeddings briefly discussed in Section 2.5. These two sections pro-
vide the foundations for Chapter 4. Their respective chapters will explore more in-depth

background information, motivation, and related works.

2.1 Notation and Conventions

The ring of integers, the field of real numbers, and the field of complex numbers are denoted
as Z, R, and C respectively. Restricting these to the sets of their non-negative values will
be indicated using a “+” subscript: Z, Ry, and Cy. Similarly, restricting to their negative
values will be denoted with a ‘“~” subscript. The double-struck capital letter F will be used

as a placcholder to represent a general ring or field throughout this document.



Scalar values and vectors are characterized as italicized lowercase letters, e.g., a or
x. Scalars are defined using the notation a € F, signifying the element a resides in the
ring/field F. Similarly, vectors are defined with the notation x € F", meaning x is an
element of the n-th dimensional vector space F™. In terms of data structures, n is the
length of the vector x, written using MATLAB-style notation as len(z). Matrices are
represented using italicized capital letters, e.g., A. A € R™™ denotes the matrix A
consisting of n columns and m rows with all entries being real, with n x m being the size
of A, written size(A) using MATLAB notation. The i-th entry in a vector x is denoted
as x;, and the (7, j) entry of a matrix A is denoted A;;. For consistency, indices will start
at one and continue to the variable representing the size, e.g., ¢ =1,--- ;n.

The transpose of a matrix or vector is denoted using the superscript T, i.e., AT, while
the superscript H signifies the Hermitian transpose, also known as the conjugate transpose.
If Ac R™" and A = AT, it is considered symmetric. Similarly, if A € C*™™ and A = AY,
it is considered Hermitian. When all entries of a matrix A are in the field of real numbers,
AT = AH,

Machine epsilon, written epacn, is the distance between 1 and the next largest floating
point number in a computing system. When using double-precision floating point numbers,

typically epacn ~ 10716,

2.2 Matrix Properties and Decompositions

By default, we consider all vectors to be column vectors. Therefore, when dealing with
two vectors of the same length, z € F" and y € F", their Fuclidean inner product, also
known as the “dot product”, is 'y, and their Fuclidean outer product is xy™. The inner
product of two vectors should result in a single scalar value, while the outer product of

two vectors of length n results in an n X n matrix.



Associated with this inner product is the Fuclidean norm, also referred to as the vector

2-norm [98], which is defined as

|z|le = VaHaz = (Z |xi|2> . (2.1)
i=1

The Frobenius norm of a matrix A € F™*" is similarly defined as

DY 1A, (2.2)

|AllF =
i=1 j=1
while the 2-norm of a matrix is
Ax
”AHZ = MaXQx#£zeFn <|||’w|’|2|2) = Omax (23)

where omay represents the maximum singular value of A. Further details on the singular
value decomposition of a matrix will be provided in Subsection 2.2.1.1.

The number of nonzero elements of a matrix A is nnz(A), with its sparsity structure
referring to the list of matrix indices containing nonzero elements, without storing the
values of those nonzeros. A sparse matriz refers to a matrix containing a significant
number of zero elements and can use specialized storage and computational techniques
to gain improved performance. In contrast, dense matrices do not achieve a performance
benefit using sparse techniques.

The trace of a square matrix A, denoted tr(A), is defined as the sum of its principle

(or “main”) diagonal elements. Specifically, if A € F"*™
n
tr(A) = Ay (2.4)
i=1

Moreover, tr(A) can be proven to equal the sum of the eigenvalues of A, including all

geometric and algebraic multiplicities [82].

10



The number of linearly independent columns of matrix A is termed the rank of A,
which also denotes the dimension of the range of A [82]. If the rank of a matrix A € F™*™
is equal to min(m, n), then the matrix is deemed full rank; otherwise, it is considered

rank-deficient.

2.2.1 The Eigenvalue Problem

The eigenvalue problem is prevalent across a variety of scientific disciplines, including
computational physics [97], structural engineering [85], and machine learning [18]. Consider
the equation

Az = Az, (2.5)

where A € F"*™. Any vector x € F™ and associated scalar A € F that satisfy this equation
constitute a right eigenpair of A. Here, x represents a right eigenvector and A represents

an eigenvalue. Similarly, any (y, A) combination that solves the equation

Aty = Xy, (2.6)

is considered a left eigenpair of A. The left and right eigenvectors correspond to the same
set of eigenvalues. In this work, when we refer to an “eigenpair” of a matrix, we refer to
the right eigenpairs unless otherwise specified.

Accurately computing all eigenpairs of matrix A € F"*™ has a computational com-
plexity of O(n3) and a memory storage cost of O(n?) [98]. This renders direct methods
impractical for large-sized matrices. However, in most cases, users are interested in obtain-
ing only a subset of approximate eigenpairs. This motivation has led to the development
of more cost-effective Krylov-based iterative methods.

Krylov-based iterative methods, or “Krylov methods”, are used to iteratively construct

a basis V' € F"*¢ that consists of d linearly independent columns spanning a d-dimensional

11



Krylov subspace, denoted
K4(A,b) = span{b, Ab, A%b, A3b, --- , A%"1b}, (2.7)

where b € F™ is some normal vector. Approximations to the eigenpairs of A and solutions
to linear systems can then be extracted from span(V).

The backward error of an approximate eigenpair measures how well the estimation
satisfies Equation 2.5. If we let (&, A) be an approximate eigenpair of A with ||Z| = 1, the

backwards error is computed as
Backward Error = || A& — Az||/||A]|. (2.8)

The smaller this value is, the better the approximation of the eigenpair. The vector Az— &
is referred to as the residual of that particular eigenpair approximation. Further discussion
on this topic is provided in Section 2.4.

Deflation is a technique used to eliminate an eigenpair from the range of A. This may
be used to improve the conditioning of the matrix for various problems, e.g., to accelerate
the convergence of an iterative method [83]. Suppose z; is the right eigenvector to be
removed from A, with y; being its corresponding left eigenvector. If A is a symmetric
matrix, orthogonal deflation can be used to construct the deflated operator A.

A= (I -z A(I — wi2lh). (2.9)
Orthogonal deflation can also be used if A is nonsymmetric, but z xj # 0 and the other

eigenpairs of A will be changed. Instead, we can use spectral deflation to form the operator

A~

A= (I —miy!) A — miy]"). (2.10)

12



In general, spectral deflation has better theoretical properties, but orthogonal deflation

may be more stable [83].

2.2.1.1 The Singular Value Decomposition

The singular value decomposition (SVD) factorizes a matrix A € F*" into the form

A=UxvH (2.11)

where U € F™™ and V € F™" are both unitary matrices, satisfying UFU = UUHY =T
and VIV = VVH = and ¥ € F™*" is a rectangular diagonal matrix [54]. The columns
of U and V constitute the left and right singular vectors of A, respectively. The diagonal

entries of 3, denoted 01,09, -+, Opin(n,m), are the singular values of A, where

o1 20222 Omin(n,m)- (2.12)

If A has a matrix rank of r, then the columns of U(:,1 : ) and V(:,1 : r) form or-
thonormal bases for the column and row spaces of A, respectively. The remaining columns
of U, U(:,r 4+ 1 : m), constitute an orthonormal basis for the left nullspace N(Af), while
the remaining columns of V., V(:,7 + 1 : n), form the orthonormal basis for the nullspace
N(A). If u; represents the i-th left singular vector of A, v; denotes the i-th right singular
vector, and o; signifies the i-th singular value, then (u;, 0;, v;) is referred to as a singular
triplet of A.

In many practical applications, A is a rectangular matrix with dimensions m x n. In
these cases, the thin or economy SVD is used [98|. If we let & = min(m,n), or the rank of

A, then the economy SVD is depicted as:

A = UpS ViE, (2.13)

13



where Uy, € F™*F is the first k columns of U, ¥}, € F¥** is a diagonal matrix with the first
k singular values as entries, and V' € F™** is the matrix containing the first k& columns of

V. Given a rank-k approximation of A using the k first singular triplets

k
A~ Ak = ZO’j’LLjU]H, (2.14)
j=1
Aj is the closest matrix approximation to A of rank k, i.e., the distance between A and
Ay in Euclidean space, ||A — Ag||F, is minimized [98].
The SVD can also be used to compute the spectral, L2, or Euclidean condition number

of a matrix A, denoted as k(A), using

g1

r(A) = || Al |A7Y] = (2.15)

min(n,m)

k(A) quantifies the sensitivity of several matrix operations, including matrix-vector mul-
tiplications (MatVecs) and solutions of linear systems, to changes in the coefficients of the
matrix [23].

The operator A can also be deflated by eliminating the i-th singular triplet from its
range,

A= (I —upwhAI - uwl), (2.16)

i [

where A is the deflated operator.

2.3 Variance Reduction Techniques in LQCD

Lattice Quantum Chromodynamics (LQCD) has emerged as a pivotal approach for ad-
dressing problems within Quantum Chromodynamics (QCD) in a non-perturbative manner
[79, 65]. QCD, a branch of theoretical physics, studies the interactions between quarks and
gluons within subatomic space. LQCD operates by discretizing continuous space-time into

a structured 4-dimensional regular lattice, where each point has eight neighboring nodes,

14



two for each of the four dimensions. In this lattice, the first three dimensions represent
space, designated as the x, y, and z dimensions, while the fourth dimension represents
time, labeled as the ¢ dimension.

In the realm of LQCD, each quark in subatomic space can be labeled with one of three
colors (red, green, or blue) and exhibit one of four spin directions, resulting in twelve spin-
color combinations. Consequently, each lattice point contains twelve degrees of freedom.
When the 4-dimensional lattice is represented as an adjacency matrix, each nonzero index
corresponds to a 12 x 12 unitary matrix to account for these spin-color combinations [15].
This matrix is the foundation for numerous numerical computations revolving around linear

solves, including trace estimations, integrators, and high-dimensional sampling.

2.3.1 Finding the Trace of a Matrix Inverse

A fundamental computation in LQCD involves calculating the trace of the inverse of a ma-
trix with a sparsity structure corresponding to a 4-dimensional toroidal lattice. However,
directly computing the inverse of matrix A € F**" takes O(n?) operations, necessitating
the use of stochastic methods. One such method, referred to as the Huchinson estimator,
states that

tr(A™ Y = E(zTA™ 1), (2.17)

where z € F" with ||z|| = v/n and independent and identically distributed (i.i.d.) elements.

When evaluating the effectiveness of a stochastic estimator such as 2.17, it is crucial
to consider its variance, which represents the variability of the estimation. A significant
variance indicates a large dispersion of results from the estimator, meaning more samples,
and thus computations, are needed to estimate the trace accurately.

In [12], the authors investigate various strategies for constructing vectors z to minimize
the variance of Equation 2.17. One strategy utilizes Rademacher vectors, where each
element in the vector takes the values +1 with a probability of 0.5 if using real numbers,

or +1, 44 with a probability of 0.25 if using complex numbers. Using these vectors, the

15



trace of A~! can be estimated by using s randomly generated Rademacher vectors in the

Hutchinson estimator,
S

1 _
tr(A7Y) ~ - ZZJ.TA L2, (2.18)
7=1
with variance [12]
Var(zT A7 z) = 2(| AP =) A2). (2.19)
i=1

Utilizing Rademacher vectors in the Hutchinson estimator has yielded half the variance
compared to using vectors from the normal distribution.
In Equation 2.18, A~z is never explicitly computed. Instead, an iterative method such

as Generalized Minimum Residual (GMRES) approximately solves the linear system

Azj = z; where j =1,2,--- s (2.20)

for x; € F™ [82]. Solving these linear systems is the most computationally expensive
part of the Hutchinson estimator, meaning we want to minimize the number of solutions
required to approximate tr(A~!). When the vectors z reduce the estimator’s variance,
fewer samples s are needed to get a decent trace approximation, and, therefore, fewer
linear solutions are required.

More modern algorithms, such as Hutch++, have been presented that use a randomized
method to compute a (1 &+ €) approximation of tr(A) when A is definite |66, 78|. Hutch++
was later expanded to work for indefinite matrices in [24]. Epperly et al. introduced
XTrace and XNyzTrace, which use an exchangeability principle to achieve errors in the
estimator that are orders of magnitude smaller than those obtained with Hutch++ [30].
These methods can not be utilized for our purposes because we find tr(A~!) using Krylov-
based iterative methods for A=!. Due to this, reserving a few z to compute a good deflation
space is unnecessary.

Equation 2.19 suggests that off-diagonal elements of larger magnitude in A~! contribute

most significantly to the variance of the estimator. For many sparse matrices, including

16



those in LQCD, the elements in A;jl exhibit Green’s function decay, where their magnitudes
display exponential decay relative to the distance between nodes ¢ and j in the graph of
A [106]. Leveraging this knowledge, probing is a method that uses a k-distance graph
coloring [52] of A to construct a set of orthogonal probing vectors. Assuming m is the
number of colors required to perform a k-distance coloring of the graph of A, then we can
form the matrix H € Z™*", where each column in H is a different probing vector.

Once H has been constructed, prominent error-causing elements of A~! are eliminated
from the estimator in Equation 2.18 by replacing the operator A~! with A= © HHT,
where ® denotes the element-wise product. Replacing the operator thereby reduces the
estimator’s variance. A higher-distance coloring distance equates to a greater reduction,
although at the expense of increased computational cost resulting from more linear solves
[96].

One drawback of probing is that the constructed probing vectors are discarded if a
specific k-distance coloring does not achieve a targeted variance reduction. New probing
vectors are then built from a higher-distance coloring. Hierarchical probing is a technique
that extends probing by applying a recursive coloring technique, allowing an increase in
the coloring distance without discarding prior work [89, 57|. Further elaboration on these

methodologies is provided in Chapter 3.

2.4 Krylov-based Iterative Methods

Krylov methods, initially introduced in 1931 by Aleksey Krylov for solving systems of
linear equations, were developed on the insight that repeated applications of a matrix
A to a starting vector b generates a subspace from which valuable information can be
extracted. In exact arithmetic, Krylov methods such as Arnoldi and Lanczos explicitly
build a Krylov basis V € F**4 where V serves as a basis for the Krylov subspace K4(A, b),
defined in Equation 2.7 [82]. However, due to numerical instability caused by floating-point

operations, the basis V' may deviate from an exact Krylov basis. Once V is built, it can be

17



used to extract approximate eigenpairs of A, or to find approximations of f(A)b for some
matrix function f [82]. Examples include f(A) = A~! for a linear system of equations, or
f(A) = exp(A), i.e., the matrix exponential.

Several subspace projection methods exist to extract information from the Krylov ba-
sis, such as Galerkin [19], Petrov-Galerkin [32], Harmonic Ritz [70], and Refined Ritz [63],
which can be utilized for a broad spectrum of problems. Galerkin methods add the con-
straint that the residuals of the extracted solutions must be orthogonal to the basis V.
This work focuses on the Galerkin Rayleigh-Ritz (RR) method for extracting information.

A Gakerkin method is one that has the constraint that the error of an approximate so-
lution orthogonal to a given subspace. In the context of RR, this means that the residual of
the extracted approximate eigenpairs are orthogonal to V' [83|. Named after Lord Rayleigh
and Walter Ritz, RR achieves orthogonal residuals by extracting approximate eigenpairs
of a matrix A € F™™ from the basis V' € F**¢ by solving the smaller, more manageable
eigenproblem on the matrix VZ AV € F¥*4_ This smaller eigenproblem yields eigenvectors
Z; and corresponding eigenvalues i of VEAV for i = 1,2,--- ,d. The resulting estimated
eigenpairs of A, referred to as the Ritz pairs, are computed as (V;, 5\2), and their residuals

AVE; — Vi are orthogonal to the basis V' [83]. Algorithm 1 shows the RR procedure.

18



Algorithm 1: The Rayleigh-Ritz Method

Input:
A € F™*™ = The matrix we are searching for the eigenpairs of
V € F"*4 — The Krylov basis of A
H e Fxd = yH Ay
Output:
X € F**d — The Ritz vectors of A
A € F? = The Ritz values of A
resNorms € F? = The residual norms of the eigenpair estimates
Rayleigh-Ritz(A, V, H)
1Y, Al = eig(H);
2 X =VY,
# Compute the residuals
3 resNorms(i) = ||AX; — XiA|| / |1 X (G, 0)||  fori=1,2,---,d

4 return [X, A, resNorms|;

19




Krylov methods also play an important role in approximating matrix functions using

matrix polynomials. Given A € F"*"  a matrix polynomial takes the form

p(A) = aol + a1 A+ azA® + -+ + ag AT, (2.21)

for some degree d and with I € Z"*" being an identity matrix.

According to the Stone-Weierstrass theorem, any continuous function f(z), such as
A~ exp(A), and log(A), can be approximated using a polynomial p(x) [95]. The higher
the polynomial degree, the better the approximation of f(x) achieved. Examples include
the Bernstein polynomial, the Padé approximation, and the Fourier series |61, 99].

Like most direct methods, computing f(A) accurately has a cost of O(n?), necessitat-
ing the use of the approximations. A Krylov space of degree d can generate a degree d
polynomial with “optimal” coefficients given by RR or other Galerkin methods.

In this work, we use the RR method to extract approximate eigenpairs of a matrix A

from bases built by the Lanczos and Generalized Davidson Krylov-based iterative methods.

2.4.1 Lanczos

In 1951, the Arnoldi algorithm was developed to reduce a dense matrix A € F™*™ into its

Hessenberg form

a1l G12 13 c Alp-1 OGlp
a1 az2 a3z -+ Ap—1 AdA2n
0 as2 az3z -+ az3p-1 asp
H = (2.22)
0 0 as3 - aapn-1 Gan
0 0 0 tt Gpn—1 Anpn

using unitary similarity transforms! [10, 82]. If the original matrix A is Hermitian, its

Hessenberg form is tridiagonal. [10] noted that the eigenpairs of H € F4*? where d is

'Equation 2.22 shows an upper Hessenberg matrix. A lower Hessenberg matrix is similar but has zeros
above the first super-diagonal, with nonzeros elsewhere.

20



the number of Arnoldi iterations performed and d < n, could be used to approximate
eigenpairs of A on the outer parts of the spectrum.

The Lanczos algorithm provides a simplified approach to the Arnoldi method for dealing
with symmetric matrices [82]. As shown in Algorithm 2, it employs a 3-term recurrence

to construct a basis V € F"*? alongside a tridiagonal matrix H € F4*? of the form

ar B
B2 az B3
U =VHAvV. (2.23)

Ba-1 oa—1 Pa

Ba g

This tridiagonal form of H implies that that basis V' can be formed with a 3-term recur-
rence, avoiding the need for full orthogonalization of V.

Furthermore, the Arnoldi and Lanczos methods satisfy

AV, =VinH (2.24)
where ~ _
ay [
B2 az B3
= (2.25)
Bi-1 i1 B
Bi a;
I Bit1

This means that the residual norms of the approximate eigenpairs of A can be computed

at the i-th iteration using the formula
”AV(LZ - ij):j”g = Bi+le£fj for ] = 1,2, s ,i, (226)

21



where e, € N" is n-th orthocanonical basis vector.

22



Algorithm 2: The Lanczos Algorithm with Rayleigh-Ritz

Input:
A € F™*" = A square, Hermitian matrix
y € F" = An initial starting column vector of norm 1
dyax = The maximum size of the Krylov basis
e = Number of approximate eigenpairs being sought
tol = The convergence tolerance
Output:
X € "4 — The Ritz vectors of A A € F¢ = The Ritz values of A
resNorms € F¢ = The residual norms for the eigenpair estimates of A
Lanczos (A4, vy, d)
1 n = size(A, 1), H = zeros(n, n);
2 V(1) =y
3 w=AV(;1);
4 H(1,1) ="V (:,1);
5 w=w-—H(1,1)«V(,1);
6 for i = 2:dp.x do
7| H(i—1) = H(i—1,1) = [[w];
8 V(,i)=w / H(i,i—1);
9 w= AV (:,1);
w0 | H(i,4) =V (i),
11 w=w-—H(,i)V(,i)—H@Ei—-1)V(,i—1);
# Periodically check for convergence

12 [X, A, resNorms| = Rayleigh-Ritz(A, V, H);

13 If resNorms(1l:e) < tol then return [ X (:, 1:e), A(1:e), resNorms(1:e)]

14 [X, A, resNorms| = Rayleigh-Ritz(A, V, H);

15 return [X(:, 1:e), A(1:e), resNorms(1:e)]

23




The Lanczos process outlined in Algorithm 2 shows the construction of the basis V' €
F*4 and its corresponding tridiagonal matrix H € F4*¢ The new basis vector is built and
added to V' through the 3-term recurrence shown on line 11. Following the construction of
V and H, line 14 invokes the Rayleigh-Ritz algorithm (see Algorithm 1) to extract the Ritz
pairs of A. The user should periodically perform RR intermittently while constructing V'
to monitor convergence and prevent unneeded iterations, as shown on lines 12 and 13 in
Algorithm 2.

Theoretically, the constructed basis V' € F"*¢ should always be orthonormal, i.e.,
VIV = I. However, V loses orthogonality in floating point arithmetic, resulting in re-
peated directions of converged eigenvectors entering the basis and an increase in V’s con-
dition number, (V). Due to this, RR may yield inaccurate solutions and many copies
of converged eigenpairs or even fictitious eigenvalues (ghost eigenvectors). Consequently,
convergence will slow down or stagnate, and numerical instability will increase [98|. To ad-
dress this challenge, practitioners adopt strategies such as full-orthogonalization, selective
orthogonalization, locking, and partial reorthogonalization [77|. Several orthogonalization
methods exist, with two common examples being the Classical Gram-Schmidt (CGS) pro-
cess [19], Modified Gram-Schmidt (MGS) [82|, and Householder reflections [50|. Each
method comes with trade-offs in performance and accuracy.

Full-orthogonalization Lanczos explicitly orthogonalizes new basis vectors against all
preceding vectors in the basis. In the context of Algorithm 2, this equates to adding an
additional step after line 11 inside the for loop that orthogonalizes the vector w against
V(:,1:4). This is identical to the more generalized Arnoldi iterative method when dealing
with symmetric matrices, except that Arnold does not perform the 3-term recurrence as
the initial orthogonalization step [10].

Selective orthogonalization was developed based on the observation that orthogonality
loss can be attributed to the convergence of a Ritz pair, meaning the computational cost
of full-orthogonalization Lanczos can be avoided by orthogonalizing incoming basis vectors

against the set of converged Ritz vectors [44, 77]. In a 1979 paper by Parlett and Scott

24



[76], they classified a Ritz pair (Z, 5\) of A € F™*™ as “good enough” to be marked as
converged if

|4z — &\||2 ~ /emacnll All2. (2.27)

Soft locking is a technique that orthogonalizes new basis vectors against the Ritz vectors
flagged as converged. This prevents repeated directions of the corresponding Ritz pairs
from entering the basis while allowing improvement to their accuracies, as they will still
be used in the RR extraction [55, 87]. The Lanczos method can not use soft locking as
the V' is not rotated to the eigenvectors. Instead, Lanczos can use hard locking, which
orthogonalizes all new basis vectors against the converged Ritz vectors and deflates the
converged pairs from the search space, so their accuracy never improves but will never
become unconverged either.

Finally, partial reorthogonalization was developed on the insight that Lanczos vectors
do not need to be entirely orthogonal to produce accurate eigenpair estimates [86]. Instead
of orthogonalizing incoming basis vectors against all preceding basis vectors or a set of
converged Ritz vectors, they are orthogonalized against a small subset of the most recently
added vectors.

Restarted Lanczos is used to overcome memory constraint challenges and mitigate or-
thogonalization issues. When the number of columns in the basis V' reaches a predefined
threshold dpax and not all desired eigenpairs have converged, restarting is performed [83].
The standard Lanczos restarting technique involves discarding the entire basis and reen-
tering the Lanczos process using a new initial vector. Discarding this much convergence
information will likely result in slower convergence [44]|, motivating the development of
various alternative restarting strategies. One notable strategy is Thick-Restarted Lanczos
(TRL) [103].

