2014

Atlas of Lobster Anatomy and Histology

Jeffrey D. Shields
Virginia Institute of Marine Science

Robert A. Boyd
Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports
Part of the [Marine Biology Commons](https://scholarworks.wm.edu/reports), and the [Zoology Commons](https://scholarworks.wm.edu/reports)

Recommended Citation

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Atlas of Lobster Anatomy and Histology

Jeffrey D. Shields, Robert A. Boyd
Virginia Institute of Marine Science
The College of William & Mary

Copyright 2014
This web publication replaces an earlier atlas of lobster anatomy (Famiglietti & Shields 2002). The 2014 atlas has new photomicrographs, labeling and covers additional tissues, as well as an expanded set of photos on the lobster gross anatomy. The older atlas had some issues with the web presentation so we have removed it. The citation for the older version was:

Preface

This is a histological atlas of the most common organs and tissues found in the American lobster, *Homarus americanus*. The atlas contains photomicrographs from histological sections of healthy tissues. The sections were all cut at 5-6 µm and were all stained with hematoxylin and eosin as in Shields et al. 2012b. The atlas contains pictures of tissues that are readily observed in dissection and several that are commonly affected by diseases. It is not a complete atlas. Several organs are not covered, notably the central nervous system, ventral nerve ganglion, several sensory organs, and organs associated with molting.

The atlas may be useful to you for comparisons with other lobster species, or other crustaceans. Three other references offer similar anatomical or histological perspectives for model crustaceans: penaeid shrimp (Bell & Lightner, 1988), the American lobster (Factor, 1995), and the blue crab (Johnson, 1980). Herrick (1895, 1909) undertook histological descriptions of several tissues in the lobster. His classical works are now freely available online.

Our lobster atlas arose partially out of the “100 Lobster Project” and partially from an earlier atlas (Famiglietti & Shields 2002). The histological analysis for the “100 Lobster Project” offered an unparalleled perspective on tissues from normal, healthy lobsters and those affected by epizootic shell disease (Shields et al. 2012a,b). This presented an opportunity to revise, expand and rework the earlier atlas into a more comprehensive and accessible pictorial presentation.

The current atlas is a work in progress. We foresee possible expansions by adding other tissues, other staining methods, histopathology, and other imaging techniques. If you use the atlas, let us know what could be added or what improvements could be made. In addition, if you find errors, let us know, and we’ll make efforts to fix them.

Jeffrey D. Shields
Professor of Marine Science
Jeff@vims.edu

Robert A. Boyd

3
Table of Contents

1. **External Anatomy**

2. **Cuticle**

3. **Epidermis**

4. **Heart**

5. **Muscle**

6. **Gills**

7. **Hematopoietic tissue**

8. **Antennal gland**

9. **Eye & eyestalk**

10. **Midgut**

11. **Hepatopancreas**

12. **Male testis**

13. **Male posterior vasa deferens**

14. **Female ovary**

Acknowledgements

Bibliography
The exterior gross anatomy of the lobster has been depicted by Hadley (1906), Herrick (1909) and is reviewed in Factor (1995).
General anatomy using Herrick’s (1895) original artwork
Schematic of the internal anatomy from Herrick’s (1909)

Half section of lobster cut in median plane to illustrate general anatomy. From soft shell female, 6/4 inches long, slightly favoring in head to show nervous system. Esophageal and gastric ganglion (the latter below reference line to anterior gastric muscle) and anterior visceral and median nerves are shown. Muscle marked levator abdominis (thoracico abdominis) originates far forward in the thorax and joins enveloping muscles of the flexor system of abdomen. Note that abdominal sternal spines are much longer than in sexually mature animals.
Lobster - Lateral View
Lobster - Anterior View
Abdomen

Lateral view of abdomen showing five abdominal segments or somites. som = somite.
Swimmerets (pleopods) from abdomen of a male lobster.
Lobster cuticle showing setal follicles and regularly spaced pore canals (arrows). set = setal follicle, bar = 2 mm
Cuticle

Cross section showing the typical layering of the cuticle (lobster RI079). Note the pore canal running through the cuticle. con = connective tissue, d = epidermis, endo = endocuticle, epi = epicuticle, exo = exocuticle, p = pore canal, bar = 700 µm
Basal region of the cuticle showing the endocuticle, membranous layer, and columnar epithelial cells in the epidermis (lobster ME36).

