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ABSTRACT

The rich spectrum of hadrons reflects the complexity of interactions between the quarks
and gluons confined within them. Most of these hadrons are extremely short-lived and
are called resonances. Experimentally, they are observed indirectly through their effects
on the energy distribution in scattering experiments. Additionally, the non-perturbative
nature of Quantum Chromodynamics (QCD), which governs the dynamics of quarks
and gluons, prevents the implementation of known analytical techniques for calculating
transition and interaction rates between hadrons. Lattice QCD (LQCD), a numerical
implementation of QCD, provides a non-perturbative approach to studying the
spectrum, as long as we understand how to account for finite-volume and
imaginary-time effects in our calculations. In this dissertation, we present two main
results. First, the formalism for extracting the elastic form factors of resonances from
LQCD, which is necessary to understand their internal structure. Second, we perform
the first numerical calculation of a coupled-channel transition, the timelike form factor
of the pion, extending into the inelastic region above the kaon-antikaon threshold, as
well as its connection to the spacelike region. These developments open the door for
future calculations that explore the non-trivial internal structure of QCD resonances.
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Chapter 1

Introduction

1.1 Hadrons, amplitudes, and resonances

The strong nuclear interactions at low energies gives rise to a rich spectrum of parti-
cles called hadrons. The large amount of hadrons discovered in the past century quickly
overwhelmed physicists, with one physics Nobel Laureate in the 1950’s commenting that
“...such a discovery now ought to be punished by a $10,000 fine.” [I]. The recent ac-
cess to colliders with higher luminosity, i.e. producing more events, for example at the
Large Hadron Collider (LHC), has lead us to a similar experimental situation: in the past
decade, 72 new hadrons have been discovered at the LHC [2], with more being added every
year. An important difference from the time when fining experimentalists was suggested,
is that now we possess a well-established theory that describes the underlying interactions
responsible for the formation of hadrons: the theory of Quantum Chromodynamics (QCD).

QCD economically describes the strong nuclear interaction in terms of a few fundamen-
tal particles called quarks and gluons. One of the prominent characteristics of the theory
is that while at high energies it is asymptotically free, at low energies it becomes non-
perturbative, and quarks and gluons appear to be confined within hadrons. The residual
interactions among the quarks and gluons confined in different hadrons is what gives rise

to the nuclear force. It is generally agreed that the different possible arrangements of these



particles is what gives rise to the plethora of hadrons. However, the non-perturbative na-
ture of QCD at hadronic scales renders most of the known analytic techniques of Quantum
Field Theory (QFT) inapplicable, or to have uncontrolled systematic effects. This means
that although we have good reasons to believe that QCD describes hadrons, there is not
yet an analytic proof of how confinement arises in QCD, and how the hadron spectrum is
dynamically related to its fundamental building blocks. Maybe now it would be reasonable
to say that the theoretical physicists working on QCD are the ones that ought to be fined.

The phenomenological understanding of hadrons as bound states of quarks began with
a classification based on their minimal quark content, calling mesons the boson states
(with integer spin), while the fermionic states (with half-integer spin) are called baryons.
Although this provides only a simplistic picture of the internal structure of a hadron, it has
become a useful tool to categorize the spectrum. Hadrons that can be accommodated by
this framework are called conventional states, while those defying it are known as exotics.
Hadrons with certain combinations of quantum numbers, e.g. spin, intrinsic parity, charge
parity, etc., are unequivocally exotic, and finding a hadron with those characteristics pro-
vides an instance of a system where either gluons, additional quark-anitquark pairs, or
both, must contribute significantly to the structure of the hadron. For other combinations
of quantum numbers both conventional and exotic states can exist, for instance the quan-
tum numbers of the vacuum are consistent with a state composed only by gluons, called
glueballs, but also with quark-antiquark states, and the states in the physical spectrum
are expected to be mixtures of these constructions. Once we obtain precise quantitative
descriptions of the internal properties of both conventional and exotic states, we could
form a better picture of the dynamics happening inside of hadrons, and the mechanisms
that lead to the spectrum of QCD. This research direction would also help to discrimi-
nate which hadrons are exotic whenever the quantum numbers alone cannot provide that
information.

A helpful technique to probe into the internal degrees of freedom of hadrons is to study

hadronic transitions mediated by external currents. For instance, the elastic scattering
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of electrons off a proton at Stanford in the 1950’s provided experimental evidence for the
substructure of the hydrogen nucleus when deviations from the theoretical value for a
point particle were observed [3]. This interpretation of the result is possible thanks to the
perturbative nature of the electromagnetic interaction, where the first order contribution is
proportional to the elastic transition of a proton mediated by an electromagnetic current.
Research into the substructure of the proton has progressed significantly since then, leading
to a greater understanding of the structure of the lightest baryon, e.g. with the recent
apparent resolution of the proton radius puzzle [4], see also Ref. [5] for further discussion
about the proton radius puzzle.

Other experimental setups have been devised to study the rest of the hadron spec-
trum, like electron-positron colliders that create hadrons from an intermediate electro-
magnetic current exciting the QCD vacuum. Similarly, elastic scattering of electrons off
other hadrons has been performed to access their structure, for example of the pion, the
lightest hadron in QCD.

However, the study of hadrons beyond the ground states of QCD is challenging because
of the short-lived nature of hadronic excitations, which have lifetimes of the order of 10722
s. Most hadrons are not observed directly experimentally since they decay before they can
reach the detector, but instead they are observed as resonances in the energy distributions
of the final states into which they decay. A prototypical example of a resonant state is
the p-meson that decays most of the time into a pair of pions, meaning that the scattering
cross-section of pions is enhanced for energies around the mass of the p. Other times their
effect is obscured by interference with other resonances or with kinematic effects like the
opening of thresholds. Therefore, for a rigorous study of resonances we need to disentangle
dynamic and kinematic effects, and it is essential to have a quantitative description of
cross-sections and transition rates that accommodates all of these effects.

As mentioned before, QCD at low energies is not amenable to analytic calculations
where corrections are known to be suppressed by some perturbative hierarchy. Alterna-

tively, Wilson proposed in the 1970’s to numerically approximate the path integral of QCD
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[6]. In this first-principles approach the degrees of freedom of the theory are placed in a
four-dimensional mesh, which is why it is most commonly known as Lattice QCD (LQCD).
The ultraviolet divergences typical of quantum field theories are tamed by the finite lattice
spacing a, while a continuum limit can be recovered by extrapolating results in the limit
a— 0.

In this thesis we will describe techniques pertinent for the study of transition amplitudes
within energy regimes where at most two stable hadrons can be produced. This includes
transitions with two hadrons in the initial state, the final state, or both. We label these
transitions n —Z» m, with n/m the number of initial/final hadrons, and J the current
mediating the transition. In particular, if a resonance decays into a two-hadron state
within the studied energy region, we will show how its properties can be extracted from
the mathematical description of the transition.

The rest of this chapter will describe the basic concepts associated with the dynamics
of QCD and hadron spectroscopy. Chapter [2] will describe the state of the art utilized in
numerical calculations of Lattice QCD related to the study of the hadron spectrum. In
Chapter [3| we present a description of the analytic decomposition of 2 29 transitions,
needed to obtain a rigorous parameterization of the amplitude, and perform a well-defined
extraction of hadron resonances properties. Then, in Chapter [4] we will describe the for-
mulation of a prescription to extract 2 —2s 2 transitions from LQCD, and a toy example
demonstrating the importance of a new geometric function appearing in this formalism.
Finally, in Chapters 5 [6] [7] and [} we will describe a LQCD calculation of the production
amplitude 0 -2+ 2 from an electromagnetic current. In particular we calculated the pro-
duction of a pair of the lightest hadrons, the pions, as well as production in the energy
region where not only pions can be produced, but also the lightest strange hadrons, the
kaons. From this calculation the decay constant of the p-meson can be extracted, provid-
ing a proof of principle of the technique required to extract properties of other hadronic
resonances which decay to multiple two-hadron channels. We present a summary of our

results in Chapter [0} as well as an outlook for the future and the expected impact on the
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field of the research efforts presented in this work.

1.2 The Standard Model and QCD

Currently, our best description of the fundamental building blocks of nature is given by the
Standard Model (SM) of particle physics. This model relies on the theory of special rela-
tivity and the framework of quantum mechanics, which are combined together into QFT.
In QFT all matter and interactions are embedded into particle fields, whose properties
are restricted by the symmetries of a four-dimensional universe which is invariant under
rotations, translations, and relativistic boosts. The matter in the standard model con-
sists of spin-half fields with quanta known as fermions, and the interactions among them
are dictated by force-carrying spin-one vector gauge bosons. Additionally, the Standard
Model has a spin-zero scalar field, known as the Higgs, that gives mass to most of the SM
particles. The SM describes three different interactions, i.e. three different types of spin-1
boson, each characterized by an internal symmetry group, also called the gauge group.
One of them is the well-known quantum theory of light and matter interactions: quantum
electrodynamics (QED). The second, known as the weak interaction, is responsible for
radioactive beta decays among other phenomena. In this thesis we focus on the third of
them: QCD, the so-called strong interactions, for which the symmetry group is SU(3).
The previously mentioned gluon corresponds to the QCD gauge-boson, while the quarks
are the matter fields participating in QCD.

The connotation as the “strong” interaction is related to the fact that its coupling
constant is significantly larger than that of the other forces in the SM, which in turn gives
rise to its non-perturbative features. The SU(3) symmetry is called color symmetry in
analogy between its fundamental representation, which forms a 3 dimensional space, and

the space of the basic colors {red, blue, green}. The Lagrangian of QCD can be stated in



the compact form

£(w) = ~ 1Ol (@G (@) + S D @) B() ~mp)p D), (1)
f

where we will describe each of its terms next. The first term stands for the term describing

the dynamics of the gluon gauge boson Aj, with,
G (2) = 0, AL (x) — D, AL () + g [ A (2) Af (), (1.2)

and the index a runs from 1 to 8, due to the fact that the gluons are embedded in the eight-
dimensional adjoint representation of SU(3). This part of the Lagrangian is also known as
the Yang-Mills term, and as written, it is valid for an arbitrary SU (V) gauge group. The
coefficients f®¢ are the structure constants of the Lie Algebra of the group, they ensure
that the theory is renormalizable [7]. This ensures that any observable calculated from
QCD only relies on fixing a finite number of inputs, the coupling g and the fermion masses
{my}. Finally, different from QED where fabe = 0, the coupling constant ¢ shows up in
here, allowing the gauge bosons to self-interact, making a pure Yang-Mills theory highly
non-trivial.

The second term in the Lagrangian corresponds to the dynamics of the quarks, these
are embedded in the fundamental representation of SU(3). This term is a sum over the
different “favors” f of quarks. So far we have omitted both the Dirac and the color indices,
these are of course summed over to have a scalar term in the Lagragian, which overall
transforms trivially under the gauge group, but for clarity let us write them explicitly at

least once for one of the flavors
GO (1 — myg) ) = O (ip — mf)ggﬁquf)g (1.3)

where we have left implicit the spacetime dependence of the fields, D is a gauge covariant

derivative and, as mentioned before, my stands for the bare mass of the quark field. The
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latin indices run from 1 to 3, representing a component in color space, and the greek ones
from 1 to 4, in Dirac space. In order to make this term a Lorentz scalar, gamma matrices
~vH acting in the Dirac space are needed, these satisfy the Clifford algebra {~v#,~"} = 2nt",
where n* is the metric of flat Minkowski space. The term contracting the barred and the

unbarred fermion is known as the Dirac operator
(i) — my)T?, = in 5 (5790, — igAL[T°]"9) — s 67905 (1.4)

where we again omit the spacetime dependence of this term, implicit in the case of the
partial derivative. The quantities [T%]"9 are the matrix elements of the generators of the
Lie Group in the fundamental representation, because this is the representation where the
quarks are embedded, these are the Gell-Mann matrices.

All the particles of the SM that do not participate in QCD have been observed ex-
perimentally, i.e. the leptons, the electroweak bosons, and most recently the Higgs boson
observed in the LHC in 2012 [8, O]. However, no free quarks, gluons, or any composite
particle with color charge, has ever been observed experimentally. Instead, only colorless
hadrons have been observed, which are expected to be bound states of quarks and gluons
belonging to color singlet combinations. One could ask how QCD, describing quarks and
gluons carrying color, has become the accepted theory describing colorless hadrons. Part
of the evidence supporting the existence of quarks came from the symmetries observed in
the spectrum of hadrons, which could be understood precisely if they were bound states of
quarks respecting these symmetries. As a bottom-up approach we will introduce first the
relevant symmetries of the Lagrangian, and then elaborate on their consequences for the

spectrum.

1.2.1 Symmetries of the QCD Lagrangian

The Lagrangian of QCD contains six different flavors of quarks. The mass difference

between the two lightest, the up and down quarks, is small compared to hadronic scales,



which means that there is an approximate extra symmetry in the Lagrangian. To see this
let us write the Dirac Lagrangian of these two quarks with the approximately equal light

mass m;
£V = a(ip — my)u+ dGD — my)d = q(ip — my)q, (1.5)

where ¢ is a spinor in Dirac space, a vector in the fundamental color space and a two dimen-
sional vector in isospin space, i.e. ¢ = (u,d)”. Now this term is not only a Lorentz scalar,
and trivial under a color transformation, but it also admits an SU(2) flavor transformation,

which is called the isospin transformation, without changing the Lagrangian,
g Uqg=q, U=c""Tecsu@), ) -l =ch (1.6)

with I the generators of the isospin symmetry in the fundamental representation, i.e.
proportional to the three Pauli matrices, 6 an arbitrary real number modulo 27, and 7 an
arbitrary unit three-dimensional real vector.

An implication of this symmetry is that the hadron spectrum can be classified according
to an isospin quantum number, I, into multiplets, with small mass differences among
members of the same multiplet E The pions for example belong to the I = 1 representation
of isospin, where the charged pions 7%+ have a mass ~ 140 MeV, while the neutral component
of the triplet, the 7°, has a mass ~135 MeV, as reported by the PDG [10].

Another application of isospin is to decompose an operator, which could represent an
external probe, into components in different representations of isospin, each of which will
approximately act independently on hadrons. For example, the electromagnetic current

constructed with quark fields, J* = Zf qu/_)(f)vugb(f), where )y corresponds to the

1On top of the corrections arising from the up and down mass difference, the electromagnetic interaction
also breaks isospin symmetry, providing further splitting.



electromagnetic charge of the quarks, can be decomposed into its isospin components as

2 1- -
TH :gﬁ,yuu — gd’y“d + Z QM ytiap(h) (1.7)
h
1 _ 1 . .
= S (@yu = dy"d) + ¢ (ayu + dyd) + 3 Qui My, (1.8)
h
1

where the first term corresponds to an isovector current with I, = 0, while the second
term, and the contribution of the heavier {h} quarks, belong to the isoscalar current, i.e.
the singlet representation of isospin.

Lorentz invariance of the Lagrangian also implies a discrete symmetry of the action,
i.e. the simultaneous action of time inversion, spatial parity, and charge conjugation, i.e.
CPT-symmetry. In general, a Lorentz-invariant theory is not necessarily symmetric under
the individual action of each of the C'PT discrete transformations. However, current ex-
perimental evidence points to QCD being invariant under these individual transformations,
which is reflected in the formulation of the Lagrangian of Eq. .

In the light sector of QCD we can combine C' and a fixed isospin rotation to define
a transformation which leaves the theory invariant. Charge conjugation exchanges the

charged pions 7%, but leaves the neutral pion 7°

unchanged, with eigenvalue +1 of the
charge conjugation operator. In order to make the whole isotriplet an eigenstate of a
transformation we combine C' with an isospin rotation of 180° around the I» axis. Let us

call this combination G-parity, mathematically defined as

G =Cem2 (1.10)

for which the isovector of pions will be an eigenstate with eigenvalue equal to —1. Indeed,
it is observed experimentally, that states of even and odd number of pions have small

mixing. Multi-hadron states formed only by light quarks [, or with net zero heavy flavor



h, i.e. with hh flavor components, can be decomposed into states of definite G.

A further extension of the isospin symmetry is to assume that the three lightest quarks
are degenerate, the up, down, and strange quarks. This is called SU(3)¢ flavor symmetry.
Because the mass difference between the strange and the light quarks is greater than
the mass difference between the two light quarks, SU(3)s has larger corrections than the
isospin symmetry. For example, the pions, the charged and neutral kaons (K*, K9, fo),
and the n-meson, belong to an octet representation, with masses approximately equal to
140 MeV, 495 MeV, and 550 MeV. Nonetheless, it still proves useful to classify the hadron
spectrum, although the mass difference within different members of the same multiplet can
be significant.

Additionally to the mass difference, the absolute value of the masses of these three
quarks is small when compared with the typical scales of QCD: we might expect hadron
dynamics to be described by a Lagrangian with these three quark masses set to zero with
small corrections from the non-zero masses. This zero mass approximation is called the
chiral limit. In the chiral limit, axial symmetries are introduced to the Lagrangian, with
associated axial transformations, and the corresponding conserved currents transform un-
der Lorentz symmetry as axial vectors. The isospin symmetry, or SU(3), have conserved
currents transforming as Lorentz vectors. This means that the two linear combinations of
axial and vector symmetries involve only the right-hand or the left-hand components of
the quark fermions, from which the chiral denomination arises. Naively this implies a near
degeneracy between partners of opposite parity in the hadron spectrum, but this is not
supported by the observed spectrum.

An explanation for this mismatch is that the QCD vacuum experiences a spontaneous
chiral symmetry breaking, such that the vector transformations remain a symmetry of the
QCD vacuum, but not the axial ones. This mechanism implies, by Goldstone’s theorem, the
existence of a multiplet of massless bosons in the spectrum. Experimentally, the lightest
pseudoscalar multiplet, that of the pion, the kaon and the 7, although it is massive, is

identified as the pseudo-Goldstone bosons of the axial symmetry of QCD, with a mass
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arising from the explicit symmetry breaking due to the non-zero quark masses. This
explains why this multiplet is significantly lighter than the rest of the hadron spectrum,
since in the chiral limit it becomes massless, while the rest of hadrons would still have
masses on the order of the hadronic scale.

Unlike the spontaneous symmetry breaking of the electroweak sector of the SM, ex-
plained by the Higgs potential, the dynamical origin of the spontaneous chiral symmetry
breaking of the QCD vacuum is not completely understood. In addition to this, the non-
zero quark masses represent a small contribution to the total mass of hadrons, indicating
a dynamical mass generation of QCD. Furthermore, it is expected that the Yang-Mills
Lagrangian has a mass gap even though all states are composed of massless gluons [11].
Chiral symmetry breaking, dynamical mass generation, and confinement remain elusive
dynamical aspects of QCD. From the study of the hadronic spectrum, e.g. confirming or
explaining the experimental evidence for the plethora of hadronic state candidates, we ex-
pect to gain further understanding of the dynamics of QCD. In particular, first-principles
descriptions of the composition of each of the states, e.g. the structure of each hadron
in terms of quarks and gluons, can guide the development of better descriptions of QCD

dynamics.

1.3 The low-lying hadron spectrum

As described in the previous section, the symmetries of the QCD Lagrangian provide some
expectations about the allowed hadronic states of the theory. First, we will describe some
basic nomenclature, some of which we have already been using in the previous section.
The hadrons with integer spin are known as mesons, while those with half-integer spin
are baryons. The phenomenological restriction of confinement means that the simplest
bound states are those comprising a quark-antiquark pair forming a meson, or three quarks
forming a baryon. The work presented in this thesis is focused on meson systems with

light and strange quarks, and as such here we only describe the phenomenology of light
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and strange mesons.

As mentioned before, isospin and SU(3), being approximate symmetries of the QCD
Lagrangian, can be used to organize the spectrum. In particular, because the isospin
breaking corrections are small, the Particle Data Group (PDG) has opted to adopt a
naming convention in part based on isospin symmetry, and hence G-parity [I0]. This
naming convention is listed in Table[I.I] from which we can observe, for instance, that by
isospin symmetry a p-meson can only decay into an even number of pions (7), but cannot
decay into any number of 1 mesons.

A quark-antiquark system can be described by its total quark-antiquark spin S € {0, 1},
and orbital angular momentum L, with overall angular momentum of J. This system is a
spatial parity eigenstate, with parity quantum number P equal to (—1)%+1. If the quark
and antiquark are the same flavor, the charge conjugation of this system yields a factor
C equal to (—1)E+. There are certain JC combinations that are not allowed by this
simplistic quark model. For those cases, gluons and extra quark-antiquark pairs would
have to manifest non-trivial configurations inside the meson to reach the desired quantum

numbers. We list these cases in the last column of Table [Tl

Table 1.1: Naming scheme introduced by the PDG for light mesons, and exotic combinations
of quantum numbers. The G parity is constrained to G = C(—1)!, so that the empty cells
are inconsistent combinations of quantum numbers. Note that only the neutral member of the
isotriplets are eigenstates of C. Two names are available for isoscalars because they can be formed
as combinations of two linearly independent states of SU(3)¢, one from the octet and one from
the singlet.

JPC 16 =0t [€=0" I9=1t J9=1" exotic

JT wy/os pJ J=0
JT g/, Ty odd J
Jt hy/h, by even J
Jt it ay

The states with zero orbital angular momentum have J7¢ quantum numbers equal to
0~ and 1), for S = 0 and S = 1 respectively. From SU(3)s symmetry we expect
an octet and a singlet appearing in the spectrum of quark-antiquark mesons. We list

the properties of the lightest particles with these quantum numbers grouped by isospin
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multiplets in Table As mentioned before, for the pseudoscalars (0*(”), the octet
consists of the isotriplet pions, two isodoublets of kaons (K'), and an isoscalar 1 meson,
while there is an 1’ singlet. We illustrate the flavor content of each of these mesons in
Fig. The vectors (1*(*)) consist of the p taking the role of the pion, the K* instead of
K, and the w/¢ instead of the n/n'. However, we can notice that the mass pattern in the
pseudoscalars differs significantly from that of the vectors. This is explained qualitatively

by the chiral symmetry breaking of the QCD Lagrangian.

K'(ds) K (us)
f ]
/ 7T0 !
©(du) o o' ot (ud)
K~ (su) K (sd)

Figure 1.1: Pseudoscalar nonet, octet plus singlet, with the valence quark content of each meson.
The mesons in the center have a zero third component of isospin. The corresponding quark content
are m° = utl — dd, n = w + dd — 255, and ' = wu + dd + 55, where the last two being isoscalars
can in principle mix for a broken SU(3)y.

As already mentioned, chiral symmetry breaking in the chiral limit requires the presence
of a multiplet of massless states. This is realized experimentally in a set of massive pseudo-
Goldstone bosons, pseudo because of the explicit symmetry breaking arising from the quark
masses. In the case of the chiral limit of the light quarks, this multiplet consists of isovector
states, identified with the pions, explaining their low mass. The K-mesons and the n-meson
are also interpreted as pseudo-Goldstone because the strange quark is also close to the chiral
limit relative to the scale of QCD. The SU(3)y singlet state 1’ is much more massive than
its octet partners. This is explained by the singlet axial symmetry being anomalous in
QFT, and no spontaneous symmetry breaking mechanism with an associated Goldstone

boson can be used to describe this state.
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The nature of the vector mesons is not associated with the chiral symmetry breaking
mechanism, and instead the dynamical mass generation mechanism is responsible for their
mass. This also implies that the isoscalar member of the octet, and the SU(3) singlet, can
mix following the dynamics of the broken SU(3), with no axial anomaly preventing it.
From their preferred decay channel, w — 77w and ¢ — KK, it is inferred that their flavor
wavefunction is an ideal mixing, with ¢ being mostly an ss state, while w has mostly a
light composition. This has been translated to the phenomenological OZI rule, indicating
that decays mediated through only gluons are heavily suppressed, like that of a pure ss
meson to 77, even if the phase space to that decay channel is larger than the one of KK.
This flavor content is further supported by the near degeneracy of the p and w mesons.

Table 1.2: Particle properties of the lowest lying pseudoscalar and vector mesons, masses corre-
spond to the approximate value of the corresponding isomultiplet.

7T /M K p w/¢®  K*
Jre o= ot o 1) 1 1o
¢ 1- 0+ 1t 0~ 2

2 2
M[MeV] 140 550/958 495 770  782/1020 892

& The kaons, because of their strange flavor content, are not eigenstates
of charge conjugation or G-parity. Kaon-antikaon systems, KK, can
be constructed to have definite isospin, and positive or negative G-
parity.

b The n/n" and w/¢ mesons differ by their strange flavor content.
While 7’ resembles the singlet of SU(3)¢, w and ¢ are found to be
an ideal mixing of the SU(3)s singlet and octet, where ¢ is mostly
SS.

We could try to keep applying this classification to radial or orbital excitations, and
although it works well in several cases, in others it fails to give an adequate qualitative
picture of the spectrum. A prominent example of this is in the scalar 07(+) sector, which
can mix with “glueballs”, bound states of gluons, and where states have also been proposed
to contain tetraquark components, or two-meson molecules [12]. A rigorous understanding
of these states, especially states with suspected exotic components, can be extracted from
first-principle calculations. We will expand more on this idea in Chapters [3] and [4] and

show the result of a LQCD calculation rigorously determining the decay constant of the
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p-vector meson, to be described in Chapter Future calculation of other structural
properties of resonances, like the Q? dependence of their elastic form factors, can help us
pinpoint their nature. For instance, comparison with more familiar mesons, like the 7 and

K pseudoscalars, can serve as a model-independent description of their internal properties.

Before we describe Lattice QCD, and how we can extract hadronic information from
numerical calculations, we will first review the experimental status of the observables for
which we present numerical results. Similarly a brief review of S-matrix theory is given to

describe how resonant states are described mathematically in QFT.

1.4 The pseudoscalar form factor

1.4.1 Pair-production of hadrons

Electron-positron colliders provide a powerful laboratory for the study of hadrons, free
from hadronic effects in the initial state. For a recent review of the current experimental
efforts and their impact on hadron spectroscopy see Ref. [I3]. In the study of multi-hadron
interactions, these experiments have the advantage of little model dependence in describing
the production of hadrons, as opposed to experiments that employ hadronic production
processes.

There are two main experimental techniques that electron-positron colliders utilize
to explore the hadron spectrum. The first one consists of varying the beam energy of
the leptons so that detectors can directly perform an energy sweep to study the energy
dependence of multi-hadron production cross-sections. The CMD and SND detectors have
used this experimental approach to measure the eTe™ — 77~ cross-section [14] 15 [16],
17, (18, 19].

The second option is employed in colliders that mostly operate at a fixed beam energy.

In that case the process of initial state radiation (ISR) ete™ — ete™y — hadrons + 7,
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also called radiative return to low energies, is exploited to study the energy dependence
of eTe™ to hadrons production. The ISR photon, v, takes away some of the beam energy,
allowing a measurement of hadronic production at energies all the way down to the 7w
threshold. The interference from final state radiation, in this case considered a background,
can be controlled by applying appropriate cuts to the data, e.g. angular separation between
the tagged photon and the hadrons. A description of this procedure and an estimation
of the systematic effect in the case of the DA®NE collider appears in Ref. [20]. The
detectors KLOE-2, BaBar and BESIII have used this experimental approach to measure
ete” — whn~ () 211, 22 23, 24, 25, 26], 27].

%\PQ@ Pziﬂiﬁ< Pi:;@{

( ) Spacehke ™ form fac— (b) Timelike 7 form factor. (c) Timelike K form factor.
tor.

Figure 1.2: Diagrams representing of the (a) spacelike and (b) timelike pion form factor, as well
as the (c) timelike kaon form factor. The spacelike and timelike form factors of the pion are aspects
of a single function of the photon virtuality, P2.

In an electron-positron annihilation, to leading order in the electromagnetic interaction,
the mechanism to produce hadrons is through a single intermediate virtual photon, like
in the Figs. and This process combines the perturbative properties of QED,
that allows us to approximate it by a single photon intermediate state, with the final state
interactions of the hadrons, which are governed by non-perturbative QCD dynamics. The
allowed hadronic states produced in this manner have the quantum numbers of the photon,
JPC = 17~ with contributions of both I = 0 and I = 1(I, = 0), making these experiments
specially suitable for the study of neutral vector states.

From higher order electromagnetic processes, suppressed by further factors of agpy =~

1/137, other values of JPC are accessible. For example, from the two-photon process of
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the form ete™ — ete™ + 2y — eTe™ + X, hadronic final states with quantum numbers
0%* and 2%+ can be also accessed. Furthermore, studies from weak or radiative decays of
heavy vector mesons, also provide access to multihadron amplitudes. Finally, the decay
of 7 leptons, which can be produced via eTe™ — 7777, gives experimental access to the
isovector I, = +1 components of multi-hadron production amplitudes, e.g. the process
7~ — 7%, [28)].

The production of pairs of pseudoscalars 7w and KK is governed by the electromag-
netic form factors fr(P?) and fx(P?), respectively, where P? = s, indicates the center-
of-momentum energy squared of the system. We will use the symbols P? and s inter-
changeably. The form factor describes the non-perturbative rescattering that the pair of
pseudoscalars undergoes once it is produced. These form factors are related to the crossed
version of the amplitude, see Fig. which will be discussed in a subsequent section.
The main idea here is that a single function describes the form factor for a photon with
timelike virtuality s > (2m;,)? which is able to produce a pair of pions, as well as the
photon with spacelike virtuality s < 0, mediating the elastic interaction of a single pion
with a virtual photon. That this is the case is illustrated by the fit retrieved from Ref. [29]
and shown in Fig. together with a compilation of experimental data.

In Figure the effect of the p-meson is evidenced by the enhancement of the data
near the virtuality of 0.6 GeV2. This bump also presents a shoulder on the right hand side,
which can be explained from an isospin violating contribution from the decay of an w-
meson to two pions. This feature disappears in the case of the form factor being measured
from the 7 decay, as no I, = 0 states can contribute, with no w interference, this is can be
observed in the experimental data of Fig.[I.4] In order to perform a rigorous description of
the properties of the p that can be extracted from the form factors we will briefly describe
how these resonant states are described mathematically in QFT in the next section. We
will finalize this section by commenting on previous LQCD calculations of the pion form

factor fr(P?) in the timelike region.
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Figure 1.3: Experimental data for the form factor of the pion across the timelike and spacelike
region compiled by Ref. [29]. In that reference the form factor dependence on the photon virtuality
is fitted with a parameterization describing a p-meson resonance, as well as interference from
the isospin violating contributions of the w-meson as observed by the shoulder of the peak near
5 =0.6 GeV2.

1.4.1.1 Previous lattice calculations of the timelike form factor

There has been general interest in studying the p vector-isovector resonance on the lattice
for several reasons. The first being that experimentally it appears to decay strongly almost
exclusively into two pions, and that the two-pion system scatters elastically to a good
approximation up to ~1 GeV. Measurement of the production cross-section of the four
pion system in e*e™ colliders shows no significant interactions for energies below ~ 1 GeV
[30], and similarly for the wan channel [31].

The second reason is that the energy dependence of mm scattering has the simplest be-
havior expected from a nearby resonance, it manifests with a characteristic ‘bump’ peaking
around the resonance mass. This can be contrasted with the behavior of the lightest reso-
nance, the scalar fp(500) also known as the o, which has a large width impacting a broad
energy region of isoscalar 7mm scattering. This requires the implementation of dispersive

methods to describe the energy dependence and extraction of the resonance parameters
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Figure 1.4: Experimental data of the form factor of the pion extracted from 7 decays from
Ref. [28]. In this case the final two-pion state is charged, preventing the interference with isospin
breaking terms such that no w shoulder is observed.
[32], otherwise large systematic errors can be introduced. The case of the p is quite differ-
ent, with little systematic introduced by less sophisticated methods to describe the energy
dependence produced by the resonance, e.g. using a Breit-Wigner parameterization [33].
A review describing the progress in the extraction of p-meson properties can be found
in Ref. [34]. There are previous calculations of the decay constant of the p in Refs. [35] [36],
which neglect the finite volume corrections described in Chapter 2] Three previous works
have employed LQCD to calculate the timelike form factor of the pion restricted to the
elastic scattering region [37,[38,139]. In the lattice calculation of this work we aim to extend
this calculation beyond the elastic timelike region, into the coupled channel region, as well

as to describe jointly both the timelike and the spacelike region.
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1.4.2 Elastic lepton-meson scattering

The elastic scattering of electrons and pions, er — em, can be measured experimentally
with a pion beam incident on a hydrogen target. As before we can describe this process
at leading order in the electromagnetic interaction as the exchange of a virtual photon,
with the photon-pion vertex shown in Fig. That this vertex is described by the same
form factor fr(s) introduced earlier, albeit in a different kinematic region, is expected from
general properties of QFT, which we will describe in the next section.

