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ABSTRACT

Considerable research has been performed with regard to using text-to-text
machine learning methods to perform various software engineering tasks. At the
same time, contrastive learning has shown promise in other modalities, such as
computer vision-related problems, and has been explored to some extent in terms
of limited software engineering tasks. We demonstrate that contrastive loss, on its
own, is insufficient to surpass current baselines for these tasks; however, we note
that there is a high degree of orthogonality in the results from existing and
contrastive models.
We show that when our contrastive method is used as an additional transfer
learning step in the training process, the results contain a large portion of the
overlap between the distinct models, as well as producing new positive results,
effectively capturing the majority of the results from the distinct models and
increasing overall model accuracy. By employing this method, we are able to
exceed the baseline accuracy of four software engineering tasks by varying margins,
ranging from marginal (<1%) to 262% during single beam tests, with minor
improvements at selected other beam sizes, in both single- and multi-task training
strategies.
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Chapter 1

Introduction

Machine learning methodologies related to software engineering have been a focus of con-

siderable research [30]. In particular, work related to the repair of software bugs, injection

of code mutants, assert generation, and code summarization via neural machine transla-

tion (NMT) have seen progress via the usage of transformers and transfer learning [17].

While robust testing, both human and automated, can lead to a decrease in the resource

requirements for bug repair [1], a method for the automatic repair of bugs is desirable for

cost and frustration reduction. These developments are of great importance to the software

engineering community; the time and resources dedicated to code repair, for example, are

estimated to make up approximately 16% of software development costs [15], and taking a

considerable portion of development time usage [18]. In addition, other repetitive software

engineering tasks, such as the generation of assert statements, represent an area where an

automatic generation method would reduce workloads for developers.

It is important to note that repairing a bug, for a software developer, is not simply

replacing the faulty text with the appropriate variation; it is localizing and identifying

the bug, determining the appropriate fix, and considering the impact of that fix on the

code as a whole. In this research, when we reference code repair or fixing a bug, we are

concerned with the corrective actions necessary to transform the bug into fixed code, and

not with localization or other concerns. Code mutant injection contributes to security-
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related software engineering tasks like test suite creation. This presents its own unique set

of challenges, such as determining which mutants are plausible with a given input of code,

though it keeps in common the time-related detriments of bug repair. Assert generation

can lead to more robust unit testing.

The capability to automatically repair software bugs and generate code mutants, along

with myriad other text-to-text software engineering tasks, lends itself well to transformer-

based approaches; we frame the problem in the same way one might consider the translation

between two human languages [3]. Code, like human language, is structured and carries

meaning. As with human language, there is often more than one way to convey a given

idea. Consider translation between English and Spanish. It would be insufficient to simply

translate each word, one at a time, between the vocabularies of the two. Instead, an

effective translator would consider not only the strict word meanings between languages,

but their order, grammatical nuances, and other connotations that are not provided by

dictionaries alone. When we discuss fixing a bug (or other software engineering tasks) via

NMT methods, it is not only appropriate but fundamental to the implementation that we

regard this process as translating the code from some buggy origin to its fixed alternative,

or whatever source and destination configuration is appropriate given the task.

Of particular note and importance to our efforts in this area of research is the overlap be-

tween text-based and vision-based problems. Methodologies such as masked auto-encoders,

which started in the text domain and made vast improvements in the vision domain, are

one such example [12]. In that vein, we seek to employ contrastive learning to improve the

accuracy of bug repair and mutant generation tasks. Contrastive loss is highly effective

in vision-based tasks [14], and has shown usefulness crossing over into code-related NMT

tasks [8].

In this effort, we propose to extend the research of Mastropaolo et al. [17] by changing

elements of the loss function and dataset construction. We find that contrastive learning is

capable of finding orthogonal results to the baseline, though at a lower rate. Therefore, we

use transfer learning to incorporate the benefits of the baseline method and our novel con-
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trastive learning with scheduled temperature implementation to create a combined result

of greater magnitude than either method independently, capturing a variable proportion of

the correct results of the baseline while adding new correct results from the novel method.
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Chapter 2

Background

Machine learning provides a method for predicting the solutions to problems. In its most

general form, the machine learning model seeks to learn some unknown function, F, by

learning the pattern in data provided. The data is provided as a series of input features,

X, and learning is the process of training the model to predict a given label or output, Y.

Thus the process of machine learning can be given as:

F : X → Y

The process of learning, in a machine learning context, is represented through the

adjustment of weights. These weights, or parameters, are stored as a numeric value repre-

senting the vector perpendicular to a line or hyperplane, dividing various representations

in a space. As new data is introduced while training a model, these vectors are adjusted

based on the response of a loss function that determines the difference between the correct

answer and the predicted answer via a process called back propagation, causing points in

that space to be appropriately grouped together. The particulars of this process are well-

known within the research community and are not themselves the topic of our work; it is,

however, necessary to state that the selection of a particular loss function is instrumental

in determining how a given machine learning model learns from data.

Consider a software bug and a given fix - solutions can be wide-ranging, but in general
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the fix is some variation on the bug. For example, an incorrect operator or the improper

arrangement of two functions. A bug can have many causes, such as an incorrect implemen-

tation of logic, system or compatibility-related issues, or syntax errors. For our discussion

of this problem, we refer to these two code segments as mbug and mfix, and seek to find an

mfix such that the new code segment no longer produces the erroneous behavior present

in the original code segment. We refer to the tuple (mbug,mfix) as a Bug-Fix Pair (BFP),

noting that the given mfix is not necessarily the only solution, simply the solution present

in the dataset. Conversely, a code mutant can be expressed as the inverse of such a tu-

ple, (mfix,mbug), given that a correct code segment will be translated into a buggy code

segment. For assert generation, the provided pair is represented as (mtest,massert), as the

input and output are not an edit of the input, but instead an appropriate assert derived

from the context of the input segment. In each case, the issue of considering a valid fix,

mutant, assert as only that which is present in the ground truth of our data is present.