B = basement membrane, d = epidermis, endo = endocuticle, MB = membranous layer, bar = 20 µm
Epidermis

Dissection of lobster cuticle showing underlying epidermis. d = epidermis, cut = cuticle
Lobster epidermis viewed with a dissecting scope. Epidermis shows concentrations of red pigmentation in chromophores. $\text{pig} = \text{pigmentation}$, $\text{pigC} = \text{pigment concentration}$, bar $= (\text{bar})$ μm.
Epidermal tissue from Lobster ME47. Note the infolding of the premolt epidermis. con = spongy connective tissue, cut = cuticle, d = epidermis, IF = enfolding, RI = reserve inclusion cell, bar = 100 µm.
Detail of the attachment of the tonofibrillae to the cuticle (lobster ME47). The darkly stained tonofibrillae attach the cuticle to the more lightly stained tendinal cells. The tendinal cells attach to muscle (not shown here). con = spongy connective tissue, cut = cuticle, d = epidermis, h = hemocyte, RI = reserve inclusion cell. t = tonofibrillae, tc = tendril cells bar = 20 µm.
Epidermis

Epidermal tissue with fixed phagocytes surrounding an arteriole, and large, opaque RI cells (lobster ME43). con = connective tissue, ff = fixed phagocytes, l = lumen of arteriole, n = nerve fiber, RI = reserve inclusion cell, bar = 20 µm.
The cuticle is a living tissue with several means of communicating with the external environment. This schematic shows sensory organs such as setae, pore canals, and other gland canals.
Tegmental glands in epidermal tissue, with an oblique section through the smaller tegmental gland (arrow) (lobster 47D). ctg = cell of tegmental gland, du = duct of gland, RI = reserve inclusion cell, TG = tegmental gland, bar = 20 µm.
Detail of tegmental gland duct in epidermal tissue (Lobster ME47). cc = canal cell, con = spongy connective tissue, du = duct of canal cell, L = lumen, RI = Reserve inclusion cell, TGD = tegmental gland duct, bar = 20 µm.
Close up of heart in thoracic coelom taken with a dissecting scope. her = heart tissue. bar = () µm
Heart

Low magnification micrograph of a bisected heart showing the pericardium (connective tissue around the heart), heart muscle and hemal sinuses within the heart (Lobster ME24A)., HS = hemal sinus, m = muscle fibers, peri = pericardium, bar = 900 µm
Pericardium surrounding the heart (lobster ME29A). Fibrous connective tissue cells provide an outer layer of support to the spongey connective tissues of the pericardium. \(\text{con} = \text{connective tissue}, \text{fcon} = \text{fibrous connective tissue}, \text{bar} = 50 \mu\text{m} \)
Transition between pericardium and heart muscle tissue. Note the muscular attachments to the pericardium (lobster ME29A). h = hemocyte, mC = heart muscle fibers, RI = reserve inclusion, TL = transition layer = 50 µm
Myocardium with extensive reserve inclusion cells (RI), and complex, intercalated myofibrils of cardiac muscle (lobster ME29A). Note the connective fibers between heart muscle fibers. between the longitudinal muscle fibers. cf = connective fibers, myo = heart myofibrils, RI = reserve inclusion cell, bar = 20 µm
The intercalated nature of the myofibrils can be seen in the different section planes (longitudinal, cross section, and oblique) shown here (lobster ME29A). cf = connective fibers, myo = myofibrils, bar = 50 µm
Heart

Nerve tract in heart tissue surrounded by glial cells. Note the muscular tissue from a different plane bisecting the nerve tract (arrow) and the globular material forming in the RI cell. h = hemocyte, myo = myofibrils, gl = glial cells, RI= Reserve inclusion cell. RI-f= Reserve inclusion forming, bar = 20 µm
Muscle

Low magnification of skeletal muscle (lobster ME27A). Note the hemal sinuses running longitudinally across the section of skeletal muscle. hs= hemal sinus, ms = skeletal muscle fibers, bar = 200 µm.
Muscle