TRL explicitly restarts the basis with multiple Ritz vectors, hence the term “thick”. It
is equivalent to the Implicitly Restarted Arnoldi (Lanczos) method [20] but simplifies the

restarting implementation while enabling more information retention, thereby minimizing

25



the loss of convergence. In this method, the Ritz vectors used in the restarted basis
correspond to the Ritz values sought by the user, allowing the most significant information
to be retained.

Block Lanczos extends the traditional Lanczos algorithm by replacing the single vector
b in Equation 2.7 with a set of k orthonormal vectors B € F*** with k denoting the block
size [43]. At each iteration in the Krylov method, & additional vectors are incorporated
into the basis. This approach offers several advantages, including increased parallelism,
better single-node performance, and enabling the approximation of clustered eigenpairs
or multiplicities, which, in theory, can not be accomplished using single vector Lanczos.
However, it does increase the total number of operations and requires special treatment

when some block directions become colinear.

2.4.1.1 Generalized Davidson

During the late 1970s, the Davidson algorithm was introduced as a variant of Lanczos that
allowed for diagonal preconditioning to accelerate convergence [26]. Preconditioning is a
technique used to accelerate the convergence of an iterative method [83], and an extensive
list and explanations of various preconditioning techniques can be found in Ke Chen’s 2005
book [21].

An extension of Davidson, known as Generalized Davidson (GD), was later presented
to allow the use of general preconditioners [69]. Without preconditioning, Davidson and
GD are equivalent to the Lanczos method in exact arithmetic but differ from the beginning
when using floating point operations. When used with preconditioning, Davidson and GD
construct bases that no longer correspond to a Krylov subspace but can still drastically
accelerate convergence [68].

Unlike conventional Krylov methods such as Lanczos, where the next basis vector re-
sults from multiplying the previous one by the input matrix A € F**" GD expands its basis
V using the residual of the first unconverged eigenpair (or k eigenpairs when using Block

GD), essentially “targeting” it. These new basis vector(s) are then orthogonalized against

26



all existing vectors [82, 19]. Once the number of columns in the basis V' reaches some
predefined threshold dy., without all sought approximate eigenpairs converging, restarting
sets V' equal to the first r Ritz vectors before proceeding. Algorithm 3 is provided for a

more detailed depiction of the GD algorithm.

27



Algorithm 3: The Generalized Davidson Algorithm

Input:
A € F™*™ = A square, Hermitian matrix
Y € F"*¢ = Matrix of initial orthonormal column(s)
r = The size of the restarted basis
e = The number of eigenpairs sought after
tol = Convergence tolerance
Output:
X € "4 — The Ritz vectors of A
A € F¢ = The Ritz values of A
resNorms € F? = The residual norms for the eigenpair estimates of A
Generalized_Davidson(A, Y, r, e, tol)
1 V(,l:e)=Y; W(,1:e)=AY;
2 form=2,3,--- do
3 W(:,m) = AV (:,m);
4 [X, A] = Rayleigh-Ritz(A4, V(:;,1:m), V(:,1: m)TW(,1:m));
5 residuals = WX (:,i) — VX(:,i)A(i) fori=1,2,--- ,m;
6 resNorms(i) = || residuals(:, ) | fori=1,2,--- ,m;
7 target = find(resNorms > tol, “first”, 1); # Target 1°° unconverged vector
8 if target > e then

9 return (X, A, resNorms|

10 if m > d then
11 V(i lor)=X(0E1r); W 1ir)=AV(,1:7r); # Restart

12 m=r;

# Precondition new vector before orthogonalizing it against all

previous basis vectors

13 V(:,m+1) = cgs(V(:;,1:m), Precondition(residuals(:, target)));

28




In 1992, Murray et al. proposed an extension of the Davidson algorithm, now known as
+k, which modifies the restarting technique by not only including the first r Ritz vectors
from the current iteration into the restarted basis but also k£ Ritz vectors from the previous
iteration [71]. Stathopoulos and Saad introduced initial analysis and efficient implemen-
tation of this method in [92], which was more recently expanded upon in [104]. Studies in
2005 [88] and 2007 [90] further investigate the effectiveness of GD+k when searching for
one or many eigenpairs, respectively. While GD+k does accelerate the convergence of the
sought Ritz pairs, the resulting basis no longer corresponds to a Krylov subspace, similar
to preconditioning.

While one step of GD is computationally more expensive than that of Lanczos, it does
provide several advantages that justify these increased costs. Unrestarted Lanczos may
offer optimal convergence when dealing with Hermitian eigenvalue problems but requires
unbounded memory storage, and orthogonalization costs grow at the rate O(nd?)[88].
Furthermore, clustered eigenvalues result in convergence deterioration of Lanczos, necessi-
tating preconditioning. GD allows for the basis extension using a preconditioning residual,
which can accelerate convergence. It is also more general as it allows any vector to be

incorporated into the basis, not just Krylov vectors.

2.4.2 PRIMME

The PReconditioned Iterative MultiMethod Eigensolver library (PRIMME)? is a C99 soft-
ware package designed to determine a user-specified number of eigenpairs or singular pairs
of a matrix A [91]. There are extensions for the code, enabling it to run in Python, R,
Fortran, and Matlab. Although our primary emphasis is on real symmetric eigenproblems,
PRIMME can handle eigenproblems for generalized and complex Hermitian problems.
PRIMME also provides preconditioning options and supports dynamic methods that can

switch eigensolvers given the appropriate parameters.

2The PRIMME software library is publicly available at https://github.com/primme/primme

29



2.5 Sketching

Randomized Numerical Linear Algebra (RNLA) has grown in popularity due to algorithms
that offer advantages in speed and reliability for extremely large matrices [62]. These
algorithms find application in the least-squares problem [80], preconditioning [34], SVD
[31], and orthogonalization [14].

One technique within RNLA is sketching, which operates as a dimensionality reduction
method using subspace embeddings to lower the computational cost of matrix operations
while still providing accurate estimations. In a 2006 paper by Sarlos [84], he notes that
a sketching matrix S € F**" commonly built using Sparse Maps [64], the Subsampled
Random Fourier Transform (SRFT) [4], or as a random Gaussian, is a subspace embedding

for matrix A € F"*" with distortion factor € € (0, 1) if

(1—¢) - [[Ayl2 < [|SAylla < (1 +¢€) - | Aylf2. (2.28)

The Johnson-Lindenstrauss Lemma [53, 25| states that any set of n points in a high-
dimensional Euclidean space can be mapped to s points in a low-dimensional space while

preserving the distance between points within a factor of (1 £ €), with the condition

4logn logn
= =0 . 2.29
o= €2/2 —¢e3/3 ( €2 ) (2.29)

Originally, sketching was utilized to solve least-squares problems. Consider the mini-
mization problem

minimize, cpa || By — f||2, (2.30)

where B € F"*¢ with n > d [80]. Sketching can be incorporated into the least-squares
problem by first generating a sketching matrix S € F5*™ before applying it to Equation

2.30 to form the smaller s x d problem:

minimize, cpa [|S(By — f)]l2. (2.31)

30



According to Equation 2.28, the residuals of the sketched problem compared to its nons-
ketched counterpart should only be off by a small constant factor.

In [72], Nakastukasa and Tropp noted that the RR method utilized in Krylov-based
iterative solvers could also be cast as a least-squares problem using the variational formula
described in [77]

minimize g cpaxa|| AV — VH||2, (2.32)

with V € F**4 A ¢ F**" and H = VH AV. This formulation presents an opportunity to
apply sketching techniques. RR with sketching (sRR),

minimize) ,||S(AV — VM), (2.33)

where M = (SV)(SAV), can then be used for the extraction of approximate Ritz pairs
from a basis V' without the basis being fully orthonormal, as long as (V) < e-L.. More

~  ~mach*

details will be expounded upon in Chapter 4.

31



Chapter 3

Probing for the Trace Estimation of
a Permuted Matrix Inverse
Corresponding to a Lattice

Displacement

3.1 Introduction

The trace approximation of a matrix function, f(A), for a large sparse matrix A, is a
computationally challenging problem. Commonly used functions are A~! and logA (used
to find the matrix determinant). In this work, we focus on f(A4) = A~!, which has
many applications in statistics [51], quantum Monte Carlo [3], and data mining [17]. Our
motivating application comes from Lattice Quantum Chromodynamics (LQCD), where
the trace of the inverse of an operator discretized on a symmetric, 4-dimensional, toroidal
lattice representing space-time is often used to analyze the interactions, properties, and
structures of hadrons on a subatomic scale [65]. The trace computations are part of larger-
scale Monte Carlo simulations and, therefore, do not require high accuracy but must induce

no statistical bias.

32



Effective methods for computing tr(A 1) exist for smaller matrices where sparse fac-
torizations are possible or in cases where selective elements of the inverse can be found
[9, 27, 59]. However, as the size and density of A increases, these methods become compu-
tationally infeasible, leaving stochastic estimation as the only alternative. A widely used

method for this is the Hutchinson trace estimator [51], which takes the form

1 S
-1 H 4—1
t ~ - - ; .
r(A™) . E zi A7z, (3.1)
J=1
where z; for j =1,2,--- s are s i.i.d. random noise vectors (RNVs). The computational

complexity of Equation 3.1 is dominated by finding solutions of the linear systems with
some iterative method to approximate the Gaussian quadrature zJH A_lzj at each step.
The vectors z; for j = 1,2,--- , s can also be constructed using a Rademacher distribution,
where each element equals +1 with a probability of 0.5 if using real numbers, and 41, +i
with probability 0.25 if using complex numbers, which is the case for LQCD matrices. This

choice of vectors results in the estimator having a variance

n

Var(z"A71z) = 2(J A7 E - D (455)7), (3.2)
j=1
which is minimum over all random distributions for z; [12].

The variance formula in Equation 3.2 indicates that off-diagonal elements with high
magnitude in A~! contribute significant errors to the estimator, resulting in slow conver-
gence. Various techniques have been introduced and studied to reduce the variance of the
Hutchinson estimator by choosing vectors that better take advantage of the structure of
the matrix [12, 17, 48, 96, 101].

One such technique is classical probing (CP). CP is a general technique that uses a
graph coloring of the graph of an adjacency matrix A to construct structurally orthogonal
probing vectors to extract specific non-zero entries of the matrix. For example, multiplying

a diagonal matrix with a vector of ones recovers its diagonal. Similarly, when the adjacency

33



matrix of a graph is m-colorable, we can also recover the diagonal by multiplying the matrix
with m vectors, each vector having ones in rows with the same color and zero elsewhere.
In numerical optimization, probing is applied on the graph of A? to compute the Hessian
[41]. For trace estimation, CP constructs probing vectors from a coloring of the graph of
AF or, equivalently, the distance-k coloring of the graph of A, where k € Z, [96]. For
many sparse matrices, the elements of Ai_j1 display a Green’s function decay in magnitude
with the distance between nodes i and j. Although A~! is not sparse, using these probing
vectors in the Hutchinson estimator removes from the variance (Equation 3.2) all elements
(edges) of neighbors with distance < k. A drawback of CP is that if a coloring for a
certain distance k does not produce the required variance reduction, a higher distance
coloring cannot reuse the quadratures computed with the previous probing vectors.

Hierarchical probing (HP) was introduced to address the reuse issue [89, 57|. HP
assigns colors to nodes hierarchically so that two nodes that receive the same color for some
coloring distance k will never share the same color at higher distances. The technique also
provided a computationally inexpensive way to produce a distance-k coloring for large k
when the matrix graph is a regular, toroidal lattice. This toroidal structure appears in
LQCD matrices, which is also the focus of this work.

Deflation has also been used as a variance reduction technique [81, 38, 47]. While
probing techniques capture high-magnitude elements from relatively small lattice distances,
the low-rank approximation of A~! using the lowest magnitude singular triplets of A
typically captures a large part of the magnitude of A~! at long distances. Thus, the two
approaches are complementary and, when used in tandem, can significantly accelerate the
Monte Carlo estimator.

In this work, we extend probing for computing the trace of a permutation of A=!. The
motivation comes from LQCD computations of the flavor-separated Generalized Parton
functions (GPDs) where the so-called “disconnected diagrams” need to be calculated [39, 6].
This translates to the need to find the sum of certain off-diagonal elements of A~! that

correspond to a displacement along the z dimension of the 4-dimensional (space-time)

34



LQCD lattice. The displacement equates to a non-symmetric permutation of the rows of
A~ where the index of a node x no longer refers to [z1, T2, 23, 24], but instead [x1, z2, 23+
p,z4]. The associated trace problem is more challenging because the variance for PA~!
now includes the main diagonal of A~!, which is of much larger magnitude than the main
diagonal of PA~!,

We propose an extension of CP that modifies a greedy graph coloring algorithm to
consider not the node’s original neighborhood but the neighborhood of its displacement.
This idea applies to any permutation matrix, and the coloring can be performed hierar-
chically if desired. For toroidal lattices with displacement applied in one dimension, we
prove lower bounds on the number of colors and study the algorithm’s effect on variance
reduction both theoretically and with LQCD experiments. The method results in orders
of magnitude variance reduction over conventional probing methods.

The rest of this chapter is organized as follows: Section 3.2 introduces notation and
discusses previous variance reduction techniques. Section 3.3 introduces the coloring algo-
rithm with displacements and studies its properties theoretically. Experimental results are

shown in Section 3.4. Section 3.5 summarizes this work and expresses some open questions.

3.2 Related Works

In this chapter, we seck the trace of PA™!, where P is a permutation matrix corresponding
to a single-dimension displacement in a 4-dimensional toroidal lattice, and A € FN*N ig
a non-singular matrix representation of that lattice. A can be complex-valued as in the
case of LQCD, but for convenience and without loss of generality, our presentation involves
real-valued matrices. Although our main idea applies to any P and A, the algorithm and
the analysis are relevant to matrices stemming from a regular lattice discretization. Letting
Zy, be the multiplicative group of integers modulo n, then a d-dimensional toroidal lattice
is described as

7% =Zp, x -+ x Lp,, (3.3)

35



where Dj is the size of dimension j. Two lattice nodes x and y are connected by an edge
if their coordinate vectors [z, -+ ,x4] and [y1,- - ,yql, satisfy ||z —y||1 = 1 (in a modulo
sense). In LQCD, the lattice represents the 4-dimensional space-time.

Variance reduction techniques for the Hutchinson trace estimator focus on two ap-
proaches: one derives an approximation to A~! such as from deflation or preconditioning,
which we briefly address in Section 3.2.4; the other replaces the Rademacher vectors with
ones that better take advantage of the structure of the matrix. The use of orthogonal
columns of the Hadamard or Fourier matrix has been proposed [17], which can systemati-
cally annihilate specific diagonals of the matrix and thus reduce the variance in (3.2). The
variance reduction is monotonic with the number of columns used. Still, this method works
no better than using solely RNVs as the patterns of diagonals removed are not typically
the heaviest variance-contributing diagonals of A~!. The following methods attempt to

capture these heaviest elements directly.

3.2.1 Classical Probing

The inverse of an N x N non-singular matrix A where ||A]| < 1 can be represented by the
Neumann series A=t = 3% (I — A)* [94]. As this series is convergent, higher powers of
(I — A)* provide a smaller contribution to A='. Many matrices from Partial Differential
Equations, LQCD, and other applications display a significant decay in the elements of
(I — A)¥ for larger values of k, further motivating the idea of probing [15, 96, 37]. [100]
first introduced a basic form of probing in LQCD, which has become more popular with
the name dilution since [33].

The CP method does not directly approximate A~! but instead locates its highest-
magnitude elements using graph coloring. Based on the decay principle above and since
(I — A)* and A* have the same adjacency matrix, it is the first few powers of A¥ that
contribute to the highest-magnitude elements of A~!. Note that the neighborhood of a

node z in the graph of A is the same as the distance-k neighborhood of z in the graph of

36



A. Therefore, the computation of A* can be avoided by working directly on the graph of
A.

Assume that we have computed a distance-k coloring of the graph of A, which results
in m colors. Conceptually, if we permuted the nodes with the same color together, A*
would have m color blocks along the diagonal, each being diagonal matrices. We construct

the following structurally orthogonal probing vectors z;, j = 1,2,...m,

‘ 1 if color(i) =7
zj(i) = . (3.4)
0 otherwise

Notice that these vectors can recover precisely the trace tr(A¥) = Z;n:l zJTAkzj because

they annihilate all matrix elements outside the color-blocks along the diagonal of A* and
because the color-blocks are diagonal matrices themselves. Although the diagonal blocks
are dense matrices in A™!, using these z; in the trace estimator (3.1) has the same effect
of annihilating all off-diagonal blocks of A~!, or equivalently, any neighbor at a distance
up to k from any node in the same color group. Then, the accuracy of the trace estimation
is the summation of the variances described in Equation 3.2 of the diagonal color blocks.

Figure 3.1 displays this effect. Let A be a 32-node 1D Laplacian matrix with periodic
boundary conditions shifted by its smallest non-zero eigenvalue, making it non-singular.
A distance-3 coloring of this matrix yields four colors. Consider the permutation vector
perm that lists the indices of all nodes in order of their color label, i.e., nodes with color 1
come first, followed by colors 2, 3, and 4. Plotting A~! symmetrically permuted by perm
shows the color blocks along the diagonals (Figure 3.1a). Figure 3.1b shows A~! & HHT
permuted the same way, where ©® refers to the Hadamard product between two matrices,
and the columns of H consist of the four probing vectors from Equation 3.4. It can be
seen that every element outside the color blocks along the main diagonal gets annihilated.

Computationally, we can use a greedy coloring algorithm that takes linear time for A*

and provides close to the optimal number of colors for most matrices with regular sparsity

37



(a) A~! permuted into color-blocks (b) Permuted A~ after probing

Figure 3.1: Using a shifted 1D Laplacian A with 32 nodes and periodic boundary con-
ditions, Figure 3.1a shows A~! permuted into color-blocks based on a distance-3 coloring
before probing vectors are applied. Figure 3.1b shows the result of these color blocks after
applying the probing vectors to the shifted Laplacian inverse, A~' ©® HHT .

patterns. Most of the computation is spent on the iterative method that solves for the m
linear systems A~'z;.

CP is a deterministic method. Many applications, such as LQCD, require an unbiased
trace estimator (unless the deterministic accuracy can be guaranteed to be well below the
statistical significance of the simulation). Moreover, suppose the probing vectors from the
distance-k coloring do not provide sufficient accuracy. In that case, we seek ways to either
use A7' ©® HHT as the matrix of the statistical estimator shown in Equation 3.1 or to
extend CP to higher distances. In either case, the work spent on solving A‘lzj should be

re-used and not discarded. This has been explored in [89, 57| as described next.

3.2.2 Removing Deterministic Bias

We note that the vectors in Equation 3.4 consist of 0’s and 1’s in the positions determined
by the colors. To remove the deterministic bias from the CP estimation, we can introduce
random noise to the vectors z; similarly to one step of Hutchinson (s = 1). Consider the
noise vector zg € Z5 and apply a Hadamard product between 2z and each of the probing
vectors zj, j =1,...,m,

V=1200 21,20 22, ..., 20 © 2. (3.5)

38



As shown in [89], VVH = HHT have the same non-zero pattern, but using the vectors v,
in Equation 3.1 imparts no deterministic bias.

Moreover, given a sequence of random vectors, z(()i),z' =1,---,s, we can construct the
vector sets V1 ... V(%) as above. Using these s x m vectors in Equation 3.1 is the same

as performing s steps of Hutchinson on the variance reduced matrix A~' © HHT”.

3.2.3 Hierarchical Probing

Instead of applying the CP method for a fixed distance k followed by the Hutchinson
stochastic estimator, it is more beneficial to continue with probing to higher distances as
long as the elements of A~! continue to display substantial decay and as long as the work
from prior distances can be reused.

Saving computations by reusing previous work is the goal of Hierarchical probing (HP),
which was initially proposed for matrices with lattice-type structure [89] and was later
extended to arbitrary sparsity patterns [57|. The idea is to enforce a hierarchical coloring,
which ensures that probing vectors for smaller distance colorings are contained in the
subspace of the vectors generated for higher distances, with all distances being a power of
two. Therefore, the trace estimation reuses the already computed quadratures Z;TFA_lzj
and augments them with those from higher distances.

We can generate a hierarchical coloring on lattices by recursively partitioning a d-
dimensional lattice into 2¢ sub-lattices, each receiving a different color. The non-overlapping
sub-lattices guarantee that if two nodes share a color at a distance k, they must also share
a color at any smaller distance, and if two nodes do not share a color at a distance k, they
will not share a color at higher distances. Each recursion step doubles the distance between
nodes of the same color. The recursion stops when separate colors are assigned to all nodes
or when the requested distance is reached. A red-black coloring between recursion steps
allows for intermediate colorings as the number of colors increases by a factor of 2¢ at each

recursion.

39



Instead of using Equation 3.4, probing vectors for the HP can be generated efficiently
as special permutations of the rows and columns of the Hadamard or Fourier matrices. The
nested coloring implies a nesting of the subspaces of the probing vectors, which can be used
incrementally until the desired accuracy is achieved. Used in its unbiased form (Equation
3.5) with s = 1, this method proved particularly flexible and practical in real-world LQCD
problems [46, 45].

[57] extended HP to work with arbitrary lattice sizes, mainly general sparse matrices.
Hierarchical techniques can also be used with the algorithm of this chapter if desired.
However, because the number of colors required increases by a factor of 3-4 over the non-

hierarchical version, we assume that users can choose a priori the required distance.

3.2.4 Deflation

A different way to reduce the estimator’s variance is to deflate the lowest singular triplets
of A [38]. Given U and V, consisting of approximate left and right singular vectors of
the smallest singular values of A, respectively, we can form the oblique projector @) =

AV (UH AV)~1UH and split the trace computation into two parts,

tr(A™1) = tr(A71Q) + tr(A~ (I — Q). (3.6)

Since tr(A~'Q) is easily computed as the trace of the small matrix (U7 AV)~1UHV
we instead apply the stochastic estimator on the tr(A~1(I — @Q)), which is expected to
have smaller variance. The number of singular vectors needed to provide a significant
variance reduction of the estimator depends on the spectral decay of the matrix A and its
size. For significant decay or small matrix size, an iterative SVD solver can compute the
singular space of A with a multigrid method as a preconditioner [38| or using a multigrid
eigensolver directly [36]. Still, for large matrix sizes, the cost of computing and applying a
large number of singular vectors becomes significant. Because the goal is to approximate

A7YTI — Q) in the Frobenius norm, the accuracy of individual vectors is less critical. [81]

40



showed that hundreds or thousands of singular vectors from the coarse grid operator of
multigrid can be computed efficiently and applied effectively for deflation.

Deflation works complementary to probing. While probing captures heavy elements of
A~1 occurring within some distance k between nodes, deflation captures heavy connections
between elements at long-range distances. Therefore, combining the two techniques has
shown significant improvements over using one of these methods individually. As deflation
does not depend on permutations, we use the same deflation as in [81] and focus solely on

the effects of our new probing method.

3.3 Probing for Permutations

Consider the problem of finding the trace of PA~! where P is a permutation matrix. The
problem arises in LQCD, where P corresponds to one or more displacements in the lattice.
We will study this problem shortly, but let us first consider the problem for a general P.

The question is how to achieve the probing goals for PA~!'. The CP method would take
powers of the matrix APT, which does not relate to how information propagates through
powers of A to generate A~'. In other words, this method may not capture the most
significant elements of A~!, which are at close graph distances for each node, and thus
does not satisfy the design goal of probing. Moreover, when APT has a nonsymmetric
sparsity structure, the graph coloring problem is poorly defined but can be avoided by
coloring the graph of the symmetric part of a matrix. Finally, for our LQCD application
on regular lattices, the powers (APT)* are much denser than the corresponding A*, which
means a larger number of colors and, thus, probing vectors.

