Ecological Interactions Across a Plio-Pleistocene Interval of Faunal Turnover: Naticid Cannibalism North and South of Cape Hatteras, North Carolina

Max Christie

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

Recommended Citation
https://scholarworks.wm.edu/honorstheses/295

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Ecological Interactions Across a Plio-Pleistocene Interval of Faunal Turnover: Naticid Cannibalism North and South of Cape Hatteras, North Carolina

A thesis submitted in partial fulfillment of the requirements for Departmental Honors in Interdisciplinary Studies from The College of William and Mary

by

Max Christie

Accepted for ____________________________ Honors ____________________________
(Honors, High Honors, Highest Honors)

________________________________________
Dr. Rowan Lockwood, Director

________________________________________
Dr. Karen M. Layou

________________________________________
Dr. Patricia H. Kelley

________________________________________
Dr. Stewart A. Ware

Williamsburg, VA

May, 2009
# Table of Contents

List of Figures and Tables.......................................................................................................................... 4

Abstract ......................................................................................................................................................... 6

Introduction .................................................................................................................................................. 7

Plio-Pleistocene Extinction .......................................................................................................................... 8

Taxonomic vs. Ecological Patterns Across Extinctions.............................................................................. 9

Naticid Cannibalism.................................................................................................................................. 12

Research Questions..................................................................................................................................... 15

Geologic Setting......................................................................................................................................... 15

Methodology ............................................................................................................................................... 20

Sampling Strategy ...................................................................................................................................... 20

Field Methods........................................................................................................................................... 20

Museum Collections.................................................................................................................................. 21

Sample Processing..................................................................................................................................... 21

Data Analysis ............................................................................................................................................. 22

Results ......................................................................................................................................................... 26

Frequency of Cannibalism across the Plio-Pleistocene and Biogeographic Boundaries
.................................................................................................................................................................. 26

Frequency of Cannibalism across Plio-Pleistocene Stratigraphic Units .............................................. 32
List of Figures and Tables

Figure 1: Sample of Naticids ................................................................. 14
Figure 2: Geologic map of the Coastal Plain ........................................... 14
Figure 3: Correlation Chart ................................................................. 19

TABLE 1: SAMPLES USED IN THIS STUDY ............................................. 19

Figure 4: Stratigraphic section of Register Quarry, NC .......................... 24
Figure 5: Map of field sites and museum collections ............................... 24
Figure 6: Diagram of measurements .................................................... 25
Figure 7: Frequency of cannibalism across the Plio-Pleistocene extinction . 30
Figure 8: Frequency of cannibalism across Cape Hatteras, North Carolina . 30
Figure 9: Frequency of cannibalism among spatiotemporal units .......... 31
Figure 10: Frequency of cannibalism across units north of Cape Hatteras .... 34
Figure 11: Frequency of cannibalism across units south of Cape Hatteras ... 34
Figure 12: Frequency of cannibalism among resampled spatiotemporal units . 36
Figure 13: Average and maximum size across the Plio-Pleistocene extinction and Cape Hatteras, North Carolina ........................................... 40
Figure 14: Average and maximum size among spatiotemporal units .......... 41
Figure 15: Percent drilling among 10mm size bins .................................. 42
Figure 16: Outer drillhole diameter vs. prey size ..................................... 43
Figure 17: Average and maximum size among resampled spatiotemporal units . 45
Figure 18: Frequency of cannibalism vs. predator size .................................................... 47

Figure 19: Total and prey item drilling frequency ............................................................ 51

Figure 20: Naticid prey abundance ................................................................................... 52

Figure 21: Ratio of predator to prey abundance ............................................................... 52

Figure 22: Frequency of cannibalism across the Plio-Pleistocene extinction in Huntoon (1999) ................................................................................................................................ 54

Figure 23: Naticid to non-naticid predator abundance ..................................................... 54

Figure 24: Abundance and drilling frequency of victims and originators ....................... 56

Figure 25: Drilling frequency of victims and originators with cannibalism ..................... 56

Figure 26: Drilling frequency of preferred taxa during the Pliocene and Pleistocene...... 58

Figure 27: Abundance of preferred prey taxa ................................................................. 60
Abstract

According to previous work along the western Atlantic Coastal Plain, 70% of molluscan species went extinct during a two pulsed event across the Plio-Pleistocene boundary; yet the nature of this extinction event is different north and south of the biogeographic boundary represented by Cape Hatteras, North Carolina. Although the evolutionary effects of this extinction have been studied, the community-level ecological effects are poorly understood. This research focuses on the confamilial predation of naticid snails and seeks to determine changes in the degree of cannibalism across the biogeographic boundary during the late Pliocene. Float and museum collections of the Yorktown (Moore House Member) and Duplin Formations (sampling before the extinction) and the lower Waccamaw and Chowan River Formations (sampling after the first pulse of extinction) were used in this study. Frequency of cannibalism per collection, and naticid size were analyzed. Data were collected from 21 localities across the Coastal Plain of Virginia, North Carolina, and South Carolina representing 3 units north of Cape Hatteras, and three units south. 1,951 specimens were analyzed. Results indicate that naticid cannibalism increases across the Plio-Pleistocene extinction and is greater north of the biogeographic boundary. Results also indicate a statistically significant decrease in naticid size across the biogeographic boundary. A statistically significant increase in maximum size occurred south of Cape Hatteras. Additional analysis of community level data from Huntoon (1999) suggests that the observed increase in cannibalism was due to a decrease in preferred prey abundance. These results suggest that naticid competition increased after the extinction event because of reduced preferred prey abundance which lead to an increase in cannibalism.
Introduction

Approximately 2 million years ago, the Plio-Pleistocene extinction drastically decreased the diversity of the molluscan fauna in the western Atlantic during a pulsed event. Previous research has suggested that this extinction event may have been due to local cooling as glaciers expanded (Stanley, 1986). Other authors have contended that the Plio-Pleistocene extinction was caused by a decline in primary productivity in the western Atlantic (Allmon, 2001; Todd et al., 2002). Although mollusk diversity has increased in the western Atlantic, many taxa do not inhabit the same geographic range they did before the extinction event. During the Pliocene, sub-tropical species ranged far north of their current habitats, into Virginia and Maryland (Allmon et al., 1993). Yet today, these species are confined south of a biogeographic boundary represented by Cape Hatteras, North Carolina. This suggests that there may be a fundamental difference in the extinction event north and south of the biogeographic boundary. North of this boundary extinction without origination is thought to have occurred, while south of the boundary, paleocommunities experienced both (Allmon et al., 1996b).

This study reconstructs ecological interactions among members of the Naticidae, a family of marine drilling snails across the Plio-Pleistocene extinction and across the biogeographic boundary at Cape Hatteras, North Carolina. Naticids are a common organism in modern and Plio-Pleistocene marine benthic environment; previous research has shown that common species can be used to identify ecological changes in the makeup of a community because the variability of common species can be detected across space more easily than rare taxa (Pearman and Webber, 2007). This study will use Naticidae to examine changes in cannibalism among Naticidae across the Plio-Pleistocene and
biogeographic boundaries. For the purposes of this research cannibalism will be defined as confamilial predation, predation within the family Naticidae.

This research provides an understanding of how ecological interactions change across an extinction event and defines a baseline for confamilial naticid predator-prey interactions across the Plio-Pleistocene and biogeographic boundaries. Environmental changes due to human impact such as global warming have caused diversity to decline in modern marine settings. Understanding the ecological interactions among organisms of these systems prior to human interaction is necessary to manage the response of the ecosystem (Novacek and Cleland, 2001). This information may allow us to predict and react to our current biodiversity crisis in more efficient ways by allowing us to interpret how changes in ecological interactions among organisms will affect an ecosystem.

**Plio-Pleistocene Extinction**

The Plio-Pleistocene extinction was a regional, 2 pulsed extinction event that affected marine organisms such as mollusks, corals, bryozoans, and planktonic and benthic foraminifera (Budd and Miller, 2001; Cheetham, 1986; Hayward, 2002; Raffi et al., 1985; Svenning, 2003). It resulted in a drastic decrease in species diversity in the Western Atlantic; 70 percent of mollusk species went extinct during this event (Allmon et al., 1996b). Geographic differences govern the surviving lineages; sub-tropical species are confined to areas south of Cape Hatteras, North Carolina, while temperate species reside in habitats north of this biogeographic boundary. Research performed in Virginia and Florida has shown a discontinuity between surviving taxa; lower species richness
exists north of Cape Hatteras (Allmon et al., 1996b). Stanley and Campbell (1981) indicate that almost double the number of species of mollusks appear in the fossil record than exist in the live assemblage in Virginia. Petuch (1995) also found that the species diversity within gastropod families decreased drastically across the Plio-Pleistocene in Florida. His results indicated a two-phased extinction caused by a combination of cooling and lower productivity.

The molluscan fauna began to recover in species richness in the western Atlantic during the Pleistocene; however, Recent diversity still has not equaled the diversity from the Pliocene. This difference has prompted Allmon et al. (1996b) to suggest that areas south of Cape Hatteras, North Carolina have recovered in diversity, while faunas north of Cape Hatteras have remained depauperate. This is hypothesized to be due to a diversion of the Gulf Stream close to Cape Hatteras. Warm Gulf Stream water travel up the eastern coast of North America until they reach Cape Hatteras, where the Gulf Steam is rerouted offshore (Berggren and Hollister, 1977). During the Pliocene, warmer waters allowed sub-tropical species to range northward into Virginia, but these species have subsequently have gone extinct in these areas due to cooling. Little work has been done comparing ecological interactions across Cape Hatteras, North Carolina during the Plio-Pleistocene extinction.

Taxonomic vs. Ecological Patterns Across Extinctions

An extinction event affects not only species richness, but also the ecological interactions among organisms. A change in either species richness or ecological
interactions can alter community structure; the survivors of an extinction event often change the environment once the victims are gone. To investigate these changes, it is necessary to collect data beyond taxonomic richness (Roy, 1996). This is important because faunal turnover and changes in ecological interactions are non-linear, such that small changes in ecology can occur during large extinction events and large changes in ecology can occur during small extinction events (Plotnick and McKinney, 1993).

Droser et al. (2000) found a decoupling of taxonomic and ecological severity for the end-Ordovician and Late Devonian mass extinctions. The authors developed a ranking system of ecological severity from 1 to 4 to compare different aspects of mass extinctions ranging from minor community level changes (level 4) to the appearance of a new ecosystem (level 1). Analysis showed that while the end-Ordovician mass extinction resulted in the second greatest family level loss of diversity, the ecological changes associated with the extinction event were minor. Victims of the extinction were replaced by successors inhabiting similar ecological roles. In contrast, the Late Devonian mass extinction resulted in a less severe change in species richness but second-level changes. Investigating the ecological patterns of an ecosystem after an extinction event can provide a more complete understanding of how the extinction event affected the community. For example, while mollusk diversity changed little after the Late Triassic extinction in the United Kingdom, there were large changes in the ecology of the ecosystem (Mander et al., 2008). After the late Triassic extinction event, samples are characterized by assemblages with lower abundances, lower diversity, and lower evenness. In these cases, large ecological change occurred with small faunal turnover.
Layou (2009) examined paleocommunity-level data to investigate paleoecological changes during a regional extinction event during the Ordovician. The results showed that, despite a moderate decrease in diversity, evenness did not vary greatly. This suggests that the relative structure of the community remained similar pre- and post-extinction. This shows that spatial scale does not change the decoupling of taxonomic and ecological severity. These differences occur both on a global and a regional scale.

Research in modern benthic systems suggests that small changes in taxonomic diversity or abundance could have large effects on ecology. Solan et al. (2004) used a computer model to determine how rates of bioturbation would vary as benthic species went extinct. They found that the changes in bioturbation were dependent on the order in which the species went extinct and that extinction events representing the same loss of taxonomic diversity would result in different changes in ecology. This study investigates a portion of those changes. While the taxonomic changes of the Plio-Pleistocene extinction have been documented (Allmon et al., 1996b; Petuch, 1995; Stanley, 1986), the ecological interactions associated with the extinction event have not been as extensively studied.

Researchers can also use the fossil record to investigate changes in the behaviors associated with ecological interactions. Recent work examining changes in the behavior of paleo-organisms shows how an extinction event can affect interactions between two organisms without the extinction of either taxon. An example of such work was done by Dietl et al. (2004) who used fossil data in combination with live experiments to show that feeding behavior of muricid snails changed after the Plio-Pleistocene extinction in Florida. The researchers placed muricid snails in low-competition and high-competition
regimes with bivalve prey. In the low-competition tanks, the muricids exhibited similar behaviors to modern muricid snails in the wild; however, in the high-competition tanks, the snail’s behavior changed from umbo drilling to edge-drilling. Edge-drilling is a faster, but risky procedure because of the possibility that the clam can damage the proboscis by clamping down. Next the researchers investigated the fossil record of muricid predation across the Plio-Pleistocene extinction by calculating the percentage of shells drilled at the umbo or edge in the Pliocene and Pleistocene. While edge-drilling during the Pliocene occurred, no record of edge-drilling existed during the Pleistocene. Using the information from the live experiments, the researchers inferred that edge-drilling is a sign of high competition and that the lack of edge drills during the Pleistocene suggests that the competitive regime of the ecosystem was higher during the Pliocene.

Naticid Cannibalism

According to Polis (1981), cannibalism can be classified as an extreme form of interference competition, lowering the fitness of one individual through the predatory actions of another member of the species. Fox (1975a) indicated that cannibalism is a “normal phenomenon in many natural populations.” Many taxa including several species of fish, arthropods, and even mammals practice forms of cannibalism (Polis, 1981). Cannibals gain nourishment, reduce competition for food or shelter resources, and eliminate competitor’s genes from the gene pool by preying on another member of the species (Kelley and Hansen, 2007; Polis, 1981). Theoretical (Kelley, 1991), and experimental work (Claessen et al., 2000; Rudolf, 2008) suggest that cannibalism may be
used as a proxy for competition because cannibalism often occurs as essential resources become scarcer. It has been suggested that as prey abundance decreases or predator abundance increases, cannibalism helps reduce the predator population to stable levels (Claessen et al., 2000). Cannibalism by naticid snails has been shown to take place in nature and may be a result of prey selection to maximize energy gain per unit foraging time as shown by cost-benefit ratios (Kelley, 1991; Kelley and Hansen, 2007). These suggest that it is sometimes more beneficial for naticids to prey upon another member of their family than a species of bivalve.

Naticids are carnivorous, infaunal predators of mollusks, burrowing through marine sediments to drill into the shells of bivalves and gastropods (Kelley et al., 2001) (Figure 1). Naticids envelop their prey item in their foot and drill a typically beveled hole into the shell using a combination of rasping radula and acids (Kelley et al., 2001). This process can take anywhere from several hours to several days. The naticid then uses its proboscis to digest the prey item. This drilling behavior is preserved readily in the fossil record and can be used to determine patterns of predation in the past (Kitchell et al., 1981). Some research has concluded that drilled shells are more likely to be destroyed than whole shells (Roy et al., 1994); however, it is unlikely that the rates of this taphonomic process changed across the Plio-Pleistocene extinction and would affect comparisons of drilling frequency. Dietl and Alexander (2000) investigated changes in drilling location in confamilial naticid prey. The researchers found that drilling position changed over time to both cover the prey’s aperture and reduce the risk of prey escape and subsequent drilling of the predator. This previous work suggests that variation in community-level dynamics can be preserved in the drilling record of naticid snails.
Figure 1: Picture of a sample of naticids including *Euspira heros* and *Neverita duplicata.*

Figure 2: Geologic map of the Coastal Plain (Grey and Yellow) ranging from New Jersey to Florida. Map from: http://tapestry.usgs.gov/
Research Questions

This study addresses several aspects of confamilial ecological interactions among naticid snails. The questions governing this research include:

1. What was the frequency of cannibalism across the Plio-Pleistocene boundary and across the biogeographic boundary at Cape Hatteras?
2. Does naticid body size change across the Plio-Pleistocene and across the biogeographic boundary at Cape Hatteras?
3. Does naticid size influence frequencies of cannibalism?

Geologic Setting

Data were collected from several localities across the Atlantic Coastal Plain of North Carolina, South Caroline, and Virginia (Figure 2). The Atlantic Coastal Plain is a low-lying physiographic province adjacent to the Atlantic Ocean, and stretches from New Jersey to Florida. During the Plio-Pleistocene, deposition within shallow marine basins along the Coastal Plain was dominated by siliciclastic sedimentation. This project focused on three stratigraphic units north of Cape Hatteras, North Carolina: the Yorktown, Chowan River, and James City Formations, and three stratigraphic units south of Cape Hatteras: the Duplin, lower Waccamaw, and upper Waccamaw Formations (Figure 3). The Yorktown Formation correlates with the Duplin Formation, the Chowan River Formation correlates with the lower Waccamaw Formation, and the James City Formation correlates with the upper Waccamaw Formation, however, the correlations of
these units are not completely understood. For this reason, analyses comparing each unit across the biogeographic boundary were not done. These units represent a time interval from the Late Pliocene to the Early Pleistocene. These stratigraphic units are bounded by unconformities.

The Yorktown Formation extends from Maryland into northern North Carolina, and consists of several varying lithological units (Johnson et al., 2001). Ward and Blackwelder (1980) divided the Yorktown into four members: the Sunken Meadow, Rushmere, Mogarts Beach, and Moore House Members. This study focuses on the Moore House Member of the Yorktown Formation. The measured type section of the Moore House Member contains a calcareous upper layer of orange shell hash with some fine quartz sand and a very fossiliferous lower layer of tan, clayey calcareous sand (Johnson et al., 2001; Ward and Blackwelder, 1980). The mollusks of the Moore House Member include generally sub-tropical taxa; this represents the last appearance of these sub-tropical species in the fossil record north of Cape Hatteras (Krantz, 1990). The Moore House Member is geographically restricted to southeastern Virginia. Moore House Member sediments represent shallow water depths with high current and wave energies (Ward, 2008). Molluscan assemblages indicate normal salinities; however, some taxa found in the Moore House Member are known to live in brackish-water environments.

The Chowan River Formation is considered either late Pliocene or early Pleistocene in age. It is exposed mostly along the Chowan River in North Carolina; however, the Chowan River Formation does occur in southeastern Virginia (Ward, 2008). The Chowan River Formation is divided into two members, the lower Edenhouse
Member and the upper Colerain Beach Member (Blackwelder, 1981). The Edenhouse Member contains shelly, silty sands that are partially bioturbated. Two layers are present in the Edenhouse, a lower layer of shelly, poorly sorted, blue-green, medium quartz sand, and an upper layer of yellow, slightly shelly, fine to medium quartz sand (Blackwelder, 1981). The Colerain Beach Member contains yellowish gray micaceous clay, silt, and find subangular sand with lenses of fossils. A pebbly to bouldery unconformity rests on the Yorktown at the base of the Chowan River Formation with interbedded silty fine sand, clayey silt, and biofragmental sand lying on top of this base (Ward, 2008). Fossils indicate that the Edenhouse Member was deposited in the shallow subtidal zone during marine regression. This trend continues into the Colerain Beach Member (Blackwelder, 1981). A warm water fauna is present in the Chowan River Formation, including body fossils and trace fossils such as burrows (Krantz, 1990).

The James City Formation is considered to be early Pleistocene in age and is primarily exposed in northern North Carolina. The formation is composed primarily of unconsolidated calcareous sandy clays and argillaceous sands (DuBar and Solliday, 1963). These fine-to medium-grained quartz sands are blue-grey in color when fresh, and yellow-brown to red-brown when weathered. All units contain well-preserved fossil material. The James City Formation was deposited during a transgression related to global warming and melting ice (Blackwelder, 1981).

The Duplin Formation is present south of Cape Hatteras and corresponds to the Yorktown Formation, although evidence indicates that it was deposited in warmer waters (Richards, 1950). It extends from North Carolina into South Carolina. The Duplin is highly fossiliferous and contains very well-preserved fossils in a matrix of fragmented
shells (DuBar et al., 1974). The color of these deposits ranges from golden-yellow to bluish-grey. Noncalcareous sediments occur between lenses of fossils, and are made up of well to poorly sorted clayey sands and clays. It appears that, like the Moore House Member of the Yorktown Formation, the Duplin Formation was deposited during a regression of sea level.

The Waccamaw Formation is thought to be Pliocene to Pleistocene in age and may correspond to the Chowan River and James City Formations. It occurs in North Carolina from the Cape Fear River into South Carolina (Johnson et al., 2001). The lower Waccamaw is moderately well-sorted, clay and very fine to fine sands (DuBar et al., 1974) and is highly fossiliferous with well-preserved molluscan assemblages. Fresh exposures are bluish-grey while weathered material is orange or brown in color. The lower Waccamaw sediments grade into the upper Waccamaw layer with relatively few fossils. Species richness decreases drastically in the upper Waccamaw. These sediments consist of fine to medium quartz sands interbedded with clayey sands and clays. Faunal evidence indicates that the Waccamaw Formation was deposited in a range of shallow subtidal marine to brackish water environments.

These units represent different depositional environments as transgressions and regressions occurred across these areas. These different environments may affect the frequency of cannibalism across the extinction event and the biogeographic boundary. However, previous research has suggested that the spatial variability of naticids drilling was not related to substrate type, indicating that drilling frequency is not affected by environment (Hansen and Kelley, 1995). This suggests that naticids cannibalism can be investigated among these units regardless of environmental conditions.
Table 1: Sampling effect for stratigraphic units north and south of Cape Hatteras. Locality name: number of specimens, taxonomic richness per locality.

<table>
<thead>
<tr>
<th></th>
<th>Yorktown Formation</th>
<th>Chowan River Formation</th>
<th>James City Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moore House Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North of Cape Hatteras</td>
<td>Chuckatuck: 92, 6</td>
<td>Gomez Pit: 35, 2</td>
<td>Baven Hill: 22, 1</td>
</tr>
<tr>
<td></td>
<td>Rice’s Pit: 73, 6</td>
<td></td>
<td>Neuse River 1432: 33, 2</td>
</tr>
<tr>
<td></td>
<td>Brant’s Pit: 99, 6</td>
<td></td>
<td>Neuse River 1442: 20, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South of Cape Hatteras</td>
<td>Lumber River: 53, 4</td>
<td>Old Dock: 23, 2</td>
<td>Wilmington: 64, 4</td>
</tr>
<tr>
<td></td>
<td>Rayzor’s Farm: 53, 5</td>
<td>Register Quarry: 64, 4</td>
<td>Walker’s Bluff: 30, 1</td>
</tr>
<tr>
<td></td>
<td>Tar Heel River: 29, 3</td>
<td>Elizabethtown: 20, 2</td>
<td>Niells Eddy Landing: 78, 3</td>
</tr>
<tr>
<td></td>
<td>Kirby Pond: 103, 5</td>
<td>Acme 1446: 99, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acme 112: 117, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TU 870: 76, 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Old Dock (Petit): 115, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crescent Beach: 513, 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snake Island: 100, 4</td>
<td></td>
</tr>
</tbody>
</table>
Methodology

Sampling Strategy

Samples were collected from stratigraphic units before the Plio-Pleistocene extinction north and south of the biogeographic boundary represented by Cape Hatteras, after the first pulse of extinction north and south of Cape Hatteras, and after the second pulse of extinction north and south of Cape Hatteras. This allowed analysis of ecological interactions across the extinction event.

Field Methods

Naticids were float collected at two sites in North Carolina: Register Quarry (Figure 4) (lower Waccamaw Formation), and the Tar Heel River (Duplin Formation), and were sieved collected at the Lumber River locality (Duplin Formation) (Table 1). Register Quarry is located south of Cape Hatteras in North Carolina and is approximately 100m long by 50m wide. Naticids were collected from slump material located around the edges of the quarry. The outcrop at the Tar Heel River is located south of Cape Hatteras in North Carolina and is approximately 40m long and 30m high. The fossiliferous Duplin Formation material is located at the top of the outcrop. Naticids were collected from the slump material along the length of the outcrop. At Register Quarry and the Tar Heel River, researchers walked around the outcrop and collected all naticids observed. The Lumber River outcrop is located south of Cape Hatteras in North Carolina near the town of Lumberton. The locality is a river cut approximately 12m long by 5m high.
Naticids were sieved out of the sediment along the river because the outcrop is much smaller. Every specimen was collected regardless of the size or quality of preservation.

*Museum Collections*

Twenty-one float and bulk-collected samples from museum collections were processed in addition to field-collected samples. Samples from the Paleontological Research Institute, the Virginia Museum of Natural History, the Florida Museum of Natural History, and the Smithsonian Museum of Natural History were used. All samples contained at least 20 naticid specimens. A map of all field and museum-based collection localities used in this study is below (Figure 5).

*Sample Processing*

All naticids were identified to the species level using Coastal Plain monographs (Campbell, 1996; Ray, 1987). Each specimen was measured using digital calipers to determine length, height, and thickness in millimeters to the hundreds place (Figure 6). Outer and inner drill hole diameters were measured in specimens exhibiting drill holes (Figure 6). All specimens judged to be less than 85 percent complete were excluded from this study. Taxa identified in this study included: *Neverita duplicata*, *Euspira heros*, *Naticarius canrena*, *Tectonatica pusilla*, *Lunatia interna*, *Lunatia perspectiva*, *Polinices sp.*, and *Sinum chesapeakensis.*
**Data Analysis**

Data were used to determine the frequency of cannibalism, average size, and maximum size for each sample and for size-specific ranges within a sample. Cannibalism frequency for a sample was calculated by dividing the total number of drilled naticids in a sample by the total number of naticids in the sample. The geometric mean of body size for each individual specimen was calculated as the square root of the shell length multiplied by the shell height. Average and maximum size for the sample were calculated using this geometric mean. All data analyses were done in Microsoft Excel and SPSS version 16.0.

Cannibalism frequency data were non-normally distributed and a square root transformation was used to normalize the data. The mean cannibalism frequency rates for the Pliocene and Pleistocene and north and south of the biogeographic boundary were calculated.

In order to control for the large variation in sample size (from 75 individuals during the Pleistocene in the north to 1127 individuals during the Pliocene in the south), a resampling procedure was used. Resampling was completed using the sample function in R (R Core Development Team, 2005). Resampling was done with replacement and was standardized to the smallest sample size of 75 snail specimens. The presented results are based on 1000 replicate samples of 75 snail specimens across all localities within each time bin north and south of the geographic boundary. Samples were compared across geographic province and epoch using t-tests.
To test the relationship between naticid size and rate of cannibalism external drill hole diameter was used as a proxy for predator size. Naticid drill hole diameters were grouped into 1 mm size classes (0-1 mm, 1-2 mm, 2-3 mm, 3-4 mm, 4-5 mm, and 5-6 mm) to create different bins of predator size. Because naticids cannot cannibalize individuals that are too large and rarely drill individuals too small to provide sufficient nutrition, a potential prey size range was created for each drill hole class (Dietl, 2008). The potential prey size range was defined as the specimens with a geometric mean between the smallest and the largest sized drill hole in the predator class. Frequency of cannibalism was then calculated for each size class of drill hole by dividing the number of drilled specimens of a size class by the potential size range. This created a cannibalism frequency for each size class of drill hole. The overall frequency of cannibalism for all drill hole classes was used as the expected value.

Locality B: Neuse River 1432, Neuse River 1442, Baven Hill

Locality C: Tar Heel and Elizabethtown

Locality D: Lumber River and Razier Farm

Figure 4: Photo of a stratigraphic section from Register Quarry, NC (lower Waccamaw Formation)

Figure 5: Sites from field and museum collections. The yellow line represents the biogeographic boundary at Cape Hatteras. Yellow circles represent localities (2 localities are excluded because they lacked specific location information). Map from Google Earth.
Figure 6: *Euspira heros* with a naticid drill hole. Length, height, thickness, inner drill hole diameter, and outer drill hole diameter were measured on each specimen.
Results

*Frequency of Cannibalism across the Plio-Pleistocene and Biogeographic Boundaries*

Results showed a general trend of increasing cannibalism across the Plio-Pleistocene extinction and a greater frequency of cannibalism in the north across the biogeographic boundary at Cape Hatteras, North Carolina. Frequency of cannibalism data were first divided across the extinction event and across the biogeographic boundary using the entire data set. The frequency of cannibalism analysis across the Plio-Pleistocene (Figure 7) extinction includes localities both north and south of Cape Hatteras, North Carolina, and frequency of cannibalism analysis across the biogeographic boundary (Figure 8) includes localities from the Pliocene and the Pleistocene. To test for statistical significance, an ANOVA was used with size defined as a covariate. This attempts to remove any size-specific effects of cannibalism from the analysis. Both of these results were statistically significant, indicating that cannibalism became more common after the extinction event and more common north of Cape Hatteras than south. These results are suggestive of an increase in competition across these boundaries. An increase in the competitive regime could result from an increase in the number of naticids relative to prey items or a decrease in abundance of alternative prey taxa. Cannibalism can be beneficial or detrimental to a species. During times when food resources are scarce, cannibalism gives an organism another set of resources they can draw upon for nourishment. If one member of a species is cannibalistic and the other is not, then the potential pool of prey becomes larger for the cannibal.
When environmental stresses are high, cannibalism can help lower the abundance of predators to an appropriate carrying capacity. This helps reduce the competition for the diminishing food resources. In turn, genes that promote cannibalism would be passed on to the next generation as cannibals survived harsh environmental conditions and non-cannibals died from starvation. This benefit could drive levels of cannibalism to increase. During times when food resources are plenty, however, cannibalism could be harmful to a species. While cannibalism may impart the same advantages during times of plenty as times of scarcity, species that persist at high rates of cannibalism when alternative prey are present could cannibalize themselves to extinction. In addition, cannibalism is inherently dangerous because previous work has demonstrated that prey have the ability to kill predators (Dietl and Alexander, 2000). During times when alternative prey are abundant, attempting to cannibalize another individual could end a naticid’s chance to reproduce. More aggressive naticids which would tend to cannibalize more than others would be at a higher risk of becoming cannibalized because of increased contact with other naticids. This could drive levels of cannibalism to decrease as naticids which practiced high levels of cannibalism were subsequently cannibalized and removed from the gene pool producing fewer offspring than less aggressive naticids. It is interesting to note that this process would not remove cannibalism from naticid populations entirely, only increase or decrease the frequency of cannibalism. Cannibalism would still be necessary to control more aggressive naticids or populations would be preyed upon highly by a small group of hyper-cannibalistic naticids. These results may suggest that an increase in competitive regime occurred during the
Pleistocene and north of Cape Hatteras. This may be due to a decrease in prey abundance across the extinction event.

The increase in cannibalism seen across these boundaries could also be a result of sampling strategy or sample size. While naticids are not a rare species, their abundance in bulk samples is low. A combination of float sampling and bulk sampling was chosen for this study because it was unlikely that a sufficient number of individual naticids would be collected through bulk sampling alone. However, this introduces a problem into the data set; many of the samples were collected non-randomly. While efforts were made to ensure that sampling was completed randomly by collecting all naticids, regardless of preservation or size, bias may have been introduced into the sampling. For example, small naticids are much harder to find than large naticids, small naticids may not have been sampled at localities which were float collected. In addition, most of the samples used in this study were museum samples and the exact procedure for the collection of naticids is unknown. The difference between bulk and float sampling across the Plio-Pleistocene or biogeographic boundaries could be investigated by examining naticid data from bulk sampling.