This process gives access to fr(s) in the spacelike region of photon virtuality, i.e.
s < 0. For spacelike virtualities it is also common to utilize the variable Q? = —s. The
most precise data was measured with a 7~ beam with a momentum of 300 GeV [40], and
is shown in the negative region of s in Fig.

A second experimental setup is through pion electroproduction from a hydrogen target.
The extraction of the pion form factor is model dependent in this case, as the data needs
to be extrapolated to an unphysical kinematic region. This approach has been used by the
F; collaboration at JLab to explore the high Q2 behavior of the form factor [41] 42, 43| [44].

In the forward limit, @Q? = 0, the form factor is constrained to be equal to the hadron
charge, and deviation from unity for Q% > 0 indicates the existence of a non-trivial internal
structure of the pion, different from the point-like behavior of the SM leptons. In particular,

the non-zero slope at s = 0 is used to define the ‘charge radius’ <7"72r>1/ 2, Wher

(ry=6 %fﬂ(s) , (1.11)
s=0

with the current experimental value of <r72r>1/ 2= 0.659(4) fm as reported by the Particle
Data Group (PDG) [10]. For comparison, the experimental value of the charge radius
of the kaon reported by the PDG is <r%(>1/2 = 0.560(31) fm, while for the proton is

(r2)'/? = 0.8409(4) fm [10].

2See Ref. [45], and references therein, for a discussion about the proper interpretation of this quantity
when it is comparable to the Compton wavelength of the system.
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1.4.3 The Kaon timelike form factor

The isovector component of the electromagnetic kaon timelike form factor can also be
measured from 7 decays [46]. This measurement has been described by a data driven pre-
diction, using as input the experimental pion form factor and the 77 — KK cross-section,
see Ref. [47]. Finally, continuum methods employing the Schwinger-Dyson equations have
also been used to calculate the kaon form factor [48]. The Schwinger-Dyson equations
results could in principle be compared to the lattice calculation presented in Chapter [§] of
this work by tuning the input parameters to reproduce the masses of the pseudoscalars on

this lattice.

1.5 Amplitudes and resonances

Particle states in a QFT manifest mathematically as poles of momentum-space correlation
functions of the theory. The pole of a given particle is located at its physical mass, and
pole residues can be related to matrix elements involving the state. For example, in the
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, the S-matrix describing par-
ticle scattering is extracted from the residue of appropriately chosen correlation functions.
For stable hadrons these poles are located along the real energy axis, but resonant states
have their poles moved into the complex energy plane. We will be after the location of
these poles, and their residues, in order to extract properties of the resonant members of

the hadron spectrum.

1.5.1 The S-matrix and the scattering amplitude

Similar to how stable particles appear as poles in correlation functions, resonant states
are also associated with poles appearing, for example, in the S-matrix. Before defining
this matrix let us introduce a few kinematic variables related to the scattering of a two-
meson system without spin, shown in the diagram of Fig. We use P* = (E,P) to

represent the initial and final state 4-momenta, while the individual momenta of each of
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s-channel

Figure 1.5: Diagram depicting the scattering of two hadrons labeling the four-momentum flow
of each particle, and the total four-momentum of the system.

the incoming(outgoing) particles is equal to pg’) and pg). We will describe a system with

several channels, where the two mesons in each channel are degenerate with mass mg,
we label each channel with latin index a,b,.... For channel a the magnitude of relative

momentum between mesons in the center-of-momentum (CM) frame is equal to

ki(s) = /7 —m2, (1.12)

where s = P2 = (p; + p2)? = (p)| + ph)?, we will use the x symbol throughout this work
to indicate the value of quantities in the CM frame. The relative momentum enters the

definition of the phase space factor pq

o) = - (). (1.13)

It is convenient to also define the following Lorentz invariants, which together with variable

s are known as the Mandelstam variables,

t= (o1 —p})2, (1.14)

u=(p1 —ph)?, (1.15)
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and satisfy the relation s 4+t + u = 4m?2 in the case of elastic scattering of channel a.
Scattering of two-meson systems can be described as a function of s and ¢, where ¢ can be
related to the angle 8* between incoming and outgoing states in the CM frame. Angular
momentum conservation allows us to decompose any function of ¢ into its different partial-

wave £ components,
[e.e]

F(t) = (204 1) fy Py(cos6*), (1.16)

=0

where Py(z) is the ¢-th Legendre polynomial. For the following discussion we will treat
the S-matrix, and the rest of the amplitudes defining scattering, as being partial-wave
projected, but we will not explicitly show the £ index to avoid clutter, unless it is needed
to avoid confusion.

The S-matrix is defined to be the overlap between asymptotic states in the infinite
past and the infinite future, more commonly labeled in and out states, Sup = (a, out|d, in).
In order to describe scattering we are interested only in the component where particles

interact, and not only fly past each other, for that we introduce the scattering amplitude
M,

S =T+i/2p0M/2p, (1.17)

where the identity takes into account the non-interacting piece, and here p represents a
diagonal matrix with components equal to p,(s) and zero below threshold, acting as a
conventional normalization. In this case the scattering amplitude will be a function of s.

That the resonance poles are in the complex energy plane is a consequence of a few
general properties that we expect this matrix to satisfy based on physical arguments. We
will focus on the three properties of unitarity, analyticity, and crossing symmetry. These
three mathematical properties are consequences of demanding the S-matrix to conserve
probabilities, respect causality, and be able to describe the reaction A4+ B — X + Y, as
well as A +Y — X + B, where Z corresponds to the anti-particle of particle Z.

The unitarity requirement simply imposes SST = 1. This equation together with

Eq. (1.17)), relates the imaginary part of the inverse of M to the negative of the phase
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space,

Im(M™1) = —p, (1.18)

we will use this property to formulate parameterizations of the scattering amplitude ex-
tracted from LQCD. The phase space matrix features branch points in the complex s plane
at the threshold s4 thy = (2m,)?, and a Riemann sheet structure of 2™« sheets, where N,
is the number of two-meson channels. This analytic structure in s is inherited by the M
amplitude. The branch cut associated with each branch point is, by convention, directed
towards positive s, which defines a physical sheet where Im(k(s)) > 0, with physical scat-
tering occurring just above the cut at s + ¢e. These analytic properties of the amplitude
are named right-hand cuts.

The analyticity requirement states that no pole singularities can be present above the
lowest threshold on the real s axis, or anywhere in the upper half-plane of the physical
Riemann sheet. It does not prevent poles appearing below threshold on the real s axis,
which would be associated with a bound state of the system. However, any pole from
a resonance coupling to a two-particle system is moved away from the physical Riemann
sheet. We illustrate this behavior with Fig. [[.0] in the case of a single channel, with a
nearby resonance pole in the unphysical sheet (II). The shoulder of the pole in the real s
axis, where physical scattering takes place, is observed as an enhancement of M close to
the mass of the resonance.

The scattering amplitude must be a real function over the real s axis below threshold
according to Eq. . According to the Schwarz reflection principle, the value of the

scattering above the real s axis is related to its complex conjugate below the real s axis,

M(s)* = M(s"). (1.19)

We can analytically continue this property to apply all over the physical Riemann sheet,
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Figure 1.6: Upper and lower half complex s plane for the physical (I) and unphysical (II) sheets
of an scattering amplitude featuring a nearby resonance. The red line follows the value of | M| on
the real s axis where physical scattering occurs.

and recast the unitarity requirement in the form
M(s +i€) — M(s — i€) = 2iM(s + i€) p(s + i€) M(s + ie)T (1.20)

with physical scattering happening for the limit of ¢ — 0 from above. The left hand side of
this equation represents a discontinuity of the scattering amplitude above threshold, along
the real s axis

Disc M = 2iM(s) pM(s)T. (1.21)

which is realized in the presence of the branch cut that opens at threshold.
Analyticity of the scattering M(s,t) is also expected in the ¢ complex plane close to
each threshold s, 1, El In particular, the partial-wave expansion of Eq. (1.16]) introduces

a spurious singularity from the Legendre polynomials, which behave like

t

¢
Py(cos0*(s ~ Sqthrst)) ~ (%*—2(5)) . (1.22)

In order for M(s,t) to remain analytic in ¢ close to threshold, each of the partial waves

3Singularities in ¢ manifest as left-hand cuts in the partial-wave amplitudes, and although interesting
on their own right, we will not be discussing them here.
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must behave like

Maan(s) ~ (k5 (s)ki(s))", (1.23)

this property has an intuitive explanation acting as a centrifugal barrier, i.e. partial-waves
with large values of angular momentum will be suppressed close to threshold. For the
production amplitudes 0 AN 2, which we label H, the partial-wave projection is only

applied to the final state, leading to the condition
Hea(s) ~ (k5(s))" - (1.24)

Finally, crossing symmetry states that a single amplitude describes processes where
particles are exchanged from the initial and final states, and vice-versa. Of particular
interest for us is the pair production amplitude of Fig. which by crossing symmetry
is related to the spacelike form factor of Fig[l.2al Crossing symmetry states that both
processes are described by a single amplitude. Also by imposing analyticity and crossing
symmetry, we can conclude that M cannot feature pole singularities in the first Riemann
sheet except on the real s axis between the right hand and the left hand cuts.

The poles in an unphysical sheet and near the physical scattering region of the partial-
wave projected M(s) are associated with the resonances of the theory. Each resonance will
couple to all channels with the same quantum numbers, and the strength of this coupling

can be quantitatively described by the residues ¢, at the pole,

M (s~ sp) ~ —167 Ca , (1.25)
S — SR

where the index II indicates that it is evaluated on Sheet II. In general, resonances can

N

. sheets, except sheet I. The location of the pole itself, sg, is

appear in any of the 2

associated with the mass mp and width I'p of the resonance,

r

\/sR:mR—iTR. (1.26)
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This pole will appear in every channel at this location in the complex energy plane, unless
cq = 0, reflecting that the resonance parameters are not channel dependent, and describe

the properties of a state of the theory.

1.5.1.1 Scattering amplitude in the elastic region

In the case of elastic scattering in a single channel, where the squared CM energy s satisfies
Sathr < 8 < Spthr < Scthr- -+, EQ. (1.18) provides a constraint for the complex quantity
Mye. We can apply this constraint to describe the energy dependence of scattering in

terms of a real function J(s), known as the phase-shift,

— sind(s) ) (1.27)

Moal?) =06

From Eq. (1.23)), we can derive the behavior of the phase-shift close to threshold to be
equal to

5(s) ~ (k2(s))*F. (1.28)

1.5.1.2 Scattering amplitude for multiple two-meson channels

For values of energy above the first inelastic threshold, the scattering amplitude of channel
a can no longer be described in terms of a single real function. Instead it is conventional

to use two real functions,

na(s)ei%a(s) -1
2ipa(s)

where 7(s) is known as the inelasticity. In the case where 7n(s) = 1 we recover Eq. (1.27)

Maa(s) = (1.29)

describing elastic scattering. This same description can be used for every diagonal element
of the two-meson scattering amplitude M.
In the case of a two-channel system, based on the restriction of Eqgs. (1.18)), the in-

elasticities of both channels are equal, n = 1, = m, and the off-diagonal element of the

27



scattering amplitude is

1= 11(5)2 i(Ga(8)+50(5))
21/ pa(8)pp(5)

Mazp(s) = (1.30)

Alternatively, we can employ the restrictions of Eqs. (1.18]) and (1.23)) to parameterize

the scattering amplitude in terms of a real-valued X matrix,

-1
1 ,Cf,ab 1
(2k2)! 167 (2k7)"

Miap = — 10ab Pa - (1.31)
For energies in the physical region, over the real s axis above threshold, this parameter-
ization can be described in terms of Eqs. and . The advantage of describing
the scattering in this form is that we can analytically continue it into the complex s plane
to search for nearby resonances. The parameterization of Eq. is also valid for the
elastic case.

An undesired property of Eq. , is that the phase space p has unphysical singu-
larities in the first Riemann sheet appearing below threshold. This singularity spoils the
analyticity properties of M—for degenerate masses there is a branch point singularity at
s = 0. To fix this, we can exchange the phase space p with a dispersive integral, known as

the Chew-Mandelstam factor,

aCM

/ \/ 1—s54 thr/s (1 32)
Sa,thr

§'(s' — 5+ i€)

which by construction satisfies Im(/, cm) = 167mp,, and it only contains a square root
singularity at threshold in the first Riemann sheet. The integral I, cm(s) has a subtraction
at s = 0, which imposes Re I, cm(0) = 0, but different subtraction points can be employed,
e.g. at the pole mass of the associated K-matrix. This dispersive integral can be calculated

analytically, and in the case of degenerate masses it is equal to

a,thr 2 a,thr - — 2a,thr
Toom(s) =iy /1 — Sethr = <1+~/1— Sa.th log<\[ m)) . (1.33)
S ™ S \/Sa,thr
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The scattering amplitude in terms of the Chew-Mandelstam phase space is equal to

—1 1 1 1 1

- - — S 1 .
£,ab 167 (ka;)é E,ab(2k;;)z b+a,CM

(1.34)

1.5.2 Pair production amplitude

We have already introduced the amplitude describing the pair production of pseudoscalars
from an electromagnetic current. This amplitude is given by the overlap of the electro-

magnetic current J* and a two-meson state
HE (p1,p2) = (p1p2,alT"(x = 0)]0) . (1.35)

The electromagnetic current is conserved, and the production amplitude must reflect
this by satisfying the equation P,H* = 0. This also implies that H* behaves as a vector
under Lorentz transformations. This allows us to perform a Lorentz decomposition of the
amplitude,

HE = (p1 — p2)! fa(P?), (1.36)
where the orthogonal combination p;+ps is forbidden by current conservation. The Lorentz
scalar f,(s) corresponds to the electromagnetic form factor of the meson in channel a, which
in the case of mm production we identify with the form factor f; described in Sec.

We need to partial-wave project the production amplitude into the P-wave to match
the quantum numbers JF¢ = 17~ associated with the current,

Hit o (P) = [T
= m\/g)e“*(a myg) fa(P?). (1.38)

Yo, () HE (p1,p2) (1.37)

where € (P, my) is the polarization vector of a state with momentum P and spin-projection
into the z-axis equal to my. From this projection we learn that the requirement of H, ~

(k*) is explicitly satisfied by the Lorentz decomposition, and that f, does not need to
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vanish as some power of k* at threshold, although it will still feature a branch point
singularity at threshold.

We can impose unitarity on f, by calculating its discontinuity, and by extension its
imaginary part. In the case of production amplitudes this is associated with final state
rescattering, rather than conservation of probability, although these two concepts are equiv-

alent,
ka(s)lmfa(s) =Y Ki(s pu(s) My, (s) , (1.39)

where we explicitly show the channel indices, and the relative momentum factors are the
result of the centrifugal barrier behavior. It is not difficult to find a solution of Eq. ((1.39)),
for example

Jo = Mab ]:b, (1.40)

b k;*
where Fj, is the component of a vector in channel space of real functions with no right-hand

discontinuities. In the case of elastic scattering, the solution simplifies to

M7r7r,7r7r

e (1.41)

where we drop the channel index in F only when describing exclusively w7 elastic scat-
tering. Equation enforces, at least in the elastic region, that the form factor has
the same phase as that of the scattering amplitude. This matching of phases is known as
Watson’s theorem [49]. Other solutions exists, for example constructed from the Omnés
function [50], which we will describe in the next section.

Finally, if a resonance appears near the physical region, a coupling between the reso-

nance and the photon, fr, can be extracted from the relation

ca fR

Jal(s ~ sp) ~ = 250 (1.42)

Again the location of the pole in the production amplitude is expected to coincide with

the pole in the scattering amplitude. Resonances should appear not only in scattering, but
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in transitions involving the final state into which they can decay.

1.5.2.1 Omnés function

In addition to Eq. (1.40), we can find another parameterization of the form factor by
employing a dispersion relation to solve Eq. (1.39). In the case of the elastic scattering
the solution is known as the Omneés function [50]. In this energy region, where only the

two-pion channel is above threshold, Eq. (1.39) simplifies to

Imfr(s) = fr(s)sindT"e 0" (1.43)

where we used Eq. (1.27)) to express the scattering amplitude in terms of the pion P-wave
phase-shift, 677. We can then use the Schwarz reflection principle to identify f}(s+ i€) =

fr(s —i€) and find that the form factor differs across the right hand cut by a phase,

frls +i€) = €00 fr(s — ie). (1.44)

To solve this equation we use the ansatz

f=(s) = Q(s) Fal(s), (1.45)

where the function Fq is real and free of singularities, i.e. it satisfies ImFq = 0 over
the energy region of interest. The function Q(s), known as the Omnés function, has a
discontinuity of the form

Disclog (2(s)) = 2i 677 (s) . (1.46)

We can express the value of €(s) at any complex value of s with Cauchy’s integral formula,

and we can push the integration contour to lie around the discontinuity,

a7 ()
(s’ — (s +1ie))

s [,
log Q(s) = ﬂ/ ds 7 (1.47)

Sthr
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where we also imposed Q(0) = 1 by applying a subtraction to this dispersive integral. The
integral can be split into its real and imaginary parts, where the imaginary part can be
easily calculated, while the real part corresponds to the principal value prescription (P.V.)

o] T (!
0(s) = 77 xp (2. [ ay ST (1.4
T

s S'(8' = 9)

and we observe that the phase of fr = Q Fq is equal to the scattering phase-shift, satisfying
Watson’s theorem.

Equation (L.45), with Q(s) given by Eq. (1.47), is a dispersive representation of the
form factor, which satisfies more general analytic properties than the representation of
Eq. . For instance, it does not have any singularity over the complex s plane other
than the right-hand cut associated with Eq. . However, this Omnés function does
not take into account the contribution of inelastic channels, which could be parameterized
by the function Fq by implementing non-analytic behavior at the inelastic threshold.

In principle, to compute the function Eq. we need a description of the phase-shift
for all values of energy above threshold, although, in practice, we only have knowledge of
its behavior over a limited energy range. For that we can either compute the integral
with a cut-off, or propose a functional form for the high energy behavior. Either option
only introduces variations on the smooth part of {2 over the elastic region, which can be
compensated by the function Fq, so that both options reproduce the same physical values
for fr over the elastic energy region.

Finally, because of its improved analytic properties, the Omnés parameterization of
Eq. can satisfy crossing symmetry, meaning that it can be used to rigorously describe
timelike and spacelike data simultaneously. We turn now to the description of the spacelike

form factor of the pion.
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1.5.3 Spacelike form factor

For completeness we also provide the Lorentz decomposition of the process shown in

Fig. where the photon virtuality is spacelike,

(7 ()] TH(@) |7 (p2)) = (1 + p2)" f2(—Q%), (1.49)

where Q% = —(p; —p2)?, and where we have imposed current conservation by dropping the
contribution of a term proportional to (p; — p2)*. In the spacelike region, the argument
of fr(s = —Q?) is restricted to negative values. A consequence of current conservation is
that the spacelike form factor at zero virtuality is equal to the charge of the particle in
elementary charge units, i.e. f;(0) = 1. This property will be exploited to renormalize the

current operator in the lattice.

In this chapter we have commented on some of the goals and challenges of hadron
spectroscopy, and described the general mathematical principles describing the scattering
amplitude M, the form factors f,(s), and resonant states. In Chapter |3| we will continue
to study analytic properties of amplitudes, in the case of the two-to-two transition. Before
that, in the next chapter we will describe how M and f,(s) can be extracted from a LQCD

calculation.
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Chapter 2

Two-hadron amplitudes in a finite

volume

In this chapter we review the state-of-the-art technology used to extract two-meson ampli-
tudes from Lattice QCD. We begin by introducing the formulation of QCD on the lattice,
and reviewing the key concepts going into a LQCD calculation. Access to the ampli-
tudes of interest relies upon extraction of finite-volume spectra and matrix elements. We
describe the connection between finite and infinite volume quantities, as well as the tech-
nology required to get the finite volume quantities. We close this chapter by describing

the parameters of the lattice used for the calculation presented later in this work.

2.1 Non-perturbative finite-volume QCD

Lattice QCD is based on the Euclidean path integral formulation of QCD. The QCD path
integral involves an infinite amount of integration variables, which distinguishes it from
quantum mechanics. To obtain physical results from QFT it is necessary to tame the
infinities, such as through the perturbative renormalization procedure in QED. Wilson
proposed regularizing the path integral by placing the theory in a 4-dimensional Euclidean

lattice, with inter-site spacing a, and a finite 4-dimensional volume [6]. Typically, to study
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zero-temperature QCD, the lattice is defined with a larger Euclidean time size T than
spatial size L, resulting in a total size of L? x TE|

A discretization of the Lagrangian of QCD must be formulated such that, in the limit
as a — 0, the continuum Lagrangian of Eq. is recovered. Numerous discretization op-
tions have been studied in the literature, each with different discretization errors. However,
they all share the common feature that quark fields are placed at the lattice sites, while
gluon fields are represented by “gauge links”, denoted as U. These gauge links correspond
to group elements of SU(3) color associated with each link of the lattice. Their purpose
is to parallel transport quarks between sites, allowing for the formation of gauge-invariant
terms involving quarks at different sites. This is essential, for instance, when writing a
discretized derivative that under gauge transformations transforms covariantly.

Discretization errors can be mitigated by adding irrelevant operators to the Lagrangian
that effectively cancel out the leading effects due to the lattice spacing a, and vanish in the
continuum limit. This procedure is known as the Symanzik improvement program [51].
Another technique that reduces discretization effects is the smearing of the fields. The
idea is that more smooth, or smeared, fields will depend less on ultraviolet modes, which
are the most sensitive to the discretization. Of course smearing procedures cannot be too
aggressive, otherwise they could significantly modify the long-distance properties of the
theory.

The lattice formulation replaces the calculation of Feynman diagrams of perturbative
QFT, for the calculation of Euclidean n-point correlation functions from the QCD path

integral,
1 - -5 b,U]
<Ol(a:1)...0n(xn)>:Z/D¢D¢DUOl(x1)...On(zn)e epHUl (2.1)

where the operators O;(z;) are defined in terms of quark and gluon fields, while Sg is a dis-

!The Euclidean time direction T can be associated with the inverse temperature at which the correlation
functions of the theory are extracted. To obtain vacuum expectation values we need correlation functions
at zero-temperature.
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cretized version of the Euclidean QCD action, and the normalization Z = [ D Dy DU e 55,
The Euclidean action Sg is related to the action associated with the Lagrangian (|1.1)
through a Wick rotation.

Somewhat surprisingly, the fermionic part of the path integral can be carried out an-
alytically, thanks to the properties of the Grassman numbers used to represent fermions.
Under this operation the Dirac Lagrangian in the Euclidean action becomes the determi-
nant of the Dirac operator. If any of the operators O; in Eq. involves fermion fields,
they are replaced by the fermion propagator according to the appropriate Wick contrac-
tions. The propagator is equal to the inverse of the Dirac operator, which is a matrix in
color, Dirac, and coordinate space that only depends on the gluon fields.

The gluonic path integral is estimated with Monte Carlo importance sampling. The
Boltzmann factor, e™%7 / Z assigns weights to field configurations based on the significance
of their contribution to the path integral. In the context where the fermion variables have
already been integrated, e 2 should be interpreted as also including the appropriate
factors of the Dirac operator determinant. To estimate the path integral, an ensemble of
N configurations is generated according to the probability distribution e=5#/Z, and the
integral’s value is obtained from the average value of the operators O1(z1) ... Op(z,) across
the ensemble. The error associated with this stochastic process, i.e. the statistical error,
decreases as the number of configurations increases at a 1/y/N rate. For a more extensive
description of the lattice formulation of QCD, alternative discretizations of the action, and
more details about the implementation of LQCD, the reader is referred to Ref. [52].

The advantage of this formulation of QCD lies in its independence from a perturbative
expansion in powers of the coupling g, i.e., correlation functions incorporate the non-
perturbative dynamics of the theory. For instance, the spectrum of the LQCD Hamiltonian
consists of bound color singlet states, as expected from the phenomenological observation
of confinement. The energy of these states and their matrix elements with the operators
O;, determine the value of the correlation function of Eq. . We will write this relation

explicitly in Sec. 2:2.2] In practice, the spectrum and finite-volume matrix elements are
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extracted by modeling the time dependence of the correlation functions estimated from a
configuration ensemble.

The results obtained from LQCD are systematically improvable because the errors
associated with each of the approximations can be made arbitrarily small, albeit at the
cost of increased computational resources. Calculations can be performed at decreasingly
small values of a and increasingly large values of L, allowing for extrapolation to the infinite
volume continuum. For example, in the single particle sector of the theory, increasing the
spatial size L helps remove finite-volume effects on energies and matrix elements. These

mal where m, is the mass of the lightest hadron

effects are expected to behave like e~
in the spectrum, i.e. the pion. As we will describe below, the finite-volume effects in the
multi-particle sector have a more intricate behavior.

The mass of the quarks in the theory serves as an input, allowing us to study the
quark mass dependence of observables. These parameters can also be tuned to reduce the
amount of open channels into which a resonance can decay, simplifying the extraction of
poles. Calculations are labeled by the number of flavors, Ny, of dynamic quarks used, and
are typically performed in the isospin limit where the up and down quarks are degenerate.

On the topic of masses, let us comment on the scale setting procedure of LQCD. After
the lattice has been used to regularize the theory, we need to renormalize the theory by
imposing renormalization conditions. This allows us to determine the physical value of the
lattice spacing a. In the case of pure Yang-Mills theory, the value of a will depend on the
only free parameter in the Lagrangian: the coupling g. A common procedure to determine
a is to calculate the static color potential between color sources, and demand that the force
between between them takes its phenomenological value when the distance is equal to the
Sommer scale rg ~ 0.5 fm [53]. By finding what the Sommer scale is in lattice units, we
can reverse this relation to find the value of a in physical units. The process of determining
the potential involves the calculation of Wilson loops, a gauge invariant product of gauge
links along a loop in the lattice. The static potential between quarks is extracted from

the temporal size dependence of the loop, following the procedure that we will describe in
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Sec. Naturally, the spatial dependence of the potential is extracted from the spatial
size of the loop.

In the case of full QCD, the quark mass parameters also affect the scale setting accord-
ing to the renormalization group equations. The scale is no longer a function of only g but
also of the quark masses, nonetheless the scale setting can still be performed by finding the
Sommer scale. In the case of two different quark masses, like in a Ny = 2 + 1 calculation,
two more conditions are needed to tune the bare parameters of the Lagrangian. For exam-
ple, we could tune the quark masses so that the mass of the nucleon, composed of mostly
light quarks, and the mass of the €2 baryon, composed mostly by strange quarks, reproduce
their physical values, while the Sommer scale is used to determine a. Alternatively, the
scale can be set using only hadron masses and their ratios by identifying them to their
physical value.

As mentioned before, calculations can be performed away from the physical value of the
quark masses. This provides a computational laboratory to study, for example, the chiral
evolution of observables. The triumph of QCD, and the rest of the SM, stems from the
fact that once we have chosen a handful of observables to tune the bare parameters such
that the theory is set at the “physical point”, all the other observables can be predicted
with no further experimental input. The particular importance of LQCD is that it allows

us to make predictions in the non-perturbative regime of QCD.

2.1.1 Scattering in a box

Despite the ability of the lattice to handle non-perturbative dynamics, it has some lim-
itations. In particular, if we are interested in scattering processes that involve real-time
evolution, the Euclidean time of the lattice prevents us from performing a direct calcu-
lation. Direct calculations are mostly restricted to the spectrum of the theory in a finite
volume, and local matrix elements, e.g. the spacelike form factor of hadrons.

According to the Maiani-Testa no-go theorem [54], the lack of real-time evolution pre-

vents the direct extraction of amplitudes involving two or more hadrons, except at the en-
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ergy of the lowest multi-particle threshold. However, the seminal work by Liischer [55] [56]
provided the basis for a framework to indirectly extract multi-hadron amplitudes from the
finite-volume spectrum and matrix elementsﬂ The key insight of this idea is that for a
multi-hadron system trapped within a box, there is a deviation of its energy away from its
non-interacting value due the infinite-volume inter-hadron interactions. This extraction is
only possible as long as their interaction does not extend infinitely, a condition ensured by
the fact that all experimentally observed hadrons are massive.ﬁ

This Liischer quantization condition, in the energy region where only channels of two

stable hadrons can go on shell, is given by
det[M(s) + F~'(E,P,L)] =0. (2.2)

where the determinant is taken over partial-wave and channel space, M is the scattering
amplitude matrix, diagonal in partial-wave space but in general dense in channel space,
and F is a known geometric function with finite-volume L dependence, in general dense in
partial-wave space, but diagonal in channel space. The arguments of these two functions
are related via s = E? — |P|*. See Refs. [58, [59] for explicit expressions of F' and numerical
techniques for its calculation. In a finite volume, the spatial momentum of the system, P,
is quantized. In the case of spatial periodic boundary conditions, the momentum of a state
can take values equal to %d, where d is a vector of integers. The solutions to Eq. ,

up to e~ "L

corrections and restricted to the energy region where only two hadrons can
go on shell, correspond to the finite volume spectrum.
The reason for F' being dense in the partial-wave space is that the boundary conditions

in a box break rotational symmetry, leading to the mixing of partial-waves. For example,

in a lattice with a cubic spatial volume, the rotational symmetry group gets broken from

It has been proposed that a Quantum Computer could calculate real time evolution, with research
directed to formulations of scattering extractions from real-time finite volume correlation functions, for
example in Ref. [57].

3In the chiral limit, with vanishing quark masses, the pseudoscalar mesons become massless, and
hadronic interactions would be of infinite range. In that scenario the Liischer quantization condition
is not reliable.
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O(3) to the full octahedral Oy, group. In a cube, the total spin J is no longer a good
quantum number, but the leftover symmetries of O(3) in the Oy, group replace the infinite
number of irreducible representations J with the ten irreducible representations of Oy,
dubbed irreps, which we label with the symbol A. We call rows the different components
of a state in a lattice irrep.

The matrices in Eq. can be block-diagonalized and an independent quantization
condition appears for each of the lattice irreps. In this process, partial-waves are matched
with one or multiple irreps of the lattice, these patterns are known as the subductions of
the corresponding partial-wave. For a system in flight, with P # 0, the symmetry is further
reduced to the little group of P inside a box, we list these little groups in Table for
different values of P in Schonflies notation. For reference, we list the subduction pattern
for integer J’s up to 4 for a system at rest, and up to 3 for an in-flight system in Table
The elements of the projector matrices that implement this subduction are called the
subduction coefficients, these can be found in Refs. [60, [61].

The subduction patterns that apply for partial-waves of definite spin-parity also apply
to stable particles of spin J inside a box. This means that the different spin projections
of a hadron that form part of the representation J in the continuum, will get distributed
across states in different irreps of the lattice. For example, if the p-meson was stable and
at rest, its three spin-projections would behave as the three components of a state in the
T, irrep. If it had momentum of the form 2%[0011], its zero helicity component would be
a state in the A; irrep, and a mix of the non-zero helicity components would be the two
components of a state in the Fs irrep.

The relationship between the continuum components and the lattice irrep components
are given by the same subduction coefficients introduced above. This means that the
previous example also describes the subduction pattern of the scattering channel with
same JP as a p-meson. The determinant of Eq. , when the system has momentum
2T”[()On], splits into independent determinants, i.e. one for A; and two identical copies for

Es.
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In general, we denote the solutions of Eq. (2.2]) as { Ey}, where the index n encodes all

the quantum numbers of the state, e.g. its momentum, irrep, row, and energy level.

Table 2.1: Integer spin-parity (J') subduced to each of the lattice irreps, in flight irreps subduce
helicities, but we list the corresponding J* that would contribute to that helicity. For each irrep
we list its dimension in parenthesis. For the case of zero momentum, there is one irrep per parity.
Adapted from Ref. [62].

Oy P = 22[000] | Cyy P = 27[00n] ng P = 2Z[0nn]
A(1) 0,4 .. A(1) of, 17, 2%, 37 .| A(1) o0F, 17, 2% 3% .
As(1) 3. Ag(1) 07, 1%, 27, 3% .| Ay(1) 07, 1%, 2% 3% .
E(2) 2,4 .. Fy(2) 1%, 2% 3% Bi(1) 1%, 2% 3% .
Ti(3) 1,3,4 .. Bi(1) 2% 3% .. Bo(1) 1%, 2% 3% .
To(3) 2,3,4 .. Bo(1) 2%, 3% ...