This collection of tasks contains two different patterns of output; bug repair and mutant

generation tasks are concerned with editing the input into an output, while assert genera-

tion seeks to replace a predetermined tag with the appropriate line of code, eschewing the

remainder of the input with regard to the generated text. Table 2.1 provides examples of

these tasks.

Within the realm of software engineering tasks, we concern ourselves with both features

and targets that both consist of text. For example, in the framework of using machine

learning to learn bug repair, we can reframe our machine learning paradigm to state:

F : mbug → mfix

Given these parameters, the goal is to determine a method that effectively translates

between the two code segments. Unlike the base example of machine learning, we are

seeking to predict a string of outputs that compose the final code segment. In the domain

of human language translation, transformers have demonstrated a capability on par with

6



Task Sample Input Sample Output

Bug
Repair

public java.lang.String METHOD_1()
{

return new TYPE_1 (STRING_1)
.format(VAR_1[((VAR_1.length)-1)]
.getTime());

}

public java.lang.String METHOD_1()
{

return new TYPE_1 (STRING_1)
.format(VAR_1[((type)-1)]
.getTime());

}

Mutant
Generation

public TYPE_1 node()
{

return this.VAR_1;
}

public TYPE_1 node ()
{

return this.node;
}

Assert
Generation

setBrokerShareVisible ()
{

m.setBrokerShareVisible(true);
""<AssertPlaceHolder>"";

}
isBrokerShareVisible ()
{

return brokerShareVisible;
}

org.junit.Assert.assertTrue(m.isBrokerShareVisible())

Table 2.1: Selected samples of task-related pairs.

that of human interpreter output [22]; given the similarity of the problem, it is reasonable to

consider the transformer architecture as an appropriate vehicle for our task. In their 2017

work [29], Vaswani et al. introduced the transformer architecture, which has been used

to great effectiveness in research related to natural language processing (NLP) and NMT.

Specifically, it excels at text translation and adjacent fields. Of particular importance in

the architecture is the concept of an attention layer, which focuses on each element of the

input sequence to determine its importance to other input sequence elements, providing

the model a variety of context when considering those elements. This development gave

the architecture an advantage over previous methods, such as Long Short-Term Memory

models [13].

The transformer architecture is delineated into an encoder and decoder, which are re-

sponsible for learning the formation of latent space representations from the input sequence

and generating the output sequence, respectively. The loss function for the encoder and

decoder is typically cross-entropy loss, due to its ability to determine the (dis)similarity

between the training target and the predicted probability distribution.

Of course, the approach does come with its limitations, in that such an architecture

learns from the provided data, and any output produced at test time is restricted to a

rearrangement of the tokens which it has learned [28]. Variables and other named elements
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in code present a risk of creating a large vocabulary problem. To subvert this issue, we

employ code abstraction to reduce the number of idioms present in both training and test.

We also note a key difference between the use case of human language translation and

that of code repair and mutant generation: in a human language translation, the intent

is to convey the same meaning, while in the software engineering tasks presented, it is to

correct or break the meaning, or to generate the appropriate assert from its context.
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Chapter 3

Related Works

3.1 Transformers and Contrastive Loss

In 2020, Raffel et al. created the Text-to-Text Transfer Transformer (T5) architecture [23].

T5 uses a byte-pair encoding method of tokenization, enabling the model to perform tasks

with inputs that may not be found in the training vocabulary; as we are constructing code

outputs that can vary greatly, this aspect of the T5 transformer is particularly useful.

There are several size variants of the T5 architecture, ranging from small (60 million

parameters) to larger models with billions of parameters; for our methods, we use the

small variant. The default T5 transformer continues to employ cross entropy loss, and the

baseline we measure against follows this method, and is covered in more detail in Chapter

4: Methodology.

Converse to the cross entropy loss default, contrastive loss seeks to create a distribu-

tion space where similar embeddings have a lower distance between them while ensuring

dissimilar embeddings have a greater distance. To enable this dual functionality, datasets

used with contrastive learning require augmentation to provide additional inputs that are

similar in nature. While image dataset augmentation has numerous methodologies for

augmentation, it is a more difficult problem with text datasets, specifically code-centric

ones [8]; we cannot simply change the color or horizontally flip our code inputs. Instead, we
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perform this augmentation using a rules-based Java-language code augmentation tool [34],

which generates semantically identical variations of the code input using a rules-based

approach.

While contrastive learning has made an impact in research related to image-based

tasks [14], there is area for growth in the domain of NMT and software engineering-related

machine learning. Research related to the use of contrastive learning in software engineer-

ing tasks has been performed by Ding et al., with emphasis on clone and bug detection;

the work primarily focuses on the problem of out-of-distribution elements and how to cor-

rect the issue [8]. We also note that the crossover between text and image modalities has

shown improvements in the past, such as in the work of He et al. which demonstrated that

masked auto-encoders (MAEs) were capable of producing accurate results in image-related

tasks after being initially used in text-related ones [12].

An important aspect of a contrastive loss function is the idea of temperature - a lower

temperature parameter tends to produce more determinant results, while a higher temper-

ature tends toward the exploratory. Additional research has been performed concerning

the use of scheduling changes in temperature throughout training [16], which has shown in-

creased representational learning. We employ scheduled temperature changes using several

growth models (linear, Fibonacci, decreasing) in our efforts.

3.2 Transfer Learning

Transfer learning is not a new concept; the first related paper with regard to neural net-

works was published in 1976 [4]. The essential element is that a network trained on one

topic can utilize the learning already performed to enhance its capabilities in learning a sep-

arate, but related, topic. These processes are referred to as "pretraining" and "fine-tuning"

the model. Multi-task learning (MTL), where a single pretrained model is simultaneously

fine-tuned on several downstream tasks, has been shown to be effective [35].