The solution is conceptually simple. Since PA™1 = P Y% (I — A)*, we can first take
powers of the matrix A, permute them, and then find the coloring on the associated graph
of PA*  or rather its symmetric part PA* + (PA*)T. Despite its simplicity, when this

method is applied to toroidal lattices stemming from our LQCD application, it creates

41



connectivity patterns that our HP method cannot handle. However, these patterns allow
for a CP-based algorithm specifically tailored for this application.

In LQCD, the application of disconnected diagrams requires the trace of a certain
projected operator, which for this discussion can be abstracted as the sum of all the

7 where i is the

elements of A~! that correspond to a displacement p € Z4, i.e., YA
index of the lattice node © = [z1, -+ ,z4] and j is the index of node = + [p1,--- ,pq|. Let
P be the permutation matrix that places the required off-diagonal elements onto the main

diagonal. In MATLAB, the corresponding permutation index is computed as
perm = Coord2Index (mod(Index2Coord([1:N],D)+p,D), D).

The two functions Coord2Index and Index2Coord are the maps between lattice coordinates
and the particular index ordering of the application. The inverse permutation P7 simply
maps a lattice point y to y — [p1,--- ,pg]. The idea of coloring the graph of PA* 4 (PAF)T
is shown in Figure 3.2 for the matrix of a 1D periodic lattice of 32 points with p = 10
and k = 4. The red locations indicate the required diagonal at displacement p = 10. The
grayscale diagonals show the magnitude of the non-zeros of the following matrices: Figure
3.2a of the matrix A; Figure 3.2b of the A*; Figure 3.2c of the matrix PA*, and Figure
3.2d of the matrix PA* + (PA*)T. Based on the aforementioned decay property, coloring

this last matrix would eliminate the heaviest elements of the inverse.

u

(a) Matrix A, 1D torus (b) Matrix of A* (c) Displace by 10 (d) Symmetrized

Figure 3.2: Applying a power and displacement to a matrix representation of a 1D
toroidal lattice. The red diagonal represents the locations of the elements corresponding
to the wanted displacement.

42



As with CP, we use a greedy linear time algorithm to color PA¥ 4 (PA*)T. However,
working directly on the lattice can speed up the distance-k coloring process. Given a node
x with lattice coordinates [z1, .., z4], we do not find the distance-k neighborhood of z, but
rather the distance-k neighborhoods centered at

=1

x x1+p1,- &g +pg and 27 = [x1 —p1, -+, Tqg — Pal- (3.7)

Displacements in the directions of p and —p enforce a symmetric matrix structure. We
denote the distance-k neighborhood of x for displacement p as,

Nz, p, k) = N42",0,k) U N (2™,0,k) 58
3.8

={y:ly—at|L <k}U{y:ly—a |1 <k}

During coloring, we exclude {x} from the neighborhood, and the superscript d is removed
when the dimension is implied.

We make three observations. First, the main diagonal of the original A~!, whose
elements are typically of the largest magnitude, is part of the off-diagonal structure of
PA~! and contributes to the estimator variance. However, the (z,x) elements of this
diagonal are now displaced to the (z,z7) lattice points in the N¢(z,p,0), so our new
method eliminates them immediately for any probing distance. Equivalently, because
of the assumed decay, the elements of the next-highest magnitude in A~! will be in the
diagonals closest to the main or at distance £ = 1 from it. The decay continues with higher
distances k. Therefore, the new algorithm includes in the neighborhoods N d(m,p, k) all
original distance-k neighbors of the points 2™ and 2~ as these will have the most significant
weight. Finally, although k = 0 removes the old main diagonal (the graph of P 4 P7), in

practice, probing is meaningful for k£ > 1.

43



3.3.1 Coloring with Displacements Algorithm

Once we have defined the neighborhood of each node in the displacement graph, we can
use a simple greedy coloring approach by assigning a color to the first node, then the
second, until all nodes have a color [67]. The number of colors translates to the number
of iterations in the stochastic estimator. Minimizing this number is not critical, as more
vectors/iterations could imply a more significant variance reduction. However, this addi-
tional reduction beyond the best distance-k coloring is hard to quantify and may not be
more effective than using extra random noise vectors. Thus, the order in which the greedy
algorithm visits nodes is important.

We have experimented with some standard visitation orders, such as natural and red-
black orderings, a completely random order, and a random red-black where the order of
the nodes within a color is random. In addition, we tested a domain decomposition idea,
where an independent set of the graph of A’ was constructed for various i’s. Then, a
breadth-first search was used to add neighborhoods to each of these centers (for i = 1,
this reverts to red-black). After extensive testing, we observed that in most cases, natural
and red-black orders achieved the fewest colors. Surprisingly, thousands of runs of the
random variants yielded only marginal improvements, and the domain decomposition idea
deteriorated with increasing i. We believe this is due to the well-structured connections of
the lattice.

Algorithm 4 shows how to work directly on the lattice Z% to apply the greedy distance-k
coloring for a displacement vector p and a user-defined visitation order. It returns a vector
Colors, which can be used in Equation 3.4 to generate the probing vectors. To avoid
re-computing the neighborhood for each lattice point, Algorithm 5 builds first a “stencil”
of coordinate offsets that, when added to the coordinates of some point x, returns the
coordinates of the points in N(z,p, k). Because every lattice node is of the same degree, it
is clear that the maximum number of colors produced by the greedy algorithm is one more

than the degree of a node, i.e., colors are less or equal to |[N(x,p, k)| + 1 = len(Stencil(:

44



,1))+1. A bit array of this size can be used to record the colors used for each neighborhood
and find the first color not in use. The colors returned by Algorithm 4 are used in Equation
3.4 and then Equation 3.5 to generate the unbiased probing vectors to be applied on the

displaced inverse PA~!.

45



Algorithm 4: Displacement Coloring on a d-Dimensional Lattice

Input:
= d-length displacement array D = d-length array of dimension sizes
k = Coloring distance
Output:
Colors = Array of lattice colors
Create_Coloring(p, D, k)
1 N = prod(D); Colors = zeros(N,1);
2 Stencil = Create_Stencil(k, p, 1, zeros(1, len(D)));
3 for i = Make_Visiting_Order(N ) do
4 iz = Index2Coord(i, D); # Convert the node index to a lattice coord
# Add each stencil offset to iz to find ¢x’s neighborhood

5 Neighbor _Colors = [|;

6 for s = Stencil do
7 n = Coord2Index(mod(ix + s, D));
8 Neighbor Colors = |Neighbor Colors, Colors(n)|;

# Create a logical array to mark which colors are already in use
9 Colors_In Use = false(len(Stencil(:,1)));

10 for ¢ = Neighbor Colors do

11 if ¢ > 0 then

12 \\ Colors_In Use(c) = true;

# Find the first color not in use and set that to be ¢’s color

13 for j =1 :1len(Colors_In_Use) do

14 if ~ Colors In_Use(j) then
15 Colors(i) = j;
16 break;

17 return Colors;

46




Algorithm 5: Find coordinate offsets for each node in a neighborhood

Input:

x = d-dimensional array to store an offset

k = Coloring distance

p = Displacement array of length d

dim = Recursion/dimension level
Output:

Stencil = A mapping of a lattice coordinate’s neighbors
Create_Stencil(x, k, p, dim)

1 if dim == 1 then

[\

\\ Stencil = ||; # Empty array to hold all neighbor offsets

3 if dim == len(z)+1 then

# Append the positively and negatively displaced offset to the
stencil

4 return unique([Stencil; x + p; © — p|, ‘rows’);

# Find the distance-k neighborhood around x

5 for j=—k:kdo

[=]

z(dim) = j

N

Stencil = [Stencil, Create_Stencil(z, k — [j|, p, dim+1)]

8 return Stencil

The size of the distance-k L; ball on the lattice is O(k?), and the stencil contains two
such balls in N(z,p, k). To union the two stencil balls, we must remove duplicates when
the balls overlap, which can be obtained by sorting the elements. Therefore, generating the
stencil has a O(k%logk) complexity. The dominant part of the complexity is the linear
time greedy algorithm, which visits the neighborhoods N(z,p, k) for each x, resulting in

the algorithm’s complexity being O(Nk?).

47



Although the algorithm we presented is for any d-dimensional displacement, in practical
LQCD problems, the displacement occurs only in the z space-time direction. For conve-

nience, our theoretical discussion considers the displacement to be in the 1st dimension,

ie,p=prand po =---=pg=0.

3.3.2 Lower Bound on the Number of Colors

The chromatic number of a graph must be at least the size of its maximal clique. In our
problem, the neighborhood of every lattice node is the union of two Lq balls, so we seek
to identify its maximal clique. Finding the maximal clique is complicated by the wrap-
around property of the torus, which adds additional constraints to the coloring. Thus,
the results depend not only on p and k£ but also on the size D; of each dimension. To
avoid this complication, we ignore the toroidal property, which, for sufficiently large D;, is
equivalent to considering the lattice ZZ , which is infinite in all d dimensions. By removing
these constraints from the coloring algorithm, the maximal clique of the infinite lattice
may be smaller, and thus, its size will still be a lower bound to the chromatic number of
the finite toroidal lattice. We call the number of colors required to distance-k color the
infinite lattice with displacement p, col(Z% ,p, k).

Without displacement, i.e. p = 0, each neighborhood N(z,0, k) is an L; ball of radius
k. Any two points in this ball are at Ly distance 2k or less. Therefore, the maximal clique
of the distance-k graph of N(z,0, k) should be the nodes inside the L; ball of radius L%J
If k is odd, this Ly ball is extended by one point in one dimension. The size of this clique
provides the lower bound of the chromatic number:

col(2L,,0,k) =

)| if k is even
: (3.9)
k

DI+ INTL(0,0, |£])]if k is odd

48



where 0 = [0, ..., 0] is chosen as a representative neighborhood center. Recurrence relations
can be derived to compute this number for any dimension, although general closed forms for
an arbitrary number of dimensions are unknown. More details can be found in [16, 89, 57].

With displacement p > 0, the L; balls of a neighborhood N(z,p, k) are not centered
around the node z, resulting in different coloring patterns. We characterize the number of

colors needed first for p > k and then for p < k. Proofs are given in Appendix A.
Theorem 1. Let x € Z%.. If p > k, then Yy # = with y; = x1, it holds y ¢ N(x,p, k).

The above theorem implies that when p > k, all nodes with the same xi-coordinate
can share the same color, reducing the d-dimensional coloring problem to a 1D problem.
Figure 3.3 shows an example of this. To find the lower bound on the number of colors, we

separately consider the two sub-cases, p =k and p > k.

@

&
@
o5
O
N

N,
L

@

OO
3%

OA
&

900006066

®

; 0060600

(a) N%(x,4,4)

Figure 3.3: The neighborhood N2(0,p, k) and how 1D coloring is sufficient when p > k.

Theorem 2. Ifp =k, then col(Z% ,p, k) = 2k + 1.

Theorem 3. If p > k, then col(Z4 ,p, k) = [-2£] = [;Tkﬂ +2.

When p < k, the two L; balls centered around x~ and z™ overlap. Next, we identify
the maximal clique in this neighborhood for which all points are at most at a distance k

considering displacement p. As before, we center the neighborhood at x = 0. The case

49



where (k + p) is even is considered in Theorem 4, an example of which is shown in Figure

3.4.

Theorem 4. Assume (k + p) is even and p < k. Let, o = L%J, g L%J, and define

the set

d
C(d,a, B) = {m: |zl < « and Z || < ﬁ}. (3.10)

1=2

Then Vx,y € C(d,, 3), © € N(y, p, k), i.e., C(d, o, B) constitutes a distance-k clique.

Figure 3.4: The distance-k clique shown in grey of the neighborhood N3(0,p, k) which
is shown as wireframes, when p < k and (k + p) is even as described in Theorem 4.

For (k + p) is odd, Equation 3.9 shows that when p = 0, the clique needs to be
extended by one hyper-surface. In Theorem 5, we prove that for p > 0, the clique requires

two additional hyper-surfaces as depicted in Figure 3.5.

Figure 3.5: Distance-k cliques of N3(0,p, k) when (k + p) is odd as shown in Theorem

5. Set C'(d, o, B) is the grey set in the center, set S is the red hyper-surface on the right,
and T is the blue hyper-surface on the top.

50



Theorem 5. Assume (k + p) is odd and k > p. Define C' = C(d,a, ) UT U S, where
C(d, o, B) is defined in condition 3.10 and

d
T={z:—(p—1)<zi1<pandl<ze <f+1 and Z,_2|$i|:5+1}, (3.11)

S={z:p+1<mz <a+1and|ze| < and ||z|) = a+ 1}. (3.12)

ThenVx,y € C', x € N(y, p, k), i.e., C' constitutes a distance-k clique.

Finally, to count the number of points in the clique for any combination of d, p, and k,
we can use the recursive algorithm 6. Table 3.1 shows the analytic formulas for the size of
C(d, p, k) obtained by the nested summations of points over all dimensions for lattices with
d=1,2,3,4 when k+pis even and k > p. For k+p odd, we also need to add the size of d—1
dimensional hyper-surfaces S and 7. It is not hard to see that |S|+ |T'| = |C(d — 1, «, B)].
Therefore, we arrive at the following general lower bound for the number of colors of our

algorithm,

2k+1 ifk=np
2p if k<
col(Z% ,p, k) = = P . (3.13)
|C(d, o, B)] if k> p, k+ peven
|IC(d, e, B)| +|C(d—1,a,8)| if k> p, k+ podd

51



Algorithm 6: Recursive Function to Find the Lower Bound on Colors Needed

Input:
k = Coloring distance
p = Displacement (in the first dimension)
s = The current distance traveled
d = Current dimension level
min_Colors = Number of colors needed so far
Min_Num_Colors(k,p, s,d,min_ Colors)
1 if p > k then
2 | min_Colors = [}%1 + 2;
3 return min_Colors
4 if d == 0 then
5 min_Colors = min_Colors + 1;

6 return min_Colors

7 if d == 1 then

8 | min_Colors = min_Colors + 2({%J —s)+1;

9 return min_Colors
i _|k=p . | k=p
10 fori=—|52|+s: [FF] —sdo
11 min_Colors = Min_Num_Colors(k,p, s + |i| ,d — 1, min_Colors);

12 return min_ Colors

| d || Size of the clique C(d, a, B) for k > p and (k + p) even |

1 20+ 1

2 —28% +4af 4+ 20 + 1

3 —38°+ (4o —2)B* 4+ (da+ 3)B+2a +1

4 || 3(2(48% + 68% 4+ 88 + 3)a — 68* — 88% — 68 + 28 + 3)

Table 3.1: Formulas for size of the clique |C(d, o, B)|, if K > p and (k + p) is even, with
a= L@J and [ = %J If (k + p) is odd, use Equation 3.13.

52



3.3.3 Clearances

The LQCD application of disconnected diagrams requires the computation of traces for
one displacement and multiple displacements (e.g., p =0, --- ,8). Using different colorings
to individually find each of the traces is computationally prohibitive as we would have to
solve a different set of linear systems for each of the nine displacements. Therefore, asking
whether the probing vectors from one displacement can be used effectively for others is
natural. Theorem 6 shows that if a distance-k coloring generated for displacement p is

used for displacement p + A or p — A, then it clears at least distance max(k — A, 0).
Theorem 6. N(0,p+ A\, k —\) C N(0,p, k), for any A < k.

Based on this theorem, a specific (p, k)-coloring, i.e., a distance k-coloring for dis-
placement p, will also effectively reduce variance for nearby displacements. However, its
effectiveness declines for further displacements. Our LQCD experiments show that choos-

ing larger valued (p, k) pairs is more beneficial.

3.3.4 Multiple Displacements

The diminishing clearance achieved from a particular (p, k)-coloring to farther displace-
ments motivates finding a single distance-k coloring for a graph stemming from multiple
displacements. The goal is to spread the effectiveness of a power k to more values of p in-
stead of using one p and a high k value while still using fewer colors than all displacements
individually. Given a list of displacements, p1,ps,--- ,pn, the neighborhood of a node x

can be constructed as,

N(z,[p1y-.sPnl, k) = N(z,p1,k)U---UN(z,pn, k). (3.14)

Algorithm 4 can be modified to do this by calling Create_Stencil (shown in Algorithm

5) for multiple different p vectors and taking the union of the created stencils.

93



As expected from Theorem 6, we observed that the resulting clique is smaller when the
displacements p1, pa, - - - , pp are successive. When the distance between each displacement
p; is greater than k, this method returns a similar number of colors to the total number
returned when each of the displacements is applied individually. However, in our LQCD
experiments, even successive multiple displacements did not yield improvements in variance
over using just one of the higher displacements (say p,) with a distance larger than k. We
believe this is because traces derived from smaller displacements have significantly higher
magnitudes, thus requiring less variance reduction. Further discussion on the effectiveness

of clearances is dicussed in the experiments section.

3.3.5 Tiles

Despite the linear complexity of Algorithm 4, practical lattice sizes reach 64* (and often
larger), where the neighborhood size is O(k?) (e.g., for p = 0,k = 10 there are 8361 neigh-
bors to visit). It is clear, therefore, that we should avoid running the method every time a
new trace problem is solved. One solution is to generate and save in a database colorings
for the most useful lattice sizes. However, the regular structure of the lattice results in
coloring patterns that repeat across the lattice. These repetitive coloring patterns motivate
tiling, where we color a smaller toroidal lattice, the “tile”, and repeat its coloring through-
out the larger lattice. Small tiles can be generated at runtime, while several common larger
tiles can be saved in the aforementioned database.

The second motivation comes from the effect of lattice size on the number of colors.

d

¢, with a wrap-around structure, the additional con-

While our analysis was based on Z
straints make the number of colors sensitive to the lattice size. For example, the distance-1
coloring of a non-periodic 1D lattice requires two colors, while for the toroidal lattice, we
need two colors when D; is even and three colors when D; is odd. These effects are am-
plified in higher dimensions and more considerable distances. Interestingly, for a given

combination (p, k), increasing the lattice size often results in a larger number of colors.

Therefore, it is beneficial if a lattice can be composed of smaller tiles.

54



The tile size must satisfy certain constraints. First, because the periodicity of the tile
must match that of the lattice, a hyper-cubic tile must be used. Second, the tile must be
large enough to include an entire N(x,p, k) neighborhood. Otherwise, the neighborhood
will wrap around the boundary and thus require more colors than a larger tile would need.
To avoid this wrap-around effect, dimensions without displacement should have a length
of at least 2k + 1. The dimension with the displacement should have a length of at least
2(p+k) + 1. For example, a (p = 8,k = 8)-coloring on a 4D lattice would require a tile of
size at least 34 x 183.

A third constraint is that the tile dimensions must divide the lattice dimensions to
ensure a valid coloring. In LQCD, lattices have dimensions that are a power of two in
size, occasionally including a factor of three. Therefore, the minimum size 34 x 182 tile of
the previous example cannot be used. One solution is to consider tiles with each dimen-
sion length being the smallest power of two greater than the minimum required length.
Referencing the previous example, the tile size required for the (8, 8)-coloring on a 4D
lattice would be 64 x 323. The drawback of this requirement is that tiles may become
too large, and some of their dimensions (in particular, the one with displacement) may be
longer than the size of the actual lattice. In such cases, we may limit the tile size in the
offending dimension to D;. This ensures valid coloring, although possibly with a few more
colors, and also standardizes the number of tiles we need to pre-compute and store. In
the example above, if the lattice is of size 32 x 643, then the size of the (8, 8)-coloring tile
becomes 32%.

Table 3.2 shows the sizes of the tiles for different (p, k)-colorings chosen with the above
policy for a 4-dimensional toroidal lattice of size 323 x 64, which is the size of the lattice
used in our experiments in the next section. The table shows the displacement in the first

direction for clarity, although our LQCD application requires it in the third dimension.

95



k Displacement
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

1 4% 8 x 43 8 x 43 16 x 43 16 x 47 16 x 43 16 x 43 | 32x4% ] 32x4°
2 81 81 16 x 83 16 x 8% 16 x 83 16x8 | 32x8 | 32x8 | 32x8°
3 81 16 x 8% | 16 x &° 16x8 | 16x8 | 32x8 | 32x8 | 32x8 | 32x83
4 16% 16* 16% 16* | 32 x16% | 32 x16% | 32 x16° | 32 x 16% | 32 x 16°
5 || 167 167 16T [ 32 x 163 | 32x 16 | 32 x16° | 32x 16° | 32 x 16° | 32 x 16°
6 || 167 167 [ 32x16% [ 32x16° | 32 x16° | 32 x 16 | 32 x 16° | 32 x 16° | 32 x 16°
7 16% | 32x16% | 32x16% | 32x16° | 32x16% | 32x16° | 32x 16% | 32 x 16 | 32 x 16°
8 [ 32% 32¢ 32¢ 32¢ 32% 327 32% 327 32%
9 || 327 327 327 327 327 327 327 327 327
10 || 32% 327 327 327 327 327 327 327 327

Table 3.2: Tile sizes for each (p, k)-coloring for a 323 x 64 lattice with the displacement
in the first dimension (corresponding to the z,x,y,t dimensions of the application).

3.4 Experiments

We have implemented our code in both C and MATLAB. The computation of all lattice tiles
in Table 3.2 was performed with the C code. All tests were run on the Femto subcluster
at William & Mary, where each compute node is a 32-core 960 Xeon Skylake with a
clock speed of 2.1GHz. The timings for each of the (p, k)-colorings on a single thread are
shown in Table 3.3, but the code can be easily parallelized. While iterating through each
node must be sequential to avoid coloring conflicts, gathering the color labels of a single
node’s neighbors is a read-only process that can be done independently. For example,
the maximum number of neighbors each node can have for an (8, 10)-coloring is 16,681,
allowing for decent speedups. A red-black scheme can also be done in parallel, as the red

and black nodes can be separated and colored independently.

o6



k Displacement
0 1 2 3 4 5 6 7 8

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.01
3 0.01 0.02 0.02 0.02 0.03 0.05 0.04 0.04 0.04
4 0.21 0.33 0.39 0.41 0.82 0.82 0.82 0.83 0.83
5 0.44 0.67 0.79 1.70 1.74 1.75 1.75 1.75 1.76
6 0.84 1.22 2.92 3.16 3.29 3.32 3.32 3.34 3.33
7 1.44 4.13 4.93 5.44 5.68 5.79 5.82 5.84 5.85
8 || 38.88 | 5523 | 64.81 | 7135 | 7719 | 76.69 | T7.84 | 7854 | 77.99
9 || 61.63 | 85.06 | 97.91 | 108.21 | 114.82 | 119.90 | 121.16 | 121.22 | 122.22
10 || 91.16 | 121.33 | 143.77 | 157.81 | 167.94 | 175.82 | 179.13 | 180.09 | 180.38

Table 3.3: Time (in seconds) to run each (p, k)-coloring with tile sizes outlined in Table
3.2 and the resulting number of colors is shown in Table 3.4.

3.4.1 Number of Colors Computed

As the number of colors equates to the number of linear systems needing to be solved in
Equation 3.1, we are interested in studying how close the number returned by the greedy
algorithm is to the theoretical lower bounds summarized in Equation 3.13. As discussed

in Subsection 3.3.5, the lower bounds are for lattices without boundary restrictions. We

expect variability in the deviation from the lower bound depending on lattice size.