Sample size could also account for the changes in frequency of cannibalism. While samples from south of Cape Hatteras during the Pliocene were plentiful, samples north of Cape Hatteras during the Pleistocene were rare, exhibiting only 75 individuals among 3 localities. With such a small sample size, it is possible to inflate the frequency of cannibalism by randomly picking an abnormally high number of drilled specimens. This may mean that the high rate of cannibalism during the Pleistocene and north of Cape Hatteras is not a real biological signal and may in fact be due to low sampling size. This
problem could be addressed by increasing the sample size or performing a resampling procedure.

Because this analysis spans either the Plio-Pleistocene or biogeographic boundaries, these results are not able to finely distinguish between frequency of cannibalism during the Pliocene and Pleistocene, north and south of Cape Hatteras. The comparison of the Pliocene to the Pleistocene units (Figure 7) includes localities from north and south of Cape Hatteras, and the comparison across Cape Hatteras (Figure 8) includes units from the Pliocene and Pleistocene. Therefore, it is necessary to further subdivide these units to distinguish patterns of cannibalism across these boundaries.

Data were separated into four spatiotemporal groups to test for differences between each epoch and geographic province: Pliocene North, Pliocene South, Pleistocene North, and Pleistocene South. An ANOVA with size defined as a covariate was also used to test for differences between these groups. Results showed similar trends to using the overall data set; comparisons across the Plio-Pleistocene extinction in the north (Figure 9A) and in the south (Figure 9D) exhibited an increase in cannibalism across Plio-Pleistocene extinction and comparisons across Cape Hatteras, North Carolina during the Pliocene (Figure 9B) and the Pleistocene (Figure 9C) exhibited higher frequency of cannibalism in the north. Each of these results was non-significant; however, these results demonstrate the same patterns as the comparisons across the Plio-Pleistocene and biogeographic boundaries using the entire data set. The large decrease in sample size that occurs when comparing these groups may be to blame for the lack of statistical significance. The number of localities for the spatiotemporal units ranged from 14-17 for the Pliocene, 3-7 for the Pleistocene, 3-4 for the north, and 3-14 for the south.
Figure 7: Results indicate that cannibalism increased across the Plio-Pleistocene extinction when considering localities north and south of Cape Hatteras, NC. This may suggest that competition is increasing after the extinction event. Error bars represent +/- 2 SE. $F_{18,6} = 6.045$; $p = 0.008$.

Figure 8: Results indicate that cannibalism increased across the biogeographic boundary at Cape Hatteras, NC when considering localities from the Pliocene and Pleistocene. This may suggest that levels of competition were higher north of Cape Hatteras. Error bars represent +/- 2 SE. $F_{7,17} = 5.291$; $p = 0.014$. 

30
Figure 9: No statistically significant difference was seen between the spatiotemporal units across the Plio-Pleistocene and biogeographic boundaries, however, these patterns mirror the analyses from the entire data set. With a larger sample size these results may suggest that levels of competition were greater north of Cape Hatteras during the Pleistocene. Error bars represent +/- 2 SE.
If we consider this trend to be a real biological pattern, then the increased frequency of cannibalism in the north relative to the south indicates that there is some geographic-specific factor that is influencing the cannibalistic tendency of naticids in the north. Even though cannibalism frequency is non-significant for these analyses, cannibalism during the Pleistocene from north to south is roughly 20 percent higher (Figures 9A and D). When considered with the comparisons across Cape Hatteras during the Pliocene and Pleistocene (Figures 9B and C), the difference between the frequency of cannibalism north and south of the biogeographic boundary is higher during the Pleistocene than the Pliocene by roughly 10 percent. This may be indicative of a more competitive system north of Cape Hatteras during the Pleistocene. The highest levels of cannibalism occur during this spatiotemporal unit and this may mean that alternative prey taxa were less abundant in the north during the Pleistocene. If the Plio-Pleistocene extinction targeted naticid prey taxa more heavily than naticids, then the relative abundance of prey taxa would decrease across the extinction event, potentially corresponding with an increase in competition. Then, if a geographic factor eliminated taxa north of Cape Hatteras, putting further pressure on naticid populations, we would see the greatest level of competition in the north during the Pleistocene.

Frequency of Cannibalism across Plio-Pleistocene Stratigraphic Units

Because the Plio-Pleistocene extinction occurred as a pulsed event, changes across stratigraphic units north and south of Cape Hatteras were examined. Formations were not compared across Cape Hatteras because correlation of the stratigraphy across
the biogeographic boundary is unclear. An ANOVA with a post-hoc Tukey test was used to test for differences among these formations. North of Cape Hatteras no statistically significant difference was seen between the Yorktown Formation and the James City Formation (Figure 10). The Chowan River Formation is only represented by one sample and was not included in this analysis. South of Cape Hatteras, a statistically significant difference was recorded between the Duplin Formation and the lower and upper Waccamaw Formations; however, no significant difference was seen between the lower and upper Waccamaw Formations (Figure 11). These results seem to support the general findings of the comparisons across the Plio-Pleistocene and biogeographic boundaries. If the Chowan River sample is not considered, then there is a trend of increasing cannibalism across the pulses of the Plio-Pleistocene extinction. Although these results are non-significant, it may be because the sample size for these analyses is extremely low. When considered with the statistically significant increase in cannibalism across the extinction event (Figure 7), there may be an increase in cannibalism across each formation. We would expect to see a general increase in cannibalism across each formation as the extinction event occurred as more species went extinct or were reduced in abundance. This is supported by Petuch (1995), who found that the Plio-Pleistocene extinction occurred in two distinct phases.
The Chowan River Formation is represented by only one sample and was not tested statistically. $F_{3,3} = 3.040; p = 0.157$

Figure 10: Results indicate that there is no statistically significant difference in the frequency of cannibalism between the Yorktown and James City Formations. Error bars represent +/- 2 SE.

Results indicate that there is a statistically significant difference in the frequency of cannibalism between the Duplin and lower Waccamaw Formations ($F_{5,8} = -0.1585; p = 0.022$) and the Duplin and upper Waccamaw Formation ($F_{5,3} = -0.2239; p = 0.014$). No statistically significant difference was seen between the lower Waccamaw and upper Waccamaw Formations ($F_{8,3} = -0.0654; p = 0.557$). Error bars represent +/- 2 SE.

Figure 11: Results indicate that there is a statistically significant difference in the frequency of cannibalism between the Duplin and lower Waccamaw Formations ($F_{5,8} = -0.1585; p = 0.022$) and the Duplin and upper Waccamaw Formation ($F_{5,3} = -0.2239; p = 0.014$). No statistically significant difference was seen between the lower Waccamaw and upper Waccamaw Formations ($F_{8,3} = -0.0654; p = 0.557$). Error bars represent +/- 2 SE.
Frequency of Cannibalism across the Plio-Pleistocene and Biogeographic Boundaries: Sample Size Standardization Using a Resampling Procedure

When the data were divided into each province and time bin (North Pliocene, North Pleistocene, South Pliocene, and South Pleistocene), sample sizes varied greatly (Table 1) due to difficulty obtaining samples from the Chowan River and James City Formations. Results based on a resampling to a standard sample size of 75 naticid snails exhibited the same patterns as the comparisons across epoch and geographic province; greater cannibalism was seen during the Pleistocene and north of Cape Hatteras, North Carolina (Figures 12 A-D). The resampling procedure implies that the patterns seen in this study are not due to the effects of sample size and instead may be caused by a biological signal. These results are consistent with an increase in competition across the Plio-Pleistocene extinction and north of Cape Hatteras. These statistically significant differences between levels of cannibalism within spatiotemporal units suggest that competition was rising during the Plio-Pleistocene extinction and from south to north across Cape Hatteras as naticids preyed on confamilials.
Figure 12: Resampling within spatiotemporal units shows a statistically significant difference in cannibalism across the Plio-Pleistocene extinction north and south of Cape Hatteras and across the biogeographic boundary during the Pleistocene. No statistically significant difference was seen north and south of Cape Hatteras during the Pliocene. Error bars represent +/- 2 SE.
Changes in Size across the Plio-Pleistocene and Biogeographic Boundaries

The average sizes (calculated as geometric mean) from samples before and after the extinction and north and south of the biogeographic boundary of all drilled and undrilled naticids were compared to determine changes in size. A t-test was used to determine differences in size across the Plio-Pleistocene and biogeographic boundaries. Across the entire data set, average size and maximum size did not show statistically significant changes across the Plio-Pleistocene boundary (Figure 13 A-B), and no statistically significant difference was seen in average size across the biogeographic boundary (Figure 13 C). However, a statistically significant change was seen across the biogeographic boundary when comparing maximum size; naticid maximum body size increased south of Cape Hatteras (Figure 13D). Overall, results show little to no difference in naticid size across the Plio-Pleistocene and biogeographic boundaries.

An increase in body size may give some naticids cannibalistic advantage over others. Also, in some systems, small individuals are able to outcompete larger individuals for resources, and cannibalism helps improve the fitness of large individuals (Claessen et al., 2000; Rudolf, 2008). We may expect to see a change in cannibalism not because of a change in competition, but because of a change in body size across the Plio-Pleistocene extinction or from north to south. However, little or no change in body size was seen in these analyses. In the only analysis returning a statistically significant result, the change in size was opposite of the direction of the change in cannibalism. Naticids are growing larger in the south where less cannibalism is occurring. This is opposite of what we would expect. From this we can infer that body size was not a cause of the changes in frequency of cannibalism seen in the previous results. Instead, this may be
due to changes in the levels of competition within the ecosystem. Similarly, when compared across geographic area and epoch, average and maximum naticid body size only showed a significant increase in maximum size south of Cape Hatteras, North Carolina during the Pleistocene (Figure 14 H). No statistically significant result was found between average or maximum size across the Plio-Pleistocene extinction and during the Pliocene (Figure 14 A-G). A naticid can only prey upon an individual smaller than themselves. This means that an increase in average size may not induce higher cannibalism if all naticids are increasing in size. They still will be drawing from the same cannibalistic prey pool if their size increases proportionately. An increase in maximum size may be able to induce a change in cannibalism because it means that certain individuals were becoming larger. If the entire population is becoming larger proportionately, then the potential prey pool stays the same. However, if maximum size increases while average size remains the same, it means that a small number of individual naticids are becoming much larger than other naticids in the population. This may mean that their potential prey pool increases. They may begin to cannibalize more frequently because they are able to eat a larger proportion of naticids and this could potentially drive up cannibalism. The only statistically significant change in this data is an increase in maximum size in the south during the Pleistocene (Figure 14 H). There is no corresponding change in average size (Figure 14 G). This indicates that individuals remained similar sizes across the biogeographic boundary during the Pleistocene except for naticids that were in the south. This does not support the hypothesis that no change in average size accompanied by an increase in maximum size would cause cannibalism to increase because the frequency of cannibalism increases from south to north across the
biogeographic boundary. While this may cause cannibalism frequency to increase in the south of Cape Hatteras during the Pleistocene, it is eclipsed by greater levels of cannibalism in the north.

To determine if size-specific effects of cannibalism influenced cannibalism across the Plio-Pleistocene extinction, naticids were grouped into 10mm size bins and were divided into drilled and non-drilled specimens. They were then graphed as a stacked percent histogram to determine how drilling frequency within size classes changed across the Plio-Pleistocene extinction and Cape Hatteras, North Carolina (Figure 15 A-D). The distribution of drilled specimens remains similar across the Plio-Pleistocene extinction and biogeographic boundary, indicating that size-specific effects were not the cause of the increase in cannibalism across these boundaries. Also, these graphs indicate a higher level of cannibalism during the Pleistocene and north of Cape Hatteras. In addition, outer drill hole diameter was plotted against prey size for all drilled specimens to determine if there was a change in the size of conical prey naticids were drilling (Figure 16 A&B). These results also indicated little change across the Plio-Pleistocene or biogeographic boundaries.
Figure 13: Results indicate little to no change in naticid body size across the Pliocene-Pleistocene and biogeographic boundaries. This suggests that changes in cannibalism are not due to changes in naticid size. Error bars represent +/- 2 SE.
Figure 14: Results indicate little to no change in naticid body size across spatiotemporal units suggesting that changes in cannibalism are not due to changes in size-specific interactions between naticids. Error bars represent +/- 2 SE.
Figure 15: When divided into 10mm size bins, naticid cannibalism exhibits similar distributions before and after the extinction event, and north and south of the biogeographic boundary.
Figure 16: Outer drillhole diameter (ODH) vs. prey size indicates that naticid predators were preying on similar sized naticids across the Plio-Pleistocene and biogeographic boundaries.
When considering resampled data, patterns remained similar for average and maximum size across the Plio-Pleistocene extinction and biogeographic boundary. A t-test was used to test for differences between these groups. Resampled data showed statistically significant differences in size across each spatiotemporal unit (Figures 17 A-H). Even though these relationships are significant, the amount of change from one unit to the other is small. While this indicates a change in body size across the Plio-Pleistocene extinction this could be due to a very small increase in general body size of naticids. The largest change occurs in maximum size across the Plio-Pleistocene extinction in the north when naticids decrease in body size by roughly 2 centimeters. Naticid sizes exhibit the same pattern across the Plio-Pleistocene extinction north and south of the biogeographic boundary. This seems to suggest that naticids do actually decrease in size across the extinction event. It is possible that this change in body size would affect the frequency of cannibalism across these boundaries; however, it seems unlikely because average and maximum size is decreasing proportionately to each other north and south of Cape Hatteras. The average naticid and the largest naticid are becoming smaller together in similar proportions; this suggests that there is not a size-specific factor associated with the increase in cannibalism. It is more likely that factors associated with the extinction event put selective pressures on naticids which caused them to increase their rates of cannibalism.
Figure 17: A statistically significant change in average and maximum size was seen in each spatiotemporal unit. There is a general trend of decreasing size across the Plio-Pleistocene extinction and an increase in size south of Cape Hatteras with the exception of average size during the Pliocene, which was greater north of Cape Hatteras. Error bars represent +/- 2 SE.
Effects of Naticid Predator Size on the Frequency of Cannibalism

When naticid predator sizes are compared based on the entire data set using external drill hole diameter as a proxy for size, results indicate that there is no size selectivity for naticid cannibals; smaller individuals cannibalize as readily as larger individuals (Figure 18). External drill hole diameter was compared across 6 size classes of drill holes and a chi-square test was used to determine differences between the drill hole size classes. Results were not statistically significant, indicating that larger individuals do not cannibalize other naticids more than smaller individuals. This result is contrary to cannibalistic tendencies seen in other organisms in which the largest individuals perform the most cannibalism (Claessen et al., 2000; Rudolf, 2008). One of the major differences between naticids and these systems is that naticids are able to cannibalize others as soon as they start feeding as juveniles. This means that cannibalism can occur in any size class as long as the predator is larger than the prey. For young and old naticids, cannibalism is always an option and may be a stable part of their diet which could fluctuate depending on environmental conditions.
Figure 18: No statistically significant difference was seen in percent cannibalism between drill hole classes. Chi-square = 2.826 ; p = 0.727
**Discussion**

When including the entire data set, a statistically significant difference was seen between the frequency of cannibalism across the Plio-Pleistocene and biogeographic boundaries suggesting that naticids were performing more acts of cannibalism in the north and after the extinction event. Although examining differences between cannibalism frequency by dividing each area and epoch into groups (North Pliocene, North Pleistocene, South Pliocene, and South Pleistocene) did not exhibit statistically significant results, this may be due to a large drop in sample size. The resampling procedure indicated significant results across the Plio-Pleistocene extinction and across Cape Hatteras, North Carolina. This suggests that increasing sample size would produce a statistically significant difference between these groups. Little to no difference was seen in naticid body size across the Plio-Pleistocene and biogeographic boundaries and there seems to be no difference in the frequency of cannibalism between large and small individuals.

These changes in rates of cannibalism may represent a change in the competitive regime of the benthic system after the Plio-Pleistocene extinction and north of Cape Hatteras. I originally hypothesized that greater cannibalism would be seen during the Pliocene and south of the biogeographic boundary because the extinction event was more severe north of Cape Hatteras (Allmon et al., 1996b), potentially leaving resource niches open for naticids. These results, however, do not support this hypothesis. Alternatively, changes in the environment after the Pliocene may have caused localized extinction north of Cape Hatteras, removing alternative prey items for naticids. As the abundance of prey...
items decreased, competition for the remaining prey would increase, potentially driving naticids towards cannibalism.

Cannibalism may increase in a high competition environment because it may result in an advantage for the cannibal. Cannibalism has three major benefits: it provides nourishment for the cannibal, it removes competitors from the environment, and it removes the competitor’s genes from the gene pool (Fox, 1975b; Polis, 1981). However, cannibalism can be dangerous for organisms because the roles of predator and prey can easily switch, and the original cannibal can become cannibalized (Dietl and Alexander, 2000). If the frequency of cannibalism is too high, then species could reduce their own abundance, prey upon potential mates, or prey upon your own progeny, potentially leading to extinction. As discussed earlier, this behavior may be beneficial in environments where food resources are low. When alternative prey are not available naticids may increase their frequency of cannibalism in order to compensate for the loss of prey items. Previous research has shown that there is an inverse relationship between cannibalism and alternative prey abundance; as prey abundance decreases, cannibalism increases (Fox, 1975b; Polis, 1981). Cannibalism could be a mechanism to decrease competition by stabilizing predator populations to the carrying capacity while at the same time gaining needed nourishment. If predation of organisms prevents interspecific competition by reducing the size of the population (Sih et al., 1985), then confamilial predation of naticids would reduce competition among naticids. Therefore, we would expect that if the increase in naticid cannibalism across the Plio-Pleistocene extinction was due to an increase in competitive regime, then the abundances of alternative prey
taxa would decrease across the extinction event and the biogeographic boundary, especially during the Pleistocene.

This question was investigated using paleocommunity data from Huntoon (1999). Huntoon’s data were collected across several Coastal Plain stratigraphic units, including the Waccamaw, James City, Flanner’s Beach, and Neuse Formations. The percent abundance, number of complete drill holes, and drilling frequency were used. For bivalves, the drilling frequency is defined as:

\[
\frac{\text{# of drilled valves}}{\left(\frac{\text{# of valves}}{2}\right)}
\]

The analysis included here only examined the Waccamaw and James City Formations, which span the Plio-Pleistocene boundary. While the formation names imply that the comparison is across the biogeographic boundary, the James City Formation sample was collected right on the biogeographic boundary. This analysis only examines the community south of Cape Hatteras across the extinction event. Huntoon’s samples were collected as bulk samples and all specimens were identified to species level. This data was imported into Microsoft Excel and SPSS version 16.0 for analysis.

Analysis indicated a decrease in the overall drilling frequency across the Plio-Pleistocene extinction from 11 percent of the community during the Pliocene to 6 percent during the Pleistocene (Figure 19 A&B); also, when considering only species that naticids drill, the Potential Prey Pool, drilling frequency decreases from 14 percent during the Pliocene to 7 percent during the Pleistocene (Figure 19 C&D). In addition, the relative abundance of prey items increases across the extinction events by 11 percent (Figure 20 A&B).
Figure 19: Total drilling frequency (A&B) and prey item drilling frequency (C&D) decrease across the Plio-Pleistocene extinction
Figure 20: Naticid prey abundance increases across the Plio-Pleistocene extinction.

Figure 21: Predator to prey abundance decreases drastically across the Plio-Pleistocene extinction.
This suggests that prey items are becoming more available to predators across the extinction event as they become more abundant in the community. However, the increase in cannibalism documented here could also be due to an increase in the predator to prey ratio. This does not seem to be the case because the ratio of predators to prey decreases across the extinction event by 11 percent (Figure 21 A&B). Predators are becoming less common in the community after the Plio-Pleistocene extinction. However, we also see that cannibalism is increasing in this data set (Figure 22). This may be because naticids are becoming more common relative to other predators. Naticids increase from 1.1 percent relative abundance during the Pliocene to 1.8 relative abundance during the Pleistocene. This represents a 17 percent increase in the ratio of naticids to other predators (Figure 23 A&B) and no species of naticids went extinct across the Plio-Pleistocene boundary. This is odd because naticids are becoming a more prominent member of the predatory as drilling frequency is decreasing overall. These results are not consistent with the hypothesis that increasing competition drove naticids to perform more acts of cannibalism because alternative prey items were not present.

These results suggest it is possible that as naticids were becoming more prominent in the community they began to encounter each other more frequently. As this occurred they began to drill each other more frequently. This would seem to suggest that naticids drill the first individual of a prey species that they come across; however, previous research has claimed that naticids have a preference for certain prey items (Kitchell et al., 1981). This begs the question, what were naticids eating before and after the extinction event? Victims, survivors, and originators were determined using the Huntoon data.
Figure 22: Cannibalism increases across the Plio-Pleistocene extinction in the Huntoon (1999) data.

Figure 23: Naticids increase in relative abundance as compared to other predators across the Plio-Pleistocene extinction.
All species present in the Pliocene only were classified as victims of the extinction event, all species present in the Pleistocene only were classified as originators, and species in both the Pliocene and Pleistocene were classified as survivors. Seventeen percent of the abundance of the community during the Pliocene was made up of victims of the extinction event while these species represented 20 percent of the naticids drilling during this time interval (Figure 24 A&C). In contrast, originators made up only 5 percent of the community during the Pleistocene and only 4 percent of the drilling (Figure 24 B&D). This suggests that survivors of the extinction event became a larger component of the naticids diet and originators did not fill the gaps in diet left by the species that went extinct across the extinction event. Also, when considering cannibalism within the diet of naticids, cannibalism represented 1 percent of the predation on survivors during the Pliocene but 5 percent during the Pleistocene. This corresponds with the increase in cannibalism seen in the research presented in this study (Figure 25 A&B). In addition, while predators represented 10 percent of the abundance of the victims of the extinction event, predators represented 19 percent of the abundance of the originators. This suggests that prey taxa were not replaced after the extinction event. Together, these results may mean that while the group of prey taxa as a whole was increasing across the extinction event, the preferred prey taxa were going extinct or reducing in abundance, creating a smaller prey pool for naticids.
Figure 24: Victims of the extinction event made up a larger portion of the community than originators (A&B) and a larger portion of the drilling frequency (C&D).

Figure 25: When cannibalism is examined within the drilling frequency, cannibalism increases across the Plio-Pleistocene extinction.
If naticids do prey on taxa preferentially, then the most frequently drilled taxa would be the preferred taxa during a time period. The 5 taxa with the greatest amount of drill holes are *Caryocorbula auroraensis*, *Chione latilirata*, *Glycymeris Americana*, *Pleuromeris decemcostata*, and Oysters during the Pliocene and *Crassinella lunulata*, *Pleuromeris decemcostata*, *Caryocorbula auroraensis*, *Gouldia metastriatum*, and *Pleuromeris auroraensis* during the Pleistocene. The top 5 species during the Pliocene will be referred to as the Pliocene preferred taxa and the top 5 species during the Pleistocene will be referred to as the Pleistocene preferred taxa. If these preferred taxa groups are considered, both represent 44 percent of all drill holes during their time period (Figure 26 A&B). During the Pliocene, 11 percent of the abundance of the Pliocene preferred taxa are victims of the extinction event while 0 percent of originators represent Pleistocene preferred taxa. This suggests that originators are not being drilled heavily and are not replacing extinct taxa in terms of ecological interactions with naticids.

If the abundance of the preferred taxa decreased across the extinction event, then a large portion of the diet of naticids would not be present during the Pleistocene. Many of the species drilled by naticids only represent a small number of individuals, and may have been drilled by naticids occasionally, but do not represent a group to taxa naticids drill often. If the abundance of these species decreases across the Plio-Pleistocene boundary decreased, then this could have caused an increase in competition for these food resources, and driven the observed increase in cannibalism.
Figure 26: The 5 most commonly drilled prey from both the Pliocene and Pleistocene represent 44% of drill holes in the sample. However, during the Pliocene, 11% of the drill holes present are in species that go extinct while in the Pleistocene, 0% of the drill holes present are in species that originate.
When the abundance of both groups of preferred prey taxa are considered during the Pliocene and the Pleistocene, the abundance of the Pliocene preferred prey taxa decreases across the extinction event while the abundance of the Pleistocene preferred taxa remains the same. The Pliocene preferred taxa decrease from a relative abundance of 37 percent during the Pliocene to 19 percent during the Pliocene (Figure 27 A&C). In contrast, the relative abundance of the Pleistocene preferred taxa remains the same at 17 percent during the Pliocene and 17 percent during the Pleistocene (Figure 27 B&D). This suggests that the Pliocene preferred taxa were affected by the extinction event while Pleistocene preferred taxa were not.

As the abundance of the Pliocene preferred prey decreased naticids would have had to switch food sources for survival. They began to prey upon the Pleistocene preferred taxa, but these species made up a smaller set of prey items because their abundance was less than the Pliocene preferred prey. This means that the abundance of preferred taxa, almost half of the drilled specimens during the Pliocene and Pleistocene, was decreasing across the extinction event. This decrease in the abundance of preferred prey taxa could have caused an increase in the competitive regime by reducing food resources. After the extinction event naticids did not switch prey and begin drilling many originating taxa, meaning that the majority of the potential prey pool was made up of the survivors of the extinction event, which represent only 80 percent of the drilled specimens from the Pliocene. At the same time, the abundance of naticids in the community was increasing. More food resources would be needed to sustain this population. These factors would result in increased competition for prey items naticids prefer.
Figure 27: The Pliocene preferred prey taxa decrease in abundance across the Plio-Pleistocene extinction (A&C) while the Pleistocene preferred prey taxa do not (B&D). This suggests that the Pliocene preferred taxa were affected by the extinction event and reduced the potential prey pool of preferred items for naticids.
The decrease in drilling frequency can be explained because when all prey items are included, the majority of which only exhibit a small number of drill holes, the abundance of prey items increases across the extinction event. This inflates the denominator of drilling frequency, lowering drilling frequency in the community after the extinction event. It is possible that after the extinction event naticids began to prey more heavily on survivors, including confamilials in order to make up for the taxa that went extinct across the Plio-Pleistocene boundary. These results support the results shown in this study, that an increase in cannibalism occurred across the Plio-Pleistocene boundary, and support the hypothesis that this increase was due to an increase in the competitive regime across the extinction event. However, instead of the abundances of all species decreasing, the abundances of species that naticids drill most often decreases. While alternative prey are available, naticids are not switching to these alternative prey items and may be increasing their levels of cannibalism in order to compensate for this loss of prey.

One problem with these analyses concerns the sample size of the two localities used with the Huntoon data. The Pliocene unit from the lower Waccamaw formation contained only 1046 specimens while the Pleistocene unit from the James City Formation contained 4228 specimens. Without controlling for the amount of specimens in a sample, it is possible that metrics like species richness would be inflated in the James City Formation because the high number of specimens would make it more likely that rare species would be present in the sample. In order to control for this, a rarefaction procedure could be done. Rarefaction helps compare the species richness of two samples of different size by estimating the amount of species that would be found if the two samples had the same number of individuals. This would allow a comparison of how the
extinction event affected species across the Plio-Pleistocene boundary and may result in statistically removing rarer species from the potential prey pool, increasing the amount of drilling frequency during the Pleistocene. Also, it is important to increase the number of localities to examine the effect of spatial variability of these results. This data represents one locality from the Pliocene and one locality from the Pleistocene. It would be useful to increase the number of samples to look at how the community responded to the Plio-Pleistocene extinction and expand the analysis north of the biogeographic boundary to capture information about how systems north of Cape Hatteras responded to the extinction event.

Future work could attempt to determine the cause of the Plio-Pleistocene extinction. The two major proposed causes of the Plio-Pleistocene extinction are ocean cooling due to glaciation and a decrease in primary productivity. The question remains, what factor truly influenced the extinction event across the Plio-Pleistocene boundary? One way to test these hypotheses would be to use conventional metrics for temperature and productivity. Allmon et al (1996a) investigated vertebrate and invertebrate paleontological data such as size of suspension feeders, along with isotopic fossil data and concluded that productivity decreased in Florida across the Plio-Pleistocene boundary. A similar study could be completed across Cape Hatteras and the Plio-Pleistocene boundary similar in scope to this study. Carbon-14 and Oxygen-18 isotopes are commonly used as proxies for productivity and temperature respectively, diversity and abundance of microfossil data, especially foraminifera and ostracods are used to reconstruct paleoclimate and nutrient regimes, and the size of a species’ range may positively correlate with their temperature tolerance. However, it may also be possible to
determine the cause of the Plio-Pleistocene extinction using community level and geographic range data.

In order to determine if a decrease in productivity or temperature caused this event using naticid cannibalism data then we must ask, why did the abundance of their prey taxa decrease? Naticids have been known to live in cold waters, they exhibit a wide geographic range and are found along the coast of the United States from Massachusetts to Texas (Abbott, 1974). If a cooling event occurred during the Pliocene, then naticids may have been able to cope with the change in temperature themselves. Alternative prey taxa, however, may not have been as able to survive the cooling ocean waters as naticids, decreasing their abundances. As their abundances decreased, competition among naticids for food resources would rise, and could result in an increase in cannibalism. Similarly, if a decrease in productivity was to blame for the Plio-Pleistocene extinction then filter feeding prey taxa would begin to decrease in abundance and naticids would prey upon a greater proportion of prey taxa in order to obtain the nutrients needed for survival. As preferred prey taxa became less abundant, competition would increase, and naticids would resort to cannibalism in order to survive.

By plotting the geographic range of each species during the Pliocene and the Pleistocene, it is possible to observe how these ranges change over the extinction event. If ocean cooling caused the extinction event, then we would expect to see naticids prey taxa migrate south into warmer waters, driving up levels of cannibalism in areas the prey taxa migrated from. This could not exclude a combination of temperature and productivity as a cause; however, if the diversity of filter feeding mollusks did not decrease across the extinction event then this would be strong evidence that a decrease in
productivity did not cause the Plio-Pleistocene extinction. In contrast, if the geographic ranges of prey species stayed the same or increased northward, then cooling temperature as a cause of the Plio-Pleistocene extinction would not be reasonable because prey species would be moving into colder waters during the Pleistocene. If this coincided with a decrease in the diversity of filter feeding mollusks, then this would be evidence that productivity was the cause of the Plio-Pleistocene extinction.
Conclusions

The results from this study indicate that levels of naticid cannibalism differ across the Plio-Pleistocene boundary and the biogeographic boundary at Cape Hatteras, North Carolina suggesting a change in the ecological interactions between organisms in this system. This study found that frequency of cannibalism of naticid snails was higher during the Pleistocene after the extinction event and north of Cape Hatteras, North Carolina. In addition, this study found that there was little to no change in naticid body size across these spatiotemporal areas and no difference in the frequency of cannibalism between small and large individuals.

When resampled to standardize for sample size, results remained similar and were statistically significant when comparing frequency of cannibalism across spatiotemporal areas. This suggests that the pattern of naticid cannibalism seen here is not due to the effects of sample size and the original analyses would increase in statistical significance if more samples were collected.

When considered in context with previous research, these results seem to suggest an increase in the competitive regime of the ecosystem after the Plio-Pleistocene extinction and north of Cape Hatteras, North Carolina. This area may have experienced differences in the extinction event that govern the surviving lineages such as the deflection of the Gulf Stream at Cape Hatteras during the Pleistocene. This could have caused preferred naticid prey species to decrease in abundance, putting pressure on surviving naticids which may have lead to a greater frequency of cannibalism.
These results suggest that it may be possible to use levels of naticid cannibalism as a proxy for the level of competition experienced in a community. We can use this information to define baselines to compare to modern extinctions. By investigating the amount of cannibalism in modern systems, we can track ecological interactions between organisms as well as abundances of taxa in order to determine the health of an ecosystem. If naticid cannibalism is particularly high in an area, it may mean that alternative prey taxa are below normal levels of abundance and that the health of that ecosystem is in question. Rates of cannibalism can be used as another metric to help determine changes in competition and track modern levels of extinction.
Acknowledgements

I never considered paleontology as a topic I would study. I liked dinosaurs as much as the next third grader, but not enough to pursue fossils into college. Instead, I found myself in the biology department preparing to teach high school science. Then in the spring of 2007 my friend convinced me to take paleontology with her. It would fulfill credit hours for my biology major and she assured me that the professor was fantastic. I agreed and suddenly I was indebted to her for making my take my first paleontology class. When I look back, that was what started me upon the path I am on today.