Arteriole in muscular tissue surrounded by fixed phagocytes (lobster ME27A). ff = fixed phagocytes, HS = hemal sinus, L = lumen, ms = skeletal muscle fibers, bar = 20 µm.
Exposed branchial chamber with gill branchiae. G = gill.
Branchial chamber showing epipodites of gill branchiae. Each gill has 3-4 epipodites. Note the attachment of the gill to the base of the pereiopod (arrow). G = gill, br = branchia.
Low magnification of cross section through the gill (lobster ME29). ch = efferent or afferent hemolymph channel, lam = lamella, bar = 600 μm.
Low magnification longitudinal section through the gill (lobster ME29). Note the trichobranchiate structure of the lamellae on the branchia. Upper lamellae are longitudinally sectioned while the lower lamellae are cross sectioned. Lam=Lamella, st = branchial stem, bar = 200 (10x)
Longitudinal section through a gill branchia showing the lamellae connecting to the branchia (Lobster ME29C). Note the hemal sinuses (arrows) below the lamellae. These empty into the afferent and efferent hemolymph channel. Ch=channel of the branchial artery, Con=connective tissue, Lam= gill lamella, bar = 300 µm.
Gill

Detail of lamellae demonstrating their tubular nature. One side of the lamella shows the thin epidermal layer, the other side shows an oblique epidermal layer, with a hemal sinus in the middle. from Lobster ME29C. D = epidermis, Lam = lamella, sin = hemal sinus, bar = 100 µm.
Longitudinal section of afferent/efferent channel in gill tissue (lobster ME29C). Note the tonofibrillae (arrow) and myofibrils at the base of the lamella. con = spongy connective tissue, hs = hemal sinus, bar = 50 µm.
Gill

Cross section through the lateral portion of lamellae (lobster ME29C). The trabecular cells serve as support cells within the lamellae. cut = cuticle, d = epidermis, h = hemal sinus, trc = trabecular cells, bar = 50 µm.
Cross section of lamella from Lobster ME29C showing thin cuticle and epidermis region. Cut = cuticle, d = epidermis, hs = hemal sinus, trc = trabecular cell, bar = 20 μm.
Branchial region showing effete tegmental gland, and reserve inclusion cells (lobster ME29C). con = connective tissue, ctg = tegmental gland cells, d = epidermis, l = lumen, RI = reserve inclusion cell, bar = 20 µm.
Exposed thoracic cavity showing pyloric stomach with bands of hematopoietic tissue (arrows). \(ps = \) pyloric stomach
Hematopoietic tissue is the source of hemocytes, or blood cells, in the lobster. The tissue occurs as lobules of cells on the dorsal pyloric stomach, or foregut (Lobster ME24A). Note the nerve tract interspersed between the nodules of hematopoietic tissue. lob = lobule, n = nerve, bar = 100 µm.
Lobule of hematopoietic tissue surrounded by a rind of accessory columnar epithelial layer (Lobster ME24A). epi = columnar epithelial cells, lob = lobules of tissue with stem cells, bar = 20 µm.
Lobules of hematopoietic tissue with an arteriole running through the tissue (lobster ME24A). ff = fixed phagocytes, l = lumen of arteriole, lob=lobule, bar = 20 µm.
Antennal “Green” Gland

Antennal gland, or green gland, at the anterior end internally, ventral to the eyes, with a small piece of the bladder attached (arrow).
Low magnification of antennal gland showing the organization of the labyrinth tissue and coelomosac (lobster 22A). A small part of the bladder is attached to the labyrinth. The antennal gland functions in excretion and osmoregulation. bl = bladder, ce = coelomosac, ly= labyrinth, bar = 900 µm.
Antennal gland at the border between the labyrinth and the coelomosac (lobster 22A). Note the difference in staining coloration between tissues. $ce = $ coelomosac, $ly = $ labyrinth, bar = 300 µm.
Coelomsac showing squamous epithelial cells arranged in a complex pattern within the gland (lobster ME34A). Note the ducts within the coelomosac and the fibrous connective tissue around the organ. There is no connective tissue within the sac.