Displacement

[ | 0

1

2

3

4

5

6

[ 7

8

1 2/2 5/3 i/ 5/3 3/3 i/3 i/ 3/3 3/3
2 16,9 9/6 6/5 10/6 4/4 6/4 5/3 1/3 3/3
3 16/16 32/23 11/10 9/7 8/8 6/5 7/4 5/4 1/4
I 119/41 64/40 92/37 17/14 14/9 12/10 10/6 6/5 i/
5 170/66 324/91 96 /64 64/51 27/18 21/11 19/12 9/7 6/6
6 256,129 142/142 586,141 128/88 104/65 34/22 19/13 18/14 8/8
7 256,192 815/255 795/218 866,192 192/112 172/79 37/26 17/15 16/16
8 | 1037/321 976/368 | 1024/381 | 1206/294 | 1254/241 336/136 160/93 33/30 30/17
9 | 1298/450 | 2031/579 | 1024/544 | 1760/507 | 1577/370 | 1556/291 288/160 | 128/107 52/34
T0 | 2220/681 | 2462/790 | 3238/837 | 1922/720 | 2082/633 | 1976/446 | 1954/341 | 256/184 | 264/121

Table 3.4: The first number is the smallest number of colors achieved for distance-k,
displacement p, on the tiles of size as noted in Table 3.2. The second number is the lower

bound for that (p, k) from Equation 3.13.

o7




Table 3.4 shows the least amount of colors achieved between natural and red-black
orderings for our different (p, k)-colorings. Next to this number is the theoretical lower

bound for each (p, k) combination where p € {0,1,...,8} and k € {1,2,...,10}.

Ratio of Actual Colors Achieved over the Lower Bound
I I

-e-Displacement 0
—+—Displacement 1
5 [-*-Displacement 2 E
-¢-Displacement 3
Displacement 4 FAREN
Displacement 5 ! o
Displacement 6
Displacement 7
3 ¢ Displacement 8

N
T

Distance

Figure 3.6: The ratio of the minimum number of colors achieved with a (p, k)-coloring to
the theoretical lower bound in Table 3.4. Each column is a different displacement.

The ratio between the two numbers for all combinations is plotted in Figure 3.6. We
observe that when p > k, the achieved number of colors is close to the lower bound as
the coloring problem becomes one-dimensional, which provides significantly fewer clique
constraints. However, once the two displaced neighborhoods begin to overlap, the number
of constraints increases, and we see the toroidal boundary effects of the tiles. In our
experiments, (p, k) combinations with ratios less than three and around 200-300 colors

work the best.

3.4.2 Comparisons to Other Methods

Based on the tiles outlined in Table 3.2, we generated the probing vectors used in trace
estimation experiments using the Chroma library from Jefferson Laboratory [29]. The

323 x 64 lattice generated by Chroma uses a Clover fermion action with a quark mass of

o8



-0.239. The gauge configuration is from the same ensemble listed as Ensemble B in [38];
details of which can be found in [105]. As suggested in [38], we use deflation with the 200
largest singular vectors of A~!, which are computed using the PRIMME library [91]. The
solution of each linear system is performed in single precision to relative residual accuracy
of 1e-3 with the MG Proto library !, an adaptive multigrid solver, inside of Chroma.

We compare our displacement probing method against unprobed Hutchinson and CP
without displacement. Because in LQCD each lattice point has 12 degrees of freedom
(for all spin-color combinations), all methods perform a probing of these 12 components
(called spin-color dilution in the literature [15]). Performing this dilution amounts to
taking a Kronecker product of each probing or random vector with a 12 x 12 identity
matrix. Thus, each probing or random vector must solve twelve linear systems. We also
assume that the matrix A has already been deflated with 200 singular triplets.

Let v(P,A™!) be a shorthand for the variance in Equation 3.2 for the matrix P,A™,
where P, is the permutation matrix that places the elements of A~1 corresponding to
displacement p in the main diagonal (clearly Py = I'). The unprobed Hutchinson method
is run with s; = 1,000 Rademacher vectors to estimate the trace and variance of P,A™1.
For the probing with displacements and the CP methods, let H be the N x m matrix with
the required m probing vectors as columns, and considering so = 10 Rademacher vectors,
construct the m x sy vectors V), ... V(2) as in Subsection 3.2.2. These are used to
estimate the trace and variance for each P,A™!.

To compare the methods meaningfully, we must consider their effect under the same
number of linear systems solved. For the unprobed Hutchinson method, the computed
variance of the s; quadrature values computed in Equation 3.1 provides a good estimation
of v(P,A™1). Similarly, for the probing variants after so Hutchinson steps, we expect a

good estimation of v((P,A™1) ® HHT). However, each of the sy stochastic steps of the

"http://jeffersonlab.github.io/qphix and github.com/jeffersonlab/mg

99



probing variants solves m linear systems, which implies that the speedup is

v(P,A™1)
m x v((P,A=Y)© HHT)'

Speedup over unprobed Hutchinson = (3.15)

Table 3.5 shows the detailed results for trace and variance estimations and speedups
for Hutchinson and our new method for different combinations of p and k. The speedups
for probing with displacements over unprobed Hutchinson are also graphed in Figure 3.7.
We make a few observations. First, the larger the displacement p, the more significant the
speedup of the new method performs over unprobed Hutchinson. Second, as mentioned
before, distance-1 probing has the most considerable impact as it removes the main di-
agonal of A~1 and the elements at distance-1 away from the main diagonal. Third, the
speedup increases with k but peaks at a certain distance, typically around k = 6 for smaller
displacements and around k = 9 for larger displacements. This behavior is expected as the
elements of A~! decay at higher distances, making it less beneficial to probe them directly
instead of randomly. Finally, for p = 0, probing is equivalent to CP and gives a speedup
of 16 over unprobed Hutchinson, which is slightly better than our previous HP method,
albeit giving up the hierarchical property.

To solve the problem with displacements, practitioners had previously attempted to
use CP or HP [5] or a more localized hopping parameter expansion [107]. We want to
show the improvements of our method over CP. Let m,, be the number of probing vectors
produced in the (p, k)-coloring to form H,. The mg vectors forming Hj are the CP vectors,
which could be used to reduce the estimator’s variance for PpA_l. The speedup of probing
with displacements over CP is then,

v((PyA™) ® HoHY') x mg
v(P, A1) © HpHpT) X my,

Speedup over CP = (3.16)

In Figure 3.8, we can see this speedup increasing with displacement, although, for small

displacements, it decreases with distance. This is because CP builds its neighborhood

60



300

250

Speedup

Speedup of Probing with Displacements over Unprobed Hutchinson
I I I I I I I I

[ IDistance 1
[ IDistance 2
[IDistance 3
[@Distance 4
EDistance 5
Bl Distance 6
Bl Distance 7
Bl Distance 8
Bl Distance 9
ElDistance 10

0 1 2 3 4 5 6 7 8
Displacement

Figure 3.7: Speedups of probing with displacements over unprobed Hutchinson using
each (p, k)-coloring from Table 3.5 to find tr(P,A™1).

outward from the new diagonal, so it can only eliminate the original main diagonal when
k > p. As the displacement grows, the number of colors the new method needs to achieve
a distance-k coloring becomes much smaller. For example, a (0, 7)-coloring uses 256 colors,
while an (8, 7)-coloring only uses 16. Therefore, even if CP eventually removes the high-

magnitude elements, it can take many more probing vectors to do so.

3.4.3 Using one coloring for all displacements

Theorem 6 showed that a (po, ko)-coloring would clear all nodes up to distance k =
max(0,ky — |po — p|) for a displacement of p. Table 3.6 confirms this experimentally
for the (8,10)-coloring but also shows how many nodes are not annihilated beyond the
distance described by the theorem. To obtain this, for each pair of (p,k), p = 0,---,8,
k=1,---,12, we go through every node x in the lattice and compute the percentage of
nodes exactly at distance-k from z or x~ that share the same color label as z. These
are distance-k neighbors that are not annihilated by the (8,10)-coloring. We report the
average of this percentage over all N nodes. When the percentage is 0.00, it means that

distance is “cleared", i.e., all nodes of that distance are annihilated from the variance.

61



Speedup of Probing with Displacements over Classical Probing
I I I I I

F I I
-IDistance 1

"IDistance 2
F—Distance 3
"ElDistance 4
[EMDistance 5 Mr]
Il Distance 6
EMDistance 7

10%E HHDIL- w 3
1 2 3 4 5 6 7 8
Displacement

Figure 3.8: Speedup of probing with displacements with (p, k)-colorings over classical
probing with (0, k)-colorings to find tr(P,A™!) using Equation 3.16.

The presence of zeros for any k& < 10 — |p — 8| confirms Theorem 6. For each p, we
also observe a zero at distances 4i + (ko — |po — pl|), Vi € Z4 which may be attributed
to wrap-around effects and/or the red-black ordering used for the (8,10)-coloring. More
importantly, however, the percentages of uncleared elements at larger distances are still
very small, often less than 1%. This is because a coloring annihilates the distance-k
neighbors of all nodes of the same color. For example, if 1 and z2 have the same color,
some neighbors of 1 may be further distance neighbors of x5 but are annihilated for this
k.

Next, we study the effects of this strategy on variance reduction. For each p, we take the
(p, kp)-coloring that gives the best speedup over unprobed Hutchinson (from Figure 3.7)
and use it to find the variance v((P,A~")© HyH) for all other displacements n = 0, - - , 8.
Figure 3.9 shows nine lines, one for each p, plotting its speedup over the Hutchinson method
for all n. Each line achieves its maximum speedup at n = p or for smaller p, at n = p + 1.
It is unclear why this happens for smaller p, e.g., most pronounced for the (0, 7)-coloring,
but it may have to do with the symmetrization. More importantly, the speedup does not

reduce as steeply away from p as Theorem 6 would suggest because these colorings work

62



very well for nearby displacements and still work well for more distant ones as described

in Table 3.6.

Speedup of Best (p, k)-Colorings Used on Other Displacements over Unprobed Hutchinson
LT I I I [ A B-----m---" Rug 53

T B g E
o ‘-l!l-"-’-’_'___l T R '@‘----__ o

Speedup
80
I

-+-p0k7 -*-p1k5 -¢-p2k5 = p3k6 < p4k7  p5k6  p6k9 p7k10-ﬂ-p8k9\ *

0 1 2 3 4 5 6 7
Displacement

o +°

Figure 3.9: The speedups over unprobed Hutchinson for each (p,k,)-coloring to find
tr(P,A71), vn € {0, ..., 8}

The above results help ascertain the efficiency of the approach, but they cannot help
determine which coloring to use for performing all displacement experiments. There are
two reasons. First, the speedups reported depend on the number of probing vectors used.
For example, the (8,9)-coloring obtains a speedup of 300 at p = 8 because it uses only 52
colors. Its variance is four times larger than (7, 10)-coloring, which uses 250 vectors and
thus gets a lower speedup of 250. The (7, 10)-coloring would be better for a more accurate
answer.

Second, a smaller variance is only meaningful relative to the value of the trace and
traces for different displacements vary significantly. In Table 3.5, we see that a variance
of 3.275 for the (0, 4)-coloring gives five digits of accuracy for the trace of p = 0, while a
variance of 2.332 for the (8,9)-coloring hardly attains a digit for the trace of p = 8.

Therefore, to compare colorings over different displacements, we introduce the normal-
ized relative error metric, which normalizes with respect to both the trace and the number
of probing vectors needed. As before, for each p we pick the (p, kp)-coloring with the

best speedup over unprobed Hutchinson. Let m,, be the number of colors it requires, and

63



let M be the maximum number of colors over all colorings being compared (in this case,

M = 815). Then, for all n =0, ---,9, the normalized relative error is given by,

VV((PaA™)) © HoHE) 32
tr(P, A1)

(3.17)

The normalization to M ensures all colorings are compared as if they use the same number

of probing vectors. Figure 3.10 shows these results.

) Relative Error of Best (p, k)-Colorings Used on Other Displacements
10 ET T T T T I I I

10°F

Relative Error
)
N
I

~+-pOK7 -*-p1k7 -¢-p2k6

p3Kk6 ~ p4k7  p5k6  pbk9 < p7k10-=-p8kI|

1 2 3 4 5 6 7 8
Displacement

Figure 3.10: The relative error (Equation 3.17) for each (p,kp)-coloring used to find
tr(P,A1), vn € {0,...,8}.

The fact that the trace decreases significantly in higher displacements provides a much
clearer evaluation picture. For 2 < n < 6, all (p, kp)-colorings have similar normalized
relative errors. However, the colorings from larger displacements, e.g., (7,10) or (8,9),
yield at least 1 to 2.5 digits better accuracy for the same amount of work than colorings
from small displacements. Because for displacements less than 4, the errors are already
very small, meaning the effort must be focused on the small traces of higher displacements.

Therefore, it is best to use the (7, 10)-coloring for all displacements and increase its distance

if needed.

64



3.5 Chapter Summary

In this work, we have extended the idea of probing for variance reduction of the Hutchinson
trace estimator to the case of permuted matrices and, in particular, when this permutation
corresponds to a lattice displacement p. This has an important application on disconnected
diagrams in LQCD. Our method works by computing a distance-k coloring, not of the
original neighborhood of each lattice point x, but rather the points within a distance k
around centers x %+ p.

We have provided a lower bound of the number of colors needed for a particular (p, k)-
coloring and discussed the impact of the lattice size on the number of colors achieved. We
have also studied theoretically and experimentally the effect of using a single (p, k)-coloring
for displacements other than p, showing that the variance reduction of using probing with
displacements is orders of magnitude lower than solely using random noise vectors or using
classical probing that does not consider the displacement. Also, as expected, the trace
is smaller as the displacement increases, meaning that a (p, k)-coloring for larger p needs
to be computed and reused for lower p. This gives approximately an additional 10-fold
speedup for the LQCD application.

A few open problems could be considered further. The node visitation orderings we
considered in the greedy coloring approach did not vary substantially in the resulting num-
ber of colors, staying within a factor of 3 from the lower bound. It is unclear whether a
different ordering can considerably reduce the current number of colors. A second direc-
tion is to study the effect of the lattice or tile size on the coloring. Understanding this
theoretically rather than experimentally and providing a lower bound on the number of
colors based on a finite lattice size could be helpful in understanding the limitations of
the current approach. Finally, it is worth extending the theory and algorithms to the case
where the decay of the elements in the matrix inverse depends on the L2 distance, which

is closer to what LQCD theory predicts for long-range distances.

65



1,000 RNVs w/o Probing

10 RNVs w/ Probing

p | k [ Approx. Trace Variance Colors [ Variance Speedup
1 2 35,075.3 3.56
2 16 2,502.5 6.24
3 16 2,501.2 6.24
0 4 6,339,643.7 249,827.7 119 209.6 10.02
5 170 134.2 10.95
6 256 59.4 16.43
7 256 59.1 16.50
1 5 9,721.2 48.17
2 9 3,861.4 67.38
3 32 943.5 77.55
4 64 330.2 110.78
1 5 652,636.1 2,341,455.9 394 63.4 113.94
6 442 45.2 117.08
7 815 19.1 150.13
8 976 19.0 126.21
1 4 8,415.7 70.13
2 6 4,362.0 90.20
3 11 1,949.6 110.08
2 4 185,764.9 2,360,726.0 92 264.9 96.87
5 96 207.2 118.70
6 586 29.6 135.95
7 795 23.8 124.73
1 5 6,076.0 77.84
2 10 2,180.4 108.45
3 9 2,115.0 124.22
3 4 56,047.8 2,364,612.0 17 982.1 141.63
5 64 234.1 157.82
6 128 111.4 165.89
7 866 21.8 125.41
1 3 7,420.1 107.30
2 4 4,285.6 139.33
3 8 1,880.1 158.81
4 4 17,893.6 2,388,516.5 14 1,323.9 128.87
5 27 631.8 140.02
6 104 141.2 162.67
7 192 72.9 170.66
1 4 4,186.9 140.85
2 6 2,379.5 165.22
3 6 2,425.6 162.08
4 12 1,137.2 172.86
5 5 6,059.5 2,358,840.1 21 712.8 157.58
6 34 379.3 182.90
7 172 92.4 148.40
8 332 48.4 146.65
1 4 4,375.9 136.70
2 5 2,948.7 162.29
3 7 1,990.8 171.69
4 10 1,267.6 188.75
6 5 2,183.3 2,392,640.1 19 638.1 197.36
6 19 592.9 212.40
7 37 312.5 206.92
8 160 71.2 210.12
9 288 38.7 214.56
1 3 5,081.5 156.00
2 4 3,463.9 171.64
3 5 2,435.2 195.31
4 6 1,798.8 220.35
5 9 1,185.9 222.82
16 836.9 2,378,138.9 18 596.2 221.62
7 17 624.3 224.07
8 33 299.3 240.76
9 128 79.2 234.68
10 256 38.1 243.95
1 3 5,719.0 138.78
2 3 3,814.9 208.04
3 4 3,151.8 188.86
4 4 2,502.7 237.85
5 6 1,737.5 228.40
8 6 339.3 2,381,007.2 ] 1.162.5 256.02
7 16 616.1 241.53
8 30 292.7 271.18
9 52 149.2 306.80
10 264 36.7 245.51

Table 3.5: The estimation of traces and variances for 1,000 RNVs run without probing
for different values of p and k& compared to probing with displacements and 10 RNVs.

66



k Displacement
o | 1| 2] 3] 4] 5] 6] 7] 8

0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
4.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
9.38 | 1.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
3.33 | 3.41 | 0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 1.40 | 1.76 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
2.52 | 0.00 | 0.78 | 1.05 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00
4.69 | 1.29 | 0.00 | 0.49 | 0.69 | 0.15 | 0.00 | 0.00 | 0.00
2.01 | 2.56 | 0.79 | 0.00 | 0.33 | 0.47 | 0.10 | 0.00 | 0.00
0.00 | 1.16 | 1.64 | 0.53 | 0.00 | 0.24 | 0.34 | 0.07 | 0.00
1.66 | 0.00 | 0.77 | 1.14 | 0.38 | 0.00 | 0.18 | 0.26 | 0.06
3.13 | 1.05 | 0.00 | 0.54 | 0.83 | 0.29 | 0.00 | 0.13 | 0.20

=
DBl | oot k| w| o=

—_
[\

Table 3.6: The average percentage of neighbors at exactly distance-k that do not get
eliminated from the trace estimator when using a (8,10)-coloring to find other displace-
ments. The lattice size used is 323 x 64 with a tile size of 32*.

67



Chapter 4

Exploring Krylov Methods with
Sketched Rayleigh-Ritz in PRIMME

4.1 Introduction

The field of numerical linear algebra (NLA) encompasses a broad range of problems. The
most significant of these include solving linear systems of equations, approximating the
eigenpairs of a matrix, computing the singular value decomposition (SVD) of a matrix,
and using orthogonalization techniques [62]. While advancements in modern computing
architectures and high-performance computing can speed up these computations, the in-
creasing size of datasets makes these problems more challenging to solve as the number of
computational resources required grows.

To address these increasing problem sizes, practitioners often adopt randomized tech-
niques to approximate solutions, as they are fast and reliable [62]. Randomized methods
began rising in popularity starting in the 1980s and have since been used in areas such as
solving least-squares problems [80], SVD [31], orthogonalization [14], matrix precondition-
ing |34], data streaming |8, 7|, and finding low-rank matrix approximations |75, 35|.

In Chapter 2.5, we discuss one such randomized method, referred to as sketching, which

uses random subspace embedding matrices S € F5*™ to project high-dimensional n x d

68



least-squares problems, with d < n, into low-dimensional s x d ones with minimal loss in

solution accuracy [84]. Here, s is referred to as the embedding dimension and is selected

using the Johnson-Lindenstrauss Lemma, which states s = O(lcfn) for some distortion

factor € € (0,1) [53, 25].
In [72], Nakatsukasa and Tropp observed that the Rayleigh-Ritz (RR) method, used to
extract approximate eigenpairs of a matrix A € F**” from a basis V € F"*¢ as described

in Chapter 2.4, could be written as the least-squares problem

minimize gy cpaxa||[AV — VH||, (4.1)

outlined in |77]. The eigenvalue problem RR solves is on the solution to this minimization,
ie., H Y= S\y, where H = VTAV with | denoting the Moore-Penrose pseudoinverse. This
formulation of RR opens it up to the application of sketching by transforming Equation
4.1 into

minimize y;cpaxal|S(AV — VM), (4.2)

with solution M = (SV)1(SAV) [72]. When the basis V is constructed using a Krylov
method, the primary benefit of utilizing sRR is that the approximate eigenpairs of A can
be accurately extracted from the basis without V' being orthonormal.

The RR procedure is a Galerkin method that extracts approximate eigenpairs (&, 5\) of
A from V with the constraint that the residuals of the eigenpair estimates are orthogonal

to all columns in V' [32], i.e.,

Az — &N LV fori=1,2,--- d. (4.3)

This is done by solving the eigenproblem on VH AV € F4*¢ with an orthogonal V', where

~

the resulting eigenpairs (y, A) correspond to the approximate eigenpairs, or Ritz pairs, of

A, (Vy, A).

69



To maintain the numerical stability of a Krylov method and ensure accurate extrac-
tion of the Ritz pairs from the basis V, V should be orthonormal, i.e., VAV = I. In
theory, short-term recurrence methods such as unrestarted Lanczos will ensure V' remains
orthonormal during its construction, providing optimal convergence properties when used
without restarting. However, floating point errors in practice result in orthogonality loss
as eigenpairs converge. Once this happens, repeated directions of converged eigenpairs
begin re-entering the basis, which in turn causes an increase in the condition number of
V, k(V). These repeated directions may result in the extraction of inaccurate or ficti-
tious eigenpair approximations from V' during the RR procedure or cause a slowdown or
stagnation in convergence if managing to extract accurate eigenpairs. Orthogonality of V'
can be maintained by using reorthogonalization techniques such as Classical or Modified
Gram-Schmidt [19] or Householder reflections [50], which have a computational complexity
of O(nd?). However, frequent application of these methods may result in a computational
bottleneck.

When seeking many eigenpairs, short-term recurrence methods such as JDQMR or
GD-+k are not optimal, as orthogonality will inevitably be lost, and neither technique can
match the convergence of unrestarted Lanczos with full orthogonalization [82]. However,
seeking many eigenpair approximations using full-orthogonalization Lanczos (FO Lanc-
zos) requires the Krylov method to construct a large basis to build sufficient convergence
information, making frequent orthogonalization computationally prohibitive.

Strategies such as partial orthogonalization [44, 77|, selective reorthogonalization [86],
and locking [55] have been developed to reduce the amount of orthogonalization needed
when constructing V. However, |72]| suggests that the cost of orthogonalization can be
reduced using sketching, which involves orthogonalizing a lower dimensional space.

As previously mentioned, classical RR extracts the approximate eigenpairs of a matrix
A € ™" by solving the eigenvalue problem on VHAV € F¥? where V € F**? is an

orthogonal basis constructed via a Krylov method. If V' is not orthogonal, RR can still

70



extract accurate eigenpairs by solving the generalized eigenproblem

VHEAVYy = AvHVy, (4.4)

which requires the inversion or factorization of V7V, and has a similar computational cost
to orthogonalizing V.

Let S € F**™ be the sketching matrix to be applied to V, C' = SV € F**4 be the
sketched basis, and D = SAV € F**¢. While sRR does not avoid orthogonalization en-

tirely, it does reduce the cost. The eigenpairs (y, A) returned from solving the eigenproblem

CHDy = Xy (4.5)

will not correspond to the approximate eigenpairs of A if k(C) > 1. However, using the

same logic as in Equation 4.4, we can instead solve the generalized eigenvalue problem

U" Dy = ATy, (4.6)

where U € F*4 and T € F?*? are the factors from the QR decomposition of C [40].
Because using an orthogonalization technique such as QR on C € F**¢ is less expensive
than on V € F**? sRR efficiently reduces the computational cost associated with frequent
orthogonalization of V' when sketching is not used. Furthermore, the residual norms of the
Ritz pairs returned from sRR should be within a constant factor of residual norms of its
non-sketching counterparts [84]. According to [72], sRR allows the extraction of accurate
Ritz pairs as long as £(V) < ;...

This work investigates the performance benefits of integrating sRR alongside two preva-
lent Krylov methods — Lanczos and Generalized Davidson (GD) — utilizing the high-
performance software library PRIMME [91]. Shown in Algorithm 2, the Lanczos method

was chosen due to its simplicity, inexpensive iteration cost, and optimal convergence prop-

erties over all matrix-vector-based methods when used without restarting for Hermitian

71



eigenvalue problems. We begin by exploring the use of SRR with Thick-Restarted Lanc-
zos (TRL), followed by unrestarted Lanczos. After this, we turn our attention to the
Generalized Davidson (GD) method, depicted in Algorithm 3, as it is robust across dif-
ferent problem types and allows the integration of preconditioning, which can accelerate
convergence.