Over the past two and a half years I’ve been able to delve into the fossil record under the guidance of some of the most intelligent and generous people I’ve ever met. First, I would like to thank my two mentors Dr. Rowan Lockwood and Dr. Karen Layou. It is difficult to describe how much my two professors have helped me grow as a scientist and a person. Their doors are always open for a quick question that ends up taking over an hour, or just to listen to me complain about my other classes. They have been incredibly generous, sharing their time and their lives to get to know a student who just likes to play with fossils. They demand excellence, and push me to produce the best work I can accomplish while giving me the guidance I need to do it. The greatest praise I can give them is that they are the best teachers I’ve ever had.

While I started my studies in paleontology at the College of William and Mary, I immersed myself in the fossil record at the University of North Carolina at Wilmington. During the summer of 2008 I participated in a REU program lead by Dr. Patricia Kelley, Dr. Greg Dietl, and PhD. Student Christy Visaggi. Over the course of the summer they
taught me how to be a paleontologist, and began helping me structure the work that would become this thesis. Their dedication to shaping future paleontology students gave me the knowledge and confidence I needed to pursue my passion. Their guidance allowed me to see what research in the fossil record is really like, and put me on a path to pursue these studies in the future. Dr. Kelley has been extremely supportive of this project, acting as a committee member and giving feedback on this thesis and my project in general. I have worked with Dr. Dietl all along the east coast collecting samples from the field and museums. His knowledge of the Coastal Plain and fossil organisms has been indispensible. Without Christy Visaggi’s help in areas from designing this project to giving directions around Wilmington, North Carolina, this project would not have been completed. Her help and friendship was essential to my success last summer.

I would also like to thank Roger Portell and Dr. Lauck “Buck” Ward for their assistance collecting samples from their fantastic collections at the Florida Museum of Natural History and the Virginia Museum of Natural History. These collections were critical to the completion of this project. In addition I would like to thank the Staff at the Paleontological Research Institute for their help collecting samples from the PRI collections.

This research was supported in part by a Howard Hughes Medical Institute grant through the Undergraduate Biological Sciences Education Program to the College of William & Mary, an Undergraduate Research Grant from the Southeastern Section of The Geological Society of America, and the SWFFC Brayfield Award.
A huge thank you goes to the NSF REU in Biodiversity students from 2009, Stephen Durham, Pedro Monarrez, Elizabeth Graybill, Jessica Lambert, Jennifer Toledo-Rivera, Kevin Selders, Brad Parnell, and Josh Poole. From collecting snails in the middle of a thunderstorm, to dollar tacos, they never let me down. My geology and paleo lab mates, Kate McClure, Karin Ohman, Sean Moran, Christina Byrd, Amy Rarig, Alex Olaya, Claire Still, and Lydia Cuker helped enormously with encouragement, suggestions, and feedback on ideas.

Finally I would like to thank my friends who have been so supportive and accepting of the reasons I never see them, and my family who has helped me pursue this passion to graduate school next year.

