Date Thesis Awarded


Access Type

Honors Thesis -- Access Restricted On-Campus Only

Degree Name

Bachelors of Science (BS)




Robert D. Pike

Committee Members

Christopher J. Abelt

William R. McNamara

Margaret Somosi Saha


Copper(I) iodide and copper(I) bromide were reacted with polyamine ligands (L) to form crystals and bulk microcrystalline powders. The ligands included piperazine (Pip), N-methylpiperazine (MePip), N,N'-dimethylpiperazine (Me2Pip), N-ethylpiperazine (EtPip), N,N'-diethylpiperazine (Et2Pip), N,N'-dibenzylpiperazine (Bz2Pip), N,N'-bis-phenethylpiperazine (Phen2Pip), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,3,6,8-tetraazatricylco[,8]dodecane (TATD), and hexamethylenetetramine (HMTA). Bulk microcrystalline powders were formed via reflux or an ambient temperature stirred reaction both in acetonitrile. Novel crystalline products were formed via a solvent diffusion technique also in acetonitrile. X-ray structures for (CuBr)(HMTA)∙½MeCN and (CuI)2(TATD) are reported. Solid state characterization including thermogravimetric analysis (TGA) and elemental analysis for carbon, hydrogen, and nitrogen (CHN) was completed for all bulk microcrystalline products. Luminescence spectroscopy, including a quantum yield calculation, was completed for all bulk products exhibiting luminescence at ambient temperature.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.


Thesis is part of Honors ETD pilot project, 2008-2013. Migrated from Dspace in 2016.

On-Campus Access Only