Csy P = 2 [nnn] ‘ Cy P = ZZ[nm0] or = [nnm)]

A(1) 0f, 17, 2%, 3F L[ Ai(1) 0F, 1%, 2%, 3F .
Ap(1) 07,1+, 27, 3% | Ay(1) 07, 1%, 2% 3%
Fy(2) 1%, 2% 3% ..

The Liischer quantization has been successfully applied to several systems of coupled-
channel scattering, see Refs. [63, 64} [65, 66l (67, 68 [69] (70, [7T], [72], with an efficient strategy
to solving Eq. (2.2) in the coupled-channel case presented in Ref. [73]. This technique is

reviewed in Ref. [74].

The concept of the finite-volume extraction of the scattering amplitude was extended
by Lellouch and Liischer to transition amplitudes by deriving the finite-volume correction
of the weak decay amplitude K — 77 [75]. Extensions to arbitrary transitions involving
two-hadrons in the initial or final state were later developed [76], [77, [78]. In the case of
a production amplitude H from a local current J, the finite-volume matrix elements of
the states within the two-hadron energy region can be “finite-volume corrected” by the

following prescription

(01T (z = 0)|n) |* = 2EiL3H(En) - R(Ew, L) - H(Ew)T, (2.3)
R(Eq, L) = 2E, lim E— 5 (2.4)

E—E. M(s)+ F~Y(E,L)’
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where |n); is a unit-normalized finite-volume state of energy Ey, and we have left implicit
the P dependence of F'. In this case H represents a vector with partial-wave and channel
space components corresponding to each of the production channels. The matrix ﬁ, and
variations of it, are referred to as the Lellouch-Liischer (LL) factor. The LL factor is a
matrix in partial-wave and channel space, but needs to be of rank one to be consistent
with causality [77]. In other words, only one of the eigenvalues of the matrix M + F~! can
vanish at the quantization condition energy. This allows to decompose R into an outer

product, featuring the eigenvector v of the vanishing eigenvalue of M + F~1,
—vyv{, (2.5)

where ) is the slope in energy of the vanishing eigenvalue at E,. Although in practice it

is more convenient [79] to use the matrix MRM,

- E - E,
= —2F,- li
MRM " ESE. M—1(s) + F(E,L)’
2E*

where p is the slope in E* of the vanishing eigenvalue of M~ 4+ F, which is seen to control
the normalization, while the eigenvector, wq, distributes strength across the channel and
partial-wave space. This formalism has been used to calculate the timelike form factor of
the pion in the elastic region, as mentioned in Sec.

In the next section we describe how the energy levels going into the quantization
condition of Eq. , and the finite volume matrix elements needed in the LL formalism

of Eq. (2.3)) are obtained from lattice correlation functions.

42



2.2 Lattice technology

There are a several developments that have allowed the field of LQCD to reach suffi-
cient maturity to perform calculations of amplitudes involving several particles, we present
an overview of the main technological developments in the following subsections. We

begin by summarizing the parameters of the lattice employed in the calculation of Chap-

ters Bl [6] [7 and

2.2.1 Lattice parameters

The lattice calculation presented in this work was performed on a Ny = 2 4+ 1 lattice
obtained by the HadSpec collaboration [80]. The gauge field is realized from an O(a?)-
improved Symanzik action, while the quark contribution uses the Clover action, a type of
Symanzik improvement, with “stout-link” smearing of the spatial gauge links; more details
of the implementation are given in [81]. The HadSpec collaboration uses an anisotropic
formulation, with finer temporal than spatial spacing, a; < as, to increase the energy cut-off
without significant increase to the computational cost. Because of the anisotropy & = as/ay,
on top of choosing the bare coupling and the bare masses, the action has anisotropy
parameters that need to be tuned to reproduce space-time symmetry. The tuning of the
anisotropic gauge action is performed with Wilson loops, by demanding that their spatial
dependence relates to their temporal dependence according to the target anisotropy [81].
The tuning of the anisotropic fermion action is performed with the dispersion relation of

the energy Ep of a stable hadron with momentum P and mass m, which should satisfy

(a.Ep)? = (aym)? + |asP? /€2 (2.7)

This Ny = 241 lattice has two degenerate light quarks with larger than physical mass,
and a strange quark with approximately physical mass, such that the pion has a mass

of approximate twice its physical value, 284 MeV, while the kaon has a mass close to its
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physical value, 520 MeV. The volume of the lattice is equal to L? x T = (24as)® x 256a,,
where a; ! = 5.988(17) GeV and the anisotropy is equal to & = 3.455(6), as reported in
Ref [82]. The scale is set by identifying the mass of the 2 baryon in the lattice to be equal to
its physical value. This is possible thanks to the tuning of the bare strange quark mass to a
value close to its physical value. This tuning was performed by identifying combinations of
pseudoscalar masses with a leading chiral behavior dependent on individual quark masses.
In this work we employ the Liischer quantization condition, the LL formalism, and identify
stable hadrons in the lattice with their continuum counterparts. Residual finite-volume
effects not taken into account scale as e™™=% but given that m,L ~ 4 we expect them to
have a negligible impact compared to other sources of error, e.g. statistical fluctuations.
This lattice has been used in previous computations of 77 scattering [83, 84], 7K

scattering [82] and the electromagnetic transition vK — K [85].

2.2.2 Energy levels and the variational method

A short outline of the variational method is given at the beginning of Sec. III of Ref. [80].
More details of the practicalities of the implementation can be found in [86]. Here I
summarize the main conceptual points.

The finite-volume spectrum of QCD can be obtained from the time dependence of
correlation functions. We can perform a spectral decomposition of correlation functions
to obtain the Euclidean time dependence given by a sum of decaying exponentials. In the

case of two-point functions, neglecting finite-T effects, the time dependence is of the form
Cii(t) = <Oi(t)0;(0)> =" zpzye Bt (2.8)
n=0

where E, corresponds to the energy of state |n), and Z! is equal to the overlap of the
operator O; with that state, i.e. Z' = (0/0;(0)|n). From Eq. (2.8) we observe that the
ground state will dominate the sum of contributions at large time, and in order to obtain the

energy of several states we need to disentangle the different exponential terms. Obtaining
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the energy of excited states is desirable if we want to extract M from Eq. over a wide
kinematic region.

If we form a matrix of correlation functions with elements of the form of Eq. , A
can be thought of as a vector in the space of the operator basis that we are using. The
spectrum for each momentum, irrep, and internal quantum numbers is independent, and
we can form a matrix for each of the available combinations of quantum numbers consistent
with the channel of interest. If we want to extract the A lowest energy levels, we need at
least A operators to form a linearly independent basis with the Z" vectors to disentangle
the time dependence associated with each level. For that we introduce the generalized

eigenvalue problem (GEVP)
C(t)v" = C(to)v" A" (¢, to) , (2.9)

where v" is a vector in the operator space, and A" is the generalized eigenvalue, also known

as principal correlator. If we split the correlation matrix into two terms
Cyj(t) = CU(t) + CLi(t Z AV AR Z Zr 7 e Bt (2.10)

we can solve exactly for Afy (t,to), the generalized eigenvalue of the truncated matrix C(¢).

We begin the derivation by first writing C°() in the matrix notation
C't)=ZEWZT, [Z)w=2", [Et)]um = Oame L. (2.11)

If the Z" vectors are linearly independent, then the matrix Z has an inverse, and we can

convert the generalized eigenvalue problem in a conventional eigenvalue problem
E(t —tg)Zv" = ZU“)\?O) (t,to), (2.12)

where we have used that the inverse of E(t) is E(—t) and that E(t1)E(t2) = E(t1+t2). For
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the sake of readability we are denoting this zero-th order approximation of the generalized
eigenvectors as {v}. Relation (2.12) is an eigenvalue equation with eigenvectors Zv". The

matrix F(t — tg) is diagonal, and we can directly read that
Ny (1) = e 5(110), (2.13)

and the n-th eigenvector is ) j Z;“v}‘ o O™ where the index m corresponds to the compo-

nents of the eigenvector in this space. For convenience we choose the normalization

> Zrop = grmetnio/2, (2.14)
J

which makes the generalized eigenvectors orthonormal over the metric C°(tg),
™ C0(t0)v" = G - (2.15)

We can also treat C’ilj(t) as a perturbation, and calculate the first-order correction to

add to A", which is of the form [87],
Aoy (t:t0) + Ayt to) = (1 — by)e Eult=to) 4 p e=Fati(t=to) (2.16)

where the exponential term of the correction is driven by the energy of the (A+ 1)-th level
in the spectrum, and the coefficient b, decreases exponentially with increasing ty. It is
known that this remains the leading correction to all orders as long as 2ty > ¢ [87]. The
regular eigenvalues of Cj;(t) have a similar dependence on time than Aoy (t,tp), but the
leading correction for the n-th eigenvalue is driven by the energy of the (n 4 1)-th state
[88]. For this reason, solving the GEVP has a considerable advantage over the regular
eigenvalues of the correlation matrix.

It is more stable to perform independent fits of the time dependence of multiple prin-

cipal correlators, where each fit function has one or two exponential contributions, than
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attempting to extract multiple energies from a single correlation function of the form of
Eq. . Additionally, this technique allows to disentangle contributions of degenerate
states, or degenerate up to statistical precision, whereas a multi-exponential fit would not.

It might appear advantageous to use large values of ty for a couple of reasons. At a
larger tg, the energy levels above the A-th state will have decayed and can be treated as
a perturbation, where the principal correlators can be properly modeled with Eq. .
Otherwise, the imposition of the orthonormality condition of Eq. might force the
operators into a metric that does not correspond to that of the lowest A states, and the
time dependence of \"(¢,%y) would not necessarily be that of Eq. . This behavior
was explored with a toy model in App. C of Ref. [86]. Even in the best scenario, where
Eq. is a valid model, increasing tg reduces the magnitude of the b, coeflicient,
minimizing the pollution from higher energy states to the principal correlator.

However, the correlation functions have an associated uncertainty due to the Monte
Carlo estimation of LQCD. This noise is expected to increase exponentially with the time
separation for all correlation functions except the one of the lightest meson of the theory,
for which the noise to signal ratio is expected to stay constant, this is known as the Parisi-
Lepage scaling [89, [90]. In that sense a compromise has to be reached when choosing ty,
where the correlation function has not been swamped by noise yet, but the contributions
from energy states above the A-th state have had enough time that C%(to) becomes a good
approximation of C(tp).

As mentioned before, having a large basis is a requirement to obtain a large set of
energies. Furthermore, the larger the basis, the higher the energy of the (A + 1)-th state,
and the more quickly that contribution decays away. This will be true as long as the basis
is diverse enough to describe the different types of states in the low lying spectrum. In the
multi-hadron energy region it has been observed that this diversity is necessary to obtain
an accurate spectrum. For instance in Ref. [91], it was observed that removing specific
types of operators from the basis can lead to a qualitatively different spectrum. In there,

it is explained that if the operator set is not diverse enough to be able to span the space of
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the lowest energy states, even if the operators on a reduced basis have a sizeable overlap
to all states, the principal correlators will take a significant amount of time to relax to the

correct value of each energy state.

Once the spectrum has been obtained from the principal correlators, taking into account
the caveats described above, we can use the eigenvectors to construct optimized operators.

We choose to construct these operators with the following normalization

A
Qf = /2B, Futo/? Z v} O;r- . (2.17)
j=1

The overlap of these operators with the low-lying states in the spectrum is equal to

(n]Qf,(0)|0) = \/2Ey by , (2.18)

so that correlation functions with these operators at the source ¢t = 0, and sink %, is equal
to

<Qm(t) QL(0)> = Opn2Ege Bt 4 O (e Easit) (2.19)

where we observe that each linear combination of operators will optimally overlap to only
one of the low-lying states, with corrections typically arising from the (A + 1)-th energy
level.

When solving the GEVP, we can obtain a set of eigenvectors v" for every timeslice
available. If the operator basis and the value of ¢ is selected properly the eigenvectors
will only have a weak dependence on t. In practice, we observe that selecting a timeslice
tz > to for the eigenvector set, the condition of Eq. is best satisfied.

In summary, we have found that the energies { Ey} and optimized operators Ql can be
extracted from the eigenvalues and eigenvectors of the generalized eigenvalue problem of
C;;(t). In the following subsections we will describe the type of operators used in scattering

extraction calculations.
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2.2.3 Operators

In this section we will describe the two type of operators relevant for the extraction of
states in the two-meson sector. We will utilize operators projected to definite momentum,

Op () =Y., e F*0;(t,x), which sample all spatial sites on a timeslice.

2.2.3.1 Fermion bilinears

An operator type that we expect to have a strong overlap with the low-lying meson spec-
trum is a local fermion bilinear sandwiching the gamma matrix structure, I', necessary to
match the meson spin and parity, i.e. O(x) = ¢ (z) T'+)(z). We list in Tab. the particles,
and their quantum numbers, that can be interpolated by all the possible gamma structures.
The flavor of the interpolator is determined by the flavor of the quark fields. For example,
in isoscalar channels, the mixture of bilinears of the form @ = aI'u + dT'd with those like
O* = 5T's can be studied. This was employed in Ref. [92], where the light-strange mixing
of isoscalars was estimated from the overlaps of the finite volume levels to these operators.

To study mesons of higher spin than those shown in Tab. and to produce multi-
ple operators with the same quantum numbers and enlarge our variational basis, we can
use non-local fermion bilinears. These can be produced from combining, with the appro-
priate Clebsch-Gordan coefficients, gamma matrices and gauge-covariant derivatives in a
circular basis, then sandwiching the result between quark-antiquark fields, such that these

(©) quantum numbers. The local fermion bilinears only feature

operators have definite J¥
quark-antiquark in a color-singlet, while non-local bilinears featuring one or more covari-
ant derivatives will also contain the quark-antiquark in the octet combination, some of
them even featuring only color-octet quark-antiquark contributions. More details about
the conventions taken in this construction are given in Ref. [60]. In that reference, it is also
mentioned how these continuum-spin operators are subduced into the irreps of the cubic

group. The pattern of overlaps of an operator subduced to different irreps can be useful

to identify (stable) states with their continuum counterpart, as long as the lattice spacing
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is small enough to restore rotational symmetry at small distances.

For mesons in-flight, the helicity, instead of spin z-component, is the continuum con-
served quantum number. Operators of definite helicity can be constructed via a Wigner-D
matrix acting on an operator of definite spin z-component with non-zero momentum. Then
these operators are subduced into the corresponding little group irrep of the lattice. The
details of this construction are presented in Ref. [61].

Table 2.2: Fermion bilinears quantum numbers, and the corresponding particle
state they overlap into when they are projected to zero momentum, following
the PDG naming scheme shown in Tab. where the isovector combination
of quark flavors has been chosen. In the case of the Wick rotated Euclidean
fermion action, the gamma matrices change as they have to satisfy the algebra
{y*,v*} = 6", and the labeling convention of the greek indices goes from 1
to 4, instead of from 0 to 3. If we make the substitution 7* — ~%, the overlap
pattern presented here remains equal for the Euclidean theory.?

Y PV, Py oy, Y0y vy Yy Ay

P +1 -1 -1 +1 +1
C +1 +1 -1 +1 -1
Overlap ag T p a1 b1

& The 9% operator does not overlap to a g state because it has the exotic quan-

tum numbers J©¢ =07~

2.2.3.2 Two-meson operators

When thinking about studying scattering, the most natural choice of interpolators are
those resembling multiple mesons. In Ref. [93] the construction of these type of operators
is described. In that reference it is advocated to construct multi-meson operators by
combining single meson operators that are already subduced to an irrep of the lattice. It
is also convenient to use single-meson-like operators that have been optimized to overlap
to the ground state mesons. The coefficients of this linear combination will be given by
the Clebsch-Gordan coefficients coupling the irreps of the single mesons to the irrep of
the total momentum. This is preferred over the subduction of a multi-meson operator
which has been partial-wave projected, i.e. which was constructed from meson operators

of definite helicity. In the latter case the subduced multi-meson operator will, in general,
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be formed by single hadrons in multiple irreps.
Following this prescription, the construction of a two-meson-like operator, in the case
of two pions, is given by

A, Ap,P A A
[rm]p (t) = CAiL,Rpl;AQ,RPQ 7TR1p1 (t) 7rR2p2 (t), (2.20)

R

where C//tf‘ 71};1)1; As,Rpy AT€ the Clebsch-Gordan coefficients of the induced representations of
the little groups of each momenta in the Oy, group. In this equation the sum runs over the
allowed lattice rotations R that leave the momentum P invariant, i.e. the little group of
P, such that for all rotations Rp; + Rp2 = P. For the target state, we indicated a row p
within the irrep A, necessary for a multidimensional irrep A, see Tab. the pions, being
spinless, always appear in unidimensonal irreps. When constructing two-meson operators
involving single vector-mesons the summation in Eq. is also required over the rows
of the vector-meson irrep. Explicit examples of these Clebsch-Gordan coefficients are given
in Ref. [03]. This same procedure can be iterated to formulate operators with more than
two mesons, as described in Ref. [69].

An important advantage of the two-meson-like operators, over the single-meson-like
operators is that they sample the lattice volume differently. While the fermion bilinears
projected to a given momentum are the linear combination of operators localized around a
lattice site, the two-meson operators are linear combinations of operators separated by all
the allowed distances in the box. This makes them more efficient at interpolating states

that do not behave like single hadrons.

2.2.4 Matrix elements from correlation functions

To obtain production amplitudes, the required finite-volume matrix elements are extracted
from two-point correlation functions, < J(t) QE(O)>, which feature the electromagnetic cur-
rent J. To constrain the amplitude over a wide range of kinematics we employ optimized

operators, (), for the ground state and multiple excited states of each irrep. In Eq. (|1.9))
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we showed how this current can be decomposed into components of definite isospin. The
current operator needs to be renormalized, with a renormalization constant for each quark
of different mass. The electromagnetic current, including light and strange quarks, in terms

of lattice currents is equal to
T = Zy 5 (Totas + §Trtat) + 23 (=3 Junat) (2.21)
where we define the isospin-basis currents with the following normalizations,
Ty = T(UF’LL —dld), Ju, = T(UFU +dId), J,, = 5T's, (2.22)

and the spatially directed vector current whose improvement at O(a) is consistent with

the anisotropic Clover quark action is [94],

aTq=qv"q+ 1(1 — &) a,04(q0*q) , (2.23)

* =3

where o

In the case where production of 77 is considered, only the isovector component, 7,, ap-
pears, and the multiplicative renormalization factor, Z€/, is determined non-perturbatively
using the pion form factor at zero virtuality extracted from three-point correlation func-
tions, <QW(At) J(t) QL(O)>, as described in Ref. [85], and Sec. .

Following the spectral decomposition of correlation functions given in Eq. (2.8), the

two-point function featuring the electromagnetic current will be of the form

<j( £) Q4(0) > " 2E, LB (01T (z = 0)[n), + O (e~ Fasit) (2.24)

where the volume factor L? arises if the current operator has been projected to definite
momentum, i.e. if J(t) = >, e"®*J(,x). The matrix element can then be extracted

from the time dependence of this two-point function. Alternatively, we can form the ratio
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of correlation functions

T

and extract the matrix element from the time dependence of the ratio. The ratio typically
features reduced timeslice-to-timeslice data correlation, which helps avoid the D’Agostini
bias [95].

To extract spacelike matrix elements for a stable hadron we require the use of three-
point functions. In the case of the pion spacelike form factor, we employ optimized pion
operators, {),, at the source and sink, and insert a current operator in between. This

three-point function has the spectral decomposition
(s (A T () L, (0)) = (m(p)|TO) () e Frrs A e Frmt 4o (2.26)

where the subleading time dependence will arise from matrix elements associated with
higher energy states with the quantum number of a pion. Note that we explicitly label
the momentum projection of each of the optimized operators, and employ a relativistic

finite-volume normalization for the pion states

(n(ps)lm(Pi)) = 2Enp; L20p, p, (2.27)

where Er ,, is the energy of the pion following the dispersion relation of Eq. (2.7)). This
normalization choice is motivated by the fact that single-meson states receive only expo-
nentially suppressed volume corrections. Similar to the case of production matrix elements,

we can also form ratios to reduce timeslice-to-timeslice data correlation,

(Qnp, (A1) T (1) U, (0)) g
(s (A = )02 5, (0)) (Vi (25, (0))  2Bqp,2Erp,

(r(p)|TO)|m(pi)) + -,

(2.28)

93



the matrix element on the right hand side of the equation can be related to the pion form

factor fr(s) with Eq. (1.49).

2.2.5 Distillation

To compute correlation matrices with multi-meson operators, i.e. having multiple fermion
bilinear operators at the source and at the sink, we need to perform matrix inversions of
the Dirac operator to obtain the propagator. Even though the Dirac operator might be
sparse, the propagator is not. For example, for a lattice with 20 sites, the propagator has
O(10'2) entries, making a direct calculation prohibitively expensive.

Instead, we can compute the inversions over a subspace that more efficiently samples
the low-lying spectrum in which we are interested. For that we employ a quark-field smear-
ing method known as distillation [96]. This method consists of using a projector operator
on each quark field to filter out ultraviolet modes. This projector is invariant under ro-
tations and is covariant under gauge transformations, such that the rotation properties
and quantum numbers of the operators previously described are left unchanged by the
smearing procedure.

The smearing process for the operator TP 1) = 3~ 4(¢,x) e "F*T'(¢,x) ¥ (¢, %), where
I'(t,x) represents a combination of gamma matrices and covariant derivatives, goes as
follows. First, from the spatial Laplacian at timeslice ¢, which is a matrix in coordinate
and color space, {x,a}, we compute the Nyecs eigenvectors, &,(x,a;t), with the smallest

eigenvalues. Then, we form the smearing operator

Nvecs

O({x,a},{y,b}:t) = D &nlx,a;1) €y, bit), (2.29)
n=1

which behaves as a projector, i.e. 0% = 0. This operator is applied to each quark field,

and because it consists of a sum over external products of eigenvectors, we can factorize
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the meson operator into

Nvecs

YOTP 0w = S d(t,n) @ (t) S(t,m) | (2.30)
n,m=1
where we defined the “elemental” matrix ®,,,, the smeared quark field 1/; = ¢, and we
suppressed the sum over spin indices.

When the fermionic path integral is performed, the quark fields are replaced by their
Wick contractions, e.g. 1/?1/} = (i) — m)~™' = M~!. In this case the smearing pro-
cedure will be applied to the quark propagators to form “perambulators”, 7,,(¢',t) =
e E)YM Y )& (t). Once this smearing has been performed, correlation functions be-
come products of matrices over distillation space. Furthermore, since the perambulators are
independent of the operators of the meson elemental, the inversions required to calculate
them can be done once and then they can be stored and reused in multiple calculations.

Finally, local current insertions, like the electromagnetic current, should not be smeared,

and in those cases we use a “generalized perambulator”,
Tnm (At ) = €L (A [MTH (AL ) T M7t ts)] Emlts) - (2.31)

The generalized perambulator is constructed by first calculating the inversions of the Dirac
operator from the distillation vectors at t; and At acting as sources, these two inversions
can then be contracted at ¢ to form J,,,,. Notice that we cannot employ this technique for
a disconnected current insertion, because in that case the Wick contraction only involves
unsmeared fields. The calculations presented in this work only feature connected current

contributions.
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2.2.6 Statistical methods

In addition to smearing, another technique employed to reduce fluctuations is to average

over multiple time sources, i.e.

1

Cij(t) = §—

3 <Oi(t + tarc) O (tsm)> . (2.32)

tsrc

In our case with a lattice of temporal length of 256a;, we employ four equally separated
values of tg. along the temporal direction for the calculation of the correlation matrix

going into the GEVP of Chapter

2.2.6.1 Error propagation

Resampling methods are commonly used in LQCD calculations to propagate the Monte
Carlo statistical error from the correlation functions to the final results. The most popular
methods are bootstrap and jackknife [97]. In this work we employed single elimination
jackknife for error propagation. This method proceeds as follows: from an ensemble of N
samples O; of a random variable O, e.g. an n-point function ensemble from LQCD, where

the index ¢ enumerates the elements in the ensemble, we form a downscaled ensemble
T
JK _ }
Of = Z 0;. (2.33)
J#i
Each element of the downscaled ensemble is basically the mean of the ensemble after
eliminating one of its elements. After that, we apply any number of operations, y = g(O),

to the downscaled ensemble, e.g. fitting the timeslice dependence to obtain the energy, or

the matrix element. Finally we upscale the ensemble of results y;]K = g((’)iJK),

1
=yt =Nyt - Zygm : (2.34)
J
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The value and statistical error of the quantity y = (¢(O)) can be calculated with standard
statistical techniques applied to the ensemble y;. Furthermore, if another operation needs
to be applied to the quantity y, e.g. obtaining the scattering amplitude from the spectrum,

we can downscale the y ensemble and repeat these steps.

This concludes our description of the state-of-the-art calculation techniques for lattice
QCD. The next chapter returns to the ideas of scattering in the infinite volume, but after

that, we will return to the finite volume.
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Chapter 3

On-shell decomposition of the

infinite-volume 2 L 2 transition

As mentioned in Chapter [ most of our current understanding of strong resonant states is
based on their mass, width, and coupling to asymptotic states. However, more information
is needed to form a complete picture of their nature and structure. Building on the study
of the internal structure of stable hadrons by probing them with external currents, we
envision the possibility of studying resonances in a similar fashion. This Chapter presents
the first novel results of this work, which were first presented in Ref. [98]. The figures
presented in this Chapter were similarly taken from Ref. [98].

In this chapter we study amplitudes of the form 2 ~74 2, which we label W, and
formulate a decomposition of these amplitudes that respects analyticity and unitarity. We
call this result the on-shell decomposition because it is built in terms of the amplitudes
describing possible subprocesses, with each of these evaluated as if its external particles
were on their mass shell. This on-shell projection will always apply to Lorentz scalar form
factors, but not to the kinematic Lorentz tensors associated with the current insertion. If
the meson-meson asymptotic states couple to a resonance or a bound state, we will show
how to extract the elastic form factor of that state from the on-shell decomposition.

As reviewed in Chapter [I], unitarity and causality impose analytical constraints on the
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functional form of scattering amplitudes. Once these conditions have been satisfied, we
can confidently move away from the real energy axis in the search of the complex pole of
a resonance. In a similar way, the analytical properties of multi-body amplitudes can be
studied, to then find further properties of resonances.

This formalism describes W in terms of amplitudes of subprocesses, known kinematic
functions, and dynamical functions describing the short range interactions associated with
the meson-meson states and the current. The energy dependence of amplitudes associated
with each subprocess, as well as that of the amplitude W itself, could be obtained from
a LQCD calculation of the necessary spectra and finite-volume matrix elements. These
quantities would need to be mapped to infinite volume amplitudes, as described in Chap-
ters @l and [

The decomposition of the amplitude W is model-independent and encodes the contri-
butions from all orders of the strong coupling. However, the result is only valid over the
energy region where at most two mesons can go on shell. This limits the current momentum
to be below any production threshold if it is timelike, but can have an arbitrary spacelike
value. In other words, the results can only be used for an elastic two-meson system, or a
system of multiple coupled two-meson channels.

To derive the results of this chapter we will describe amplitudes in terms of a skeleton
expansion of all the diagrams in a generic effective field theory (EFT). We will not need
to make any explicit reference to the parameters of the EFT, we only need to assume
that the theory contains stable mesons that will feature in the propagators and kernels
of the diagram expansion of W. An additional ingredient not present in the on-shell
decomposition of M, which is given by the K-matrix representation, is the presence of the
so-called triangle diagram, which contributes logarithmic singularities to W.

In Section [3:1] we introduce the subprocesses appearing in W, then in Sec. [3.2] we show
the resulting on-shell decomposition. In Sec. we illustrate the analytic continuation
and extraction of the resonance elastic form factor. In Sec. 3.4l we sketch the derivation of

the decomposition, and in Sec. [3.5] we present the derivation of a function reproducing the

99



singularities of the kinematic triangle contribution.

The decomposition presented in Ref. [98] applies to multiple two-meson channels with
arbitrary masses, where each of the external mesons does not possess spin degrees of
freedom, but the two-meson systems can be described by an arbitrary number of partial-
waves, allowing to extract form factors of arbitrary integer spin resonances. For simplicity
we will show the derivation of the amplitude associated with an elastic channel of two
degenerate mesons of mass m where only the lowest partial-wave is relevant, and afterwards
briefly discuss the generalization to multiple channels, and partial-waves. Furthermore we
will assume that the two particles are not identical, and only one of them couples to the
external current, such that no symmetry factors are required for diagrams with bubble

loops.

3.1 Amplitudes of subprocesses

Let us first introduce the two amplitudes associated with subprocesses of the amplitude
W. The first of them is the 2 — 2 scattering amplitude, M, which we already introduced
in Sec. The second is the one-meson transition 1 —Z+ 1, which we label w. Both the
transitions W and w are mediated by a local current J4(z = 0), where A represents all
the quantum numbers associated with the current, e.g. the Lorentz indices for a tensor
current, the flavor, parity, etc.

The current insertion is defined in terms of a matrix element of the current sandwiched

by one-meson states

(k| TAO) k) = > K (kg ki) £5(Q%), (3.1)
J

where we label the momentum of the final/initial meson k/;, and where we perform a
Lorentz decomposition of the matrix element in terms of scalar form factors, f;, and Lorentz
tensors K, where we define Q? = —(k F— k;)?. By definition, the external momenta here

are on the mass shell, i.e. k:f[ s = m?. We illustrated this decomposition in the case of a
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iw = «— «—

on K ki

Figure 3.1: Diagrammatic representation of wyy,, the one-meson transition partially projected on
shell. The grey kernel symbolizes that while the form factors are projected on shell, the kinematic
factors can be evaluated for off shell values of the momenta k¢ and k;.

conserved vector current in Eq. 1)

In general, when one-meson current insertions appear as a subprocess of W, the value
of momenta ks or k; will not necessarily be on the mass shell. To extend the definition of
w to arbitrary values of momenta we simply evaluate the tensors K; in terms of ky and
k;, but we keep the form factors projected on shell as a function of only Q. We label this
extension with the symbol w,,, where the subscript “on” reminds us that the form factor
take their on shell value. The definition of wyy, is still given by Eq. , but valid for
arbitrary value of momenta. We illustrate this partially on-shell projected amplitude in
Fig.[3:1] This defines a prescription for the individual terms in our decomposition, but the

combination of all terms should be prescription independent.

3.2 On shell decomposition

We define the 2 + J — 2 amplitude, which we label as W, via the matrix element,

WA(Pr, b} P, B}) = (Pr, Df; out| 74(0) | P, P} in) (3.2)

conn °

Here the two-meson asymptotic initial(final) states are defined in terms of a total momen-
tum Py, and the relative momentum direction f)z(?f*) in the initial(final) CM frame. The

subscript “conn” emphasizes that this matrix element only takes into account connected

In this chapter and the next one the single particle form factors are not considered in the timelike
region, and we employ the notation f(Q?) for the spacelike form factors, whereas in the rest of this work,
where we are primarily interested in the timelike form factors, we use f(—Q?) or f(s < 0) for the spacelike
form factors.
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Figure 3.2: (a) Diagrammatic representation of the amplitude W describing the 2 5 2 process.
The initial /final state momentum is given by P;,¢, and the current quantum numbers are labeled
with index A. The dashed line represents the pole piece D of the fully dressed propagator. The
solid kernels represent all diagrams contributing to a given amplitude. (b) Long range contributions
associated with current insertions to the external legs of the amplitude.

contributions, we do not consider diagram topologies in the skeleton expansion where the

hadrons do not interact with each other or with the current.