Thank you all so much.
References


Appendix

Raw data from each locality is presented in this appendix. Measurements for Length, Height, Thickness, Outer Drillhole Diameter, and Inner Drill Hole Diameter are recorded in millimeters. Hole Sector corresponds to Drill Hole Sector as is measured by the procedure described in Kelley, 1991. Numbers in the Notes section indicate the angle of drill holes. Location information is included next to the locality name.
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>63.89</td>
<td>49.61</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>28.59</td>
<td>26.74</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-3</td>
<td>Euspira</td>
<td>heros</td>
<td>19.16</td>
<td>18.65</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-4</td>
<td>Euspira</td>
<td>heros</td>
<td>21.88</td>
<td>21.68</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-5</td>
<td>Euspira</td>
<td>heros</td>
<td>56.8</td>
<td>58.52</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>44.24</td>
<td>36.15</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-7</td>
<td>Euspira</td>
<td>heros</td>
<td>24.15</td>
<td>24.3</td>
<td>0.73</td>
<td>3.44</td>
<td>1.73</td>
<td>2</td>
<td>168</td>
</tr>
<tr>
<td>OD-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.45</td>
<td>38.1</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.12</td>
<td>29.24</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.33</td>
<td>28.55</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.84</td>
<td>14.47</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.47</td>
<td>18.61</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>80.5</td>
<td>73.92</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>64.5</td>
<td>51.05</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-15</td>
<td>Euspira</td>
<td>heros</td>
<td>21.25</td>
<td>21.77</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.87</td>
<td>25.28</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-17</td>
<td>Euspira</td>
<td>heros</td>
<td>8.19</td>
<td>8.72</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>45.05</td>
<td>36.25</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-19</td>
<td>Euspira</td>
<td>heros</td>
<td>33.9</td>
<td>40.9</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-20</td>
<td>Neverita duplicata</td>
<td>24.08</td>
<td>19.77</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-21</td>
<td>Neverita duplicata</td>
<td>28.95</td>
<td>22.76</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-22</td>
<td>Neverita duplicata</td>
<td>47.2</td>
<td>42.67</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD-23</td>
<td>Neverita duplicata</td>
<td>15.05</td>
<td>11.14</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>LR-1</td>
<td>Euspira</td>
<td>heros</td>
<td>9.07</td>
<td>9.2</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-2</td>
<td>Euspira</td>
<td>heros</td>
<td>9.12</td>
<td>9.69</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-3</td>
<td>Euspira</td>
<td>heros</td>
<td>9.18</td>
<td>8.21</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-4</td>
<td>Euspira</td>
<td>heros</td>
<td>10.62</td>
<td>10.84</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-5</td>
<td>Euspira</td>
<td>heros</td>
<td>11.41</td>
<td>11.12</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-6</td>
<td>Euspira</td>
<td>heros</td>
<td>11.7</td>
<td>11.96</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-7</td>
<td>Naticarius</td>
<td>canrena</td>
<td>13.11</td>
<td>13.08</td>
<td>0.96</td>
<td>4.21</td>
<td>2.96</td>
<td>3</td>
<td>239</td>
</tr>
<tr>
<td>LR-8</td>
<td>Naticarius</td>
<td>canrena</td>
<td>13.45</td>
<td>12.95</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-9</td>
<td>Euspira</td>
<td>heros</td>
<td>13.65</td>
<td>13.77</td>
<td>0.44</td>
<td>2.22</td>
<td>1.27</td>
<td>4</td>
<td>227</td>
</tr>
<tr>
<td>LR-10</td>
<td>Naticarius</td>
<td>canrena</td>
<td>13.73</td>
<td>13.9</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-11</td>
<td>Naticarius</td>
<td>canrena</td>
<td>13.81</td>
<td>12.89</td>
<td>0.56</td>
<td>2.4</td>
<td>1.61</td>
<td>3</td>
<td>206</td>
</tr>
<tr>
<td>LR-12</td>
<td>Euspira</td>
<td>heros</td>
<td>13.98</td>
<td>14.97</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-13</td>
<td>Euspira</td>
<td>heros</td>
<td>15.27</td>
<td>14.35</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-14</td>
<td>Euspira</td>
<td>heros</td>
<td>15.35</td>
<td>15.36</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-15</td>
<td>Naticarius</td>
<td>canrena</td>
<td>15.65</td>
<td>15.19</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-16</td>
<td>Naticarius</td>
<td>canrena</td>
<td>16.52</td>
<td>16.74</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-17</td>
<td>Euspira</td>
<td>heros</td>
<td>18.31</td>
<td>17.9</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-18</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.38</td>
<td>16.37</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-19</td>
<td>Sinum</td>
<td></td>
<td>18.71</td>
<td>10.36</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-20</td>
<td>Naticarius</td>
<td>canrena</td>
<td>20.46</td>
<td>19.58</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-21</td>
<td>Naticarius canrena</td>
<td>20.47</td>
<td>20.63</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-22</td>
<td>Naticarius canrena</td>
<td>21.29</td>
<td>21.04</td>
<td>0.52</td>
<td>4.11</td>
<td>2.64</td>
<td>2</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>LR-23</td>
<td>Neverita duplicata</td>
<td>21.3</td>
<td>16.42</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-24</td>
<td>Naticarius canrena</td>
<td>21.38</td>
<td>20.19</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-25</td>
<td>Naticarius canrena</td>
<td>21.78</td>
<td>20.25</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-26</td>
<td>Euspira heros</td>
<td>22.12</td>
<td>24.97</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-27</td>
<td>Naticarius canrena</td>
<td>22.29</td>
<td>21.58</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-28</td>
<td>Euspira heros</td>
<td>22.42</td>
<td>21.78</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-29</td>
<td>Euspira heros</td>
<td>22.52</td>
<td>24.09</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-30</td>
<td>Naticarius canrena</td>
<td>22.75</td>
<td>23.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-31</td>
<td>Euspira heros</td>
<td>22.98</td>
<td>23.3</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-32</td>
<td>Naticarius canrena</td>
<td>23.58</td>
<td>21.74</td>
<td>0.77</td>
<td>3.25</td>
<td>1.96</td>
<td>1</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>LR-33</td>
<td>Euspira heros</td>
<td>23.71</td>
<td>20.92</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-34</td>
<td>Naticarius canrena</td>
<td>23.92</td>
<td>22.43</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-35</td>
<td>Naticarius canrena</td>
<td>24.33</td>
<td>21.9</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-36</td>
<td>Euspira heros</td>
<td>24.81</td>
<td>25.5</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-37</td>
<td>Euspira heros</td>
<td>25.24</td>
<td>23.48</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-38</td>
<td>Naticarius canrena</td>
<td>26.5</td>
<td>27.62</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-39</td>
<td>Naticarius canrena</td>
<td>26.7</td>
<td>26.53</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-40</td>
<td>Naticarius canrena</td>
<td>27.35</td>
<td>26.25</td>
<td>0.61</td>
<td>4.61</td>
<td>2.93</td>
<td>2</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>LR-41</td>
<td>Euspira heros</td>
<td>28.65</td>
<td>27.07</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-42</td>
<td>Naticarius canrena</td>
<td>28.71</td>
<td>28.29</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-43</td>
<td>Euspira heros</td>
<td>29.08</td>
<td>26.75</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-44</td>
<td>Naticarius canrena</td>
<td>29.67</td>
<td>28.76</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-45</td>
<td>Naticarius canrena</td>
<td>29.92</td>
<td>28.72</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-46</td>
<td>Naticarius canrena</td>
<td>31.5</td>
<td>29.82</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-47</td>
<td>Naticarius canrena</td>
<td>31.59</td>
<td>29.67</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-48</td>
<td>Naticarius canrena</td>
<td>33.19</td>
<td>34.41</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-49</td>
<td>Naticarius canrena</td>
<td>33.37</td>
<td>29.42</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-50</td>
<td>Naticarius canrena</td>
<td>33.96</td>
<td>34.63</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-51</td>
<td>Naticarius canrena</td>
<td>34.04</td>
<td>34.81</td>
<td>0.97</td>
<td>4.59</td>
<td>3.44</td>
<td>4</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>LR-52</td>
<td>Euspira heros</td>
<td>37.08</td>
<td>40.74</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR-53</td>
<td>Naticarius canrena</td>
<td>40.83</td>
<td>38.03</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Register Quarry</td>
<td>Date Collected</td>
<td>Near Columbus, NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNCW REU Summer 08</td>
<td>lower Waccamaw</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ-1</td>
<td>Sinum</td>
<td></td>
<td>11.36</td>
<td>8</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>11.98</td>
<td>8.71</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>13.87</td>
<td>10.02</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-4</td>
<td>Naticarius</td>
<td>canrena</td>
<td>14.31</td>
<td>14.55</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-5</td>
<td>Naticarius</td>
<td>canrenna</td>
<td>14.85</td>
<td>13.86</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.38</td>
<td>11.01</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.74</td>
<td>11.57</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-8</td>
<td>Euspira</td>
<td>heros</td>
<td>16.32</td>
<td>17.56</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-9</td>
<td>Euspira</td>
<td>heros</td>
<td>16.64</td>
<td>17.55</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.82</td>
<td>12.8</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-11</td>
<td>Naticarius</td>
<td>canrena</td>
<td>17.14</td>
<td>15.99</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.28</td>
<td>12.13</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-13</td>
<td>Euspira</td>
<td>heros</td>
<td>17.28</td>
<td>16.97</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-14</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.01</td>
<td>18.12</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-15</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.07</td>
<td>17.39</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.76</td>
<td>14.19</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-17</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.9</td>
<td>18.71</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.15</td>
<td>14.27</td>
<td>0.47</td>
<td>5.6</td>
<td>2.68</td>
<td>2</td>
<td>151</td>
</tr>
<tr>
<td>RQ-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.43</td>
<td>14.78</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-20</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.46</td>
<td>15.81</td>
<td>0.45</td>
<td>4.06</td>
<td>1.61</td>
<td>4</td>
<td>230</td>
</tr>
<tr>
<td>RQ</td>
<td>Species</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Neverita duplicata</td>
<td>19.52</td>
<td>14.15</td>
<td>0.58</td>
<td>4.92</td>
<td>2.91</td>
<td>2</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Euspira heros</td>
<td>19.93</td>
<td>19.64</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Euspira heros</td>
<td>19.94</td>
<td>22.92</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Neverita duplicata</td>
<td>20.69</td>
<td>15.86</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Neverita duplicata</td>
<td>20.8</td>
<td>15.66</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Neverita duplicata</td>
<td>20.99</td>
<td>16.59</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Neverita duplicata</td>
<td>21.14</td>
<td>16.04</td>
<td>0.37</td>
<td>4.15</td>
<td>2.07</td>
<td>4</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Neverita duplicata</td>
<td>21.18</td>
<td>15.33</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Neverita duplicata</td>
<td>21.44</td>
<td>15.58</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Neverita duplicata</td>
<td>22.02</td>
<td>16.55</td>
<td>0.44</td>
<td>4.66</td>
<td>3.47</td>
<td>2</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Neverita duplicata</td>
<td>22.22</td>
<td>16.99</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Neverita duplicata</td>
<td>22.25</td>
<td>16.79</td>
<td>0.67</td>
<td>4.22</td>
<td>2.31</td>
<td>2</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Euspira heros</td>
<td>22.79</td>
<td>22.92</td>
<td>0.81</td>
<td>3.93</td>
<td>2.65</td>
<td>2</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Neverita duplicata</td>
<td>22.92</td>
<td>18.47</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Neverita duplicata</td>
<td>23.11</td>
<td>17.93</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Neverita duplicata</td>
<td>23.36</td>
<td>19.23</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Neverita duplicata</td>
<td>23.61</td>
<td>22.15</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Neverita duplicata</td>
<td>24.18</td>
<td>18.01</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Neverita duplicata</td>
<td>24.24</td>
<td>20.94</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Neverita duplicata</td>
<td>24.83</td>
<td>21.82</td>
<td>0.47</td>
<td>4.42</td>
<td>2.63</td>
<td>4</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Naticarius canrena</td>
<td>25.42</td>
<td>26.26</td>
<td>0.84</td>
<td>6.1</td>
<td>3.48</td>
<td>3</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Neverita duplicata</td>
<td>26.08</td>
<td>24.02</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Euspira heros</td>
<td>26.11</td>
<td>28.48</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Neverita duplicata</td>
<td>26.3</td>
<td>22.9</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Euspira heros</td>
<td>26.43</td>
<td>26.76</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Neverita duplicata</td>
<td>27.73</td>
<td>21.85</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Neverita duplicata</td>
<td>27.85</td>
<td>21.92</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Neverita duplicata</td>
<td>27.95</td>
<td>21.72</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Neverita duplicata</td>
<td>28.45</td>
<td>21.68</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Neverita duplicata</td>
<td>32.97</td>
<td>26.08</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-51</td>
<td>Neverita duplicata</td>
<td>33.36</td>
<td>31.72</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-52</td>
<td>Neverita duplicata</td>
<td>33.68</td>
<td>27.3</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-53</td>
<td>Neverita duplicata</td>
<td>33.81</td>
<td>29.29</td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-54</td>
<td>Neverita duplicata</td>
<td>34.83</td>
<td>28.04</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-55</td>
<td>Neverita duplicata</td>
<td>35.5</td>
<td>28.48</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-56</td>
<td>Neverita duplicata</td>
<td>35.67</td>
<td>32.6</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-57</td>
<td>Naticarius canrena</td>
<td>41.59</td>
<td>40.44</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-58</td>
<td>Neverita duplicata</td>
<td>41.67</td>
<td>37.86</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-59</td>
<td>Euspira heros</td>
<td>44.34</td>
<td>45.76</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-60</td>
<td>Neverita duplicata</td>
<td>47.23</td>
<td>35.72</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-61</td>
<td>Neverita duplicata</td>
<td>49.3</td>
<td>40.05</td>
<td>1.31</td>
<td>8.17</td>
<td>4.68</td>
<td>2</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>RQ-62</td>
<td>Neverita duplicata</td>
<td>51.54</td>
<td>45.77</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-63</td>
<td>Neverita duplicata</td>
<td>51.96</td>
<td>42.74</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ-64</td>
<td>Neverita duplicata</td>
<td>82.98</td>
<td>69.33</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.09</td>
<td>35.87</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.23</td>
<td>19.73</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-3</td>
<td>Euspira</td>
<td>heros</td>
<td>29.97</td>
<td>31.67</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.51</td>
<td>25.54</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.59</td>
<td>24.78</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-6</td>
<td>Euspira</td>
<td>heros</td>
<td>29.25</td>
<td>30.62</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.46</td>
<td>22.36</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-8</td>
<td>Euspira</td>
<td>heros</td>
<td>18.57</td>
<td>19</td>
<td>0.56</td>
<td>4.22</td>
<td>2.18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CK-9</td>
<td>Euspira</td>
<td>heros</td>
<td>60.19</td>
<td>59.86</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>46.96</td>
<td>39.78</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>29.74</td>
<td>24.34</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-12</td>
<td>Euspira</td>
<td>heros</td>
<td>31.45</td>
<td>30.76</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-13</td>
<td>Euspira</td>
<td>heros</td>
<td>30.32</td>
<td>30.75</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-14</td>
<td>Euspira</td>
<td>heros</td>
<td>29.85</td>
<td>31.29</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-15</td>
<td>Euspira</td>
<td>heros</td>
<td>27.16</td>
<td>26.98</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-16</td>
<td>Sinum</td>
<td>maculatum</td>
<td>17.52</td>
<td>16.92</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-17</td>
<td>Euspira</td>
<td>heros</td>
<td>29.45</td>
<td>29.41</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.88</td>
<td>22.96</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>39.31</td>
<td>30.71</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-20</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.17</td>
<td>24.06</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-21</td>
<td><em>Neverita duplicata</em></td>
<td>46.99</td>
<td>38.11</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-22</td>
<td><em>Euspira heros</em></td>
<td>20.33</td>
<td>22.06</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-23</td>
<td><em>Neverita duplicata</em></td>
<td>21.08</td>
<td>16.44</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-24</td>
<td><em>Euspira heros</em></td>
<td>27.5</td>
<td>29.69</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-25</td>
<td><em>Neverita duplicata</em></td>
<td>36.99</td>
<td>29.53</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-26</td>
<td><em>Euspira heros</em></td>
<td>17.53</td>
<td>18.95</td>
<td>0.63</td>
<td>4.43</td>
<td>3.47</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-27</td>
<td><em>Neverita duplicata</em></td>
<td>16.37</td>
<td>12.03</td>
<td>0.33</td>
<td>3.6</td>
<td>2.22</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-28</td>
<td><em>Euspira heros</em></td>
<td>20.28</td>
<td>21.39</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-29</td>
<td><em>Neverita duplicata</em></td>
<td>39.26</td>
<td>31.09</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-30</td>
<td><em>Neverita duplicata</em></td>
<td>28.4</td>
<td>22.33</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-31</td>
<td><em>Euspira heros</em></td>
<td>28.03</td>
<td>28.13</td>
<td>0.43</td>
<td>4.6</td>
<td>2.57</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-32</td>
<td><em>Neverita duplicata</em></td>
<td>24.5</td>
<td>20.69</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-33</td>
<td><em>Euspira heros</em></td>
<td>21.82</td>
<td>22.1</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-34</td>
<td><em>Neverita duplicata</em></td>
<td>31.36</td>
<td>25.46</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-35</td>
<td><em>Neverita duplicata</em></td>
<td>48.54</td>
<td>37.63</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-36</td>
<td><em>Neverita duplicata</em></td>
<td>33.58</td>
<td>27.55</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-37</td>
<td><em>Neverita duplicata</em></td>
<td>21.57</td>
<td>15.73</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-38</td>
<td><em>Neverita duplicata</em></td>
<td>32.51</td>
<td>24.54</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-39</td>
<td><em>Neverita duplicata</em></td>
<td>22.61</td>
<td>16.75</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-40</td>
<td><em>Neverita duplicata</em></td>
<td>20.76</td>
<td>16.62</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-41</td>
<td><em>Euspira heros</em></td>
<td>58.16</td>
<td>62.2</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-42</td>
<td><em>Neverita duplicata</em></td>
<td>16.2</td>
<td>12.18</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-43</td>
<td><em>Euspira heros</em></td>
<td>20.85</td>
<td>19.79</td>
<td>0.69</td>
<td>4.53</td>
<td>2.28</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-44</td>
<td><em>Neverita duplicata</em></td>
<td>26.95</td>
<td>21.32</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-45</td>
<td><em>Euspira heros</em></td>
<td>17.12</td>
<td>16.45</td>
<td>0.52</td>
<td>4.7</td>
<td>2.59</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-46</td>
<td><em>Euspira heros</em></td>
<td>18.66</td>
<td>20.25</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-47</td>
<td><em>Neverita duplicata</em></td>
<td>21.71</td>
<td>18.51</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-48</td>
<td><em>Euspira heros</em></td>
<td>25.31</td>
<td>25.84</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-49</td>
<td><em>Euspira heros</em></td>
<td>13.18</td>
<td>13.15</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-50</td>
<td><em>Euspira heros</em></td>
<td>28.54</td>
<td>30.94</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Common Name</td>
<td>Size 1</td>
<td>Size 2</td>
<td>Size 3</td>
<td>Weight 1</td>
<td>Weight 2</td>
<td>Weight 3</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>CK-51</td>
<td>Neverita duplicata</td>
<td>18.59</td>
<td>13.93</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-52</td>
<td>Euspira heros</td>
<td>18.64</td>
<td>19.39</td>
<td>0.55</td>
<td>4.48</td>
<td>2.84</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-53</td>
<td>Euspira heros</td>
<td>18.36</td>
<td>20.19</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-54</td>
<td>Euspira heros</td>
<td>19.44</td>
<td>18.12</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-55</td>
<td>Euspira heros</td>
<td>19.65</td>
<td>11.6</td>
<td>0.27</td>
<td>2.55</td>
<td>0.95</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-56</td>
<td>Euspira heros</td>
<td>23.19</td>
<td>30.23</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-57</td>
<td>Lunatia perspectiva</td>
<td>60.27</td>
<td>60.67</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-58</td>
<td>Lunatia perspectiva</td>
<td>44.33</td>
<td>47.67</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-59</td>
<td>Lunatia perspectiva</td>
<td>49.33</td>
<td>50.28</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-60</td>
<td>Lunatia perspectiva</td>
<td>29.6</td>
<td>29.25</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-61</td>
<td>Lunatia perspectiva</td>
<td>52.93</td>
<td>56.24</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-62</td>
<td>Neverita duplicata</td>
<td>38.18</td>
<td>26.89</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-63</td>
<td>Lunatia perspectiva</td>
<td>13.34</td>
<td>15.91</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-64</td>
<td>Lunatia perspectiva</td>
<td>12.36</td>
<td>14.15</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-65</td>
<td>Lunatia perspectiva</td>
<td>9.06</td>
<td>10.16</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-66</td>
<td>Lunatia perspectiva</td>
<td>14.08</td>
<td>16.52</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-67</td>
<td>Lunatia perspectiva</td>
<td>9.36</td>
<td>11.43</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-68</td>
<td>Lunatia perspectiva</td>
<td>10.69</td>
<td>13.4</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-69</td>
<td>Lunatia perspectiva</td>
<td>7.85</td>
<td>9.59</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-70</td>
<td>Lunatia perspectiva</td>
<td>10.11</td>
<td>12.08</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-71</td>
<td>Lunatia perspectiva</td>
<td>13.17</td>
<td>15.49</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-72</td>
<td>Lunatia perspectiva</td>
<td>8.41</td>
<td>9.76</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-73</td>
<td>Lunatia perspectiva</td>
<td>9.26</td>
<td>10.87</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-74</td>
<td>Lunatia interna</td>
<td>12.3</td>
<td>13.71</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-75</td>
<td>Lunatia interna</td>
<td>16.99</td>
<td>19.79</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-76</td>
<td>Lunatia interna</td>
<td>16.85</td>
<td>18.93</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-77</td>
<td>Lunatia interna</td>
<td>13.11</td>
<td>15.06</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-78</td>
<td>Lunatia interna</td>
<td>8.95</td>
<td>10.69</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-79</td>
<td>Lunatia interna</td>
<td>16.69</td>
<td>19.86</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-80</td>
<td>Lunatia interna</td>
<td>13.57</td>
<td>14.24</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-81</td>
<td>Lunatia interna</td>
<td>12.41</td>
<td>13.93</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-82</td>
<td>Lunatia interna</td>
<td>10.85</td>
<td>12.57</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-83</td>
<td>Lunatia interna</td>
<td>9.39</td>
<td>9.79</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-84</td>
<td>Lunatia interna</td>
<td>8.05</td>
<td>9.23</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-85</td>
<td>Lunatia interna</td>
<td>11.46</td>
<td>12.39</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-86</td>
<td>Lunatia interna</td>
<td>7.51</td>
<td>8.45</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-87</td>
<td>Lunatia interna</td>
<td>9.41</td>
<td>11.07</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-88</td>
<td>Lunatia interna</td>
<td>9.07</td>
<td>10.48</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-89</td>
<td>Lunatia interna</td>
<td>9.38</td>
<td>11.15</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-90</td>
<td>Tectonatica pusilla</td>
<td>5.67</td>
<td>6.13</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-91</td>
<td>Tectonatica pusilla</td>
<td>6.4</td>
<td>7.28</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-92</td>
<td>Tectonatica pusilla</td>
<td>5.16</td>
<td>6</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>RP-1</td>
<td>Euspira</td>
<td>heros</td>
<td>30.2</td>
<td>30.89</td>
<td>0.57</td>
<td>4.82</td>
<td>3.02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RP-2</td>
<td>Euspira</td>
<td>heros</td>
<td>32.27</td>
<td>34.14</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-3</td>
<td>Euspira</td>
<td>heros</td>
<td>28.12</td>
<td>29.43</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-4</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.55</td>
<td>17.89</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-5</td>
<td>Lunatia</td>
<td>perspectiva</td>
<td>17.39</td>
<td>17.17</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-6</td>
<td>Euspira</td>
<td>heros</td>
<td>29.76</td>
<td>25.64</td>
<td>0.65</td>
<td>4.34</td>
<td>2.63</td>
<td>3</td>
<td>drill on bottom</td>
</tr>
<tr>
<td>RP-7</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.91</td>
<td>19.36</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-8</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.07</td>
<td>19.08</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-9</td>
<td>Euspira</td>
<td>heros</td>
<td>17.22</td>
<td>16.83</td>
<td>0.46</td>
<td>3.95</td>
<td>2.53</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-10</td>
<td>Euspira</td>
<td>heros</td>
<td>28.39</td>
<td>27.18</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-11</td>
<td>Lunatia</td>
<td>perspectiva</td>
<td>43.83</td>
<td>46.55</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-12</td>
<td>Euspira</td>
<td>heros</td>
<td>36.64</td>
<td>38.34</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-13</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.61</td>
<td>15.49</td>
<td>0.61</td>
<td>3.23</td>
<td>1.83</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RP-14</td>
<td>Lunatia</td>
<td>perspectiva</td>
<td>17.67</td>
<td>20.77</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-15</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.66</td>
<td>15.5</td>
<td>0.61</td>
<td>4.65</td>
<td>2.61</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RP-16</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.69</td>
<td>19.57</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-17</td>
<td>Lunatia</td>
<td>interna</td>
<td>14.91</td>
<td>15.54</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-18</td>
<td>Euspira</td>
<td>heros</td>
<td>17.62</td>
<td>17.81</td>
<td>0.47</td>
<td>2.77</td>
<td>1.84</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-19</td>
<td>Lunatia</td>
<td>interna</td>
<td>16.36</td>
<td>18.03</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-20</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.26</td>
<td>19.33</td>
<td>0.47</td>
<td>3.38</td>
<td>1.99</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Type</td>
<td>X1</td>
<td>Y1</td>
<td>X2</td>
<td>Y2</td>
<td>Value</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>RP-21</td>
<td>Lunatia interna</td>
<td></td>
<td>15.14</td>
<td>16.86</td>
<td>0.5</td>
<td>3.98</td>
<td>1.94</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RP-22</td>
<td>Lunatia interna</td>
<td></td>
<td>16.49</td>
<td>16.97</td>
<td>0.51</td>
<td>4.01</td>
<td>2.93</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RP-23</td>
<td>Lunatia interna</td>
<td></td>
<td>18.69</td>
<td>19.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-24</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>11.86</td>
<td>13.02</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-25</td>
<td>Lunatia interna</td>
<td></td>
<td>15.28</td>
<td>16.13</td>
<td>0.38</td>
<td>5.16</td>
<td>3.19</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-26</td>
<td>Euspira heros</td>
<td></td>
<td>26.6</td>
<td>24.07</td>
<td>0.76</td>
<td>4.36</td>
<td>2.7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-27</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>9.84</td>
<td>10.91</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-28</td>
<td>Lunatia interna</td>
<td></td>
<td>17.85</td>
<td>19.66</td>
<td>0.55</td>
<td>3.26</td>
<td>1.9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-29</td>
<td>Lunatia interna</td>
<td></td>
<td>14.29</td>
<td>14.81</td>
<td>0.44</td>
<td>3.22</td>
<td>1.63</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RP-30</td>
<td>Euspira heros</td>
<td></td>
<td>23.31</td>
<td>22.77</td>
<td>0.81</td>
<td>4.81</td>
<td>2.39</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RP-31</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>12.43</td>
<td>12.5</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-32</td>
<td>Lunatia interna</td>
<td></td>
<td>13.37</td>
<td>13.43</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-33</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>18.81</td>
<td>21.14</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-34</td>
<td>Lunatia interna</td>
<td></td>
<td>15.25</td>
<td>15.81</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-35</td>
<td>Lunatia interna</td>
<td></td>
<td>11.1</td>
<td>11.35</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-36</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>16.87</td>
<td>18.68</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-37</td>
<td>Lunatia interna</td>
<td></td>
<td>15.62</td>
<td>17.16</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-38</td>
<td>Lunatia interna</td>
<td></td>
<td>16.12</td>
<td>17.07</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-39</td>
<td>Lunatia interna</td>
<td></td>
<td>15.6</td>
<td>16.7</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-40</td>
<td>Lunatia interna</td>
<td></td>
<td>16.71</td>
<td>16.78</td>
<td>0.38</td>
<td>4.15</td>
<td>2.59</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RP-41</td>
<td>Lunatia interna</td>
<td></td>
<td>13.3</td>
<td>14.44</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-42</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>13.46</td>
<td>14.16</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-43</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>15.15</td>
<td>16.35</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-44</td>
<td>Lunatia interna</td>
<td></td>
<td>13.11</td>
<td>13.72</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-45</td>
<td>Lunatia interna</td>
<td></td>
<td>13.35</td>
<td>13.16</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-46</td>
<td>Lunatia interna</td>
<td></td>
<td>11.07</td>
<td>11.28</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>15.95</td>
<td>15.92</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Lunatia interna</td>
<td></td>
<td>10.13</td>
<td>10.77</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-49</td>
<td>Lunatia perspectiva</td>
<td></td>
<td>8.75</td>
<td>9.5</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-50</td>
<td>Lunatia interna</td>
<td></td>
<td>20.01</td>
<td>21.61</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-51</td>
<td>Lunatia interna</td>
<td>10.09</td>
<td>10.25</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-52</td>
<td>Lunatia interna</td>
<td>8.73</td>
<td>9.11</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-53</td>
<td>Lunatia interna</td>
<td>9.00</td>
<td>9.27</td>
<td>0.32</td>
<td>2.83</td>
<td>1.65</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-54</td>
<td>Neverita duplicata</td>
<td>9.09</td>
<td>7.49</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-55</td>
<td>Neverita duplicata</td>
<td>8.49</td>
<td>7.15</td>
<td>0.75</td>
<td>1.12</td>
<td>0.88</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-56</td>
<td>Neverita duplicata</td>
<td>11.59</td>
<td>8.65</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-57</td>
<td>Euspira heros</td>
<td>45.24</td>
<td>47.25</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Euspira heros</td>
<td>32.96</td>
<td>31.76</td>
<td>0.67</td>
<td>4.92</td>
<td>3.14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Euspira heros</td>
<td>31.99</td>
<td>29.46</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Lunatia perspectiva</td>
<td>14.9</td>
<td>16.56</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Euspira heros</td>
<td>25.07</td>
<td>25.2</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Lunatia perspectiva</td>
<td>17.67</td>
<td>15.99</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-63</td>
<td>Lunatia perspectiva</td>
<td>16.56</td>
<td>18.23</td>
<td>0.51</td>
<td>3.45</td>
<td>2.21</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-64</td>
<td>Lunatia perspectiva</td>
<td>9.09</td>
<td>10.03</td>
<td>0.18</td>
<td>1.63</td>
<td>0.98</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-65</td>
<td>Lunatia perspectiva</td>
<td>13.71</td>
<td>13.96</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-66</td>
<td>Polinices sp.</td>
<td>11.68</td>
<td>13.51</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-67</td>
<td>Lunatia interna</td>
<td>12.04</td>
<td>13.54</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-68</td>
<td>Polinices sp.</td>
<td>9.66</td>
<td>10.87</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-69</td>
<td>Polinices sp.</td>
<td>10.18</td>
<td>11.17</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-70</td>
<td>Polinices sp.</td>
<td>7.34</td>
<td>8.44</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-71</td>
<td>Polinices sp.</td>
<td>10.25</td>
<td>11.98</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-72</td>
<td>Polinices sp.</td>
<td>7.54</td>
<td>8.38</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-73</td>
<td>Lunatia interna</td>
<td>12.37</td>
<td>13.51</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>BP-1</td>
<td>Euspira</td>
<td>heros</td>
<td>23.33</td>
<td>20.42</td>
<td>0.23</td>
<td>4.56</td>
<td>2.94</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>BP-2</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.79</td>
<td>16.74</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-3</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.94</td>
<td>17.33</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-4</td>
<td>Lunatia</td>
<td>interna</td>
<td>16.9</td>
<td>18.12</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-5</td>
<td>Lunatia</td>
<td>interna</td>
<td>18.16</td>
<td>19.64</td>
<td>0.55</td>
<td>3.99</td>
<td>2.12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BP-6</td>
<td>Sinum</td>
<td>chesapeakensis</td>
<td>17.42</td>
<td>17.99</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-7</td>
<td>Euspira</td>
<td>heros</td>
<td>16.12</td>
<td>16.36</td>
<td>0.42</td>
<td>4.13</td>
<td>2.69</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-8</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.75</td>
<td>15.52</td>
<td>0.49</td>
<td>4.64</td>
<td>2.43</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BP-9</td>
<td>Lunatia</td>
<td>interna</td>
<td>14.8</td>
<td>15.99</td>
<td>0.42</td>
<td>3.33</td>
<td>1.59</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BP-10</td>
<td>Lunatia</td>
<td>interna</td>
<td>16.98</td>
<td>17.49</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-11</td>
<td>Lunatia</td>
<td>interna</td>
<td>16.24</td>
<td>16.85</td>
<td>0.62</td>
<td>3.87</td>
<td>1.99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BP-12</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.2</td>
<td>16.24</td>
<td>0.41</td>
<td>3.84</td>
<td>2.23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-13</td>
<td>Lunatia</td>
<td>interna</td>
<td>14.02</td>
<td>15.48</td>
<td>0.44</td>
<td>3.25</td>
<td>1.84</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-14</td>
<td>Lunatia</td>
<td>interna</td>
<td>17.7</td>
<td>18.13</td>
<td>0.65</td>
<td>3.55</td>
<td>2.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-15</td>
<td>Lunatia</td>
<td>interna</td>
<td>15.67</td>
<td>16.09</td>
<td>0.57</td>
<td>3.41</td>
<td>1.92</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-16</td>
<td>Lunatia</td>
<td>interna</td>
<td>14.96</td>
<td>16.07</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-17</td>
<td>Lunatia</td>
<td>interna</td>
<td>13.56</td>
<td>14.22</td>
<td>0.36</td>
<td>1.83</td>
<td>1.15</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BP-18</td>
<td>Lunatia</td>
<td>interna</td>
<td>13.61</td>
<td>13.91</td>
<td>0.26</td>
<td>3.16</td>
<td>1.56</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BP-19</td>
<td>Lunatia</td>
<td>interna</td>
<td>18.46</td>
<td>20.03</td>
<td>0.69</td>
<td>4.68</td>
<td>2.58</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BP-20</td>
<td>Sinum</td>
<td>chesapeakensis</td>
<td>18.14</td>
<td>18.93</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>Species</td>
<td>Age 1</td>
<td>Age 2</td>
<td>Error</td>
<td>Delta 1</td>
<td>Delta 2</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-21</td>
<td>Lunatia interna</td>
<td>16.64</td>
<td>17.69</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-22</td>
<td>Sinum perspectivium</td>
<td>15.77</td>
<td>10.03</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-23</td>
<td>Sinum chesapeakensis</td>
<td>16.56</td>
<td>15.61</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-24</td>
<td>Sinum chesapeakensis</td>
<td>10.06</td>
<td>9.64</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-25</td>
<td>Lunatia interna</td>
<td>8.69</td>
<td>9.11</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-26</td>
<td>Lunatia interna</td>
<td>10.12</td>
<td>9.9</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-27</td>
<td>Lunatia perspectiva</td>
<td>9.62</td>
<td>10.62</td>
<td>0.23</td>
<td>2.63</td>
<td>1.43</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-28</td>
<td>Lunatia interna</td>
<td>14.32</td>
<td>14.79</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-29</td>
<td>Lunatia interna</td>
<td>21.74</td>
<td>22.97</td>
<td>0.52</td>
<td>4.72</td>
<td>2.68</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-30</td>
<td>Lunatia interna</td>
<td>15.89</td>
<td>16.22</td>
<td>0.47</td>
<td>5.29</td>
<td>2.91</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-31</td>
<td>Lunatia interna</td>
<td>18.55</td>
<td>18.79</td>
<td>0.53</td>
<td>4.31</td>
<td>3.11</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-32</td>
<td>Lunatia interna</td>
<td>15.19</td>
<td>15.73</td>
<td>0.34</td>
<td>2.36</td>
<td>1.21</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-33</td>
<td>Lunatia interna</td>
<td>10.23</td>
<td>10.95</td>
<td>0.32</td>
<td>4.17</td>
<td>2.74</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-34</td>
<td>Lunatia interna</td>
<td>16.38</td>
<td>15.47</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-35</td>
<td>Lunatia interna</td>
<td>14.26</td>
<td>15.21</td>
<td>0.43</td>
<td>4.42</td>
<td>2.61</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-36</td>
<td>Sinum chesapeakensis</td>
<td>12.93</td>
<td>12.47</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-37</td>
<td>Lunatia interna</td>
<td>12.36</td>
<td>13.04</td>
<td>0.26</td>
<td>2.48</td>
<td>1.47</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-38</td>
<td>Sinum chesapeakensis</td>
<td>10.19</td>
<td>10.73</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-39</td>
<td>Lunatia perspectiva</td>
<td>14.07</td>
<td>14.94</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-40</td>
<td>Lunatia perspectiva</td>
<td>12.33</td>
<td>13.05</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-41</td>
<td>Lunatia interna</td>
<td>16.27</td>
<td>16.68</td>
<td>0.4</td>
<td>4.95</td>
<td>2.57</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-42</td>
<td>Lunatia interna</td>
<td>10.2</td>
<td>10.93</td>
<td>0.27</td>
<td>2.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-43</td>
<td>Polinices sp.</td>
<td>8.75</td>
<td>10.05</td>
<td>0.41</td>
<td>3.13</td>
<td>1.78</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-44</td>
<td>Polinices sp.</td>
<td>9.46</td>
<td>11.1</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-45</td>
<td>Polinices sp.</td>
<td>10.18</td>
<td>10.78</td>
<td>0.3</td>
<td>2.87</td>
<td>1.7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-46</td>
<td>Lunatia perspectiva</td>
<td>9.5</td>
<td>10.06</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-47</td>
<td>Sinum chesapeakensis</td>
<td>14.96</td>
<td>14.31</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-48</td>
<td>Polinices sp.</td>
<td>9.97</td>
<td>11.08</td>
<td>0.27</td>
<td>2.99</td>
<td>1.72</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-49</td>
<td>Lunatia interna</td>
<td>14.21</td>
<td>13.84</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-50</td>
<td>Sinum chesapeakensis</td>
<td>7.45</td>
<td>7.85</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Species</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-51</td>
<td>Sinum chesapeakensis</td>
<td>6.56</td>
<td>6.44</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-52</td>
<td>Lunatia interna</td>
<td>9.98</td>
<td>10.43</td>
<td>0.26</td>
<td>3</td>
<td>1.58</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-53</td>
<td>Lunatia interna</td>
<td>10.47</td>
<td>11.08</td>
<td>0.69</td>
<td>4.35</td>
<td>2.38</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-54</td>
<td>Polinices sp.</td>
<td>8.32</td>
<td>9.32</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-55</td>
<td>Lunatia interna</td>
<td>10.12</td>
<td>10.28</td>
<td>0.3</td>
<td>1.67</td>
<td>0.68</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-56</td>
<td>Polinices sp.</td>
<td>9.98</td>
<td>11.38</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-57</td>
<td>Polinices sp.</td>
<td>8.98</td>
<td>10.66</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-58</td>
<td>Lunatia interna</td>
<td>9.03</td>
<td>9.25</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-59</td>
<td>Polinices sp.</td>
<td>8.26</td>
<td>9.94</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-60</td>
<td>Polinices sp.</td>
<td>8.25</td>
<td>8.97</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-61</td>
<td>Lunatia interna</td>
<td>8.64</td>
<td>9.81</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-62</td>
<td>Lunatia interna</td>
<td>12.36</td>
<td>13.08</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-63</td>
<td>Polinices sp.</td>
<td>8.15</td>
<td>9.11</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-64</td>
<td>Polinices sp.</td>
<td>4.89</td>
<td>6.14</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-65</td>
<td>Lunatia interna</td>
<td>7.32</td>
<td>7.97</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-66</td>
<td>Sinum chesapeakensis</td>
<td>7.56</td>
<td>7.99</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-67</td>
<td>Euspira heros</td>
<td>7.24</td>
<td>7.39</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-68</td>
<td>Lunatia interna</td>
<td>6.73</td>
<td>7.11</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-69</td>
<td>Lunatia interna</td>
<td>7.09</td>
<td>7.84</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-70</td>
<td>Sinum chesapeakensis</td>
<td>6.45</td>
<td>6.77</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-71</td>
<td>Polinices sp.</td>
<td>7.2</td>
<td>7.92</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-72</td>
<td>Tectonatic pusilla</td>
<td>3.37</td>
<td>4.28</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-73</td>
<td>Polinices sp.</td>
<td>6.57</td>
<td>7.52</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-74</td>
<td>Polinices sp.</td>
<td>6.31</td>
<td>7.23</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-75</td>
<td>Polinices sp.</td>
<td>5.93</td>
<td>6.2</td>
<td>0.24</td>
<td>2.07</td>
<td>0.9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-76</td>
<td>Tectonatic pusilla</td>
<td>5.27</td>
<td>5.96</td>
<td>0.3</td>
<td>2.81</td>
<td>1.88</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-77</td>
<td>Euspira heros</td>
<td>5.63</td>
<td>5.95</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-78</td>
<td>Lunatia interna</td>
<td>5.92</td>
<td>6.42</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-79</td>
<td>Tectonatic pusilla</td>
<td>4.25</td>
<td>4.61</td>
<td>0.23</td>
<td>2.22</td>
<td>1.44</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-80</td>
<td>Lunatia interna</td>
<td>3.32</td>
<td>3.64</td>
<td>0.13</td>
<td>1.74</td>
<td>1.16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>Specie</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-81</td>
<td>Lunatia perspectiva</td>
<td>4.45</td>
<td>5.04</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-82</td>
<td>Tectonatic pusilla</td>
<td>4.2</td>
<td>4.94</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-83</td>
<td>Tectonatic pusilla</td>
<td>4.43</td>
<td>4.96</td>
<td>0.25</td>
<td>2.27</td>
<td>1.59</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-84</td>
<td>Sinum chesapeakensis</td>
<td>5.96</td>
<td>5.01</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-85</td>
<td>Sinum chesapeakensis</td>
<td>4.61</td>
<td>4.78</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-86</td>
<td>Tectonatic pusilla</td>
<td>3.59</td>
<td>4.27</td>
<td>0.13</td>
<td>2.28</td>
<td>1.76</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-87</td>
<td>Tectonatic pusilla</td>
<td>4.31</td>
<td>4.83</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-88</td>
<td>Lunatia interna</td>
<td>4.49</td>
<td>4.6</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-89</td>
<td>Tectonatic pusilla</td>
<td>3.37</td>
<td>4</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-90</td>
<td>Tectonatic pusilla</td>
<td>2.93</td>
<td>3.27</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-91</td>
<td>Euspira heros</td>
<td>2.16</td>
<td>1.99</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-92</td>
<td>Euspira heros</td>
<td>3.74</td>
<td>3.54</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-93</td>
<td>Tectonatic pusilla</td>
<td>2.96</td>
<td>3.25</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-94</td>
<td>Lunatia interna</td>
<td>3.68</td>
<td>3.7</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-95</td>
<td>Euspira heros</td>
<td>3.12</td>
<td>3.37</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-96</td>
<td>Tectonatic pusilla</td>
<td>2.73</td>
<td>2.95</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-97</td>
<td>Lunatia interna</td>
<td>3.01</td>
<td>3.58</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-98</td>
<td>Euspira heros</td>
<td>3.06</td>
<td>2.98</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP-99</td>
<td>Lunatia interna</td>
<td>3.12</td>
<td>3.54</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>EBT-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.57</td>
<td>24.29</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>26.52</td>
<td>22.91</td>
<td>0.7</td>
<td>3.36</td>
<td>2.44</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EBT-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.6</td>
<td>17.81</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.54</td>
<td>17.62</td>
<td>0.49</td>
<td>4.2</td>
<td>2.79</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EBT-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.35</td>
<td>13.9</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.47</td>
<td>14.11</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.43</td>
<td>17.42</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.49</td>
<td>19.67</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.24</td>
<td>17.19</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>13.17</td>
<td>19.12</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-11</td>
<td>Lunatia</td>
<td>perspectiva</td>
<td>28.38</td>
<td>32.25</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>10.64</td>
<td>9.11</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.8</td>
<td>29.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.45</td>
<td>12.55</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>11.34</td>
<td>9.51</td>
<td>0.63</td>
<td>2.57</td>
<td>1.55</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>EBT-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25</td>
<td>19.74</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.93</td>
<td>19.33</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.46</td>
<td>18.08</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.24</td>
<td>23.7</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT-20</td>
<td>Neverita</td>
<td>duplicata</td>
<td>24.47</td>
<td>23.04</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-1</td>
<td>Euspira</td>
<td>heros</td>
<td>24.93</td>
<td>30.23</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.84</td>
<td>31.49</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-3</td>
<td>Euspira</td>
<td>heros</td>
<td>39.45</td>
<td>33.86</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-4</td>
<td>Euspira</td>
<td>heros</td>
<td>47.12</td>
<td>51.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-5</td>
<td>Euspira</td>
<td>heros</td>
<td>28.15</td>
<td>28.78</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.97</td>
<td>15.81</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-7</td>
<td>Euspira</td>
<td>heros</td>
<td>18.55</td>
<td>18.54</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.14</td>
<td>23.57</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>28.3</td>
<td>25.38</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.7</td>
<td>16.2</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.49</td>
<td>14.6</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.73</td>
<td>42.04</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.91</td>
<td>45.6</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-14</td>
<td>Euspira</td>
<td>heros</td>
<td>44.8</td>
<td>44.35</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-15</td>
<td>Euspira</td>
<td>heros</td>
<td>25.93</td>
<td>26.84</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.82</td>
<td>35.63</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-17</td>
<td>Euspira</td>
<td>heros</td>
<td>22.88</td>
<td>23.13</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-18</td>
<td>Euspira</td>
<td>heros</td>
<td>56.75</td>
<td>60.33</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>44.21</td>
<td>42.93</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP-20</td>
<td>Neverita</td>
<td>duplicata</td>
<td>45.12</td>
<td>39.45</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td>Species</td>
<td>Type</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>21</td>
<td>Euspira</td>
<td>heros</td>
<td>22.33</td>
<td>21.74</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Euspira</td>
<td>heros</td>
<td>35.7</td>
<td>38.39</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Neverita</td>
<td>duplicata</td>
<td>42.06</td>
<td>10.13</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Euspira</td>
<td>heros</td>
<td>32.95</td>
<td>26.35</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Neverita</td>
<td>duplicata</td>
<td>42.9</td>
<td>40.31</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Neverita</td>
<td>duplicata</td>
<td>44.55</td>
<td>41.44</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Euspira</td>
<td>heros</td>
<td>32.33</td>
<td>34.69</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.43</td>
<td>41.54</td>
<td>0.68</td>
<td>14.16</td>
<td>8.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.21</td>
<td>25.03</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.7</td>
<td>30.17</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.03</td>
<td>32.53</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Neverita</td>
<td>duplicata</td>
<td>43.88</td>
<td>36.62</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.62</td>
<td>38.29</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.54</td>
<td>29.34</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Euspira</td>
<td>heros</td>
<td>34.8</td>
<td>37.78</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Acme, NC 1446</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Collected</td>
<td>Museum (PRI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation</td>
<td>Lower Waccamaw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwest of Columbus, NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC2-1</td>
<td>Lunatia</td>
<td>interna</td>
<td>47.48</td>
<td>45.47</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-2</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>6.12</td>
<td>6.18</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>26.77</td>
<td>20.99</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.53</td>
<td>15.72</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>14.81</td>
<td>11.47</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-6</td>
<td>Naticarius</td>
<td>canrena</td>
<td>12.2</td>
<td>11.84</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>14.86</td>
<td>11.92</td>
<td>0.38</td>
<td>3.58</td>
<td>1.59</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AC2-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>9.67</td>
<td>7.66</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-9</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.33</td>
<td>4.94</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-10</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>6.72</td>
<td>7.47</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-11</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.57</td>
<td>6.05</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-12</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>3.88</td>
<td>4.65</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-13</td>
<td>Sinum</td>
<td>chesapeake</td>
<td>10.52</td>
<td>6.92</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-14</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.93</td>
<td>6.5</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-15</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.91</td>
<td>6.49</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-16</td>
<td>Sinum</td>
<td>chesapeake</td>
<td>7.66</td>
<td>5.72</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-17</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.4</td>
<td>5.86</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-18</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.55</td>
<td>5.98</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-19</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.8</td>
<td>5.6</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-20</td>
<td>Tectonatica pusilla</td>
<td>4.96</td>
<td>5.2</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-21</td>
<td>Tectonatica pusilla</td>
<td>5.02</td>
<td>5.52</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-22</td>
<td>Tectonatica pusilla</td>
<td>4.29</td>
<td>4.55</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-23</td>
<td>Tectonatica pusilla</td>
<td>4.45</td>
<td>5.28</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-24</td>
<td>Tectonatica pusilla</td>
<td>5.92</td>
<td>5.74</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-25</td>
<td>Tectonatica pusilla</td>
<td>5.27</td>
<td>5.25</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-26</td>
<td>Tectonatica pusilla</td>
<td>5.24</td>
<td>5.84</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-27</td>
<td>Tectonatica pusilla</td>
<td>5.29</td>
<td>5.52</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-28</td>
<td>Tectonatica pusilla</td>
<td>5.15</td>
<td>5.97</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-29</td>
<td>Tectonatica pusilla</td>
<td>4.49</td>
<td>5.19</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-30</td>
<td>Tectonatica pusilla</td>
<td>5.4</td>
<td>6.24</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-31</td>
<td>Tectonatica pusilla</td>
<td>4.72</td>
<td>5.36</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-32</td>
<td>Tectonatica pusilla</td>
<td>4.31</td>
<td>4.38</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-33</td>
<td>Tectonatica pusilla</td>
<td>5.08</td>
<td>5.81</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-34</td>
<td>Tectonatica pusilla</td>
<td>4.12</td>
<td>4.4</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-35</td>
<td>Euspira heros</td>
<td>4.24</td>
<td>4.22</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-36</td>
<td>Tectonatica pusilla</td>
<td>4.79</td>
<td>5.44</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-37</td>
<td>Tectonatica pusilla</td>
<td>4.23</td>
<td>4.61</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-38</td>
<td>Tectonatica pusilla</td>
<td>3.85</td>
<td>4.62</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-39</td>
<td>Tectonatica pusilla</td>
<td>4.25</td>
<td>5.2</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-40</td>
<td>Tectonatica pusilla</td>
<td>3.42</td>
<td>3.43</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-41</td>
<td>Tectonatica pusilla</td>
<td>3.64</td>
<td>4.22</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-42</td>
<td>Lunatia interna</td>
<td>4.07</td>
<td>4.19</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-43</td>
<td>Tectonatica pusilla</td>
<td>4.27</td>
<td>5.16</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-44</td>
<td>Tectonatica pusilla</td>
<td>3.1</td>
<td>2.78</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-45</td>
<td>Tectonatica pusilla</td>
<td>4.18</td>
<td>4.94</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-46</td>
<td>Tectonatica pusilla</td>
<td>4.13</td>
<td>4.56</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-47</td>
<td>Euspira heros</td>
<td>32.58</td>
<td>33.7</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-48</td>
<td>Euspira heros</td>
<td>23.05</td>
<td>24.99</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-49</td>
<td>Euspira heros</td>
<td>26.45</td>
<td>27.59</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-50</td>
<td>Euspira heros</td>
<td>24.58</td>
<td>24.31</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-51</td>
<td>Euspira heros</td>
<td>19.22</td>
<td>22.38</td>
<td>0.68</td>
<td>3.43</td>
<td>1.7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-52</td>
<td>Neverita duplicata</td>
<td>24.57</td>
<td>21.6</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-53</td>
<td>Euspira heros</td>
<td>16.33</td>
<td>19.2</td>
<td>0.44</td>
<td>4.4</td>
<td>2.11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-54</td>
<td>Euspira heros</td>
<td>15.55</td>
<td>16.88</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-55</td>
<td>Euspira heros</td>
<td>15.3</td>
<td>15.09</td>
<td>0.29</td>
<td>3.86</td>
<td>2.51</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-56</td>
<td>Naticarius canrena</td>
<td>18.27</td>
<td>18.79</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-57</td>
<td>Naticarius canrena</td>
<td>16.48</td>
<td>16.66</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-58</td>
<td>Naticarius canrena</td>
<td>16.73</td>
<td>16.77</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-59</td>
<td>Naticarius canrena</td>
<td>14.44</td>
<td>13.52</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-60</td>
<td>Euspira heros</td>
<td>14.97</td>
<td>16.41</td>
<td>0.48</td>
<td>3.43</td>
<td>2.24</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-61</td>
<td>Euspira heros</td>
<td>17.94</td>
<td>17.96</td>
<td>0.43</td>
<td>3.27</td>
<td>1.55</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-62</td>
<td>Euspira heros</td>
<td>13.7</td>
<td>13.16</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-63</td>
<td>Euspira heros</td>
<td>14.13</td>
<td>15.21</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-64</td>
<td>Euspira heros</td>
<td>10.17</td>
<td>10.63</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-65</td>
<td>Euspira heros</td>
<td>12.71</td>
<td>12.5</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-66</td>
<td>Lunatia perspectiva</td>
<td>7.13</td>
<td>7.64</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-67</td>
<td>Euspira heros</td>
<td>13.73</td>
<td>13.56</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-68</td>
<td>Naticarius canrena</td>
<td>16.42</td>
<td>16.3</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-69</td>
<td>Naticarius canrena</td>
<td>17.31</td>
<td>16.65</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-70</td>
<td>Naticarius canrena</td>
<td>15.16</td>
<td>14.08</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-71</td>
<td>Euspira heros</td>
<td>12.87</td>
<td>12.41</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-72</td>
<td>Naticarius canrena</td>
<td>19.08</td>
<td>18.76</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-73</td>
<td>Naticarius canrena</td>
<td>10.98</td>
<td>10.93</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-74</td>
<td>Naticarius canrena</td>
<td>10.73</td>
<td>9.64</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-75</td>
<td>Euspira heros</td>
<td>8.93</td>
<td>9.67</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-76</td>
<td>Euspira heros</td>
<td>8.23</td>
<td>8.56</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| AC2-77 | Euspira heros | 7.05 | 7.37 | 0.24 | 1.08 | 0.6 | 3 Drilled twice (.90/.50/3)
<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC2-78</td>
<td>Euspira heros</td>
<td>5.59</td>
<td>6.38</td>
<td>0.15</td>
<td>2.54</td>
<td>1.91</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>AC2-79</td>
<td>Euspira heros</td>
<td>7.1</td>
<td>7.55</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-80</td>
<td>Tectonatica pusilla</td>
<td>4.8</td>
<td>5.5</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-81</td>
<td>Tectonatica pusilla</td>
<td>6.67</td>
<td>7.25</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-82</td>
<td>Euspira heros</td>
<td>5.24</td>
<td>5.93</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-83</td>
<td>Euspira heros</td>
<td>7.22</td>
<td>6.77</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-84</td>
<td>Euspira heros</td>
<td>6.55</td>
<td>7.1</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-85</td>
<td>Euspira heros</td>
<td>4.92</td>
<td>5.33</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-86</td>
<td>Euspira heros</td>
<td>5.85</td>
<td>6.09</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-87</td>
<td>Euspira heros</td>
<td>5.21</td>
<td>5.72</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-88</td>
<td>Tectonatica pusilla</td>
<td>5.18</td>
<td>6.12</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-89</td>
<td>Tectonatica pusilla</td>
<td>3.7</td>
<td>4.17</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-90</td>
<td>Tectonatica pusilla</td>
<td>5.51</td>
<td>5.82</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-91</td>
<td>Tectonatica pusilla</td>
<td>4.57</td>
<td>5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-92</td>
<td>Tectonatica pusilla</td>
<td>4.24</td>
<td>5.15</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-93</td>
<td>Tectonatica pusilla</td>
<td>4.82</td>
<td>4.87</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-94</td>
<td>Tectonatica pusilla</td>
<td>4.14</td>
<td>4.77</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-95</td>
<td>Tectonatica pusilla</td>
<td>3.56</td>
<td>3.78</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-96</td>
<td>Tectonatica pusilla</td>
<td>3.71</td>
<td>4.31</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-97</td>
<td>Tectonatica pusilla</td>
<td>3.55</td>
<td>4.03</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-98</td>
<td>Tectonatica pusilla</td>
<td>3.28</td>
<td>3.75</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC2-99</td>
<td>Euspira heros</td>
<td>4.15</td>
<td>4.14</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AC-1</td>
<td>Naticarius</td>
<td>canrena</td>
<td>17.78</td>
<td>17.51</td>
<td>0.58</td>
<td>3.47</td>
<td>1.78</td>
<td>2</td>
</tr>
<tr>
<td>AC-2</td>
<td>Naticarius</td>
<td>canrena</td>
<td>17.8</td>
<td>19.1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-3</td>
<td>Naticarius</td>
<td>canrena</td>
<td>20.77</td>
<td>21.69</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-4</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.57</td>
<td>18.37</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-5</td>
<td>Naticarius</td>
<td>canrena</td>
<td>16.78</td>
<td>16.92</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-6</td>
<td>Naticarius</td>
<td>canrena</td>
<td>16.58</td>
<td>16.33</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-7</td>
<td>Naticarius</td>
<td>canrena</td>
<td>15.15</td>
<td>15.17</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-8</td>
<td>Naticarius</td>
<td>canrena</td>
<td>19.71</td>
<td>19.37</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-9</td>
<td>Naticarius</td>
<td>canrena</td>
<td>16.49</td>
<td>15.98</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-10</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.79</td>
<td>20.18</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-11</td>
<td>Naticarius</td>
<td>canrena</td>
<td>20.86</td>
<td>20.76</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-12</td>
<td>Naticarius</td>
<td>canrena</td>
<td>17.29</td>
<td>17.52</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-13</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.32</td>
<td>17.39</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-14</td>
<td>Naticarius</td>
<td>canrena</td>
<td>20.31</td>
<td>20.33</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-15</td>
<td>Euspira</td>
<td>heros</td>
<td>48.78</td>
<td>49.91</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-16</td>
<td>Euspira</td>
<td>heros</td>
<td>21.08</td>
<td>19.85</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.17</td>
<td>12.72</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.82</td>
<td>24.33</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-19</td>
<td>Euspira</td>
<td>heros</td>
<td>13.13</td>
<td>13.08</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-20</td>
<td>Naticarius canrena</td>
<td>16.27</td>
<td>16.43</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-21</td>
<td>Euspira heros</td>
<td>33.38</td>
<td>34.82</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-22</td>
<td>Neverita duplicata</td>
<td>51.89</td>
<td>46.79</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-23</td>
<td>Naticarius canrena</td>
<td>22.18</td>
<td>22.73</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-24</td>
<td>Euspira heros</td>
<td>8.48</td>
<td>8.84</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-25</td>
<td>Naticarius canrena</td>
<td>15.13</td>
<td>15.22</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-26</td>
<td>Tectonatica pusilla</td>
<td>3.59</td>
<td>3.74</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-27</td>
<td>Euspira heros</td>
<td>17.34</td>
<td>18.05</td>
<td>0.34</td>
<td>2.62</td>
<td>1.48</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AC-28</td>
<td>Euspira heros</td>
<td>21.13</td>
<td>22.47</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-29</td>
<td>Euspira heros</td>
<td>17.26</td>
<td>18.46</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-30</td>
<td>Neverita duplicata</td>
<td>17.9</td>
<td>14.61</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-31</td>
<td>Euspira heros</td>
<td>20.68</td>
<td>20.8</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-32</td>
<td>Naticarius canrena</td>
<td>14.38</td>
<td>14.5</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-33</td>
<td>Neverita duplicata</td>
<td>20.48</td>
<td>16.82</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-34</td>
<td>Euspira heros</td>
<td>14.42</td>
<td>17.7</td>
<td>0.64</td>
<td>3.56</td>
<td>1.75</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AC-35</td>
<td>Tectonatica pusilla</td>
<td>3.78</td>
<td>4.06</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-36</td>
<td>Euspira heros</td>
<td>9.84</td>
<td>10.88</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-37</td>
<td>Euspira heros</td>
<td>8.83</td>
<td>8.98</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-38</td>
<td>Tectonatica pusilla</td>
<td>3</td>
<td>2.83</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-39</td>
<td>Neverita duplicata</td>
<td>22.48</td>
<td>18.87</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-40</td>
<td>Euspira heros</td>
<td>17.02</td>
<td>16.79</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-41</td>
<td>Euspira heros</td>
<td>15.33</td>
<td>15.35</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-42</td>
<td>Euspira heros</td>
<td>14.22</td>
<td>13.05</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-43</td>
<td>Euspira heros</td>
<td>10.15</td>
<td>10.1</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-44</td>
<td>Naticarius canrena</td>
<td>13.62</td>
<td>14.75</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-45</td>
<td>Neverita duplicata</td>
<td>17.62</td>
<td>15.25</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-46</td>
<td>Euspira heros</td>
<td>14.81</td>
<td>15.17</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-47</td>
<td>Euspira heros</td>
<td>15.11</td>
<td>15.33</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-48</td>
<td>Euspira heros</td>
<td>8.13</td>
<td>7.95</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Tectonatica pusilla</td>
<td>3.84</td>
<td>4.18</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-78</td>
<td>Tectonatica pusilla</td>
<td>3.7</td>
<td>3.65</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-79</td>
<td>Tectonatica pusilla</td>
<td>3.68</td>
<td>3.7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-80</td>
<td>Tectonatica pusilla</td>
<td>3.7</td>
<td>4.2</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-81</td>
<td>Tectonatica pusilla</td>
<td>3.79</td>
<td>4.08</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-82</td>
<td>Tectonatica pusilla</td>
<td>3.78</td>
<td>4.01</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-83</td>
<td>Tectonatica pusilla</td>
<td>3.35</td>
<td>3.44</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-84</td>
<td>Tectonatica pusilla</td>
<td>3.57</td>
<td>3.93</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-85</td>
<td>Tectonatica pusilla</td>
<td>3.72</td>
<td>3.88</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-86</td>
<td>Tectonatica pusilla</td>
<td>3.76</td>
<td>3.81</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-87</td>
<td>Tectonatica pusilla</td>
<td>3.77</td>
<td>4.13</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-88</td>
<td>Tectonatica pusilla</td>
<td>3.13</td>
<td>3.31</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-89</td>
<td>Tectonatica pusilla</td>
<td>3.22</td>
<td>3.14</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-90</td>
<td>Tectonatica pusilla</td>
<td>3.58</td>
<td>3.73</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-91</td>
<td>Tectonatica pusilla</td>
<td>3.87</td>
<td>3.81</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-92</td>
<td>Tectonatica pusilla</td>
<td>3.77</td>
<td>4</td>
<td>0.21</td>
<td>0.94</td>
<td>0.42</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AC-93</td>
<td>Tectonatica pusilla</td>
<td>3.21</td>
<td>3.42</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-94</td>
<td>Tectonatica pusilla</td>
<td>3.51</td>
<td>3.66</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-95</td>
<td>Tectonatica pusilla</td>
<td>3.21</td>
<td>3.45</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-96</td>
<td>Tectonatica pusilla</td>
<td>3.48</td>
<td>3.66</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-97</td>
<td>Tectonatica pusilla</td>
<td>3.24</td>
<td>3.41</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-98</td>
<td>Tectonatica pusilla</td>
<td>3.19</td>
<td>3.32</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-99</td>
<td>Tectonatica pusilla</td>
<td>3.52</td>
<td>3.59</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-100</td>
<td>Tectonatica pusilla</td>
<td>2.89</td>
<td>2.99</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-101</td>
<td>Tectonatica pusilla</td>
<td>3.29</td>
<td>3.09</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-102</td>
<td>Tectonatica pusilla</td>
<td>3.38</td>
<td>3.5</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-103</td>
<td>Tectonatica pusilla</td>
<td>3.71</td>
<td>3.84</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-104</td>
<td>Tectonatica pusilla</td>
<td>2.99</td>
<td>2.89</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>L</td>
<td>T</td>
<td>H</td>
<td>L/H</td>
<td>Width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-107</td>
<td>Tectonatica pusilla</td>
<td>3.34</td>
<td>3.64</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-108</td>
<td>Tectonatica pusilla</td>
<td>3.21</td>
<td>3.29</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-109</td>
<td>Tectonatica pusilla</td>
<td>3.44</td>
<td>3.79</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-110</td>
<td>Tectonatica pusilla</td>
<td>2.99</td>
<td>3.1</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-111</td>
<td>Tectonatica pusilla</td>
<td>2.95</td>
<td>3.24</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-112</td>
<td>Tectonatica pusilla</td>
<td>2.41</td>
<td>2.54</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-113</td>
<td>Tectonatica pusilla</td>
<td>2.79</td>
<td>2.95</td>
<td>0.19</td>
<td>0.96</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-114</td>
<td>Tectonatica pusilla</td>
<td>2.85</td>
<td>3.05</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-115</td>
<td>Tectonatica pusilla</td>
<td>2.77</td>
<td>3.04</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-116</td>
<td>Tectonatica pusilla</td>
<td>3.2</td>
<td>3.23</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-117</td>
<td>Tectonatica pusilla</td>
<td>2.94</td>
<td>2.59</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.011667
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODTU-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>77.88</td>
<td>59.5</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>56.08</td>
<td>49.24</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.12</td>
<td>31.39</td>
<td>0.91</td>
<td>5.18</td>
<td>2.93</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ODTU-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.85</td>
<td>37.56</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.67</td>
<td>32.26</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.77</td>
<td>27.84</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.26</td>
<td>43.64</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>42.4</td>
<td>35.07</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>29.63</td>
<td>25.71</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.08</td>
<td>27.12</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.22</td>
<td>25.5</td>
<td>0.8</td>
<td>4.64</td>
<td>2.43</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ODTU-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>29.28</td>
<td>23.81</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>42.45</td>
<td>35.79</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.85</td>
<td>25.23</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>60.77</td>
<td>56.36</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>29.36</td>
<td>23.99</td>
<td>0.58</td>
<td>6.34</td>
<td>3.23</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ODTU-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.08</td>
<td>19.72</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.65</td>
<td>17.56</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>62.95</td>
<td>57.78</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU</td>
<td>Species</td>
<td>Parameter 1</td>
<td>Parameter 2</td>
<td>Parameter 3</td>
<td>Parameter 4</td>
<td>Parameter 5</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-20</td>
<td>Neverita duplicata</td>
<td>15.29</td>
<td>12.74</td>
<td>0.51</td>
<td>4.56</td>
<td>2.16</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-21</td>
<td>Neverita duplicata</td>
<td>30.76</td>
<td>24.31</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-22</td>
<td>Neverita duplicata</td>
<td>28.75</td>
<td>22.21</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-23</td>
<td>Neverita duplicata</td>
<td>16.22</td>
<td>10.98</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-24</td>
<td>Neverita duplicata</td>
<td>19.33</td>
<td>15.13</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-25</td>
<td>Neverita duplicata</td>
<td>53.94</td>
<td>49.53</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-26</td>
<td>Neverita duplicata</td>
<td>37.23</td>
<td>32.56</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-27</td>
<td>Neverita duplicata</td>
<td>22.92</td>
<td>19.51</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-28</td>
<td>Neverita duplicata</td>
<td>14.05</td>
<td>10.38</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-29</td>
<td>Neverita duplicata</td>
<td>81.59</td>
<td>73.84</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-30</td>
<td>Euspira heros</td>
<td>46.2</td>
<td>48.63</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-31</td>
<td>Euspira heros</td>
<td>50.53</td>
<td>51.42</td>
<td>0.78</td>
<td>5.11</td>
<td>3.6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-32</td>
<td>Euspira heros</td>
<td>41.43</td>
<td>44.69</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-33</td>
<td>Euspira heros</td>
<td>35.47</td>
<td>40.45</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-34</td>
<td>Euspira heros</td>
<td>38.5</td>
<td>38.74</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-35</td>
<td>Euspira heros</td>
<td>55.34</td>
<td>53.44</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-36</td>
<td>Euspira heros</td>
<td>46.54</td>
<td>47.24</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-37</td>
<td>Naticarius canrena</td>
<td>29.79</td>
<td>31.39</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-38</td>
<td>Naticarius canrena</td>
<td>30.84</td>
<td>30.17</td>
<td>1.31</td>
<td>5.13</td>
<td>2.89</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-39</td>
<td>Naticarius canrena</td>
<td>29.86</td>
<td>30.42</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-40</td>
<td>Euspira heros</td>
<td>54.96</td>
<td>59.21</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-41</td>
<td>Euspira heros</td>
<td>50.07</td>
<td>54.83</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-42</td>
<td>Euspira heros</td>
<td>36.88</td>
<td>38.64</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-43</td>
<td>Euspira heros</td>
<td>34.99</td>
<td>37.44</td>
<td>0.78</td>
<td>4.58</td>
<td>2.56</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-44</td>
<td>Euspira heros</td>
<td>58.03</td>
<td>56.97</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-45</td>
<td>Naticarius canrena</td>
<td>34.81</td>
<td>36.83</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-46</td>
<td>Euspira heros</td>
<td>27.2</td>
<td>27.28</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-47</td>
<td>Naticarius canrena</td>
<td>34.69</td>
<td>34.7</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-48</td>
<td>Naticarius canrena</td>
<td>35.18</td>
<td>34.23</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-49</td>
<td>Naticarius canrena</td>
<td>25.37</td>
<td>25.11</td>
<td>0.64</td>
<td>4.37</td>
<td>2.46</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-50</td>
<td>Naticarius canrena</td>
<td>31.05</td>
<td>32.24</td>
<td>1.05</td>
<td>4.56</td>
<td>2.51</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-51</td>
<td>Euspira heros</td>
<td>23.19</td>
<td>22.92</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-52</td>
<td>Neverita duplicata</td>
<td>81.56</td>
<td>66.24</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-53</td>
<td>Neverita duplicata</td>
<td>80.56</td>
<td>68.16</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-54</td>
<td>Neverita duplicata</td>
<td>78.59</td>
<td>65.65</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-55</td>
<td>Neverita duplicata</td>
<td>61.52</td>
<td>53.62</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-56</td>
<td>Neverita duplicata</td>
<td>46.23</td>
<td>40.84</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-57</td>
<td>Neverita duplicata</td>
<td>21.91</td>
<td>16.74</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-58</td>
