Date Awarded


Document Type


Degree Name

Doctor of Philosophy (Ph.D.)


Virginia Institute of Marine Science


The blue crab Callinectes sapidus supports one of the most important fisheries in the Chesapeake Bay and is the leading contributor to blue crab landings in the United States. Assessment and management of blue crab stocks has been hampered by a lack of estimates of natural mortality rates, a key parameter in assessment models. In Chapter 2, we demonstrate that the approach used for estimating natural mortality that had been used in past assessments was flawed, and provide justification for a superior alternative. In Chapter 3, we synthesize our current understanding of natural mortality rates in adult blue crab and provide a suite of estimates for the Chesapeake Bay stock. Our estimates were used in the 2005 assessment for this stock, and the methods and estimates can provide guidance for assessments of the same or other species. In addition to estimates of natural mortality for adult blue crab, the short turnover time in the stock makes it necessary to consider changes in natural mortality rates with size or age. Current assessment models use an annual time step, which smooths over the changes in natural mortality that occur during ontogeny. Some crabs reach an exploitable size within the first year of life, and smaller crabs are expected to have higher natural mortality rates. In addition, natural mortality is known to vary seasonally, being highest in Chesapeake Bay during the summer months when predators are most abundant and crabs are molting frequently. to include size-dependent mortality in more realistic population dynamics models, we estimated mortality rates of juvenile crabs through field experiments (Chapter 4). In 2005 and 2006, we estimated mortality rates of seven cohorts of hatchery-reared juveniles in two tidal marsh creeks along the York River, Virginia during the summer and fall. Juvenile mortality rates were orders of magnitude higher than current estimates of adult mortality rates and were highest in the summer. Our results reinforce concerns about the adequacy of current assessment models and provide estimates of mortality that can be used to guide future work.



© The Author