's No Mystery

Judi Harris

College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/educationpubs

Part of the Education Commons

Recommended Citation

TO STARTUP
 SET.SCALE 1
END

TO SET.SCALE :NUMBER
 MAKE "SCALE" :NUMBER
END

TO DOT :POS
 PU
 SETPOS :POS
 PD
 FORWARD 0
END

TO XCOR
 OUTPUT FIRST POS
END

SET.SCALE creates a variable, SCALE, which specifies the vertical scale of the graph. Also, recall that the name PITCHLIST refers to the list of notes in your melody, as explained in last month’s column.

HAVE FUN!!!

Gary S. Stager, 12 Locust Place, Wayne, NJ 07470
CompuServe: 73306,2446

No doubt many of you have seen the first (last?) snowfall of the school year by now. The luckiest among you have even had an unexpected vacation day due to this natural wonder. For some, the inexplicable peace and beauty of snow outweigh the inconvenience that it can cause. But did you ever suspect that a snowflake could both postpone AND inspire math lessons?

The substance of each snowflake is ice; frozen H₂O that is born in the clouds.

“Ah! From moutainiptop!” said the King of Siam.
“From SKY, Your Majesty,” corrected Anna.
“That’s right, Your Majesty.”
—Rogers and Hammerstein, “The King and I”

Snow is a unique example of a single chemical compound that crystallizes with great variation. The ancient Greeks first used the word “crystal” to mean “ice.” Now, the word crystal refers to the ways that molecules pile up in regular patterns to form solid matter.

There are seven types of snow crystals: six-rayed stars, hexagonal plates, columns, bullets, needles, and irregular forms. Snow crystals clump together on their journey down from the clouds, forming snowflakes. Snow crystals can range in diameter from diamond dust size to 3/16 inch.

Frozen Solids

Although there is an infinite variety of snow types, all are based upon a pyramidal molecular structure in which atoms bond to form hexagonal molecule clusters. The water molecule is comprised of two atoms of hydrogen and one atom of oxygen. The oxygen atom is positioned at the center, with the
hydrogen atoms arranged away from it at 120-degree angles. Two positive electrical charges are released in the directions of the hydrogen atoms, and a negative charge is exerted at the third 120-degree angle of the sphere:

When molecule activity is slowed down by freezing temperatures, the weak electrical charges attract one another. Then the water molecules behave like magnets, as the negative poles are drawn to the positive poles of neighboring molecules. Ice thereby forms a pyramidal structure. Since the atoms are always separated by angles of 120 degrees, snow crystal components must form in threes (the ice pyramids) and sixes. The simplest possible ice crystal would be a collection of 60 water molecules, but this would be far too small to see with the unaided eye. A snow crystal of average size contains 100 million or more ice molecules.

Not-So-Softly Falling

Snow crystal structures reflect the air temperature and water saturation level in the clouds where they form. Warm water vapor has a greater concentration of water molecules, which are more active than cold water vapor molecules. Increased molecule activity speeds up the crystallization process; colder temperatures slow down molecule activity, and therefore ice crystal production.

Needle crystals form in clouds heavy with water vapor, ranging in temperature from 25 to 28 degrees Fahrenheit. Plate crystals form in air temperatures of 14 to -4 degrees. Column crystals are manufactured in clouds with few water molecules, 13-14 degrees Fahrenheit. The familiar dendritic shapes (stars and ferns) develop in clouds with moderate amounts of water vapor, where the temperatures vary between 0 to 7 degrees.

The snow crystal comes into the world as a microscopic ice germ. Water vapor molecules attach themselves to a speck of dust, and condense and multiply for about 15 minutes. For the next 15-30 minutes, the snow crystal has a rocky ride as it falls through the storm cloud. Passing temperature and humidity conditions help to form the crystal's unique size, shape and design. Soon the ice crystal becomes too heavy to be supported by the cloud, and it joins the other acrobats as they tumble to the earth.

Snowgo

Snow crystals take their forms from their environments. How often have you seen paper snowflakes blanketing the windows of elementary classrooms? These special crystals owe their structure to the scissors and imaginations of their young creators. Logo environments can yield snow crystals, also.

Dendritic (stellar) snow crystals are formed with six branches, spaced at 60-degree angles, radiating out from the center point. Different branches:

can be combined to make representations of different snow crystals:
All of these stellar crystals were formed with the STELLAR superprocedure:

```
TO STELLAR
MAKE "BRANCH.CHOICE PICK BRANCHLIST
REPEAT 6 [RUN {LIST:BRANCH.CHOICE} -> RIGHT 60]
END
TO PICK :LIST
OUTPUT ITEM (1 + RANDOM (COUNT :LIST)) -> :LIST
END
TO BRANCHLIST
OUTPUT [BRANCH1 BRANCH2 BRANCH3]
END
```

The PLATE superprocedure is similarly structured.

```
TO PLATE
MAKE "SECTION.CHOICE PICK SECTLIST
REPEAT 6 [RUN :SECTION.CHOICE RIGHT 60]
END
TO SECTLIST
OUTPUT [[SECTION1 20] [SECTION2 40] -> [SECTION3]]
END
```

Pictures of hexagonal plate snow crystals can be built from triangular sections that are embellished in a variety of ways.

When combined, six equilateral triangles arranged around a common point can produce a variety of frosty effects.

One might even want to create blizzard conditions on the CRT.

```
TO SNOWSTORM
IF KEYP [STOP]
RUN PICK [[STELLAR] [PLATE]]
PU
RIGHT RANDOM 360
FORWARD RANDOM 200
PD
SNOWSTORM
CT
PRINT [BLIZZARD CONDITIONS]
END
```

And unlike the "real stuff," this snow can be cleared with one swift CS (computer shovel).

"A snowdrift is a beautiful thing—
if it doesn’t lie across the path you have to shovel
or block the road that leads to your destination."
—Hal Borland, 1964

Judi Harris, 621-F Madison Ave., Charlottesville, VA 22903; CompuServe: 75116,1207