<td>Neverita duplicata</td>
<td>14.74</td>
<td>10.39</td>
<td>0.49</td>
<td>2.31</td>
<td>1.02</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-59</td>
<td>Neverita duplicata</td>
<td>23.26</td>
<td>20.9</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-60</td>
<td>Neverita duplicata</td>
<td>46.27</td>
<td>37.61</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-61</td>
<td>Neverita duplicata</td>
<td>42.02</td>
<td>36.66</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-62</td>
<td>Neverita duplicata</td>
<td>65.37</td>
<td>57.94</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-63</td>
<td>Neverita duplicata</td>
<td>26.95</td>
<td>22.67</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-64</td>
<td>Neverita duplicata</td>
<td>19.18</td>
<td>13.82</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-65</td>
<td>Neverita duplicata</td>
<td>62.29</td>
<td>51.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-66</td>
<td>Neverita duplicata</td>
<td>26.65</td>
<td>20.98</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-67</td>
<td>Neverita duplicata</td>
<td>38.55</td>
<td>30.77</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-68</td>
<td>Neverita duplicata</td>
<td>15.77</td>
<td>11.86</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-69</td>
<td>Neverita duplicata</td>
<td>25.81</td>
<td>21.15</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-70</td>
<td>Neverita duplicata</td>
<td>21.04</td>
<td>18.13</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-71</td>
<td>Neverita duplicata</td>
<td>28.52</td>
<td>21.68</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-72</td>
<td>Neverita duplicata</td>
<td>30</td>
<td>24.57</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-73</td>
<td>Neverita duplicata</td>
<td>64.35</td>
<td>51.56</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-74</td>
<td>Neverita duplicata</td>
<td>13.88</td>
<td>9.8</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-75</td>
<td>Neverita duplicata</td>
<td>25.39</td>
<td>19.84</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODTU-76</td>
<td>Neverita duplicata</td>
<td>15.85</td>
<td>14.37</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.678
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>85.38</td>
<td>69.22</td>
<td>1.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>78.99</td>
<td>66.85</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>90.35</td>
<td>76.45</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-4</td>
<td>Euspira</td>
<td>heros</td>
<td>22.43</td>
<td>21.82</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>58.11</td>
<td>54.4</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-6</td>
<td>Euspira</td>
<td>heros</td>
<td>36.55</td>
<td>37.39</td>
<td>0.54</td>
<td></td>
<td>5.07</td>
<td>3.61</td>
<td>5</td>
</tr>
<tr>
<td>ODP-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>26.98</td>
<td>22.98</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-8</td>
<td>Euspira</td>
<td>heros</td>
<td>57.41</td>
<td>60.57</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.33</td>
<td>42.78</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.95</td>
<td>33.93</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-11</td>
<td>Euspira</td>
<td>heros</td>
<td>35.38</td>
<td>37.74</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.62</td>
<td>17.85</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-13</td>
<td>Naticarius</td>
<td>canrena</td>
<td>17.18</td>
<td>17.14</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-14</td>
<td>Naticarius</td>
<td>canrena</td>
<td>37.37</td>
<td>37.46</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.82</td>
<td>11.42</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-16</td>
<td>Euspira</td>
<td>heros</td>
<td>11.94</td>
<td>12.72</td>
<td>0.32</td>
<td>3.39</td>
<td>1.39</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ODP-17</td>
<td>Naticarius</td>
<td>canrena</td>
<td>33.33</td>
<td>32.12</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>68.28</td>
<td>60.39</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-19</td>
<td>Naticarius</td>
<td>canrena</td>
<td>39.41</td>
<td>42.63</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP</td>
<td>Species</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Length:Width</td>
<td>Length:Height</td>
<td>Width:Height</td>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>ODP-20</td>
<td>Naticarius canrena</td>
<td>39.38</td>
<td>42.44</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-21</td>
<td>Euspira heros</td>
<td>28.25</td>
<td>28.83</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-22</td>
<td>Euspira heros</td>
<td>17.44</td>
<td>17.96</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-23</td>
<td>Naticarius canrena</td>
<td>34.88</td>
<td>38.85</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-24</td>
<td>Naticarius canrena</td>
<td>37.67</td>
<td>39.08</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-25</td>
<td>Naticarius canrena</td>
<td>30</td>
<td>29.95</td>
<td>0.69</td>
<td>4.77</td>
<td>2.29</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-26</td>
<td>Neverita duplicata</td>
<td>19.26</td>
<td>15.46</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-27</td>
<td>Euspira heros</td>
<td>46.41</td>
<td>46.89</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-28</td>
<td>Naticarius canrena</td>
<td>53.8</td>
<td>54.49</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-29</td>
<td>Neverita duplicata</td>
<td>36.77</td>
<td>31.67</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-30</td>
<td>Euspira heros</td>
<td>8.56</td>
<td>9.13</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-31</td>
<td>Euspira heros</td>
<td>20.85</td>
<td>19.33</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-32</td>
<td>Naticarius canrena</td>
<td>24.74</td>
<td>25.24</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-33</td>
<td>Naticarius canrena</td>
<td>20.34</td>
<td>20.74</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-34</td>
<td>Neverita duplicata</td>
<td>20.76</td>
<td>14.61</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-35</td>
<td>Neverita duplicata</td>
<td>24.59</td>
<td>18.52</td>
<td>0.5</td>
<td>5.74</td>
<td>3.25</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-36</td>
<td>Neverita duplicata</td>
<td>28.52</td>
<td>21.37</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-37</td>
<td>Neverita duplicata</td>
<td>20.66</td>
<td>15.6</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-38</td>
<td>Neverita duplicata</td>
<td>31.08</td>
<td>24</td>
<td>0.4</td>
<td>5.62</td>
<td>3.17</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-39</td>
<td>Neverita duplicata</td>
<td>47.48</td>
<td>45.85</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-40</td>
<td>Neverita duplicata</td>
<td>17.15</td>
<td>11.81</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-41</td>
<td>Naticarius canrena</td>
<td>23.81</td>
<td>21.31</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-42</td>
<td>Euspira heros</td>
<td>25.33</td>
<td>23.88</td>
<td>0.31</td>
<td>4.18</td>
<td>2.33</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-43</td>
<td>Naticarius canrena</td>
<td>35.45</td>
<td>36.64</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-44</td>
<td>Euspira heros</td>
<td>30.49</td>
<td>32.52</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-45</td>
<td>Euspira heros</td>
<td>18</td>
<td>18.7</td>
<td>0.45</td>
<td>2.78</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-46</td>
<td>Euspira heros</td>
<td>20.85</td>
<td>22.27</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-47</td>
<td>Euspira heros</td>
<td>20.29</td>
<td>19.79</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-48</td>
<td>Neverita duplicata</td>
<td>22.92</td>
<td>19.57</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP</td>
<td>Species</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-49</td>
<td>Neverita duplicata</td>
<td>53.35</td>
<td>40.99</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-50</td>
<td>Euspira heros</td>
<td>18.64</td>
<td>18.72</td>
<td>0.39</td>
<td>2.85</td>
<td>1.62</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-51</td>
<td>Euspira heros</td>
<td>21.98</td>
<td>21.82</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-52</td>
<td>Naticarius canrena</td>
<td>19.18</td>
<td>19.08</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-53</td>
<td>Naticarius canrena</td>
<td>48.21</td>
<td>46.22</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-54</td>
<td>Neverita duplicata</td>
<td>36.49</td>
<td>28.72</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-55</td>
<td>Naticarius canrena</td>
<td>39.47</td>
<td>38.94</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-56</td>
<td>Euspira heros</td>
<td>21.56</td>
<td>26.25</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-57</td>
<td>Euspira heros</td>
<td>20.47</td>
<td>21.66</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-58</td>
<td>Euspira heros</td>
<td>15.71</td>
<td>17.45</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-59</td>
<td>Naticarius canrena</td>
<td>14.41</td>
<td>13.71</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-60</td>
<td>Euspira heros</td>
<td>11.87</td>
<td>13.45</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-61</td>
<td>Neverita duplicata</td>
<td>16</td>
<td>12.55</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-62</td>
<td>Euspira heros</td>
<td>19.67</td>
<td>19.73</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-63</td>
<td>Naticarius canrena</td>
<td>18.75</td>
<td>19.17</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-64</td>
<td>Neverita duplicata</td>
<td>20.95</td>
<td>16.1</td>
<td>0.45</td>
<td>4.61</td>
<td>2.61</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-65</td>
<td>Euspira heros</td>
<td>33.75</td>
<td>34.26</td>
<td>0.81</td>
<td>4.67</td>
<td>3.19</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-66</td>
<td>Euspira heros</td>
<td>28.37</td>
<td>29.62</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-67</td>
<td>Neverita duplicata</td>
<td>18.02</td>
<td>12.95</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-68</td>
<td>Naticarius canrena</td>
<td>19.57</td>
<td>19.13</td>
<td>0.58</td>
<td>4.49</td>
<td>2.33</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-69</td>
<td>Neverita duplicata</td>
<td>36.71</td>
<td>31.54</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-70</td>
<td>Euspira heros</td>
<td>69.83</td>
<td>73.46</td>
<td>1.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-71</td>
<td>Euspira heros</td>
<td>55.83</td>
<td>57.22</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-72</td>
<td>Euspira heros</td>
<td>66.22</td>
<td>75.87</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-73</td>
<td>Euspira heros</td>
<td>40.88</td>
<td>43.99</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-74</td>
<td>Euspira heros</td>
<td>33.22</td>
<td>32.74</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-75</td>
<td>Euspira heros</td>
<td>58.92</td>
<td>55.75</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-76</td>
<td>Euspira heros</td>
<td>41.31</td>
<td>46.31</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-77</td>
<td>Euspira heros</td>
<td>57.59</td>
<td>57.28</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Species</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-107</td>
<td>Neverita duplicata</td>
<td>50.54</td>
<td>49.97</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-108</td>
<td>Lunatia perspectiva</td>
<td>46.96</td>
<td>44.69</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-109</td>
<td>Neverita duplicata</td>
<td>30.06</td>
<td>23.88</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-110</td>
<td>Lunatia perspectiva</td>
<td>40.42</td>
<td>37.77</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-111</td>
<td>Neverita duplicata</td>
<td>46.25</td>
<td>42.47</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-112</td>
<td>Neverita duplicata</td>
<td>32.5</td>
<td>30.89</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-113</td>
<td>Neverita duplicata</td>
<td>18.64</td>
<td>15.22</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-114</td>
<td>Neverita duplicata</td>
<td>17.63</td>
<td>14.93</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP-115</td>
<td>Neverita duplicata</td>
<td>20.22</td>
<td>14.1</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.311875
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.66</td>
<td>31.97</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>43.63</td>
<td>37.98</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.17</td>
<td>37.98</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>43.49</td>
<td>35.79</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>38.12</td>
<td>33.12</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.86</td>
<td>29.67</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.93</td>
<td>16.27</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.58</td>
<td>18.1</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.5</td>
<td>16.87</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.83</td>
<td>17.87</td>
<td>0.47</td>
<td>3.98</td>
<td>2.11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CB-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.62</td>
<td>19.27</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.89</td>
<td>31.99</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.93</td>
<td>33.01</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.35</td>
<td>36.08</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.98</td>
<td>20.98</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.53</td>
<td>36.14</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.72</td>
<td>29.64</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.31</td>
<td>30.42</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.76</td>
<td>26.76</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>18.09</td>
<td>15.39</td>
<td>0.49</td>
<td>4.56</td>
<td>2.37</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>29.17</td>
<td>25.81</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>37.28</td>
<td>34.3</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>27.51</td>
<td>24.68</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>20.47</td>
<td>16.46</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>23.41</td>
<td>19.04</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>18.92</td>
<td>16.05</td>
<td>0.34</td>
<td>4.03</td>
<td>2.17</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>20.19</td>
<td>16.83</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>28.77</td>
<td>23.05</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>18.31</td>
<td>15.34</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>29.45</td>
<td>25.04</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>26.16</td>
<td>21.96</td>
<td>0.52</td>
<td>4.26</td>
<td>1.42</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>20.06</td>
<td>15.73</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>21.74</td>
<td>16.01</td>
<td>0.65</td>
<td>inc drillhole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>22.97</td>
<td>18.79</td>
<td>0.54</td>
<td>4.57</td>
<td>2.62</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>23.79</td>
<td>19.5</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>14.4</td>
<td>11.71</td>
<td>0.41</td>
<td>3.71</td>
<td>1.54</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>21.25</td>
<td>16.94</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>20.87</td>
<td>15.63</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>35.47</td>
<td>29.46</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>22.29</td>
<td>16.18</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>27.66</td>
<td>22.77</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>16.34</td>
<td>13.4</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>27.47</td>
<td>23.64</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>27.1</td>
<td>24.01</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>39</td>
<td>40.02</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>21.8</td>
<td>16.66</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>24.31</td>
<td>20.27</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Neverita duplicata</td>
<td>18.67</td>
<td>15.24</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Species</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Width/Length</td>
<td>Height/Width</td>
<td>Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-78</td>
<td>Neverita duplicata</td>
<td>18.94</td>
<td>15.75</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-79</td>
<td>Neverita duplicata</td>
<td>19.5</td>
<td>16.8</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-80</td>
<td>Neverita duplicata</td>
<td>16.65</td>
<td>13.27</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-81</td>
<td>Neverita duplicata</td>
<td>18.99</td>
<td>16.16</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-82</td>
<td>Neverita duplicata</td>
<td>19.31</td>
<td>15.42</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-83</td>
<td>Neverita duplicata</td>
<td>20.27</td>
<td>16.37</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-84</td>
<td>Neverita duplicata</td>
<td>22.04</td>
<td>19.15</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-85</td>
<td>Neverita duplicata</td>
<td>29.31</td>
<td>26.4</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-86</td>
<td>Neverita duplicata</td>
<td>11.87</td>
<td>9.84</td>
<td>0.24</td>
<td>2.98</td>
<td>1.22</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-87</td>
<td>Neverita duplicata</td>
<td>20.4</td>
<td>16.34</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-88</td>
<td>Neverita duplicata</td>
<td>14.28</td>
<td>12.11</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-89</td>
<td>Neverita duplicata</td>
<td>20.29</td>
<td>16.08</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-90</td>
<td>Neverita duplicata</td>
<td>18.16</td>
<td>12.68</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-91</td>
<td>Neverita duplicata</td>
<td>21.64</td>
<td>17.67</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-92</td>
<td>Neverita duplicata</td>
<td>22.23</td>
<td>18.73</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-93</td>
<td>Neverita duplicata</td>
<td>23.97</td>
<td>21.19</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-94</td>
<td>Neverita duplicata</td>
<td>16.98</td>
<td>13.13</td>
<td>0.53</td>
<td>4.16</td>
<td>1.86</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-95</td>
<td>Neverita duplicata</td>
<td>14.57</td>
<td>12.21</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-96</td>
<td>Neverita duplicata</td>
<td>18.52</td>
<td>14.7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-97</td>
<td>Neverita duplicata</td>
<td>19.98</td>
<td>15.36</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-98</td>
<td>Neverita duplicata</td>
<td>14.96</td>
<td>12.37</td>
<td>0.37</td>
<td>4.66</td>
<td>2.39</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-99</td>
<td>Neverita duplicata</td>
<td>27.34</td>
<td>25.53</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-100</td>
<td>Neverita duplicata</td>
<td>23.3</td>
<td>18.15</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-101</td>
<td>Neverita duplicata</td>
<td>27.07</td>
<td>23.63</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-102</td>
<td>Neverita duplicata</td>
<td>7.45</td>
<td>6.08</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-103</td>
<td>Neverita duplicata</td>
<td>22.05</td>
<td>19.23</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-104</td>
<td>Neverita duplicata</td>
<td>22.28</td>
<td>19.46</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-105</td>
<td>Neverita duplicata</td>
<td>31.4</td>
<td>27.31</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-106</td>
<td>Neverita duplicata</td>
<td>18.01</td>
<td>14.48</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-107</td>
<td>Neverita duplicata</td>
<td>18.36</td>
<td>15.03</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-108</td>
<td>Neverita duplicata</td>
<td>19.06</td>
<td>15.74</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-109</td>
<td>Neverita duplicata</td>
<td>22.61</td>
<td>19.25</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-110</td>
<td>Neverita duplicata</td>
<td>22.42</td>
<td>17.99</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-111</td>
<td>Neverita duplicata</td>
<td>26.66</td>
<td>21.75</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-112</td>
<td>Neverita duplicata</td>
<td>19.19</td>
<td>15.12</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-113</td>
<td>Neverita duplicata</td>
<td>11.39</td>
<td>9.31</td>
<td>0.24</td>
<td>2.71</td>
<td>1.39</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-114</td>
<td>Neverita duplicata</td>
<td>18.63</td>
<td>14.21</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-115</td>
<td>Neverita duplicata</td>
<td>16.93</td>
<td>12.94</td>
<td>0.50</td>
<td>3.33</td>
<td>1.52</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-116</td>
<td>Neverita duplicata</td>
<td>26.98</td>
<td>25.33</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-117</td>
<td>Neverita duplicata</td>
<td>23.21</td>
<td>18.27</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-118</td>
<td>Neverita duplicata</td>
<td>17.49</td>
<td>13.88</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-119</td>
<td>Neverita duplicata</td>
<td>11.58</td>
<td>9.57</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-120</td>
<td>Neverita duplicata</td>
<td>22.75</td>
<td>17.28</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-121</td>
<td>Neverita duplicata</td>
<td>33.83</td>
<td>28.86</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-122</td>
<td>Neverita duplicata</td>
<td>33.39</td>
<td>30.3</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-123</td>
<td>Neverita duplicata</td>
<td>26.51</td>
<td>23.25</td>
<td>0.68</td>
<td>4.59</td>
<td>2.49</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-124</td>
<td>Neverita duplicata</td>
<td>20.26</td>
<td>15.64</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-125</td>
<td>Neverita duplicata</td>
<td>14.98</td>
<td>12.09</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-126</td>
<td>Neverita duplicata</td>
<td>20.16</td>
<td>16.89</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-127</td>
<td>Neverita duplicata</td>
<td>20.15</td>
<td>16.7</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-128</td>
<td>Neverita duplicata</td>
<td>16.69</td>
<td>12.4</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-129</td>
<td>Neverita duplicata</td>
<td>19.12</td>
<td>15.47</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-130</td>
<td>Neverita duplicata</td>
<td>23.09</td>
<td>16.96</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-131</td>
<td>Neverita duplicata</td>
<td>18.44</td>
<td>14.03</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-132</td>
<td>Neverita duplicata</td>
<td>20.28</td>
<td>16.49</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-133</td>
<td>Neverita duplicata</td>
<td>27.78</td>
<td>22.85</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-134</td>
<td>Neverita duplicata</td>
<td>10.11</td>
<td>8.13</td>
<td>0.22</td>
<td>2.59</td>
<td>1.46</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-135</td>
<td>Neverita duplicata</td>
<td>14.80</td>
<td>11.57</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Area 1</td>
<td>Area 2</td>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-136</td>
<td>Neverita duplicata</td>
<td>15.5</td>
<td>11.98</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-137</td>
<td>Neverita duplicata</td>
<td>31.42</td>
<td>26.37</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-138</td>
<td>Neverita duplicata</td>
<td>26.04</td>
<td>22.52</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-139</td>
<td>Neverita duplicata</td>
<td>18.91</td>
<td>14.26</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-140</td>
<td>Neverita duplicata</td>
<td>14.08</td>
<td>11.76</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-141</td>
<td>Neverita duplicata</td>
<td>23.33</td>
<td>19.36</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-142</td>
<td>Neverita duplicata</td>
<td>16.52</td>
<td>13.7</td>
<td>0.29</td>
<td>3.36</td>
<td>1.68</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-143</td>
<td>Neverita duplicata</td>
<td>20.54</td>
<td>16.81</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-144</td>
<td>Neverita duplicata</td>
<td>15.5</td>
<td>10.61</td>
<td>0.33</td>
<td>3.69</td>
<td>1.49</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-145</td>
<td>Neverita duplicata</td>
<td>21.57</td>
<td>16.81</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-146</td>
<td>Neverita duplicata</td>
<td>19.79</td>
<td>15.75</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-147</td>
<td>Neverita duplicata</td>
<td>14.77</td>
<td>11.21</td>
<td>0.32</td>
<td>3.7</td>
<td>1.59</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-148</td>
<td>Neverita duplicata</td>
<td>26.43</td>
<td>23.77</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-149</td>
<td>Neverita duplicata</td>
<td>16.42</td>
<td>13.45</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-150</td>
<td>Neverita duplicata</td>
<td>13.3</td>
<td>10.81</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-151</td>
<td>Neverita duplicata</td>
<td>21.28</td>
<td>18.49</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-152</td>
<td>Neverita duplicata</td>
<td>17.67</td>
<td>14.32</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-153</td>
<td>Neverita duplicata</td>
<td>18.47</td>
<td>14.85</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-154</td>
<td>Neverita duplicata</td>
<td>17.26</td>
<td>14.36</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-155</td>
<td>Neverita duplicata</td>
<td>24.91</td>
<td>20.92</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-156</td>
<td>Neverita duplicata</td>
<td>18.89</td>
<td>14.92</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-157</td>
<td>Neverita duplicata</td>
<td>20.2</td>
<td>16.44</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-158</td>
<td>Neverita duplicata</td>
<td>27.99</td>
<td>21.98</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-159</td>
<td>Neverita duplicata</td>
<td>35.75</td>
<td>30.79</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-160</td>
<td>Neverita duplicata</td>
<td>23.07</td>
<td>18.47</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-161</td>
<td>Neverita duplicata</td>
<td>16.8</td>
<td>12.26</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-162</td>
<td>Neverita duplicata</td>
<td>26.04</td>
<td>21.02</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-163</td>
<td>Neverita duplicata</td>
<td>17.73</td>
<td>14.68</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-164</td>
<td>Neverita duplicata</td>
<td>17.62</td>
<td>14.15</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Neverita duplicata</td>
<td>26.48</td>
<td>22.6</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Neverita duplicata</td>
<td>20.06</td>
<td>16.98</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Neverita duplicata</td>
<td>20.86</td>
<td>17.67</td>
<td>0.58</td>
<td>4.4</td>
<td>2.92</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Neverita duplicata</td>
<td>30.54</td>
<td>29.09</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Neverita duplicata</td>
<td>19.53</td>
<td>15.35</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Neverita duplicata</td>
<td>13.67</td>
<td>11.17</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Neverita duplicata</td>
<td>14.87</td>
<td>10.54</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Neverita duplicata</td>
<td>12.77</td>
<td>10.44</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Neverita duplicata</td>
<td>15.54</td>
<td>12.64</td>
<td>0.39</td>
<td>4.04</td>
<td>1.85</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Neverita duplicata</td>
<td>11.75</td>
<td>8.97</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Neverita duplicata</td>
<td>25.12</td>
<td>21.26</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Neverita duplicata</td>
<td>26.51</td>
<td>22.01</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Neverita duplicata</td>
<td>15.23</td>
<td>13.09</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Neverita duplicata</td>
<td>11.68</td>
<td>10.03</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Neverita duplicata</td>
<td>19.65</td>
<td>15.49</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Neverita duplicata</td>
<td>20.59</td>
<td>19.1</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Neverita duplicata</td>
<td>19.91</td>
<td>15.89</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Neverita duplicata</td>
<td>17.31</td>
<td>13.15</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Neverita duplicata</td>
<td>16.48</td>
<td>13.12</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Neverita duplicata</td>
<td>21.49</td>
<td>17.93</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Neverita duplicata</td>
<td>20.75</td>
<td>16.81</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Neverita duplicata</td>
<td>22.85</td>
<td>18.3</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Neverita duplicata</td>
<td>13.2</td>
<td>10.04</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Neverita duplicata</td>
<td>13.07</td>
<td>10.87</td>
<td>0.31</td>
<td>2.76</td>
<td>1.18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Neverita duplicata</td>
<td>14.03</td>
<td>11.05</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Neverita duplicata</td>
<td>24.11</td>
<td>20.55</td>
<td>0.52</td>
<td>5.2</td>
<td>2.64</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Neverita duplicata</td>
<td>15.46</td>
<td>12.16</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Neverita duplicata</td>
<td>17.63</td>
<td>15.47</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Neverita duplicata</td>
<td>20.47</td>
<td>16.95</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-194</td>
<td>Neverita duplicata</td>
<td>16.92</td>
<td>14.19</td>
<td>0.42</td>
<td>4.38</td>
<td>2.02</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-195</td>
<td>Neverita duplicata</td>
<td>13.11</td>
<td>10.98</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-196</td>
<td>Neverita duplicata</td>
<td>20.7</td>
<td>16.56</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-197</td>
<td>Neverita duplicata</td>
<td>15.19</td>
<td>12.33</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-198</td>
<td>Neverita duplicata</td>
<td>18.45</td>
<td>14.25</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-199</td>
<td>Neverita duplicata</td>
<td>17.17</td>
<td>12.54</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-200</td>
<td>Neverita duplicata</td>
<td>18.66</td>
<td>14.36</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-201</td>
<td>Neverita duplicata</td>
<td>21.62</td>
<td>17.64</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-202</td>
<td>Neverita duplicata</td>
<td>17.5</td>
<td>13.65</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-203</td>
<td>Neverita duplicata</td>
<td>17.78</td>
<td>14.57</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-204</td>
<td>Neverita duplicata</td>
<td>18.12</td>
<td>14.64</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-205</td>
<td>Neverita duplicata</td>
<td>14.74</td>
<td>11.26</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-206</td>
<td>Neverita duplicata</td>
<td>9.36</td>
<td>7.36</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-207</td>
<td>Neverita duplicata</td>
<td>24.65</td>
<td>21.29</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-208</td>
<td>Neverita duplicata</td>
<td>15.94</td>
<td>12.36</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-209</td>
<td>Neverita duplicata</td>
<td>13.32</td>
<td>10.62</td>
<td>0.42</td>
<td>2.31</td>
<td>1.27</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-210</td>
<td>Neverita duplicata</td>
<td>21.88</td>
<td>21.95</td>
<td>19.05</td>
<td>4.24</td>
<td>2.31</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-211</td>
<td>Neverita duplicata</td>
<td>16.27</td>
<td>13.37</td>
<td>0.49</td>
<td>3.69</td>
<td>1.79</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-212</td>
<td>Neverita duplicata</td>
<td>23.36</td>
<td>17.82</td>
<td>0.57</td>
<td>4.02</td>
<td>1.81</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-213</td>
<td>Neverita duplicata</td>
<td>19.77</td>
<td>16.98</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-214</td>
<td>Neverita duplicata</td>
<td>19.87</td>
<td>16.27</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-215</td>
<td>Neverita duplicata</td>
<td>17.68</td>
<td>13.91</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-216</td>
<td>Neverita duplicata</td>
<td>15.31</td>
<td>11.55</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-217</td>
<td>Neverita duplicata</td>
<td>15.84</td>
<td>13.98</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-218</td>
<td>Neverita duplicata</td>
<td>13.72</td>
<td>10.24</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-219</td>
<td>Neverita duplicata</td>
<td>16.67</td>
<td>12.35</td>
<td>0.33</td>
<td>3.98</td>
<td>1.81</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-220</td>
<td>Neverita duplicata</td>
<td>17.24</td>
<td>13.05</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-221</td>
<td>Neverita duplicata</td>
<td>16.52</td>
<td>14.24</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-222</td>
<td>Neverita duplicata</td>
<td>13.08</td>
<td>11.01</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Species</td>
<td>Measure 1</td>
<td>Measure 2</td>
<td>Measure 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-223</td>
<td>Neverita duplicata</td>
<td>16.97</td>
<td>12.84</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-224</td>
<td>Neverita duplicata</td>
<td>18.37</td>
<td>13.6</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-225</td>
<td>Neverita duplicata</td>
<td>17.09</td>
<td>13.27</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-226</td>
<td>Neverita duplicata</td>
<td>31.09</td>
<td>28.46</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-227</td>
<td>Neverita duplicata</td>
<td>18.68</td>
<td>14.52</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-228</td>
<td>Neverita duplicata</td>
<td>19.23</td>
<td>15.79</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-229</td>
<td>Neverita duplicata</td>
<td>10.21</td>
<td>8.96</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-230</td>
<td>Neverita duplicata</td>
<td>19</td>
<td>15.99</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-231</td>
<td>Neverita duplicata</td>
<td>22.78</td>
<td>20.43</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-232</td>
<td>Neverita duplicata</td>
<td>22.53</td>
<td>18.48</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-233</td>
<td>Neverita duplicata</td>
<td>15.49</td>
<td>12</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-234</td>
<td>Neverita duplicata</td>
<td>6.6</td>
<td>5.56</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-235</td>
<td>Neverita duplicata</td>
<td>14.32</td>
<td>10.27</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-236</td>
<td>Neverita duplicata</td>
<td>14.5</td>
<td>12.07</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-237</td>
<td>Neverita duplicata</td>
<td>16.11</td>
<td>13.37</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-238</td>
<td>Neverita duplicata</td>
<td>18.57</td>
<td>14.6</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-239</td>
<td>Neverita duplicata</td>
<td>22.98</td>
<td>19.73</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-240</td>
<td>Neverita duplicata</td>
<td>16.83</td>
<td>13.08</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-241</td>
<td>Neverita duplicata</td>
<td>15.11</td>
<td>12.97</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-242</td>
<td>Neverita duplicata</td>
<td>23.11</td>
<td>20.51</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-243</td>
<td>Neverita duplicata</td>
<td>18.42</td>
<td>14.56</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-244</td>
<td>Neverita duplicata</td>
<td>14.86</td>
<td>11.24</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-245</td>
<td>Neverita duplicata</td>
<td>17.47</td>
<td>14.43</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-246</td>
<td>Neverita duplicata</td>
<td>21.77</td>
<td>17.22</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-247</td>
<td>Neverita duplicata</td>
<td>18.57</td>
<td>14.33</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-248</td>
<td>Neverita duplicata</td>
<td>16.9</td>
<td>13.69</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-249</td>
<td>Neverita duplicata</td>
<td>17.43</td>
<td>13.82</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-250</td>
<td>Neverita duplicata</td>
<td>16.66</td>
<td>13.69</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-251</td>
<td>Neverita duplicata</td>
<td>8.79</td>
<td>7.48</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-252</td>
<td>Neverita duplicata</td>
<td>11.32</td>
<td>9.78</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-253</td>
<td>Neverita duplicata</td>
<td>13.71</td>
<td>11.21</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-254</td>
<td>Neverita duplicata</td>
<td>10.56</td>
<td>8.43</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-255</td>
<td>Neverita duplicata</td>
<td>14.02</td>
<td>10.72</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-256</td>
<td>Neverita duplicata</td>
<td>17.89</td>
<td>13.94</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-257</td>
<td>Neverita duplicata</td>
<td>11.35</td>
<td>9.12</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-258</td>
<td>Neverita duplicata</td>
<td>16.55</td>
<td>12.21</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-259</td>
<td>Neverita duplicata</td>
<td>24.69</td>
<td>21.68</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-260</td>
<td>Neverita duplicata</td>
<td>22</td>
<td>17.82</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-261</td>
<td>Neverita duplicata</td>
<td>13.89</td>
<td>11.14</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-262</td>
<td>Neverita duplicata</td>
<td>20.56</td>
<td>17.34</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-263</td>
<td>Neverita duplicata</td>
<td>17.3</td>
<td>12.65</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-264</td>
<td>Neverita duplicata</td>
<td>11.32</td>
<td>9.64</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-265</td>
<td>Neverita duplicata</td>
<td>19.39</td>
<td>15.59</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-266</td>
<td>Neverita duplicata</td>
<td>10.2</td>
<td>7.73</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-267</td>
<td>Neverita duplicata</td>
<td>15.9</td>
<td>11.94</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-268</td>
<td>Neverita duplicata</td>
<td>13.71</td>
<td>10.56</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-269</td>
<td>Neverita duplicata</td>
<td>14.65</td>
<td>10.9</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-270</td>
<td>Neverita duplicata</td>
<td>10.59</td>
<td>8.35</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-271</td>
<td>Neverita duplicata</td>
<td>10.38</td>
<td>8.29</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-272</td>
<td>Neverita duplicata</td>
<td>12.25</td>
<td>9.72</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-273</td>
<td>Neverita duplicata</td>
<td>16.1</td>
<td>13.52</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-274</td>
<td>Neverita duplicata</td>
<td>14.31</td>
<td>11.3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-275</td>
<td>Neverita duplicata</td>
<td>19.33</td>
<td>15.74</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-276</td>
<td>Neverita duplicata</td>
<td>27.69</td>
<td>23.9</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-277</td>
<td>Neverita duplicata</td>
<td>13.96</td>
<td>12.27</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-278</td>
<td>Neverita duplicata</td>
<td>15.15</td>
<td>12.04</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-279</td>
<td>Neverita duplicata</td>
<td>18.44</td>
<td>15.01</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-280</td>
<td>Neverita duplicata</td>
<td>20.11</td>
<td>16.35</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-281</td>
<td>Neverita duplicata</td>
<td>26.82</td>
<td>22.22</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-282</td>
<td>Neverita duplicata</td>
<td>22.69</td>
<td>19.06</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-283</td>
<td>Neverita duplicata</td>
<td>21.41</td>
<td>17.39</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-284</td>
<td>Neverita duplicata</td>
<td>10.71</td>
<td>8.48</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-285</td>
<td>Neverita duplicata</td>
<td>17.24</td>
<td>14.12</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-286</td>
<td>Neverita duplicata</td>
<td>12.64</td>
<td>9.18</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-287</td>
<td>Neverita duplicata</td>
<td>18.56</td>
<td>14.15</td>
<td>0.5</td>
<td>4.35</td>
<td>1.79</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-288</td>
<td>Neverita duplicata</td>
<td>11.36</td>
<td>9.11</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-289</td>
<td>Neverita duplicata</td>
<td>13.22</td>
<td>11.3</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-290</td>
<td>Neverita duplicata</td>
<td>18.03</td>
<td>14.82</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-291</td>
<td>Neverita duplicata</td>
<td>10.68</td>
<td>8.64</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-292</td>
<td>Neverita duplicata</td>
<td>12.42</td>
<td>10.02</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-293</td>
<td>Neverita duplicata</td>
<td>18.17</td>
<td>15.2</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-294</td>
<td>Neverita duplicata</td>
<td>12.24</td>
<td>9.34</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-295</td>
<td>Neverita duplicata</td>
<td>17.77</td>
<td>14.18</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-296</td>
<td>Neverita duplicata</td>
<td>19.02</td>
<td>15.08</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-297</td>
<td>Neverita duplicata</td>
<td>16.43</td>
<td>13.42</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-298</td>
<td>Neverita duplicata</td>
<td>22.45</td>
<td>18.3</td>
<td>0.57</td>
<td>4.49</td>
<td>2.34</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-299</td>
<td>Neverita duplicata</td>
<td>17.15</td>
<td>14.67</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-300</td>
<td>Neverita duplicata</td>
<td>14.41</td>
<td>11.34</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-301</td>
<td>Neverita duplicata</td>
<td>9.91</td>
<td>7.96</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-302</td>
<td>Neverita duplicata</td>
<td>15.32</td>
<td>12.3</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-303</td>
<td>Neverita duplicata</td>
<td>10.86</td>
<td>8.84</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-304</td>
<td>Neverita duplicata</td>
<td>10.22</td>
<td>7.72</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-305</td>
<td>Neverita duplicata</td>
<td>23.56</td>
<td>19.43</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-306</td>
<td>Neverita duplicata</td>
<td>12.75</td>
<td>10.08</td>
<td>0.36</td>
<td>2.51</td>
<td>1.02</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-307</td>
<td>Neverita duplicata</td>
<td>14.2</td>
<td>11.01</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-308</td>
<td>Neverita duplicata</td>
<td>11.74</td>
<td>8.25</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-309</td>
<td>Neverita duplicata</td>
<td>8.95</td>
<td>7.41</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Species</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Length 2</td>
<td>Width 2</td>
<td>Height 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-310</td>
<td>Neverita duplicata</td>
<td>10.52</td>
<td>8.54</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-311</td>
<td>Neverita duplicata</td>
<td>8.48</td>
<td>6.99</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-312</td>
<td>Neverita duplicata</td>
<td>7.32</td>
<td>6.17</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-313</td>
<td>Neverita duplicata</td>
<td>7.14</td>
<td>5.64</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-314</td>
<td>Neverita duplicata</td>
<td>5.49</td>
<td>5.07</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-315</td>
<td>Euspira heros</td>
<td>5.41</td>
<td>4.89</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-316</td>
<td>Neverita duplicata</td>
<td>5.36</td>
<td>4.69</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-317</td>
<td>Euspira heros</td>
<td>64.1</td>
<td>65.11</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-318</td>
<td>Euspira heros</td>
<td>50.34</td>
<td>51.67</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-319</td>
<td>Euspira heros</td>
<td>23.89</td>
<td>24.87</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-320</td>
<td>Euspira heros</td>
<td>38.33</td>
<td>41.07</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-321</td>
<td>Euspira heros</td>
<td>50.04</td>
<td>52.26</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-322</td>
<td>Euspira heros</td>
<td>42.92</td>
<td>46.54</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-323</td>
<td>Euspira heros</td>
<td>44.63</td>
<td>47.66</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-324</td>
<td>Euspira heros</td>
<td>15.91</td>
<td>17.16</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-325</td>
<td>Euspira heros</td>
<td>34.94</td>
<td>37.59</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-326</td>
<td>Euspira heros</td>
<td>13</td>
<td>13.1</td>
<td>0.34</td>
<td>2.82</td>
<td>1.77</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-327</td>
<td>Euspira heros</td>
<td>21.21</td>
<td>20.84</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-328</td>
<td>Euspira heros</td>
<td>26.26</td>
<td>27.23</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-329</td>
<td>Euspira heros</td>
<td>13.1</td>
<td>13.04</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-330</td>
<td>Euspira heros</td>
<td>30.45</td>
<td>29.69</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-331</td>
<td>Euspira heros</td>
<td>14.39</td>
<td>14.77</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-332</td>
<td>Euspira heros</td>
<td>19.02</td>
<td>18.81</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-333</td>
<td>Euspira heros</td>
<td>15.72</td>
<td>16.49</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-334</td>
<td>Euspira heros</td>
<td>15.78</td>
<td>15.05</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-335</td>
<td>Euspira heros</td>
<td>6.8</td>
<td>7.18</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-336</td>
<td>Euspira heros</td>
<td>24.48</td>
<td>24.53</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-337</td>
<td>Euspira heros</td>
<td>23.05</td>
<td>24.69</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-338</td>
<td>Euspira heros</td>
<td>23.04</td>
<td>23.91</td>
<td>0.47</td>
<td>3.26</td>
<td>1.51</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Number</td>
<td>Length 1</td>
<td>Length 2</td>
<td>Width 1</td>
<td>Width 2</td>
<td>Width 3</td>
<td>Length 4</td>
<td>Width 4</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>CB-339</td>
<td>Euspira heros</td>
<td>17.13</td>
<td>17.7</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-340</td>
<td>Euspira heros</td>
<td>6.12</td>
<td>5.74</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-341</td>
<td>Euspira heros</td>
<td>18.59</td>
<td>20.05</td>
<td>0.52</td>
<td>2.72</td>
<td>1.37</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-342</td>
<td>Euspira heros</td>
<td>17.77</td>
<td>17.47</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-343</td>
<td>Euspira heros</td>
<td>6.57</td>
<td>7</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-344</td>
<td>Euspira heros</td>
<td>7.39</td>
<td>7.29</td>
<td>0.28</td>
<td>2.28</td>
<td>1.2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-345</td>
<td>Euspira heros</td>
<td>8.53</td>
<td>9.07</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-346</td>
<td>Euspira heros</td>
<td>17.1</td>
<td>18.9</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-347</td>
<td>Euspira heros</td>
<td>4.82</td>
<td>4.81</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-348</td>
<td>Euspira heros</td>
<td>32.69</td>
<td>32.94</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-349</td>
<td>Euspira heros</td>
<td>31.35</td>
<td>32.33</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-350</td>
<td>Euspira heros</td>
<td>17.87</td>
<td>18.85</td>
<td>0.48</td>
<td>3.9</td>
<td>2.3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-351</td>
<td>Euspira heros</td>
<td>22.03</td>
<td>22.12</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-352</td>
<td>Euspira heros</td>
<td>18.87</td>
<td>19.54</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-353</td>
<td>Euspira heros</td>
<td>15.12</td>
<td>15.44</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-354</td>
<td>Euspira heros</td>
<td>26.04</td>
<td>27.65</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-355</td>
<td>Euspira heros</td>
<td>20.51</td>
<td>19.42</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-356</td>
<td>Euspira heros</td>
<td>15.8</td>
<td>16.05</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-357</td>
<td>Euspira heros</td>
<td>19.04</td>
<td>19.11</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-358</td>
<td>Euspira heros</td>
<td>15.81</td>
<td>17.34</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-359</td>
<td>Euspira heros</td>
<td>21.46</td>
<td>22.06</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-360</td>
<td>Euspira heros</td>
<td>15.99</td>
<td>15.87</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-361</td>
<td>Euspira heros</td>
<td>17.82</td>
<td>17.93</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-362</td>
<td>Euspira heros</td>
<td>20.73</td>
<td>21.96</td>
<td>0.47</td>
<td>3.74</td>
<td>2.33</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-363</td>
<td>Euspira heros</td>
<td>20.78</td>
<td>20.72</td>
<td>0.34</td>
<td>3.66</td>
<td>1.88</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-364</td>
<td>Euspira heros</td>
<td>19.25</td>
<td>19.36</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-365</td>
<td>Euspira heros</td>
<td>17.81</td>
<td>18.59</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-366</td>
<td>Euspira heros</td>
<td>22.66</td>
<td>24.8</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-367</td>
<td>Euspira heros</td>
<td>16.39</td>
<td>16.29</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-368</td>
<td>Euspira heros</td>
<td>14.75</td>
<td>15.44</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-369</td>
<td>Euspira heros</td>
<td>19.37</td>
<td>20.73</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-370</td>
<td>Euspira heros</td>
<td>14.36</td>
<td>14.1</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-371</td>
<td>Euspira heros</td>
<td>15.73</td>
<td>16.29</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-372</td>
<td>Euspira heros</td>
<td>14.31</td>
<td>14.59</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-373</td>
<td>Euspira heros</td>
<td>15.35</td>
<td>15.74</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-374</td>
<td>Euspira heros</td>
<td>18.14</td>
<td>17.68</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-375</td>
<td>Euspira heros</td>
<td>13.84</td>
<td>14.35</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-376</td>
<td>Euspira heros</td>
<td>11.85</td>
<td>12.32</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-377</td>
<td>Euspira heros</td>
<td>14.92</td>
<td>15.66</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-378</td>
<td>Euspira heros</td>
<td>15.39</td>
<td>15.27</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-379</td>
<td>Euspira heros</td>
<td>13.93</td>
<td>14.11</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-380</td>
<td>Euspira heros</td>
<td>13.34</td>
<td>2.85</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-381</td>
<td>Euspira heros</td>
<td>14.6</td>
<td>15.29</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-382</td>
<td>Euspira heros</td>
<td>16.98</td>
<td>16.9</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-383</td>
<td>Euspira heros</td>
<td>14.14</td>
<td>15.02</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-384</td>
<td>Euspira heros</td>
<td>11.06</td>
<td>11.67</td>
<td>0.28</td>
<td>2.69</td>
<td>1.23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-385</td>
<td>Euspira heros</td>
<td>17.42</td>
<td>17.63</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-386</td>
<td>Euspira heros</td>
<td>17.37</td>
<td>18.42</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-387</td>
<td>Euspira heros</td>
<td>11.66</td>
<td>11.19</td>
<td>0.4</td>
<td>2.4</td>
<td>0.74</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-388</td>
<td>Euspira heros</td>
<td>12.47</td>
<td>12.82</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-389</td>
<td>Euspira heros</td>
<td>12.8</td>
<td>13.08</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-390</td>
<td>Euspira heros</td>
<td>18.88</td>
<td>19.19</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-391</td>
<td>Euspira heros</td>
<td>13.15</td>
<td>13.02</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-392</td>
<td>Euspira heros</td>
<td>13.03</td>
<td>13.46</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-393</td>
<td>Euspira heros</td>
<td>9.01</td>
<td>9.5</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-394</td>
<td>Euspira heros</td>
<td>8.59</td>
<td>8.67</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-395</td>
<td>Euspira heros</td>
<td>12.49</td>
<td>12.05</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-396</td>
<td>Euspira heros</td>
<td>12.13</td>
<td>12.17</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>CB-397</td>
<td>Euspira heros</td>
<td>14.45</td>
<td>15.11</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-398</td>
<td>Euspira heros</td>
<td>9.32</td>
<td>9.61</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-399</td>
<td>Euspira heros</td>
<td>10.35</td>
<td>11</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-400</td>
<td>Euspira heros</td>
<td>8.24</td>
<td>7.92</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-401</td>
<td>Euspira heros</td>
<td>11.18</td>
<td>11.44</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-402</td>
<td>Euspira heros</td>
<td>9.11</td>
<td>9.88</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-403</td>
<td>Euspira heros</td>
<td>9.45</td>
<td>9.5</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-404</td>
<td>Euspira heros</td>
<td>8.78</td>
<td>9.35</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-405</td>
<td>Euspira heros</td>
<td>14.95</td>
<td>13.69</td>
<td>0.35</td>
<td>4.15</td>
<td>2.02</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-406</td>
<td>Euspira heros</td>
<td>16.66</td>
<td>17.5</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-407</td>
<td>Euspira heros</td>
<td>15.7</td>
<td>17.24</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-408</td>
<td>Euspira heros</td>
<td>19.02</td>
<td>19.77</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-409</td>
<td>Euspira heros</td>
<td>15.28</td>
<td>16.21</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-410</td>
<td>Euspira heros</td>
<td>15.75</td>
<td>15.79</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-411</td>
<td>Euspira heros</td>
<td>14.45</td>
<td>14.61</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-412</td>
<td>Euspira heros</td>
<td>5.42</td>
<td>5.85</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-413</td>
<td>Euspira heros</td>
<td>11.78</td>
<td>11.99</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-414</td>
<td>Euspira heros</td>
<td>16.16</td>
<td>16.73</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-415</td>
<td>Euspira heros</td>
<td>13.88</td>
<td>14.39</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-416</td>
<td>Euspira heros</td>
<td>13.83</td>
<td>14.24</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-417</td>
<td>Euspira heros</td>
<td>11.88</td>
<td>12.11</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-418</td>
<td>Euspira heros</td>
<td>8.19</td>
<td>8.25</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-419</td>
<td>Euspira heros</td>
<td>8.22</td>
<td>8.56</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-420</td>
<td>Euspira heros</td>
<td>9.56</td>
<td>9.52</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-421</td>
<td>Euspira heros</td>
<td>10.19</td>
<td>10.15</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-422</td>
<td>Euspira heros</td>
<td>7.46</td>
<td>8.33</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-423</td>
<td>Euspira heros</td>
<td>8.5</td>
<td>9.39</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-424</td>
<td>Euspira heros</td>
<td>11.19</td>
<td>10.84</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-425</td>
<td>Euspira heros</td>
<td>8.51</td>
<td>9.11</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-426</td>
<td>Euspira heros</td>
<td>10.3</td>
<td>9.91</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-427</td>
<td>Euspira heros</td>
<td>8.52</td>
<td>7.96</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-428</td>
<td>Euspira heros</td>
<td>9.48</td>
<td>9.28</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-429</td>
<td>Euspira heros</td>
<td>7.38</td>
<td>7.32</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-430</td>
<td>Euspira heros</td>
<td>11.63</td>
<td>11.69</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-431</td>
<td>Euspira heros</td>
<td>6.83</td>
<td>6.64</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-432</td>
<td>Euspira heros</td>
<td>7.11</td>
<td>6.88</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-433</td>
<td>Euspira heros</td>
<td>5.95</td>
<td>6.39</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-434</td>
<td>Euspira heros</td>
<td>5.8</td>
<td>5.92</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-435</td>
<td>Tectonatic pusilla</td>
<td>4.3</td>
<td>4.66</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-436</td>
<td>Naticarius canrena</td>
<td>16.47</td>
<td>17.19</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-437</td>
<td>Naticarius canrena</td>
<td>18.13</td>
<td>17.89</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-438</td>
<td>Naticarius canrena</td>
<td>17.83</td>
<td>16.93</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-439</td>
<td>Naticarius canrena</td>
<td>26.59</td>
<td>29.1</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-440</td>
<td>Naticarius canrena</td>
<td>17.99</td>
<td>17.59</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-441</td>
<td>Naticarius canrena</td>
<td>14.08</td>
<td>14.34</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-442</td>
<td>Neverita duplicata</td>
<td>22.45</td>
<td>19.19</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-443</td>
<td>Neverita duplicata</td>
<td>34</td>
<td>28</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-444</td>
<td>Naticarius canrena</td>
<td>17.35</td>
<td>17.53</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-445</td>
<td>Naticarius canrena</td>
<td>12.7</td>
<td>13</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-446</td>
<td>Naticarius canrena</td>
<td>16.56</td>
<td>16.8</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-447</td>
<td>Naticarius canrena</td>
<td>18.58</td>
<td>18.39</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-448</td>
<td>Naticarius canrena</td>
<td>14.74</td>
<td>14.81</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-449</td>
<td>Naticarius canrena</td>
<td>18.79</td>
<td>19.11</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-450</td>
<td>Naticarius canrena</td>
<td>14.51</td>
<td>13.59</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-451</td>
<td>Naticarius canrena</td>
<td>15.32</td>
<td>14.78</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-452</td>
<td>Naticarius canrena</td>
<td>19.84</td>
<td>21.04</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-453</td>
<td>Naticarius canrena</td>
<td>18.27</td>
<td>18.73</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-454</td>
<td>Naticarius canrena</td>
<td>23.01</td>
<td>22.39</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Species</td>
<td>Length1</td>
<td>Length2</td>
<td>Width</td>
<td>Length1/Length2</td>
<td>Length1/Width</td>
<td>Length2/Width</td>
<td>Length1/Length2/Width</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>CB-455</td>
<td>Naticarius canrena</td>
<td>28.63</td>
<td>29.84</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-456</td>
<td>Naticarius canrena</td>
<td>20.47</td>
<td>21.09</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-457</td>
<td>Naticarius canrena</td>
<td>15.01</td>
<td>14.69</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-458</td>
<td>Naticarius canrena</td>
<td>15.66</td>
<td>15.03</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-459</td>
<td>Naticarius canrena</td>
<td>12.44</td>
<td>12.13</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-460</td>
<td>Naticarius canrena</td>
<td>14.58</td>
<td>14.71</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-461</td>
<td>Naticarius canrena</td>
<td>14.53</td>
<td>12.84</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-462</td>
<td>Naticarius canrena</td>
<td>17.21</td>
<td>17.04</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-463</td>
<td>Naticarius canrena</td>
<td>14.16</td>
<td>13.65</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-464</td>
<td>Naticarius canrena</td>
<td>16.27</td>
<td>16.28</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-465</td>
<td>Naticarius canrena</td>
<td>17.66</td>
<td>17.48</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-466</td>
<td>Naticarius canrena</td>
<td>16.22</td>
<td>16.06</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-467</td>
<td>Naticarius canrena</td>
<td>19</td>
<td>18.98</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-468</td>
<td>Naticarius canrena</td>
<td>15.42</td>
<td>15.65</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-469</td>
<td>Naticarius canrena</td>
<td>14.57</td>
<td>14.41</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-470</td>
<td>Naticarius canrena</td>
<td>17.76</td>
<td>18.15</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-471</td>
<td>Naticarius canrena</td>
<td>17.94</td>
<td>18.63</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-472</td>
<td>Naticarius canrena</td>
<td>16.06</td>
<td>15.46</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-473</td>
<td>Naticarius canrena</td>
<td>14.19</td>
<td>13.65</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-474</td>
<td>Naticarius canrena</td>
<td>14.96</td>
<td>14.42</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-475</td>
<td>Euspira heros</td>
<td>22.46</td>
<td>23.1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-476</td>
<td>Euspira heros</td>
<td>18.77</td>
<td>19.12</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-477</td>
<td>Euspira heros</td>
<td>24.66</td>
<td>25.28</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-478</td>
<td>Euspira heros</td>
<td>16.26</td>
<td>17.39</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-479</td>
<td>Euspira heros</td>
<td>22.03</td>
<td>22.22</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-480</td>
<td>Euspira heros</td>
<td>19.45</td>
<td>19.32</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-481</td>
<td>Neverita duplicata</td>
<td>32.35</td>
<td>25.4</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-482</td>
<td>Neverita duplicata</td>
<td>18.3</td>
<td>15.35</td>
<td>0.49</td>
<td>4.63</td>
<td>1.95</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-483</td>
<td>Neverita duplicata</td>
<td>16.46</td>
<td>14.07</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-484</td>
<td>Naticarius canrena</td>
<td>23.84</td>
<td>24.76</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-485</td>
<td>Naticarius canrena</td>
<td>18.38</td>
<td>18.18</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-486</td>
<td>Naticarius canrena</td>
<td>16.85</td>
<td>16.7</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-487</td>
<td>Naticarius canrena</td>
<td>17.34</td>
<td>17.37</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-488</td>
<td>Naticarius canrena</td>
<td>15.54</td>
<td>15.13</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-489</td>
<td>Naticarius canrena</td>
<td>17.35</td>
<td>16.95</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-490</td>
<td>Naticarius canrena</td>
<td>17.25</td>
<td>17.84</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-491</td>
<td>Naticarius canrena</td>
<td>14.62</td>
<td>14.19</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-492</td>
<td>Naticarius canrena</td>
<td>12.9</td>
<td>13.26</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-493</td>
<td>Naticarius canrena</td>
<td>16.89</td>
<td>16.91</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-494</td>
<td>Naticarius canrena</td>
<td>14.81</td>
<td>15.13</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-495</td>
<td>Naticarius canrena</td>
<td>15.26</td>
<td>14.42</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-496</td>
<td>Naticarius canrena</td>
<td>13.51</td>
<td>13.65</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-497</td>
<td>Naticarius canrena</td>
<td>18.14</td>
<td>18.58</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-498</td>
<td>Neverita duplicata</td>
<td>17.47</td>
<td>15.03</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-499</td>
<td>Neverita duplicata</td>
<td>19.4</td>
<td>15</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-500</td>
<td>Neverita duplicata</td>
<td>17.44</td>
<td>13.82</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-501</td>
<td>Neverita duplicata</td>
<td>14.6</td>
<td>11.52</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-502</td>
<td>Neverita duplicata</td>
<td>18.19</td>
<td>14.88</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-503</td>
<td>Neverita duplicata</td>
<td>14.47</td>
<td>12.65</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-504</td>
<td>Neverita duplicata</td>
<td>14.06</td>
<td>10.9</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-505</td>
<td>Neverita duplicata</td>
<td>15.53</td>
<td>12.2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-506</td>
<td>Neverita duplicata</td>
<td>13.2</td>
<td>10.76</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-507</td>
<td>Neverita duplicata</td>
<td>10.86</td>
<td>9.29</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-508</td>
<td>Neverita duplicata</td>
<td>12.02</td>
<td>9.53</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-509</td>
<td>Naticarius canrena</td>
<td>12.77</td>
<td>12.15</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-510</td>
<td>Euspira heros</td>
<td>18.42</td>
<td>20.78</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-511</td>
<td>Euspira heros</td>
<td>14.28</td>
<td>15.22</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-512</td>
<td>Euspira heros</td>
<td>13.79</td>
<td>14.06</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-513</td>
<td>Euspira heros</td>
<td>12.66</td>
<td>12.88</td>
<td>0.34</td>
<td>3.293846</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>RF-1</td>
<td>Naticarius</td>
<td>canrena</td>
<td>33.96</td>
<td>33.14</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.83</td>
<td>44.34</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-3</td>
<td>Euspira</td>
<td>heros</td>
<td>35.23</td>
<td>36.09</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-4</td>
<td>Euspira</td>
<td>heros</td>
<td>36.71</td>
<td>36.12</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-5</td>
<td>Euspira</td>
<td>heros</td>
<td>23.07</td>
<td>24.05</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-6</td>
<td>Euspira</td>
<td>heros</td>
<td>31.64</td>
<td>35.09</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-7</td>
<td>Naticarius</td>
<td>canrena</td>
<td>28.73</td>
<td>28.69</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.58</td>
<td>28.33</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>39.31</td>
<td>35.17</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-10</td>
<td>Euspira</td>
<td>heros</td>
<td>32.49</td>
<td>33.63</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-11</td>
<td>Naticarius</td>
<td>canrena</td>
<td>25.76</td>
<td>25.84</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-12</td>
<td>Naticarius</td>
<td>canrena</td>
<td>18.84</td>
<td>18.55</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-13</td>
<td>Euspira</td>
<td>heros</td>
<td>16.74</td>
<td>17.58</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-14</td>
<td>Euspira</td>
<td>heros</td>
<td>33.15</td>
<td>33.52</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-15</td>
<td>Naticarius</td>
<td>canrena</td>
<td>29.7</td>
<td>30.6</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-16</td>
<td>Euspira</td>
<td>heros</td>
<td>36.99</td>
<td>36.76</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-17</td>
<td>Euspira</td>
<td>heros</td>
<td>40.55</td>
<td>39.46</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-18</td>
<td>Euspira</td>
<td>heros</td>
<td>28.89</td>
<td>29.67</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-19</td>
<td>Euspira</td>
<td>heros</td>
<td>24.02</td>
<td>23.86</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Species</td>
<td>Subspecies</td>
<td>RF</td>
<td>RF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Euspira</td>
<td>heros</td>
<td>22.07</td>
<td>21.4</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Euspira</td>
<td>heros</td>
<td>41.58</td>
<td>41.42</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Euspira</td>
<td>heros</td>
<td>23.03</td>
<td>24.41</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Euspira</td>
<td>heros</td>
<td>25.32</td>
<td>25.47</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Euspira</td>
<td>heros</td>
<td>27.96</td>
<td>27.42</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Naticarius</td>
<td>canrena</td>
<td>22.33</td>
<td>21.72</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Euspira</td>
<td>heros</td>
<td>25.94</td>
<td>26.66</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Euspira</td>
<td>heros</td>
<td>24.83</td>
<td>26.13</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Euspira</td>
<td>heros</td>
<td>29.43</td>
<td>25.6</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Euspira</td>
<td>heros</td>
<td>23.69</td>
<td>25.65</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Euspira</td>
<td>heros</td>
<td>25.83</td>
<td>26.93</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Euspira</td>
<td>heros</td>
<td>24.94</td>
<td>26.17</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Naticarius</td>
<td>canrena</td>
<td>23.04</td>
<td>22.88</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Naticarius</td>
<td>canrena</td>
<td>31.5</td>
<td>31.86</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Euspira</td>
<td>heros</td>
<td>24.51</td>
<td>25.61</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Neverita</td>
<td>duplicata</td>
<td>29.18</td>
<td>25.66</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.45</td>
<td>14.52</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.07</td>
<td>19.37</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Neverita</td>
<td>duplicata</td>
<td>50.42</td>
<td>44.41</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.59</td>
<td>42.74</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.66</td>
<td>19.55</td>
<td>0.61</td>
<td>4.09</td>
<td>2.37</td>
<td>3</td>
<td>4.09</td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.12</td>
<td>26.68</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-2</td>
<td>Euspira</td>
<td>heros</td>
<td>26.16</td>
<td>27.13</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-3</td>
<td>Euspira</td>
<td>heros</td>
<td>21.98</td>
<td>24.57</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-4</td>
<td>Euspira</td>
<td>heros</td>
<td>21.57</td>
<td>25.81</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-5</td>
<td>Euspira</td>
<td>heros</td>
<td>17.61</td>
<td>20.46</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-6</td>
<td>Euspira</td>
<td>heros</td>
<td>29.71</td>
<td>30.96</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-7</td>
<td>Euspira</td>
<td>heros</td>
<td>20.25</td>
<td>20.67</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-8</td>
<td>Euspira</td>
<td>heros</td>
<td>25.83</td>
<td>24.81</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-9</td>
<td>Euspira</td>
<td>heros</td>
<td>28.71</td>
<td>31.01</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-10</td>
<td>Naticarius</td>
<td>canrena</td>
<td>21.69</td>
<td>20.7</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-11</td>
<td>Lunatia</td>
<td>perspectiva</td>
<td>7.43</td>
<td>8.64</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-12</td>
<td>Lunatia</td>
<td>interna</td>
<td>5.8</td>
<td>6.12</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-13</td>
<td>Lunatia</td>
<td>interna</td>
<td>9.94</td>
<td>10.6</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-14</td>
<td>Euspira</td>
<td>heros</td>
<td>6.41</td>
<td>6.77</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-15</td>
<td>Lunatia</td>
<td>interna</td>
<td>5.8</td>
<td>5.94</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-16</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>2.98</td>
<td>3.6</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-17</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.01</td>
<td>4.57</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.16</td>
<td>4.59</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-19</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>5.44</td>
<td>6.36</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-20</td>
<td>Lunatia perspectiva</td>
<td>8.58</td>
<td>10.45</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-21</td>
<td>Euspira heros</td>
<td>6.9</td>
<td>7.34</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-22</td>
<td>Neverita duplicata</td>
<td>34.18</td>
<td>31.8</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-23</td>
<td>Neverita duplicata</td>
<td>21.59</td>
<td>17.62</td>
<td>0.46</td>
<td>4.71</td>
<td>2.3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-24</td>
<td>Neverita duplicata</td>
<td>14.81</td>
<td>10.73</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-25</td>
<td>Neverita duplicata</td>
<td>10.94</td>
<td>8.9</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-26</td>
<td>Neverita duplicata</td>
<td>12.81</td>
<td>9.99</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-27</td>
<td>Neverita duplicata</td>
<td>8.16</td>
<td>6.58</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-28</td>
<td>Neverita duplicata</td>
<td>27.99</td>
<td>24.2</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-29</td>
<td>Euspira heros</td>
<td>26.35</td>
<td>29.87</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-30</td>
<td>Naticarius canrena</td>
<td>33.73</td>
<td>33.07</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-31</td>
<td>Naticarius canrena</td>
<td>21.54</td>
<td>20.97</td>
<td>0.38</td>
<td>3.19</td>
<td>2.03</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-32</td>
<td>Naticarius canrena</td>
<td>21.49</td>
<td>21.35</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-33</td>
<td>Euspira heros</td>
<td>31.05</td>
<td>32.7</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-34</td>
<td>Euspira heros</td>
<td>34.07</td>
<td>34.89</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-35</td>
<td>Neverita duplicata</td>
<td>29.01</td>
<td>26.64</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-36</td>
<td>Euspira heros</td>
<td>37.81</td>
<td>40.15</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-37</td>
<td>Euspira heros</td>
<td>35.03</td>
<td>36.3</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-38</td>
<td>Euspira heros</td>
<td>28.9</td>
<td>28.08</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-39</td>
<td>Naticarius canrena</td>
<td>34.94</td>
<td>33.38</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-40</td>
<td>Euspira heros</td>
<td>24.12</td>
<td>25.07</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-41</td>
<td>Euspira heros</td>
<td>30.47</td>
<td>32.18</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-42</td>
<td>Euspira heros</td>
<td>22.12</td>
<td>24.93</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-43</td>
<td>Euspira heros</td>
<td>27.86</td>
<td>30.06</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-44</td>
<td>Euspira heros</td>
<td>27.94</td>
<td>30.15</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-45</td>
<td>Euspira heros</td>
<td>27.6</td>
<td>27.52</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-46</td>
<td>Euspira heros</td>
<td>28.4</td>
<td>31.35</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-47</td>
<td>Euspira heros</td>
<td>22.99</td>
<td>27.15</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-48</td>
<td>Neverita duplicata</td>
<td>39.06</td>
<td>37.31</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-49</td>
<td>Neverita duplicata</td>
<td>24.13</td>
<td>20.74</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-50</td>
<td>Neverita duplicata</td>
<td>27.44</td>
<td>22.9</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-51</td>
<td>Neverita duplicata</td>
<td>29.2</td>
<td>25.25</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-52</td>
<td>Neverita duplicata</td>
<td>30.28</td>
<td>25.07</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-53</td>
<td>Neverita duplicata</td>
<td>33.78</td>
<td>27.59</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.95
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.61</td>
<td>33.81</td>
<td>0.92</td>
</tr>
<tr>
<td>WL-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>51.05</td>
<td>50.59</td>
<td>0.9</td>
</tr>
<tr>
<td>WL-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>51.67</td>
<td>45.75</td>
<td>0.71</td>
</tr>
<tr>
<td>WL-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>39.2</td>
<td>35.94</td>
<td>0.96</td>
</tr>
<tr>
<td>WL-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>28.61</td>
<td>25.91</td>
<td>0.51</td>
</tr>
<tr>
<td>WL-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.34</td>
<td>18.63</td>
<td>0.35</td>
</tr>
<tr>
<td>WL-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.75</td>
<td>16.7</td>
<td>0.73</td>
</tr>
<tr>
<td>WL-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>24.33</td>
<td>21.1</td>
<td>0.56</td>
</tr>
<tr>
<td>WL-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>24.9</td>
<td>20.57</td>
<td>0.6</td>
</tr>
<tr>
<td>WL-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>39.06</td>
<td>38.42</td>
<td>0.68</td>
</tr>
<tr>
<td>WL-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>43.47</td>
<td>41.6</td>
<td>1</td>
</tr>
<tr>
<td>WL-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.56</td>
<td>28.07</td>
<td>0.53</td>
</tr>
<tr>
<td>WL-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.04</td>
<td>34.99</td>
<td>0.72</td>
</tr>
<tr>
<td>WL-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>40.45</td>
<td>35.69</td>
<td>0.61</td>
</tr>
<tr>
<td>WL-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.2</td>
<td>15.05</td>
<td>0.47</td>
</tr>
<tr>
<td>WL-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.5</td>
<td>24.37</td>
<td>0.59</td>
</tr>
<tr>
<td>WL-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.29</td>
<td>30.54</td>
<td>0.62</td>
</tr>
<tr>
<td>WL-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.2</td>
<td>16.67</td>
<td>0.51</td>
</tr>
<tr>
<td>WL-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.6</td>
<td>27.31</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WL-20</td>
<td>Neverita duplicata</td>
<td>25.22</td>
<td>20.01</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>WL-21</td>
<td>Neverita duplicata</td>
<td>19.74</td>
<td>14.37</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>WL-22</td>
<td>Neverita duplicata</td>
<td>31.65</td>
<td>25.73</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>WL-23</td>
<td>Neverita duplicata</td>
<td>23.64</td>
<td>21.46</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>WL-24</td>
<td>Neverita duplicata</td>
<td>23.16</td>
<td>19.04</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>WL-25</td>
<td>Euspira heros</td>
<td>31.11</td>
<td>33.26</td>
<td>0.67</td>
<td>5.08</td>
</tr>
<tr>
<td>WL-26</td>
<td>Euspira heros</td>
<td>28.5</td>
<td>30.51</td>
<td>0.6</td>
<td>3.38</td>
</tr>
<tr>
<td>WL-27</td>
<td>Euspira heros</td>
<td>27.48</td>
<td>30.46</td>
<td>0.45</td>
<td>3.8</td>
</tr>
<tr>
<td>WL-28</td>
<td>Euspira heros</td>
<td>30.9</td>
<td>34.03</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>WL-29</td>
<td>Neverita duplicata</td>
<td>35.35</td>
<td>33.84</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>WL-30</td>
<td>Sinum chesapeakensis</td>
<td>15.11</td>
<td>10.65</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>WL-31</td>
<td>Tectonatica pusilla</td>
<td>4.7</td>
<td>5.25</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>WL-32</td>
<td>Tectonatica pusilla</td>
<td>4.42</td>
<td>5.35</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>WL-33</td>
<td>Tectonatica pusilla</td>
<td>4.45</td>
<td>4.86</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>WL-34</td>
<td>Tectonatica pusilla</td>
<td>6.44</td>
<td>7.03</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>WL-35</td>
<td>Tectonatica pusilla</td>
<td>4.33</td>
<td>4.41</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>WL-36</td>
<td>Tectonatica pusilla</td>
<td>4.33</td>
<td>4.5</td>
<td>0.12</td>
<td>0.88</td>
</tr>
<tr>
<td>WL-37</td>
<td>Tectonatica pusilla</td>
<td>3.39</td>
<td>4.47</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>WL-38</td>
<td>Tectonatica pusilla</td>
<td>4.43</td>
<td>4.76</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>WL-39</td>
<td>Tectonatica pusilla</td>
<td>3.15</td>
<td>3.26</td>
<td>0.18</td>
<td>0.99</td>
</tr>
<tr>
<td>WL-40</td>
<td>Euspira heros</td>
<td>5.02</td>
<td>4.31</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>WL-41</td>
<td>Euspira heros</td>
<td>3.88</td>
<td>3.49</td>
<td>0.19</td>
<td>1.65</td>
</tr>
<tr>
<td>WL-42</td>
<td>Tectonatica pusilla</td>
<td>4.29</td>
<td>4.31</td>
<td>0.12</td>
<td>1.11</td>
</tr>
<tr>
<td>WL-43</td>
<td>Tectonatica pusilla</td>
<td>3.35</td>
<td>3.47</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>WL-44</td>
<td>Tectonatica pusilla</td>
<td>3.52</td>
<td>3.69</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>WL-45</td>
<td>Tectonatica pusilla</td>
<td>3.32</td>
<td>3.66</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>WL-46</td>
<td>Tectonatica pusilla</td>
<td>3.24</td>
<td>3.51</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>WL-47</td>
<td>Tectonatica pusilla</td>
<td>3.57</td>
<td>3.66</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>WL-48</td>
<td>Euspira heros</td>
<td>3.95</td>
<td>3.1</td>
<td>0.44</td>
<td>1.55</td>
</tr>
</tbody>
</table>