In our work, we use a T5 model that has been pretrained on a large dataset of code
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and code-related text, then fine-tuned on task-specific datasets for bug fixing (small and

medium variants), mutant generation, and assert generation; this model has been trained

using cross-entropy loss. We use transfer learning from the models provided in the base-

line [17], with the key differences being (a) the datasets have been augmented to include

modified, though similar, elements and (b) contrastive learning is used for the encoder

portion of the transformer. As the decoder is concerned with creating the output and not

learning the latent representation, it is not altered.

3.3 Bug Fixes, Mutant Generation, and Assert Generation

Early research in this domain by White et al proposed deep learning methodologies for

software engineering task applications, and uses recurrent neural networks (RNNs) for

training experiments ; the authors describe their work as "one step—the first step—toward

deep learning software repositories" [33]. As an anchor point for this effort, our research

seeks to extend the work by Mastropaolo et al. [17], which continued in the tradition of

White et al. along with that of Tufano et al. [28], with the addition of the transformer

architecture. This study demonstrates an attention-based method for repairing code by

learning the patterns associated with bug-fix pairs in a large corpus of software changes.

The authors were able to attain between 9% and 50% accuracy in selecting the correct fix

for a given bug. Additional work by many of the same authors [27] further clarifies the

design decisions of their research. Further research by Chen et al. [5] similarly tackled the

task of bug fix selection, though specifically on one-line changes, unlike [28] and [27] which

performed at the function level. Additional work by White et al. confirmed the use of deep

learning techniques for software engineering tasks, in this case clone detection, achieving

9̃3% success rates across multiple types of clones at the file and function levels [32]. While

we do not consider clone detection in our task list, similar data preparation methods in the

form of abstracted syntax, are employed. Further, the details of learning from fragments

of code in a deep learning environment is essential to our research.
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Earlier work by Hajipour et al. [11] used conditional variational auto-encoders (CVAE)

to learn distributions of potential fixes, with a focus on learning diverse solutions to the

given bugs. Focusing on fixing small and medium C-based bugs, it focused on a smaller

dataset than employed in our research, but achieved a high degree of accuracy. This, in

turn, was based on the research of Gupta et al. [10], which similarly provided a method for

fixing bugs in C code; Hajipour et al. highlight that one problem with similar automated

software repair methods resides in the discrepancy between the generation of a fix by the

model and the intent of a developer.

Work by Mousavi et al. [20] logically delineates automatic software repair into two

categories: runtime (preventing/rescuing from fault at execution) and source code (repair-

ing prior to runtime); our research is focused on the latter. Their research focused on

identifying the various hurdles that automated attempts at software repair face, among

them the difficulty in finding a suitable fix when the complexity of the bug becomes too

high, referencing the work of Motwani et al. [19], who state that under specific syntactic

scenarios such as adding additional loops, these types of methods tend to fail. Motwani

et al. further point out that bugs which require changes to method signatures present an

additional level of complexity that is troublesome for automated methods.

Mutant generation has been approached in baseline research [17]. The use of code

mutants was proposed by DeMillo et al. [6] as a method of testing test cases by insert-

ing small defects into code, which at the time of writing was based on FORTRAN code

segments. Later work by Aşık et al. [2] produced a method of generating python-based

mutants, using transformer architecture and abstracted code. The paper considers those

results that are perfect predictions and similar to perfect predictions, and relays a 6% to

35% accuracy rate, with higher accuracy when counting "other buggy codes" produced,

with a high degree of lexical accuracy in produced code.

Research by Shamshiri et al. [24] suggests the use of of a search-based approach to

produce adequate software tests that would identify changes in the code base. Watson et al.

introduced AuTomatic Learning of Assert Statements (ATLAS), a method for generating
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assert statements for a given code input using an NMT approach. This work proceeded

from previous efforts [9] [21] that did not employ deep learning based approaches. The

authors are able to achieve 31% generation of the same assert statement as one created by

a live developer in single beam generation, with results of 50% accuracy when expanding

to a top-5 evaluation [31]. This was improved in the work of Mastropaolo et al. [17] to

56% for abstracted code and 68% with raw code inputs.
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Chapter 4

Methodology

The baseline we adopt from Mastropaolo et al. [17] introduces a method for tackling

multiple software engineering tasks using a transformer-based approach. The T5 model

is pretrained on a large corpus of code and code-related data (such as summaries), which

is in turn fine-tuned on task specific datasets. We adopt their datasets (derived from

[28], [27], [31]), with augmentation as outlined in Section 4.1, and begin with the code

provided by their research. While Mastropaolo et al. experiment with both pretrained

and unpretrained versions of T5, we instead continuing fine-tuning their existing models

with our additional contrastive loss approach.

Figure 4.1 provides a visual representation of our process, and is detailed below.

Figure 4.1: Process diagram for including contrastive loss as an additional learning pass.

Testing of contrastive loss in this area begins by utilizing the model code from the

14



baseline [17], with our implementation of contrastive loss for Mesh Tensorflow [25] to

facilitate Tensor Processing Unit (TPU) training. Further, we replace the baseline datasets

with our augmented datasets (see Section 4.1). We conduct a series of trials to determine

potential starting points for temperature as a hyperparameter.

Our method for scheduled training continues the transfer learning approach on the

baseline by performing a second round of fine tuning on the existing model that uses a

scheduled contrastive loss objective function to attempt to increase the performance of the

T5 model in the selected tasks. We focus on four tasks from the baseline [28], namely small

bug fixes (BFS), medium bug fixes (BFM), mutant generation (MG), and assert generation

(AG). BFS and BFM are treated as distinct tasks. We do not consider the remaining task

present in the baseline, Code Summarization, as it is not a code-to-code task, producing

a plaintext description from the supplied code snippet; we are primarily concerned with

code-to-code generation.

We implement a custom training loop to perform continued transfer learning using

temperature-based contrastive learning with the stated schedulers (linear, Fibonacci, and

decreasing). The selection of an appropriate temperature for this work is regarded as an

additional hyperparameter; we will vary the temperature ranges and schedules to tune it.

