Identification and partial characterisation of metalloproteases secreted by a Mesanophrys-like ciliate parasite of the Norway lobster Nephrops norvegicus

SL McCallister
JE Bauer
EA Canuel

Abstract

An integrated multidisciplinary study utilizing geochemical and microbial ecological approaches was conducted to characterize the origins, chemical nature, and quantities of dissolved and particulate organic matter (OM) utilized by heterotrophic bacteria in a temperate estuary. C: N, stable isotope (delta C-13), and lipid biomarker analyses revealed differences in the inferred reactivity of autochthonous versus allochthonous OM sources. Isotopic comparison of OM size fractions and bacterial nucleic acids suggests that high-molecular-weight dissolved OM (DOM) is consistently linked to bacterial biomass synthesis along the estuarine salinity gradient. Polyunsaturated fatty acids (as percent of total fatty acids, FA) were a reliable predictor of DOM decomposition in bioassays, thus providing an indicator directly linking DOM reactivity to its composition. Significant positive correlations between FA diagnostic of bacterial sources and lipid biomarker compounds diagnostic of planktonic origin indicate a systematic bacterial response to autochthonous DOM sources along the estuarine continuum. These findings further suggest that, although the geochemical signature of algal-derived OM in the dissolved phase may appear quantitatively insignificant, this fraction may nevertheless represent a principal source of bioreactive OM to heterotrophic bacteria in estuarine waters.