5 Only use for % Cannib.
<table>
<thead>
<tr>
<th></th>
<th>Tectonatica pusilla</th>
<th>3.05</th>
<th>3.08</th>
<th>0.16</th>
<th>0.93</th>
<th>0.58</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-50</td>
<td></td>
<td>3.04</td>
<td>3.24</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-51</td>
<td></td>
<td>2.72</td>
<td>2.85</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-52</td>
<td></td>
<td>3.23</td>
<td>3.67</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-53</td>
<td></td>
<td>3.35</td>
<td>3.4</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-54</td>
<td></td>
<td>3.78</td>
<td>3.99</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-55</td>
<td></td>
<td>3.41</td>
<td>3.32</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-56</td>
<td></td>
<td>3.37</td>
<td>3.52</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-57</td>
<td></td>
<td>2.75</td>
<td>2.99</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-58</td>
<td></td>
<td>3</td>
<td>3.01</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-59</td>
<td></td>
<td>2.87</td>
<td>2.67</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-60</td>
<td></td>
<td>3.03</td>
<td>3.3</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-61</td>
<td></td>
<td>2.99</td>
<td>3.14</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-62</td>
<td></td>
<td>2.78</td>
<td>2.99</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-63</td>
<td></td>
<td>2.96</td>
<td>3</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL-64</td>
<td></td>
<td>3</td>
<td>2.88</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.152222
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.89</td>
<td>30.27</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.54</td>
<td>26.37</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.1</td>
<td>31.94</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>26.75</td>
<td>22.13</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-5</td>
<td>Euspira</td>
<td>heros</td>
<td>19.14</td>
<td>20.91</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-6</td>
<td>Euspira</td>
<td>heros</td>
<td>25.27</td>
<td>26.11</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-7</td>
<td>Euspira</td>
<td>heros</td>
<td>19.52</td>
<td>19</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-8</td>
<td>Naticarius</td>
<td>canrena</td>
<td>22.5</td>
<td>22.15</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.63</td>
<td>20.45</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-10</td>
<td>Naticarius</td>
<td>canrena</td>
<td>20.33</td>
<td>18.61</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.54</td>
<td>18.07</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.79</td>
<td>22.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-13</td>
<td>Euspira</td>
<td>heros</td>
<td>27.45</td>
<td>28.23</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-14</td>
<td>Naticarius</td>
<td>canrena</td>
<td>23.1</td>
<td>23.54</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-15</td>
<td>Euspira</td>
<td>heros</td>
<td>27.86</td>
<td>29.86</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-16</td>
<td>Euspira</td>
<td>heros</td>
<td>23.52</td>
<td>27.59</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.1</td>
<td>29.47</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.51</td>
<td>16</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-19</td>
<td>Euspira</td>
<td>heros</td>
<td>16.31</td>
<td>15.74</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-20</td>
<td>Neverita duplicata</td>
<td>15.98</td>
<td>15.39</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-21</td>
<td>Neverita duplicata</td>
<td>16.26</td>
<td>11.46</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-22</td>
<td>Neverita duplicata</td>
<td>14.91</td>
<td>11.12</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-23</td>
<td>Neverita duplicata</td>
<td>13.99</td>
<td>13.26</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-24</td>
<td>Euspira heros</td>
<td>12.6</td>
<td>12.16</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-25</td>
<td>Euspira heros</td>
<td>19.88</td>
<td>19.35</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-26</td>
<td>Euspira heros</td>
<td>24.88</td>
<td>24.89</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-27</td>
<td>Euspira heros</td>
<td>21.65</td>
<td>23.2</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-28</td>
<td>Euspira heros</td>
<td>20.59</td>
<td>20.99</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH-29</td>
<td>Euspira heros</td>
<td>17.22</td>
<td>17.39</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>WB-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>28.29</td>
<td>22.77</td>
<td>0.49</td>
<td>4.76</td>
<td>2.74</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WB-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.34</td>
<td>29.19</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.16</td>
<td>31.44</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>43.67</td>
<td>47.17</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.04</td>
<td>21.99</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.88</td>
<td>23.65</td>
<td>1.05</td>
<td>4.49</td>
<td>2.66</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WB-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.15</td>
<td>26.82</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.9</td>
<td>12.85</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.5</td>
<td>12.44</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.96</td>
<td>20.69</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.9</td>
<td>46.06</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>56.41</td>
<td>52.38</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>64.39</td>
<td>52.71</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.35</td>
<td>20.77</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>57.22</td>
<td>54.06</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.24</td>
<td>26.03</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.18</td>
<td>18.46</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.18</td>
<td>27.24</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>54.23</td>
<td>46.56</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Species</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-20</td>
<td>Neverita duplicata</td>
<td>21.24</td>
<td>18.23</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-21</td>
<td>Neverita duplicata</td>
<td>55.12</td>
<td>56.51</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-22</td>
<td>Neverita duplicata</td>
<td>39.84</td>
<td>37.53</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-23</td>
<td>Neverita duplicata</td>
<td>47.23</td>
<td>38.89</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-24</td>
<td>Neverita duplicata</td>
<td>28.72</td>
<td>23.98</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-25</td>
<td>Neverita duplicata</td>
<td>60.77</td>
<td>56.29</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-26</td>
<td>Neverita duplicata</td>
<td>25.02</td>
<td>20.16</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-27</td>
<td>Neverita duplicata</td>
<td>34.02</td>
<td>32.04</td>
<td>0.53</td>
<td>6.32</td>
<td>3.49</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-28</td>
<td>Neverita duplicata</td>
<td>63.92</td>
<td>62.13</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-29</td>
<td>Neverita duplicata</td>
<td>32.08</td>
<td>30.08</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB-30</td>
<td>Neverita duplicata</td>
<td>35.86</td>
<td>33.47</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.19
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>Euspira</td>
<td>heros</td>
<td>61.91</td>
<td>64.59</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-2</td>
<td>Euspira</td>
<td>heros</td>
<td>47.6</td>
<td>46.13</td>
<td>0.45</td>
<td></td>
<td></td>
<td>4.54</td>
<td>2.48</td>
</tr>
<tr>
<td>SI-3</td>
<td>Euspira</td>
<td>heros</td>
<td>25.36</td>
<td>26.49</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-4</td>
<td>Euspira</td>
<td>heros</td>
<td>32.43</td>
<td>33.38</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-5</td>
<td>Euspira</td>
<td>heros</td>
<td>42.74</td>
<td>44.39</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-6</td>
<td>Euspira</td>
<td>heros</td>
<td>27.13</td>
<td>27.49</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-7</td>
<td>Euspira</td>
<td>heros</td>
<td>24.03</td>
<td>24.55</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-8</td>
<td>Euspira</td>
<td>heros</td>
<td>62.09</td>
<td>62.58</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-9</td>
<td>Euspira</td>
<td>heros</td>
<td>39.56</td>
<td>40.63</td>
<td>0.69</td>
<td></td>
<td></td>
<td>5.1</td>
<td>3.35</td>
</tr>
<tr>
<td>SI-10</td>
<td>Euspira</td>
<td>heros</td>
<td>17.51</td>
<td>16.91</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-11</td>
<td>Naticarius</td>
<td>canrena</td>
<td>25.58</td>
<td>25.29</td>
<td>0.52</td>
<td></td>
<td></td>
<td>4.14</td>
<td>2.15</td>
</tr>
<tr>
<td>SI-12</td>
<td>Euspira</td>
<td>heros</td>
<td>41.75</td>
<td>42.83</td>
<td>0.8</td>
<td></td>
<td></td>
<td>5.23</td>
<td>2.4</td>
</tr>
<tr>
<td>SI-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>66.33</td>
<td>52.82</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>65.5</td>
<td>50.58</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>56.39</td>
<td>44.87</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>45.04</td>
<td>44.05</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>64.94</td>
<td>54.41</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.44</td>
<td>36.67</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.67</td>
<td>23.54</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.81</td>
<td>57.77</td>
<td>56.31</td>
<td>55.97</td>
<td>57.25</td>
<td>56.81</td>
<td>56.49</td>
<td>30.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.91</td>
<td>52.87</td>
<td>48.62</td>
<td>47.26</td>
<td>48.02</td>
<td>48.64</td>
<td>62.77</td>
<td>29.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.61</td>
<td>0.94</td>
<td>1.12</td>
<td>1.96</td>
<td>0.97</td>
<td>1.82</td>
<td>1.35</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Genus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-49</td>
<td>Neverita duplicata</td>
<td>30.28</td>
<td>25.58</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-50</td>
<td>Neverita duplicata</td>
<td>19.53</td>
<td>14.89</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-51</td>
<td>Neverita duplicata</td>
<td>43.17</td>
<td>38.41</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-52</td>
<td>Neverita duplicata</td>
<td>31.37</td>
<td>25.33</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-53</td>
<td>Neverita duplicata</td>
<td>29.82</td>
<td>23.32</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-54</td>
<td>Neverita duplicata</td>
<td>23.62</td>
<td>19.27</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-55</td>
<td>Neverita duplicata</td>
<td>20.63</td>
<td>15.88</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-56</td>
<td>Neverita duplicata</td>
<td>15.4</td>
<td>11.73</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-57</td>
<td>Neverita duplicata</td>
<td>18.82</td>
<td>15.96</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-58</td>
<td>Neverita duplicata</td>
<td>31.03</td>
<td>25.41</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-59</td>
<td>Neverita duplicata</td>
<td>22.7</td>
<td>17.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-60</td>
<td>Neverita duplicata</td>
<td>32.16</td>
<td>24.03</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-61</td>
<td>Neverita duplicata</td>
<td>29.02</td>
<td>24.65</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-62</td>
<td>Neverita duplicata</td>
<td>18.11</td>
<td>13.79</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-63</td>
<td>Neverita duplicata</td>
<td>24.91</td>
<td>18.78</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-64</td>
<td>Neverita duplicata</td>
<td>58.1</td>
<td>51.84</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-65</td>
<td>Euspira heros</td>
<td>30.45</td>
<td>31.7</td>
<td>0.62</td>
<td>3.8</td>
<td>2.19</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-66</td>
<td>Euspira heros</td>
<td>18.08</td>
<td>17.95</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-67</td>
<td>Euspira heros</td>
<td>17.23</td>
<td>16.69</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-68</td>
<td>Euspira heros</td>
<td>16.28</td>
<td>16.17</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-69</td>
<td>Naticarius canrena</td>
<td>38.88</td>
<td>37.13</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-70</td>
<td>Naticarius canrena</td>
<td>17.49</td>
<td>16.78</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-71</td>
<td>Naticarius canrena</td>
<td>20.17</td>
<td>19.39</td>
<td>0.58</td>
<td>4.18</td>
<td>2.24</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-72</td>
<td>Euspira heros</td>
<td>39.23</td>
<td>39.35</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-73</td>
<td>Euspira heros</td>
<td>33.45</td>
<td>33.56</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-74</td>
<td>Euspira heros</td>
<td>24.73</td>
<td>24.4</td>
<td>0.76</td>
<td>4.25</td>
<td>2.26</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-75</td>
<td>Neverita duplicata</td>
<td>36.14</td>
<td>31.52</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-76</td>
<td>Neverita duplicata</td>
<td>52.08</td>
<td>41.25</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-77</td>
<td>Neverita duplicata</td>
<td>48.5</td>
<td>41.65</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-78</td>
<td>Neverita duplicata</td>
<td>21.39</td>
<td>18.25</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-79</td>
<td>Neverita duplicata</td>
<td>27.58</td>
<td>23.01</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-80</td>
<td>Neverita duplicata</td>
<td>50.92</td>
<td>45.97</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-81</td>
<td>Neverita duplicata</td>
<td>25.36</td>
<td>20.02</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-82</td>
<td>Neverita duplicata</td>
<td>29.71</td>
<td>21.3</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-83</td>
<td>Neverita duplicata</td>
<td>23.83</td>
<td>17.85</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-84</td>
<td>Neverita duplicata</td>
<td>52.19</td>
<td>47.7</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-85</td>
<td>Neverita duplicata</td>
<td>69.94</td>
<td>60.48</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-86</td>
<td>Neverita duplicata</td>
<td>54.11</td>
<td>46.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-87</td>
<td>Neverita duplicata</td>
<td>56.58</td>
<td>53.44</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-88</td>
<td>Neverita duplicata</td>
<td>63.24</td>
<td>50.98</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-89</td>
<td>Neverita duplicata</td>
<td>33.48</td>
<td>25.19</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-90</td>
<td>Neverita duplicata</td>
<td>36.44</td>
<td>29.87</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-91</td>
<td>Neverita duplicata</td>
<td>23.69</td>
<td>18.39</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-92</td>
<td>Neverita duplicata</td>
<td>26.67</td>
<td>21.96</td>
<td>0.31</td>
<td>4.76</td>
<td>3.37</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-93</td>
<td>Neverita duplicata</td>
<td>22.92</td>
<td>16.32</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-94</td>
<td>Naticarius canrena</td>
<td>26.19</td>
<td>23.56</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-95</td>
<td>Naticarius canrena</td>
<td>36.42</td>
<td>30.69</td>
<td>0.95</td>
<td>2.9</td>
<td>1.76</td>
<td>1 drilled twice (3.26/1.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-96</td>
<td>Naticarius canrena</td>
<td>30.5</td>
<td>33.75</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-97</td>
<td>Naticarius canrena</td>
<td>43.68</td>
<td>43.12</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-98</td>
<td>Euspira heros</td>
<td>17.62</td>
<td>17.24</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-99</td>
<td>Euspira heros</td>
<td>22.35</td>
<td>21.91</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI-100</td>
<td>Euspira heros</td>
<td>26.11</td>
<td>25.61</td>
<td>0.43</td>
<td>3.09</td>
<td>1.55</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.443077
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>57.84</td>
<td>51.29</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.02</td>
<td>28</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.59</td>
<td>31.03</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.8</td>
<td>33.27</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.44</td>
<td>28.42</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>37.96</td>
<td>31.07</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>42.73</td>
<td>35.21</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>35.01</td>
<td>32.63</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>35.74</td>
<td>29.32</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.2</td>
<td>28.59</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.99</td>
<td>28.85</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>36.17</td>
<td>28.34</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.47</td>
<td>28.28</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.39</td>
<td>27.14</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-15</td>
<td>Naticarius</td>
<td>canrena</td>
<td>31.9</td>
<td>30.09</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>33.84</td>
<td>27.65</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.59</td>
<td>24.18</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.77</td>
<td>32.15</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>32.41</td>
<td>25.49</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locality: Kirby Pond
Date Collected: PRI
Formation: Duplin