We implemented the unrestarted Lanzcos iterative method and sRR into PRIMME
before running performance and convergence tests to compare the effects of utilizing Lanc-
zos and GD with sRR against their non-sketching counterparts. Following this, we offer
insights into the observed behavior, considering varying factors such as the density of a
matrix’s eigenspectrum, the maximum basis size, and the number of sought-after eigen-
pairs.

The remainder of the chapter is organized as follows: Section 4.2 introduces additional
background information on sketching. Subsequently, we present an overview of the advan-
tages and restrictions of the Lanczos algorithm with sketching, along with comparative
results in Sections 4.4 and 4.5. Similarly, the Generalized Davidson algorithm with sketch-
ing is discussed in Sections 4.6 and 4.7. Finally, we will summarize this chapter in Section

4.8.

4.2 Subspace Embeddings

In Chapter 2.5, we introduced the concept of using randomized subspace embeddings
for projecting high-dimensional least-squares problems into lower-dimensional ones with
minimal loss in accuracy. We then explained how these random projection variants, referred
to as sketched methods, could be utilized when extracting eigenpairs of a matrix from a
basis V' constructed via a Krylov method.

Two common approaches are often considered when constructing the randomized sub-
space embedding, or “sketching”, matrix S: the sparse dimension reduction map and the

subsampled random Fourier transform.

72



4.2.1 Sparse Dimension Reduction Map

The sparse dimension reduction map [64, 73|, also known as Sparse Maps, is defined as:

S =—=[s1,892, " ,8,) € F*™. (4.7)

-

Here, the sketching matrix S € F$*™ consists of statistically independent columns, with
each column s; comprising exactly z nonzero elements, meaning nnz(S) = z - n. Each
nonzero element of S is either drawn from the Steinhaus distribution' when handling
complex matrices, or chosen as +1 with 0.5 probability when dealing with real matrices.
Leveraging a software library capable of sparse matrix operations, the computational
cost of applying S to some matrix A € C™*™ is O(z*nnz(A)). When applying S to a basis
V € F**? with d being the maximum basis size, we adhere to the conventions outlined in

Nakatsukasa and Tropp’s manuscript by setting z = [21log(d + 1)] for reliability 72].

4.2.2 Subsampled Random Fourier Transform

The subsampled random Fourier transform (SRFT) [4, 102] is defined as:

S = \/EDFE € F*X"., (4.8)

where:

e D € [F**™ is a diagonal projector such that each row only contains one non-zero
element, \% This non-zero column index is chosen independently at random from

S

{1,2,--- ,n} for each row.

e F' € F™*"™ represents the unnormalized discrete Fourier transform.

!The Steinhaus distribution is uniform on the complex unit circle {z € C | |z| = 1}

73



e F € F™*™ is a diagonal matrix with independent entries drawn from the Steinhaus
distribution when dealing with complex matrices, or +1 with probability 0.5 for real

madtrices.

The computational cost for applying this S to a basis V € F**4 is O(ndlogd) [102].

4.3 Sketched Rayleigh-Ritz

As discussed in Section 4.1, SRR reduces the amount of orthogonalization needed to extract
accurate eigenpairs approximations of a matrix A € F**™ from a basis V € F**¢ by
orthogonalizing a low-dimensional space, C' = SV € F**?, resulting in Equation 4.6.

In this work, we construct the sketching matrix S € F**™ using the Sparse Maps
method described in Section 4.2.1. Following the convention outlined in [72|, we set the
embedding dimension s equal to four times the maximum basis size, i.e., 4d. This results
in the distortion factor being € ~ %

When seeking many eigenpairs and performing no orthogonalization on V', (V) will

-1

nach, rendering sRR ineffective. While orthogonalization is the only

eventually exceed e
definitive method to address V’s rapidly increasing conditioning number, there are two
strategies sSRR can use to extract Ritz pairs even when x(V) > e, : whitening [80] and
stabilization [72]. Whitening performs a pseudo-orthogonalization technique on V' utilizing
the QR decomposition of the sketched basis C, reducing (V') &~ 1. Stabilization, however,
does not change the basis V' but instead computes the truncated SVD (tSVD) of C' before

using the decomposition to solve a generalized eigenvalue problem. More details about

these methods are introduced in Sections 4.3.1 and 4.3.2, respectively.

74



Algorithm 7: Sketched Rayleigh-Ritz

Input:
S € Fs*™ = The sketching matrix
V € F* = The Krylov basis of A
W € F™ = The projected Krylov basis (W = AV)
Output:
X e F"*4 — The approximate eigenvectors of A
A € F? = The approximate eigenvalues of A
resNorms € F? = The sketched residual norms of the eigenpair estimates
Sketched_RR(S, V, W)
1 C =8V,
2 D=SW,
# Determine whether we need to use stabilization

3 if cond(SV) > ¢}, then

# Remove problematic parts of the basis using the truncated SVD
4 [Usvp, Xsvp, VSI{/D] = truncated_SVD(C);

5 | [V, Al = eig(U§pDVsvp, Zsvp);

6 Y = VeypY;

7 else

8 | [U,T]=qr(C,0);

9 [Y, Al = eig(U"D, T);

# Compute the sketched residuals
10 resNorms(i) = || DY (:,7) — CY (:,))A(9)| / |CY (:,4)|| fori=1,2,---,d
11 X =VY,;
12 X(5,0) = X(,0) /|| X(,49) || fori=1,2,---,d # Normalize Ritz vectors

13 return [ X, A, resNorms];

75




Algorithm 7 illustrates the sRR process. This algorithm takes in three parameters:
the basis V € F**? the projected basis W = AV & F**? and the sketching matrix
S € Fs*™. The process begins by determining the condition number of the sketched basis

C, as, according to [80], x(C) =~ k(V) according to the equation

1—c¢ 1+e
. < <
1+e " rV) <1

- k(O). (4.9)

If k(C) > e, , stabilization is invoked. Otherwise, the economy QR decomposition of C

is used to solve the generalized eigenproblem in Equation 4.6.

Once we obtain the Ritz pairs (#;,A;) for i« = 1,2,--- ,d from Equation 4.6, their

approximate residual norms can be computed,

resNorms = ||(Di; — \C2;)||2/||Csll2 fori=1,2,---,d (4.10)

as illustrated on line 10 of Algorithm 7, where D = SAV € F$*4,
While the Ritz vectors are computed the same way as in classical RR, the sketched
Ritz vectors, &; for ¢ = 1,2,--- ,d, may need to be normalized, as shown on line 12 of

Algorithm 7.

4.3.1 Whitening

In 2008, Rokhlin and Tygert introduced the concept of using a randomized embedding
to cheaply precondition an overdetermined linear least-squares regression [80]. This pre-
conditioning technique can be used to approximately orthogonalize, or “whiten”, a basis
V € F*d when (V) is large.

Assuming S € F**™ is the sketching matrix and C' = SV € F**¢ is the sketched basis,
the economy QR is performed on C' such that C = UT. Utilizing the upper triangular

Fdxd

matrix T' € , whitening can than be performed on V:

V=vri (4.11)

76



The condition number of the whitened basis V' will satisfy [72]

r 7 maXV 1
w(V) = o (‘_/) < +e€

omin(V) — 1—¢

(4.12)

where amaX(V) and amin(V) are the maximum and minimum singular values of V, respec-
tively.

Whitening is a temporary solution to manage the (V). MATLAB experiments, shown
in Section 4.4, revealed that whitening only sets (V') ~ 1 for an iteration or two before

-1

k(V) again exceeds €, .

This remains an active area of research with ongoing inves-
tigations into other approximate orthogonalization methods using subspace embeddings

34, 14].

4.3.2 Stabilization

Referring to the condition number diagnostic in Equation 4.9, it becomes evident that if
the sketched basis C' € F*? is poorly conditioned, the basis V € F™"*¢ will also exhibit
poor conditioning. Instead of pseudo-orthogonalizing V' to reduce its condition number
before recomputing C' and solving the sRR problem, an alternative approach can be used:
stabilization [72].

Stabilization involves computing the tSVD of C such that [49]:
C = UpXoV{T + U2V (4.13)

where Uy € F™*% and U; € F**(d=di) contain the left singular vectors of C' as columns,
Vo € F"*de and 1, e F*(d=d) contain the right singular vectors, and g € F4*% and
¥, € Fix(d=dt) are diagonal matrices with singular values o; as entries in descending

order.

77



In our tSVD implementation, Uy, X1, and V; consist of all singular triplets where

Tmax > =1 fori=1,2,---.d, (4.14)

o ~ “mach

ensuring k£(UpSo Vi) < el
The matrices Uy, ¥g, and Vp can then be used to construct the d; x d; generalized
eigenvalue problem

U DVyy = Aoy, (4.15)

where D = SAV € F**¢. For efficient performance, the QZ algorithm is recommended for
large, sparse matrices |72, 44].

~

All resulting eigenpairs (y;, A;) from Equation 4.15 correspond to the sRR eigenpair
Vo, j\l), which in turn yield the approximate Ritz pairs of A, (VVpy;, 5\2) for ¢ =
1,2, ,d;. According to [72], utilizing stabilization should not alter the computational

complexity of SRR, O(d® + ndlogd).

4.4 Lanczos with Sketched Rayleigh-Ritz

As highlighted in Section 4.1, maintaining the orthogonality of the basis V € F**? is crucial
to avoid slowdown or stagnation in convergence as k(V') increases. However, performing
frequent orthogonalization on a large basis can become computationally prohibitive, mo-
tivating sketching. sRR shows promise in this regard due to its ability to extract accurate
Ritz pairs of A without requiring V' to be orthogonal, provided that (V) < gLy
Algorithm 2 outlines the conventional 3-term Lanczos method with classical RR. Adapt-
ing this to integrate sRR requires minimal modifications to the algorithm itself, with the
primary distinction being that retaining the Hessenberg matrix H € F?9 is no longer
necessary since sRR does not use H for eigenpair approximations. Instead, we construct

the basis V' as usual before invoking the SRR method to extract eigenpairs using Equation

4.6. This updated procedure is illustrated in Algorithm 8.

78



Algorithm 8: The Lanczos Algorithm with Sketched RR

10

11

12

13

14

15

Input:

A € F™*" = A square, Hermitian matrix

y € F" = An initial starting column vector of norm 1

dyax = The maximum size of the Krylov basis

e = Number of approximate eigenpairs being sought

tol = The convergence tolerance

Output:

X e F»*d — The Ritz vectors of A

A € F¢ = The Ritz values of A

resNorms € F¢ = The residual norms for the eigenpair estimates of A

Lanczos_sRR(A4, vy, d)
n = size(A, 1); V(,1)=uy;

S = Sparse Maps()

for i = 2:dpa.x do
B = [|wll2;
V(i) =w /B
w= AV (:,1);

[X, A, resNorms| = Sketched_RR(S, V, W);

return [X(:, 1:e), A(1:e), resNorms(1:e)]

w=w—a-V(i)—8-V(i-1);

# Periodically check for convergence

# Create sketching matrix

# Do not need to store tridiagonal matrix

[X, A, resNorms| = Sketched_RR(S, V(:,1:4), W(:,1:1));

If resNorms(1l:e) < tol then return [ X (:, 1:e), A(1:e), resNorms(1:e)]




MATLAB experiments were conducted to assess the efficiency of whitening and stabi-
lization for handling ill-conditioned problems. RR and sRR were performed every iteration
to monitor convergence behavior, although in practice, these methods only need to be per-
formed once the basis has been fully constructed. To compare whitening and stabilization,
we invoke 3-term Lanczos with sRR using whitening when #(V) > e, and compare it
against 3-term Lanczos with sRR using stabilization to remove all singular triplets such
that 2 > €y - 1E —2for i =1,2,--- ,d.

The input parameters to 3-term Lanczos are as follows:

e Input matrix A = diag(+/1 : 5000)

Maximum basis size = 1,000

Number of largest magnitude eigenvalues sought = 10

Convergence tolerance = €pach

€nacn = 2.2204E-16
e Subspace embedding dimension s = 4x Maximum basis size = 4,000

Figure 4.1 presents two results from these MATLAB experiments. The left figures
illustrate the convergence behavior of the residual norms corresponding to the ten largest
magnitude eigenvalues, and the right figures display how the condition number of the
basis changes as vectors are being added before (labeled as “Nonsketched Basis”) and after
(“Sketched Basis”) whitening or stabilization.

A few observations emerge from these results:

1

1. Whitening temporarily reduces (V') to approximately 1 when (V') > e,..,. How-

ever, orthogonality is quickly lost in subsequent iterations, causing x(V') to once

-1

macn- Lests were performed to reduce the whitening tolerance (i.e.,

again exceed €
called whitening once x(V) > e}, 1E-2); however, this had little effect on the

convergence shown in Figure 4.1.

80



Convergence of 3-Term Lanczos + sRR + Whitening £(V) for 3-Term Lanczos + sRR + Whitening

20

b M\M/W
10°
£ N N SOOI SR
S M —— = _ 10" —Sketched Basi
E 8 — Nonsketched Basis
® '
S 107 IS €nach
el =
2 Z 1010
x S
e =
@ k]
2 10 c
£ 18 38 105)
k71
w
1075} ‘ ‘ ‘ 109 ‘ ‘ ‘
0 200 400 600 800 1000 0 200 400 600 800 1000

Basis Size Basis Size

Convergence of 3-Term Lanczos + sRR + Stabilization (V) for 3-Term Lanczos + sRR + Stabilization

1 020
=B | | R SUUR—-- s N
5 _ 101 5[
=z [}
5 2
S 5
B Z 10"
14 S
- =
:
E S 105l
5 —Sketched Basis
] — Nonsketched Basis
”’Fn:alch
‘ ‘ ‘ 10°
0 200 400 600 800 1000 0 200 400 600 800 1000
Basis Size Basis Size

Figure 4.1: Comparisons of convergence between 3-term Lanczos with sRR utilizing
whitening and 3-term Lanczos with sRR utilizing stabilization to manage the condition
number of the basis.

2. Despite whitening reducing the condition number of the sketched basis «(C) more
than stabilization before calling SRR, accurate eigenpairs could still not be extracted
from C| resulting in a stagnation in convergence.

For these reasons, all subsequent sRR experiments will forego the use of whitening and

-1

instead perform stabilization when (V') > €, -

To ensure the convergence of 3-term Lanczos with sRR is comparable to that of its
non-sketching counterpart, we also conducted MATLAB experiments using 3-term Lanczos
with classical RR under the same parameters as those used in Figure 4.1. RR and sRR
were performed at every iteration to monitor convergence before the convergence rates

were compared.

81



Convergence of 3-Term Lanczos (No Sketching) k(V) for 3-Term Lanczos (No Sketching)

— Nonsketched Basis|

1020

" "€mach

10°

Estimated Residual Norm

0 200 400 600 800 1000 0 200 400 600 800 1000
Basis Size Basis Size

Figure 4.2: The convergence of 3-term Lanczos with classical RR alongside the condition
number of the Krylov basis being built.

The results, illustrated in Figure 4.2, show that when (V) < e L . the convergence

mach’

rates between the two methods are comparable. However, once x(V) > el classical

< €mach’
RR begins to fail in extracted eigenpair approximations. In the context of Figure 4.2, this
occurs around iteration 850 when previously converged eigenpairs become unconverged.
Contrasting this, SRR leverages stabilization to manage bases with large condition num-
bers, allowing for the accurate extraction of eigenpairs even when x(V) > eL,. This

observation reinforces the motivation behind using sRR in applications where many eigen-

pairs are required.

4.4.1 Thick-Restarted Lanczos with sRR

Thick-restarted Lanczos (TRL) extends the traditional unrestarted Lanczos by periodically
setting the basis V' equal to a set of orthogonal Ritz vectors [103]. This approach manages
memory and orthogonalization costs by ensuring the basis size never grows excessively
large. However, frequent restarting can slow convergence when seeking a large number of
eigenpairs, as large basis sizes allow many eigenpairs to converge quickly.

The construction of V' in TRL continues until a user-specified maximum basis size d
is reached. Once this threshold is reached, RR is performed, and the first » Ritz vectors

corresponding to the most significant Ritz pairs form the foundation for the new basis.

82



Subsequently, Lanczos proceeds with the usual Vg1 vector, which corresponds to the
direction of the Ritz pair residuals. However, once the orthogonality of V' is lost, the
residuals of the Ritz vectors used for restarting are no longer orthogonal to the actual
eigenvectors of A, causing a stagnation in convergence. When using TRL alongside sRR,
the process remains largely the same, except for explicitly orthogonalizing the set of Ritz
vectors used for restarting.

MATLAB experiments were conducted to evaluate the convergence behavior of the
Ritz pairs using TRL with sRR compared to classical RR. The parameter setup of these
tests mirrored those in Figure 4.1, with a few exceptions. The maximum basis size was
set to 100, the restarted basis size to 20, and the maximum number of iterations to 1,000.
Restarting was performed once the number of columns in V reached the maximum basis
size of 100. Results from one of these experiments are shown in Figure 4.3, although similar
behavior was observed across multiple runs.

The left plots in Figure 4.3 depict the convergence behavior of the ten largest-magnitude
Ritz pairs using the 3-term TRL method, while the left plots illustrate the changes in the
basis’ condition number over time. This experiment highlights that without orthogonal-
ization, convergence stagnates once the basis loses orthogonality for both RR and sRR,
just at differing levels.

When sketching, this stagnation occurs earlier as loss of orthogonality in V' causes the
residuals from the Ritz pairs extracted from sRR to no longer correspond with the descent
direction of the restarted space. Additional experiments validated these results and yielded
similar behavior. As a result, we concluded that if SRR is to be utilized with the 3-term

Lanczos method, Lanczos must be run unrestarted.

4.5 Experiments with Lanczos

In Section 4.4.1, we highlighted that sRR can not be used in conjunction with TRL due to

a stagnation in convergence. However, considering the potential for 3-term Lanczos with

83



Convergence of 3-Term TR Lanczos (No Sketching)

%(V) for 3-Term TR Lanczos (No Sketching)

1020
—Nonsketched Basis|
10° [ " Cnach
IS
5 _10"®
z 8
S 10° €
el =
2 Z 1010
i 5
o =
Q el
® 10-10 5
£ S 18
"[7)‘ |8
|
107 10°
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Number Iteration Number
Convergence of 3-Term TR Lanczos + sRR + Stabilization zds(V) for 3-Term TR Lanczos + sRR + Stabilization
10 —Sketched Basis
100 —Nonsketched Basis
L Lot
E NSahtn 002000000 A AAM 0 e
S
z
©
-5
:5 10
[7]
o}
24
©
L. 0
5 aa10 L
£ 10
k7
w
10715}
0 200 400 600 800 1000 0 200 400 600 800 1000

Iteration Number Iteration Number

Figure 4.3: Comparisons of convergence between 3-term TRL with classical RR and sRR
for a maximum basis size of 100.

sRR to work unrestarted, even in instances where 3-term Lanczos with classical RR fails (as
shown in Figures 4.1 and 4.2), we sought to evaluate whether unrestarted 3-term Lanczos
with sRR would perform better in terms of run time compared to full-orthogonalization
Lanczos (FO Lanczos) used with RR. To do this, we utilized the C99 software library
PRIMME, detailed in Section 2.4.2.

We have integrated the unrestarted 3-term and FO Lanczos methods and sRR into
PRIMME. In the previous section, we observed that at a certain point after (V) > el
whitening fails to extract accurate eigenpair approximations. Furthermore, TRL cannot
be used alongside sRR without orthogonalization. Therefore, all evaluations in our study

-1

utilize stabilization when the condition number of the basis exceeds €, .

Otherwise, we

84



use the QR decomposition of the sketched basis to solve the generalized eigenproblem

depicted in Equation 4.6. Restarting is not utilized.

4.5.1 Complexity Analysis of Unrestarted Lanczos

Before conducting numerical experiments comparing unrestarted Lanczos with and without
sketching for various input values, we first performed a complexity analysis to estimate the
potential performance improvement we can expect when running 3-term Lanczos with sRR
compared to FO Lanczos with RR and understand the computational costs involved. This
was done by considering the number of floating-point operations (FLOPs) the PRIMME
software will use when running the Lanczos processes. Some minor computations were
excluded as their computational costs were negligible.

Tables 4.1 and 4.2 present the results of this complexity analysis for FO Lanczos with
RR and 3-term Lanczos with sRR, respectively. In these tables, n denotes the size of the

F"%" d denotes the maximum basis size of V € F"*? and the number

input matrix A €
of eigenpairs sought is denoted by e. Each table lists the PRIMME operations in the
left column with their corresponding FLOP count in the right column. These complexity
analyses consider a complete Lanczos cycle as the number of FLOPSs needed to build a basis
of size d, perform the eigenpair extraction using RR or sRR, and compute the residuals of
the Ritz pairs.

To compare the computational efficiencies between 3-term Lanczos with sRR and FO
Lanczos with RR, we compute the ratios of their total cycle operation counts from Tables
4.1 and 4.2. These ratios are illustrated in Figure 4.4.

Based on the results in Figure 4.4, theoretically, as the size of the input matrix A € F»*"
increases, unrestarted Lanczos with sketching requires fewer FLOPs than FO Lanczos
without sketching. Additionally, SRR should necessitate fewer FLOPs when the maximum
basis size is large.

While the results of this analysis favor sRR, there are two considerations to make.

Firstly, although one cycle of unrestarted 3-term Lanczos with sRR theoretically requires

85



# Ops Ratio for 3-Term Lanczos With Sketching vs FO Lanczos Without Sketching
# of Evals Sought = 100

# Ops: Sketched / Nonsketched

500
1000
1500

8
10 2000
2500

10° 3000 Max Basis Size

Input Matrix Size (n)

# Ops Ratio for 3-Term Lanczos With Sketching vs FO Lanczos Without Sketching
# of Evals Sought = 1000

1000
1500
2000

. 2500
10° 3000 Max Basis Size

# Ops: Sketched / Nonsketched

Input Matrix Size (n)

Figure 4.4: The ratio of operation counts between unrestarted Lanczos with and without
sketching. The top plot depicts when the number of eigenpairs sought is 100, and the
bottom plot shows when the number of sought eigenpairs is 1,000.

86



Unrestarted Lanczos With RR in PRIMME (No Sketching)
Operation | Operation Count
At Iteration j
Update the H matrix H; ;1 = [|Vj]|2 2n
Normalize the new basis vector V; = V;/H; ;4 n
Orthogonalize V; against all proceeding vectors 4dnj
Vig1 = AV MatVec
Update the H matrix H; ; = Vfile 2n
3-Term Recurrence V1 = V11 —V; 1H;; 1—V;H;; 4n
Rayleigh-Ritz
Solve the eigenproblem HZ = A% %d3
evecs; = VZ;fori=1,2,--- ,e 2nde
Approximate residual norms (Equation 2.26) e
Total Operations: 2?21(971 + 4nj + MatVec) + 3d° + 2nde + €
= O(2nd® + 2nde + 11nd + 3d* + d - MatVec)

Table 4.1: Operation count for each step in the unrestarted Lanczos algorithm in
PRIMME when used without sketching

fewer FLOPs than unrestarted FO Lanczos with RR, the convergence rates of the two
methods may differ, as later experiments indicate that 3-term Lanczos with sRR converges
slower on average. Secondly, the cost of a FLOP can vary depending on the specific
operation being performed, meaning these FLOP ratios may only partially reflect the

actual performance in terms of timings.

4.5.2 PRIMME Experiments

Tests were conducted on BG2 of the Computer Science cluster at William & Mary [2].
Each compute node is an 8-core Intel Xeon CPU E5-4627 v2 with a clock speed of 3.3GHz,
and each test instance utilized a single compute node with 8 MPI processes and no multi-
threading.

