Date Awarded


Document Type


Degree Name

Doctor of Philosophy (Ph.D.)


Applied Science


David E Kranbuehl


The objective of this research was to develop an in-situ sensing technique that monitors the molecular-level response of ions and dipoles to an applied electric field in order to characterize the changes in state of a polymer resin during chemical processing. This technique needs to be capable of monitoring the reaction progress not only in the laboratory setting but also in-situ in the processing tool or reaction environment. Frequency Dependent Electromagnetic Sensing (FDEMS) was selected for this task.;This dissertation investigates the applicability of FDEMS to monitoring two types of processing methods: reactive and batch reactor. The reactive processing system examined involves the processing of a high glass transition thermoplastic, either polyethylene ether or polyether imide blended with a thermoset, diglycidyl ether of bisphenol-A and 4,4'-methylene bis (3-chloro 2,6-diethylaniline]. The batch reactor processing systems examined involve the in-situ process control of an industrial batch reactor process involving five different systems: epoxy acrylic, polyester, latex, emulsion for lotions and surfactants.



© The Author