The schedulers, at each iteration, increment (or decrement) the temperature value of the

contrastive loss function by a rate that is determined by dividing the range of temperature

change steps over the course of the planned training period. For linear schedules, this is

simply the difference in the high- and low-temperature values. For the Fibonacci-based

schedulers, it is the cardinality of the indices of Fibonacci values to be used.

Our primary concern is increasing the accuracy at various beam sizes, aligned with

the baseline. Further, we will analyze the differences in the accurately predicted results

with those of the baseline to determine orthogonality. We will also observe the differences

in training duration; we begin this effort with the expectation that contrastive scheduled

learning will take longer to perform, due to the increased size of the dataset after applying

the data augmentation.
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We intend to answer the following research questions:

• RQ1: What effect does contrastive loss in continued transfer learning have on code

repair, mutant generation, and assert generation prediction accuracy?

Our figure of merit will be the accuracy at selected beam sizes (1, 5, 10, 25, 50) for

the Bug Fix (Small), Bug Fix (Medium), and Assert Generation tasks, and beam

size 1 for the Injection of Code Mutants task, in keeping with the baseline paper.

• RQ2: What are the limitations of temperature-based contrastive loss in these tasks?

Our implementation of scheduled contrastive loss is, to the best of our knowledge,

novel for use within a MeshTensorflow-based approach to T5-based software engi-

neering task machine learning research. As such, we seek any issues introduced by

our specific implementation, as well as general limitations noted during our efforts.

• RQ3: What overlap do the results have with the baseline method?

Our stated goal is to increase accuracy while maintaining the results captured in

the baseline. We consider the proportions of baseline results that are still present in

the results from our method compared against the unique results produced by the

contrastive learning model.

4.1 Data Augmentation & Processing

Our datasets are derived from those presented in the baseline [28]. We employ separate

datasets for BFS, BFM, MG, and AG. In order to augment the dataset with function-

ally equivalent alternatives, we generate variants using [34] (specifically, a configurable

implementation available at [7]) based on the following rules:

• Boolean Exchange

• Conditional Expression to Single If

• Infix Expression Dividing
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• Loop Exchange

• Loop If Continue to Else

• Reverse If Else

• Single If to Conditional Expression

While there are additional rules available in the augmentation tool, we limited the list

based on two criteria. First, after an initial test run, which rules reliably provided multiple

results for our input set. Second, we removed rules that provided only boilerplate inser-

tions, such as inserting a single dummy log statement; the reasoning behind this decision

is that we seek changes with functional equivalence and substance in the code difference.

As every input sequence would, keeping with the example, be capable of receiving an extra

meaningless line, it would not generate a semantically similar and substantially, textually

different variation.

Only the training data is augmented; the test sets are left in their original state to

make comparison with the baseline clear. Once the data has been augmented, it is passed

through the src2abs tool [26] to create the necessary abstractions. The exception is the

Assert Generation dataset, which is left in raw form; we note that in the baseline [17],

the raw formatted AG task exceeds the accuracy of the abstracted version. Finally, we

create a "stacked" dataset to ensure that the variations are distributed well throughout,

with the goal of not having too many variations of the same original input present in any

given batch. For each task, ten variations of the input dataset are generated and then

concatenated. Appendix B provides a selection of samples of augmented code elements

and additional details.

Table 4.1 provides a summary of the increases in dataset size produced by this aug-

mentation. We note that BFM received the largest increase in size, which follows from the

nature of the datasets. BFS and MG both tend to have smaller inputs and targets, while

BFM has more room for elements that the tool can consider for augmentation.
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Dataset Initial Count Augmented Count % Increase
BFS 46680 53154 13.87%
BFM 52364 119234 127.70%
MG 92477 110316 19.29%
AG 126,477 184791 46.05%

Table 4.1: Summary of dataset size increases using the semantic-preserving augmentation
method.

Original Variant
public void METHOD_1 (android.view.View view)
{

if (!((context) instanceof TYPE_1))
{ }

else
{

((TYPE_1) (context)).METHOD_2(string);
}

}

public void METHOD_1 (android.view.View view)
{

if ((context) instanceof TYPE_1)
{

((TYPE_1) (context)).METHOD_2(string);
}

else
{ }

}

Table 4.2: A sample from the BFS dataset, processed through the augmentation and
abstraction processes.

Table 4.2 provides a sample of an augmentation, post-abstraction - in this case, the

swapping of branches in an if...else statement via the Reverse If Else rule. The condition at

the beginning of the statement is reversed, and the branches are exchanged. This provides

the semantically similar, textually different desired variation.
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Chapter 5

Results

Of the three contrastive temperature schedulers, the Fibonacci-based scheduler outper-

formed the linear and linear-decreasing schedulers in most cases, though relatively close.

For example, the linear and linear-decreasing methods for BFS provided accuracy of

20.5%, with the Fibonacci scheduler achieving 21.2%. We attempted Fibonacci-decreasing

method as well, resulting in 20.8%. As such, we continued with the Fibonacci scheduler

for our further attempts, increasing the temperature from the first through tenth Fibonacci

numbers over the course of training.

Accuracy generally declined after 20 epochs. As each dataset is composed of ten varia-

tions, including some duplicates in cases where ten variations were not generated by [7], is

approximately the length of ten of the baseline datasets, this can be considered equivalent

to 200 epochs. This is done to increase the instances in which differentiation between

similar and dissimilar samples are encountered, giving the contrastive loss function oppor-

tunities to increase the distance in the representation.

5.1 Research Question 1

What effect does contrastive loss in continued transfer learning have on code repair, mutant

generation, and assert generation prediction accuracy?