d = duct, fcon = fibrous connective tissue, le = labyrinth epithelium, bar = 50 µm.
Antennal gland

Border between the labyrinth and coelomosac (lobster ME34A). Note the large duct within the coelomosac (arrow). This could be a connection with the bladder or an arteriole. ce = coelomosac, le = labyrinth, ly = labyrinth, po = podocyte, bar = 100 µm.
Podocytes in the coelomosac (lobster ME34A). These cells function in excretion and osmoregulation. Note the many brown granules present in the podocyte (arrow). An arteriole is also present. $aa =$ arteriole, $hsp =$ hemal space, $h =$ hemocyte, $po =$ podocyte, bar = 10 µm.
Arteriole in the labyrinth (lobster ME24A). Note the brush border in the lumen of the labyrinth. art = arteriole, bb = brush border, le = labyrinth epithelium, bar = 20 µm.
Labyrinth epithelium (lobster ME34A) with presumptive podocytes (arrows) used in excretion. $d =$ duct, $le =$ labyrinth epithelium, bar = 10 µm.
Antennal gland

Interdigitation of the secretory labyrinth (lobster ME22A). Sloughed cells are components of the secretory labyrinth.

Bb = brush border, h = hemocyte, le = labyrinth epithelium, ss = sloughed epithelial cells, bar = 20 µm.
Eye and eyestalk

Lateral view of lobster eye.
Eye and eyestalk

Dorsal aspect of lobster eye. Note the cuticle that covers the eyestalk is thicker and has a cuticular pigmentation compared with the thin cuticle that covers the eye proper.

eyes = eyestalk.
Eye and eyestalk

Gross view of the lobster eyestalk in longitudinal section. The eyestalk was removed, fixed in z-fix, decalcified in formic acid – sodium citrate, then bisected with a razor. Note the increasing thickness of cuticle on the lateral margins of the eye. cut = cuticle, lm = lamina ganglionaris, m = retractor muscle, oma = ommatidia, on = optic nerve region, np = nerve plexus.
Low magnification of the lobster eyestalk in longitudinal section (lobster AM 65). The empty space between the cuticle and ommatidia is an artifact of fixation. Note the increasing thickness of cuticle on the lateral margins of the eye. bm = basement membrane of ommatidial region, cut = cuticle, lm = lamina ganglionaris, m = retractor muscle, me = medulla externalis, mi = medulla internalis, mt = medulla terminalis, np = nerve plexus, oma = ommatidia, tg = tegmental glands, bar = 900 µm.
Eye showing ommatidia (bracket) stretching from the cuticle to the basement membrane (lobster RI44). Note the separation of the premolt cuticle from the old cuticle. bm = basement membrane, cc = crystalline cone, cut = cuticle, om = ommatdium, pr = proximal retinula, rh = distal retinula and rhabdom, bar = 300 µm.
Eye and eyestalk

Ommatidia stretching from the cuticle to the basement membrane (lobster RI44). Accessory pigment cells have screening pigments (arrows) around the cones and at the base of the ommatidium. bm = basement membrane, cc = crystalline cone, cut = cuticle, pr = proximal retinula, rh = distal retinula and rhabdom, bar = 100 µm.
Cornea associated with individual ommatidia. Note the screening pigments in the accessory pigment cells (arrows). cr = cornea, cc = crystalline cone, cut = cuticle, om = ommatidia.

Higher magnification of corneal cells (lobster RI53). The open areas are artifacts introduced during processing. ch = corneal hypodermis, cc = crystalline cone, cut = cuticle, bar = 10 µm.
Juncture of the ommatidia with the basement membrane in the eye (lobster RI44?). Screening pigments (arrows) surround the proximal rhabdom. Note the vasculature around the basement membrane. bm = basement membrane, hc = vasculature of the hemocoel, pr = proximal retinula, on = optic nerves, bar = 50 µm.
Proximal retinula of the ommatidium (lobster RI44). Note the pigment granules extending above and around the rhabdom, as well as the pigment cell nucleus (arrow). prhc = proximal retinula, rh = rhabdom, bar = 20 µm.
Region of the basement membrane separating the ommatidia from the optic nerve fibers (lobster ME75E). Many pigment granules are present in accessory pigment cells (arrow) that extend into the underlying tissue. bm = basement membrane, g = granules, lc = lacuna of hemocoel, on = optic nerve, bar = 10 µm.
Eye and eyestalk