Exact location unknown, SC
<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP-20</td>
<td>Neverita duplicata</td>
<td>29.77</td>
<td>23.84</td>
<td>1.08</td>
</tr>
<tr>
<td>KP-21</td>
<td>Neverita duplicata</td>
<td>28.25</td>
<td>23.68</td>
<td>0.9</td>
</tr>
<tr>
<td>KP-22</td>
<td>Neverita duplicata</td>
<td>25.11</td>
<td>20.21</td>
<td>0.83</td>
</tr>
<tr>
<td>KP-23</td>
<td>Neverita duplicata</td>
<td>22.16</td>
<td>17.72</td>
<td>0.75</td>
</tr>
<tr>
<td>KP-24</td>
<td>Neverita duplicata</td>
<td>29.02</td>
<td>26.41</td>
<td>1.08</td>
</tr>
<tr>
<td>KP-25</td>
<td>Neverita duplicata</td>
<td>18.2</td>
<td>13.49</td>
<td>0.74</td>
</tr>
<tr>
<td>KP-26</td>
<td>Neverita duplicata</td>
<td>23.24</td>
<td>18.99</td>
<td>0.67</td>
</tr>
<tr>
<td>KP-27</td>
<td>Neverita duplicata</td>
<td>26.95</td>
<td>22.57</td>
<td>0.81</td>
</tr>
<tr>
<td>KP-28</td>
<td>Neverita duplicata</td>
<td>17.56</td>
<td>13.87</td>
<td>0.91</td>
</tr>
<tr>
<td>KP-29</td>
<td>Neverita duplicata</td>
<td>31.7</td>
<td>25.36</td>
<td>1.06</td>
</tr>
<tr>
<td>KP-30</td>
<td>Neverita duplicata</td>
<td>31.7</td>
<td>26.8</td>
<td>0.86</td>
</tr>
<tr>
<td>KP-31</td>
<td>Neverita duplicata</td>
<td>26.45</td>
<td>22.51</td>
<td>1.02</td>
</tr>
<tr>
<td>KP-32</td>
<td>Neverita duplicata</td>
<td>18.78</td>
<td>15.13</td>
<td>0.58</td>
</tr>
<tr>
<td>KP-33</td>
<td>Neverita duplicata</td>
<td>15.81</td>
<td>11.96</td>
<td>0.73</td>
</tr>
<tr>
<td>KP-34</td>
<td>Neverita duplicata</td>
<td>5.33</td>
<td>4.05</td>
<td>0.21</td>
</tr>
<tr>
<td>KP-35</td>
<td>Tectonatica pusilla</td>
<td>3.79</td>
<td>3.84</td>
<td>0.13</td>
</tr>
<tr>
<td>KP-36</td>
<td>Tectonatica pusilla</td>
<td>2.95</td>
<td>3.14</td>
<td>0.21</td>
</tr>
<tr>
<td>KP-37</td>
<td>Tectonatica pusilla</td>
<td>3.8</td>
<td>3.3</td>
<td>0.17</td>
</tr>
<tr>
<td>KP-38</td>
<td>Tectonatica pusilla</td>
<td>2.84</td>
<td>3.2</td>
<td>0.23</td>
</tr>
<tr>
<td>KP-39</td>
<td>Tectonatica pusilla</td>
<td>3.4</td>
<td>3.86</td>
<td>0.22</td>
</tr>
<tr>
<td>KP-40</td>
<td>Tectonatica pusilla</td>
<td>3.35</td>
<td>3.47</td>
<td>0.23</td>
</tr>
<tr>
<td>KP-41</td>
<td>Tectonatica pusilla</td>
<td>3</td>
<td>3.22</td>
<td>0.25</td>
</tr>
<tr>
<td>KP-42</td>
<td>Tectonatica pusilla</td>
<td>2.28</td>
<td>2.58</td>
<td>0.17</td>
</tr>
<tr>
<td>KP-43</td>
<td>Tectonatica pusilla</td>
<td>2.2</td>
<td>2.6</td>
<td>0.15</td>
</tr>
<tr>
<td>KP-44</td>
<td>Tectonatica pusilla</td>
<td>3.05</td>
<td>3.11</td>
<td>0.23</td>
</tr>
<tr>
<td>KP-45</td>
<td>Tectonatica pusilla</td>
<td>2.23</td>
<td>2.31</td>
<td>0.28</td>
</tr>
<tr>
<td>KP-46</td>
<td>Naticarius canrena</td>
<td>28.56</td>
<td>29.18</td>
<td>0.71</td>
</tr>
<tr>
<td>KP-47</td>
<td>Naticarius canrena</td>
<td>31.63</td>
<td>31.83</td>
<td>1.02</td>
</tr>
<tr>
<td>KP-48</td>
<td>Naticarius canrena</td>
<td>27.17</td>
<td>25.17</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>KP-49</td>
<td>Naticarius canrena</td>
<td>29.84</td>
<td>29.29</td>
<td>0.64</td>
</tr>
<tr>
<td>KP-50</td>
<td>Naticarius canrena</td>
<td>19.37</td>
<td>17.43</td>
<td>0.52</td>
</tr>
<tr>
<td>KP-51</td>
<td>Naticarius canrena</td>
<td>29.79</td>
<td>29.38</td>
<td>0.61</td>
</tr>
<tr>
<td>KP-52</td>
<td>Naticarius canrena</td>
<td>21.09</td>
<td>20.38</td>
<td>0.53</td>
</tr>
<tr>
<td>KP-53</td>
<td>Naticarius canrena</td>
<td>19.07</td>
<td>19.36</td>
<td>0.89</td>
</tr>
<tr>
<td>KP-54</td>
<td>Naticarius canrena</td>
<td>29.54</td>
<td>27.56</td>
<td>0.7</td>
</tr>
<tr>
<td>KP-55</td>
<td>Naticarius canrena</td>
<td>15.79</td>
<td>15.07</td>
<td>0.47</td>
</tr>
<tr>
<td>KP-56</td>
<td>Naticarius canrena</td>
<td>30.09</td>
<td>30.11</td>
<td>0.97</td>
</tr>
<tr>
<td>KP-57</td>
<td>Naticarius canrena</td>
<td>17.43</td>
<td>17.5</td>
<td>0.69</td>
</tr>
<tr>
<td>KP-58</td>
<td>Euspira heros</td>
<td>26.62</td>
<td>26.92</td>
<td>0.49</td>
</tr>
<tr>
<td>KP-59</td>
<td>Euspira heros</td>
<td>27.34</td>
<td>26.81</td>
<td>0.67</td>
</tr>
<tr>
<td>KP-60</td>
<td>Euspira heros</td>
<td>21.31</td>
<td>21.37</td>
<td>0.93</td>
</tr>
<tr>
<td>KP-61</td>
<td>Euspira heros</td>
<td>24.78</td>
<td>22.4</td>
<td>0.58</td>
</tr>
<tr>
<td>KP-62</td>
<td>Euspira heros</td>
<td>32.36</td>
<td>32.92</td>
<td>0.63</td>
</tr>
<tr>
<td>KP-63</td>
<td>Euspira heros</td>
<td>32.12</td>
<td>30.54</td>
<td>0.8</td>
</tr>
<tr>
<td>KP-64</td>
<td>Euspira heros</td>
<td>18.15</td>
<td>19.75</td>
<td>0.53</td>
</tr>
<tr>
<td>KP-65</td>
<td>Euspira heros</td>
<td>11.44</td>
<td>13.58</td>
<td>0.54</td>
</tr>
<tr>
<td>KP-66</td>
<td>Neverita duplicata</td>
<td>32.99</td>
<td>28</td>
<td>1.4</td>
</tr>
<tr>
<td>KP-67</td>
<td>Neverita duplicata</td>
<td>14.4</td>
<td>12.02</td>
<td>0.79</td>
</tr>
<tr>
<td>KP-68</td>
<td>Neverita duplicata</td>
<td>38.82</td>
<td>29.8</td>
<td>1.21</td>
</tr>
<tr>
<td>KP-69</td>
<td>Neverita duplicata</td>
<td>22.83</td>
<td>17.51</td>
<td>0.62</td>
</tr>
<tr>
<td>KP-70</td>
<td>Neverita duplicata</td>
<td>22.39</td>
<td>16.41</td>
<td>0.6</td>
</tr>
<tr>
<td>KP-71</td>
<td>Neverita duplicata</td>
<td>21.44</td>
<td>16.46</td>
<td>1</td>
</tr>
<tr>
<td>KP-72</td>
<td>Neverita duplicata</td>
<td>33.35</td>
<td>26.82</td>
<td>0.98</td>
</tr>
<tr>
<td>KP-73</td>
<td>Neverita duplicata</td>
<td>30.48</td>
<td>22.99</td>
<td>0.79</td>
</tr>
<tr>
<td>KP-74</td>
<td>Naticarius canrena</td>
<td>17.63</td>
<td>16.02</td>
<td>1.08</td>
</tr>
<tr>
<td>KP-75</td>
<td>Naticarius canrena</td>
<td>24.41</td>
<td>25.1</td>
<td>0.74</td>
</tr>
<tr>
<td>KP-76</td>
<td>Neverita duplicata</td>
<td>29.91</td>
<td>26.94</td>
<td>0.78</td>
</tr>
<tr>
<td>KP-77</td>
<td>Neverita duplicata</td>
<td>40.41</td>
<td>37.13</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>KP-78</td>
<td>Neverita duplicata</td>
<td>33.7</td>
<td>27.87</td>
<td>0.67</td>
</tr>
<tr>
<td>KP-79</td>
<td>Neverita duplicata</td>
<td>33.26</td>
<td>26.53</td>
<td>0.91</td>
</tr>
<tr>
<td>KP-80</td>
<td>Neverita duplicata</td>
<td>39.37</td>
<td>35.78</td>
<td>1.19</td>
</tr>
<tr>
<td>KP-81</td>
<td>Neverita duplicata</td>
<td>23.1</td>
<td>18.21</td>
<td>0.59</td>
</tr>
<tr>
<td>KP-82</td>
<td>Neverita duplicata</td>
<td>19.02</td>
<td>14.79</td>
<td>1</td>
</tr>
<tr>
<td>KP-83</td>
<td>Neverita duplicata</td>
<td>29.06</td>
<td>23.2</td>
<td>0.64</td>
</tr>
<tr>
<td>KP-84</td>
<td>Neverita duplicata</td>
<td>35.31</td>
<td>26.44</td>
<td>0.98</td>
</tr>
<tr>
<td>KP-85</td>
<td>Neverita duplicata</td>
<td>25.76</td>
<td>21.09</td>
<td>1.25</td>
</tr>
<tr>
<td>KP-86</td>
<td>Euspira heros</td>
<td>22.8</td>
<td>23.08</td>
<td>0.64</td>
</tr>
<tr>
<td>KP-87</td>
<td>Lunatia perspectiva</td>
<td>23.57</td>
<td>26.2</td>
<td>0.65</td>
</tr>
<tr>
<td>KP-88</td>
<td>Naticarius canrena</td>
<td>19.27</td>
<td>21.31</td>
<td>1.11</td>
</tr>
<tr>
<td>KP-89</td>
<td>Naticarius canrena</td>
<td>28.82</td>
<td>27.75</td>
<td>1.2</td>
</tr>
<tr>
<td>KP-90</td>
<td>Neverita duplicata</td>
<td>33.93</td>
<td>35.6</td>
<td>1.47</td>
</tr>
<tr>
<td>KP-91</td>
<td>Neverita duplicata</td>
<td>31.34</td>
<td>26.86</td>
<td>0.79</td>
</tr>
<tr>
<td>KP-92</td>
<td>Neverita duplicata</td>
<td>24.33</td>
<td>17.09</td>
<td>1.29</td>
</tr>
<tr>
<td>KP-93</td>
<td>Neverita duplicata</td>
<td>39.43</td>
<td>34.5</td>
<td>1.26</td>
</tr>
<tr>
<td>KP-94</td>
<td>Neverita duplicata</td>
<td>26.19</td>
<td>21.55</td>
<td>1.18</td>
</tr>
<tr>
<td>KP-95</td>
<td>Euspira heros</td>
<td>39.15</td>
<td>39.11</td>
<td>0.57</td>
</tr>
<tr>
<td>KP-96</td>
<td>Neverita duplicata</td>
<td>40.81</td>
<td>34.3</td>
<td>1.01</td>
</tr>
<tr>
<td>KP-97</td>
<td>Neverita duplicata</td>
<td>19.07</td>
<td>14.26</td>
<td>0.68</td>
</tr>
<tr>
<td>KP-98</td>
<td>Neverita duplicata</td>
<td>29.49</td>
<td>24.18</td>
<td>0.99</td>
</tr>
<tr>
<td>KP-99</td>
<td>Neverita duplicata</td>
<td>24.38</td>
<td>19.65</td>
<td>0.86</td>
</tr>
<tr>
<td>KP-100</td>
<td>Naticarius canrena</td>
<td>32.29</td>
<td>30.08</td>
<td>1.4</td>
</tr>
<tr>
<td>KP-101</td>
<td>Euspira heros</td>
<td>23.33</td>
<td>25.26</td>
<td>0.62</td>
</tr>
<tr>
<td>KP-102</td>
<td>Euspira heros</td>
<td>22.24</td>
<td>23.29</td>
<td>0.37</td>
</tr>
<tr>
<td>KP-103</td>
<td>Euspira heros</td>
<td>27.92</td>
<td>30.18</td>
<td>0.71</td>
</tr>
</tbody>
</table>