The results of these experiments can be seen in Tables 5.1 & 5.2. For the single-task
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models (Table 5.1), our methods provide a marked increase in the accuracy of BFS and

BFM tasks (40.7% and 8.9%, respectively), while providing a very minor increase in MG

accuracy (0.9%) on Beam 1. The AG task fails to exceed the baseline figures at any tested

beam sizes. In later beam sizes, only the BFM task improved on the baseline at Beam 5,

showing a 1.1% increase. All other trials for single task models fail to pass the baseline,

with the divide growing as the beam size increases.

For the multi-task model, markedly higher improvements in accuracy are seen on Beam

1. BFS and BFM increase by 96.5% and 262.5%, respectively, with MG continuing to have

a lesser increase at 2.7%. For Beam 5, BFS and BFM show 0.3% and 5.2% increases. As

with the single-task models, later beam sizes do not see an improvement over the baseline

for BFS and BFM, and MG is restricted to the first beam.

The results for the AG testing in the multitask model exceed the baseline at all tested

beam sizes except Beam 50. The largest gains occur in Beam 1, as with most other trials,

with a 32.1% increase. As the beam size increases, the difference between the experimental

and baseline accuracies begins to converge, with the Beam 50 accuracy falling to 0.2% below

the baseline.

With these results, we can state that contrastive loss in continued transfer learning

leads to higher accuracy for these tasks at early beam sizes, with diminishing returns for

additional beam sizes until a breakpoint at which cross entropy loss alone becomes more

accurate.

5.2 Research Question 2

What are the limitations of temperature-based contrastive loss in these tasks?

Due to the nature of the temperature scheduler, which changes over the course of the

planned training length and not on a per-epoch basis, we conduct initial model runs to

determine the appropriate number of epochs to perform. This is done empirically, with 20

epochs of the stacked augment datasets providing the highest accuracy in each case. This
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adds some time considerations to training, as training at e.g. 10, 20 and 30 epochs requires

three separate training runs; early stopping is not an option with this implementation.

As noted in Section 5.1, the accuracy of our method decreases versus the baseline as

the beam sizes increase, until the improvement vanishing entirely. Thus we consider the

beam size as a limitation of this approach; for tasks which rely on higher beam sizes, there

comes a point when cross entropy loss alone dominates our method.

We also find examples where the generated code output is feasibly an acceptable fix,

mutant, or assert for the input, but does not match the ground truth of the dataset.

Appendix A provides samples of failed predictions for the experimental results, to include

those suitable but imperfect predictions, and an analysis of the same.

5.3 Research Question 3

What overlap do the results have with the baseline method?

For this analysis, we consider whether results in one result set are present in the other;

for example, in the BFS task, what portion of the baseline results does the experimental

contrastive model capture? This is done by comparing the inclusion of indices from the

test set in each result set. We consider these counts as a proportion of the baseline, which

we call the unique multiple. A unique multiple value less than one indicates that the given

task did not exceed the baseline, such as with the Single Task AG results. These results

can be found in Table 5.3. As the mutant generation task is restricted to beam size 1,

it is excluded from this section of analysis. A higher unique multiple can indicate the

experimental model produced more results than the baseline, though it does not indicate

that baseline results were captured. Thus we also calculate what percentage of the total

results in the experiment are contained in the joint set.

For the single task BFS trial, we see that the largest proportion of results are contained

in the joint set (55.493%), which combined with the unique multiple (2.855) indicates an

ideal scenario for our method - the accuracy increased without losing too many of the
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baseline results. For the BFM trial, we can see the opposite. The joint percent of shared

results is very low (12.899%) with a unique multiple of 1.103 indicates a situation with

higher overall accuracy, but many of the results from the baseline are not captured in the

new model. Finally, the AG trial shows a scenario where the overall accuracy decreased,

albeit slightly, but with an exceptionally high joint percent value. This indicates a similar

overall output, with more results lost than gained.

The multitask model, while demonstrating generally more favorable results, provides

an interesting contrast to the single task. The BFS trial experiences a lower joint percent

and a higher unique multiple (32.231% and 3.622, respectively), showing a high accuracy

increase as discussed in Section 5.1. The AG trial, which failed in the single task version,

rises slightly over the baseline. Similar to the single task version, it maintains a high joint

percent and low overall unique multiple. The BFM trial for this beam size, representing the

highest accuracy increase seen in this research, also has the lowest joint percent (3.926%)

and the highest unique multiple (4.059). A near-negligible amount of the results from the

baseline are kept in the new method.

Beam
Task 1 5 10 25 50

Bug Fix (Small) Baseline 15.08 32.08 37.01 42.51 45.94
Experiment 21.22 31.68 35.40 40.23 43.80

Bug Fix (Medium) Baseline 11.85 19.41 23.28 28.60 32.43
Experiment 12.91 19.64 22.34 25.57 28.42

Mutant Generation Baseline 28.72
Experiment 28.98

Assert Generation Baseline 68.93 75.95 77.70 79.24 80.22
Experiment 65.37 71.49 73.96 75.90 77.02

Table 5.1: Experimental results for single-task models.

22



Beam
Task 1 5 10 25 50

Bug Fix (Small) Baseline 11.61 35.64 43.87 52.88 57.70
Experiment 22.81 35.75 41.17 46.86 50.35

Bug Fix (Medium) Baseline 3.65 19.17 24.66 30.52 35.56
Experiment 13.29 20.23 23.52 26.80 30.73

Mutant Generation Baseline 28.92
Experiment 29.72

Assert Generation Baseline 58.60 66.90 70.31 73.19 74.58
Experiment 59.32 68.25 70.92 73.22 74.45

Table 5.2: Experimental results for the multi-task model.