In Sec. [3.4] we derive the on-shell decomposition to be equal to
APy, Bfs P = 3 {iwgn iDiM} + Wit (Py 5 Pis DY) (3.3)

We illustrate the decomposition diagrammatically in Fig. where we also label the
momentum of each of the external hadrons. The first term represents the long range
process whenever the current insertion probes one of the external legs of the amplitude.
Here we introduce the pole piece of the fully dressed propagator,

1

iD(k) = k2 —m?2 4ide’

(3.4)

If the current only couples to one of the particle species, the individual contributions of
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Figure 3.3: Triangle-function contribution to Wg¢, Eq. (3.6)), written in terms of the single-hadron
form factors (f;) and the triangle loops (G;) defined in Eq. (3.7). The gray circle and dashed lines
were defined in Figs. and respectively.

the first term are equal to

> {iwi, iDiM} = iwly, (9, p}) iD(p}) iM(si) +iM(sy) iD(pg) iwgy (g, pi) ,  (3.5)

where pg;)f is a shorthand for P/, — p"), and Si(f) = PZQ( - Here we assumed that the

scattering amplitude M only has contributions from the S-wave, meaning that it is inde-
pendent of the relative momenta direction in the respective CM frames. Note that there
are physical values of the external momenta for which the pole pieces can diverge.

The second term in Eq. will be the center of attention in Sec. which we label
with a subscript “df”, which stands for divergence free, referring to the lack of long distance
poles given by Eq. . In Sec. we prove that it can be written in an on-shell projected

form as,
. A .
WPy, B) = M(sy) | iAS(Py, P +Zm A(Pr, P) | M(si), (3.6)

where again, because only the S-wave is allowed to contribute, we dropped the dependence
on the relative momenta direction in the respective CM frames. The kernel A’242, in general,
can be expressed in a Lorentz decomposition, similar to Eq. (3.1]), with each Lorentz scalar

being a real and regular function in s;, sy, and Q? over the kinematic region of interest.
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Figure 3.4: Singularities of the G function as reproduced by the contributions of G given explicitly
in Eq. (3.8). We choose values below and above threshold of the initial and final state energies
Ef = /s, E; = ,/57. We fix the value of the spatial momentum of the initial state in the CM
frame of the final state to |P7| = 1.05m.

The remaining quantity to define is the triangle function G;, diagrammatically shown

in Fig. which occurs when the current probes a single meson in the intermediate state.

In Eq. (3.3) we again assume that the current only couples to one of the mesons,

/(d4k ZKJA(kf,kZ) (3.7)

A _
N Pr, P) = )
9GP B = | Gyt =2 1o (R — m? + i) (R — 2 1 0

where k;, ; = P;;; — k and Kj; are the kinematic functions defined in Eq. .

In addition to having threshold singularities, this kinematic function also has a new
class of singularities, known as the triangle singularities, or anomalous threshold singular-
ities [99]. For example, in the case where both the initial and final states are in a S-wave,

for K; = 1, the triangle function is given by,
1+ 2% + e 1 x4
log 710 + log ﬂ
1= (27 + ie) 1 — (2F + ie)

where the ellipsis represent regular terms, z} is a function of P;, Py, and the masses of the

?

82m/(P; - P;)? - PPP}

g(Pf’Pi):

(3.8)
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external particles,
P - Py —s;

2k*(s)/(Pr - Pi)?[sy — i
while 27 is the same function but with the labels f and ¢ switched. We label SingG

2= (3.9)

the contribution to G given explicitly in Eq. that contains all its singularities and
discontinuities of G.

We plot Sing G given in Eq. in Fig. for various values of the initial and final
state energies, while fixing the spatial momentum of the initial state relative to the final
state. In addition to the threshold singularities at /s = 2m, we observe singularities that
appear above threshold and have a logarithmic behavior, diverging in the imaginary part,
while the real part exhibits a discontinuity at the same energy. This energy is the threshold
at which all three particles in the triangle are able to be on their mass shell simultaneously,

also known as the anomalous threshold [

3.3 Resonance form factors

If there is a resonance present in M, then W will inherit the singular behavior, as is evident
from Eq. . The relationship between the residues of the poles in W and the desired
elastic form factors can be obtained using the LSZ reduction procedure. This is illustrated
diagrammatically in Fig. The following describes the extraction corresponding to a
scalar resonance and a scalar current. In this case, quantities with superscript A defined
above behave like Lorentz scalars, meaning that we can exchange their dependence from
the four-momenta (P, P;) to the Lorentz scalars (sf, Q% s;).

In Eq. we illustrated that resonances appear as complex-valued poles (sg) in
the analytic continuation of the scattering amplitude onto the unphysical Riemann sheet.

To determine the elastic form factor of the resonance, fr_r(Q?), we can extract the

2In the case of loosely bound states, like the deuteron with mass M = 2m—e and binding energy ¢ < m,
m being the nucleon mass, the anomalous threshold lies near the physical region of the deuteron form factor.
The contribution of the anomalous threshold is associated in non-relativistic quantum mechanics to the
spatial extent of the bound state’s wavefunction [100].
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Figure 3.5: Amplitudes (a) M and (b) W, near the resonance pole sg. The resiudes at the pole
define the coupling ¢, and the elastic-resonance form factor, fr_, g.

corresponding residue of W via the LSZ reduction as

: 11,11 2 o) — . 11,11 2
Si,;}cgsRW <3f7Q 781) Siysl‘lfgSR Wdf (Sf7Q 781) ) (310)
—c 9 —c
= 16m——— frr(Q7) , (3.11)
Sf — SR S; — SR

where fr_,r(Q?) is defined for initial and final energy s; = s ¢ = sr. We write two II
superscripts to emphasize that one must continue the amplitude in both s; and sy planes
in order to evaluate at the resonance pole. In the first equality, we have used the fact that
the difference between W and Wygs, given in Eq. , only features either the initial or
final resonance pole but not both. [

The Wys amplitude on the second Riemann sheet in both variables can be derived from

the on shell representation Eq. (3.6),
Wi (55, Q% 51) = M (sp) [ Asa(sy, Q% 50) + F(Q7)G™ M (55, Q% s0) | MU (s0), (3.12)

where the function G is given by the analytic continuation of the triangle function in

both s; and sy into the Riemann sheet II,

gILH(va Q27 Si) = g(Sf, Q27 Si) =2 Img(Sf, Q2’ Si) ) (313)

3This procedure is followed in Ref. [12] for studying the o as well as in Refs. [I0T} [102} [[03] for theories
with bound states.
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Note that in Eq. (3.12), we exploited the fact that Age is regular in the kinematic region
considered. A proof of Eq. (3.12) is provided in Appendix
To determine the form factor we can invert Eq. (3.10) and combine it with Eq. (3.12)

to obtain

1 S; — SR Sf— S
2\ — : i R Sf R A ILIT 2
Fr-r(Q7) = 16— si,iirEsR — — Wy (57,Q%5i) (3.14)
= 16mc? [An(sr, Q% sr) + f(Q%) G (sk, Q% sR)] - (3.15)

Although this discussion applies for scalar currents and S-wave scattering systems, the
relations can be generalized to arbitrary currents, partial waves, and channels. The kine-
matic Lorentz tensors for a current with non-trivial Lorentz structure do not alter the
analytic structure of W. For multiple scattering channels, one must take care on which
sheet the amplitude is continued to, following the same methodology as presented in, for
example, Ref. [104].

Conserved vector currents are of special interest, as they can represent the physical
electromagnetic interaction. It was shown in Ref. [101] that current conservation constrains
the forward direction of the W amplitude. For example, assuming only S-wave scattering
is non-negligible, the amplitude for a system consisting of one neutral and one charged
particle must follow the relation,

0
: 1 N — 9 pH
Pilmllgf Wh (P, P;) = 2P QO@SM(S)’ (3.16)

where Qg is the charge of the particle. This identity imposes further constraints on Aso,

namely that in the forward limit

AL(P,P) = —QQOP“%IC_l(s) — QuReGH(P, P), (3.17)

which follows directly from Eq. (3.6) and noting that the imaginary part of G* in the
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forward limit is proportional to dp/0s, ensuring that Ass is a real function.
If there is a resonance in this system, then at the resonance pole Eq. (3.16]) imposes
that the form factor of the resonance at Q2 = 0 is the charge of the resonant state. We

define the form factor for a scalar resonance with a vector current in an analogous way to

Eq. (3.10) as

2y 1 Sf = SR\ ,ILII S$i — SR
(Pr+ P)ufrsr(Q7) = si,i}IEsR S Wai,(Py, P) : : (3.18)
Taking the P; — Py limit of Eq. (3.18]), we then use Eq. (3.16) to find
_ 29
2PH fr_,n(0) = 2P*Qq lim @—Mﬂ(s), (3.19)
S-SR C 88
— 2PHQ . (3.20)

Therefore, we conclude that the resonance form factor for a conserved vector current yields
its charge at Q? = 0 as one may expect. The use of the Ward-Takahashi identity to impose
additional constraints on two-hadron resonances has been explored, e.g. in Ref. [105] for

the Roper and in Ref. [I06] for the A.

3.4 Derivation of the decomposition

To derive the on shell decomposition of an amplitude, we will express it in terms of Feynman
diagrams of a generic EFT to all orders in the interaction coupling. In the case of the
two-meson amplitudes of interest, we can reorganize this expansion in terms of a skeleton
expansion of two-particle irreducible (2PI) kernels. Then, we can reformulate the all-orders
diagram expansion in terms of integral equations. Non-trivial analytical constraints can be
derived from these equations by exploiting the properties of two-particle irreducible (2PI)

kernels on the kinematic region below the three-particle threshold.
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Figure 3.6: Diagrammatic representation of (a) M and its integral equation, and (b) Ky and
examples of 2PI diagrams.

3.4.1 Scattering amplitude warm up

Before deriving the on-shell representation of W, we will first illustrate our method in
the case of M and reproduce the well-known result of the K-matrix representation. In
the case of the 2 — 2 process we can reorganize all diagrams in skeletons with increasing
number of 2PI kernels, connected with one another with s-channel bubble loops. The
integral equation describing this skeleton expansion of M is illustrated in Fig. [3.6p. If we
recursively substitute the scattering amplitude given by the right hand side of the equation
into the scattering amplitude appearing in the second term of the right hand side of the
equation we will recover the infinite series of diagrams contributing to M.

The 2PI kernels include all diagrams where the initial and final legs cannot be separated
by cutting two internal propagators of the diagram. In Fig. we show two examples of
2PI diagrams in the case without a current insertion. We label Iy the 2PI kernel containing
all such diagrams, this kernel is closely related to the K-matrix of Eq. as we will
show later. The diagrams in Fig. are 2PI because the first has no internal lines to cut,
while the second stays connected after cutting two of its internal propagators. The last
diagram in Fig. is not 2PI because it can be separated by cutting the two propagators
in the middle.

Let us write the integral equation of the all-orders expansion of the M amplitude

4
B M@ R)AR)AP — k)iko(kp) (3.21)

iM(p,p) =iKo(',p) + /(%)

where the value of the external momenta for each leg is illustrated in Fig. [3.6h, and does
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not need to be on its mass shell. We choose the propagators to have unit residue at the
pole mass,

i
k2 —m? + ie

= iD(k) +iS(k), (3.23)

iA(k) = +iS(k), (3.22)

where the function S is regular at the pole. For the kinematic region of interest, ik
behaves as a regular function of s because none of the diagrams it represents contain an
intermediate state that can go on shell. We can recover the on-shell amplitude for each of

the kernels by placing the external legs on shell

M(s) = M(p',p) (3.24)

)
p?=p2=(P—p)?=(P—p')2=m?

where again we are assuming that only the S-wave is relevant so that the scattering am-

plitude has no angular dependence.

3.4.1.1 The bubble loop integral

The goal of the on shell decomposition is to group contributions to an amplitude according
to their analytic behavior. The bubble loop has two types of contributions, a part that
remains real in the kinematic region of interest, and a piece proportional to the phase
space with a square root singularity at threshold. To show this let us demonstrate it with

a generic bubble loop, written here in full notation,

4
To(P) = / (;lﬂl;w(p',k)m(k)m(za— k)R (k. p), (3.25)

where the £ and the R are generic kernel functions that appear as endcaps of the loop,
these will have the same analytic properties as the kernel Ky described before.

We expand the endcaps around their on shell value, as defined in Eq. (3.24). Because
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we will be neglecting all but one partial-wave, the on shell value will be independent of

the loop momentum,

iL(p' k) =iL(s) + [iL(p, k)]5, (3.26)

iR(k,p) = iR(s) + S[iR(k, p)], (3.27)

when we generalize to arbitrary partial-waves, the dependence of the loop momentum in
the on-shell piece will be encoded in solid spherical harmonics given in Eq. , so that
the following derivations still hold. The terms with a § operator next to them are inspired
by the notation introduced in Ref. [I07], in this case they will vanish when both internal
legs of the loop are on-shell and therefore will be proportional to at least one factor of
(k? —m?)((P —k)%2 —m?). This means that a term with a § operator times the propagators
will be regular. Furthermore, in order to obtain the singular contribution of the integral,

we just need to consider the term with the propagators replaced by their singular pieces,

4
To(P) = iL(s) [ / (;ZWI;Z'D(I{:)Z'D(P — k)| iR(s) + 6To(P), (3.29)

where 0Zy is purely regular in the kinematic region of interest.
To obtain the singularity of the integral shown in Eq. (3.28]), we calculate its discon-
tinuity across the real s axis in the complex s plane using Cutkosky rules [108], which

amounts to replacing the propagators with Dirac delta functions,

iD(k) — 270(k* — m*)0(k°) (3.29)

After doing the substitution, carrying out two integrals with the help of the Dirac deltas,
and performing the remaining angular integration we obtain the well-known discontinuity

of the bubble loop

k*(s)
8m\/s
71
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where the relative momentum k*(s), given in Eq. (1.12), has a branch point at threshold
and generates the right hand cut in the amplitude. This term is proportional to the phase

space p(s) defined in Eq. ((1.13).
Putting all the terms together we find that

To(P) =iL(s) p(s)iR(s) + 6Z,(P), (3.31)

where the kernel 0Z)) includes 6Zy, as well as the regular contributions that do not contribute
to the discontinuity of the integral in Eq. (3.28). We rewrite this result with the following
shorthand notation,

To =il piR+iL-iS-iR, (3.32)

where the first term indicates a product of kernels, whereas the ‘-’ operator indicates
that there is a remaining loop integral to be evaluated, but the S kernel reminds us
that the resulting value of this integral remains regular in s in the kinematic region of
interest. Here we have demonstrated that we can split the loop diagrams into a term with
singular behavior, i.e. a branch point, and a term with regular behavior: real and without

discontinuities over the kinematic region of interest.

3.4.1.2 The infinite series

To calculate the on shell decomposition of M we will rewrite Eq. as a geometric
series. Then we can use the result of Eq. , together with some identities given in
App. [A] to simplify the result. The goal of this exercise is to separate all contributions
proportional to the phase space, with a square root singularity, from those which remain
real.

First, let us introduce a shorthand representation of Eq. (3.21)),

iM=iKy+iM-D-iKo, (3.33)
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where we use D to represent the bubble loop integral and the two propagators in it.
As we mentioned before, we can recursively use the definition of M to express it in a

form reminiscent of a geometric series

IM=iKyg+ iy -D-ilko+ilo-D-ilko-D-ilkoy+ ..., (3.34)

= iKy - [D - iKo)? (3.35)

where we define the shorthand notation for a geometric series [A]Y =1+ A+ A-A+....

We then use the result of Eq. (3.32)) to rewrite this equation

iM =iKo - [(p+iS) - iko)? (3.36)

= iKy - [iS - iKo)?[piKo - [iS - iKo)9)? (3.37)

where in the second line we use the identity of Eq. . Note that for kernels hitting a
phase space factor, p, we can drop the ‘-’, representing integration, between them, as they
will be projected on shell, and there is only a multiplication between them.

Finally, we can regroup all the contributions without a discontinuity in what is com-

monly known as the K-matrix,

iK = iKy - [iS - iko)? (3.38)

to arrive to the well known result,

iM=iK[piK]? = (3.39)

K-t —ip’
where in the last equality we used the identity of Eq. (A.3). The K-matrix parameterization
provides a parameterization of the two-meson scattering amplitude, where we only need to
provide a real function, with the appropriate threshold behavior, and the complex phases

required by unitarity are automatically implemented into M. We have packed into the
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K-matrix all the short-range dynamical contributions arising from, among other diagrams,

off shell intermediate states with three or more hadrons.

3.4.2 The two-meson transition decomposition

We will follow a similar procedure to derive the on shell decomposition of the two-meson

transition amplitude. First, as before, we define the on shell limit,

WA(Py, b5 P BF) = WPy, ps Pi.p) . (3.40)
p?=p"?=(P;—p)*=(Ps—p')*=m?

so that first we will work with amplitudes and kernels with external legs off shell, and
project them on shell while separating pieces with different analytic properties.

For convenience we split the derivation into two parts. We first consider topologies
where the current cannot couple directly to one of the mesons in an s-channel bubble,
but only within 2PI diagrams — we label these diagrams W, g. In this category we also
include five-point vertices representing short-range interactions between the current and
the incoming and outgoing mesons. The second type will be those with single-meson
current insertions in s-channel bubble loops, forming triangle loops, see Fig.[3.3] as well as
insertions on to one of the external legs, contributing to the terms in Eq. . We label

this second category of diagrams W g, so that the amplitude is given by the sum
WA = Wi+ iWig. (3.41)

We show in Fig. the diagrammatic representation of the skeleton expansion of Wy z
and Wip. In the following two subsections we derive the decomposition of each of these

two terms.
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Figure 3.7: Diagrammatic representation of the two types of contributions to the YW amplitude,
the contributions where the current attaches to 2PI kernels, and when it attaches to single-meson
states.

3.4.2.1 Without coupling to single mesons in the skeleton expansion

We begin by first identifying the 2PI kernel with two mesons in the initial and final state,
plus a current insertion, with the variable Wy|q. This kernel is illustrated by the first term
to the right hand side of the equation on the first line of Fig.[3.7, Dressing this kernel with
all two-particle scattering to all orders in the strong interactions, one can show that Wy 5

obeys the following equation,

iWig(Pr,p'; Piyp) = iWlo(Pr,p'; P, p)

&k NN
+ /(QW)UM(p,’k)ZA(k)ZA(kf)ZWfﬁo(Pfa k; Py, p)

4
" / %iwéo(Pf,p’;B, RYA(k)IA (k:)iM(E, p)
410 4
i / éfyl/ g&w@c KA iA(K))

X AW o (Pr, ks Py k)iA(R)iA(k)iM(k, p), (3.42)

where we remind the reader of the shorthand notation k; = P, — k, and similarly for the
final state and k' momenta. Equation (3.42) is represented diagrammatically in Fig. [3.7]
We can reuse the shorthand notation introduced in Sec. to rewrite Eq. (3.42),

Wiy = iW{o +iWo - D-iM+iM-D-iWjo +iM-D-iW, - D-iM,  (3.43)

= [ifCo - D)9 - iW i - [D - iKo]? . (3.44)
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Like we did before we will split the s-channel bubble loops into two contributions with
different analytic behavior, i.e. D = p + iS. In this case, the bubble loops can appear
before or after the current insertion, and carry the momentum P; and Py, respectively. To
distinguish these two cases we will use the notation p;, for the contribution of the phase

space.

Following a similar procedure to that shown in Eq. , we can simplify Eq. ,
Wiy = [iK ps]9iWiglp; iK]9 (3.45)

where I was defined in Eq. , and where we also introduced the dressed regular kernel
Wiy = [ilCo - i8] - iW{, - [iS - ikCo)? (3.46)

In the case where the external current does not couple to individual hadrons, this
would complete our derivation. We find most convenient to exchange the function W5

parameterizing the short-distance dynamics with
Wiy =KiAlg, K, (3.47)
and the ‘df’ on-shell decomposition is given by
WA o = M[iIAL )] M (3.48)
YWViE df TSP ) .

where this result only holds in the absence of one-body current insertions.
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3.4.2.2 Contributions with coupling to single mesons

The second line of Fig. illustrates the diagrams contributing to W;p. These contribu-

tions are given in full notation by the following integral equation

W (P, s Pyp) = iw (0, p}) iA(p}) iM(p, p) +iM®P, p) il (p;) iw? (ps, pi)

+ / (;i:; iM( k) iA(R) iA(kg) iw® (kg ki) iA (k) iM(k,p) . (3.49)

where the single-meson insertion, w*

contains all the one-particle irreducible diagrams
with a current insertion. It can be decomposed, according to the Lorentz strucutre of the

current, into a summation of Lorentz tensors multiplied by scalar form factors,
kfa ZKA kfv f](Q2 kf’ )7 (350)

note that when the meson momenta are on their mass shell, k]% = kf =m?, fj(QQ, kfc, kf)
corresponds to the form factors f; introduced in Eq. (3.1)).
We rewrite Eq. (3.49) into short hand notation,

iWip = iw iNiM FiMiA iw? +iM - A IM, (3.51)
— iwtiAiKy - [D - iKo)? + [iKo - D)9 - i iA iw™

+[iKo - D)9 - ik - A - iKCo - [D - iKo)? (3.52)

where we introduce the symbol A to describe the triangle loop integral, with the three
propagators and the single-meson current insertion.

When a current is inserted on a leg connected to a kernel, we will split the propagator
in between the kernel and the current insertion according to Eq. . This yields a
contribution with a pole singularity, which allows us to place that leg on shell, and a
regular term. If we expand the skeleton expansion shown in the second line of Fig. [3.7] into

2P1I kernels, we will find kernels with current insertions on their external legs, like the one
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Figure 3.8: Diagrammatic representation of Eq. (3.53), where the 2PI kernel with a current
insertion in one of its external legs is split into the term with the pole singularity of the propagator
(dashed line), and a real kernel Wpq.

shown in Fig. In Fig. [3.8 we illustrate the removal of the singularity associated with

the propagator, from which we obtain a regular kernel
Wi = iKo il iw® — ilCoiD iwg, (3.53)

In our prescription the kernels in the last term can be placed on shell, because any off
shell behavior will cancel the propagator pole and contribute to the regular kernel. We
also introduce the regular kernel Wy g for the case when the external leg with a current

insertion is one of the mesons in the initial state,
iWiip = iw iAiKo — iwg, iD Ko . (3.54)

The triangle loop diagram, see Fig. is the first term in this decomposition that
features an analytic structure not present in the decomposition of the scattering amplitude.
We split it into three different terms according to the analytic behavior of each of them,
this is derived in Sec. and illustrated in Fig. In shorthand notation the different

analytic contributions to the triangle diagram are given by
Ko - AN - iKg = iWihop + Wl ps iKo + iKo py iW iy + Ko [Zj if;6] Ko (3.5)

The first term is associated with the real part of the loop, which we call W g9, which
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Figure 3.9: Diagrammatic representation of the triangle loop expansion into terms with different
analytic properties. The cuts over the diagrams represent contributions proportional to the phase
space, the kernel W is defined analogous to W, but with the current insertion in one of the
initial state legs. We introduce the real kernel Wy,co-

does not have discontinuities or singularities in the elastic scattering region. The second
and third terms contain a factor of p; and py for the final and initial state respectively.
These terms arise from removing the pole singularity of one of the propagators next to
the current insertion, so it effectively becomes a bubble loop, and they also feature regular
kernels of the form of Wy o and Wy g.

Finally, the last term, in addition to the branch cuts associated with the phase space,
also contains singularities that do not arise in bubble loops, the so-called triangle singu-
larities, which we discuss further in Sec. For now it suffices to indicate that these
singularities will be described by the kinematic function G introduced in Eq. , while

the form factors f; can be placed on shell and taken out of the triangle integral.

We can now substitute Egs. (3.53)), (3.54), and (3.55)) into Eq. (3.52)) to obtain

WA, = iwA iDiM +iMiDiwd + M [Zj 1;G7!| m
+[iKo - DY - iKo - iW iy - iKCo - [D - iKol?

+[iKo - DY - iW G p(1+ psiM) + (1 +iM pg)iW g - [D - iKol?,  (3.56)

where we observe algebraic structures similar to those appearing in Eq. (3.44)).
We simplify Eq. (3.56]) employing a similar procedure to that of previous sections. For

that we define another dressed regular kernel,

Wi = [iCo-i8)9-iKo-iW i )+1Ko- [iS-iko)? +[iKo- i8] - i W +TW 1 [1S-iKo)? , (3.57)
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and use it to write the one body contribution to the 2 + J — 2 transition
Wiy = iy D IM+ iMiD iwih + M| 3 G| M+ [iKC pgliWlpi iK)7 . (3.58)
J

3.4.2.3 On-shell result for W

We put together the results of Egs. (3.45) and (3.58]) to find the on shell decomposition

including all diagrams,
WA = iwl iDiM +iMiDiwl, + M [Z Ki fjgﬂ M + [iKp)9iWApiK]?,  (3.59)
J

where we have defined W = Wi + W5 We end this section with the divergence free

amplitude

Wi =iwA —iwd iDiM — iMiDiw? (3.60)

=M [z‘Ag‘Q > z’fjgj‘} M, (3.61)

which agrees with Eq. (3.6) when rewritten in full notation, and where we implicitly defined

the regular function Asy through
iWA = KiA K. (3.62)

This finishes the derivation of the on shell decomposition of the amplitude. In the next

section we will give a more thorough description of the triangle singularities appearing in

W.
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3.5 Triangle function

Let us begin by introducing the triangle diagram loop function in full notation with the

kernels Ky as endcaps,

4
n(r R - [ (gﬂk)ﬂ/co(p/»k)iA(k)iA(kf)iwA(kﬁki)iA(ki)i’CO(kap) (3.63)

where w was introduced in Eq. (3.50)) in terms of known kinematic tensors K; and the off

shell form factors. The expansion around the on shell value of these form factors is
ifj(Q% K kD) = if;(Q%) + 8lif; (K7, Q)] + [if;(Q% k)]0 + 8[i f;(Q% k3, k)]0, (3.64)

where the § operator acts as in Eq. , making terms proportional to (k:)% —m?) or
(kf —m?) when it appears to the left or right of the form factor. For each of these terms,
the lack of explicit dependence on one of the external momenta signifies that it has been
placed on shell.
We expand Eq. and use the definitions of the kernels given in Egs. and
to find a decomposition into pieces with different analytic behavior,
d*k

Ti(Pf, P, Q%) = iKo(sy) Zifj(QQ)/WiD(k‘)iD(kf)Kf(k‘f,kz’)iD(k‘i) ilCo(s:)

+iWiR(Py, Py) piiKo(si) + iKo(sy) pr iW1o(Pr, Pr) + 6Ty (P, Pi, Q%) (3.65)

where we can see that the first term is proportional to the triangle loop integral G; of
Eq. , and the last term, 671, is a regular function for the kinematics of interest.

To obtain the singularities of G; we can use the Cutkosky rules to extract discontinuities
of the loops, and verify with the Landau conditions [99] that all the singularities associated
with the diagram are being described. In the case of the triangle loop, the Cutkosky rules

require at least three cuts, one for each of the vertices. Since we are interested in the
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kinematic region where the current insertion energy is below the particle creation threshold,
only two cuts contribute to the discontinuities associated with the triangle loop. These
contain the branch-cuts associated with the initial/final two-particle states.

After we perform the cuts, following the prescription given in Eq. , we can perform

two of the integrals, with the remaining angular integral given by

dasy;
Disc G;(Py, P) = —2i ps 0 (sf — Sunr) P.V./ Tij(kf,ki) D(k;) +...,
™ kO=wi, k% |=k*(s)

(3.66)
where we only write the contribution of one of the cuts, the other contribution is identical
but with labels f and ¢ exchanged. Here we introduced the energy of a meson on shell
wi = Vk*?2 +m?2. In this term, the angular integration is to be taken in the CM frame of

the final state. Here we use the principal value prescription to integrate over the propagator

pole, defined by

[ —

and the terms proportional to the Dirac delta from the cuts around the final and initial

f(z)

33'/

b / dod(z — ') f(z)| (3.67)

vertex cancelling each other.
We need to make explicit the angular dependence of the remaining propagator in the
respective CM frame. We have the freedom to define the final CM frame such that P/ * =

(v/si + |PF|%, |P}|z), and the propagator in this frame is equal to

1
D(k;) = . (3.68)
Y (st Pr2 — wi)? — Pr2 — k*2(sf) + 2|P [k*(sy) cos 0% —m? + ie

_ ! (3.69)

 2[P}|k*(sy) (cos O} — 2} + i) '

where z}, in terms of Lorentz scalars, is given by
P .Ps— s,

25 = L (3.70)

167Tpf\/(Pf -P;)? —sfs; '
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Figure 3.10: Behavior of the z; variable in a closed trajectory over the E} = /s;, E; = /57
plane for particles of equal mass m, and |P}| = 1.05m.

After carrying out the trivial azimuthal integral, and using the principal value prescrip-
tion for the polar integral, we obtain

1-1-2}

*

l—zf

?
B 167T\/(Pf . Pi)Q — Sf S

DiscG(Py, P;)

[«9 (5§ — Sthr) log

1+ 2z
1—2zr

7

+ 6 (s; — sgnr) log ‘

} . (3.71)

Careful inspection of the behavior of the z* variables as a function of the external kine-
matics, yields that only when zj*c = z; = 1 there is a logarithmic singularity in Disc G. Also
we find that Disc G generically features square-root-type singularities at threshold. This is
in agreement with the analysis of the Landau conditions of this diagram, see Ref. [109] for
a detailed review of this procedure. What is more, the imaginary part of the loop yields
all the information about its singularities, i.e. its nature and their coefficients. Once we
know the coefficient of each singularity, we can make a continuation of the Disc G function
to also reproduce its real part.

However, given the behavior of the z* variables as a function of the external kinematics,

only a specific continuation around the branch points of the log function is consistent. To
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illustrate this, we will describe the behavior of the z; variable while moving in the trajectory
shown in Fig. in the \/s;, \/sy plane with fixed |P7| = 1.05m.

Six points labeled A through F' have been chosen on this plane. Correspondingly,
the value of z} at each of these points has been placed on the complex z} plane in
Fig. [3-106] The color background on the latter figure represents the phase of the function
log((l +27)/(1 - z})), which generates the Riemann sheet structure of the log(1l + z) —
log(1 — z) function. In this figure we have chosen to push the branch cut of the logs,
which would conventionally run from —1 to 1, to run from —1 to infinity in the negative
imaginary semiplane and then come back to 1 through the positive imaginary semiplane.
The branch cut is indicated by a gray dashed line. E| This choice, as shown shortly, will
allow the variable z} to remain on the same sheet for the values of \/s; and /sy within

our kinematic region of interest.

To describe the behavior of z; let us begin in the kinematic region when /sy is below
threshold. By extending the domain of p; below threshold within the physical Riemann
sheet in the sy complex plane, one sees from Eq. that z} becomes purely imaginary,
and takes positive or negative imaginary values depending on the value of s;. As a result,
when moving from point F' to point A, z} will pass through zero, motivating the choice
to not have a branch cut there. When moving from point A to point B, one must cross
the threshold of the final two-particle states, where z]*c diverges, see Eq. . Given
that there is no branch point at infinity in the z; plane, one should remain in the same
sheet when making this move from A to B. This motivates having the negative imaginary
infinity and the positive real infinity on the same side of the cut. In the trajectory BCDE
there are a priori four options to go around the branch points, but only by going below the
branch point at 1 and above the branch point at —1, as shown in Fig. the points F

and F will be connected to form a closed trajectory. This choice around the branch points

4Since most software places the branch cut of the logarithms on the negative real axis, our choice of
branch cut is implemented numerically with the function log(—i(z} + 1)) — log(i(z} — 1)).
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can be encoded as an addition of ie to the argument of the logs,

| 1—|—Z;§+i6 57
0og T}-ﬁ-%) ) ( )

where no absolute value of the argument of the logarithm is taken, and its range is extended
into the complex plane. This reproduces the expression presented Eq. (3.8]) that describes

all the singularities of G in our kinematic region of interest.