To assess the efficiency of employing sRR with unrestarted Lanczos compared to RR,

we consider the following input parameters:
e Maximum basis size = 1,000

e # of Largest Magnitude Eigenpairs Sought = [1; 50; 100; 250; 500]

87



Unrestarted Lanczos With sRR in PRIMME (With Sketching)

Operation | Operation Count
At Iteration j

Update the H matrix H; ;1 = ||V}l 2n
Normalize the new basis vector V; = V;/H; ;4 n
Update the sketched basis C; = SV; 4nlog(d)
Update the @Q and R factors of C' such that C = QR 4dj
Vig1 = AV MatVec
Update the H matrix H;; = VﬁlV- 2n
3-Term Recurrence V1 = V1 —V;_1Hj; 1 —V;H;; 4n

Sketched Rayleigh-Ritz (with Stabilization)
Estimate x(R) using Lapack’s trcon 3d?
Compute D = CH 8d°
Find the tSVD of C [98] 1943
Compute left-hand-side operator 16d3
Solve the generalized eigenvalue problem §d3
T =Vsypy; fori=1,2,--- e d’e
evecs;, = V; fori=1,2,--- e 2nde
Normalize evecs 3ne
Approximate residual norms (Equation 2.26) e

Total Operations: Z?Zl(Qn + 4nlog(d) + 4dj + MatVec) + 232d3 + d?e + 2nde + 3ne + e

= O(4ndlogd + 13nd + 2nde + 3ne + 122d° + 2d*(d + 1) + d’e)

Table 4.2: Operation count for each step in the unrestarted Lanczos algorithm in
PRIMME when used with sketching

e Convergence tolerance = 1E-6
® cnacn = 2.2204E-16
e Subspace embedding dimension s = 4x Maximum basis size = 4,000

Table 4.3 presents the four matrices used for testing. £12010 is a matrix obtained
from the SuiteSparse Matrix Collection [56], representing a weighted, undirected graph
derived from the 2010 census redistricting in Florida, USA. QuadraticDiag is a diagonal
matrix constructed in MATLAB, where the largest 1,000 elements are squares of the first
1,000 positive integers, with all other elements having a value around 10~3. Laplacian4D
is a Laplacian on a 4D regular grid with dimensions [32, 32, 32, 32] and no boundary

conditions. Finally, CurlCurl_4 is a matrix from SuiteSparse representing the curl-curl

88



Matrices Used in PRIMME For Testing
Matrix Name | # Rows/Columns Description Obtained
£12010 484,481 An undirected weighted graph SuiteSparse
QuadraticDiag | 1,000,000 A diagonal matrix with a quadratic decay | Constructed
Laplacian4D 1,048,576 A 4D Laplacian with dimensions 32* Constructed
CurlCurl_4 2,380,515 A model reduction problem SuiteSparse

Table 4.3: The list of matrices used for testing the unrestarted Lanczos and Generalized
Davidson methods with and without sketching in PRIMME. “Constructed” refers to ma-
trices built ourselves using Matlab.

operator of a second-order Maxwell’s equations with perfect electric conductor boundary

conditions.

4.5.3 Convergence of the Ritz Pairs

We examine first the convergence of the Ritz pairs. We ran both FO Lanczos without
sketching and 3-term Lanczos with sketching. Every 100 iterations, the residual norms of
the extracted Ritz pairs were approximated as shown in Equation 2.26. If all eigenpairs
sought had been marked as converged and the basis size was less than 1,000, Equation
2.8 was used to explicitly compute the residual norms for verification. Given that all
Ritz pairs remained converged, the values would be returned to the user. Otherwise, the
Lanczos method would continue.

Figure 4.5 illustrates the convergence of the 1st, 50th, and 100th Ritz pairs using the
3-term Lanczos method with sRR and the FO Lanczos with RR.

A couple of observations can be made from these results:

e FO Lanczos converges faster than the traditional 3-term Lanczos as the condition
number of the basis is always one, allowing for new information to continuously enter

the basis and a more accurate extraction of the Ritz pairs.

e For matrices QuadraticDiag and LaplaciandD, 3-term Lanczos with sRR shows
comparable convergence to FO Lanczos without sketching. For QuadraticDiag, the
easy-to-compute spectrum helps both methods converge relatively early. However,
sRR cannot reach as good accuracy as FO Lanczos and begins stagnating. For

LaplaciandD, using stabilization in sRR keeps the accuracy for the largest eigenpair

89



Convergence of 3-Term Lanczos With Sketching and FO Lanczos Without Sketching Convergence of 3-Term Lanczos With Sketching and FO Lanczos Without Sketching

N For the £12010 matrix with (Max Basis Size = 1000, # Evals = 100) . For the QuadraticDiag matrix with (Max Basis Size = 1000, # Evals = 100)
10 ©-1st Eval, FO Lanczos + RR ‘°8=::_—»~Q,_n ©-1st Eval, FO Lanczos + RR
G 50th Eval, FO Lanczos + RR e e G 50th Eval, FO Lanczos + RR
100th Eval, FO Lanczos + RR R v 100th Eval, FO Lanczos + RR
~*-1st Eval, 3-Term Lanczos + SRR R . %-1st Eval, 3-Term Lanczos + SRR
- 50th Eval, 3-Term Lanczos + SRR \ 5\ % 50th Eval, 3-Term Lanczos + SRR

|--100th Eval, 3-Term Lanczos + SRR

100th Eval, 3-Term Lanczos + SRR

Estimated Residual Norm
Eslimated Residual Norm

103
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Iteration Number lteration Number
Convergence of 3-Term Lanczos With Sketching and FO Lanczos Without Sketching Convergence of 3-Term Lanczos With Sketching and FO Lanczos Without Sketching
o For the LaplaciandD matrix with (Max Basis Size = 1000, # Evals = 100) - For the Cur1Curl 4 matrix with (Max Basis Size = 1000, # Evals = 100)
= 10'8
&1t Eval, FO Lanczos + RR “©-1st Eval, FO Lanczos + RR
77| s0th Eval, 0 Lanczos + KR e @ 500 Eval, FO Lanczos + RR
100th Eval, FO Lanczos + RR SR - /’*\1 100th Eval, FO Lanczos + RR
(% 1st Eval, 3-Term Lanczos + SRR 101 Wk Sraege” ¢ 1st Eval, 3-Term Lanczos + SRR
¢ 50th Eval, 3-Term Lanczos + SRR ¢ 50tn Eval, 3-Term Lanczos + SRR
g s 100th Eval, 3-Term Lanczos + SRR g |--100th Eval, 3-Term Lanczos + sRR
210 i\ . z
E] S 10°
=1 b=}
3 3
4 4
3 3 40
- g 00
£ £
3 3
i I
10
107 .
107
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Iteration Number Iteration Number

Figure 4.5: The convergence of the 1st, 50th, and 100th Ritz values using the 3-term
Lanczos method with sRR and the FO Lanczos method with RR when run of the matrices
listed in Table 4.3.

within two orders of magnitude from FO Lanczos. The rest of the eigenpairs are
tightly clustered, so convergence is slow, implying less orthogonality loss. Therefore,

we see no apparent difference between the two methods.

e For matrices £12010 and CurlCurl_4, loss of orthogonality settles early, so sRR

cannot extend the basis with useful directions and stagnates.

These observations highlight that sRR should extract relatively accurate eigenpairs,
even in the case of severe orthogonality loss in V. The problem, however, is that in such
cases, Lanczos tends to repeat directions and slow down or stagnate.

To verify and gather a better understanding of the convergence behavior seen in Figure
4.5, we also plot the 100 largest magnitude eigenvalues returned to the user from PRIMME.
The values are returned once all 100 have been marked as converged and verified, or the
maximum basis size of 1,000 was reached. The results of this can be seen in Figure 4.6.

According to Figure 4.6, returned eigenpairs extracted using sRR from the basis con-
structed by 3-term Lanczos matched closely with those returned from FO Lanczos with

RR for the QuadraticDiag and Laplacian4D matrices. However, for matrices such as

90



Returyéd Eval Estimations from Lancsos for £12010 Matrix (Max Basis Size = 1000, # Evals = 100) Retumedal Esti
T 1

ions from Lanczos for QuadraticDiag Matrix (Max Basis Size = 1000, # Evals = 100)

—3-Torm Lanczos Without Sketching —3-Torm Lanczos Without Sketching
—Full Orho Lanczos Without Skelching 85 —Full Otho Lanczos Without Sketching
25 —3-Term Lanczos With Sketching —3-Tem Lanczos With Sketching
\ 08 —

2 sk ]

R \ .

T 45 |

E E

I @ o

g 1 s

@ Ges

0.5 86 \
84 ]
82 \
-05 '
0

10 20 30 40 50 60 70 80 2 100 0 10 20 30 40 50 60 70 80 90 100
Eval Index Eval Index
Returned Eval Estimations from Lanczos for LaplaciandD Matrix (Max Basis Size = 1000, # Evals = 100) Returugg'Bval Bstimations from Lanczos for CurlCurl 4 Matrix (Max Basis Size = 1000, # Bvals = 100)
T 1
—3-Term Lanczos Without Sketching —3-Term Lanczos Without Sketching
56 —Full Ortho Lanczos Without Sketching ~ —Full Ortho Lanczos Without Sketching

—3-Term Lanczos With Sketching 10 \ —3-Term Lanczos With Sketching

158 8
E e
£157 gs
i) i)
s T4
§156 frr
Al
155 \\
0
154 B
2
0 10 20 30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 % 100
Eval Index Eval Index

Figure 4.6: The largest 100 eigenpairs returned to the user after all sought eigenpairs are
marked as converged or the maximum basis size of 1,000 was reached. Results are shown
for 3-term Lanczos with sketching and FO Lanczos with and without sketching for each
matrix listed in Table 4.3

£12010 and CurlCurl_4, sRR struggled to extract approximate eigenpairs, most likely

because the basis V' became too ill-conditioned to satisfy the conditions of the theory that
—1

K(V) 5 €mach-

To increase the accuracy of 3-term Lanczos with sketching, the following strategies

should be considered:

1. Adjust Stabilization Criteria: Stabilization takes the tSVD of the sketched ba-
sis, disregarding all singular triplets following the condition shown in Equation 4.14
before solving the generalized eigenproblem using the remaining triplets. We may be
able to increase the accuracy of our Ritz pairs by modifying this condition to discard
more singular triplets, e.g.,

@ < 6_1 103 for 7 = 1727 N 7d. (416)

o~ ‘mach

91



Increasing the truncation would likely result in the more accurate extraction of Ritz

pairs, but it does not affect the expansion of V' and, thus, convergence.

2. Increased Orthogonalization: We can ensure better conditioning of V' using
methods such as selective or partial reorthogonalization, resulting in better expan-
sion of V' and the extraction of more accurate Ritz pairs. However, this goes against

the purpose of using SRR to minimize orthogonalization.

4.5.4 Run Times

We ran the FO and 3-term Lanczos methods with RR and sRR. However, instead of
computing the Ritz pairs and checking their residual norms every 100 iterations, we built
the Lanczos basis to a basis size of 1,000 before calling RR/sRR. Each test ran on 8 MPI

processes, and the reported times for each of the following categories come from process 0:
1. Orthogonalization
2. Residual computation
3. MatVec
4. Sparse MatVec (If sketching)
5. RR/sRR
6. Stabilization (If sketching)
7. MPI GlobalSum
8. MPI BroadCast

Some of these categories overlap; for example, the residual computations call MPI Glob-
alSum.

We also compare timings from two different machines:

92



e BG2 Cluster: 8-core Intel Xeon CPU E5-4627 v2 with a clock speed of 3.3GHz run

on 8 MPI processes [2].

e Femto Cluser: 32-core 960 Xeon Skylake with a clock speed of 2.1GHz run on 8

MPT processes [1].

We only report timings for two of our four test matrices, QuadraticDiag and Laplacian4D,

as the conclusions are general across all matrices tested.

x Basis Size = 1000, # Evals = 100)
ke @ 2.1GHz

Lanczos Time Distribution for QuadraticDiag matrix (

Size = 1000, # Evals = 100) Lanczos Time Distribution for QuadraticDiag matrix (
8 MPI Procs on a 8-core Intel Xeon CP! e 960 X

v2 @ 3.3GHz 8 MPI Procs on a 32

1 1

60 60
MOrthogonalization MNOrthogonalization

MResidual Computation MlResidual Computation —
140 WiMatve 140 EMatvec
Sketched MatVec Sketched MatVec
—- " IRayleigh-Ritz (wio Stabilization) I~ " IRayleigh-Ritz (w/o Stabilization)
B120 mdbitaion 2120 msubiization
9 M GlobalSum 9 N GlobalSum
& 100 WMBroadCast 8 100 WMBroadCast
@ 1)
£ £
o 80 5 8
3 3
2 2
& &
o 60 i 6o
° °
£ £
E 40 E 40
20 20
o —_— = o —— JR—
3-Term No Sketching Full Ortho No Sketching3-Term With Sketching 3-Term No Sketching Full Ortho No Sketching3-Term With Sketching
Lanczos Time Distribution for LaplaciandD matrix (Max Basis Size = 1000, # Evals = 100) Lanczos Time Distribution for Laplaciandd matrix (Max Basis Size = 1000, # Evals = 100)
8 MPI Procs on a 8-core Intel Xeon CPU E5-4627 v2 @ 3.3GHz 8 MPI Procs on a 32-core 960 Xeon Skylake @ 2.1GHz
180 350
MOrthogonalization M Orthogonalization [ —
160 MlResidual Computation [ MlResidual Computation
MatVec 300 -MIMatvec

Sketched MatVec ‘Sketched MatVec

——
> 140 Rayleigh-Ritz o Stabiization) &  IRayleigh-itz (wio Stabilization)
€ mEstbiizaton £ 250 Mlstabiization
§ 120 EGIobalSum §7 MGiobaisum
3 MMBroadCast 3 ENBroadCast
& &3
£100 200
3 3
g 8 2150
& 8
o] o
o 60 @
£ £ 100
F o0 F
50
20
0 e 0 e E——
3-Term No Sketching Full Ortho No Sketching3-Term With Sketching 3-Term No Sketching Full Ortho No Sketching3-Term With Sketching

Figure 4.7: The breakdown in runtime for 3-term Lanczos and FO Lanczos run with and
without sketching over 1,000 iterations with timings achieved from the 8-core Intel Xeon
CPU E5-4627 v2 on the left and 32-core 960 Xeon Skylake on the right.

Figure 4.7 illustrates the breakdown of the time spent during the execution of Lanczos
run for 1,000 iterations and extracting the 100 Ritz corresponding to the eigenvalues of
largest magnitude. Results are shown only for 100 eigenvalues, as the only noticeable dif-
ference in the timing breakdowns between this and 1,000 eigenvalues was the computation
of the residual norms. Moreover, the timings for the residual norms were small, so they did
not change the overall conclusions. The times are reported over full runs of the Lanczos
code, as normalizing the times over the number of performed iterations would not change

their comparative ratios.

93



The time to perform orthogonalization varied significantly between machines, even with
identical PRIMME configuration settings and input parameters. While further investiga-
tion is needed to understand this behavior fully, we think this is due to differences in
architecture and versions of available software libraries. Clearly, if orthogonalization can
not be performed efficiently on a given machine, 3-term Lanczos with sRR is more likely
to outperform FO Lanczos with RR in terms of run time.

As Figure 4.4 shows, FLOP modeling predicts improved speedups with sRR over RR
for problems with larger matrix sizes or basis sizes. However, in practice, the computa-
tional bottleneck when sketching comes from the sparse MatVec. Currently, our PRIMME
sketching code builds the sketched basis by performing a sparse MatVec on one vector at
every iteration. Better performance may be achieved if we apply the sketching matrix just
before calling the sRR algorithm at the end so the sparse MatVec is applied to all vectors
simultaneously. Using a different sketching matrix, e.g., using SFRT instead of Sparse
Maps, may also achieve better performance results, though further investigation is needed

to confirm this.

4.6 Generalized Davidson with Sketched Rayleigh-Ritz

When seeking many eigenpairs, a large number of iterations are typically needed, and
without restarting, the size of the basis becomes impractical in terms of memory and cost
of orthogonalization, especially when the size of A € F"*™ is large. TRL did not work
because it expanded the basis with the next Lanczos vector, which, in the presence of
sketched Ritz pairs, stopped being the gradient direction for any of them. This motivates
the transition to Generalized Davidson.

Generalized Davidson (GD), as detailed in Algorithm 3, is an extension of the Lanczos
algorithm that expands the basis V' with the residual of the first unconverged Ritz pair
(or pairs, in the case of block methods), a technique referred to as “targeting” [69]. In

theory, this is equivalent to the Lanczos vector, except the explicitly computed residual

94



is the gradient of the Rayleigh Quotient, which allows for preconditioning. Therefore, the
promise of much faster convergence justifies the cost of explicit orthogonalization and RR
at every step. Even without preconditioning, GD also offers a more robust approach for a
broader range of problems. Since the residual, or gradient direction, is with respect to the
actual Ritz vectors in the basis, unlike TRL, we expect GD to be able to expand the sRR
restarted basis effectively. Moreover, the residuals are orthogonal to V' at a much higher
numerical accuracy than the 3-term Lanczos vectors, implying that more accurate sketched
eigenpair approximations can be achieved and the potential of avoiding orthogonalization.

The GD method integrated with sRR is detailed in Algorithm 9.

95



Algorithm 9: The Generalized Davidson Algorithm With sRR

Input:
A € F™*" = A square, Hermitian matrix
Y € F"*¢ = Matrix of initial orthonormal column(s)
r = The size of the restarted basis
e = The number of eigenpairs sought after
tol = Convergence tolerance
Output:
X € F**?4 — The estimated eigenvectors of A
A € F? = The estimated eigenvalues of A
resNorms € F? = The residual norms for the eigenpair estimates of A
Sketched_Generalized_Davidson(A, Y, r, e, tol)

1 V(,1:e)=Y; W(,1:e) = AY;

[\

S = Sparse Maps(); # Build sketching matrix
3 form=2,3,--- do

4 W(:;,m) = AV (:;,m);

5 | X, A, ~| = Sketched_RR(S, V(:,1:m), W(:,1:m));

6 residuals = WX (:,i) = VX(:,i)A(i) fori=1,--- ,m;

7 resNorms(i) = || residuals(:, i) || fori=1,---,m;

8 target = find(resNorms > tol, “first”, 1); # Target 1°° unconverged vector
9 if target > e then

10 L return [X, A, resNorms|

11 if m > d then
12 Vi, 1ir)=XG1:r); W, 1:r)=AV(,1:71); # Restart

13 m=r;

# Precondition new vector before adding it to the basis

14 V(:,m + 1) = Precondition(residuals(:, target) / resNorms(target));

96




Unlike sketching with Lanczos, where sRR is only performed once the basis has been
constructed to extract eigenpair approximations, sketching with GD solves the sRR prob-
lem instead of RR every iteration. The Ritz pairs from sRR are then used to expand the
basis. Additionally, we do not orthogonalize the residual vector against all previous vectors

when expanding the basis; we only normalize the new vector.

4.7 Experiments with Generalized Davidson

We have integrated the ability to call SRR into the pre-existing GD algorithm in PRIMME.
Experiments were then run to assess the efficiency of utilizing SRR over RR. GD with RR
uses full orthogonalization, while GD with sRR uses no orthogonalization of the long,

length-n vectors.

4.7.1 Complexity Analysis of Generalized Davidson

As with Lanczos, we first performed a complexity analysis to determine how much per-
formance improvement we can expect. The analysis counted the approximate number of
FLOPs each operation should take. Minor computations were disregarded as they had
minimal effect on the analysis. Four variables are considered: m, which is the dimension
of the input matrix A € F**™ the maximum basis size d, the number of sought eigenpair
estimates e, and the size of the restarted basis r. Tables 4.4 and 4.5 show the analysis
results for GD without and with sketching, respectively.

When comparing the complexities of the two methods, we evaluate the number of
FLOPs performed over a “cycle”, which begins immediately after the basis is restarted and
completes after the maximum basis size is reached and restarting is performed. In our
benchmarking experiments, we always set e = r to minimize the number of varying input
parameters. We do the same in Figure 4.8, which shows the ratio between the number of

FLOPs needed to perform a cycle of GD with sketching over its non-sketching counterpart.

97



# Ops Ratio for GD With Sketching vs Without Sketching
# of Evals Sought = 100; Size of Restarted Basis = 100

# Ops: Sketched / Nonsketched

500

o 1000
10 1500
2000

10° 3000 Max Basis Size

Input Matrix Size (n)

# Ops Ratio for GD With Sketching vs Without Sketching
# of Evals Sought = 1000; Size of Restarted Basis = 1000

=5
4] N

-

# Ops: Sketched / Nonsketched
o
[=2]

2000

2500
10° 3000 Max Basis Size

Input Matrix Size (n)

Figure 4.8: The ratio of operation counts between Generalized Davidson with and without
sketching. The top plot depicts when the number of sought eigenpairs is 100, and the
bottom plot shows when the number of sought eigenpairs is 1,000. The restarted basis size
equals the number of sought eigenpairs.

98



Generalized Davidson With RR in PRIMME (No Sketching)
Operation | Operation Count
At Iteration j
W; = AV; MatVec
Update H = VAW 2nj
Solve the eigenproblem HZ = A% % 43
Compute residual and its norm dnj + 2n
Orthogonalize Vj41 against all proceeded vectors 4dnj
At Restart
VW x =X 4dndr
Solve the eigenproblem VH AV = \& %7”3
Compute residual and its norm dnr + 2n
Orthogonalize V.1 against all proceeded vectors dnr
Total Operations: Z?:Hl(lOnj +2n + 353 + MatVec)
+4ndr 4+ 8nr + 2n + %7"3
— O(n(5d2 + Adr + Td + 6r + 2 — 5r2) 424’ sl
+(d —r) - MatVec)

Table 4.4: Operation count for each step in the Generalized Davidson algorithm in
PRIMME when used without sketching

The results of Figure 4.8 show promise in terms of runtime speedup. As the matrix size
increases, the ratio of FLOPs between sketched and non-sketching GD seemingly converges
to 0.5. However, as noted in Section 4.5, not all FLOPs take the same amount of time to

perform; thus, actual benchmarking is needed.

4.7.2 PRIMME Experiments

The following input parameters were considered when comparing the effectiveness of GD

with sRR and GD with RR:
e Maximum basis size = [100; 200; 250; 500; 1,200]
e # of Largest Magnitude Eigenpairs Sought = [1; 50; 100; 250; 500]
e Restart size = # Eigenpairs

e Convergence tolerance = 1E-6

99



Generalized Davidson With sRR in PRIMME (With Sketching)
Operation | Operation Count
At Iteration j
W; = AV; MatVec
Update C'= SV; and D = SW; 8nlogd
Update Q and R factors of C 4dj
Compute left-hand-side operator 8dj°
Solve the generalized eigenvalue problem % 53
Normalize X 3je
Compute residual and its norm dnjg + 2n
At Restart
Orthogonalize X 2dr?
V,W,C,D x =X 4ndr + 16d>r
Compute ||V;||;" fori=1,2,---,r 2nr +r
Normalize the columns of V, W, C, D with ||V;||; ' 2nr 4 8dr
Compute left-hand-side operator 8dr?
Solve the generalized eigenvalue problem %r3
Normalize X 3re
Compute residual and its norm dnr + 2n
Update Q and R factors of C' 8dr?
Total Operations: Zf+1(4nj + 8nlogd + 2n + %j?) + 8dj% + 4dj + 3je + MatVec)
+4ndr + 8nr + 2n + 16d%r + 8dr + %7"3 +18dr? + 3re +r
= O(2n(2d? + 7d — 2r? — Tr + 2dr + 41logd - (d — 1))
+9d47r4+l4d;flodr3+4r3 +(d—r) - MatVec)

Table 4.5: Operation count for each step in the Generalized Davidson algorithm in
PRIMME when used with sketching

® €nach = 2.2204E-16

Tests were performed when the number of sought eigenpairs was less than the maximum
basis size and run using BG2 of the Computer Science cluster at William & Mary, where
each compute node is an 8-core Intel Xeon CPU E5-4627 v2 with a clock speed of 3.3GHz
[2]. As in Section 4.5, each test instance utilized a single compute node with 8 MPI
processes and no multithreading. The matrices tested are listed in Table 4.3, though,
for the sake of brevity and to avoid redundancy, we only present results for the matrices
QuadraticDiag and Laplacian4D. The matrices £12010 and CurlCurl_4 yielded similar

timings; however, neither converged to a single eigenpair.