Single Task
Task BFS BFM AG
Baseline Perfect Prediction 880 776 12970
Experiment Perfect Prediction 1238 845 12300
Baseline Unique Results 193 667 1111
Experiment Unique Results 551 736 441
Joint Results 687 109 11859
Unique Multiple 2.855 1.103 0.397
Joint Percent 55.493 12.899 96.415

Multitask
Task BFS BFM AG
Baseline Perfect Prediction 678 239 11026
Experiment Perfect Prediction 1331 866 11161
Baseline Unique Results 249 205 1012
Experiment Unique Results 902 832 1147
Joint Results 429 34 10014
Unique Multiple 3.622 4.059 1.133
Joint Percent 32.231 3.926 89.723

Table 5.3: Overview of overlap analysis (beam size 1)
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Chapter 6

Future Work

There is still room for future research in this area. First, there is the issue of hyper-

parameter tuning. At present, we do not have an a priori method for determining the

appropriate temperature ranges or type of scheduler to be used; all results are currently

obtained empirically. A method for determining temperature ranges before training would

be desirable. Alternatively, an implementation that learned the appropriate temperature

during training may be of value.

Second, our implementation’s temperature scheduler changes the temperature over the

entirety of the training period. This makes it difficult to incorporate early stopping while

still traversing the entirety of the given temperature range. It would be beneficial to explore

methods that perform the scheduled temperature changes on a per-epoch basis.

Finally, our intent with the research was to capture the baseline results while adding to

overall accuracy with new results. In this, we are only partially successful: The accuracy

increased, but not without loss to the captured baseline perfect predictions. Further re-

search is required to determine what changes to our method, if any, will more successfully

maintain the joint percent capture.
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Chapter 7

Threats to Validity

We strive to provide a methodology for software engineering machine learning tasks that

is generalized and rigorous; however, there are areas of this research that could introduce

issue to the results we provide.

• We note that an internal threat to validity exists from the decision to use only Java-

based inputs. While this was done to keep with the baseline selected, it limits the

nature of our findings to similar inputs.

• With regard to the construction of our method, the nature of using unshuffled, static

datasets to ensure the non-overlapping variations from data augmentation introduces

the question of whether the ordering of these datasets could produce differences in

our outcomes.

• As with other research using similar architectures and methods, we maintain the

limitations derived from the problem of outputs limited to a rearrangement of tokens

learned during training.

• Due to the hyperparameter tuning issues noted above, we introduce a conclusion

validity issue until a method is developed to determine exact temperature ranges and

optimal schedules, and the implementation of an effective epoch-based approach.
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• Our analysis of the accuracy of this method is based on the production of a perfect

prediction; that is, we only count those results where the output is exactly matched

to the ground truth. For a given input, it is possible that there are multiple possible

real-world bug fixes, multiple versions of a mutant, and various asserts not provided

by the live developer. Validating any appropriate mfix for a given mbug and vice

versa for mutant generation would require considerable manual effort.

• As demonstrated in Appendix A, many of the erroneous predictions of our model are

related to a lack of context at the function level; for example, AG predictions that

provide a potentially suitable assert statement that replaces "api" with "user" in a

context where either could be accurate. It may be of value to produce a dataset that

includes not only the function, but some context of the code surrounding a given call

to that function.
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Chapter 8

Conclusion

Many software engineering tasks, such as bug repair, mutant generation, and the creation

of appropriate assert statements, can be time and resource intensive. Due to the patterns

in bugs, mutants, and asserts, it is possible to generate fixes and breaks for a given input

sequence; the question resolves to finding the best method of doing so given the current

state of technology.

In this work, we implement our contrastive loss scheduler for text-to-text software en-

gineering tasks in a transformer architecture. Our results indicate that fine-tuning the

existing baseline models with additional iterations using these schedulers produces con-

siderable accuracy improvements on one-shot inferences, with lower returns at later beam

sizes. These improvements range from very minor, such as in the case of mutant generation,

to considerable, as with fixing medium-sized bugs. While the accuracy generally increases

at lower beams, the amount of baseline results captured in the new method varies greatly

from task to task.

It would be premature to declare these tasks as a solved matter; even with the increased

accuracy found in the presented methodology, the potential complexity of software bugs

alone dwarf the capabilities of current models. This is not even to mention software bugs

that arise from business logic issues or system-level problems. Mutant and assert generation

may carry with them additional complexities that are beyond our modeling efforts. That

27



being said, any step toward higher accuracy when solving the categories of tasks presented

herein may allow for the time of live developers to be dedicated to the more complex tasks.
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Appendix A

Prediction Examples

As our results count perfect predictions only in terms of accuracy, it is unwarranted to

show examples those elements which were predicted accurately; the input matches the

target output. Instead, our interest is in those results that were exceptionally close to the

target output, but were off in some small manner that prevented them from being counted.

We conduct this analysis by calculating the Levenshtein distance between the input and

the prediction. Levenshtein distance calculates the number of edit operations between two

given strings of text. We are restricting our analysis in this section to beam size 1.

We note that some predictions in our BFS experiment produced no change in the

output; the input and the prediction are identical. For example, in the multi-task BFS

trial, 458 of the 5835 test samples (7.84%) predicted an output perfectly matching the

input. Additionally, 56 of the failed predictions (0.95%) have a Levenshtein distance of 1

from the target. In several cases, this is caused by the model opting for one abstracted

function name over another. For example:

Input:

public void METHOD_1() throws TYPE_1

{

TYPE_2 VAR_1 = new TYPE_2(this.VAR_2, STRING_1);

VAR_1.METHOD_2();

VAR_1.METHOD_3();

TYPE_3.assertNotNull(VAR_1.METHOD_4());

}

Target:
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public void METHOD_1() throws TYPE_1

{

TYPE_2 VAR_1 = new TYPE_2(this.VAR_2, STRING_1);

VAR_1.METHOD_2();

TYPE_3.assertNotNull(VAR_1.METHOD_4());

}

Prediction:

public void METHOD_1() throws TYPE_1

{

TYPE_2 VAR_1 = new TYPE_2(this.VAR_2, STRING_1);

VAR_1.METHOD_3();

TYPE_3.assertNotNull(VAR_1.METHOD_4());

}

The only difference found is the invocation of METHOD_2() vice METHOD_3().