Optic nerve region between the ommatidia and the lamina ganglionaris (lobster AM65). Note the long optic nerve fibers attaching the ommatidia to the lamina ganglionaris and the highly vascular nature of the region. art = arteriole, bm = basement membrane, hs = hemal sinus, lg = lamina ganglionaris, on = optic nerve fibers, bar = 50 µm
Eye and eyestalk

Detail of lamina ganglionaris (lobster RI44). cr = rind of support cells, gl = glial cells, lg = lamina ganglionaris, mx = medulla externalis, onf = optic nerve fiber, bar = 20 µm.
Eye and eyestalk

Highly vascularized region of the medulla externalis showing optic nerve tracts from the lamina ganglionaris into the region. Specialized rind cells or secretory cells encase the optic nerves as they enter into the medulla internalis (not shown) (lobster AM65). art = arteriole, cr = rind cells, me = medulla externalis, on = optic nerve fibers, bar = 50 µm
Eye and eyestalk

Nerve plexus known as the medulla internalis showing optic nerves entering from the medulla externalis and exiting the medulla internalis (lobster AM65). The cell rind of the medulla internalis is thin and less organized than that of the other medullar ganglia. art = arteriole, cr = rind cells, mi = medulla internalis, on = optic nerve fibers, bar = 100 µm
Eye and eyestalk

Nerve plexus known as the medulla terminalis with individual optic nerves entering from the medulla internalis (lobster AM65). Neurosecretory cells (arrows) occur loosely around the outer margin of the medulla internalis and terminalis. The optic nerves continue from here on to the brain of the lobster. art = arteriole, fcon = fibrous connective tissues, cr = rind cells, mt= medulla terminalis, on = optic nerve fibers, bar = 100 µm
Eye and eyestalk

Dorsal to the medulla terminalis is the sinus gland which controls molting. The lumen of the gland is not shown in this micrograph. Note the numerous neurosecretory cells, the neurilemma and glial cells surrounding the medullae and sinus gland (lobster AM65). gl = fibrous glial cells, mt = medulla terminalis, nsc = neurosecretory cells, sg = sinus gland, bar = 100 µm
Dense grouping of tegmental glands near the proximal end of the eyestalk (lobster RI44). Inset shows more detail of a tegmental gland with a common duct. con = connective tissue, cut = cuticle, epi = columnar epithelial cells underlying the cuticle, gran = cuticularized granuloma, tg = tegmental gland, bar = 50 µm.
Midgut

Gross view of exposed thoracic cavity showing midgut (arrow) running between lobes of the hepatopancreas.
The food bolus of arthropods is encased in a peritrophic membrane secreted by the midgut. This low magnification view of the midgut shows the epithelium of the organ, the thin layer of supporting tissues around it, and a food bolus with a peritrophic membrane (arrows) around it (lobster RI92). bl = food bolus (gut contents), ec = epithelial cells, fcon = fibrous connective tissue with supporting cells, L = lumen, bar = 1200 µm.
The midgut epithelium is columnar with a brush border. Underlying it is a basement layer and a band of reserve inclusion cells interspersed among myofibrils of circular muscle (lobster RI92). bl = food bolus, bm = basement layer, ec = epithelial cell, pm = peritrophic membrane, RI = zone of reserve inclusion cells and myofibrils, bar = 50 µm.
The midgut epithelium is columnar with a brush border. The peritrophic membrane is a thin layer of cuticle that has separated (as an artifact) from the bolus (lobster RI92). bl = food bolus, ec = epithelial cell, L = lumen, pm = peritrophic membrane, bar = 50 µm.
The midgut has columnar epithelial cells supported on a basement membrane overlying small muscle fibrils and absorptive reserve inclusion cells (lobster RI92). Basal cells (arrows) can be seen among the epithelial cells. Their function is not known. bb = brush border, bm = basement membrane, fcon = fibrous connective tissue, ec = epithelial cells, L = lumen, m = muscle, RI = reserve inclusion cells, bar = 20 µm.
The hepatopancreas is comprised of a mass of individual tubules (arrow) connected through common absorptive ducts to the midgut gland.
Hepatopancreas

