Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction
Forgoston, Eric ; Schwartz, Ira B. ; Bianco, Simone ; Shaw, Leah B.
Forgoston, Eric
Schwartz, Ira B.
Bianco, Simone
Shaw, Leah B.
Abstract
Extinction of an epidemic or a species is a rare event that occurs due to a large, rare stochastic fluctuation. Although the extinction process is dynamically unstable, it follows an optimal path that maximizes the probability of extinction. We show that the optimal path is also directly related to the finite-time Lyapunov exponents of the underlying dynamical system in that the optimal path displays maximum sensitivity to initial conditions. We consider several stochastic epidemic models, and examine the extinction process in a dynamical systems framework. Using the dynamics of the finite-time Lyapunov exponents as a constructive tool, we demonstrate that the dynamical systems viewpoint of extinction evolves naturally toward the optimal path.
Description
Date
2011-01-01
Journal Title
Journal ISSN
Volume Title
Publisher
Collections
Embargo
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Advisor
Department
Applied Science
DOI
https://doi.org/10.1007/s11538-010-9537-0