Given the input, we note that the key difference between the input and the prediction

is the removal of one of the two function calls; our model correctly chose to remove one

of those two calls, but selected the wrong one. We then seek out an example where the

Levenshtein distance is still 1, but the distance between the input and the prediction is

also 1 and find the following example:

Input:

public java.lang.String METHOD_1(TYPE_1 VAR_1, java.lang.String VAR_2, java.lang.String VAR_3, TYPE_2 response)

{

if(METHOD_2(VAR_1, VAR_2, VAR_3, response))

return STRING_1;

return STRING_2;

}

Target:

public java.lang.String METHOD_1(TYPE_1 VAR_1, java.lang.String VAR_2, java.lang.String VAR_3, TYPE_2 response)

{

if(METHOD_2(VAR_1, VAR_2, VAR_3, response))

return STRING_2;

return STRING_1;

}

Prediction:

public java.lang.String METHOD_1(TYPE_1 VAR_1, java.lang.String VAR_2, java.lang.String VAR_3, TYPE_2 response)

{

if(METHOD_2(VAR_1, VAR_2, VAR_3, response))

return STRING_1;

return STRING_1;

}

The correct fix to the bug, per the dataset, is swapping STRING_1 and STRING_2
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in the return statements. In the prediction, the second return statement was correctly

altered to be STRING_1, but the model failed to predict the change of the first return.

Having examined samples at the short edit distance scale, we continue to those with a

higher degree of difference. The following example has an edit distance of 33 between the

prediction and the target, and 32 from the input to the prediction:

Input:

public java.lang.Integer METHOD_1()

{

return VAR_1.get(0);

}

Target:

public java.lang.Integer METHOD_1()

{

if ((VAR_1.size())<1)

return null;

else

return VAR_1.get(0);

}

Prediction:

public java.lang.Integer METHOD_1()

{

if(!(VAR_1.isEmpty()))

{

return VAR_1.get(0);

}

return 0;

}

This example provides an interesting result. The solution given in the target is that

instead of simply returning the get(0) value of an object, we instead want to make sure an

element 0 exists - if so, return it, otherwise, return a null value. Our prediction suggests

returning the value if the object is not empty, otherwise returning 0. While it is dependent

on the nature of the object in question, this could be regarded as a semantically equivalent

response; it closely resembles a reverse_if_else rule application within our augmentation

tool’s methods (see Appendix B for more details). This lends credibility to the idea that

the model may be producing adequate fixes for a given bug, but such a fix is not reflected

in the accuracy of the model due to not matching the prediction proscribed in the dataset.

When examining the BFM multi-task results, we find a similar example:
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Input:

private java.lang.String METHOD_1(java.lang.String VAR_1)

{

if(VAR_1==null)

{

throw METHOD_2(STRING_1);

}

java.lang.String VAR_2=STRING_2;

for(inti=0;i<(VAR_1.length());i++)

{

VAR_2+=(VAR_1.METHOD_3(i))+1;

}

return VAR_2;

}

Target:

private java.lang.String METHOD_1(java.lang.String VAR_1)

{

if(VAR_1==null)

{

return STRING_2;

}

java.lang.String VAR_2=STRING_2;

for(inti=0;i<(VAR_1.length());i++)

{

VAR_2+=(VAR_1.METHOD_3(i))+1;

}

return VAR_2;

}

Prediction:

private java.lang.String METHOD_1(java.lang.String VAR_1)

{

if(VAR_1==null)

{

throw new java.lang.NullPointerException();

}

java.lang.String VAR_2=STRING_2;

for(inti=0;i<(VAR_1.length());i++)

{

VAR_2+=(VAR_1.METHOD_3(i))+1;

}

return VAR_2;

}

We see that the intended fix for the input is to return a preset string (note that

STRING_2 is not a parameter, nor defined in the function). The prediction of our model

instead throws a null pointer exception, which has a high possibility of being a valid

response for VAR_1 being null when passed to the function. This sort of bug is highly
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dependent on the context of the function’s usage; nothing about the function’s internal

content provides relevant details to further inform the model’s decision making. This is

in keeping with the model attempting to replicate the actions of a live developer; without

context, the developer would experience similar issues in providing a fix, but with the

added advantage of being able to observe how the function is used to determine what

would correct the error. Thus the model is producing a potentially valid fix, but not one

that is provided in the dataset.

Finally, we observe the AG trial predictions. First, we consider a case where the ground

truth assert is highly specific:

Input:

testSize()

{

"<AssertPlaceHolder>";

}

size()

{

return elementData.size();

}

Target:

org.junit.Assert.assertEquals(7,tree.size())

Prediction:

org.junit.Assert.assertThat(list.size(), org.hamcrest.Matchers.is(0))

There is no argument that the prediction in this case is incorrect. It does not provide

the same functionality that the target output does; however, it is unlikely that a model

would arrive at the target. There is nothing about the input that would give the idea

"the appropriate assert in this case would be to ensure the tree size is seven". In a similar

manner, we see the following result:

Input:

test()

{

"<AssertPlaceHolder>";

}

Target:

org.junit.Assert.assertTrue(((name.contains(""))==(result)))
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Prediction:

org.junit.Assert.assertTrue(true)

The test in this case is completely bereft context, a generic test that simply asks to

be given an assert without any awareness. Undoubtedly, or at least well within our base

assumptions, the assert statement given in the target is valid when given the full context.

However, the prediction of our model is an assert statement that will always pass.