Gross view of hepatopancreas showing individual tubules in longitudinal and cross sections (lobster ME23A). It = longitudinal section of tubules, xt = cross section of tubule, bar = 600 µm.
Hepatopancreatic tissue showing two zones: the E-cell (Embryozellen) zone near the apical end of the tubule, and the digestion zone with B- (Blasenzellen), F- (Fibrillenzellen) and R-cells (Restzellen) near the basal end. bc = B-cell, ec = E-cell, fc = F-cell, fcon = fibrous connective tissue, L = lumen, rc = R-cell, s = B-cell secretion, bar = 100 µm.
Hepatopancreas

The stem E-cells in a cross section near the apical end of a hepatopancreatic tubule (lobster ME19). Note the brush border at the apical end of the cells (arrow). bm = basement membrane, ec = E-cell, L = lumen, s = B-cell secretion, bar = 10 µm.
Hepatopancreatic tubules in cross section (lobster ME19). Note the higher abundance of E-cells in tubules sectioned near the edge of the tissue. This is because the apical portions of these tubules cross the plane of section while tubules within the inner portion of the tissue were sectioned in a more basal region. bc = B-cell, ec = E-cell, L = lumen of tubule, bar = 100 µm.
Secretory B-cells in the hepatopancreatic tubule (lobster ME19). These are holocrine cells in that they secrete their entire contents into the lumen. The nucleus (arrow) is characteristically pushed to the side of the cell. $bc =$ B-cell, L = lumen, $s =$ B-cell secretion, bar = 10 µm.
F-cells and R-cells in a hepatopancreatic tubule (lobster ME19). The function of the F-cells is unknown; they may become B-cells. The R-cells function in storage of products. bb = brush border, bm = basement membrane, fc = F cells, L = lumen, rc = R cells, bar = 10 µm.
Fixed phagocytes surrounding an arteriole (arrow) in the hepatopancreas (lobster ME23A). The fixed phagocytes remove pathogens from the tubules. bm = basement membrane, fc = F-cell, ff = fixed phagocytes, hs = hemal sinus, rc = R-cell, RI = effete reserve inclusion cell, bar = 50 µm. Photo from Shields et al. 2012b.
Male Gonad: Testis

Thoracic cavity with the heart removed showing testes and hepatopancreas. t = testis, hep = hepatopancreas, m = thoracic muscle
Lobster testis is made up of many lobules (arrow) surrounding a seminiferous duct encased in a thin capsule of fibrous connective tissue cells.
Cross section of testis showing a lobules containing germinative centers in various stages of development (lobster ME23B). A capsule of fibrous connective tissues encases the testis, with thinner connective tissues supporting the lobules internally. l = lobules, f = fibrous capsule, sem = seminiferous duct bar = 300 µm
Male Gonad: Testis

Testis tissue from lobster ME23B showing non-flagellated mature sperm within a seminiferous epithelium. f = fibrous connective tissues, spg = spermatogonia, spM = mature sperm, s1 = primary spermatocytes, s2 = secondary spermatocytes, sem = seminiferous duct with spermatocytes, bar = 100 µm.
Non-flagellated mature sperm cells (arrow) in lumen of seminiferous duct of testis (lobster ME23B). spg = Spermatogonia, spM = mature sperm, sem = seminiferous duct wall, bar = 20 µm.
Spermatogonia in testis (lobster ME23B). f = fibrous connective tissues, s1 = primary spermatocytes, s2 = secondary spermatocytes, bar = 20 µm.
Testicular lobules within the testis (lobster ME23B). \(f = \) fibrous connective tissues, \(spg = \) spermatogonia, \(sem = \) seminiferous duct, \(s1 = \) Primary spermatocytes, \(s2 = \) Secondary spermatocytes, bar = 100 \(\mu m \).
Male Gonad: Ejaculatory Duct

Ventral view of lobster showing male gonopore (arrow) and specialized nature of the first pleopod.
Male Gonad: Ejaculatory Duct