3.035
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>External Hole Diameter</th>
<th>Internal Hole Diameter</th>
<th>Hole Sector</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>48.24</td>
<td>41.78</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>41.29</td>
<td>35.25</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>24.95</td>
<td>21.99</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>24.49</td>
<td>20.85</td>
<td>0.28</td>
<td>5.28</td>
<td>3.07</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BH-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>23.38</td>
<td>19.11</td>
<td>0.38</td>
<td>5.12</td>
<td>3.52</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BH-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.46</td>
<td>15.55</td>
<td>0.36</td>
<td>4.89</td>
<td>2.65</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BH-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.5</td>
<td>14.58</td>
<td>0.26</td>
<td>4.7</td>
<td>2.93</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BH-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>12.62</td>
<td>9.43</td>
<td>0.26</td>
<td>3.29</td>
<td>1.69</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>BH-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.06</td>
<td>12.92</td>
<td>0.17</td>
<td>3.22</td>
<td>1.16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BH-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.39</td>
<td>13.94</td>
<td>0.2</td>
<td>4.57</td>
<td>2.33</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BH-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>10.97</td>
<td>9.31</td>
<td>0.15</td>
<td>3.52</td>
<td>2.11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BH-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>13.17</td>
<td>10.87</td>
<td>0.32</td>
<td>3.55</td>
<td>1.77</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BH-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.16</td>
<td>13.75</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.25</td>
<td>19.58</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.35</td>
<td>12.03</td>
<td>0.34</td>
<td>2.63</td>
<td>1.17</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BH-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>9.64</td>
<td>8.01</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>10.44</td>
<td>8.35</td>
<td>0.15</td>
<td>3.5</td>
<td>1.68</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BH-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>12.03</td>
<td>9.79</td>
<td>0.22</td>
<td>3.4</td>
<td>1.72</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BH-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>13.94</td>
<td>11.36</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Species</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Width</td>
<td>Thickness</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-20</td>
<td>Neverita duplicata</td>
<td>14.17</td>
<td>12.39</td>
<td>0.31</td>
<td>4.11</td>
<td>2.29</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-21</td>
<td>Neverita duplicata</td>
<td>10.22</td>
<td>8.75</td>
<td>0.24</td>
<td>2.46</td>
<td>1.08</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH-22</td>
<td>Neverita duplicata</td>
<td>12.22</td>
<td>9.75</td>
<td>0.34</td>
<td></td>
<td></td>
<td>3.874286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>NR-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.36</td>
<td>25.87</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.65</td>
<td>21.8</td>
<td>0.41</td>
<td>5.65</td>
<td>3.46</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NR-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.28</td>
<td>21.57</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.43</td>
<td>18.02</td>
<td>0.43</td>
<td>4.42</td>
<td>2.69</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NR-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>22.98</td>
<td>18.36</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.22</td>
<td>13.15</td>
<td>0.4</td>
<td>4.91</td>
<td>3.05</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NR-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>28.36</td>
<td>22.61</td>
<td>0.44</td>
<td>4.16</td>
<td>2.44</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NR-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.19</td>
<td>20.53</td>
<td>0.35</td>
<td>5.28</td>
<td>2.58</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.8</td>
<td>13.82</td>
<td>0.43</td>
<td>4.48</td>
<td>2.68</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.32</td>
<td>17.58</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>4.35</td>
<td>3.81</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.64</td>
<td>13.5</td>
<td>0.37</td>
<td>4.44</td>
<td>2.27</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.63</td>
<td>18.02</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>17.73</td>
<td>15.93</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.79</td>
<td>15.27</td>
<td>0.35</td>
<td>4.33</td>
<td>2.44</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NR-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.21</td>
<td>15.71</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>14.83</td>
<td>12.38</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>10.4</td>
<td>7.94</td>
<td>0.2</td>
<td>2.3</td>
<td>1.56</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>12.5</td>
<td>10.47</td>
<td>0.29</td>
<td>3.52</td>
<td>1.78</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td>Subspecies</td>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Width:Height</td>
<td>Length:Height</td>
<td>Width:Height</td>
<td>Length:Width</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NR-20</td>
<td>Neverita</td>
<td>duplicata</td>
<td>14.78</td>
<td>12.53</td>
<td>0.35</td>
<td>4.35</td>
<td>2.58</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-21</td>
<td>Neverita</td>
<td>duplicata</td>
<td>11.8</td>
<td>9.4</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-22</td>
<td>Neverita</td>
<td>duplicata</td>
<td>11.65</td>
<td>10.18</td>
<td>0.25</td>
<td>2.3</td>
<td>1.25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-23</td>
<td>Neverita</td>
<td>duplicata</td>
<td>9.22</td>
<td>7.69</td>
<td>0.16</td>
<td>3.23</td>
<td>1.79</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NR-24</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.67</td>
<td>4.9</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-25</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.72</td>
<td>4.82</td>
<td>0.2</td>
<td>1.58</td>
<td>0.57</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NR-26</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.99</td>
<td>5.61</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-27</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.63</td>
<td>5.11</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-28</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.17</td>
<td>4.52</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-29</td>
<td>Tectonatica</td>
<td>pusilla</td>
<td>4.52</td>
<td>5.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-30</td>
<td>Neverita</td>
<td>duplicata</td>
<td>4.46</td>
<td>3.78</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-31</td>
<td>Neverita</td>
<td>duplicata</td>
<td>3.61</td>
<td>3.18</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-32</td>
<td>Neverita</td>
<td>duplicata</td>
<td>3.04</td>
<td>2.5</td>
<td>0.11</td>
<td>0.96</td>
<td>0.74</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NR-33</td>
<td>Neverita</td>
<td>duplicata</td>
<td>3.95</td>
<td>3.25</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.727333
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Locality</th>
<th>Genus</th>
<th>Species</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL-1</td>
<td>Keith’s Marl Pit Niels Eddy Landing</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.15</td>
<td>46.88</td>
<td>1.01</td>
</tr>
<tr>
<td>NL-2</td>
<td>Near 34°20'N 78°05'W</td>
<td>Neverita</td>
<td>duplicata</td>
<td>11.96</td>
<td>9.18</td>
<td>0.31</td>
</tr>
<tr>
<td>NL-3</td>
<td>PRI upper Waccamaw</td>
<td>Neverita</td>
<td>duplicata</td>
<td>49.92</td>
<td>45.48</td>
<td>0.92</td>
</tr>
<tr>
<td>NL-4</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>45.82</td>
<td>44.87</td>
<td>0.66</td>
</tr>
<tr>
<td>NL-5</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>13.08</td>
<td>9.59</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>NL-6</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.96</td>
<td>25.14</td>
<td>0.42</td>
</tr>
<tr>
<td>NL-7</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>34.73</td>
<td>36.27</td>
<td>0.92</td>
</tr>
<tr>
<td>NL-8</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>51.02</td>
<td>48.54</td>
<td>0.75</td>
</tr>
<tr>
<td>NL-9</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>35.39</td>
<td>31.06</td>
<td>0.82</td>
</tr>
<tr>
<td>NL-10</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>31.33</td>
<td>26.99</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>NL-11</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>27.91</td>
<td>22.65</td>
<td>0.82</td>
</tr>
<tr>
<td>NL-12</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>30.88</td>
<td>27.22</td>
<td>0.71</td>
</tr>
<tr>
<td>NL-13</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.74</td>
<td>15.58</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>NL-14</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>54.3</td>
<td>55.95</td>
<td>0.92</td>
</tr>
<tr>
<td>NL-15</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.2</td>
<td>15.25</td>
<td>0.3</td>
</tr>
<tr>
<td>NL-16</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.39</td>
<td>20.88</td>
<td>0.55</td>
</tr>
<tr>
<td>NL-17</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.66</td>
<td>16.47</td>
<td>0.73</td>
</tr>
<tr>
<td>NL-18</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.35</td>
<td>15.23</td>
<td>0.39</td>
</tr>
<tr>
<td>NL-19</td>
<td>Neverita duplicata</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.89</td>
<td>14.96</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>NL-20</td>
<td>Neverita duplicata</td>
<td>24.44</td>
<td>20.62</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-21</td>
<td>Neverita duplicata</td>
<td>21.59</td>
<td>17.66</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-22</td>
<td>Neverita duplicata</td>
<td>19.71</td>
<td>15.12</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| NL-23 | Neverita duplicata | 21.11 | 17.64 | 0.44 | 4.62 | 3.08 | 3  
| NL-24 | Neverita duplicata | 13.08 | 11.02 | 0.58 |      |      |  
| NL-25 | Euspira heros     | 17.33 | 17.6  | 0.44 |      |      |  
| NL-26 | Neverita duplicata | 17.2  | 13.58 | 0.56 |      |      |  
| NL-27 | Neverita duplicata | 17.03 | 13.97 | 0.41 |      |      |  
| NL-28 | Neverita duplicata | 14.43 | 10.99 | 0.43 | 3.12 | 1.66 | 2  
| NL-29 | Neverita duplicata | 11.85 | 9.24  | 0.21 |      |      |  
| NL-30 | Neverita duplicata | 11.78 | 9.69  | 0.57 | 3.23 | 1.66 | 2  
| NL-31 | Neverita duplicata | 10.68 | 8.37  | 0.3  | 3.03 | 1.27 | 3  
| NL-32 | Neverita duplicata | 13.82 | 11.27 | 0.28 |      |      |  
| NL-33 | Neverita duplicata | 11.26 | 9.14  | 0.51 |      |      |  
| NL-34 | Neverita duplicata | 9.77  | 8.74  | 0.35 |      |      |  
| NL-35 | Neverita duplicata | 43.95 | 41.28 | 0.65 |      |      |  
| NL-36 | Euspira heros     | 32.22 | 30.89 | 0.4  |      |      |  
| NL-37 | Naticarius canrena | 38.29 | 38.12 | 0.81 |      |      |  
| NL-38 | Neverita duplicata | 16.1  | 12.19 | 0.38 | 3.5  | 2.05 | 3  
| NL-39 | Neverita duplicata | 45.42 | 44.28 | 0.72 |      |      |  
| NL-40 | Euspira heros     | 10.49 | 11.27 | 0.3  | 2.67 | 1.5  | 3  
| NL-41 | Euspira heros     | 14.07 | 15.0  | 0.28 | 2.58 | 1.25 | 1  
| NL-42 | Euspira heros     | 24.01 | 23.64 | 0.51 | 3.04 | 1.45 | 2  
| NL-43 | Euspira heros     | 23.9  | 24.08 | 0.53 |      |      |  
| NL-44 | Neverita duplicata | 50.55 | 47.02 | 0.64 |      |      |  
| NL-45 | Neverita duplicata | 39    | 36.25 | 0.73 |      |      |  
| NL-46 | Neverita duplicata | 28.52 | 23.96 | 0.58 |      |      |  
| NL-47 | Euspira heros     | 21.52 | 21.02 | 0.46 |      |      |  
| NL-48 | Euspira heros     | 14.61 | 14.43 | 0.53 |      |      |  

<table>
<thead>
<tr>
<th></th>
<th>Species</th>
<th>Type</th>
<th>Width</th>
<th>Length</th>
<th>Height</th>
<th>Width</th>
<th>Length</th>
<th>Height</th>
<th>Width</th>
<th>Length</th>
<th>Height</th>
<th>Width</th>
<th>Length</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL-49</td>
<td>Neverita duplicata</td>
<td>26.03</td>
<td>20.36</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>NL-50</td>
<td>Euspira heros</td>
<td>23.16</td>
<td>24.05</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>NL-51</td>
<td>Euspira heros</td>
<td>17.4</td>
<td>17.7</td>
<td>0.53</td>
<td>2.95</td>
<td>1.4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-52</td>
<td>Neverita duplicata</td>
<td>16.55</td>
<td>13.06</td>
<td>0.43</td>
<td>4.03</td>
<td>2.2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-53</td>
<td>Neverita duplicata</td>
<td>33.21</td>
<td>30.19</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>NL-54</td>
<td>Euspira heros</td>
<td>20.39</td>
<td>18.05</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>NL-55</td>
<td>Neverita duplicata</td>
<td>49.4</td>
<td>50.74</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>NL-56</td>
<td>Neverita duplicata</td>
<td>54.02</td>
<td>48.8</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>NL-57</td>
<td>Neverita duplicata</td>
<td>18.17</td>
<td>14.05</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>NL-58</td>
<td>Euspira heros</td>
<td>24.7</td>
<td>25.72</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>NL-59</td>
<td>Neverita duplicata</td>
<td>26.32</td>
<td>21.73</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>NL-60</td>
<td>Euspira heros</td>
<td>24.14</td>
<td>23.85</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>NL-61</td>
<td>Euspira heros</td>
<td>14.85</td>
<td>16.46</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>NL-62</td>
<td>Euspira heros</td>
<td>17.2</td>
<td>17.33</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>NL-63</td>
<td>Euspira heros</td>
<td>17.17</td>
<td>16.25</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>NL-64</td>
<td>Neverita duplicata</td>
<td>26.16</td>
<td>19.78</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>NL-65</td>
<td>Euspira heros</td>
<td>20.39</td>
<td>20.07</td>
<td>0.42</td>
<td>3.86</td>
<td>2.19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-66</td>
<td>Euspira heros</td>
<td>13.75</td>
<td>13.98</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>NL-67</td>
<td>Neverita duplicata</td>
<td>14.55</td>
<td>12.15</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>NL-68</td>
<td>Neverita duplicata</td>
<td>18.51</td>
<td>13.95</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>NL-69</td>
<td>Euspira heros</td>
<td>12.59</td>
<td>12.45</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>NL-70</td>
<td>Euspira heros</td>
<td>10.92</td>
<td>11.25</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>NL-71</td>
<td>Neverita duplicata</td>
<td>8.63</td>
<td>7.17</td>
<td>0.24</td>
<td>2.45</td>
<td>1.03</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-72</td>
<td>Neverita duplicata</td>
<td>11.78</td>
<td>8.89</td>
<td>0.29</td>
<td>2.23</td>
<td>0.96</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-73</td>
<td>Neverita duplicata</td>
<td>14.37</td>
<td>10.96</td>
<td>0.29</td>
<td>3.5</td>
<td>1.73</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-74</td>
<td>Neverita duplicata</td>
<td>12.95</td>
<td>10.37</td>
<td>0.25</td>
<td>2.91</td>
<td>1.4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-75</td>
<td>Neverita duplicata</td>
<td>8.78</td>
<td>6.68</td>
<td>0.12</td>
<td>2.13</td>
<td>1.01</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL-76</td>
<td>Neverita duplicata</td>
<td>8.96</td>
<td>6.94</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>NL-77</td>
<td>Euspira heros</td>
<td>12.58</td>
<td>12.89</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Genus</td>
<td>Species</td>
<td>Length</td>
<td>Height</td>
<td>Thickness</td>
<td>External Hole Diameter</td>
<td>Internal Hole Diameter</td>
<td>Hole Sector</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-1</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.94</td>
<td>17.11</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-2</td>
<td>Neverita</td>
<td>duplicata</td>
<td>21.32</td>
<td>15.85</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-3</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.24</td>
<td>14.17</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-4</td>
<td>Neverita</td>
<td>duplicata</td>
<td>19.37</td>
<td>16.24</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-5</td>
<td>Neverita</td>
<td>duplicata</td>
<td>15.03</td>
<td>13.77</td>
<td>0.35</td>
<td>3.25</td>
<td>2.1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-6</td>
<td>Neverita</td>
<td>duplicata</td>
<td>8.77</td>
<td>7.26</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-7</td>
<td>Neverita</td>
<td>duplicata</td>
<td>16.38</td>
<td>12.52</td>
<td>0.43</td>
<td></td>
<td></td>
<td>inc DH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-8</td>
<td>Neverita</td>
<td>duplicata</td>
<td>18.14</td>
<td>14.51</td>
<td>0.32</td>
<td>4.27</td>
<td>3.06</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-9</td>
<td>Neverita</td>
<td>duplicata</td>
<td>14.88</td>
<td>11.75</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-10</td>
<td>Neverita</td>
<td>duplicata</td>
<td>8.14</td>
<td>5.77</td>
<td>0.27</td>
<td>3.5</td>
<td>2.96</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-11</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.85</td>
<td>5.75</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-12</td>
<td>Neverita</td>
<td>duplicata</td>
<td>20.14</td>
<td>17.75</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-13</td>
<td>Neverita</td>
<td>duplicata</td>
<td>8.82</td>
<td>7.12</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-14</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.58</td>
<td>5.1</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-15</td>
<td>Neverita</td>
<td>duplicata</td>
<td>5.71</td>
<td>4.72</td>
<td>0.24</td>
<td>1.4</td>
<td>0.92</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-16</td>
<td>Neverita</td>
<td>duplicata</td>
<td>6.3</td>
<td>5.53</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-17</td>
<td>Neverita</td>
<td>duplicata</td>
<td>10.65</td>
<td>8.23</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-18</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.07</td>
<td>17.94</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-19</td>
<td>Neverita</td>
<td>duplicata</td>
<td>25.33</td>
<td>21.19</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2-20</td>
<td>Neverita duplicata</td>
<td>15.56</td>
<td>14.11</td>
<td>0.42</td>
<td>3.105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>