Loading...
A note on chromatic number and induced odd cycles
Xu, Baogang ; Yu, Gexin ; Zha, Xiaoya
Xu, Baogang
Yu, Gexin
Zha, Xiaoya
Abstract
An odd hole is an induced odd cycle of length at least 5. Scott and Seymour confirmed a conjecture of Gyarfas and proved that if a graph G has no odd holes then chi(G) <=( 2 omega(G)+2). Chudnovsky, Robertson, Seymour and Thomas showed that if G has neither K-4 nor odd holes then chi(G) <= 4. In this note, we show that if a graph G has neither triangles nor quadrilaterals, and has no odd holes of length at least 7, then chi(G) <= 4 and chi(G) <= 3 if G has radius at most 3, and for each vertex u of G, the set of vertices of the same distance to u induces abipartite subgraph. This answers some questions in [17].
Description
Date
2017-11-03
Journal Title
Journal ISSN
Volume Title
Publisher
Collections
Download Dataset
Files
Loading...
A_note_on.pdf
Adobe PDF, 244.59 KB
Embargo
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Advisor
Department
Mathematics