Incorporation of aged dissolved organic carbon (DOC) by oceanic particulate organic carbon (POC): An experimental approach using natural carbon isotopes

ED Lund


We investigated the viability and fatty acid synthetic activity of in vitro cultured Perkinsus marinus (Dermo) in lipid-free medium and estuarine water, and the infectivity of P. marinus maintained in artificial seawater (ASW). Viability and fatty acid synthetic activity in 7 d old R marinus meronts maintained in lipid-free medium and estuarine water were tested. The infectivity of meronts incubated in ASW was examined by first incubating P. marinus meronts in ASW for 2, 3 or 7 d, and then inoculating viable ASW-incubated meronts into the shell cavity of individual oysters Crassostrea virginica. P. marinus infection prevalence and intensity in oysters were determined 9 wk post-inoculation. Heavy mortality occurred in meronts maintained in estuarine water, a drop from an initial value of 100% viable to 7.8 and 6.1% after 3 and 14 d incubation, respectively. Viability was 85 and 67% in meronts maintained in lipid-free medium for 3 and 24 d, respectively. Meronts kept in lipid-free medium for 14 d retained their ability to synthesize fatty acids. Viable meronts incubated in ASW remained infective for up to 7 d. The infection prevalences were 85, 48 and 100%, in the treatments inoculated with viable meronts that were incubated in ASW for 2, 3 and 7 d, respectively. Infection prevalence in the group inoculated with viable meronts immediately after they were transferred to ASW ranged from 61 to 85%. Our results suggest that in nature meronts can survive for at least 14 d outside the host. Viable meronts are not only infective, but are also able to replicate and retain their fatty acid synthetic ability for 7 d.