Title

Estimation and Inference for Generalized Geoadditive Models

Document Type

Data

DOI

10.6084/m9.figshare.7777226.v1

Publication Date

1-1-2019

Description

In many application areas, data are collected on a count or binary response with spatial covariate information. In this article, we introduce a new class of generalized geoadditive models (GGAMs) for spatial data distributed over complex domains. Through a link function, the proposed GGAM assumes that the mean of the discrete response variable depends on additive univariate functions of explanatory variables and a bivariate function to adjust for the spatial effect. We propose a two-stage approach for estimating and making inferences of the components in the GGAM. In the first stage, the univariate components and the geographical component in the model are approximated via univariate polynomial splines and bivariate penalized splines over triangulation, respectively. In the second stage, local polynomial smoothing is applied to the cleaned univariate data to average out the variation of the first-stage estimators. We investigate the consistency of the proposed estimators and the asymptotic normality of the univariate components. We also establish the simultaneous confidence band for each of the univariate components. The performance of the proposed method is evaluated by two simulation studies. We apply the proposed method to analyze the crash counts data in the Tampa-St. Petersburg urbanized area in Florida. Supplementary materials for this article are available online.

Publisher

figshare Academic Research System

Source Link

https://tandf.figshare.com/articles/Estimation_and_Inference_for_Generalized_Geoadditive_Models/7777226/1

Share

COinS