We proceed to the initial scope of the BFS analysis and look for predictions with low

Levenshtein distance between the target and prediction. Receding to this view provides

the following example:

Input:

testLogin()

{

"<AssertPlaceHolder>";

}

isLoggedIn()

{

returnloggedIn;

}

Target:

org.junit.Assert.assertTrue(api.isLoggedIn())

Prediction:

org.junit.Assert.assertTrue(user.isLoggedIn())

This example is not much longer than the previous, but that length is important -

the testLogin() function has a slightly more detailed name, and a second function in the

input provides additional context. The definitive answer is to check the api object to

determine if the account/user/service is logged in. The model’s prediction appears to

make an assumption that it is a user that must be logged in, and asserts accordingly. This

is a potentially valid answer that context surrounding the usage of the function would

potentially direct in a more correct manner.
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Appendix B

Data Augmentation Examples

In this section we examine samples of various data augmentation rules that are applied to

our dataset. The data augmentation tool [7] can apply a rule multiple times to the same

input code segment, assuming there are multiple instances of the input trigger that can be

affected by the rule. For example, consider the following sample from the AG task training

set (note that unrelated portions of the input have been replaced by a comment line):

testOverflow ( )

{

# Unrelated Code Portion Replaced Here

try

{

currentThread . setPriority ( Thread . MAX_PRIORITY ) ;

for ( int i = 0 ; i < numFiles ; ++ i )

{

java . lang . String fileName = java . lang . String . format ( %05d , i ) ;

files . add ( new name . pachler . nio . file . File ( parent , fileName ) ) ;

}

for ( name . pachler . nio . file . File f : files )

# Unrelated Code Portion Replaced Here

do

{

resultKey = ws . poll ( ) ;

if ( resultKey != null )

{

name . pachler . nio . file . List < name . pachler . nio . file . WatchEvent < ? > > list = resultKey . pollEvents ( ) ;

numEvents += list . size ( ) ;

if ( ! overflowDetected )

overflowDetected = listContainsEvent ( list , name . pachler . nio . file . OVERFLOW , null ) ;

}

}
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while ( ( ! overflowDetected ) && ( resultKey != null ) ) ;

<AssertPlaceHolder> ;

}

finally

{

currentThread . setPriority ( initialPriority ) ;

for ( name . pachler . nio . file . File f : files )

f . delete ( ) ;

}

}

reset ( )

{

if ( ! ( isValid ( ) ) ) return false ;

if ( ! ( signalled ) ) return true ;

signalled = false ;

return service . reset ( this ) ;

}

This code segment provides several opportunities to create a variant based on the

reverse_if_else rule, which will either negate a single if statement and insert an else

branch, or swap the contents of an if-else structure’s branches. For example, the reset()

function at the end of the input contains two opportunities for this rule to be applied as:

Variant 1:

if (!(!(isValid()))) ; else return false;

Variant 2:

if (!(!(signalled))) ; else return true;

Functionally, these two variants are equivalent to the original code; no additional func-

tionality is introduced or nothing is taken away. In this example, the code is more cumber-

some and potentially less readable, but it meets our need of a semantically identical code

segment to provide augmentation to our dataset. In total, the augmentation tool provided

three variants of this segment, each under the reverse_if_else rule.

Other code segments provide opportunities for different types of rule implementa-

tions. For example, this code segment allows for instances of reverse_if_else, in-

fix_expression_dividing, and single_if_to_conditional_expression:

testHLLMergeDisjoint ( )

{

# Unrelated Code Portion Replaced Here
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<AssertPlaceHolder> ;

}

count ( )

{

if ( ( invalidateCount ) || ( ( cachedCount ) < 0 ) )

{

if ( encoding . equals ( com . github . prasanthj . hll . HyperLogLog . EncodingType . SPARSE ) )

{

# Unrelated Code Portion Replaced Here

} else {

# Unrelated Code Portion Replaced Here

if ( noBias )

{

# Unrelated Code Portion Replaced Here

if ( numZeros != 0 )

{

h = linearCount ( m , numZeros ) ;

}

if ( h < ( getThreshold ( ) ) )

{

cachedCount = h ;

}

} else {

double yD4Zgcep = 0.033333 * pow;

if ( ( cachedCount ) <= ( 2.5 * ( m ) ) )

{

if ( numZeros != 0 )

{

cachedCount = linearCount ( m , numZeros ) ;

}

} else if ( ( ( chosenHashBits ) < 64 ) && ( ( cachedCount ) > ( yD4Zgcep ) ) )

{

if ( ( cachedCount ) > ( ( 1 / 30 ) * pow ) )

{

# Unrelated Code Portion Replaced Here

}

}

}

}

invalidateCount = false ;

}

return cachedCount ;

}

Each of the if statements provides an opportunity for reversal, and the if statements

without else branches, that contain only an assignment operation, can be converted to

conditional expressions. The infix expression division provides a more detailed change,

extracting portions of a calculation and creating a variable to store the extraction. In an

example from the above input:
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Original:

if ( ( cachedCount ) > ( ( 1 / 30 ) * pow ) )

{

cachedCount = ( ( long ) ( ( - pow ) * ( java . lang . Math

. log ( ( 1.0 - ( ( ( double ) ( cachedCount ) ) / ( ( double ) ( pow ) ) ) ) ) ) ) )

}

Variant:

long OHV7k5Kc = (1 / 30) * pow;

if ( ( cachedCount ) > ( OHV7k5Kc ) )

{

double CmUjovHF = ((double) (cachedCount)) / ((double) (pow));

cachedCount = ( ( long ) ( ( - pow ) * ( java . lang . Math . log ( ( 1.0 - ( CmUjovHF ) ) ) ) ) )

}

Overall, the augmentation tool provided 46 variants of this input among the three listed

categories.

Finally, there are some code segment inputs that do not provide any opportunity for

augmentation for the selected rules. Typically, these are the instances of simpler inputs

that do not contain enough grammatical elements to find an appropriate variant. For

example:

testGetCount ( )

{

""<AssertPlaceHolder>"" ;

}

getCount ( )

{

return asInt ( ""count"" ) ;

}

Overall, for code segments where a rule matches the input, approximately 3 variants

are created on average. There are some hefty outliers; for example, one input for the AG

dataset generated 75 variations. Further, the AG dataset produced variants for only 6.6%

of inputs, due to the presence of simpler inputs.
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