This concludes the description of the on shell decomposition of W in the case of elastic
S-wave scattering. The present arguments have been generalized to describe any number
of partial-waves and two-meson channels in Ref. [98]. One of the main differences when
including partial waves with angular momentum ¢ > 0, is that the projection on shell is
performed through a partial-wave expansion, so that the loop integrals need to include

factors of spherical harmonics

* V4
Ve, (K*) = Var Yo, (K*) ( 1&!)) . (3.73)

where the variable k* is the spatial part of the loop momentum in the CM frame associated
with the total momentum of the partial-wave expanded kernel, while £*(s) is the on-shell
relative momentum of the mesons in the CM frame. The last factor is known as the
barrier factor, which is needed to cancel the unphysical singularities that will appear from
the mismatch between k*(s;) and k*(sy), more details are given in Refs. [107, 98].
However, the result in the more general case for Wys remains structurally the same
as Eq. , with the change of promoting every factor into a matrix in channel and

partial-wave space, which we repeat here for convenience

IWG(Pr, P) = M(sp) | iAsy(Pr, P) + D if;(Q%)GH (Pr, Bi) | M(si), (3.74)
j
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This equation keeps the same singularity structure as described here, and allows the dis-
cussion given in Sec. [3.3]about the extraction of resonance form factors to remain valid for
that more general case, as long as all terms are promoted to matrices in the more general
space. In a practical implementation, given that the scattering amplitude M of the two-
to-two process, and the single particle form factors f; (Q?) were known, only the regular
kernel As2 needs to be constrained by either experimental data, or a lattice QCD calcula-
tion. The Ag9 appears to be unique to the W process, and can only be constrained by an
amplitude of the form 2 Z 2, or an amplitude where VW appears as a subprocess, similar
to the appearance of M within WW. An example of the latter is the transition 1 jH)B 2,
where this notation symbolizes the insertion of two local external currents mediating the

A B
hadronic transition. The on shell decomposition of 1 =3 2 is presented in Ref. [I10].
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Chapter 4

Finite-volume formalism for the

2 i> 2 transition

The pioneering ideas of Liischer, as described in Sec. have allowed to connect finite-
volume energies obtained via LQCD to two-body scattering. Furthermore, connections
have been established between matrix elements and production amplitudes. In this Chap-
ter we report on the current progress of the formalism, that up to corrections that are
suppressed exponentially in the volume, connects matrix elements calculated in LQCD to
two-to-two W transitions, and presents the novel improvements that were first introduced
in Ref. [IT1I]. We finish this chapter with a test of the significance of the finite-volume
effects formulated in Ref. [I1I] with an illustration of the LQCD extraction of the elec-
tromagnetic charge of a shallow resonance coupling to a two-hadron state within a toy
model.

Initial attempts to derive this formalism relied in some approximation, e.g. that one-
body currents do not contribute [I12], using an effective field theory (EFT) of the hadronic
system and expanding into the leading order coefficients of the EFT [I13], or by performing
an expansion in inverse powers of L [114]. A more general result was first described in
Ref. [107], where one-body currents are taken into account, the result is model-independent,

to all orders in a generic effective field theory, and with no power-law volume corrections,
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but only exponential volume corrections of the form e=™=L.

A second version of this finite volume formalism was derived in Ref. [ITI]. This second
formulation differed from the previous one in that all infinite-volume quantities are Lorentz
covariant and the 1 -2 1 matrix elements have been reformulated in terms of standard
form factors. This new result was reached by making minor adjustments to the derivation
presented in Ref. [I07]. For example, in that work finite-volume effects are expressed as

O — wy)], whereas in Ref. [I11] the same effects are

sums over poles of the form 1/[2wy(k
expressed via Lorentz invariant poles, 1/(k? —m?).

In this chapter, which draws from Ref. [I11], we describe a mapping between finite-
volume matrix elements of two-particle states and the infinite-volume 2 —Z+ 2 amplitude.

The result is summarized by the flow-chart shown in Fig. [£.1] This formalism requires

knowledge of the following quantities:
e the two-particle finite-volume spectrum,
e the 1 -2 1 form factors,
e the finite-volume two-particle matrix elements of 7,

which can be used to then systematically constrain the 2 759 amplitude in the kinematic
window in which only two-meson channels can go on shell. The finite-volume relation
requires the generalized Lellouch-Liischer factors [75, [77, [107], that enter multiplicatively
in the conversion, as well as a new finite-volume function, denoted G, that appears in an
additive correction, together with the single-particle form factor as well as the two-to-two

scattering amplitude.

4.1 Finite volume correction of two-to-two matrix elements

In this set-up, we consider a matrix element in which the local current 7 is sandwiched
between two finite-volume states, each of which has the quantum numbers of the two-

particle system. This LQCD observable is related to the infinite-volume 2 —Z5 2 transition
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Figure 4.1: Road map of the formal approach outlined in this Chapter. The four red arrows
merging together represent how the present approach combines various finite- and infinite-volume
information to extract the 2 -2+ 2 amplitudes. Analytically continuing these to the resonance-pole

location gives a rigorous, model-independent definition of the resonance form factor. Figure from
Ref. [111].

amplitude via

‘ 2 1

A —
‘L<n"7 (0)|m>L - 4EnEmL6

tr(ﬁnwﬁdfﬁmwﬁdf) , (4.1)

where 75“ is the LL factor of Eq. (2.5]). The trace is over partial-waves and channel space.
The second step entails to reassemble the long-distance contributions that cannot appear

in a finite-volume amplitude
Wit (Py, Pi) = Wi.qe(Py, Pi) — Z fi G (Pr, P L) | M(si),  (42)

where f; is the one-body matrix element. The term on the left hand side of the equation
is the amplitude of Eq. . If there is a resonance appearing in the two-hadron channel,
we can extract its elastic form factors by applying the results of Chapter [3]

The formalism connecting finite volume matrix elements and the amplitude W is similar
to the formalism of the production amplitude 0 ~Z4 2 in that there is a multiplicative cor-
rection from the LL factors. Additionally, there is an additive finite volume correction, G,

that represents the difference between the infinite volume and the finite volume contribu-
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tion of an intermediate state where the current 7 couples to only one of the hadrons in the
system. This additive correction subtracts contributions from finite volume singularities
and adds the singularity structure of the infinite volume amplitude.

The function G, derived in Ref. [IT1], in the case of a vector current, and a two-meson
system in an S-wave, is given by

3 K
G!(Py, P, L) = [ng zk: — /(;l;){g ] ﬁ D(P; — k) D(P, — k), (4.3)

where wy, = 1/ |k|*> + m2, K} was defined in Eq. (3-1), and D(k) was defined in Eq. (3.4)).
The summation goes over all allowed lattice momenta k = z%d, with d a triplet of integers.

The function G, similar to the function F' appearing in the Liischer quantization con-
dition, represents the difference between a loop diagram in finite and infinite volume, F
and G corresponding to the bubble and triangle loop, respectively. The finite volume con-
tribution of G consists of a sum of poles at the non-interacting energies of the two-hadron
system. This sum can be numerically saturated using an appropriate high-energy cutoff
prescription. The infinite volume contribution involves an integral over the loop momen-
tum, which must also adhere to the same high-energy cutoff prescription for consistency.
This second contribution can be split into two terms. The first term is an integral where the
pole singularities of the propagators in the loop are removed, allowing for direct numerical
integration. The second term corresponds to integrals appearing in perturbation theory
of a generic QFT, enabling the use of well-known techniques such as Feynman parameter

integration.

4.2 Toy example: Finite volume effects for shallow bound

states

We employ the formulation described in Sec. [f.1]to evaluate the impact of the finite volume

function G on the determination of the matrix elements of a shallow bound state in the
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forward limit, i.e. Py = P;, which yields Q? = 0. It is expected that bound states, being
stable, receive only exponentially suppressed volume corrections for their energy and matrix
elements. In the case of shallow bound states, the leading finite-volume correction is of the
form e=*F where k = —ik*(s) > 0 is the binding momentum of the bound state, instead

—mqgL

of e , which applies to deeply bound states with k > m, [115]. We expect a similar
finite-volume behavior for matrix elements of shallow bound states.

In this case, we find that ignoring the finite-volume function G when predicting matrix
elements of finite-volume states introduces a sizeable fractional error. We compare this to
the fractional error of the prediction of the finite-volume energy when ignoring the finite-

5L when

volume function F'. In both cases we can observe that the error vanishes as e~
modifying the scattering parameters such that the binding energy increases. However,
in the case of ignoring G the numerical coefficient of the exponential is observed to be
significantly larger.

Let us consider a conserved electromagnetic current, so that only one form factor
appears in the decomposition of Eq. , and in the forward limit the single particle form
factor f1(0) = Q. Furthermore, we again consider distinct particles, with one of them

neutral, and the other having charge Q.

We want to estimate the matrix element of a shallow bound state, with the formulation

of Sec. [41]
(Eo,.|T°|EoL) = Wg,dfﬁ(EO,b L) = Wi+ QuMGY(Ey 1, L)M)ﬁ(EO,L L) (4.4)

where the finite volume state |Ep 1), has energy Ep j and relativistic normalization, i.e.
(Eo.|Eo.) = 2Eo 1, L?. This matrix element is simply the application of the charge density
operator and so we expect it to be equal to 2Eg 1,Qy.

We know that the infinite volume transition amplitude in the forward direction is fixed
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by an application of the Ward identity [101]

0 0
ng(E, E) = QO@M(E) = _QoMﬁ(Mil)M- (4.5)

This makes the matrix element be equal to

0

(Eo,L|T°|Eo,L) = Qo(aPO(M‘l) - G‘{) MR(Eo1, L)M. (4.6)

If we neglect the finite volume functions F' and G, we will find the expected matrix element

for a deeply bound state

9
aP0

M1<E>) S (47)

(Eor1
52 M-(E)

T\ Bor) = Qo<

where we employed Eq. , but neglecting the finite volume function F. The functions
F and G are exponentially suppressed when L > 1.
We now calculate the finite volume correction from the G function. Following [I11],
for P, = Py = P,
GY(E) =2P°G(E,L) — 2G*(E, L), (4.8)

where the finite volume G(E, L) and G*(E, L) are given by Eq. with K = 1 and
K = k", respectively. Reference [I11] describes an efficient method to calculate this
quantity, which we employed here.

In this toy example, each of the constituent particles will have a mass of m = 1155
MeV, and we fix the coupling to the bound state to be g/v/16m = 4.3 fm~!, i.e. the square
root of the residue at the pole of the scattering amplitude. We fix the volume of the lattice
to mL =~ 16. We describe the scattering amplitude phase-shift dg with an effective range
expansion

1

* 1 *
k cot (50 = g + 57‘]{7 2, (49)

and vary the parameters a and r in such a way to modify the location of the bound state
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pole, my = 2v/m?2 — k2, and the binding energy B = 2m — my, but keep fixed the coupling
to the scattering channel, g, to the constant shown before. The amplitude Wy is, in
the forward limit, directly related to the scattering amplitude, with the relationship of
Eq. .

To observe the impact of the G-function in the calculation of matrix elements of bound
states we plot the prediction of the lattice matrix element in two cases. In the first case we
make use of the complete finite volume correction, including the G function contribution,
whereas for the second one, we only correct for the normalization of the finite volume state,
ignoring the G function. As a benchmark we can also compare the value of the prediction
of the finite-volume ground state energy Ey 1, and a prediction ignoring the finite volume
function F', which corresponds to the infinite-volume bound state mass my,.

In Fig. we observe that the finite-volume effect in the energy FEy 1, is exponentially
decaying as we increase the value of B. As we increase the binding energy, B, the finite
volume energy Fjy 1, asymptotes the infinite volume mass my,. For example, with a binding
energy of 10 MeV, which is minuscule when compared to the total energy of the system
of ~ 2 GeV, the fractional error between the predicted finite-volume energy from Liischer
and the energy when ignoring F', is on the order of 1%.

On the other hand, neglecting the contribution from the G function for the finite-
volume matrix element prediction, as shown by the red band of Fig. [£.3] has a much more
sizeable effect. For B = 10 MeV the fractional error between the proper finite volume
prediction and one that neglects G, is of the order of 50%, and although the finite-volume
error appears to decay exponentially as the binding energy increases, we observe that the
effect is more sizeable than for the energy.

The reason for such a large effect is likely related to the nearby infinite-volume singular-
ity in the triangle diagram, the so-called anomalous threshold. In the forward limit, the G
function generically features a 1/k* singularity, which can have large finite-volume effects

impacting the matrix element of a shallow bound state determined with lattice QCD.
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Figure 4.2: Finite volume effect on the mass of a shallow bound state. In red is the value of the
finite-volume energy predicted with the Liischer quantization condition, and in blue the location of
the pole in M, which would correspond to a prediction of the finite-volume energy which completely
neglects the geometric function F'.

This concludes our analysis of the 2 259 amplitudes in this work. In the subsequent

Chapters we will describe a practical implementation of the 0 —Z5 9 finite volume formalism

in a LQCD calculation.
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Figure 4.3: Prediction of the finite volume matrix element of a shallow bound state, from the
full finite-volume two-to-two formalism in blue, and the prediction ignoring the G(E, L) function
in red.

95



Chapter 5

Scattering of 77 /KK from LQCD

This and the following chapters describe a Lattice QCD calculation with the goal of ex-
tracting the pseudoscalar form factors shown in Fig. As mentioned in Sec. 2.1.1] we
can use the lattice spectrum and matrix elements to extract the pseudoscalar timelike form
factors. To achieve that, we need to perform a non-trivial finite-volume correction to the
matrix elements. These corrections require knowledge of the scattering amplitude, which
can be determined using the lattice spectra.

This chapter will focus on the calculation of the lattice spectra and the extraction of
the coupled channel 77 /KK scattering amplitude. We find that the amplitude contains
a p-meson resonance, and we determine the pole location in the complex energy plane as
well as its coupling to each of the channels. From the calculation of the spectra we also
obtain optimized operators that allow us to compute production matrix elements of the

lattice ground state and multiple excited levels.

5.1 Spectrum calculation

In this case we are interested in knowledge of the scattering of the 77 and KK channels
in the isovector sector (I¢ = 17), and with spin-parity J© = 17. These are the quantum
numbers of the component of the electromagnetic current that couples to the 77 final

state shown in Fig. The timelike form factor of the kaon has contributions from
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both isovector and isoscalar components of the electromagnetic current, but we restrict
our analysis to the isovector component. Experimentally it is observed that dynamics of
the isoscalar component, in the energy region that we are interested in, can be captured
by the production of the narrow ¢-meson resonance [47]. An extraction of the isoscalar
component from the lattice will also require the description of the finite-volume effects of
the three-pion channel, which even in this work using heavier than physical pions has a
lower threshold than K K. A formalism is in place and future work will likely address the
calculation of this component [116].

To calculate the lattice spectrum we employ the techniques described in Sec. We
calculate a matrix of two-point correlations and compute the eigenvalues and eigenvectors
of the GEVP associated with this matrix. The energy levels are extracted from fits to the
Euclidean time dependence of the eigenvalues, or principal correlators.

In Sec. [2.2.I] we described the general characteristics of the lattice used for this study.
The two-point correlation functions were calculated using an ensemble of 400 gauge con-
figurations, the fermion fields were smeared using distillation with Nyecs = 162 vectors,
and four different time sources were used and averaged over. Correlation functions were
calculated with sink-source separation of 0 < t/a; < 40. In Table we list the masses
of relevant stable mesons on this lattice, as well as thresholds of multi-meson states with
quantum numbers I¢ = 17 up to a E* ~ 0.22.

We calculate the spectra of the system with zero momentum, with respect to the lattice
frame, and with momenta up to (L|P|/(27))? < 4. The relevant irreps into which the
JP = 17 partial-wave is subduced can be read off Tab. and we list them in Tab.
We will discuss the possible contribution of unwanted partial-waves in our spectra once we
describe the set of operators selected for the basis.

We use single-meson-like and two-meson-like operators to form the basis for our cor-
relation matrix. For single-meson-like operators we employed fermion bilinears with all
relevant gamma matrix and covariant derivative combinations, with up to three derivatives

for operators at rest, and up to two derivatives for operators with non-zero momentum.
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This includes operators with continuum spin up to J = 4 for the system at rest, and J = 3
for the systems in-flight. The number of single-meson operators, ¢TI, included in the

basis of each irrep is listed in Tab.

Table 5.1: Lattice meson masses in temporal lattice units and relevant multi-meson thresholds.
Some of these values were first reported in Ref. [82].

meson  a;m threshold  a:Flipy
s 0.0474 e 0.0947
K 0.0866 KK 0.1732
n 0.0960 T 0.1894
w 0.1422 Tw 0.1896
10 0.1709 TN 0.1908

TP 0.2183

TKK 0.2206

In this work we include 77 and KK two-meson-like operators such that their non-
interacting CM energies satisfy a;E;. < 0.22. The non-interacting energies in the CM

frame are given by

2
B2 = (\/m%+\p1!2+\/m%+\pz!2> PP, (5.1)

where m; and mq are the masses of the single mesons used to construct the two-meson
operator, and the momenta correspond to those introduced in Eq. . For some irreps
we also included nw and ¢ two-meson-like operators with non-interacting energies up to
ar B < 0.24. These extra operators were included to test their impact on the spectrum,
and evaluate if the 7m/KK channels decouple from the pseudoscalar-vector channels in
the energy region of interest.

All the two-meson-like operators considered in this work are listed in Tab. in the
form MSRM(%)’ where M() describes the flavor of the i-th single-meson-like operator used
in the construction, and d; is its momentum type in units of 27 /L. Note that d; are listed
in some conventional direction, but that in practice they are rotated such that dy+ds = d,
where d is the total momentum of the system in units of 27 /L, and all allowed rotations

are included as described by Eq. ([2.20)).
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Table 5.2: Operator basis in each of the irreps used to form the matrix C;;(¢). We indicate
with {N} when a two-meson subduction into that irrep has a multiplicity N > 1. The vector-
pseudoscalar operators were used to test the dynamical mixing of the wrm/¢m and 7w/ K K channels,
but were dropped from the basis to calculate the spectrum used to extract the scattering ampli-
tudes.

[000] T [100] A4 [110] Ay [111] Ay [200] Ay
11 x Ty 8 x YTy 9 x YT 10 x Ty 11 x YT
T[100]7[100]  7[100]7T[000] T[110]7[000] T[111]7000] T[200]7T[000]
K, [100]K [000] K [110]K [000]  7[110]7[100] K [200]K [000]
T10]7oo] A1) Too]  Kpifooo)
K110 K [100]

[100] E> [110] By [110] Bo [111] Eo [200] E-
17 xyI'y 12 x YTy 15 x YTy 12 x YTy 15 x YI'y
T[110]7[100]  7[100]7[100] W[110]7000] T[110][100] T[110)T[110]

W[110]7[000] T111]7[100) W[111]7000]
Koo K00 m[110)7110] K110 K [100]
T[110][110] ®[110)T[000] P[111)T[000]
¢[11o] T000] {2}W[100] T1100] {3}W[110]7T[100]
W[100](100] Wi000]T[110]

From Table we note that multiple channel thresholds open at energies close to the
KK threshold, leaving a narrow energy window where only the 77 and KK channels are
above threshold. This is relevant because if we want to apply the Liischer quantization
condition of Eq. up to a given energy, we need to consider all channels whose energy
thresholds lie below that energy. Furthermore, Eq. is restricted to two-meson chan-
nels, and although the extension to three-meson channels is known, see for example the
calculation of Ref. [I17], there is still no formalism that can handle the four-pion channel.

We justify neglecting some of these channels based on the following experimental ob-
servations. Experimentally the #mmm channel is found to be weakly interacting up to 300
MeV above its threshold [I18], and we expect the lack of mrmm-like operators to have a
minimal impact in our analysis. A similar situation occurs for the wan channel with a
small cross-section at energies below the effective threshold for pn, so that the amplitude
can be described by an isobar model [I19]. The (negligible) impact of this channel in

finite-volume was explored in a study similar to the present one in Ref. [69]. Furthermore,
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the lattice mmn-like operator with lowest non-interacting energy in this volume has an CM
energy a;E7. > 0.23 when coupling the m7 in a p-isobar, which lies above the energy
cut-off we selected for our 77/ K K-like operator basis.

The wm channel appears in the irreps listed in Tab. in a P-wave with spin-parity
JP =17 For the irreps in flight that are not A; the wr system also appears in a mixture of
S- and D-wave with spin-parity J© = 17. The positive parity partial-waves are expected
to be dominated by the b; resonance, which based on the results of Ref. [69] should affect
the energy levels around a;E* ~ 0.21. The J¥ = 1~ wr partial-wave, is not expected to
resonate in this energy region according experimental observations [120], and its mixing to
the mn /KK channels, is expected to be suppressed by a centrifugal barrier factor. If the
off-diagonal elements of the J© = 1~ scattering amplitude M(wr|r7) and M(wr|KK)
are negligible in the energy region of interest, the quantization condition of the J¥ = 17
wr and JP =17 77 /KK channels will decouple.

The 7w and KK channels with quantum numbers ¢ = 11 must have an antisymmetric
spatial wave function, i.e. we only need to consider odd partial-waves. The relevant rest
frame irrep, 77 , mixes JP = 17,37,.... For non-zero momentum, the symmetry of
the system is further reduced, and in the irreps considered we expect contributions of
JP =17,37,.... However, the centrifugal barrier factor will suppress the F-wave with
respect to the P-wave amplitude, and no resonant behavior in the F-wave is expected until
much higher energies, see for instance the spectrum extracted with single meson operators
in Fig. 11 of Ref. [I12I]. To further support this approximation, we note that in Ref. [65],
at a lighter pion mass of ~ 239 MeV, the F-wave contribution to the 7w channel was
found to be consistent with zero. Based on these arguments we neglect the pseudoscalar

partial-waves with J > 3.

Once we have selected an operator basis for each irrep, the two-point correlation matrix

is calculated, and the GEVP is solved for each available timeslice. We select a value of ¢
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based on the heuristics described in Sec. We perform a correlated fit to the timeslice

dependence of each principal correlator with a one or two exponential functional form,

given by Eqs. (2.13) and ([2.16)), from which we extract the energy levels of the irrep. We

verify that the spectrum is robust under reasonable variations of the following choices: the
fit timeslice window, variations of the number of fermion bilinears included in the basis,
and variations of tg.

As an example, we show in Fig. the principal correlators extracted from the
correlation matrix of the [111] A; irrep. We plot the principal correlators in the form
eE“(t_tU))\“(t,to) to remove the contribution of the leading exponential, and more easily
evaluate the relaxation to a single exponential behavior. In this case we found that all
principal correlators are best described by a two-exponential fit. Only for the first five
states do we find that the noise allows fits up to timeslices close to t/a; = 39. For higher
states, the signal to noise ratio deteriorates more quickly.

In the case of the first five principal correlators, the contribution from excited energy
levels is small. The coefficient of the second exponential b, < 0.01 for these states, and
stays below 0.1 for the rest of the states, except for state 9 in which case it is equal to
0.19. The energy of the second exponential of all fits satisfies a;F 441 > 0.5, greater than
the energies of the highest states.

However, as discussed before, since we only include two-meson operators with non-
interacting energies up to a; E;; ~ 0.22, and do not include further multi-meson operators,
we do not expect the energy levels extracted above that energy to faithfully represent the
spectrum of the lattice. In this case we will only keep the first five levels for the scattering
analysis. A similar analysis was carried out for the rest of the irreps considered in this work.
Across all irreps, including timeslice fits to extract the overlap factors ZX, we performed
on the order of ~ 1000 fits. However, as we describe below, only the results of the fits to
the timeslice dependence of the principal correlator for the 32 lowest lying levels will be

used for the rest of our analysis.
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Figure 5.1: Principal correlators of irrep [111] A; with ¢y = 10a;. We plot eE“(t_tO))\"(t, to) to
better observe the relaxation to a single exponential for large timeslices. The basis of operators of
the matrix of two-point correlation functions is listed in Tab. Points in blue are included in
the fit, while points in red, e.g. ¢ = ¢y, are not used.

To evaluate the impact of the vector-pseudoscalar channels on the spectrum we carried

out the energy-level extraction through the solution of the GEVP with correlation matrices
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with and without wm-like and ¢m-like two-meson operators in the basis for some of the irreps
that mix J© = 1*. An example of this is shown in Fig. showing the extracted discrete
spectrum in the [111] Ey irrep including such operators (left), and excluding them (right).

As expected, the low-lying spectrum, well below the mw threshold, is unaffected by the
inclusion of the extra operators whose non-interacting energies lie much higher, and the
overlaps, Zi = (n\(’)3|0>, for these states with those operators are observed to be negligible.

Above the ww threshold we can identify by the operator-state overlaps that some states
are generated predominantly by the ww-like or w¢-like operators.

Because the variational analysis approach is able to separate contributions to the ma-
trix of correlation functions from multiple levels, even if they are almost degenerate, we
can observe that the spectrum on the left contains a very precise energy level right on top
of the K119K 199 non-interacting energy with dominant overlap onto a K K-like operator
The energy of this state is statistically consistent with another three levels overlapping
dominantly with 7mw-like and 7¢-like operators. This K K-like level remains essentially
unchanged in an analysis that does not include the 7ww-like and w¢-like operators, justi-
fying their removal for the spectrum determination, and their further exclusion from the
timelike form factor calculation. Comparable observations can be made in the other irreps

considered here.

Once the energy levels from each irrep have been extracted from the principal correla-

tors, we calculate the CM energies,
(a:E*)? = (a:Ep)* — |a,P[* /€, (5.2)

where we add in quadrature the statistical error associated with the energies to the uncer-
tainty associated with the anisotropy. This completes the calculation of the lattice spectra,
which is shown in Fig. [5.3

Let us now comment on the spectra obtained across the 10 irreps considered. We find
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Figure 5.2: Extracted finite-volume spectrum in the [111] E5 irrep from variational analysis
of (left) correlation matrix including ww-like and mw¢-like operators, and (right) excluding such
operators. Dashed lines indicate meson-meson thresholds, and solid lines the non-interacting energy
levels in this volume, with color coding as indicated below. The histograms show the relative sizes
of overlap factors for each state for each operator in the basis, color coded as: subduced single-
meson with J = 1~ (dark blue), J* = 1% (brown), and J¥ = 2~ (purple), 77 (teal), KK (red),
7w (orange) and w¢ (green). The spectrum from the left panel is reproduced on the right panel
as the grey points to aid comparison.
32 energy levels below our energy cut-off at a;F* ~ 0.22 (with the vector-pseudoscalar
operators removed from the operator basis). Of these, 17 are located within the elastic 77
energy region. We observe that the spectra feature an extra energy level with respect to
the expectation from counting the possible non-interacting energies on this volume. This
extra level is manifested as an isolated level around a;E* ~ 0.135, or as an avoided level
crossing if a non-interacting 77 energy is located around a;E* ~ 0.135 for this volume.
This behavior indicates the presence of a narrow-width resonance with mass close to
a; E* ~ 0.135. To determine the precise characteristics of this resonance we need to analyze
the energy levels with the Liischer quantization condition, and extract the pole parameters

from a parameterization of the amplitude that describes well the lattice spectra.

In the case of the 15 energy levels above the KK threshold, we observe that each of
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Figure 5.3: Finite-volume spectra obtained for all irreps considered in this analysis. Dashed
lines show meson-meson thresholds, while solid lines show non-interacting meson-meson energies
as a function of L, color-coded according to the meson pair (dot-dashed indicating non-interacting
energies where the associated operator was not included in the variational basis). Grey dotted
lines indicate thresholds for higher-multiplicity scattering (rwwm, wrn, KK).

them lies within a few standard deviations of a non-interacting energy. In particular, we
find that the energy levels close to KK non-interacting energies have the least amount
of statistical error. This is an indication that the 77/KK system is weakly coupled,
and that each individual channel has a small interaction strength over this energy region.
Furthermore, the levels in the 77 elastic region have similar overlaps to single-meson-like
operators and to two-meson-like operators, whenever there are non-interacting energies
nearby. In the case of levels above the KK threshold, most states only have strong overlap
with the two-meson-like operator associated with the nearby non-interacting energy.

This pattern of state overlaps can be observed in Fig. for the levels below KK
threshold and the level with small error close to the K K non-interacting energy. In that
same figure, the wm operators can be seen overlapping to levels that also have a sizeable
overlap to JP = 17 single-meson-like operators, likely due to the nearby b; resonance
discussed earlier. Further evidence associating these levels to the J* = 11 partial-wave is
that they have negligible overlap with operators having negative parity.

We close this section by commenting on the optimized operators defined by the eigen-

vector of the GEVP. The values of t and tz, defined in Sec. 2.2.2] used in each irrep to

obtain the optimized operators that will be used for the calculation of production am-
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plitudes are given in Tab. [5.3]. Because of the small contamination from excited energy

levels, optimized operators formed with Eq. (2.17)), will not quite have the normalization

of Eq. (2.18]), but instead
(n[Qf(0)[0) = /T = by\/2Eq 6 m (5.3)

To compensate we simply redefine the optimized operators to be equal to

2F A
ot — W —Ento/2 n AT
Ql = T 0 ;:1: v Ol (5.4)

and for convenience we will drop the bar, but advise the reader that in the rest of this

work the optimized operators refer to Eq. (5.4).

Table 5.3: Values of ¢y and ¢tz used to determine the optimized operators in each lattice irrep
associated with the continuum quantum numbers ¢ = 1+, JZ =1~

Irrep to tz

[000]7y 10 15

10014, 10 15

[100]

[110]4; 11 15
[111]A; 10 17
[200] 4, 10 13
[100] B, 10 13
[110) B, 10 13
[110)B, 9 13
[111]E, 10 13
[200]

2001 E, 10 17

5.2 Amplitude extraction

5.2.1 Elastic 7 scattering

In the case of a single channel and a single partial wave, the determinant of Eq. (2.2)) has a
single entry, and becomes an algebraic equation relating each energy level with a value of

the elastic phase-shift. We can calculate the P-wave 7w phase-shift, 67", associated with
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the spectra within the elastic energy region shown in Fig. We show the phase-shift

data in Fig. [5.4] as grey points, with the propagated error from the CM energy.

T/
150 1
120 ~

90 1
60 1
30 1

0 T T T T
0.10 0.12 0.14 0.16 a,E*

Figure 5.4: Elastic 7w P-wave phase-shift constrained by energy levels below KK threshold
in Fig. 5.3l Bands shows parameterizations including the reference elastic parameterization of

Eq.(5.6).

The behavior of the data strongly suggests a rapid phase-shift increase, crossing 90° at
an energy around a; E* = 0.135, which can be efficiently parameterized by including a pole
term in the K-matrix. To describe the spectrum, we consider a reference elastic scattering

amplitude of the form

167
M(S) - ’
(2]3*)2 Kﬁl(S) — ICM(S)
K(s) = -5 1 (5.5)
m? —s ’

where Iy was given in Eq. . From this parameterization of M we can generate
the finite-volume spectra in the elastic energy region for a given set of parameters using
Eq. . These spectra are compared to the lattice CM energies with a correlated x?2
function. We minimize the x? by varying the parameters and we find that the best fit to

the lattice energy levels is with parameter values,
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m= 01335(5)-a;" |1 —03 -0.3

g= 0.445(10) 1 07
y= (3.4422)-a? 1
X2/ Naot = 2§ =1.21 . (56)

The elements in the matrix correspond to the correlation between model parameters for
the best fit, cov(a,b)/(040p), these are calculated via jackknife.

In order to determine the sensitivity of the extracted scattering to the specific form
of the parameterization, we used various parameterizations to describe the finite-volume
spectra. A general feature of all amplitudes that are able to successfully describe the
energy levels is a rapid increase of the phase-shift around a;E* = 0.135.

Our variations concern what degree of polynomial is added to the pole, and whether
a simple, or dispersively improved phase-space is used. Table [5.4] summarizes four vari-
ations used for the elastic amplitude. The explicit form of the relativistic Breit-Wigner
parameterization can be found in Ref. [91]. The other parameterizations are of the form
of Eq. (5.5), and the one satisfying v = 0 corresponds to the Gounaris-Sakurai form [122].

We found little variation in the energy dependence from different functional forms, as
illustrated by the bands in Fig. Similarly the various parameterizations have con-

mesurate values of x?/Nqot.

Parameterization Npars  X2/Naof
Relativistic Breit-Wigner 2 1.23
K= mgz_s (Gounaris-Sakurai) 2 1.29
K = —4— 4+~ (With —ip phase space) 3 1.23
K= 4=+ 3 1.21

Table 5.4: P-wave elastic amplitude parameterization variations.

The behavior observed in Fig. [5.4]is clearly that of a narrow resonance, and indeed the

reference elastic amplitude is found to feature a pole on the unphysical Riemann sheet at

apy/5r = 0.1328(5) — £0.0096(5) , (5.7)
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with a coupling to 77 defined at the pole, M(s ~ sg) ~ 167 s;—is, of value,

ay Crr = 0.0426(11) ¢~ 0047(3) (5.8)

The other parameterizations also feature a pole with parameters statistically consistent to

the ones shown above.