100



4.7.3 Convergence of the Ritz Pairs

We report results from runs with the maximum basis sizes 250 and 1,200, in both cases
seeking the 100 largest magnitude eigenpairs. These two cases are generally representative
and can be used to summarize our findings. Because of GD’s targeting strategy, only the
residual norm of the targeted pair is plotted at every iteration. The gradient in colors
depicts the targeted eigenvalue index.

Figure 4.9 shows the convergence of the Ritz pairs corresponding to the 100 largest
magnitude Ritz values for RR and sRR given a maximum basis size of 250 in the left
column and a maximum basis size of 1,200 in the right column. The behavior shown

between the two matrices is noticeably different.

Convergence of GD for QuadraticDiag matrix (Max Basis Size = 250, # Evals = 100) Convergence of GD for the QuadraticDiag matrix with (Max Basis Size = 1200, # Evals = 100)

Blue With 'x' Marker = Nonsketched, Red With 'o' Marker = Sketched P Blue With ‘0" Marker = Nonsketched, Red With x’ Marker = Sketched
T 10’

10°

Wi

10°

§
E
K
S
3
@
3
@
°
2
©
E
%
i

0 2500
Iteration Number

Convergence of GD for the LaplaciandD matrix with (Max Basis Size = 250, # Evals = 100) Convergence of GD for the LaplaciandD matrix with (Max Basis Size = 1200, # Evals = 100)
Blue With o’ Marker = Nousketched, Red With '’ Marker = Sketched Blue With ‘0’ Marker = Nonsketched, Red With 'x’ Marker = Sketched

]
% 10
10°
188 "
00 10

6000 0 1500 2000 2500

Figure 4.9: The convergence of the targeted Ritz pair when running GD with a maximum
basis size of 250 (left) and 1,200 (right) and seeking 100 Ritz pairs.

The results for the QuadraticDiag test using maximum basis sizes of 250 and 1,200
show that the convergence rates of the Ritz pairs were similar between sRR and RR. This
is expected due to the well-separated upper spectrum of the matrix. When the maximum
basis size is 1,200, the run does not restart, and both methods converge identically. For

the 250-basis run, we observed that (V') stays small, at least for the first few thousand

101



iterations. This means that sRR does not need stabilization, which is reflected in our
complexity analysis in Table 4.5. However, even though approximations are accurately
extracted, convergence shows a slight slowdown after many restarts.

For the LaplaciandD matrix, the convergence behavior observed between GD with sRR,
and RR was noticeably different, illustrating different numerical issues with each method.
With a basis size of 250, sRR converged almost 5x faster than RR with the same input
parameters. However, when running the same problems with a basis size of 1,200, sRR
converged 2x slower than GD with RR.

This behavior can be understood better if we examine the accuracy of the returned
eigenvalues after all required eigenpairs converge and the algorithm returns. Figure 4.10
plots this information for both matrices QuadraticDiag and Laplacian4D.

For the easy spectrum of QuadraticDiag, sRR and RR find the same eigenvalues
at the required accuracy. For LaplaciandD, however, the spectrum has clusters of high
multiplicity. It is known that in exact arithmetic, the Lanczos method (or any Krylov
method) cannot compute multiple eigenvalues. Floating point arithmetic introduces noise
that is slowly amplified towards the missing directions. Interestingly, the method that
takes fewer iterations is less susceptible to noise and thus misses most of the multiplicities.

For the 250-vector basis, GD with sRR misses half of the eigenvalues of the 6th clus-
ter, and for more interior values it identifies no more than two eigenvalues per cluster.
The slightly better conditioning of V' allows the restarted GD with RR to identify these
multiplicities and take the time to fully converge.

For the 1,200-vector basis, the roles are reversed. Maintaining full orthogonality in
unrestarted GD with RR makes it very close to Lanczos in exact arithmetic. Since there
is no restart to introduce numerical noise, the method fails to find all multiplicities, even

starting from the third cluster. This is a situation where doing the right thing does not

pay!

102



Retupef Eval Estimations from GD for QuadraticDiag Matrix (Max Basis Size = 250, # Evals = 100) o from GD for Matrix (Max Basis Size = 1200, # Evals = 100)
T 1
© Without Sketching © Without Sketching
98 * With Sketching 98 * With Sketching
96 96
94 04

Eval Estimate
©

Eval Estimate
©

8.8 88
86 86
8.4 84
8.2 ) 82
0 10 20 30 40 60 70 80 9 100 0 10 20 30 40 60 70 80 90 100

50
Eval Index

Returned Eval Estimations from GD for LaplaciandD Matrix (Max Basis Size = 250, # Evals = 100)

50
Eval Index

Returned Eval Estimations from GD for Laplacian4D Matrix (Max Basis Size = 1200, # Evals = 100)

15.95 © Without Sketching 15.95 © Without Sketching
b * With Sketching b * With Sketching
158F ", 159 (o
0000 oo
prose— [EOSS—
15.85 T 15.85 S x
..... 90000000000, S
R oo, . 0000 0 e
2 158 000000000000, 2 158 ooy e
E 000000000000 E oo e
@ xx, D @ L e
w1875 w1575 Pooooco T
s
15.7 15.7 w%m
%"""o%
15.65 -
15.65 Y
"o00,
%o,
156 156 g,
%o,
0 10 20 30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 2 100
Eval Index Eval Index

Figure 4.10: Comparisons of the 100 largest magnitude Ritz pairs returned from
PRIMME for Generalized Davidson for a maximum basis size of 250 (right) and 1,200
(left). Only the results from matrices QuadraticDiag and Laplacian4D are shown.

4.7.4 Timing Comparisons

We now turn our attention to comparing the run times of GD with and without the use of
sketching. We report the times returned by process 0 using 8 MPI processes on the 8-core
Intel Xeon CPU E5-4627 v2 [2] without multithreading. The timed categories are the same
as those listed in Section 4.5.4, with the addition of reporting the time the program took

to restart the basis:

Orthogonalization
Restarting the basis
Residual computation
MatVec

Sparse MatVec (If sketching)
RR/sRR

Stabilization (If sketching)

103



8. MPI GlobalSum

9. MPI BroadCast

The results of the timing breakdowns are shown in Figure 4.11. In these plots, we average
the total time spent in each category by the number of iterations performed as GD with and
without sketching, as the two methods took a different number of iterations to converge.
The left column shows results when the maximum basis size is 250, whereas the right
plots used a maximum basis size of 1,200. The top two figures depict timings from the

QuadraticDiag matrix, and the bottom two depict timings from the LaplaciandD matrix.

o.§D Time Distribution Per Iter for Quadraticbiag matrix (Max Basis Size = 250, # Evals = 100) GD Time Distribution Per Iter for QuadraticDiag matrix (Max Basis Size = 1200, # Evals = 100)
MM Orthogonalization L Orthogonalization ]
ERestart ElRestart
BResidual Computation 3.5 -WMResidual Computation

0.25 mEEMatvec EMatvec
_ [iSketched MatVec __ . TiSketched MatVec
0 IRayleigh-Ritz (/o Stabilization) % 3 IRayleigh-Ritz (wio Stabilization)
14 02 Stabilization s Stabilization
8 |GlobalSum 8 25 GlobalSum
n MBroadCast 2 MBroadCast
£ £
5015 5 2
3 3
3 3
& &
o w15
o 01 ®
E E
S o1
005
05
o o
No Sketching With Sketching No Sketching With Sketching
35O Time Distribution Per Tter for LaplaciandD matrix (Max Basis Size = 230, # Evals = 100) GD Time Distribution Per Iter for LaplaciandD matrix (Max Basis Size = 1200, # Evals = 100)
MNOrthogonalization EmOrthogonalization
MRestart p— MlResta
0.3 MEResidual Computation 8 mlResidual Computation
= EMatvec

. ‘Sketched MatVec _7 [iSketched Matvec
8425 Rayleigh-Ritz (wlo Stabilization) 0 Rayleigh-Ritz (w/o Stabilization)
2 Stabilzation £ 5 _Stabiization
1 W GlobalSum S W GlobalSum
n NBroadCast o)  EMBroadCast
£ 92 £5
3 s
3 3
2015 24
o L ]
w w
o 03
E 01 E
E e

2

005~
1
e —
0 0
No Sketching With Sketching No Sketching With Sketching

Figure 4.11: The breakdown in average runtime per iteration for GD run with a maximum
basis size of 250 (left) and 1,200 (right) when searching for 100 Ritz pairs.

Figure 4.11 shows that the percentage of time spent in different operations highly
depends on the maximum basis size. When using RR and the maximum basis size is
small, most of the run time is nearly equally divided between orthogonalizing the new
basis vectors and computing the residual vector for the basis expansion. It is notable that
restarting, which has the same number of FLOPs as these two kernels, takes significantly
less time as it is performed with BLAS level 3 GEMM while the others use level 2 and

some level 1 BLAS. When the maximum basis size is large, most of the run time for GD

104



with RR is spent on the RR computation, even though the complexity of RR does not
involve the matrix dimension. Clearly, a matrix dimension of 1,000,000 is insufficient for
the asymptotic regime where the RR cost should be negligible.

The timing results when using GD with sRR are more interesting. When the basis size
is small, the computational bottleneck is clearly the sketched Matvec that gets performed
twice each iteration. This is consistent with the 3-term Lanczos with sRR timing results
in Figure 4.7. However, when discussing Lanczos with sRR, we stated that the sketched
MatVec might be done more efficiently by applying the sketching matrix to multiple vectors
simultaneously right before calling sRR. This block operation can not be done with GD,
where sRR is computed at every iteration.

When the maximum basis size is large, the computational bottleneck associated with
using sRR with GD shifts from sketched MatVec to the sRR computation, as shown in
Figure 4.11, and the time per iteration becomes more expensive compared to GD with
RR. This behavior is predicted by the complexity analysis. Firstly, given the same matrix
size, the cost of SRR increases cubically with the basis size, while the cost of the sketched
MatVec increases linearly. Secondly, the complexity of SRR is a constant factor larger than
RR, so for matrix sizes where (s)RR dominates, sketching is not beneficial (see also the
timings in Figure 4.7).

It is clear from our results above that matrix sizes of 1,000,000 are not sufficiently large
to show the computational benefits of sketching, especially with large basis sizes. This is
also suggested by the modeling in Figure 4.8. Furthermore, the architectural details of the
machine and numerical libraries used are important, as shown in Figure 4.7. For small
basis sizes, the challenge is to reduce the time for sketched MatVec, either through better
implementation of the sparse embedding or by utilizing a different subspace embedding

matrix.

105



4.8 Chapter Summary

This work explores the performance advantages and disadvantages of using sketched Rayleigh-
Ritz (sRR) to extract the approximate eigenpairs of a matrix from a basis built using a
Krylov-based iterative method (or a Krylov-like method in case of GD). To accomplish
this, we implemented sRR and the unrestarted Lanczos Krylov method into the C99 soft-
ware library, PRIMME, which can be found at the publicly accessible GitHub reposi-
tory https://github.com/primme/primme/tree/heather/sketch [91]. In theory, sRR
shows promise in improving runtime by allowing the extraction of Ritz pairs from a non-
orthonormal basis. This circumvents the need for consistent reorthogonalization, which
can become a bottleneck in traditional iterative methods.

Sections 4.5 and 4.7 show theoretical complexity analyses of both the unrestarted Lanc-
zos and Generalized Davidson (GD) methods, respectively, when used alongside either
classical RR or sRR. These analyses were conducted by summing the expected number
of FLOPs each method should take in practice. Following this, convergence, accuracy,
and timing results are shown for the Lanczos and Generalized Davidson methods using
matrices of different eigenspectra densities and sizes.

From these results, several conclusions were made. For the Lanczos method, the com-
plexity analysis showed that the 3-term Lanczos with sRR in PRIMME should require
less FLOPS than full-orthogonalization Lanczos when the input matrix and maximum
basis sizes are large. However, in our benchmarking tests, we saw that the performance
improvement between the two methods in terms of time depended on how efficiently the
orthogonalization was performed using full-orthogonalization Lanczos without sketching.
Also, while in general full-orthogonalization Lanczos without sketching converges in fewer
iterations than 3-term Lanczos with sketching by ensuring the condition number of the ba-
sis remains at one, 3-term Lanczos with sketching was able to converge at approximately

the same rate in some cases through the use of stabilization.

106



The results for GD indicated that the removal of full-orthogonalization and the use of
sketching did not dramatically raise the basis’s condition number, at least for the first few
thousand iterations. This means GD with sRR was able to accurately extract eigenpairs
from the basis. In terms of runtime, GD with sRR performed significantly slower per
iteration than GD with RR, with most of the runtime being dedicated to sparse MatVec
when the maximum basis size was small, and the sRR procedure when the maximum basis
size was large. However, using an input matrix of larger size, a better implementation of
the sparse MatVec, or a different subspace embedding matrix may result in a lower runtime

when using GD with sRR. More investigation is needed to verify this.

107



Chapter 5

Conclusion

5.1 Summary of Contributions

Variance Reduction Methods in LQCD

In the first part of this dissertation, we introduced a novel probing approach for reducing
the variance of the Hutchinson estimator when approximating the trace of a permuted
matrix inverse. This work is essential for research in LQCD, specifically in the study
of disconnected diagrams. Probing for permutations is done by performing a distance-k
coloring on the graph of a matrix where every lattice point x is considered connected to
the neighborhoods centered around its corresponding displacements, x 4+ p, where p is the
displacement vector.

Additionally, we provide a lower-bound analysis on the minimum number of colors
necessary to perform a distance-k coloring, considering a particular lattice displacement
vector p. We offer insights into how the lattice dimensions may impact the number of
colors achieved. Finally, we present experimental results comparing the effectiveness of a
given (p, k)-coloring against classical probing and exclusively using Rademacher vectors in
the estimator.

When utilizing probing vectors from (p, k)-coloring in the Hutchinson estimator com-

pared to solely Rademacher vectors, we achieved up to a 300x speedup in variance (with

108



p =8, k =9). On average, probing with displacements provided approximately a 100x
- 200x speedup. However, when probing with displacements was compared with classi-
cal probing to find the trace of a displaced matrix inverse, probing with displacements
achieved almost a 100,000x speed up (for p = 8,k = 6). The reason for this drastic differ-
ence between the speedup with classical compared to solely using Rademacher vectors is
explainable. Using classical probing to aid in finding the trace of a displaced matrix inverse
will not remove the largest magnitude elements from the inverse when p > k, resulting in
poor variance reduction. However, Rademacher vectors may get “lucky” because they can
remove several of these large-magnitude elements that classical probing will not touch. In
either case, probing with displacements, in general, is guaranteed to reduce the variance
of the Hutchinson estimator more than classical probing or solely using random vectors,

with better speedups as the displacements grow larger.

The Effectiveness of Krylov Methods Using Sketched Rayleigh-Ritz

In the second part of this dissertation, we explore using sketched Rayleigh-Ritz (sRR)
within the Lanczos and Generalized Davidson Krylov methods to avoid the computational
burden of orthogonalizing the basis as eigenpairs begin to converge causing repeated di-
rections to enter the basis. We conduct a comprehensive complexity analysis to predict
how much of a performance speedup we can expect when running Lanczos and Gener-
alized Davidson with sRR compared to their nonsketched counterparts for varying input
parameters, including the maximum basis size, the size of the restarted basis, the number
of approximate eigenpairs sought, and the size of the input matrix.

We then integrated the Lanczos algorithm and sRR into the high-performance parallel
PRIMME software library before conducting numerous practical experiments. We report
the rates of convergence given varying input parameters. After this, we compare the
values of the returned eigenvalues to determine their accuracy and the method’s reliability.

Finally, we time various components of the experiment to determine which operations are

109



the most costly, where most of the run time is spent, and how these timings change based
on the problem’s parameters.

From our complexity analysis, we found that theoretically, SRR with 3-term Lanczos or
Generalized Davidson should require fewer FLOPs per iteration to perform than RR with
full-orthogonalization Lanczos and Generalized Davidson, respectively, specifically when
the sizes of the input matrix and the maximum basis are large. However, benchmarking
these routines identified numerical and performance issues that need to be addressed, such
as the type of matrix that performs the random subspace embedding, the application of
a sparse MatVec, and the efficiency of the orthogonalization routine. Furthermore, the
matrices we are benchmarking range from size 500,000 to 2,000,000, which are too small

to give an accurate picture as to when sRR should outperform RR.

110



Appendix A

Proving the Lower Bounds on the
Number of Colors Needed For
Coloring a Lattice with

Displacements

A.1 Proof for Theorem 1

Theorem 1. Let x € Z4.. If p > k, then Yy # x with y, = x1, it holds y ¢ N(x,p, k).

Proof. From the definition of + and z~, the assumption p > k implies |z — ;Uf| =
|zy — x7| > k, and 2?:2@2‘ —zf| = Z?:z lz; — 27| = 0. Let y € Z4 with y # = and
y1 = x1. Since |y1 — x| >k, ly — 2| = |1 — 2| + 2?22 |z; — ;| > k. The same

argument applies for the distance from x~. Therefore, y ¢ N(z,p, k). O

A.2 Proof for Theorem 2

Theorem 2. If p =k, then col(Z%,p, k) = 2k + 1.

Proof. From Theorem 1, if p = k, the coloring problem reduces to coloring in one

111



dimension. Then the neighborhood definition covers 4k + 1 indices in the first dimension,
from —2k to +2k. The maximal clique size of the 2k-distance graph of these nodes is the
1D unit ball of half the size, which includes indices from —k to +k. The size of this clique

is exactly 2k 4+ 1 nodes. Therefore 2k + 1 is also the number of colors needed. U

A.3 Proof for Theorem 3

Theorem 3. If p > k, then col(Z%,,p, k) = ]%] = [pQTkk] + 2.
Proof. As previously noted, if p > k, the coloring problem gets reduced to one dimension.
Consider two nodes on Z._ that are exactly 2p links apart, i.e., node i and i+ 2p. Because
p > k, node i + 2p does not belong in N (i, p, k); thus, the two nodes can be assigned
the same color. Therefore, the problem reduces to coloring a tile of 2p consecutive nodes,
which can then be repeated to color the entire Z!_ lattice.

Consider 2p consecutive nodes, 0 to 2p—1. The first p—k nodes can all be assigned color
1 as they do not belong in each other’s neighborhood. The following p—k+1,---,2(p—k)
nodes have at least one of the nodes in the first group as a neighbor, so they must take a
different color, say 2. Similarly, every p—k group of nodes must take a different color. The

last node has neighbors i > 2p— (p+k) = p—k, so it cannot reuse any color, including color

1, because the tile needs to repeat. Then, the total number of colors is the partitioning of

2p nodes in p — k groups. Note that [1%1 = [Z(k;_p,;k)} = ((p2_kk)1 + 2. O

A.4 Proof for Theorem 4

Theorem 4. Assume (k + p) is even and p < k. Let, o = L%J, 8= L%J, and define

the set

d
C(d,a, B) = {x Hzlh <aand Y lw) < ﬂ} 3.10 (A1)

1=2

112



Then Vx,y € C(d, o, 8), x € N(y, p, k), i.e., C(d, o, ) constitutes a distance-k clique.

Proof. First note that o — f = p. Let z,y € C(d, «, 3). Then the following holds:

d d
e+ Y el <a, |+ ) |ul<a (A.2)
1=2 =2
d d
STlal <8, D lul < 5. (A.3)
i=2 i=2

WLOG assume x1 < y;. Then it is sufficient to show that x belongs in the left
neighborhood around y—, i.e., z € N(y~,0,k) or ly; —z1|+ Dy |yi — x| < k.

We distinguish two cases for the distance between x; and y;.

(a) y1 —x1 > p > 0. Using Theorem A.2, we have |y; — 21|+ Y i o lyi — 2| = y; —21+
Do [y — @il <l + e —p+ s lwil + X lwil <k +p—p=k

(b) 0 < y1 — 21 < p. Using Equation A.3, we have: |y; — 1| + D oi o i — x| =

it aFp Yoy —w SpH Y ul > | <p+k—p=k

A.5 Proof for Theorem 5

Theorem 5. Assume (k + p) is odd and k > p. Define C' = C(d, o, 3) UT U S, where
C(d, o, B) is defined in condition 3.10 and

d
T={z:—(p—1)<z1<pand 1 <z < [+1and 24_2 |z;| =+ 1}3.11, (A.4)

S={z:p+1<z; <a+1land |z2] <p and ||z|; = o+ 1}.3.12 (A.5)

Then Vx,y € C', x € N(y, p, k), i.e., C' constitutes a distance-k clique.
Proof. For brevity, we denote C' = C(d, a, §). Let z,y € C’, i.e., z and y belong in one
of the sets C, T, or S. Because of symmetry, we consider the following pairs of conditions

for (z,y): (C,C), (T,T), (S,9), (C,T), (C,S), (T,S).

113



Notice that the set C is the clique obtained by ¥’ = k — 1 and p. Then, case (C,C) is
covered by Theorem 4, which bounds the (displaced) distance of any two points in C' by
k' = k — 1 < k. This observation can be used to show the similarity of the cases (C,T)
and (C,S). Specifically for (C,T), x € C and any y € T will be exactly at distance 1
from some point in C, which means ||z — y[| < k' +1=k. For (C,S),ay € S is also at a
distance 1 from any point in C' by extending the first dimension.

As in Theorem 4, we assume x1 < y; and show that z belongs in the left neighborhood
around y~, ie., z € N(y~,0,k) or & = |y; — z1| + %, |y — 3| < k. We also use the

following property of absolute values,

0, if fg <0,
If =gl =1fI =gl = (A.6)
—2 -min(|f|, |g]), otherwise.

A.5.1 Case (T, T):

Using the last two conditions of 3.11, the corresponding part of Equation A.6 for xo,yo,

and 26 = k — p — 1 we have

d d d
Ziz? lyi — x| < [y2 — 22| + Zi:3 lyil + Zi:?) |z
<y — a2+ (B+1—y2]) + (B +1— |z2|)

=26+4+2—2 -min(|xs|,|y2|) <k —p—1.

Then 6 = |y — 21| + X%, [y — x| < |y1 —p — 1| + k — p — 1. Using the first condition
in 3.11 we have,
Ify—p>zithend <y —p-—z1+k—p-1<(p)—p+(p-1)+(k-p-1)=k-2<k

fyy—p<axiory;—zy <pthend<zi—y1+p+(k—p—-1)<p+k—p—-1<k.

114



A.5.2 Case (S, 9):

Again we prove z € N(y~,0, k). Based on the conditions in 3.12, 2?23 |lz;)| =a+1—x1 —

|z2|, and 2% 4 Jyi| = @ 4+ 1 — y1 — |ya|, and since 20 = k + p — 1 we have,

T R A S S IR SN 1
=y — 1|+ |y2 — x| + 20 + 2 — [z2| — |y2| — 21 — ;1
=k+p+1+(lyn —p—21| =21 —y1) + (Jy2 — 22| — |z2| = [32])
<k+p+1l+@+lyn — a1l — 21— y) — 2-min([z2l, |y2])
<k+2p+1-2-min(|z1],[y1]) — 2 min(|z2], |y2])

—k+2p+1-2p+1)=k—1<k

A.5.3 Case (T, S):

Let z € T, y € S. From the defining conditions, 1 < p < y;. We work similarly with the

previous cases, replacing the Zgzg, and noting that a4+ 5=k — 1,

6 < |y — a1+ ly2 — 22| + (@ + 1~ |y1| = |ya2l) + (B+1—|22])
=k+1+(y1 —p—21] — [n1l) + (ly2 — 22| — |y2| — |22|)

<k+1+(y1 —p—z1] — |ly1])-

Ifyr—p>ay, then [y —p—x|— || = —p—x1—-p=-p—1 < —p+(p—1)=—-1.
Thus 6 < k.

fy —p<amy, then |y —p—azi|—|lyil =x1+p—1v1 —y1 < 2p—2(p+ 1) = —2. Thus,
0<k—-1<k. O

115



A.6 Proof for Theorem 6

Theorem 6. N(0,p+ A\ k—)\) C N(0,p, k), for any A < k.