Close up view of male gonopore (arrow) and male first pleopod.
Male Gonad: Ejaculatory Duct

Ejaculatory duct dissected from abdomen (circle).
Low magnification of the ejaculatory duct (lobster ME19). The duct is the posterior-most portion of the posterior vasa deferens. ec = epithelial cells, ms = skeletal muscle, tg = zone of tegmental glands, bar = 1500 µm.
Zone of tegmental glands associated with muscle laterally around the posterior ejaculatory duct (lobster ME19). These glands may provide additional lubrication to the duct or lubrication for molting. fcon = fibrous connective tissue, ms = skeletal muscle, tg = zone of tegmental glands, bar = 50 µm.
Male Gonads: Ejaculatory Duct

Cross section of ejaculatory duct containing mature sperm within a waxy spermatophore (lobster ME 12-1).

fcon = fibrous connective tissue, RI = reserve inclusion cell, spe = spermatophore, spm = mature sperm, scon = spongy connective tissue, bar = 50 µm.
Male Gonads: Ejaculatory Duct

Detail of ejaculatory duct with mature sperm in a waxy spermatophore (lobster ME 12-1). ec = columnar epithelial cells, fcon = fibrous connective tissue, RI = reserve inclusion cell, spe = spermatophore, spm = mature sperm, bar = 50 µm.
Male Gonads: Ejaculatory Duct

Columnar epithelium in the ejaculatory duct (lobster ME19). Note the brush border. cill = cilia, ec = epithelial cells, fcon = fibrous connective tissue, mS = skeletal muscle fibers, bar = 20 µm
Female Gonad: Ovary

Ovary showing ova in different stages of maturation (lobster ME44B).

fcon = fibrous connective tissue ‘rind’, ml = mature lobule of ovary, iml = immature lobule, pre = previtellogenic oocyte, vova = vitellogenic oocyte, bar = 1500 µm.
Female Gonad: Ovary

Detail of ovarian lobules showing maturing and immature lobules. acb = accessory cell border, fcon = fibrous connective tissue ‘rind’, ml = mature lobule of ovary, iml = immature lobule, pre = previtelligenic ooocyte, vova = vitellogenic oocyte, bar = 300 µm
Vitellogenic and previtellogenic oocytes in ovary (lobster ME46B). Note the large yolk (vitellogen) granules forming within the immature oocyte, the numerous granules within the adjacent vitellogenic oocyte, and the chorion (arrows). acb = accessory cell border, n = nucleus of oocyte, nu = nucleolus of oocyte, pre = previtellogenic oocyte, vova = vitellogenic oocyte, yg = yolk globule bar = 50 µm.
Female Gonad: Ovary

Detail of accessory cell border between two previtellogenic oocytes (lobster ME46B). acb = accessory cell border, yg= yolk globule, pre = previtellogenic oocyte, bar = 10 µm.
Yolk globules (vitellogenin) in vitellogenic oocyte (lobster ME46B). Note that some globules contain smaller globules inside them (arrow). \(yg \) = yolk globule, bar = 10 \(\mu m \).
Fibrous tissue around ovary (lobster ME46B). Note the border of accessory cells separating oocytes and the fibrous connective tissue delineating the ovary. acb = accessory cell border, fcon = fibrous connective tissue “rind” around ovary, pre = previtellogenic oocyte, vova = vitellogenic oocyte, yg = yolk globule, bar = 10 µm.
Bibliography
Bibliography

Acknowledgements

We thank Kersten Wheeler and Shelley Sullivan Katsuki for histological processing of lobsters used in the project. Dr. Mike Newman provided a camera for macro photography. Many of the lobster used in the atlas were from the “100 Lobster Project.” This work was supported in part by the National Marine Fisheries Service as the “New England Lobster Research Initiative: Lobster Shell Disease” under NOAA grant NA06NMF4720100 to the University of Rhode Island Fisheries Center, in part by a contract from the Dept. Marine Resources, State of Maine, and in part by a National Science Foundation Research Experience for Undergraduates program grant OCE 0552612 to Drs. L. Schaffner and R. Seitz, VIMS.

The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. The US Government is authorized to produce and distribute reprints for government purposes, notwithstanding any copyright notation that may appear hereon.