5.2.2 Coupled-channel 77/KK scattering

For a coupled-channel system, we no longer have a one-to-one mapping of individual en-
ergies to the value of individual elements of the scattering amplitude matrix, in channel
space, at that energy. Instead we can only fit parameterizations of the amplitude to the
spectra. Based on the results in the elastic region we propose a reference coupled-channel

amplitude with a similar structure to the reference elastic amplitude,

ML) = e (6 sy e
9a 9b

Kap(s) = — 5= + b, (5.9)
and we find the best fit to all of our energy levels with the parameter values,
m= 01338() ¢’ [1 —02 00 -02 02 -0.1]
Grr = 0.441(9) 1 —-04 06 —04 —04
gk = 0.17(30) 1 —-02 08 09
Yrmmr = (2.9£0.9) - af 1 —-02 -0.1
YVem KR —(2.445.0) - a} 1 08
Ykr.xE = —(22+4.0)-af 1
X /Naot = 2L = 1.10. (5.10)

We show the phase-shifts 077, 65?, and the inelasticity n of this parameterization in

Fig. [5.5

Similar to the elastic amplitude, we observe a rapid increase of the mm phase-shift,

which crosses 90° at an energy a;E* ~ 0.135. Above the KK threshold the 77 phase-shift
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increases slowly towards 180°, indicating weak interactions for those energies. The KK
phase-shift turns on slowly, as dictated by the centrifugal barrier of the P-wave, and takes
a small negative value, indicating that the KK system is weakly repulsive over this energy
region.

Finally, we observe that the inelasticity 7, stays consistent with one in this energy
region. As explained in Sec. this indicates that the two channels remain decoupled
to a good approximation, or with a very weak coupling between them.

As in the case of the elastic amplitude we can look for poles and residues in the

scattering, which for a coupled-channel system have the following behavior

Map(s ~ s) ~ 167 —-

5.11
p—t (511)

where the amplitude factorizes at the pole, indicating that the coupling of the resonance
to each of the channels is independent to each other.
The amplitude of Eq. (5.10)) presents a pole consistent with the pole found for the

reference elastic amplitude, as expected for a resonance lying below the inelastic threshold,
ary/sr = 0.1331(4) — £0.0095(4) (5.12)

on the sheet closest to the physical scattering below the K K threshold, where the imaginary
parts of 7w and KK momenta are negative and positive, respectively. The residues at the

pole are equal to

ay Crr = 0.0424(8) 77 0-017(2)

at e = 0.019(33) ™ 0470) (5.13)

which are observed to be close to real for the kinematically open 77w channel, and close
to imaginary for the kinematically closed KK channel. The coupling to the 77 channel

is also consistent with the elastic result. The value of the coupling to the KK channel is
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poorly constrained from this analysis, as expected for a resonance lying below threshold,
as the effects of this channel on the finite-volume spectrum get exponentially suppressed
below its threshold.

Finally, owing to the P-wave nature of the resonance, it is relevant to quote the value

of the couplings with the barrier factor associated with each channel divided out,

Cﬂ'Tl'

k:(TI’(SR)

CKK
—=8 1 =24+4.0. (5.14)
k;(?(sR) ‘

V167 |err| = V167 =6.41+0.13,

V167
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Figure 5.5: Phase-shifts and inelasticity for coupled-channel 77, KK scattering corresponding to
the amplitude given in Eq. . The constraining energy level locations are shown between the
panels, with levels lying close to K K non-interacting energies colored in red. White circles show
the thresholds for mwmm, wr and ¢m production, in that order.

To evaluate the sensitivity of this result to the parameterization choice, we also consider
further variations of the scattering amplitude. Table summarizes 23 of such variations
for the coupled-channel case. We find these parameterizations in overall agreement with the
reference coupled-channel amplitude, with slight variations seen on the energy dependence

of the inelasticity, but statistically consistent values of the phase-shifts 67" and 5{(?. The
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variations for the resonance pole position sp and coupling to the 7w channel, ¢, fall
within the statistical uncertainty of the previously quoted results. However, the coupling
to the KK channel is poorly determined in each parameterization, with some models
differing from each other at the level of up to two standard deviations. We expect that
the uncertainty on ¢z will dominate the uncertainty and parameterization variation of
our determination of the timelike form factor of the kaon because of the experimental
observation that this amplitude is dominated by the tail of the p-meson resonance peak [47].

To illustrate the results with the largest variation associated with the parameterization,
we select two of these coupled-channel amplitudes for propagation into the production
amplitude analysis. The first is the coupled-channel reference amplitude of Eq. , the

first entry of Tab. while the second, which we label “'y(l)”, has functional form,

Kanls) = 52— 49 +40)s, (5.15)

corresponding to the tenth entry of Table The resonance pole of the “y(1)” parame-
terization is located at

apy/5R = 0.1327(5) — £0.0096(4) , (5.16)

consistent with Eq. (5.12]), while the channel couplings are,

ay Crp = 0.0424(9) e~ 0-055(4)

ay e = 0.097(24) ™ 0-484010) (5.17)

where we observe a noticeable variation on ¢y as compared to the reference amplitude

case in Eq. (5.13).
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Parameterization Restrictions Npars x> /Ndof
- 6 1.10
Ik =0 5 1.07
Vo kK =0 5 1.08
Vrm,mm = 0 5 1.47
- 6 1.05
g =10 5 1.03
ICop = Jads @D KK
@ = mi=s T Jab Y =0 5 1.02
y =0 5 1.02
_ 9 1.05
N T = 8 1.11
Kab = ngQ%s + lyab(s) gl((ﬁ( 0 3 1.07
0 1 E— .

Yab(8) = 7((15) + %(11,)3 ’Yg) KK
Y. e =0 8 1.06
77(r17r),7r7r 0 8 1.08
- 8 1.15
Kap = 79“752%5(8) + Yab g,(rl,r) =0 7 1.11
9a(s) =9 +9s  Aarar =0, %, gz =0 6 1.10
Yrmww = 0, TKK KK — 0 6 1.11
Yar kK = 9 VxR KK =0 6 1.10
- 6 1.12
Kab = 2% 4 vap 9k =0 5 111
Iab = —1 5ab Pa ’YKF,KF =0 ) 1.12
Vem kR =0 5 1.11

Table 5.5: P-wave coupled-channel amplitude parameterization variations.
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Chapter 6

Finite-volume matrix elements of the

1 i> 1 and 0 i> 2 transitions

Matrix elements in a lattice calculation can be extracted following the techniques described
in Sec. In this Chapter we will describe the extraction of matrix elements associated
with the pion spacelike form factor, and the pion and kaon timelike form factors. We
will describe the kinematic factors associated with the subduction to the irreps of the
lattice, and the tensors from the Lorentz decomposition of the matrix elements in the
form of Eq. (3.1). We will then be able to extract finite-volume form factors, which for
the spacelike pion form factor we can immediately identify with the infinite volume form
factor. The spacelike form factor at zero photon virtuality will be used to determine the
current renormalization. Finally, we will describe the fit strategies employed to model the

correlation functions with current insertions, from which the matrix elements are extracted.

6.1 Kinematic factors

We begin by considering the spacelike matrix elements. In this case the subduction of the
hadron states is trivial: single-pion states being spinless only subduce to one-dimensional

irreps, with subduction coefficient equal to 1. We will drop the irrep coefficient for the
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single-meson states for convenience, so we can focus on the subduction of the vector current
Au i 4
(m(P)lTMO)a(p) = Y Sy"e (a,A) (n(py)|T7 (0)|7(p)) (6.1)
AJ

where €(q, A) is the three dimensional polarization vector for a state of momentum gq
and helicity A, and Sf\x" are the subduction coefficients for spin-one states, introduced in
Sec. projecting the current with J© = 17 into the lattice irrep and row Ay. In this
work we will only consider the spatial part of the vector current, J°.

We can employ the Lorentz decomposition of the current sandwiched by pion states,
given in Eq. , and the expression of the subduction coefficients from [60, [61], to

obtain an expression of the form

(m(Pp)|T0) |7 (pi)) = Ka(A, 1, Ps, Pi) fr(—Q7), (6.2)

where we remind the reader that Q* = —(py — p;)?, with pi(f) the four momentum of the

initial(final) pion. The kinematic factor for spacelike current momentum, Ky, is equal to
Ay .
Ksl(Aaluvpfapi) = ZS)\HEJ(qa )‘)<pf + pz)j . (63)
AJ

To decrease statistical fluctuations we can average matrix elements having the same value
of @,

L.

Pi/f|, and current irrep, but different momenta orientations, py and p;, and rows

In this work, for every value value of Q?, we employed a fixed direction of momentum
for the current insertion, q = py — p;, and calculated the current projected to all pertinent
irreps and rows. We calculate various rotations of the initial and final momenta, Rp; and

Rp;, where the rotation R belongs to the little group of q.
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The form factor can be extracted from the following weighted average,

—_0?) = 1 * N n A (o) o . )
f=(=Q7) Ealhopr o)l %Ksl(A,u,RpﬂszM (Bpp)|T™(0)|w(Rp:)) ,  (6.4)

where |K'Sl|2 => Ry KqK}. This prescription is equivalent to the SVD inversion used
to extract multiple form factors from rotational equivalent matrix elements described in
Ref. [94].

For example, in the case of q = 0, p = py = p;, the current subduces into the
irrep 77, and the three polarization vectors are projected to the different rows of 77 .
In this case we can calculate |Ksl|2 easily by exploiting the completeness relation of the
polarization vectors, and that the subduction coefficients have been normalized to form

unitary matrices, to find

_ 2 2
’Ksl(Tl 7p,p)| = 4NR|p’ ) (65)
where Ng are the number of different rotations, R, over which we average.
To extract the form factors from correlation functions, we define the rotational average
of the ratio of three- to two-point correlation functions

A, 1oy Em il

Rapi (At 1) = i KZ%(A, p, Rpy, Rpi
apt(At, ) ﬂlel(A,pf,pi)IQRZ; (A, u, Rpy, Rp;)

. <Q7T,Rpf (At) jp/,\llzit (t) QJIr%mPi (O)> . (6.6)

(i (At = )98, (0)) (U, (D2, (0) )

For large time separations, this ratio plateaus to

R3pt(At7t) = Zilfﬁ(_Q% te (6'7)
v

where Z€/ is the renormalization constant of the isovector local vector current introduced
in Eq. (2.21)). In practice, even when using optimized operators, we will observe pollution

from higher energy states close tot = 0 and ¢ = At. To disentangle the leading contribution
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we perform a correlated timeslice fit of the quantity Rspt(At,t) to the following functional
forms: a constant, a constant plus a decaying exponential at the source, a constant plus
a decaying exponential at the sink, or a constant plus a decaying exponential both at the
source and the sink. All these functional forms can be described by the function
Rapi(At 1) = f”(Z_lVQQ) + fre 0B (A=l 4 g em0Bit (6.8)
Although matrix elements corresponding to the same value of Q2, but with the current
projected to a different irrep, or having different values of ‘pi / f|, are proportional to the
same form factor f,(—Q?), we only form rotational and row averages of correlation func-
tions as described above. Even if these correlation functions should plateau to statistically
consistent values, they typically present quite different excited state pollution, and can
have different signal to noise ratios. In those cases we will first fit the time dependence

of the ratios of Eq. , and after that, combine the fit results by a correlated fit to a

constant.
097 0.875 1 [=(=Q%)
Rl Zy
0.8 - el 0.850
= E ~ -“'““ﬁﬂiﬁﬁﬂ T 08251 0.801(15)
0.7 Py ﬁ .
< ﬁ‘ < 0.800
= 0.6 o4
= i T 0775 e o
= =04 _ g9
054 & Nawr = 321
' 0.750 A
%
04 T T T T 0725 =
0 10 20 30
t/ay

Figure 6.1: Example of three Rgpi(At,t) (At = 32a;) with the same value for @2, but with the
current projected to different irreps. On the left we show a correlated fit to a constant with the
result of the three different fits.

We show an example of this in Fig. for three different R3p¢(At,t) with At = 32q,
and kinematic variables (%|pl|)2 = 3, (%|pf|)2 = 5 and (%|q])2 = 2. The blue data

points correspond to the A; current irrep, subduced from the zero helicity component,
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while the red and orange correspond to subduction of the +1 helicity components to the
By and B irreps, respectively. A common plateau cannot be easily identified for the three
datasets, but once the excited state pollution is taken into account with the fit procedure,
we find a consistent value for fr(—Q?)/Zl,. We will give more details about the timelsice

fitting procedure in Sec. [6.3]

In the case of the timelike production matrix element, we have to consider the subduc-
tion of the hadronic state in addition to the subduction of the current. Let us begin by
presenting the Lorentz decomposition of a production matrix element in the infinite-volume
continuum,

(p(P, )T (0)|0) = (/(P,X)* fr P, (6.9)

where |p(P, \)) represents a stable meson state, which we use only to illustrate the Lorentz
decomposition of the current overlap with a state with quantum numbers J©¢ = 1~ four-
momentum P and helicity A. The four-dimensional polarization vector of state |p(P, \))
is €¥(P,\) and fy is commonly called the vector-meson decay constantE Note that the
vectors €, introduced in Eq. , and € are equal for non-zero helicities, but different for

A =0, in that case each of them is equal to

€(P,0) =P, €(P,0)=~P?, (6.10)

where we used the relativistic factor v = P%/v/ P2,

The finite-volume subduction follows a similar procedure than the one used for the

"'With this normalization, the decay constant, fi-, is unitless. Other normalizations have been used in
the literature, see for example Ref. [123] that uses f, = v/2VP2 fv.
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A(TH) (T AT AWTY B2, By, Ba(JY)

7
Ku(A. P) | \f N !

Table 6.1: Kinematic factor of the subduced finite volume matrix elements into irrep A from the
temporal, J9, or spatial, J¢, components of a vector current.

spacelike matrix elements

(p(P, N )| TM(0)]0) = Y Sl (P, N) (p(P, V)| T (0)]0) Sy, (6.11)
A i

= | Y sy @A) (E(PN) Sy | frP?, (6.12)
AN i

where the term in square brackets will be the kinematic factor.

Even though in our calculation the states in the production matrix element cannot
be identified with a stable single-particle state, they have the same quantum numbers as
the example of before, meaning that the subduction procedure remains the same. For the
states with energy within the two-meson sector, |n);, found in Chapter |5 we choose a
decomposition with the following normalization

LT (0)]0) = Sodrs Ka(A, P) AP, (6.13)

where J—'ﬁL) is the “finite-volume form factor” and the kinematic factor is given by

San Ka(A, P) \f 3T SHEP N (E(PN)) S (6.14)
AN g

and the numerical coefficient was chosen for convenience, as it will later cancel against a
factor given in Eq.(1.38)). We list the value of these kinematic factors in Tab.

As before, we define a ratio of correlation functions from which we will be able to
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extract the finite-volume production matrix elements,

T 3
Falt) = KX(ZP) <<O|U(<tt) 1% = VA (615)

n

where in the last equality we are neglecting pollution terms with exponentially decaying
time dependence coming from higher energy states. We emphasize again that by using
the optimized operators we will be able to access the production matrix element of the

L)

finite-volume ground state and of multiple excitations, allowing access to ]-",S over a wide
range of kinematics.
In this case we will extract the leading constant contribution by performing a correlated

fit of the time dependence of Ry (t) to functions of the form
Ru(t) = \/ - FY) + Fye 0Bt (6.16)

We found that <J (t)Q:E(O)> two-point correlation functions were statistically precise, and

an average over momentum rotations or irrep rows was not carried out.

6.2 Correlation functions and fitting strategy

To calculate correlation functions with insertions of a local current we employ the distil-
lation framework, which requires the inclusion of generalized perambulators, Eq. .
We computed two- and three-point correlation functions with current insertions over a
subset of 348 configurations out of the 400 configurations used to extract the spectra. The
correlation functions were constructed with quark fields smeared using distillation with
Nyecs = 162. In the case of three-point functions we fixed the source-sink separation to
At = 32a;, and inserted the current at the timeslices 0 < t/a; < 32. For two-point func-
tions the current was inserted at the sink, and we calculated sink-source separations of
0<t/a; < 32.

To extract the spacelike form factor covering a wide kinematic region, correlators were
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computed with optimized pion operators of momenta up to |p|?> < 6 (2%)2, and a current
momentum insertion with momenta up to |q|*> < 4 (2%)2 A total of 532 three-point
functions were employed in this calculation, which were reduced by rotational and row
averages to 51 ratios of the form of Eq. , and a correlated timeslice fit was performed
to each of them to extract the form factor. After averaging the fit results of the form
factors with equivalent Q2, we were left with 20 different kinematic values spanning 0 <
Q? < 1.6 GeV2.

To extract the finite-volume timelike production matrix elements we computed correla-
tion functions with the current at the sink and at the source we employed the 32 optimized
operators associated with the 32 levels extracted in Chapter [ presented in Fig. This
spans the energy region from the two-pion threshold at ~ 570 MeV, passing the kaon-
antikaon threshold at ~ 1 GeV, and up to ~ 1.3 GeV, or in energy squared the timelike

matrix elements span the kinematic region 0.3 GeV? < s < 1.7 GeV?2,

To fit the data we need to select among several choices of timeslice ranges [tmin, tmax],
and functional forms. To decrease the possible bias in this selection we follow the pre-
scription suggested by Jay and Neil [124]. For both R, and Rsp¢, we begin by picking a
minimum number of timeslices V¢, and performing fits to a constant.

In the case of R3pt, we perform constant fits to all time windows larger or equal to NV;.
For each of the fits we form a version of the Akaike Information Criterion (AIC) weight,
by combining the correlated y? and the number of degrees of freedom, Ngof, according
to w = exp[—(x?/2 — Naor)]. Fits with functional forms describing contributions from
pollution terms, e.g. Eq. , are performed only to time windows containing the subset
of data associated with the maximum value of w for a constant fit.

After that, we fit using the functional form of Eq. with f¢(f;) fixed to zero, with
time ranges such that tmin (tmax) is less(greater) than the corresponding tmin (tmax) of the

best constant fit, according to the value of w, while leaving tyax(tmin) equal to that of the
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best constant fit. We also perform fits to the functional form of Eq. by using values
of timin and tyax less than and greater those of the best constant fit, respectively. We then
calculate the AIC weight, w, for all successful fits.

In the case of Ry, we perform fits to a constant with varying values of ¢y, but a fixed
value of ty.x. We label t* the value of t;, for the time window for a given t,.x with
the maximum value of w. Then, a constant plus an exponential, i.e. Eq. , is used to
perform fits with ty, < t*. We repeat this procedure for all values of tyax allowed by Ny,
and calculate the AIC weight for each successful fit.

Each fit, «, provides a value and a statistical error for the constant contribution, which
we generically label Cy, & 0¢ o for R3pe and Ry, which can be ranked according to their
respective value of AIC weight w,. Finally, a model average of C is calculated from a

weighted average of the set {C,} associated with the fits with largest weights,

omod.ave. _ ZZMZ)Ca (6.17)
>0 W0ty YoapWaws(Co — Cp)?
Za Wa Q(Za wOé)Q .

0l = (6.18)

To make this process compatible with the jackknife resampling technique, described
in Sec. [2.2.6.1] we employ the following prescription, based on the method presented in
Ref. [125]. For each fit we can obtain an ensemble {Cy;}, where the index i indicates
an element of the upscaled jackknife ensemble. Then we can define the model averaged
ensemble

C(avg) . Za We Ca,i

! Za Wa .
As we show in App.|C] the average of this ensemble is equal to the value given in Eq. (6.17]),

(6.19)

but the variance is less than or equal to Eq. (6.18)). In the case of our data set, we find the
fractional difference between these two variances to be < 10%. We can fix this mismatch

by adding Gaussian noise, 7;, to Ci(avg), as long as the variable 7; has zero mean and a
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variance such that the variance of
c™e = o) 4o (6.20)

matches the value required by Eq. . The Gaussian noise variables are drawn from
a multidimensional uncorrelated Gaussian distribution, so that this prescription does not
impact the covariance among different matrix elements. Reference [124] does not address
the model average of the covariance among different variables, but we assume that it is

best to not modify it. These ensembles are used for all subsequent analysis in this work.

6.3 Vector current renormalization

We non-perturbatively determine the renormalization of the isovector local vector current
as described in Sec. This boils down to demanding that the charge of the positive
pion is equal to one elementary charge unit, i.e., requiring that f(0) = 1.

In a previous analysis of some of these correlation functions presented in Ref. [85], the

leading time dependence was removed by forming the combination,

C3pt (At,t)

Z K} (A, 1, Rps, Rp;) (0/€2r, Rpy (A1) J (¢ )Qj" Rpi (0)10) . (6.21)

\ﬂKa (A,pspi)|° e Pry (A=) o= Epyt

It can be the case that the timeslice-to-timeslice data correlation for this quantity is con-
siderable, resulting in fits with reasonable values of x? which undershoot the data. One
such case is presented in panel (a) of Fig.

Here we follow an alternative approach with the ratio of correlation functions, Rap,
containing two-point correlation functions with optimized operators, which will have the
same constant contribution as 63pt, but differing excited-state contributions. This combi-
nation proves to have much smaller timeslice-to-timeslice data correlation, and fits follow
more closely the data points. This is illustrated in panel (b) of Fig. .

In these plots the lines correspond to the fit with the largest AIC weight, and we show
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the results of the set of fits with the largest AIC weights on the right panel of each graph.
The columns on the right of each of the plots of Fig. [6.2] show the results with the largest
AIC weights, with the orange graph illustrating the value of w;. Each fit is described by
the time window [tmin, tmax], and the number of exponentials at the source, nge, or sink,
Ngnk- 1N practice we observe that the “model average” is dominated by only four or five
fits which have large weight and the averaged error is dominated by the statistical error
on these.

The difference with respect to the previous method using 5’3pt(At,t) is modest, but
is the origin of any differences in the current analysis with that in Ref. [85], such as for
the light-quark vector current renormalization as shown in Fig. [6.3] The rest of this work
considers only renormalized currents, such that all matrix elements have been renormalized

according to Eq. (2.21)), i.e. we have multiplied them by Z€/.

%
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Figure 6.2: Fits to three-point correlation functions with p; = ps = 2%[110] (averaged over
rotations and directions of current insertion) and fixed At = 32a; using either (a) Eq.
or (b) Eq. . Fitted constant value in this case corresponds to l/Z‘l}, the vector current
renormalization constant. Variation of fit window is shown in the right columns, along with the
model-averaged result.

6.4 Finite-volume timelike production matrix elements

We obtain finite-volume matrix elements following the procedure described in the previous

sections. To illustrate the results, the timeslice behavior of Ry,(t) corresponding to the two
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Figure 6.3: Determination of light-quark vector current renormalization Z{, by correlated fitting
of extractions from six values of pion momentum.

lowest lying states of the [111] A; irrep are shown in Fig. m The observed relaxation to
a constant value for ¢ 2 ¢ty = 10 a4, even for the excited state, is a result of making use of
optimized operators. We show separately the contributions of the two terms in Eq. ,
where the O(a) improvement term is observed to impact at the level of 5 — 10% of the
leading term. For the anisotropic lattice considered in this work, the improvement enters
proportional to the energy difference between the initial and final states of the matrix
element, which is larger in magnitude in the current case of production than in the case
of three-point functions used to extract the spacelike pion form factor. Again, we observe

that the “model average” is dominated by only four or five fits.

The use of optimized operators is a powerful technique owing to their overlap with other
states in the spectrum being highly suppressed, (m|€}(0)|0) < 1, for m # n. However, we
do encounter cases where a hierarchy of matrix elements for different states can compensate
for this suppression, i.c. where F - (m]Q1(0)]0) ~ F,

For those cases, the ratio of correlation functions of Eq. has non-negligible ad-

ditive contributions from states other than n of the form,

Emm(t) = Emn e(Bn—Em)t ) (6.22)
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Figure 6.4: Time dependence of R, (t) defined in Eq. for the two lowest discrete energy levels
in the [111] A; irrep. Squares/triangles show data for the unimproved/improvement term currents
(first and second terms in Eq. ) Curves show the timeslice description having largest AIC
weight, with the constant fit value and the 2 /Naot of the fit also shown. Variations in the constant
fit value over different timeslice fit windows are shown in the right column, together with the AIC
weight (in orange), and the “model average” (in red).

where €y FP. (m|©(0)]0), such that states lighter than n will cause a rising time-
dependence, visible at late times, that is not accounted for in our default timeslice fitting
form.

Use of a GEVP solution at an appropriately large value of £y to form the optimized
operators places some constraints on the scale of these late-time pollutions. The optimized
correlation function matrix, (0|Quw(£)Q5(0)]0), is diagonal at t = to, and close to diagonal
for timeslices close to to. The two-point current correlation functions, (0.7 (t)$2}(0)[0),
are calculated on the same ensemble, and with the same time sources as the matrix of
correlators used in the GEVP, leading to a significant correlation between the contributions
€mn(t) and the off-diagonal elements of the matrix of optimized correlators, suggesting that
€mn(t) will be also suppressed for timeslices around tg ﬂ

In this work, only the energy levels lying close to non-interacting KK energies and

2In practice this matrix is not ezactly diagonal because the optimized operators are constructed with
the ensemble averaged vectors vy.

3Contributions from terms like Eq. (6.22) to R.(t) are not relevant for ¢ < to, where pollution from
states higher in energy come to dominate correlation functions.
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having dominant overlap onto K K-like operators, are found to have a production matrix
element that is significantly smaller in magnitude than the matrix element for a lighter
state, and hence where this ‘late-time’ pollution needs to be considered. For these levels,
based upon the logic above, we restrict the time-windows for constant and constant-plus-
exponential fit forms to more modest values of ty.x ~ 1.5tp, thus excluding late-times
where the pollution from lighter states begins to become significant. In practice, we only
need to impose this fitting-window restriction explicitly for three states, the second excited
energy level of each of the irreps [100] A1, [110] A1, and [111] E5. Four other states lying
close to non-interacting KK energies in other irreps show a modest late-time enhancement
of the form suggested by Eq. , but the AIC weight favored fits with lower values of
tmax anyway.

We present below an example case supporting the arguments presented above, in which
we will reconstruct the time-dependence of correlation functions in terms of contributions
of the form of Eq. . For convenience of presentation we will suppress kinematic
factors not relevant to the illustration, by introducing unit-normalized optimized operators

(n|Q(0)]0) = dnm, and the ratio

R (t) = , (6.23)
T 04 24 (0)]0)
with the constants f,(lL) describing the leading constant time-dependence of R, (t).
Objects,
0/ (£ (0)]0

(0124 (1) (0)[0)
are analogous to Eq. (6.22)) for the ratio R} (t), whenever E, > FEy. It follows that we

should be able to reconstruct the ratio R}, with the terms

Ry(t) = 1"+ &t (6.25)

m<n

and this will have the same time-dependence as R} (t) for times after the small-time de-
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caying excited state contributions have died out.

Comparisons between R/ (t) and R, (t) for levels in the [100] A; irrep are shown in
Fig. The values of fl(nL) for m < n needed in Eq. are obtained serially from
timeslice fits to the lower-lying energy level correlation functions. Level 2 meets our criteria
for having non-negligible late-time pollution since its f(L) value is significantly smaller than
the corresponding values for levels 0 and 1, with the value for level 1 being over ten times
larger in absolute value. We see that while the contribution of lower-lying states to levels
1 and 3 is negligible, for level 2, the contribution of the nominally suppressed level 1 is
observably large. We also see that restricting timeslice fits to values of tpax < 1.5t will

reduce the impact of this pollution considerably.

)

The resulting values of ]-",EL from timeslice fits for energy levels across all irreps consid-
ered are summarized in Fig.[6.6] The data is visibly enhanced near the resonance energy
a;E* ~ 0.135, while for higher energies it does not appear to have any simple energy de-
pendence, with a strong dependence on the irrep of state n being observed even for very

similar values of a;E;. This is as expected given the need for finite-volume corrections,

which will be addressed in the next Chapter.

This Chapter described the extraction of finite-volume matrix elements. To extract
the timelike form factors we need to perform the finite volume correction described in
Sec. which will be done in the next Chapter.

The rest of the kinematic points Q% # 0 for the spacelike form factor are calculated
following the methods described in Secs. and We will show the resulting values of
the spacelike form factor in Chapter [§ once we have performed the finite volume correction

to the production matrix elements.
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Figure 6.6: Finite volume form factor in the 77 elastic region and above the KK threshold. The
fractional statistical uncertainties for the form factor values are shown in the bottom panel.

129



Chapter 7

Finite-volume correction of the

production amplitudes

In this section we will implement the technology described in Sec. regarding the finite-
volume correction of matrix elements for states in the two-meson sector. The finite-volume
correction factors are influenced by both the scattering dynamics in M and the kinematics
of the geometric function F' which encodes the finite-volume effects. We will present two
alternative prescriptions to perform the finite volume correction. From one of these we find
a quantitative description of the flavor content of each finite volume energy level, while the
other prescription proves more practical for the extraction of infinite volume amplitudes.
We used the latter prescription to extract the form factors to be presented in Chapter
We close this chapter by discussing the error propagation going into the finite-volume

correction factors, which dominate the error budget of the infinite volume form factors.

7.1 Finite-volume correction of the timelike form factors

We consider here the timelike form factor amplitude of Eq. (1.38)), with the decomposition
given by Eq. (1.40). We use the decomposition of the finite-volume matrix element given
by Eq. (6.13)), to rewrite Eq. (2.3)) in terms of the finite volume form factor and the smooth
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functions Fy,

=30 2 (wodags Fals = ). (7.1)

= nall) Fa(s = B?), (7.2)

where we have introduced the finite volume correction in terms of the factor 7 ,(L), which
we also call the LL factor, although it is different, but closely related, to the quantity 75,,
introduced in Eq. . The factor 7 (L) implements one power of relative momentum,
stemming from the P-wave nature of the production.

Equation allows us to relate the finite volume form factors to the infinite volume
smooth functions for the energy values of the finite volume spectra. The LL factors 7y (L)
can be calculated with Eq. employing the scattering amplitude M(s), which was
determined in Chapter . As we will see, all the terms in Eq. are real, because the
complex phases associated with the rescattering effects of the infinite volume amplitudes
are canceled by the finite volume correction R. When writing Eq. we have chosen to
restate Eq. in a form where these cancellations have been explicitly implemented.

In the case of elastic scattering, Eq. features only one term in the summation,
meaning that we can trivially invert it to obtain the value of the infinite volume amplitude
at s = EX2. In the context of a coupled-channel system, this will no longer be feasible.
Instead, we can parameterize the energy dependence of the smooth functions F, and, by
considering multiple levels, perform a fit to constrain the infinite volume form factors.

To compute the LL factors, 7 4(L), we employ the parameterizations of the scatter-
ing amplitude described in Chapter 5] At every solution of the quantization condition,
Eq. , we eigendecompose the matrix M = M~! + F to find the vector wq associated
with the vanishing eigenvalue. Because the matrix M is symmetric, MT = M, the eigen-

vectors are normalized by demanding that wiwo = 1. Then we calculate the slope using
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finite differences and projecting to the subspace of the vanishing eigenvector,

* 1 - -
e = mw(g‘ ([M 1+F]E.‘{+AE_ (M 1+F]E:—AE> o (7.3)

We then combine the slope and the eigenvectors to compute the LL factor

QE;; (WO)a

fn,a(L) = _/JJ{)* k* (74)

The uncertainties associated with the scattering amplitude are propagated into 7y (L)
using jackknife via the ensemble of the scattering matrix parameter values. The covariance
among different values of 7, , need to have a special prescription, as described in Sec. @

As shown in Appendix B of Ref. [85], in the case that M(s) features a narrow reso-
nance, for energies near to the resonance mass, the finite-volume correction factor becomes
volume-independent and has elements proportional to the coupling of the resonance to

each channel, a,

(L) ~ V16T -2 4+ O (F—R) . (7.5)

k% MR
This reflects the dominance in the scattering at these energies of a spatially localized state
whose wavefunction does not sample the boundary of the finite-volume. At energies where
M describes weak scattering and the solutions to Eq. lie close to non-interacting
meson-pair energies, the value of 7, (L) is set largely by properties of the geometric matrix
F(E,P, L) related to how the meson-pair relative momentum directions subduce into the
irrep under consideration. We present the calculation of the finite-volume corrections
in the case of a non-interacting system in App. with a few examples for a system of
identical scalars in an S-wave and a P-wave. Between these two extremes the finite-volume

correction factor is sensitive to both M and F(E,P, L).
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7.2 Elastic finite-volume correction

When we consider elastic scattering in a single partial-wave the matrix M has a single entry,
and 7, (L) has one component. In that case Eq. (7.2)) simplifies, and we can directly relate

the finite volume form factors to the timelike form factor of the pion,

Mo an(s) FH

fw(s) - k:gr fn(L) ) (76>

where s = E*2, and for convenience we drop the channel index from 7,(L). We can also

relate the smooth function of Eq. ((1.41)) to the finite volume form factor
o

Fs) =gy (7.7)

In Fig we present values of 7,(L) for the 17 energy levels below KK threshold,
computed using the reference elastic amplitude of Eq. . For comparison we also show
the value of v/167é, computed from the reference elastic amplitude, and given in Eq. .
We observe that the value of 7, for the energy levels close to a; E* ~ 0.135 almost saturates
to V/16mérr, as expected from the presence of a narrow resonance.