Proof. We consider only the p + A case as the p — A has a similar proof. Because of
symmetry, we consider only the positive displacements z+ and y™ from Equation 3.7. It
is sufficient to show that if z € N(0,p + A,k — \), then z € N(y™,0,%). From Equation

3.8 we have > 5 |z;| 4+ |21 — (p + A)| < k — A. We distinguish the following cases.

(a) If 21 —p > A, then also 1 > p, and thus > o ol +21 —p— A < k— X =

Z?:Q |ZEZ| + |$1 _pl S k=uzc N(Oap7 k)
(b) If x1 < p+ A, then > 7, x| — 1 + p < k — 2X\. We distinguish two sub-cases.

(b.1) If 21 <p, then > ;' o |xi| + |1 —p| <k —2X\ <k =2 € N(0,p, k).

(b.2) If x1 > p and since z1 —p < A, then Y 1" o x| +p—x1 < k—2X= >, x|+

x1—p<k—-2XA+2(x1—p)<k—2X+2\=k=x € N(0,p, k).

116



Bibliography

1]

2]

3]

4]

[5]

(6]

Femto. https://www.wm.edu/offices/it/services/researchcomputing/hw/

nodes/femto/index.php. Accessed: 2024-04-30.

Server and lab machine specifications. https://support.cs.wm.edu/index.php/

specs. Accessed: 2024-07-01.

KariL AHUJA, BRYAN CLARK, ERIC DE STURLER, DAVID CEPERLEY, AND
JEONGNIM KiM. Improved scaling for quantum monte carlo on insulators. SIAM

Journal on Scientific Computing, 33(4):1837-1859, 2011.

NIR AILON AND BERNARD CHAZELLE. Approximate nearest neighbors and the fast
johnson-lindenstrauss transform. STOC ’06, New York, NY, USA, 2006. Association

for Computing Machinery.

C. ALEXANDROU, S. BAccHiO, M. CONSTANTINOU, J. FINKENRATH,
K. HaDJiyiIANNAKOU, K. JANSEN, G. KoutTsou, H. PANAGOPOULOS, AND
G. SPANOUDES. Complete flavor decomposition of the spin and momentum frac-

tion of the proton using lattice qcd simulations at physical pion mass. Phys. Rev. D,

101:094513, May 2020.

C. ALEXANDROU, M. CONSTANTINOU, K. HADJIYIANNAKOU, K. JANSEN, AND
F. MANIGRASSO. Flavor decomposition for the proton helicity parton distribution

functions. Physical Review Letters, 126:102003, Mar 2021.

117



7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

NocA ALON, PHILLIP B. GIBBONS, YOSSI MATIAS, AND MARIO SZEGEDY. Track-
ing join and self-join sizes in limited storage. J. Comput. Syst. Sci., 64(3):719-747,

may 2002.

NocA ALON, YOSSI MATIAS, AND MARIO SZEGEDY. The space complexity of

approximating the frequency moments. page 20-29, 1996.

PATRICK R. AMESTOY, IAIN S. DUFF, JEAN-YVES L’EXCELLENT, YVES ROBERT,
FrANGOIS-HENRY ROUET, AND BORA UCAR. On computing inverse entries of a

sparse matrix in an out-of-core environment. SIAM Journal on Scientific Computing,

34(4):A1975-A1999, 2012.

WALTER E. ARNOLDI. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly of Applied Mathematics, 9:17-29, 1951.

HaiM AVRON, PETAR MAYMOUNKOV, AND SIVAN TOLEDO. Blendenpik: Su-

percharging lapack’s least-squares solver. SIAM Journal on Scientific Computing,

32(3):1217-1236, 2010.

HaiM AVRON AND SIVAN TOLEDO. Randomized algorithms for estimating the trace

of an implicit symmetric positive semi-definite matrix. J. ACM, 58(2), apr 2011.

R. BaBIcH, J. BRANNICK, R. C. BROWER, M. A. CLARK, T. A. MANTEUFFEL,
S. F. McCoRrMICK, J. C. OsSBORN, AND C. REBBI. Adaptive multigrid algorithm

for the lattice wilson-dirac operator. Physical Review Letters, 105(20), Nov 2010.

OLEG BALABANOV AND LAURA GRIGORI. Randomized gram—schmidt process with
application to gmres. SIAM Journal on Scientific Computing, 44(3):A1450-A1474,

2022.

GUNNAR S. BALI, SARA COLLINS, AND ANDREAS SCHAFER. Effective noise reduc-

tion techniques for disconnected loops in lattice qcd. Computer Physics Communi-

cations, 181(9):1570-1583, Sep 2010.

118



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

MATTHIAS BECK AND SINAI ROBINS. Computing the Continuous Discretely:

Integer-Point Enumeration in Polyhedra. Springer, 2007.

C. BEkaAs, E. KOKIOPOULOU, AND Y. SAAD. An estimator for the diagonal of a

matrix. Appl. Numer. Math., 57(11-12):1214-1229, nov 2007.

MOHAMED-ALI BELABBAS AND PATRICK J. WOLFE. Spectral methods in machine
learning and new strategies for very large datasets. Proceedings of the National

Academy of Sciences, 106(2):369-374, 2009.

A. BJORCK. Numerics of gram-schmidt orthogonalization. Linear Algebra and its

Applications, 197-198:297-316, 1994.

D. CawverTi, L. REICHEL, AND DANNY C. SORENSEN. An implicit restarted
lanczos method for large symmetric eigenvalue problems. volume 2, pages 1-21.

Kent State University, Department of Mathematics and Computer Science, 1994.

KE CHEN. Matriz Preconditioning Techniques and Applications. Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press,
2005.

CHEMSEDDINE CHOHRA, PHILIPPE LANGLOIS, AND DAVID PARELLO. Efficiency of
reproducible level 1 blas. In Scientific Computing, Computer Arithmetic, and Vali-
dated Numerics: 16th International Symposium, SCAN 2014, Wiirzburg, Germany,
September 21-26, 201/. Revised Selected Papers, page 99-108, Berlin, Heidelberg,

2015. Springer-Verlag.

A. K. CuiNg, C. B. MOLER, G. W. STEWART, AND J. H. WILKINSON. An

estimate for the condition number of a matrix. SIAM Journal on Numerical Analysis,

16(2):368-375, 1979.

119



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

ALICE CORTINOVIS AND DANIEL KRESSNER. On randomized trace estimates for in-

definite matrices with an application to determinants. Foundations of Computational

Mathematics, 22:875-903, 2022.

SANJOY DASGUPTA AND ANUPAM GUPTA. An elementary proof of a theorem of

johnson and lindenstrauss. Random Structures € Algorithms, 22(1):60-65, 2003.

ERNEST R. DAVIDSON. The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices. Journal of Com-

putational Physics, 17(1):87-94, 1975.

I. S. Durr, A. M. ErRISMAN, AND J. K. REID. Direct Methods for Sparse Matrices.

Oxford University Press, 01 2017.

B. DUMITRESCU. Positive Trigonometric Polynomials and Signal Processing Appli-

cations. Springer Publishing Company, Incorporated, 2007.

ROBERT G. EDWARDS AND BALINT JOO. The chroma software system for lattice

qcd. Nuclear Physics B - Proceedings Supplements, 140:832-834, Mar 2005.

ETHAN N. EPPERLY, JOEL A. TROPP, AND ROBERT J. WEBBER. Xtrace: Making

the most of every sample in stochastic trace estimation. SIAM Journal on Matriz

Analysis and Applications, 45(1):1-23, 2024.

XU FENG, WENJIAN YU, AND YAOHANG LiI. Faster matrix completion using ran-
domized svd. In 2018 IEEE 30th International Conference on Tools with Artificial
Intelligence (ICTAI), pages 608-615, 2018.

C.A.J. FLETCHER. Computational Galerkin Methods. Scientific Computation.

Springer-Verlag New York Inc., 1984.

JusTIN FoLEy, K. JiIMMY JUGE, ALAN O CAIS, MIKE PEARDON, SINEAD M.
RYAN, AND JON-IVAR SKULLERUD. Practical all-to-all propagators for lattice qcd.

Computer Physics Communications, 172(3):145-162, Nov 2005.

120



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

ZACHARY FRANGELLA, JOEL A. TROPP, AND MADELEINE UDELL. Random-
ized nystrém preconditioning. SIAM Journal on Matriz Analysis and Applications,

44(2):718-752, 2023.

A. FrRIEZE, R. KANNAN, AND S. VEMPALA. Fast monte-carlo algorithms for finding

low-rank approximations. In Proceedings 39th Annual Symposium on Foundations of

Computer Science (Cat. No.98CBS36280), pages 370-378, 1998.

ANDREAS FROMMER, KARSTEN KAHL, FRANCESCO KNECHTLI, MATTHIAS
ROTTMANN, ARTUR STREBEL, AND [AN ZWAAN. A multigrid accelerated eigen-
solver for the hermitian wilson—dirac operator in lattice qed. Computer Physics

Communications, 258:107615, Jan 2021.

ANDREAS FROMMER, CLAUDIA SCHIMMEL, AND MARCEL SCHWEITZER. Analysis
of probing techniques for sparse approximation and trace estimation of decaying
matrix functions. SIAM Journal on Matriz Analysis and Applications, 42(3):1290—

1318, 2021.

ARJUN SINGH GAMBHIR, ANDREAS STATHOPOULOS, AND KOSTAS ORGINOS. De-

flation as a method of variance reduction for estimating the trace of a matrix inverse.

SIAM Journal on Scientific Computing, 39(2):A532—A558, 2017.

ARJUN SINGH GAMBHIR, ANDREAS STATHOPOULOS, KOSTAS ORGINOS, BORAM
YOON, RAJAN GUPTA, AND SERGEY SYRITSYN. Algorithms for Disconnected Di-

agrams in Lattice QCD. PoS, LATTICE2016:265, 2016.

WALTER GANDER. Algorithms for the qr decomposition. Res. Rep, 80(02):1251—
1268, apr 1980.

ASSEFAW HADISH GEBREMEDHIN, FREDRIK MANNE, AND ALEX POTHEN. What
color is your jacobian? graph coloring for computing derivatives. SIAM Review,

47(4):629-705, 2005.

121



[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

GENE GOLUB AND JAMES M. ORTEGA. Scientific computing: an introduction with

parallel computing. USA, 1993. Academic Press Professional, Inc.

GENE H. GoLuB, FRANKLIN T. LUK, AND MICHAEL L. OVERTON. A block lanczos

method for computing the singular values and corresponding singular vectors of a

matrix. ACM Trans. Math. Softw., 7(2):149-169, jun 1981.

GENE H. GOLUB AND CHARLES F. VAN LOAN. Matriz Computations - 4th Edition.

Johns Hopkins University Press, Philadelphia, PA, 2013.

JEREMY GREEN, NESREEN HASAN, STEFAN MEINEL, MICHAEL ENGELHARDT,
STEFAN KRIEG, JESSE LAEUCHLI, JOHN NEGELE, KOSTAS ORGINOS, ANDREW
POCHINSKY, AND SERGEY SYRITSYN. Up, down, and strange nucleon axial form

factors from lattice qecd. Phys. Rev. D, 95:114502, Jun 2017.

JEREMY GREEN, STEFAN MEINEL, MICHAEL ENGELHARDT, STEFAN KRIEG,
JESSE LAEUCHLI, JOHN NEGELE, KOSTAS ORGINOS, ANDREW POCHINSKY, AND
SERGEY SYRITSYN. High-precision calculation of the strange nucleon electromag-

netic form factors. Physical Review D, 92(3), Aug 2015.

VICTOR GUERRERO, RONALD B. MORGAN, AND WALTER WILCOX. EKEigenspec-

trum noise subtraction methods in lattice qed. 2010.

HoNGBIN Guo. Computing trace of function of matrix. Numerical Mathematics, 9,

01 2000.

PER CHRISTIAN HANSEN. The truncated svd as a method for regularization. BIT

Numerical Mathematics, 27(4):534-553, 1987.

A.S. HOUSEHOLDER. Principles of Numerical Analysis. Dover books on mathemat-

ics. McGraw-Hill, 1953.

122



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M.F. HUTCHINSON. A stochastic estimator of the trace of the influence matrix for

laplacian smoothing splines. Communications in Statistics - Simulation and Com-

putation, 18(3):1059-1076, 1989.

ToMMY R. JENSEN AND BJARNE TOFT. Introduction to Graph Coloring. John

Wiley & Sons, Ltd, 1994.

WILLIAM JOHNSON AND J. LINDENSTRAUSS. Extensions of lipschitz mappings into

a hilbert space. Conference in Modern Analysis and Probability, 26:189-206, 01 1982.

V. KLEMA AND A. LAUB. The singular value decomposition: Its computation and

some applications. IEEE Transactions on Automatic Control, 25(2):164—176, 1980.

ANDREW KNYAZEV. Hard and soft locking hard and soft locking in iterative methods

for symmetric eigenvalue problems. Eighth Copper Mountain Conference on Iterative

Methods, 04 2004.

ScorT P. KOLODZIEJ, MOHSEN AZNAVEH, MATTHEW BULLOCK, JARRETT
DaviDp, TimMmoTHY A. DAvis, MATTHEW HENDERSON, YIFAN HU, AND READ

SANDSTROM. The suitesparse matrix collection website interface. Journal of Open

Source Software, 4(35):1244, 2019.

JESSE LAEUCHLI AND ANDREAS STATHOPOULOS. Extending hierarchical probing

for computing the trace of matrix inverses, 2020.

CORNELIUS LANCZOS. An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators. Journal of Research of the National

Bureau of Standards, 45:255-282, 1950.

LiN LiNn, CHAO YANG, JUuAN C. MEzA, JIANFENG LU, LEXING YING, AND

WEINAN E. Selinv—an algorithm for selected inversion of a sparse symmetric matrix.

37(4), 2011.

123



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

JUN S. Liu. Monte Carlo Strategies in Scientific Computing. Springer New York,
New York, NY, 2004.

G.G. LORENTZ. Bernstein Polynomials, volume 8. Chelsea Publishing Company,

1986.

PER-GUNNAR MARTINSSON AND JOEL A. TROPP. Randomized numerical linear

algebra: Foundations and algorithms. Acta Numerica, 29:403-572, 2020.

D.F. MCALLISTER, G.W. STEWART, AND W.J. STEWART. On a rayleigh-ritz
refinement technique for nearly uncoupled stochastic matrices. Linear Algebra and

its Applications, 60:1-25, 1984.

XIANGRUI MENG AND MICHAEL W. MAHONEY. Low-distortion subspace embed-

dings in input-sparsity time and applications to robust linear regression. In Proceed-
ings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC

"13, page 91-100, New York, NY, USA, 2013. Association for Computing Machinery.

H. B. MEYER. Lattice QCD: A Brief Introduction, pages 1-34. Springer International
Publishing, Cham, 2015.

RAPHAEL A. MEYER, CAMERON Musco, CHRISTOPHER MUSCO, AND DAvVID P.

WOODRUFF. Hutch++: Optimal Stochastic Trace Estimation, pages 142—155.

JOHN MITCHEM. On Various Algorithms for Estimating the Chromatic Number of

a Graph. The Computer Journal, 19(2):182-183, 05 1976.

RONALD B. MORGAN. Preconditioning eigenvalues and some comparison of solvers.

Journal of Computational and Applied Mathematics, 123:101-115, 2000.

RoNALD B. MORGAN AND DAVID S. SCOTT. Generalizations of davidson’s method

for computing eigenvalues of sparse symmetric matrices. SIAM Journal on Scientific

and Statistical Computing, 7(3):817-825, 1986.

124



[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

RoNALD B MORGAN AND MIN ZENG. Harmonic projection methods for large non-

symmetric eigenvalue problems. Numerical linear algebra with applications, 5(1):33—

55, 1998.

CHRISTOPHER W. MURRAY, STEPHEN C. RACINE, AND ERNEST R. DAVIDSON.
Improved algorithms for the lowest few eigenvalues and associated eigenvectors of

large matrices. Journal of Computational Physics, 103(2):382-389, 1992.

YUJi NAKATSUKASA AND JOEL A. TROPP. Fast & accurate randomized algorithms

for linear systems and eigenvalue problems, 2022.

JELANI NELSON AND HUY L. NGUYEN. Osnap: Faster numerical linear algebra
algorithms via sparser subspace embeddings. In 2018 IEEE 54th Annual Symposium

on Foundations of Computer Science, pages 117-126, 2013.

RoLAND OMNES. Consistent Histories and the Interpretation of Quantum Mechan-

ics, pages 215—224. Springer Netherlands, Dordrecht, 1995.

CHRISTOS H. PAPADIMITRIOU, HISAO TAMAKI, PRABHAKAR RAGHAVAN, AND
SANTOSH VEMPALA. Latent semantic indexing: a probabilistic analysis. In Proceed-
ings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS "98, page 159-168, New York, NY, USA, 1998. Associ-

ation for Computing Machinery.

B. N. PARLETT AND D. S. ScoTT. The lanczos algorithm with selective orthogo-

nalization. Mathematics of Computation, 33(145):217-238, 1979.

BERESFORD N. PARLETT. The Symmetric Figenvalue Problem. Society for Indus-

trial and Applied Mathematics, 1998.

DAVID PERSSON, ALICE CORTINOVIS, AND DANIEL KRESSNER. Improved variants
of the hutch++ algorithm for trace estimation. SIAM Journal on Matriz Analysis

and Applications, 43(3):1162-1185, 2022.

125



[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

CLAUDIA RATTI AND RENE BELIWIED. Introduction to Lattice QCD, pages 3—22.

Springer International Publishing, Cham, 2021.

VLADIMIR ROKHLIN AND MARK TYGERT. A fast randomized algorithm for overde-
termined linear least-squares regression. Proceedings of the National Academy of

Sciences, 105(36):13212-13217, 2008.

ELoy ROMERO, ANDREAS STATHOPOULOS, AND Ko0OSTAS ORGINOS. Multigrid

deflation for lattice qcd. Journal of Computational Physics, 409:109356, May 2020.

YOUSEF SAAD. [terative Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, second edition, 2003.

YOUSEF SAAD. Numerical Methods for Large Eigenvalue Problems. Society for

Industrial and Applied Mathematics, 2011.

TAMAS SARLOS. Improved approximation algorithms for large matrices via random
projections. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 143-152, 2006.

ALEXANDER P SEYRANIAN, ERIK LUND, AND NIELS OLHOFF. Multiple eigenvalues

in structural optimization problems. Structural optimization, 8(4):207-227, 1994.

HorsT D. SIMON. The lanczos algorithm with partial reorthogonalization. Mathe-

matics of Computation, 42(165):115-142, 1984.

ANDREAS STATHOPOULOS. Locking issues for finding a large number of eigenvectors

of hermitian matrices. Technical report, William & Mary, 2005.

ANDREAS STATHOPOULOS. Nearly optimal preconditioned methods for hermitian
eigenproblems under limited memory. part i: Seeking one eigenvalue. SIAM Journal

on Scientific Computing, 29(2):481-514, 2007.

126



[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

98]

ANDREAS STATHOPOULOS, JESSE LAEUCHLI, AND KOSTAS ORGINOS. Hierarchical
probing for estimating the trace of the matrix inverse on toroidal lattices. SIAM

Journal on Scientific Computing, 35(5):5S299-S322, 2013.

ANDREAS STATHOPOULOS AND JAMES R. McCoMBS. Nearly optimal precondi-
tioned methods for hermitian eigenproblems under limited memory. part ii: Seeking

many eigenvalues. SIAM Journal on Scientific Computing, 29(5):2162-2188, 2007.

ANDREAS STATHOPOULOS AND JAMES R. McComMBS. Primme: Preconditioned

iterative multimethod eigensolver—methods and software description. ACM Trans.

Math. Softw., 37(2), apr 2010.

ANDREAS STATHOPOULOS AND YOUSEF SAAD. Restarting techniques for the
(jacobi-)davidson symmetric eigenvalue methods. FElectronic Transactions on Nu-

merical Analysis, 7:163-181, 1998.

ANDREAS STATHOPOULOS, YOUSEF SAAD, AND KESHENG WU. Dynamic thick
restarting of the davidson, and the implicitly restarted arnoldi methods. SIAM
Journal on Scientific Computing, 19(1):227-245, 1998.

G. W. STEWART. Matriz Algorithms. Society for Industrial and Applied Mathemat-
ics, 1998.

M. H. STONE. The generalized weierstrass approximation theorem. Mathematics

Magazine, 21(4):167-184, 1948.

JOK M. TANG AND YOUSEF SAAD. A probing method for computing the diagonal of

a matrix inverse. Numerical Linear Algebra with Applications, 19(3):485-501, 2011.
Jos THIJSSEN. Computational Physics. Cambridge University Press, 2 edition, 2007.

LroyDp N. TREFETHEN AND DAVID BAuU, III. Numerical Linear Algebra. Society

for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

127



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

RICHARD S. VARGA. Extrapolation methods: theory and practice. Numerical Al-

gorithms, 4:305, 1993.

WALTER WILCOX. Noise methods for flavor singlet quantities. In Numerical Chal-
lenges in Lattice Quantum Chromodynamics, Andreas Frommer, Thomas Lippert,
Bjorn Medeke, and Klaus Schilling, editors, pages 127-141, Berlin, Heidelberg, 2000.

Springer Berlin Heidelberg.

MEI NING WONG AND FRED J. HICKERNELL. Quasi-monte carlo sampling for

computing the trace of a function of a matrix, 2002.

FrRaNCO WOOLFE, EDO LIBERTY, VLADIMIR ROKHLIN, AND MARK TYGERT. A
fast randomized algorithm for the approximation of matrices. Applied and Compu-

tational Harmonic Analysis, 25(3):335-366, 2008.

KESHENG WU AND HORST SIMON. Thick-restart lanczos method for large sym-

metric eigenvalue problems. SIAM Journal on Matriz Analysis and Applications,

22(2):602-616, 2000.

LINGFEI WU, FEI XUE, AND ANDREAS STATHOPOULOS. Trpl+k: Thick-restart
preconditioned lanczos+k method for large symmetric eigenvalue problems. SIAM

Journal on Scientific Computing, 41(2):A1013-A1040, 2019.

BOrRAM YOON, RAJAN GuprTA, TANMOY BHATTACHARYA, MICHAEL ENGEL-
HARDT, JEREMY GREEN, BALINT JOO, HUEY-WEN LIN, JOHN NEGELE, KOSTAS
ORGINOS, ANDREW POCHINSKY, AND ET AL. Controlling excited-state contamina-

tion in nucleon matrix elements. Physical Review D, 93(11), Jun 2016.

MARTIN P. W. ZERNER. Directional decay of the Green’s function for a random

nonnegative potential on Z%. The Annals of Applied Probability, 8(1):246 — 280, 1998.

Rut ZuaNG, HUEY-WEN LIN, AND BORAM YOON. Probing nucleon strange and

charm distributions with lattice qed. Physical Review D, 104(9), Nov 2021.

128



	Probing With Displacements For Variance Reduction And The Effectiveness Of Sketched Krylov Eigenvalue Solvers
	Recommended Citation

	Dissertation.pdf