Different values of 7, are observed for the two highest levels presented, each with
P = [111], lying close to the m1197100 non-interacting energy at a; £ ; ~ 0.16. These values
reflect the difference between a nearly non-interacting helicity 0 77 state subduced into
the Ap irrep, and helicity £1 states subduced into Es, and the same pattern of magnitudes

can be observed in the lattice QCD computed matrix elements for the corresponding states

in Fig

7.3 Finite-volume correction for a coupled-channel system

Here we are interested in the coupled-channel system of 77 and KK in a P-wave, where

M becomes a 2 x 2 matrix, and 7y (L) has two components. Above the KK threshold,
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Figure 7.1: Elastic wr finite-volume factors, 7, computed using the reference elastic scattering
amplitude parameterization.

the matrix M is real and symmetric, and the components of wqy are real. Above 77
threshold, but below KK threshold M is no longer real, and the presence of £ = 1 angular
momentum barrier factors in M and F' causes (wp), o k) such that kinematically closed
channels become imaginary components of the vector. In the computation of 7, this phase
is cancelled by the explicit factor of 1/k% in Eq. , yielding a real valued correction
vector (see also the discussion in Appendix A of Ref. [79]).

% are shown in Fig. computed using the reference

Explicit values of 7 ,_

coupled-channel amplitude parameterization, Eq. , which successfully described the
finite-volume spectra presented in Section Levels below KK threshold have values
of 7y zx in close agreement with the values computed using the reference elastic amplitude,
as presented in Fig The corresponding KK components are observed to be quite
uncertain, as expected given the lack of constraint on K K well below its kinematic thresh-
01 Above KK threshold, the 77, K K components are of similar magnitude — that the

KK components do not obviously dominate for levels lying close to K K non-interacting

!See Appendix A1l of Ref. [79] for a discussion of closed channels within this formalism.
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energies is a result of having already extracted a factor of the scattering matrix, M, from
the quantity being finite-volume corrected, see Eq. .

We add the values of the couplings v/167|é,| from Eq. as an inset in Fig.
to compare to the value of the finite volume correction 7, o(L). In the plots we draw an
orange horizontal band around the mass of the p-meson resonance, mr +1'r/2, to identify
the energy levels for which we expect the relation of Eq. to approximately hold. We
indeed find that for the levels inside and close to the band, the histograms of 7, are

approximately equal to those of v/167|¢,]|.
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Figure 7.2: Histograms for each energy level show the magnitudes of finite-volume factors,
|7~’n’a , for a = 7r (blue bar) and a = KK (red bar) computed using the reference coupled-
channel scattering amplitude. Non-interacting 77 (blue) and K K (red) energies are indicated by
the horizontal dotted lines.
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7.3.1 Flavor content of the finite-volume levels

As mentioned before, the prescription chosen to express the finite volume correction given
by Eq. results from extracting a factor of the scattering matrix from the finite volume
correction, to cancel the phases resulting from the rescattering after the production of
the two-meson system. However, as seen from Fig. this choice effectively causes the
finite volume correction to have sizeable components for both channels, even far below the
threshold of KK.

This does not pose a contradiction to the expectation that closed channels have ex-
ponentially suppressed effects on finite volume energies and matrix elements. In fact, as
shown in Appendix A1 of Ref. [79], the LL factors below KK threshold have a volume-

independent ratio,
fn,K?(L) o k;:rﬂ MWW,K?
fu,mr (L) k;(f MT(ﬂ',ﬂ’ﬂ'

where we neglect corrections that get suppressed exponentially as the energy E} decreases

o (7.8)

away from the K K threshold. We use this relation to rewrite Eq. (7.2)) in the elastic energy
region,

kraMo ki
F = Fpmn(L) (]—"m + Mim ]—"K> +o (7.9)
KK T, T

where the factor in parenthesis is the same factor appearing in Eq. (1.40)),

k;ﬂ'Mﬂ'W K
fp = Maman (f 4 TR fKK) , (7.10)

T
k2 V-

and we recover the expression for the elastic finite volume correction of Eq. which
did not take into consideration the contributions from the KK channel.

To illustrate the independence of the finite volume matrix elements from the KK
channel below its threshold, as well as the contribution of each channel to the finite volume

matrix above the KK threshold, we compute the vectors vq defined in Eq. (2.5)). The finite
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volume form factor in terms of the vectors v is given by

R =5 (vodaks fuls). (7.11)

where A is defined in Eq. (2.5)). In this case the components of v( directly weigh the
contribution of each of the timelike form factors f,. In Fig. we show the absolute value

, for all

of each of the components |(vo)q| as a percentage of the sum |(vo)xx| + [(vo) k%
the energy levels considered in this work. The blue area represents the mm component,
while the red area is the KK component. This prescription makes explicit the fact that
the finite volume form factors below K K threshold are mostly independent of the timelike
form factor of the kaon, as can be noted from all the pie charts in the elastic energy region
being almost entirely blue.

Above the KK threshold, we observe that the dominant component of the vector vg
always corresponds to the flavor of the closest non-interacting energy. This matches the
expected behavior of a weakly interacting coupled channel, where each energy level can
be approximately identified to a specific channel. In this case we can identify seven finite
volume levels with dominant flavor contribution from the K'K channel. The determination
of the kaon timelike form factor in Chapter |8 will be largely constrained by these seven
finite volume form factors.

To close this section we emphasize that we will use Eq. to determine the infinite
volume amplitudes in Chapter , and that we only employed Eq. in this section
to illustrate the contribution from each infinite-volume timelike form factor to the finite

volume form factors.

7.4 Correlation among the LL factors

So far we have employed jackknife resampling to propagate statistical uncertainties. How-

ever, we find that some extra care is needed when applying this technique to calculate the
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Figure 7.3: Absolute value of the components of the finite-volume correction vector |(vo)al,
illustrated as percentages of |(Vo)rrx| + |(Vo) k|, for a = mm (blue section) and a = KK (red
section) computed using the reference coupled-channel scattering amplitude. The horizontal lines
identify the non-interacting energies of this volume, with the same color coding as before, dot-
dashed lines indicate non-interacting energies where the associated operator was not included in
the variational basis.
covariance of the LL factors. We will show why this is the case by describing the determi-
nation of the smooth function F(s) with Eq. (7.7) when applying the jackknife resampling
as described in Sec. 2.2.6.1

We calculate 7, (L) with Eqgs. (7.3]) and ((7.4) in the elastic approximation by employing
the parameterization of the reference elastic scattering amplitude of Eq. (5.6)). Jackknife
ensembles for each of the parameters of the scattering amplitude parameterization were
obtained when fitting the amplitude to the lattice spectra. To propagate the error further
to the LL factors we compute 7, (L) over jackknife.

Once we have calculated 7,(L), the F(s) data is obtained with Eq. (7.7)), combining
the LL factor and the finite volume form factor again with jackknife. We expect to be

able to describe this data with a smooth function of s over the elastic energy region, e.g.

a low-order polynomial in s, given that it does not have a right hand cut, as described in
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Sec. Furthermore, a parameterization of F(s) is necessary if we want to extrapolate
the function into the complex s-plane to determine properties of the p-meson resonance
defined at the pole.

F(s)/mz
0.6

0.4 1 5 }

0.2 1 g5 °

0.0 l l l l

Figure 7.4: Values of F(s) determined from the finite volume correction of }'r(lL) according to
Eq. .

We show the values of F(s) derived from Eq. in the elastic energy region in
Fig.[7.4 We observe that the data appears to increase smoothly with s, in contrast to the
finite volume form factor ]-"IEL), which showed an enhancement close to the resonance mass,
and a significant variation between the two data points close to a,£* = 0.16, see Fig.

However, when performing a correlated fit to the F(s) data in Fig. with a low-order
polynomial in s, we generically get as a result a function that systematically underestimates
most of the data points, and has values of x?/Ngor > 1. This type of behavior is typical
of data suffering the D’Agostini bias [95], which arises whenever there is a high degree of
correlation among different data points. Upon close inspection we find that the culprit
of this behavior are indeed the correlations among the different F(s) data, given by the

off-diagonal elements of the matrix C[F(s)], which has diagonal elements equal to 0neE|

2The matrix C[X] for the dataset { X, } has elements equal to the covariance among data points divided
by their standard deviation, i.e. C[X]um = cov(Xn, Xu)/(0X00xXm)-
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This matrix is inverted when we calculate the x? function of the correlated fit.

The eigenvalues of the matrix C[F(s)] have a different qualitative behavior than those
of the correlation matrix C[f,EL)], i.e. among the ]:,SL) data. In the latter case we find that
when we order them by magnitude, the eigenvalues slowly decrease, and the correlation
matrix has a condition numbelﬂ of order ~ 102 for the 17 elastic energy levels. In the former
case, the eigenvalues dramatically drop in value after the first two, and the condition
number of the matrix is of order ~ 10%. Finally, when we check the eigenvalues of the
correlation matrix C[r,(L)] among the LL factors, we find again that they dramatically
decrease after the first two, and the condition number of the matrix is of order ~ 10'2, with
at least half of the lowest eigenvalues being 10~!! times smaller than the largest eigenvalue.

That this is the case should not be a surprise, because jackknife ensembles of 7, (L), to
first order in the errors of the scattering parameters, can only fluctuate in the ensemble
subspace spanned by the ensembles of the small set of scattering parameters, which explains
that only a couple of eigenvalues of C[7,(L)] are non-negligible.

This effect is quite significant when we perform fits to the F(s) data because the frac-
tional uncertainty of the LL factors is greater than the fractional uncertainty of J-"]SL), see
Figs. and This ends up generating jackknife ensembles for F(s) with an artifi-
cially high correlation among each other that do not reflect the magnitude of correlations
among the original input data, i.e. the discrete finite-volume energy levels and the matrix
elements. We illustrate this by showing in Fig. the correlation matrix of the energy
levels C(EY), which has a condition number ~ 25.

In place of the data correlation for 7(L) computed using the amplitude parameteriza-
tion, we adopt one which inherits the energy-level correlation, with the following motiva-

tion. In a linearised approximation to error propagation, if the Jacobian were known, we

3The condition number of a symmetric matrix is given by ratio of its largest eigenvalue to the smallest
eigenvalue.
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Figure 7.5: Data correlation matrix for the energy-level values, C[E}], with rows and columns
ordered by increasing energy from left to right, and from top to bottom, respectively.

would calculate the covariance among 7, (L) values using

_ or or.
cov(y, Tm) = Zn/m, BEZ cov(Ey, EY) GTT (7.12)
w m’

However, to a good approximation, we expect the finite-volume correlation factor computed
with Egs. and to be influenced predominantly by the local behavior of M and F'
around E}. This would imply that the Jacobian between {7,(L)} and the energies, { £} },
is largely dominated by the diagonal elements, n = n’.

For instance, in an ideal scenario, where the lattice spectrum was determined for a
large number of closely spaced volumes, L, and multiple lattice irreps, A, we would have
access to a high density of states per energy unit. From this spectrum we could determine
the scattering amplitude M (E}?) algebraically at a similarly high density, and in that

case, the calculation of 7,(L) would not require an explicit parameterization of M, and
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the uncertainty of each finite-volume correction factor would only be correlated to the
uncertainty of the nearby energy levels.
Based on this observation, we approximate the Jacobian of Eq. (7.12) by a diagonal

matrix 8852, X Oy . In practice, we implement this procedure by shifting and reweighing

the jackknife ensemble of each energy level to match the mean and error of the respective
finite-volume correction factor according to the values computed using the parameteriza-
tion of M and Egs. , . With this prescription it is not necessary to compute
the magnitude of the Jacobian elements, however we still require knowledge of their sign.
These are extracted from the correlation between the ‘model” energy, i.e. the solution of
Eq. , and 7 (L), both extracted from a parameterization of /\/lEl these are shown on

the top row of Fig. [7.6]

—1

Figure 7.6: Data correlation between 7, and the respective Liischer energy solution E7}, as well
as the scattering parameters in the reference elastic parameterization. Here the ordering of states
around the p-resonance is slightly different than in Fig. because in that case the z-axis cor-
responds to the value of the Liischer energy solution from the elastic reference amplitude, and in
this case we employ the ordering of Fig. [7.5] which uses the spectra extracted from the lattice.

An exception to this behavior are those levels with energies very close to the resonance
mass, i.e. the four levels in the inset of Fig.|7.1l As mentioned before, the value of 7, (L) for

these levels is equal to the resonance coupling, modulo rather small finite-width corrections,

and we observe that for these levels 7, (L) is mostly uncorrelated with the respective energy

4Support for this prescription is found empirically in the fact that the absolute value of this correlation
value is consistent with 1 for most energy levels.
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value. This is illustrated in Fig.|7.6] where we see that their strongest correlation (for the
reference elastic parameterization) is with the g parameter. From the spectra of Fig. [5.3
we note that these levels are the farthest from any non-interacting energy level, and as
such they are the least sensitive to finite-volume effects.

To account for this observation, for these levels we adopt a modified procedure, where
instead of using only the energy level data, we add a linear combination of the fluctua-
tions on the scattering parameters, with the parameter g having the highest contribution.
For 74 (L) for ‘on-resonance’ levels, we form a linear combination of the ensembles of the

scattering parameters and the corresponding energy level,
(L) :xEE:+xg§+meﬁ+x7§:Zixi@. (7.13)

where we use the vector notation p; to emphasize that we are manipulating the quantity
p; in the jackknife ensemble space. The quantities p; have been previously shifted and
reweighted, so that they have zero mean and unit covariance, i.e. (p;) = 0 and <]5;2> =1
To obtain the coefficients x; we demand that the covariance between the generated 7?,1
ensemble and each of the 7 quantities reproduces the covariance cov(p;, (L)) shown in
Fig. Mathematically, this translates into the system of equations
>, (i) @y = corx(py. (L) (7.14)
where the matrix (p; pj) is calculated using the corresponding lattice energy level and the
scattering parameters. Equation ([7.14) represents a linear system of equations from which
the coefficients x; can be easily obtained. We find that the value of <an(L)2> extracted in

this way is equal to unity, providing a self-consistency check of this procedure. Finally, we

reweight and shift 7 (L) to obtain a jackknife ensemble with the mean and error of 7y(L).

It is not immediately obvious how to extend the procedure we just described from the

143



elastic analysis to the coupled channel case, given that multiple components 7, (L) are
associated with each level. Furthermore, we need the correlation between the components
of 7, to reproduce the correlation between different elements of the scattering amplitude,
see Eq. .

We instead choose to estimate the impact of the uncertainty of the finite-volume cor-
rection by means of a “systematic” covariance, C*¥5% | applied to the finite-volume matrix
elements .FlsL). We add this systematic covariance matrix to the statistical covariance ma-
trix of f,EL) to obtain a total covariance, which in turn is used in the y? function minimized
for the determination of the smooth functions F,(s).

To calculate the magnitude of the diagonal elements of this covariance we first note that
for levels below the KK threshold the component Ty kT Cannot be precisely determined (by
the nature of the finite-volume formalism). Therefore, we assign the relative uncertainty
of the “relevant” 7, rr as the systematic relative uncertainty of the corresponding .F‘SL).
We note that following this procedure for the elastic analysis we obtain results consistent
with the alternative procedure of replacing the correlation of the finite-volume correction
factors by that of the energies and propagating the error over jackknife.

Above the KK threshold we have a weakly interacting system, where each state in
the spectrum is close to a non-interacting energy. This allows us to unambiguously assign
a dominant component 7y ,(L) to each level. Furthermore, following the expectations
outlined about the correlation between the finite-volume correction factor and the energy
value, we find that out of the two, this component is always the most correlated with the
energy solution of the quantization condition. Once we picked the dominant component
a, we again assign the relative uncertainty of 7, , as the “systematic” relative uncertainty
of the corresponding f,gL).

Finally, to obtain off-diagonal elements of C*" showing the correlation of the finite-
volume correction across the spectrum, we mimic the prescription used in the elastic anal-
ysis. This means that we will once again use the correlation matrix of the energy levels,

or the appropriately constructed linear combinations for the levels close to the resonance.
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This correlation matrix is multiplied by the magnitude of the diagonal elements determined

above to obtain C%st:,

We also explored an alternative procedure to determine the diagonal elements of CSYSt-
to corroborate the consistency of our prescription. This second option was inspired by the
iterative fit method described in Ref. [126]. In this case we use the value of the “model”,
3 Fan(LD)Fa(EX?), to multiply the relative uncertainty of the finite-volume correction
factor and obtain an absolute systematic error for each diagonal element of C®¥s%. In the
first iteration we pick the solution from our previous prescription to determine C*** and
minimize the x? with this systematic covariance. This yields new values for F,(s), which
are then used to recompute C*"" and repeat the minimization. We find that this process

converges after a few iterations.

This concludes the description of the calculation of the LL factors. In the next chapter

we will present the determination of the infinite volume form factors.
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Chapter 8

Infinite volume amplitudes: the «

and K vector-isovector form factors

In this chapter we will combine together the results of the previous three chapters to
calculate the isovector-vector form factors of the pion and the kaon. In the case of the pion
we can directly obtain the form factor in the spacelike region and the elastic timelike energy
region, from the the individual finite volume matrix elements (once the appropriate finite
volume correction has been performed). In the case of the analysis of the 77/KK as a
coupled-channel system, we can only obtain a parameterization of their energy dependence
by fitting the finite volume matrix elements with Eq. . Finally, we will utilize these

form factors to determine electromagnetic properties of the p and the m mesons.

8.1 Pion form factor

We begin by presenting the data for the spacelike and timelike form factor over the elastic
energy region. The spacelike data was obtained in Sec. from the R3¢ ratio of correlation
functions and shown in Fig.[8.1a] The timelike data F(s), after the finite-volume correction
was performed, was presented in Fig. We employ Eq. , and the error propagation

for the finite volume correction described in Sec. to obtain the timelike form factor
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data shown in Fig. [8.1b

Alongside the data we show the Omnés factor, €(s), introduced in Sec. The
calculation of Q(s) will be presented in Sec. where we also analytically continue €2(s)
for s < 0. We clearly see that the bulk of the energy dependence is captured, both for the

spacelike and the timelike data, with only a mild energy dependence needed in Fq(s), to

form f according to Eq. (1.45)).

|f= ()] | f=(5)]
1.0 () 2 €(s)
GS 2 15 2] GS
3
0.8 - g §
52 10 - EE
1]
¥z i .
0.6- < 51 7 L
3T z i@
- 0
-10.0 =75 -5.0 —2.5 0.0 4 6 8 10 12
s/m? s/m3
(a) Spacelike region. (b) Timelike region.

Figure 8.1: Pion form factor in the (a) spacelike and (b) timelike elastic regions. Superimposed
are the Omneés function calculated from the reference elastic amplitude, and the Gounaris-Sakurai
(GS) form determined by describing the finite-volume spectra.

Also shown in these figures is a commonly-used parameterization known as the Gounaris-
Sakurai (GS) form [122], which corresponds to a parameterization of the form of Eq. ,
where F is a constant determined by demanding f(0) = 1. The scattering amplitude M
of the GS parameterization, given in Tab. is an elastic K-matrix with a pole describing
the p resonance, along with a pole-subtracted Chew-Mandelstam phase-space. The use of
a dispersively improved phase-space removes the spurious singularity otherwise present at

s = 0 and thus makes an extrapolation into the space-like region somewhat plausible.
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8.1.1 Timelike elastic pion form factor

Over the energy region of elastic scattering between the 77 threshold and the KK thresh-

old, F(s) can be parameterized using a low-order polynomial in s,

S0

F(S)/miznz_:ocn- <8_80>n, (8.1)

where we choose /sgp = 0.135a, 1= 2.85m,, centering on the resonance peak, for conve-
nience.
As seen in Fig. [8.2] fits linear or quadratic in s can capture the observed energy de-

pendence, with the quadratic fit having parameters,

o= 02359(28) |1 —0.3 —0.6

e = 0.265(26) 107
= 0.20(7) 1
XQ/Ndof = 1275;43 = 1827 (82)

where parameter correlations are seen to not be excessive. The fit form does not impose any
constraints regarding the value of f; over the spacelike region, neither does it impose charge
conservation fr(0) = 1. This is because we do not expect the form factor parameterization
of Eq. to be reliable far below 77 threshold. We can improve on this fitting the data

instead with a dispersive representation of f;, to which we turn in the next Section.

8.1.2 Pion form factor across the spacelike and timelike regions

To describe simultaneously the timelike and spacelike pion form factor data related by
crossing symmetry, see Figs. we need to employ a functional form which is consistent
with the analytic properties that f, should satisfy on the complex s-plane over a wide s
range. The Omnés function, introduced in Sec. satisfies the properties of analyt-
icity, crossing symmetry, and unitarity over over all the complex s-plane that f; should

satisfy if we assume that only elastic scattering is allowed.

148



0‘0 T T T T

Figure 8.2: Polynomial descriptions of F(s) — linear in s (el. I) and quadratic in s (el. II).

To calculate Eq. , our reference elastic scattering amplitude provides an elastic
phase-shift from 77 threshold up to KK threshold, and comparison with the reference
coupled-channel amplitude shows that the w7 phase-shift continues as given by the param-
eterization to somewhat higher energies. In practice we will use this form in the integral
defining Q(s) in Eq. up to /s, = 1.2 (2mg), and at energies higher than this a

simple parameterization,

2

(s> 8q) =1 — (7T - 5ref(8))W’

similar to the one proposed in Ref. [29]E| In practice the Omnés factor at low energies,
where we require it, is not particularly sensitive to the details of this continuation, owing
to the subtraction suppressing the contribution of high energies in the integral.

The function Fq(s) obtained by dividing the Omneés factor out from the timelike and
spacelike form factor data can be parameterized and a description of the lattice data

obtained. Describing all data simultaneously requires spanning a large energy region, and

!This form enforces an asymptotic return of the phase-shift to m, correcting for the threshold behavior
built into the parameterization which ceases to be appropriate at high energies. In fact Ref. [29] used
dref(Sa) in place of drer(s) in this expression but since the phase-shift of the elastic reference parameteriza-
tion has almost reached its asymptotic value at /s, = 2.2 (2my), there is no practical difference between
the two choices, and any small difference generated in €(s) can be absorbed into the smooth function
Fa(s).
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it proves helpful to make use of a conformal mapping of s into a variable z(s), defined as,

_ V/Sc—80—/Sc— s

Z(S)i\/sc_SO‘F\/SC_S,

(8.3)

where this variable maps the entire complex plane of s, excluding the real s axis above s,
into a unit disk in z centered so that z(sp) = 0. Suitable choice of s. can reflect the fact
that we expect there to be cuts due to inelastic channels at higher energies, and sg can be
selected to conveniently distribute the data to be fitted around z = 0. A polynomial in
z(s) will not have singularities, as desired, in the timelike elastic scattering region, or the
spacelike region.

Writing a parameterization of Fq(s) as a low-order polynomial in z(s),
Fals) =Q+ > dn- (2(s)" = 2(0)"), (8.4)
n=1

where the constraint from the fixed electric charge of the pion, fr(s=0) = Fo(s=0) =Q =
1, is simply imposed, we can describe the lattice data across both spacelike and timelike
regions, as shown in Fig. With /50 = 0.135a; ' and /5, = 0.22a; 1 = 1.27 - (2my),

the parameter values for a quadratic description are,

di= 185(12) |1 0.8

dy = 7.0(5) 1

X%/ Naof = 2245 =2.44. (8.5)

The corresponding pion form factor for this description of Fq(s) in presented in Fig. |8.4
The somewhat large x?/Ngof is dominated by points in the spacelike region which have
high statistical precision. Discretization effects which are small in absolute terms, but of
comparable size to the small statistical errors could explain this observation.

Finally, note that for all the results found for the timelike form factor, the phase of

fr(s > (2m;)?) is always equal to the phase-shift 67" by construction, as demanded by
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Watson’s theorem. This is the case because all our parameterizations satisfy the unitarity
constraint over the timelike elastic region, as they inherit the branch cut structure from

the scattering amplitude M or directly from the dispersive integral of the phase-shift.

8 -4 0 8 12 s/m2
FQ(S) T T

4
1.6 i

1.4 1

1.2 1

1.0

2(s)

Figure 8.3: Ratio of the form factor data, |fr(s)| (as presented in Fig. , to the Omnés
function, Q(s), as a function of the conformal map variable of Eq. (8.3). The curve shows the

polynomial fit of Eq. (8.5]).

8.2 Coupled-channel timelike form factors

The finite volume formalism presented in Sec. dictates that the matrix elements of
the discrete finite-volume states are given by a linear combination of all the production
amplitudes with a consistent set of quantum numbers and whose final states can go on
shell. In a sense, the determination of the pion form factor above the KK threshold from
a finite-volume calculation provides as well the kaon timelike form factor. However, the
amplitudes cannot be extracted following the procedure used in the elastic regime because
there is no longer a one-to-one mapping between finite volume matrix elements, and infinite
volume form factors. Instead, we have to employ Eq. , to be able to constrain the
infinite volume form factors, via a x? minimization against the values of {J—“,S”}.

We implement the effect of the correlated uncertainty on the finite volume correction

151



| f=(s)] ! ! [ f=(s)]
15 _ i 1.0 1
10 - 0.8 1
5 0.6 1
o Lz s — e . | | |
4 8 12 —-10.0 =75 -5.0 —2.5 0.0
s/m3
(a) Energy dependence across spacelike and timelike (b) Zoom over the spacelike region.
regions.

Figure 8.4: Pion form factor across spacelike and timelike regions, and energy-dependent descrip-
tion by Omnés modulated by the quadratic F(s) of Eq. (8.5).

factors, 7, 4, in terms of a “systematic” contribution to the data covariance in the fit X2,

=3 [ = (e Fan(s) + o ki Face(9)) |

n,m

—1
n,m

. (Cstat. + Csyst.)

[ FiE — (Fopen Fun(s) + fmﬁf@(s))} ,

which augments the “statistical” covariance of the ]-',EL). The total error is shown in Fig.
which shows the the finite volume correction dominates the uncertainty when compared
with Fig.[6.6] where the error bars are also plotted for each data point, but are too small to
be visible behind the circles, and in that case we opted to show them as well in the bottom
panel. This “systematic” covariance is computed using the resampled 7, introduced in
Section [7.4) whose data covariance inherits that of the energy levels. For each energy level,

only the dominant component, a = 77 or KK is used to compute the covariance.

To describe the infinite volume form factors we use the parameterization of Eq. ((1.40)),
with the reference coupled-channel scattering amplitude determined in Sec. [I.5.1.2] The

smooth functions F, are parameterized with low order polynomials in s, analogous to
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Eq. (22, N
Fals)/m2 =3 han- (52)" (8.6)
n=0

We emphasize here that the function Fr,(s) obtained in the coupled-channel case does not
have to resemble the similarly named function in the elastic case, presented in Sec. [8.1.1]
This can be seen by considering fr(s), which should be similar between the two cases, and
which has a representation,

= —1 M Fo + ki 7M“”’KK
T, T T
kx2 k*—~ M
L KK T,

f7T ]:Kf ) (87)

in the coupled-channel case, where we have factored out the elastic 77 scattering in analogy
to Eq. (1.41)). Below the KK threshold, the expression within square brackets is real and
smooth (because the ratio of scattering amplitude components does not posses the 7w

branch cut), and serves as the effective F in the prior elastic case.

X?/Ndof
Model " Nar Ny Naot reference f/y(l) ref. iter.
a 1 0 32—-3 5.51 2.62 5.26
b 0 1 32 -3 4.39 241 4.90
C 1 1 32—-4 4.53 2.48 4.92
d 2 0 32 -4 4.87 2.55 5.28

Table 8.1: Global description of full set of timelike finite-volume matrix elements. Variations in
polynomial order in Eq. used with reference coupled-channel scattering amplitude (fifth col-
umn), an alternative coupled channel amplitude with more parameter freedom, Eq. (5.15)) (sixth
column), and reference coupled-channel amplitude with a modified iterative fitting strategy de-
scribed at the end of Sec (seventh column).

We describe all the ]—",SL) data shown in Fig. using the finite volume correction fac-
tors 7,4 (L) computed from the reference coupled-channel amplitude and smooth functions
Frm, Fr7e €ach described by polynomials of order 1, leading to the result summarized
in Fig. 5] The description given by the green points is observed to be in good quali-
tative agreement with the constraining lattice data, with a few points having significant
deviations which produce a somewhat large x?/Ngof.

Examining Figs. [8.2] and we see that the points which are most discrepant in the
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Figure 8.5: Finite volume form factor (open black circles) with errorbars modified to account
for the fractional uncertainty on the finite-volume correction factors, coming from the diagonal
elements of the “systematic” covariance, as described in the text. Global description using the
reference coupled-channel scattering amplitude, and order-1 polynomial forms for Fr~(s), F x5 (s)
(green squares).

coupled-channel description were also somewhat discrepant in the elastic description, and
that the larger effect in the current case may largely reflect the different approach for
propagating the finite-volume factor uncertainty.

Tab.|8.1| presents variations of both the polynomial orders used in Frr(s), Fr7(s), and
the form used for the coupled-channel scattering amplitude, where we consider a second
functional form of the K-matrix, given in Eq. , which includes an additional linear
term in s with a set of ¥(!) coefficients. The reduction in the x? values for the varied
scattering amplitude can be entirely associated with the decreased precision of the finite-
volume correction factors, which is implemented as a larger systematic error on the data.

The final column of Tab. shows an alternative choice for the determination of the
“systematic” covariance, where the magnitude of the diagonal elements are determined
iteratively from the mean value of the model ) 7, oF,. This prescription was inspired by
the fitting procedure described in Ref. [I126], more details can be found in that reference
and at the end of Sec[T.4l We found consistent results from both methods to determine the

“systematic” covariance, including the determination of the decay constant of the p-meson

described in the following section, and shown in Fig. 8.8
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Figure 8.6: Timelike pion form factor using coupled-channel amplitude parameterizations showing
variations detailed in Table [8.I](blue curves). Also shown the discrete elastic determinations of
Section and the corresponding elastic Omnés description. The bottom panel shows the form
factor phase difference with respect to the 7w phase-shift. The points in between panels show the
energy of the levels used to constrain the form factor energy dependence. The red dotted vertical
line indicates the K K threshold.

The timelike pion form factor for these descriptions is shown in Fig. where we see
only modest spread over the different parameterizations, and rather close agreement with
the result of Sec. described in terms of the Omneés function over the elastic region. The
bottom panel of Fig. shows the difference between the form factor phase and the w7 P-
wave phase-shift, which above the KK threshold need not coincide However, due to the
inelasticity in the scattering amplitude being close to 1, indicating little 77, KK channel
coupling we expect a small phase difference, and indeed we observe that the differences

agree with zero.

2Watson’s theorem equating the production phase to the scattering phase-shift applies rigorously only
in the elastic region.
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(a) Pion timelike form factor. (b) Kaon isovector timelike form factor.
Figure 8.7: Coupled-channel parameterization variations of Table plotted over the inelastic
energy region. The red dotted vertical line indicates the K K threshold.

In Fig. we show the timelike pion and kaon (isovector) form factors for energies
above the KK threshold, where we observe a much greater sensitivity to the choice of
scattering amplitude parameterization in the kaon case. In particular the kaon form factor
using the “y(1)” parameterization inherits a larger coupling to the p from the scattering
amplitude, and more of a resemblance to the tail of the resonance. Nevertheless, the kaon
amplitudes broadly agree within the fairly large uncertainties. They differ most at and
below K K threshold, but this is precisely where the finite-volume approach becomes weak,
as the contribution of the production amplitude to the finite volume matrix elements is
exponentially suppressed below its threshold (see Appendix A of Ref. [79]). In the current
case, this can be understood in terms of the poorly constrained value of the coupling of the
KK channel with the p-resonance. For a narrow resonance the value of f, at the resonance

mass mpg is approximated by,

o= _¢\/16w7m;“er,$L) +0(5=), (8.8)

and the value of ¢,z varies significantly between the reference coupled-channel and the

156



“~(1)” gcattering parameterizations, with a greater value in the latter case.
To conclude this chapter we can employ the computed form factors to extract electro-

magnetic properties of the m and p hadrons.

8.3 m and p parameters from form factors

The spacelike form factor is typically characterized by its slope at zero momentum transfer,

what is commonly referred to as the ‘charge radius’ <r72r>1/ 2, Wher

(2) =6 % £2(5) (8.9)

s=0

We determine this quantity from the parameterization in Eq. (8.5, obtaining <7‘72r>1/ S
2>1/2 _

0.614(7) fm. This value sits in between the experimental pion charge radius, <'r7r

0.659(4) fm, and kaon charge radius, <r%(>1/2 = 0.560(31) fm, reported by the PDG [10].
From the effective field theory result of Ref. [127], this is the radius that we would expect,
given our lattice pion mass lies between the physical pion and kaon masses. In particular
Ref. [127] shows that the radius of the pseudoscalar meson, using the effective field theory
defined by the chiral symmetry breaking pattern of QCD, is an analytic function of its
mass except for a logarithmic singularity at m, = 0. This result is also consistent with
previous analyses of timelike form factors determined at similar pion masses in the lattice
[38, 39].

The timelike pion form factor is dominated by the contribution of the p resonance,
and at the resonance pole, the w7 production amplitude factorizes into the coupling of the

p-meson to the wr system and to the electromagnetic current,

HE o = V10T Crr (p(P,m)|T"|0).

SR — S

3See Ref. [45], and references therein, for a discussion about the proper interpretation of this quantity
when it is comparable to the Compton wavelength of the system.
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The current-vector matrix element can be expressed in terms of a Lorentz-invariant p-

photon coupling, which we choose to parameterize in a dimensionless form,
(p(P,m)|T"|0) = e"*(P,m) fy mb. (8.10)

where m% = Re(sp).

One definition of the p meson decay partial width into an electron-positron pair,

4o’ 9
F,D—>e+e* = 3 mR’fV| )

uses this coupling, and use of the PDG average of I',_,.+.- can thus provide an estimate
for | fi/|. A more consistent approach, which was taken in Ref. [128], would be to describe
the ete™ — 7 cross-section energy dependence using the infinite-volume amplitude pa-
rameterizations presented earlier, and analytically continue them to the pole, yielding a
complex valued fy .

Practical extraction of fy coupling from our lattice-constrained amplitudes varies
slightly depending upon the form of the amplitude construction. In the elastic case us-
ing K-matrix parameterizations, we may simply use the 77 coupling from the scattering
amplitude and the singularity-free function, F(s), evaluated at the pole location [12§],

)4

fv = 3

1
—5 V167 Crr F(SR) -
Mg

In the case of the Omnés parameterization of Eq. one needs to analytically continue
the Omnés function 2 into the unphysical Riemann sheet. This can be achieved by multi-
plying € by the S-matrix evaluated in the unphysical Riemann sheet where the scattering
amplitude houses the resonance pole.

In the coupled-channel case, the extracted coupling value is independent of whether it
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is pulled from the pion or kaon form factor, in both cases being,

4 1 — A
R

In Fig. [8:§ we summarize our determinations of fy using extractions from elastic and
coupled-channel parameterizations of various forms. The values are seen to be in good
agreement, and as expected for a calculation at an unphysical quark mass, they differ
somewhat from the experimental value following from the PDG’s p — eTe™ partial width.
The errorbars include the uncertainties on the resonance parameters, ¢, and sg, extracted
from the scattering amplitude, as well as those of the smooth functions F,, which are
estimated from the variance of the .F,SL) data and the finite-volume correction factors. The
orange and purple points show two different strategies for handling the error propagation
from the finite-volume correction factors, as discussed in Sec.[7.4] Green points differ from
the orange ones by the functional form of the scattering amplitude used to describe the
spectra and to calculate the finite-volume factors, see Eq. in Sec.

The value coming from the Omnés parameterization serves as a conservative estimate

at m, = 284 MeV,

fv = 0.224(6) e~ O0UET [_0,09],

Fp—)e“'e‘ = 8.9(5) ke\/,

where the coupling is observed to be close to being real valued, with small correlation
between magnitude and phase (the number in square brackets).

A mild pion mass dependence was observed in Ref. [129] where the p was studied using
only two light quark flavors and without explicit finite-volume correction (as it was either
stable or very narrow at the pion masses considered), and in Refs. [35, B36] similarly for

three flavors.
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Figure 8.8: Vector decay constant, fy, for the p meson. The first two values correspond to the
experimental extraction reported by the PDG[I0] and the dispersive description of experimental
data by Hoferichter et. al. [HKZ] [128]. Subsequent values are the result of this analysis, for only
the elastic region (circles) and also including the coupled channel region (squares).

This concludes our presentation of the results from this lattice calculation. We found
that the pion form factor, determined using the coupled-channel formalism, aligns with the
elastic result, serving as a consistency check. Moreover, we determine the kaon isovector
timelike form factor for the first time from QCD, albeit with considerable uncertainty.
We anticipate that applying this technology to a system with a more evenly distributed
flavor split associated with the finite volume states, as described in Fig. with 25 77
dominated levels versus 7 KK dominated levels, will yield comparable errors for the form
factors in each of the considered channels.

Additionally, we successfully described the finite volume matrix elements over two dis-
joint kinematic regions, allowing us to interpolate the unphysical region depicted between
the vertical lines in Fig. While the unphysical kinematic region cannot be experimen-
tally realized for a current interacting with an isolated pion, the value of f; in this region
can be probed with physical kinematics when employing the on-shell decomposition of Wys
given in Chapter [3| This involves processes with two hadrons, one of them would need to

be a charged pion, interacting together with the electromagnetic current. In that case the
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initial and final states can have different invariant masses, allowing for small and positive
values of current virtualities, with the formalism of Chapter [3| restricted to virtualities less
than 4m2. The dispersive determination using the Omnés function, which is an analytic
improvement over the GS parameterization, might in general be helpful to fully describe
the on-shell decomposition of amplitudes that feature the pion form factor as a subprocess.

For example, future calculations of amplitudes of the form 2 ~75 2 from lattice QCD,
e.g. to extract the p-meson resonance charge radius by employing external two-pion states,
will likely benefit from an analytically improved function describing the single pion form
factor, f, that was constrained with both timelike and spacelike data. This is because the
two-hadron matrix elements that can be extracted from the lattice are allowed to access

kinematics with spacelike virtuality Q% < 0, as well as timelike virtuality 0 > Q% > —4m2.
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Chapter 9

Summary and Outlook

Examination of poles and their residues in scattering and transition amplitudes computed
using Lattice QCD provides a promising avenue for understanding the spectrum and ex-
ploring the internal arrangement of quarks and gluons within hadrons. The field’s achieve-
ments have been driven by various efforts, including the deployment of high-performance
computing hardware and the development of algorithmic techniques. Notably, one key ad-
vancement has been the derivation and implementation of the appropriate “finite-volume”
formalism for extracting amplitudes from LQCD spectra and matrix elements.

These techniques have proven effective for studying interactions between pairs of hadrons,
and more recently, three-hadron systems have also begun to be explored [117, 130, 131, 132].
Similarly, the feasibility of extracting transitions to two hadrons in the elastic energy region
has been established, even in cases where partial-wave mixing is induced by finite volume
effects [85].

For the first time, we successfully implemented the extraction of a coupled-channel
transition amplitude from a Lattice QCD dataset. Specifically, we calculated the elec-
tromagnetic timelike form factor of the pion within the elastic region and also above the
kaon-antikaon threshold, where we extracted the timelike kaon isovector form factor. By
comparing our results to an analysis restricted to the elastic energy region, we demonstrated

the consistency of the coupled-channel formalism with the established elastic formalism.
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Notably, in our specific case where a vector meson resonance appears within the elastic
energy region, we found that the extraction of resonance parameters is consistent between
the elastic and coupled-channel analyses, with the latter providing a more precise result
due to increased data constraining the amplitudes.

In this calculation we also described the analytic behavior of the pion form factor in
a wide energy region that included spacelike virtualities and the elastic timelike energy
region. The procedures for extracting the spacelike and timelike form factors from LQCD
differ significantly. In the spacelike region, LQCD matrix elements directly correspond to
their infinite volume counterparts, up to exponentially suppressed corrections. However,
in the timelike region, we applied a non-trivial finite volume correction to each matrix ele-
ment. Subsequently, we demonstrated that the data in these two regions can be described
simultaneously by a single parameterization that incorporates the analytical properties of
the form factor related to causality, conservation of probability, and crossing symmetry.
This is in part possible thanks to the absence of a left hand cut on the timelike form factor.
Specifically, we used a dispersive integral featuring only a right-hand cut. This consistency
check validates the finite volume formalism implemented for the timelike region.

An important requirement for the calculation in the timelike region was the extraction
of energies and matrix elements beyond the ground state of the lattice for several momenta
and irreps. In total we determined 32 energy levels across ten different irreps, resolving
reliably up to five different energy levels in one irrep. This was achieved thanks to the
possibility of generating a large and diverse variational basis to overlap with the states.
This basis included operators that mimic the wave functions of single-meson and non-
interacting meson-meson states. For the two-meson operators in our basis, we employed
all combinations for which their non-interacting energy fell within the kinematic region
where we wanted to obtain the infinite volume amplitudes.

The solution of the GEVP of a correlation matrix made with the operator basis we
just described gave us access to the energies of these states and the linear combinations of

operators with optimal overlap for each level. The correlation functions constructed with
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these optimized operators latch primarily to a single state, and have minimal contamina-
tion from other states. In particular, minimizing the contribution from lower energy states
is essential to extract matrix elements that are dynamically suppressed with respect to
those of the lower energy states. In practice, we found that ratios of correlation functions
constructed with optimized operators, along with an operator corresponding to the inser-
tion of the isovector component of the electromagnetic current, were most convenient for
extracting the matrix elements.

The finite volume correction, the LL factor, for a coupled-channel transition is math-
ematically formed by a vector in channel space. Each component of this vector indicates
the dynamic mixing of the asymptotic two-hadron states into each of the stationary states
of the finite volume. In the elastic case, where the LL factor is a single number, there
exists a one-to-one correspondence between finite volume matrix elements and the infinite
volume pion form factor. This correspondence allows for a direct determination at each
of the energies within the elastic spectra. However, this is not the case for a coupled-
channel analysis. In this scenario, each matrix element provides a constraint for a linear
combination of the form factors, weighted by the components of the LL factor.

A similar obstacle arises in the determination of scattering amplitudes in coupled-
channel systems, and we employ a similar technique to circumvent it: proposing a func-
tional form for the energy dependence of the form factors with variable parameters. By
varying these parameters, we minimize the difference between the calculated finite volume
matrix element and that obtained from the parameterization. It has proven useful to split
the energy dependence of the form factors into two components: one describing the strong
scattering behavior, which varies significantly with energy due to the nearby p resonance,
and another representing a slowly varying function of energy that describes the production
of the system. This splitting results from finding a parameterization that satisfies unitarity
in the coupled-channel region.

This result improves on the technique to extract only the elastic timelike form factor

[37, 38, 39]. It also moves a step forward with respect to previous extractions of the decay
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constant of the p, which neglected the finite volume corrections associated with the LL
factor and the analytic continuation to the resonance pole [35] 36].

Continuum methods, employing the Schwinger-Dyson equation, can also be used to
calculate the timelike form factor of pseudoscalars [133, 48]. These methods could, in
principle, be compared to the results of this work by tuning the input parameters to
reproduce the masses of the pseudoscalars on this lattice. Decay constants extracted
from the lattice can also be compared with these continuum methods, for example the
calculations of Refs. [48, [134].

The continuum methods can provide a complimentary picture to LQCD of the non-
perturbative dynamics of QCD at the hadronic scales. In general, the accuracy of the
truncation necessary in these methods, e.g. the “rainbow-ladder” description of the quark-
gluon vertex and the gluon propagator [135], cannot be known a priori, and predictions can
have uncontrolled systematic errors. However, continuum methods do not suffer from the
finite-volume effects present in the multi-hadron sector of LQCD, which requires a different
formalism for each type of process. Nonetheless, within the two- and three-hadron sectors,
including amplitudes with one or two external currents, the LQCD community has been
quite successful in formulating corrections that remove all power-like finite-volume effects,
with the remaining exponentially suppressed being negligible for modern computations.
Going beyond the three-hadron sector from the lattice, a promising avenue is to consider

spectral functions to calculate inclusive rates [136].

The second main result presented in this thesis is the formulation of a prescription to
extract elastic form factors of resonances from finite volume matrix elements and energies.
This result builds on the formulations used in modern LQCD calculations to extract res-
onance parameters: the mass, the width, the couplings, and transition form factors. This
extraction would consist of a two-step process.

The first step involves calculating W amplitudes (2 AN 2), where initial and final
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two-hadron states couple to a resonance. This calculation is performed by applying the
appropriate finite volume correction to the corresponding finite volume matrix elements
obtained via LQCD. In the second step, we describe the energy and virtuality dependence
of W using a parameterization consistent with unitarity and analyticity. This allows for a
controlled analytic continuation to the resonance pole. Finally, the form factor is propor-
tional to the residue of W at this pole. It is important to note that this structure involves
a double pole: one in the initial state energy and another in the final state energy.

For the second step of calculating resonance form factors, we obtained a decomposition
of W in terms of amplitudes of sub-processes, known kinematic functions, and unknown
dynamic functions that are constrained to be real within the physical region. This de-
composition of W is conceptually similar to the description of the two-body scattering
amplitude M in terms of a real valued K-matrix. To derive the decomposition, we solve
for W in the integral equation describing the amplitude to all-orders in the strong interac-
tion, this ensures that the result is consistent with unitarity and analyticity. The integrals
describing rescattering can be separated into two contributions: unknown dynamic func-
tions, like the K-matrix, and known kinematic functions, like the phase space. Thanks to
this splitting, the integral equations can be reformulated in terms of algebraic relations in
the partial-wave and channel space, which can be solved to obtain the decomposition of
W.

The analytic representation of W, in particular its unknown dynamical functions, can
be constrained from computed finite-volume spectra and the corresponding finite-volume
matrix elements. The representation of VW contains a term involving the scattering am-
plitude, M, of the initial state and the final state. The presence of the factors of M,
leads to poles in the initial and final energies, with a residue that is proportional to the
resonance form factor. An appropriate analytic representation of WV is essential to perform

this analytic continuation.
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9.1 Future work

The results presented here are only applicable within energy regions where at most two
hadrons can go on shell, although they can be applied above the threshold of multiple
two-hadron channels. Progress towards studying transitions involving three hadrons is
underway, see for example Ref. [I16]. Another avenue of research is to consider spectral
functions to calculate inclusive rates [I36]. Transitions with two current insertions have
also been considered, and future calculations of processes like vy — 7 from LQCD are
possible, the finite volume corrections are known [137], as well as the analytic representation
of the infinite volume amplitude [110]. The formalism presented for the W amplitude is
also restricted to spinless hadrons, and a generalization for particles with spin will be
necessary if we foresee to implement this technique to systems with nucleons. Finally,
these techniques only take into account the leading order electroweak contribution, which
is sufficient for the study of resonance properties, but higher order contributions could be
needed if applied to a precision calculation that needs to be compared to an experimental
result, e.g. calculations of CP-violating decays.

The technology implemented for the calculation of a coupled-channel transition from
LQCD can be employed to study other hadronic systems when coupled to an external
currents. Let us first illustrate this with an example, and later we will list various systems
where these results serve as a proof-of-principle of the finite-volume technology.

On the light-flavor sector, there is evidence for hybrid states with exotic quantum

JPC =17%. There is consensus on an isovector 7y state [I38, 139], as well as an

numbers
indication of an isoscalar 7y partner [140), 141]. The partial width of the 7; to different
two-hadron channels has been calculated in a lattice where the quark mass is such that
only two-hadron channels are open [70]. Another LQCD study calculated the radiative
width I'(J/¢¥ — ~m), the only channel where the 7; has been observed experimentally,
but neglected the finite-volume effects associated with the unstable nature of the n; [142].

Closer comparison to experimental results could be achieved by calculating simultane-
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ously the radiative production as well as the hadron decay. This type of calculations has
been carried out for the p [143, [144] and the K* [85], which decay into the elastic 77 and
K channels, respectively. When calculating a similar amplitude for the J©¢ = 1% octet
in LQCD, multiple decaying channels would have to be taken into account, even at higher
than physical pion masses, due to the small mass splitting between the vector mesons and
the pseudoscalar singlet.

This work provides a demonstration on how to perform this type of coupled-channel
radiative transition analysis, which in this case involved v — 77/KK in the context of
the p channel. This results in the simultaneous extraction of the radiative coupling of the
resonance (in this case v — p), as well as the strong decay width of the p. Other systems
of interest that require the implementation of the coupled-channel technology presented
here are the C'P-violation observed in the D° — 7n/KK decays [I45], and the isospin
breaking corrections of kaon decays, i.e. K — 7070 /7 t7~.

The completion of a prescription to map LQCD matrix elements to 2 ~Z5 2 transitions,
opens the door to study a new type of amplitudes that had not been previously accessible
by first-principles QCD. This allows the calculation of properties of resonances, such as
their electromagnetic form factors or gravitational form factors. For example, in the case
of the p meson, the extraction of its elastic form factors from W could be compared with
results whenever it is stable under the strong interaction [94), [146], allowing us to study
the effect of quark mass variation on the form factors.

The extension of the 2 L+ 2 technology to take into account hadrons with spin could
also have a significant impact on the SM and Beyond the Standard Model phenomenology.
For instance it would allow us to constrain low energy constants of nuclear models, which
in turn could be used to predict neutrinoless double beta decay rates, and interaction
cross-sections between a neutrino and a nucleus. The former is sensitive to the nature
of the neutrino, which is possibly the only Majorana fermion in the SM, while the latter
is relevant for neutrino oscillation experiments, see Ref. [I47] for a discussion about the

potential applications of LQCD for nuclear physics.
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The results presented in this work bring us a step closer to the direct calculation of
structural properties of resonant states from first-principles. Furthermore, the determina-
tion of coupled-channel transition amplitudes from QCD can be employed as a resource
complementary to experimental efforts studying the hadron spectrum as well as SM phe-

nomenology.
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Appendix A

Infinite series identities

We will use the following shorthand notation for infinite geometric series
A =>"A" =14+ A+ A- A+ A A-At.... (A1)
n=0

With this notation, some useful identities are

[A-BJY-A=A-[B- A, (A.2)

[AJ9 =1+ A-[Aff =1+ [Af - A=(1-A)", (A.3)

where the last equality might imply an analytic continuation to define the inverse over all
possible values of A other than A = 1. This means that if |A| > 1, the series should not
discarded as divergent, but as placeholder for the function (1 — A)~!, which is finite for

A # 1. We also employ the identity

[A-B+O)f=(1-A-C)"'-1-A-C)-1—-A-B-A-C) !, (A.4)
—(1-A-C)'1-A-B-1-4A-C)"H (A.5)
=[A-C)9-[A-B-[A-C)9)9, (A.6)
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where we have taken into account that different elements may not commute, and therefore

the inverse is defined to be (A-B)™' = B~1. AL
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Appendix B

Analytic continuations to unphysical

sheets

This appendix heavily draws from App. B of Ref. [98]. In this appendix, we review the
analytic continuation of M to the unphysical sheet, and illustrate how the procedure
extends to the transition amplitude V. Physical scattering amplitudes on the real s axis
are boundary values of an analytic function, which has a discontinuity across the branch
cut given by the unitarity relation Eq. . Therefore, we can formally define the second

sheet amplitude by continuing through the branch cut, using the boundary condition
MU (s4) = M(ss), (B.1)

where we have defined the short-hand notation s+ = s=+ie and assume that ¢ — 07. Using

this short-hand, the unitarity relation in Eq. (1.20)) can be expressed as
M(s1) = M(s-) = 2i p(s)M(5-)M(ss.) (B.2)

where we have used the Schwarz reflection principle M*(s) = M(s*). For technical con-
venience, we choose to continue the amplitude to the second sheet in the upper-half s

plane, i.e. M!"(s,) = M(s_). We then use the Schwarz reflection principle to extend
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the result to the lower-half s plane, which is nearest to the physical region assuming the
usual +ie prescription. The result is identical if one chooses to continue to the lower-half
plane directly, however we find this approach convenient to simplify the later derivation

for the 2 —Z5 2 amplitude. Assuming a continuation to the upper-half plane, we now insert

Eq. (B.1)) into (B.2), and solve for M to find

1
M (s) = ECTAYY (S)M(s). (B.3)

One can make similar arguments for the lower-half plane, with an additional boundary
condition for the phase space factor p(s;) = —p(s—), finding the same form as Eq. .

In the case of the 2 -2 2 amplitude W, we have to analytically continue both the
initial and final state invariant mass squares s; and sy, respectively. It is sufficient to
consider Wys since this is the only contribution which can have both initial and final state

resonance poles. Since both variables are continued, we impose the boundary condition

ng’H(Sf,i, Q% six) = Wat(s.5,Q% si.%) (B.4)

where the double superscript indicates both variables are continued to their respective
second sheets. The on-shell representation Eq. (3.6 ensures that the imaginary part of

Wi takes the form

Im Wit (s, Q% si) = M*(sp)p(sp)War(sp, Q% si) + Wik(sy, Q% s3)p(s:) M(s;)

+ M (s) F(Q)ImG(s5, Q7 51) M(si) (B.5)

which shows there is an additional singular term arising from the triangle function. This
additional term implies that we cannot just continue both the external M functions in

Eq. (3.6]), but that we also need to continue G.
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We first write the imaginary part as the difference

2i Im Wae(sp, Q% 8i) = Wae(sp.4, Q% si ) — Wip(sp.4, Q% sit)

= War(sf,+, Q% si+) — War(sy—, Q% si—), (B.6)

where in the second line we used the extension of the Schwarz reflection principle for
multivariate functions, the edge-of-the-wedge theorem, to write the conjugated amplitude
as a function of variables evaluated on the lower-half plane, i.e. Wi(sf 4, Q% siy) =

Wit (sf,—, Q?, s;—). Using the Schwarz reflection principle for the scattering amplitudes,

Egs. (B.5]) and give us the relation

Wat(sf.4, Q% siq) = Wai(sy.—, Q% si.-) = 28 M(sf,)p(sy ) War(sf.4, Q7 sit )
+ 20 Wae(s5,—, Q% 51— )p(si ) M(si 1)

+2i M(s5,) f(Q@)Im G (55,4, Q% si,4) M(si1)
(B.7)

We now impose the boundary conditions Egs. (B.1)) and (B.4), again continuing to the

upper-half planes, the WW amplitude on the second sheets is given by

1 .
Wi (57, Q% si) = T 2iM(sf)p(Sf)Wdf(5faQ275i) [1—2ip(si)) M (s;) ]

+ MU (s) F(Q%) [Glsy, Q% i) — 2 ImG (s, Q% ) | M (s;), (B.8)

where we have extended the domain from near the real axis to the entire upper-half complex

planes. We now use the on-shell form Eq. (3.6), as well as (B.3) to construct an on-shell

form

WéIfJI(Sf’ Q27 si) = MH(sf) { A22(Sf7 Q27 Si)

Q) [0(s7, Q% ) — 20T G(s, Q% 5)] } MU(s), (BY)
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where the term in square brackets is precisely the triangle function on the unphysical sheets
as presented in Eq. , using similar arguments as above. As claimed in Sec. this
gives the analytic continuation of Wyt on to the second Riemann sheets in both variables,
Eq. . A similar procedure holds for arbitrary currents with the two hadrons in an
arbitrary partial wave, noting that the Lorentz structure does not introduce any physical

singularities in the s;/s¢ planes.
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Appendix C

Bayesian model average and

resampling methods

This appendix addresses the implementation of the Bayesian Model Averaging (BMA)
described in Ref. [124], with the jackknife resampling described in Sec. We find
that a prescription to implement the BMA mean and error is to form a linear combination
of the jackknife ensembles of each model, weighted by the model probability, e.g. with the
Akaike Information Criterion (AIC), and then to inflate the error of the ensemble to match
the BMA prescription.

Let the parameter a be the estimator of the mean of the observable A,
1oL
o=+ Z At (C.1)
7

where the index 7 indicates each element of an ensemble { A} of independent and identically

distributed random variables. The expectation value and variance of a are equal to

(a) = (4) . (2)
((a- @) =3, (C.3)
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where 04 = ((A — (A))?). This last quantity can be calculated from the unbiased estima-

tor
= = 3 Al 2 C4
Og = m Zi:( —a)”, (C.4)
o2
(oa) =72 (C.5)

From the central limit theorem we expect a to follow a normal distribution, as long as 034
is finite.

Suppose we have different models, M,, to describe a data set, and from each we can
obtain the observable A. In this case we will have access to different ensembles {Aq} of
the observable, we will use the notation A%, for elements of each these ensembles. Latin
indices will be used for the ensemble index, whereas greek indices will label models. The

expectation values of the mean estimator of each ensemble will be denoted as

1
(a)y = (aa) = <NZ«4£> ; (C.6)

which might be a bit of an abuse in notation, but will come in handy when relating to
the Bayesian Model Average (BMA) of Ref. [I124]. The mean square error of the mean

estimator of each model is

2 1 al % 2
Tae = NN 1) Z(*Aa — aa)”, (C.7)
0.2
(00.0) = X}a : (C.8)

where we introduced O‘ia as the variance of the observable when estimated with model
M,. Let us form a new ensemble and call it the averaged ensemble {Aavg}, as a weighted

sum of the model ensembles with probabilities p, associated with each model, e.g. the AIC
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weights,
Alg= > Alpa. (C.9)

aeM

The mean estimator of this new ensemble is,

1oL 1 & .
Gavg = 7 Y AL, = v > Alpa, (C.10)
=1

i=1 acM

= Z aPa - (C.11)

aeM

where a, is the estimator of the mean of the observable given the data is described by

model M,. The expectation value of this quantity, being a linear operation, is equal to

(Gavg) = Z (@) Pa (C.12)

aceM

This equation is identical in structure to Eq. (6.17), so we can claim that
(@)pna = (aave) - (C.13)
Next we calculate the error on the estimator of the mean square error of aayg,
1 N
2 _ j 2
e = N 1) 2 Ve o) (1

2
- N(Nl_l) > (Z Pl AL, aa>) , (C.15)

aeM
N
1 , .
= 0PB T o — aa)(Ap —ag), 1
QBZE:MP PSRN ) ;(Aa aq)(Aj — ag) (C.16)
= Z papgaiaﬁ, (C.17)
a,BeEM
%A
<03avg>: > Paps (C.18)
a,BeEM

where we adopted the definition ag,aa = Jg’a. The expectation value of this quantity, is
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the weighted sum, with the probabilities p,pg, of all the elements of the covariance matrix,

2
P a0~ {@)a)(as — (a))) (€19
Note that trying to implement the same abuse of notation for the expectation value as we
did for (a), is ambiguous. This expectation is evaluated over configurations and contains
estimators from two different models, which was not needed or considered for the results
presented in Ref. [124].
The important point is that the expectation value of Eq. is not analogous to
Eq. , which in this notation would be given by

aBMA - Z Pa0g q +35 Zpapﬁ - aﬁ)g : (C20)

aceM

Their difference is given by,

1
TaBMA ~ Tone = 5 Z Paps((aa —ag)? + 020 — 202 05+ 025) (C.21)
c.BEM
2 2 1 2 2 2 2 2
(0aBMA) — <Uaavg> =3 > paps| (a)g — (a)5)* + N(”Aa — 20,4, + UA[;) :
csgeM

(C.22)

where we the quantities on the right hand side are greater or equal to zero, meaning that
the variance of the BMA prescription is always greater or equal than the variance of the
averaged ensemble. Notice that the difference between the BMA errors and agavg has a
term of order zero in addition to the 1/N term. This means that this difference is not a
statistical bias, but a systematic effect. In practice we notice that this effect is typically

on the order of 10% for the datasets presented in this work.
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Appendix D

Finite volume correction in weakly

interacting systems

In this appendix we present a few simple examples of the calculation of the finite volume
corrections in the limit of a two-meson non-interacting system. In this case we can associate
each level to a meson pair with momentum type k and P — k, and total momentum P.
Note that the wave function of the system will be given by the linear combination of the
contributions with momentum Rk, for all rotations R in the little group of P, as given in
Eq. .

In the non-interacting case it is most convenient to utilize the correction given by
Eq. , which in the non-interacting limit of a single channel reduces to

ﬁ?ZL/’P’k =2FE,; lim (E - En.i.>FZz,:€’(Ea P, L) ’ (Dl)

E—Eny ;.

where we have set K-matrix to zero, K(s) = 0, and Fﬁ, = Fyp —ipdge. We use the state
labeling |n) = |Au, P, k) with Ay the lattice irrep and the row within. Since we only deal
with simple cases, we assume that each partial-wave £ is only subduced to the irrep A once,

which is in general not the case. The non-interacting energy is given by F, i = wi + wpk,

where wy = vk2 + m?2 and wpr = +/ (P — k)2 + m?2.
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Let us look first at the case of an S-wave, which only subduces to one-dimensional
irreps, so we can drop the row label u, and we use the expression for Fpgo in the S-wave

given in App. B.2 of Ref. [I11],

1 1

wg — wpg) E — (wg + wpy)

,  (D.2)

E—En;.

SAPk . 1 1
Ryy =2Fy; 1 E—-FE,;)— —
0,0 n.i. 111 ( n.i. L Z %
q
where L3 is the lattice volume, and the summation goes over all allowed lattice momenta
q= %d, with d a triplet of integers. This equation simplifies to

— (wr + wpr)
— (wq + "JPq)

RAPL _ Wk + wpg lim E
0,0 2L3wwpg E—FEn. E

(D.3)

In the case where particles are identical, the finite-volume correction for P = 0 is equal to

7éAit,o,k 1

00 = B, N (D.4)

where NV}, is the number of different allowed lattice rotations of momentum k. In the case
of non zero momentum for identical particles we get contributions from q = k as well as
q = P — k, which will not be related by a rotation in the little group of P, and the finite

volume correction is equal to

Wg + Wpk

RAPK N D.5
0,0 ngkWPk Pk » ( )

where Npy, is the number of different momenta Rk that can be generated from the rotation
R, which belongs to the little group of P.

In this prescription the finite volume correction is given by
L) Apyt 2
]:/(\;L,P kK — TPMk (L) f(Eqi) (D.6)
where f(s) is an infinite volume production form factor from a current with J = ¢, from
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which the threshold behavior of k* has been removed, and the finite-volume correction is

given by

Al ¢ [SAuPk
TP“k (L) =k~ sz )

(D.7)

which we can define in this case because we are only looking at examples where R is

diagonal in partial-wave space, which is in general not the case.

We can now specialize back to the case of £ = 0, to find the finite volume correction

for several states

A:t
000],[000 _
Toonsio00 _ LB — (mLy2, (D.8)
Ai
[000] ooy 1 /6
D.9
m “mL\ w L’ (D-9)
A1/27 1 +
"[100],[100] wi +m
m ~ (mL)3/2 wi (D-10)
A1/27 2 +
"l100},[010] w1 + wa
- . D.11
m " mL wiwsa L ( )

where we used the notation k = |[k|? for the subindex of wy.

In the case of an arbitrary partial wave ¢, ignoring the possible multiple embeddings

of the wave into the irrep A, using F' from App. B.2 of Ref. [111], Eq. (D.3) becomes

RAwPk _

00

W + wpg
2L3wiwpi

X hm )D (€l) ,(P)SA“

lim ZSA“D“ ) Vem(

*)yl?km’ (q*

FE— (wk + wpk)
E — (wg +wpq)

(D.12)

where S//\X“ is the subduction coefficient, which can be found in Refs. [60, 61], Ve, was

introduced in Eq. (3.73), and DO is the Wigner-D matrix, evaluated for the rotation

defined by Rz = P
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We can calculate the finite volume correction for a couple of simple cases in the P-wave

TE 1

r 1
[00o},jtoo] 1 6
m  mL\ wl’ (D-13)
Ayy2,1
"pooj,io0) 1 3(w1 +m) (D.14)
m (mL)3/2 wi '

and we can note that the finite volume correction for the S-wave and P-wave subduced to
the state ‘Al/Q, [100], [100]>, where the ‘1/2” index depends on the parity of the system,
differs by a factor of /3.
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